Repository logo
 

Drought tolerance and implications for vegetation-climate interactions in the Amazon forest

dc.contributor.authorHarper, Anna Biagi, author
dc.contributor.authorDenning, Alan Scott, advisor
dc.contributor.authorRandall, David, committee member
dc.contributor.authorKummerow, Christian, committee member
dc.contributor.authorCotrufo, Francesca, committee member
dc.date.accessioned2007-01-03T08:09:49Z
dc.date.available2007-01-03T08:09:49Z
dc.date.issued2012
dc.description.abstractOn seasonal and annual timescales, the Amazon forest is resistant to drought, but more severe droughts can have profound effects on ecosystem productivity and tree mortality. The majority of climate models predict decreased rainfall in tropical South America over this century. Until recently, land surface models have not included mechanisms of forest resistance to seasonal drought. In some coupled climate models, the inability of tropical forest to withstand warming and drying leads to replacement of forest by savanna by 2050. The main questions of this research are: What factors affect forest drought tolerance, and what are the implications of drought tolerance mechanisms for climate? Forest adaptations to drought, such as development of deep roots, enable Amazon forests to withstand seasonal droughts, and the maintenance of transpiration during dry periods can affect regional climate. At high levels of water stress, such as those imposed during a multiyear rainfall exclusion experiment or during interannual drought, trees prevent water loss by closing their stomata. We examine forest response to drought in an ecosystem model (SiB3 - the Simple Biosphere model) compared to two rainfall exclusion experiments in the Amazon. SiB3 best reproduces the observed drought response using realistic soil parameters and annual LAI, and by adjusting soil depth. SiB3's optimal soil depth at each site serves as a proxy for forest drought resistance. Based on the results at the exclusion sites, we form the hypothesis that forests with periodic dry conditions are more adapted to drought. We parameterize stress resistance as a function of precipitation climatology, soil texture, and percent forest cover. The parameterization impacts carbon and moisture fluxes during extreme drought events. The loss of productivity is of similar magnitude as plot-based measurements of biomass loss during the 2005 drought. Changing stress resistance in SiB3 also affects surface evapotranspiration during dry periods, which has the potential to affect climate through changing sensible and latent heat fluxes. We examine the effects of forest stress resistance on climate through coupled experiments of SiB3 in a GCM. In a single column model, we find evidence for a more active hydrologic cycle due to increased stress resistance. The boundary layer responds through changes in its depth, relative humidity, and turbulent kinetic energy, and the changes feed back to influence wet season onset and intensity. In a full global GCM, increased stress resistance often decreases drought intensity through enhanced ET and changes to circulation. The circulation responds to changes in atmospheric latent heating and can affect precipitation in the South Atlantic Convergence Zone.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierHarper_colostate_0053A_10936.pdf
dc.identifierETDF2012400240ATMS
dc.identifier.urihttp://hdl.handle.net/10217/67448
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectecosystem model
dc.subjectdrought
dc.subjectland-atmosphere interactions
dc.subjectAmazon forest
dc.subjectclimate model
dc.titleDrought tolerance and implications for vegetation-climate interactions in the Amazon forest
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineAtmospheric Science
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Harper_colostate_0053A_10936.pdf
Size:
16.72 MB
Format:
Adobe Portable Document Format
Description: