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ABSTRACT

DROUGHT TOLERANCE AND IMPLICATIONS FOR VEGETATION-CLIMATE 

INTERACTIONS IN THE AMAZON FOREST


 On seasonal and annual timescales, the Amazon forest is resistant to drought, but 

more severe droughts can have profound effects on ecosystem productivity and tree 

mortality. The majority  of climate models predict decreased rainfall in tropical South 

America over this century. Until recently, land surface models have not included 

mechanisms of forest resistance to seasonal drought. In some coupled climate models, the 

inability of tropical forest to withstand warming and drying leads to replacement of forest 

by savanna by 2050. The main questions of this research are: What  factors affect forest 

drought tolerance, and what are the implications of drought tolerance mechanisms for 

climate?

 Forest adaptations to drought, such as development of deep roots, enable Amazon 

forests to withstand seasonal droughts, and the maintenance of transpiration during dry 

periods can affect regional climate. At high levels of water stress, such as those imposed 

during a multiyear rainfall exclusion experiment or during interannual drought, trees 

prevent water loss by closing their stomata. 

 We examine forest response to drought in an ecosystem model (SiB3 - the Simple 

Biosphere model) compared to two rainfall exclusion experiments in the Amazon. SiB3 

best reproduces the observed drought response using realistic soil parameters and annual 

LAI, and by adjusting soil depth. SiB3’s optimal soil depth at each site serves as a proxy 
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for forest drought resistance. Based on the results at the exclusion sites, we form the 

hypothesis that forests with periodic dry conditions are more adapted to drought. 

 We parameterize stress resistance as a function of precipitation climatology, soil 

texture, and percent forest cover. The parameterization impacts carbon and moisture 

fluxes during extreme drought events. The loss of productivity is of similar magnitude as 

plot-based measurements of biomass loss during the 2005 drought. 

 Changing stress resistance in SiB3 also affects surface evapotranspiration during 

dry periods, which has the potential to affect climate through changing sensible and latent 

heat fluxes. We examine the effects of forest stress resistance on climate through coupled 

experiments of SiB3 in a GCM. In a single column model, we find evidence for a more 

active hydrologic cycle due to increased stress resistance. The boundary layer responds 

through changes in its depth, relative humidity, and turbulent kinetic energy, and the 

changes feed back to influence wet season onset and intensity. In a full global GCM, 

increased stress resistance often decreases drought intensity through enhanced ET and 

changes to circulation. The circulation responds to changes in atmospheric latent heating 

and can affect precipitation in the South Atlantic Convergence Zone.
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CHAPTER ONE:

Introduction and Background
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1. Introduction

 The Amazon rainforest covers 4 million km2 in Brazil alone, contains the 

equivalent of roughly 10 years of current human emissions of carbon (Fearnside, 1997), 

and accounts for approximately 10% of the world’s annual net primary  productivity 

(NPP). The combined threats of climate change and deforestation could result in marked 

degradation of this huge ecosystem. A potential consequence of climate change is 

decreased precipitation, particularly during the dry season. The aim of this work is to 

investigate the response of the forest to drought and the effects of the forest’s drought 

tolerance mechanisms on climate.

 Over the past decade, a better understanding of Amazon forest responses to drought 

has emerged. Studies of drought ranging from seasonal to interannual to multiyear depict 

resistance to short-term drought (e.g.: Saleska et  al., 2003; Nepstad et al., 2002; Huete et 

al., 2006; Meir et al., 2009) but susceptibility to severe or multiyear drought (e.g.: 

Phillips et al., 2010; Nepstad et al., 2007; da Costa et al., 2010). An impetus for these 

studies is the uncertainty  of the future climate and forest coverage in Amazonia. Recent 

droughts are linked to El Niño (e.g. 1997-1998) and warming in the northern tropical 

Atlantic Ocean (e.g. 2005) (Aragão et al., 2007; Marengo et  al., 2008; Zeng et al., 2008). 

Both patterns are predicted to continue or potentially increase in the future (Li et al., 

2006; van Oldenborgh et al., 2005; Cox et al., 2008). The models used in the IPCC 

Fourth Assessment Report predict a slight decrease in annual precipitation in tropical 
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South America, with moderate precipitation increases during DJF and strong decreases in 

precipitation during JJA (IPCC, 2007) (Figure 1.1). The range in predictions vary greatly 

from model to model (e.g. Li et al., 2006), and a large source of uncertainty is the 

response of the land surface to both climate change and increased atmospheric CO2 

(Friedlingstein et al., 2006). 

 The main questions and hyptheses addressed in this study are:

1. How well do we understand Amazon forest stress response during extremely 

dry conditions? (Chapter 2)

2. Modeled plant available water (PAW) and ecosystem stress can indicate 

thresholds in ecosystem drought tolerance. (Chapter 2)

3. Climatology, soil texture, and forest cover affect forest stress resistance, and 

including an index of stress resistance based on these factors improves 

modeled drought response in terms of carbon fluxes. (Chapter 3)

4. Forest stress resistance can affect the climate through changes in surface heat 

and moisture fluxes. (Chapter 4)

5. Forest stress resistance can reduce intensity  of droughts, and impact 

precipitation and circulation in regions outside of Amazonia. (Chapter 5)

 Following is an introduction and background information pertinent to the rest of the 

study. Each chapter consists of a brief introduction, distinct  methods, results, and 

discussions. A summary and final conclusions are in Chapter 6. Figures are located at the 

end of each chapter.
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1.1 Theories of forest drought response

 Severe drought in tropical forests can lead to soil water deficits, decreased 

productivity, CO2 emissions, and increased mortality rates (Allen et al., 2010). Droughts 

accompanied by warmer temperatures can increase forest respiration, thereby releasing 

further CO2 into the atmosphere (Adams et al., 2010). Increases in dry  season water stress 

in the eastern Amazon could trigger a transition from evergreen to seasonal forests (Malhi 

et al., 2009b), though any transition is likely to be strongly  dependent on other factors, 

especially soil fertility  and fire incidence (Furley et al. 1992, Hirota et  al. 2010). An 

extreme possible outcome of climate change is conversion of forest  to savanna, with 

enormous transfer of CO2 from the biosphere into the atmosphere (Cox et al., 2004; 

Galbraith et al., 2010).

 Ecosystems exposed to periodic drought can develop either drought resistance/

tolerance or resilience (Chapin et al., 2002; Jones 1994). Drought-resistant species are 

able to survive and reproduce even in relatively dry  conditions. Ecosystems that are 

drought resistant show little change in structure, productivity, or rate of nutrient cycling 

in response to a drought. Resilient ecosystems might undergo a change in one of these 

factors, but are able to return to their original state following a disturbance. 

Determination of whether an ecosystem is resilient to drought requires long term 

monitoring, since recovery can take years (Phillips et al., 2010). In this study  we focus on 

drought resistance. 

 Three mechanisms can explain drought-induced tree mortality  - carbon starvation in 

isohydric plants, hydraulic failure in anisohydric plants, and heightened vulnerability  to 
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biotic attack (McDowell 2008). Isohydric plants regulate transpiration through stomatal 

closure, which inhibits water loss and prevents xylem cavitation. However, they  are 

susceptible to carbon starvation since assimilation is limited while respiration costs may 

remain high. Warmer temperatures can make the situation worse by increasing 

evaporative demand (in the case of anisohydric plants) or by increasing respiration (in 

isohydric plants) (Allen et al., 2010; McDowell, 2008).

 Plants can resist drought through stress avoidance, stress tolerance, or efficiency 

mechanisms (Jones 1992). Isohydric plants typically rely on deep  roots to access ample 

soil moisture. They  often avoid stress by investing more carbohydrates into root growth 

(relative to shoot growth) (McDowell, 2008; Jones 1992). In seasonally dry forests, 

plants often grow roots during the wet season in preparation for uptake during water 

deficits (Metcalfe et al., 2008). Deficiencies in soil water and nutrients can lead to 

allocation of photosynthate to root growth (Kozlowski, 2002). The development of deep 

roots comes at  a cost, reducing carbon available for above-ground growth and 

competition (Kleidon and Heimann, 1999). In tropical forests, observations show reduced 

fine root growth associated with low moisture availability, although at least one study 

found increased growth during the dry season. Another mechanism of stress avoidance is 

flowering early in the dry season when water is still available. 

 Stress tolerance mechanisms include increasing cell solute concentration to 

maintain turgor, rapid recovery following desiccation, and antioxidant mechanisms to 

protect against free radicals created during water deficits (Jones 1992). Lastly, plants can 

increase water use efficiency (WUE), defined as the ratio of net assimilation to water 
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loss. However, high WUE is best suited for plants in water-limited environments, since 

increased efficiency also slows water use and makes plants less competitive. Stomatal 

closure during midday  and the afternoon enables rapid photosynthesis during times when 

evaporative demand is low, and improves a plant’s WUE. The tendency  for midday 

closure increases with decreasing soil water content (Jones 1992). In regions where 

drought occurs relatively often, it is likely that plants efficient in one or more of the 

above stress avoidance/tolerance techniques will survive. As successive droughts occur, 

the more drought-hardy species will dominate.

 

1.2 Observed forest drought response

 In Central and South America, there have been five reported cases of increased 

mortality in tropical forests since 1970 (Allen et al., 2010). During these events, mortality 

increased by 39 to 94%, except one case in southeastern Brazil when mortality increased 

by 221%. The latter occurred in an Atlantic moist forest with relatively  low annual 

rainfall (1200 mm) (Allen et al., 2010). Most severe droughts in Amazonia are associated 

with the El Niño Southern Oscillation (ENSO). El Niño events result in subsidence and 

reduced precipitation in the northern/northeastern Amazon (e.g. Malhi and Wright, 2004). 

The subsidence in the Amazon results from a shift in the Walker Circulation and is linked 

to a low-level anticyclone in eastern Brazil (Grimm 2003). In general, during El Niños 

there are suppressed growth rates and negative NDVI anomalies during the dry  season 

(Asner et al., 2000). The sensitivity of the forest is higher in the southeastern Amazon 

basin.
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 In 2005, a drought occurred in the western Amazon, a region usually associated 

with heavy precipitation. The trees in this region have likely evolved with different 

drought response mechanisms than those in the more seasonally dry  Amazon. The 

drought was linked to anomalously  warm sea surface temperatures in the northern 

tropical Atlantic Ocean, and was most intense during the dry season (Marengo et al., 

2008). The response of the forest to the 2005 drought is unclear, with some studies 

finding a loss in biomass (Phillips et al., 2009), and others finding an increase in forest 

productivity  (Saleska et al., 2007). Biomass measurements across the Amazon basin show 

an estimated 1.2 to 1.6 Pg C was lost from the biosphere during the 2005 drought 

(Phillips et al., 2009), which represents ~1% of the annual global vegetation uptake, or 

15-20% of annual anthropogenic emissions (IPCC, 2007). Mortality response to the 2005 

Amazon drought showed a strongly linear relationship with soil moisture deficits 

(Phillips et al., 2010). Very severe water deficits produced much stronger mortality 

response, suggesting the existence of a threshold in drought resistance. Water deficits had 

greater impacts on mortality  in drier climates (Phillips et al., 2010). This event was a 100-

year drought, and yet an even larger drought occurred during the dry season of 2010 

(Lewis et al., 2011). 

 An important set of experiments reproduced the effects of reduced rainfall on the 

forest, and can be used to increase our understanding of forest drought response. The 

experiments were conducted as part of the Large-Scale Biosphere-Atmosphere 

Experiment in Amazonia (LBA) campaign, an international research initiative led by 

Brazil, and took place in the Tapajós and Caxiuanã National Forest Reserves (Nepstad et 
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al., 2007; da Costa et al., 2010). Generally, each experiment involved monitoring two 

plots of forest  - one control plot and a throughfall exclusion (TFE) plot where a system of 

panels prevented ~50% of the rainfall from reaching the forest floor. Trenches were dug  

around each plot to prevent the lateral flow of soil moisture into or out of the plots (1.0 m 

deep  at Caxiuanã and 1.0-1.7 m deep at  Tapajós; Fisher et al., 2007, Nepstad et al., 2007, 

respectively). At both exclusion sites, the forests were resistant to the early stages of 

drought, although some drought effects were observed during the first two years of 

exclusion. Interestingly, mortality  rates were not significantly  different in either TFE plot 

until three to four years in the experiments.

 During the Caxiuanã exclusion, evidence was found for isohydric control on leaf 

water potential (Fisher et al., 2006). Dry season water use by the trees was restricted due 

to increases in soil-to-leaf hydraulic resistance. Minimum values of leaf water potential 

coincided with reduced stomatal conductance during the dry  season. The implication is 

that during times of water stress, hydraulic limitation has more control on stomatal 

openings than atmospheric demand or light availability (Fisher et al., 2006).

 

1.3 Importance of deep roots and soil moisture

 Deep roots are important for plant access to soil moisture during the dry season 

(e.g. Poulter et al., 2009; Nepstad et al., 1994). Observed root depths vary from 1 to 20 m 

in tropical South America (Poulter et al., 2009; Nepstad et al., 1994). Root depth at a 

given location likely  depends on a variety of often poorly observed parameters, such as 

soil type, local climate, and the presence of an impermeable layers (Kleidon and 
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Heimann, 1999). 

 Regardless of root depth, a forest’s ability to maintain transpiration and 

photosynthesis during dry periods is constrained by  the amount of moisture available. 

Sap flow measurements at the Tapajós TFE plot  indicated nighttime replenishment of 

surface soil water by upward movement in the tap roots and outward movement in lateral 

roots (Oliveira et al., 2005). The return of heavy rainfall led to movement of water from 

shallow to deep  soils. This mechanism (hydraulic redistribution) has been proposed as 

important for reducing plant water stress and for quickly moving rainwater from the 

surface to deep storage (Oliveira et al., 2005). 

 It is now widely  accepted that  equatorial forests maintain transpiration (Hasler and 

Avissar, 2007; Lee et al., 2005) and, to a lesser degree, photosynthesis (Huete et al., 2006; 

Saleska et  al., 2003) during the dry season, due in part to deep roots and hydraulic 

redistribution (e.g. Nepstad et al., 1994; Oliveira et al., 2005). Based on measurements at 

eddy covariance sites in the Amazon, ET is mostly controlled by net radiation during both 

wet and dry  seasons (Hasler and Avissar, 2007; Fisher et  al., 2009). Particularly in the 

moist equatorial Amazon, the forest  is more productive and has higher ET rates during 

the dry season (Saleska et al., 2003; da Rocha et al., 2009; Fisher et al., 2009). According 

to offline runs with the Simple Biosphere model, version 3 (SiB3), incoming solar 

radiation is highly correlated with photosynthesis in the central Amazon basin (Figure 

1.2). Ecosystem functioning can become moisture-limited under unusually  dry conditions 

or during the dry season in regions with less rainfall (Hasler and Avissar, 2007). Both ET 

and photosynthesis are affected by vapor pressure deficit (VPD), leaf area, and plant 
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available water in dry sites and forests with low canopy cover (Fisher et al., 2009; Brando 

et al., 2010).  On the southern edge of the forest, temperature, humidity, soil moisture, 

and precipitation are highly correlated with photosynthesis (Baker et al., 2011a).

 Results from the two throughfall exclusion experiments agree with the picture of 

the Amazon as resilient to short-term drought, but susceptible to longer periods of 

dryness (Nepstad et al., 2007; da Costa et  al., 2010). There is a limit to forest drought 

tolerance, which is closely related to soil moisture availability (Phillips et al., 2010), and 

during long-term droughts the forest eventually switches from light-limited to water-

limited.

1.4 Modeling Amazon forest seasonality & climate response

 Observations of how the forest  responds to seasonal and longer term drought must 

be synthesized into ecosystem models to help improve predictions of climate and land 

cover change. Until recently, many ecosystem models predicted severe water supply 

constraints on transpiration during seasonal drought in the Amazon (e.g.: Saleska et al., 

2003; Baker et al., 2008; Lee et al., 2005; Ichii et al., 2007; Poulter et al., 2009). Root 

depth is an essential component of forest  adaptation to climatic variability. The 

contribution of deep roots to overall plant water use was important for modeling soil 

water levels during the Tapajós exclusion (Markewitz et al., 2010), and for capturing 

seasonal cycles of carbon and moisture fluxes (Ichii et  al., 2007; Baker et al., 2008; 

Poulter et al., 2009; Verbeeck et al., 2011).  



11

 In the study of Markewitz et al. (2010), modeled water contents closely matched 

observations when wet layers were allowed to compensate root uptake in dry layers. The 

latest version of SiB3 implements a similar procedure. Deep roots can access soil 

moisture in amounts disproportionate to their density, which avoids unrealistic soil 

moisture stress caused by drying of surface layers where the majority of roots are located. 

This formulation represents the effects of hydraulic redistribution without explicitly 

modeling it. The addition of deeper soils and revised root water uptake in SiB3 enabled a 

more realistic representation of seasonal fluxes throughout the Amazon (Baker et al., 

2008; Baker et al., 2011a).

 Previous versions of SiB simulated decreased dry season latent heat flux and carbon 

uptake in the Amazon (Baker et al., 2008; Randall et  al., 1996; Liu, 2004). In coupled 

runs of SiB2 and CSU’s GCM  (BUGS5), strong soil moisture stress led to increased 

Bowen ratio during the dry  season (Liu, 2004). The overly strong sensible heat flux 

resulted in a hot, dry, and deep planetary boundary layer (PBL), which diluted the 

advected moisture during the subsequent wet season. Convection was inhibited and 

rainfall sharply decreased over the three‐year simulation. The hydrologic cycle shutdown 

and associated ecosystem stress is analogous to the Amazon dieback found by Cox et al. 

(2004), where the forest transitioned to savannah due to decreased rainfall over western 

Amazonia in the 21st century. Similar results, albeit less dramatic, were found by 

Friedlingstein et al. (2001). Given the potentially extreme consequences of ecosystem 

stress, it is important to better understand how the forest  copes with seasonal drought and 

the effect of these adaptations on the Amazonian climate.
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 Given the high spatial variability  in root depth and its importance for forest drought 

tolerance, improved representations of root depth in models are desirable. Modeling 

studies of root depth have focused on optimizing model results to match the MODIS 

enhanced vegetation index (EVI - Ichii et al., 2007), MODIS GPP (Poulter et  al., 2009), 

and flux measurements (Verbeeck et al., 2011). Another approach was to find the root 

depth that maximizes GPP, based on the hypothesis that  plants will grow roots to a depth 

that optimizes carbon assimilation while minimizing carbon loss (Kleidon and Heimann, 

1998). There appears to be a relationship between dry season length and root depth. For a 

dry season of 0 to 2 months, precipitation is high enough to sustain GPP with no water 

deficit. 1-3 m roots may be sufficient  in such wet regions (Ichii et al., 2007; Poulter et al., 

2009). Dry seasons lasting 3-4 months increase the soil moisture limitations, and root 

depths of 3-5 m (Ichii et  al., 2007) to 8 m (Poulter et al., 2009) are necessary. Where the 

dry season lasts 5-6 months, the former study found that 5-10 m deep roots were 

sufficient, while the latter found dry season GPP suppression regardless of root depth.

 Based on observed soil profiles regressed against global data sets of annual 

precipitation and potential ET, one study characterized probability  of encountering deep 

roots (Schenk and Jackson, 2004). Deep  roots were defined as soil profiles with at least 

5% of all roots below 2 m. They  found a high probability of deep roots in seasonal, 

tropical climates surrounding moist tropical forests, and fine and coarse textured soils 

were more likely to contain deep roots (Schenk and Jackson, 2004). Deep  roots are less 

likely to occur in tropical forests, except in strongly seasonal forests like those in eastern 

Brazil (Sternberg et al., 1998; Schenk and Jackson, 2004).
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Adaptations such as deep roots increase drought tolerance, enable the plants to 

maintain evapotranspiration (ET) and carbon sequestration during seasonal droughts 

(Saleska et al. 2003; Huete et al., 2006), and improve the seasonal cycles of ET and 

carbon fluxes in land models (Lee et al., 2005; Baker et al., 2008, respectively). However, 

few studies have looked at  the effects of deep  roots on climate in a coupled sense (e.g. 

Lee et al., 2005; Kleidon and Heimann, 1999; Lawrence and Chase, 2009).
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2. Background

2.1 Amazon hydroclimate

 The wet season in Amazonia occurs during austral summer (December - 

February), and heavy precipitation extends to the southeast in the South Atlantic 

Convergence Zone (SACZ). Large-scale circulation is characterized by anticyclonic 

rotation above Bolivia (the Bolivian high) and a downstream trough (the Nordeste low) in 

the upper troposphere. The location and intensity of the Bolivian high are controlled by 

precipitation over the Amazon basin, central Andes, and the SACZ. A heat source above 

the Amazon is essential for maintaining the high and also affects the cyclonic rotation to 

the east (Gandu and Silva Dias 1998; Lenters and Cook, 1997; Silva Dias et al., 1983). 

The Andes affect the Bolivian high mostly through precipitation enhancement. 

 Wet season precipitation in tropical South America is modulated by intraseasonal 

oscillations, especially near the SACZ (e.g. Jones and Carvalho, 2002; Carvalho et  al., 

2011). Large-scale shifts in circulation and convection have been characterized based on 

wind anomalies in Rondonia, Brazil (western Amazon). For example, during the 

easterlies regime, there is reversal of the low-level jet  along the Andes, low-level 

anticyclonic rotation above southern South America, reduced precipitation in southern 

Brazil, and enhanced precipitation in the western Amazon (Jones and Carvalho, 2002). 

Amazon precipitation can affect convection in other regions through the low level jets, 
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atmospheric heating, and large-scale circulation features, although there is a lack of 

knowledge about how forest drought response can impact these links.

 The dry season lasts anywhere from zero to five months in the Amazon forest 

(Figure 1.3, where months with less than 100 mm are defined as the dry season). The 

western equatorial Amazon receives the most rainfall (more than 3 m per year) and even 

during the driest three months of the year, the average rainfall is greater than 7 mm/day. 

Annual rainfall decreases and dry season severity increases to the south and east of the 

maximum rainfall. In regions with a dry season lasting more than 5 to 6 months, the 

forest begins to transition to savanna.

We can look at previous droughts and their effects on the ecosystem to help us 

understand what the effect of a drier climate could be on the tropical forest. In 1997 and 

1998, a strong El Niño and warming in the tropical north Atlantic Ocean lead to a drought 

in northern and eastern Amazonia. In 2004 and 2005, an unusually warm tropical north 

Atlantic Ocean resulted in drought in western Amazonia. The anomalously  low rainfall 

during these years is apparent in several datasets, but the timing and spatial extent can 

vary (Marengo et al., 2008; Aragao et al., 2007). We utilize the Global Precipitation 

Climatology Project (GPCP) data set to analyze the droughts in this study. 

2.1a The 1997-1998 El Niño

1998 was a strong El Niño year, but the tropical north Atlantic was also 

anomalously warm. The warming was centered from 10°N to 10°S. Aragao et  al. (2007) 

suggest that the warm Atlantic influenced rainfall in southern Amazonia, while the warm 



16

tropical eastern Pacific influenced rainfall in northern Amazonia.

 The 97-98 drought first showed widespread negative anomalies during March/

April/May (MAM) of 1997 and continued for nearly a year (Figure 1.4). The most 

widespread negative anomalies occurred from September 1997 through February  1998. 

The negative rainfall anomalies lasted the longest in the northern Amazon and coincided 

with the wet and dry seasons of 1997-1998. Below-average rainfall in the western and 

southern Amazon was most severe during the 97/98 wet season. By  MAM of 1998, 

positive rainfall anomalies occurred north of the equator and slowly  marched southward. 

The southern Amazon had returned to above-average precipitation by July 1998. 

According to GPCP, the entire basin received positive rainfall anomalies by September-

December (SON) 1998, perhaps related to the incipient La Niña.

2.1b 2005 drought

 The 2005 drought was shorter, less widespread, but in many ways more interesting. 

First, it  was not associated with an El Niño, but instead with strong meridional SST 

gradients in the tropical Atlantic. In 2005 the tropical north Atlantic was warmer than it 

had been since 1920. This resulted in a northward displacement of the intertropical 

convergence zone (ITCZ) (Marengo et al., 2008). Second, the drought was focused in the 

western Amazon, a region usually associated with the heaviest precipitation. The trees in 

this region may not have the same adaptive mechanisms for dealing with drought as some 

of the more seasonally  dry Amazon, and therefore the 2005 drought effects were different 

than during El Niño droughts.
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 As discussed in Marengo et al. (2008), during SON 2004, there was below-average 

moisture flux from the tropical north Atlantic. Continuing into December-February 

(DJF), the northeasterly  trade winds weakened further, as the subtropical north Atlantic 

high was weakened and displaced to the north. During the austral summer, there was a 

southerly  anomaly along the Andes, where the low level jet  (LLJ) typically transports 

moisture southward. Therefore, the moisture flow from the northern Amazon to the 

southwest was reduced. Upward motion was weakened over the central-western 

equatorial Amazon during DJF, and over the southern Amazon from December through 

May (Marengo et al., 2008). Parts of southern and western Amazonia experienced 

decreased rainfall during the wet season of 2004-2005 (Marengo et al., 2008; and Figure 

1.5), although there were isolated areas of excess rainfall. 

 Negative rainfall anomalies were most intense during the dry season of 2005 

(MJJAS) in the western Amazon according to both GPCP and CPTEC (Centro de 

Previsão de Tempo e Estudos Climáticos/ Prediction Center for Weather and Climate 

Studies) (Marengo et al., 2008). Meanwhile, there was above average rainfall in central 

and eastern Amazonia, related to above average convergence in these regions during 

MAM (Marengo et al., 2008).

2.2 Drought response during the throughfall exclusion experiments

 At the rainfall exclusion experiments at Tapajós and Caxiuanã, the forests were 

resistant to the early stages of drought, although some drought effects were observed 

during the first two years of exclusion. At Caxiuanã, dry  season sap flow in the control 
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plot was 44% higher than during the wet  season, but it was 15% lower in the treatment 

plot. These observations were made in the second year of exclusion, indicating a 1-2 year 

response time for hydraulic impacts on canopy functioning. In contrast, there was no 

reduction in predawn leaf water potential (ΨL) in the first two years of exclusion at 

Tapajós (Nepstad et al., 2002), although above-ground net primary production (ANPP) 

declined by one-quarter in the TFE plot. Soil-to-root resistance was implicated in limiting 

water uptake by deep roots – related to low density of fine-root biomass and high matric 

potentials as the soil dried (Markewitz et  al., 2010). Drought effects on mortality, leaf 

area index (LAI), and soil respiration were more severe at Caxiuanã, but effects on wood 

production were greater at Tapajós. Mortality  rates were not  significantly different in 

either TFE plot until three to four years in the experiments. 

 Differences in experimental set-up, site meteorology, longer-term climate, soil and 

water table characteristics, and root profiles could explain the higher sensitivity  at 

Caxiuanã. First, at Tapajós, panels diverted rainfall during the wet seasons only, while 

panels were in place year-round at Caxiuanã. Second, the two sites have very  different 

soils (clay-rich at Tapajós, and sandy at Caxiuanã), although their water-holding 

capacities might be very similar. Measured soil texture at Tapajós is 60% clay and 38% 

sand (Nepstad et al., 2002; Silver et al., 2000). At Caxiuanã the soil is 12-19% clay and 

75-83% sand (Fisher et al., 2006). Typically, clay soils are able to hold more water, 

although this is not always the case in Amazonian soils. Estimated values of the van 

Genucthen parameters at the two sites indicate a higher capacity in the Caxiuanã soils 

(Belk et al., 2007; Fisher et al., 2008). Also the saturated hydraulic conductivity  is higher 



19

at Caxiuanã, which would be expected for a sandy  soil, so although the soil may hold 

more water than at Tapajós, drainage occurs more rapidly. Root biomass profiles were 

similar down to 8 m (Belk et al., 2007; Fisher et al., 2008). A stony  laterite layer at 3-4 m 

depth could hamper the development of deep roots at Caxiuanã, although some roots 

were observed below this layer (Fisher et al., 2007).

 A likely  third difference is the rooting strategies and climatic conditions to which 

the forests have adapted. The water table can rise to 10 m during the wet season at 

Caxiuanã (Fisher et al., 2007), compared to year-round depth of 100 m at Tapajós 

(Nepstad et al., 2002). Tapajós has a more seasonally  dry climate according to GPCP. 

Over the 31-year record (1979-2009), Caxiuanã has slightly more annual precipitation 

(2736 mm vs. 2042 mm), a shorter dry season (3 months vs. 4-5 months), and a lower 

likelihood to experience extreme dry seasons (in terms of both length and precipitation 

amounts). Site-level observations vary slightly but support the same conclusion. Average 

annual precipitation was 2032 mm at the Tapajós exclusion site from 2000-2004, and 

2231 mm from 2001-2008 at Caxiuanã (da Costa et al., 2010). The average dry  season at 

Tapajós was 4.6 months with 470 mm rain, and at Caxiuanã it  was 4.4 months with 532 

mm rain. These factors suggest that the forest at Tapajós has evolved to tolerate slightly 

drier conditions than at Caxiuanã, possibly  through the development of very  deep roots. 

Other adaptive mechanisms, mediated by species differences, might include variations in 

plant hydraulic strategy (Fisher et al. 2006), hydraulic architecture (Meinzer et al. 2001), 

and carbohydrate storage (Poorter et al. 2008), but site-level observations are not 

available to support this.
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Figure 1.4 Precipitation anomalies during the 97/98 El Niño. Anomalies 
are based off the 1979-2009 mean in GPCP, and at each point are divided 
by the standard deviation for the season.
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CHAPTER TWO:
 

Modeling drought tolerance in the equatorial Amazon forest
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1. Introduction

 Studies of drought ranging from seasonal to interannual to multiyear depict 

resistance to short-term drought (e.g.: Saleska et  al., 2003; Nepstad et al., 2002; Huete et 

al., 2006; Meir et al., 2009) but susceptibility to severe or multiyear drought (e.g.: 

Phillips et al., 2010; Nepstad et al., 2007; da Costa et al., 2010, Meir and Woodward, 

2010). The addition of deeper soils and revised root water uptake in SiB3 enabled a more 

realistic representation of seasonal fluxes throughout the Amazon (Baker et  al., 2008; 

Baker et al., 2011). A logical next step in our research is to test the mechanisms employed 

in SiB3 against observations from long-term drought.

 The rainfall exclusion experiments provide insight into how two forests with 

similar above-ground structure in the Eastern Amazon respond to decreases in soil 

moisture availability. In this paper, we evaluate the response of SiB3 to the observed 

meteorology  at the exclusion sites. This is the first time the two experiments have been 

directly  compared at the level of plant physiology. The two goals of this chapter are to: 1. 

Evaluate the stress responses of the model; and 2. Determine some thresholds in 

ecosystem drought tolerance common to the model and observations. In doing this we 

will also assess the viability of accurately representing drought response on a large scale.
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2. METHODS

2.1 The exclusion experiments

2.1a Site Descriptions

 The Tapajós experiment took place from 1999-2005 at the Seca Floresta site (2.90S, 

54.96W), near Santarém, in the state of Pará, Brazil. The site is west of BR 163, near 

kilometer 67. Two flux towers are located nearby: the K67 primary forest site (2.86S, 

54.96W) and the K83 selectively  logged forest  site (3.02S, 54.97W). The exclusion took 

place from 2000-2004, with panels in place during the wet season only (Jan.-June). The 

observed soil texture is clay, with some sand and sandy loam (Nepstad et  al., 2002; Silver 

et al., 2000). Roots have been observed below 12 m (Nepstad et al., 2002). During the 

experiment, the average precipitation was 2034 mm, with 470 mm of rain during the dry 

season (July-Dec.) (Figure 2.1).

 The Caxiuanã experiment took place from 2001-2008 in Caxiuanã National Forest 

(1.72S, 51.46W), also in the state of Pará, and remains ongoing. The panels were left  in 

place throughout the entire experiment because of variability in dry season rainfall, with 

the exception of one week in November 2002 and 2004. The soil is a sandy  loam, with 

12-19% clay and 75-83% sand (yellow oxisol) (Fisher et  al., 2007, Malhi et al., 2009a). 

Roots have been observed to 9 m, the maximum depth of excavation (Fisher et al., 2007). 

Average precipitation was 2149 mm, with 532 mm of dry season precipitation. More 
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detail of the Tapajós and Caxiuanã exclusion experiments is provided by Nepstad et al. 

(2002) and da Costa et al. (2010), respectively, and there is a synthesis of early results by 

Meir et al. (2009).

2.1b Observations used in analysis

 Annual aboveground net primary productivity (ANPP) was collected for the control 

and exclusion plots at Tapajós and Caxiuanã (Brando et al., 2008; da Costa et al. 2010). 

In addition, Malhi et al. (2009a) compiled observed plot level carbon flux data at 

Caxiuanã and Tapajós, including components of NPP and ecosystem respiration. At 

Caxiuanã, total NPP was estimated for 2005 (Metcalfe et al., 2010, with much source 

data taken from da Costa et al., 2010). 

 SiB3 assumes annual carbon balance, meaning that  gross primary productivity 

(GPP) and respiration are approximately equal each year (Denning et al., 1996). 

However, we adjust this restriction by lagging the respiration response by  one year, so 

that the previous years productivity  determines biomass available for respiration. This 

results in slight imbalance year-to-year. SiB3 also assumes that respiration is evenly 

divided between autotrophic and heterotrophic components. Because of these 

assumptions, the NPP is one-half of GPP, a value based on measurements in temperate 

broadleaf forests (DeLucia et al., 2007) but potentially not applicable in tropical forests 

(Malhi et al. 2009a). SiB3 does not separate above- and below-ground carbon pools. 

ANPP is 70-80% of total NPP at three lowland forest sites in the Amazon (Malhi et al., 

2009a), therefore we estimate ANPP as 75% of total NPP in the SiB3 results.
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 Latent heat observations were taken at the K67 and K83 towers, but the fluxes are 

only applicable to the control plot. For evapotranspiration (ET) from the Tapajós 

exclusion plot, we use estimates from the one-dimensional hydrologic model of 

Markewitz et al. (2010). At Caxiuanã, daily measurements of sap flow were made in 

2002 and 2003 and scaled to the plot level using observed regressions between tree 

diameter and sap  flux velocity appled over the whole plot (Fisher et al., 2007). These 

estimates can be compared qualitatively to SiB3’s ET.

 Volumetric water content (VWC) was observed at 13 levels extending to 11 m at 

Tapajós (Markewitz et al., 2010). At Caxiuanã, VWC was observed at 7 levels to 5 m 

(Fisher et al., 2007). SiB3 has 10 soil depths of variable thickness that extend to 10 m 

(Baker et al., 2008). We interpolate VWC in the observations and the model to seven 

levels at Tapajós, and to six levels at Caxiuanã. In both experiments, SiB3 is initialized 

with a soil volumetric water content similar to the observations from Belk et  al. (2007) at 

Tapajós and from Fisher et al. (2008) at Caxiuanã.

2.2 SiB3

2.2a Model Simulation of Exclusion

 The simple biosphere model (SiB3) was originally developed to simulate 

biophysical processes in climate models but also includes ecosystem metabolism (Sellers 

et al., 1986; Denning et al., 1996; Sellers et al., 1996a; Baker et al., 2008). SiB3 is run at 

Tapajós from 1999-2005, with rainfall excluded during the wet  seasons of 2000-2004; 

and at  Caxiuanã from 2001-2005, with year-round exclusion from 2002-2005. We 



28

simulate the exclusion by multiplying the hourly precipitation by 0.5. The SiB3-Tapajós 

experiment uses observations from the K83 tower from 2001-2003 (similar results were 

found using meteorology from the nearby K67 tower), with the annual precipitation 

scaled to match what was observed in the control plot. Since we only have three full 

years of tower observations, the model is driven using observations from 2002 and 2003 

during the first two years (1999-2000) and using observations from 2001 and 2002 during 

the last two years (2004-2005).

 The SiB3-Caxiuanã experiment uses observations from a tower located 1 km away 

from the experimental plot from 2001-2003 (Fisher et al., 2007). Most meteorological 

variables were observed over the entire exclusion, with the exception of longwave 

radiation. For this we use a filled data set provided by Natalia Restrepo-Coupe (Restrepo-

Coupe et al., in preparation). The years 2004 and 2005 are driven by meteorology  from 

2001 and 2002, respectively. 

 In the next section, we describe some relevant terms in SiB3’s soil hydraulics and 

soil moisture stress calculations. For the experiment, we run three versions of SiB3 at 

each site: the default SiB3 of Baker et al. (2008), a version with a site-specific optimal 

rooting depth (Section 2.2c), and a version with more realistic soil physical parameters 

and leaf area index (Section 2.2d).

2.2b SiB3 soil moisture and stress factors

 SiB3’s potential photosynthesis is linearly weighted by three stress factors, which 

relate to temperature, humidity, and soil moisture. The product of the three stress factors 
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is the total ecosystem stress. Soil moisture stress depends on the fraction of maximum 

plant available water in the root zone (PAWfrac): 

SMstress =
(1+ wssp) * pawfrac

(wssp + pawfrac)        Equation 2.1

where a value of one means no stress from soil moisture limitations, and a value of zero 

means complete stress. Wssp is the water stress shape parameter and ranges from 0.1 to 

1.0. In SiB3, wssp=0.2. Stress increases with decreasing soil moisture in a near-linear 

manner when wssp=1.0. For low values of wssp, stress is fairly insensitive to variations 

of soil moisture at high volumetric water content (VWC), but increases rapidly  as soil 

moisture approaches the wilt point.

 PAW is the water available to plants for root uptake, and is defined as the difference 

between the soil’s VWC and wilt point. Since the maximum VWC is controlled by  soil 

porosity, 

PAWmax = P −θwp           Equation 2.2

where P is the porosity, and θwp is the VWC at wilt point.

 SiB3’s field capacity  and wilt point are calculated using a relationship between soil 

water potential and volumetric water content (Clapp and Hornberger, 1978): 

ψ =ψ sat (θ /θsat )
−b

          Equation 2.3

where ψ is the matric potential, ψ sat is the matric potential at saturation (MPa), θ is the 

volumetric water content (VWC, unitless), and b is an empirical parameter. In SiB, ψ = 

-0.015 MPa (or -1.53 m) is used to calculate VWC at field capacity  (θfc), and ψ = -1.5 
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MPa (or -153 m) is used to calculate VWC at wilt point (θwp):

θfc = P ψ fc / g
ψ sat

⎡

⎣
⎢

⎤

⎦
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−
1
b

θwp = P
ψ wp / g
ψ sat

⎡

⎣
⎢

⎤

⎦
⎥

−
1
b

        Equations 2.4 & 2.5

The parameters b and ψsat are determined based on the percent sand and clay, following 

pedo-transfer regression equations provided by  Cosby  et al. (1984, their Table 5). In 

equations 2.2 and 2.3, P is the porosity of the soil and g is 9.8 m/s2. Water retention 

above the field capacity is not uncommon in SiB3, particularly during the wet season.

 SiB3 accounts for gravitational drainage using Darcy’s Law, and the change in soil 

moisture with time in each layer is solved for using the Richard’s equation:

∂θ
∂t

=
∂
∂z

k
∂θ
∂z

∂ψ
∂θ

⎛
⎝⎜

⎞
⎠⎟

+1⎡
⎣⎢

⎤
⎦⎥          Equation 2.6

where the hydraulic conductivity  (k) depends non-linearly on soil water and linearly on 

the hydraulic conductivity at saturation (ksat):

k = ksat
θ
θsat

⎛
⎝⎜

⎞
⎠⎟

2b+3

          Equation 2.7

Table 2.1 shows the porosity, field capacity, wilt  point, and maximum plant available 

water for SiB3 at  the Tapajós and Caxiuanã sites, based on sand/clay fractions specified 

by IGBP (Global Soil Data Task Group, 2000). The IGBP soil texture map is used in 

global simulations of SiB3, and therefore we use these values as a starting point. See 

Section 2.2d for experiments with changing the soil texture.
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2.2c Roots and Soil Depth in SiB3

 SiB3 assumes exponential decrease in root biomass with depth, based on a biome-

dependent calculation of total root biomass.

totalroot =
1− exp(krootb * z10 )

krootb

rootf j =
exp(−krootb * ztop ) − exp(−krootb * zbot )

krootb * totalroot

     Equation 2.8

where z10 is the depth of the lowest model layer (10 m in the default SiB3) and kroot is a 

root density  extinction coefficient (3.9 for the tropical evergreen forest  biome). The root 

fraction (rootf) is calculated in each soil level (j). zbot and ztop are the depthes at the 

bottom and top of the soil level j. For the soil depth adjustments made in this study, roots 

are present at all levels.

 SiB does not rely solely upon root fraction to determine water uptake in each layer. 

Several studies have shown the importance of deep roots for accessing water during the 

dry season in Amazonia (Nepstad et al., 1994; Jipp et al., 1998; Markewitz et al., 2010). 

Therefore, SiB3 uses an “apparent” root fraction (rootr) in each layer for water removal 

by transpiration, where actual root fraction (rootf) is weighted by the amount of water in 

each layer (θi) through the equation:

rootri =
1−

θwp

θi

1−
θwp

θ fc

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(rootfi )

         Equation 2.9 
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The apparent root fraction can be higher or lower than the actual root fraction depending 

on the amount of moisture in each individual layer (Baker et al., 2008). In practice, this 

enables the deep layers to access soil moisture in amounts disproportionate to their root 

density and helps avoid unrealistic soil moisture stress in the model. 

 Observations of root  depth are rare in tropical forests. Canadell et  al. (1996) report 

an average root depth of 7.3 +/- 2.8 m in tropical evergreen forests, and of 3.7 +/- 0.5 m 

in tropical deciduous forests. Roots have been found quite deep in some locations (ie: 18 

m in northeastern Para state, Nepstad et al., 1994; Jipp et al., 1998). Roots as shallow as 

2-3 m have been documented in China, Ghana, and the Ivory Coast (Canadell et al., 

1996). Previous work using SiB3 has shown good agreement with observed carbon and 

moisture fluxes throughout the Amazon using a 10 m soil (Baker et al., 2008; Baker et al., 

2011a). 

 In this study, we experimentally adjust the maximum soil depth at the two sites to 

obtain results that best match the available observations (for more details see Chapter 3). 

At Tapajós, we judge the best match based on: lowest root mean square error (RMSE) 

between modeled and observed (K67) latent heat flux, lowest RMSE between modeled 

and observed ANPP in the control and treatment plots, and closest match between 

modeled and observed decreases in ANPP during the exclusion experiment. We find the 

best agreement with these metrics using a 14 m soil. Given the depth of the soil and water 

table observed in the Tapajós region, 14 m-deep roots does not seem unreasonable. Roots 

were found up to 12 m deep during the exclusion experiment (Nepstad et al., 2002).
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 At Caxiuanã, the metrics for calibration of the root depth parameter are the closest 

match between the modeled and observed NPP in the control and treatment plots in 2005, 

between the drought-induced decreases in NPP in 2005, and decreases in ET in 2002 and 

2003. The best agreement occurs with a 2 m soil, which is much shallower than observed 

at Caxiuanã. Root biomass was measured to 5 m depth in the exclusion plot, and roots 

were observed to 10 m depth in the control plot (Fisher et al, 2007). Root fraction is 

similar at Tapajos and Caxiuana down to 4 m, and below that depth Tapajos has slightly 

more roots (Figure 2.2). SiB3‘s root profile is more weighted toward surface roots 

compared to the two sites. However, since SiB3 weights root water uptake by the amount 

of water available in each layer, the actual root fraction has less of an impact on results 

than the available water. The fact  that SiB3 requires such a shallow soil to accurately 

capture the drought response at Caxiuanã represents a bias toward either too much soil 

moisture, not enough transpiration (since strong ET would dry the soil), or an overly-

insensitive stress response to low to moderate soil moisture at this site in the model. 

Further evaluation of the optimal soil depth is provided in the Results of this chapter.

2.2d Other changes to SiB3

 Leaf area index (LAI) in SiB3 is calculated from the GIMMSg normalized 

difference vegetation index (NDVI) product (Tucker et al., 2005). In the tropical 

evergreen biome, it is assumed to be a constant value. During the exclusion experiments, 

LAI varied with time and between the control and treatment plots (Meir et  al., 2009). 

Therefore, we replace SiB3’s NDVI-derived LAI with annual values from the 
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experiments (Table 2.2). This also changes the fraction of photosynthetically active 

radiation (fPAR), as described in Sellers et al. (1996b). Both canopy  photosynthesis and 

conductance are linearly  related to fPAR. Since the observed LAI’s are lower than SiB3’s 

default LAI’s, using the observed LAI should reduce the GPP and ET, and produce a 

larger difference between the control and treatment plots.  

 In an additional sensitivity  experiment, we use observed soil textures. At Caxiuanã, 

we change the soil to match the observations of 15% clay and 79% sand (Fisher et al., 

2006), which is a sandier soil than the IGBP soil. We also raise the saturated hydraulic 

conductivity (ksat) to the observed value of 0.00216 m/s (Fisher et al. 2008), which 

increases the drainage. These changes have the effect of decreasing the soil moisture at 

Caxiuanã, which could help capture the observed drought response with the 10 m soil. 

We adjusted soil texture at Tapajós to 60% clay and 38% sand, but the higher clay  content 

did not significantly alter the results.

 In summary, at Tapajós we run a version of SiB3 with observed annual LAI, and at 

Caxiuanã we run a version of SiB3 with observed LAI and soil hydraulics parameters. 

We also adjust root depth to 14 m at Tapajós and to 2 m at Caxiuanã.

 In addition to changing root depth, soil texture, and LAI, we have tried: 1) 

modifying root fraction to match observations at Caxiuanã, 2) accounting for the effects 

of the laterite layer at Caxiuanã by  decreasing porosity  and water content below 4 m, and 

3) replacing the Clapp and Hornberger water retention curves with those of van 

Genuchten (1980). In general these did not greatly improve the model over what has been 

discussed, and so results are not included. The use of the van Genuchten curves could 
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improve soil moisture in SiB3, but a difficulty  in this approach is determining the 

parameters based on limited observations in tropical forests. A more detailed parameter 

study could lead to more realistic results.

2.3 Water deficit

 Cumulative water deficit (CWD) can help identify anomalously dry years or 

seasons (e.g. Malhi et al., 2009b; Aragão et al. 2007) and is used in this study  to diagnose 

critical points in ecosystem drought response. It is essentially the cumulative difference 

between precipitation and evaporation and represents soil moisture depletion, and is 

calculated as:

CWDt=0  = P0 - E0          Equation 2.10

CWDt = CWDt-1 + Pt - Et; 

if CWD>0, then CWD = 0

 Most previous studies using CWD use observed precipitation and estimate E as 100 

mm/month, meaning that when monthly  precipitation is less than 100 mm the forest 

enters into water deficit (CWD<0). In this study, we use the modeled latent heat, which 

will account for drought-induced adjustments to ET and allows for seasonal fluctuations 

in ET.
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3. RESULTS

3.1 Tapajós Exclusion

 The default version of SiB3 (with 10m soil) overestimates NPP, GPP, and 

ecosystem respiration in the control plot  (17.3, 34.7, 34.6 MgC/ha/yr, respectively) 

compared to values derived from observations at the K67 tower (14.4, 31.4, 29.8 MgC/

ha/yr, respectively) (Table 2.3) (Malhi et al., 2009a). The K67 the forest assimilates 

slightly more carbon than it respires (Malhi et al., 2009a), while SiB3 assumes annual net 

carbon balance. 

 Results from the treatment plot show that the default version of SiB3 is 

oversensitive to decreased precipitation. The observed ANPP decreased by 30% in the 

treatment plot compared to the control in 2002, and by  42% in 2003 (years three and four 

of exclusion, respectively; Brando et al., 2008). SiB3 simulates reductions in ANPP of 

54% in 2002 and 48% in 2003 (Figure 2.3). Beginning in the dry season of 2001, SiB3 

simulates a strong reduction in PAW, with reductions in latent heat flux and 

photosynthesis following (Figure 2.4). On average, SiB3’s GPP decreases to 25.9 MgC/

ha/yr in the treatment plot, while total respiration decreases to 27.7 MgC/ha/yr (Table 

2.3). Similar to the GPP results, SiB3 produces a strong reduction in ET in 2002, and 

continues to overestimate ET reduction throughout the exclusion when compared to 

values from Markewitz et al. 2010 (Figure 2.3c, d).
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 In the calibrated version of SiB3, a 14 m soil provides a buffer against reduced 

rainfall, although after four years of exclusion this effect is reduced (Figure 2.4). In the 

control plots, annual ANPP, monthly  latent heat and photosynthesis all increase slightly 

with the 14 m soil (Figure 2.3). In the treatment plot, the ANPP is closer to the observed 

values during 2002, 2003, and 2005 and thus the calibration improves these metrics of the 

simulation. The greatest improvement occurs during 2002, when the default SiB3 most 

strongly overestimates the drought effects. During this year, the 14m soil has more PAW 

and therefore photosynthesis and latent  heat flux do not experience the severe decrease 

seen in the default SiB3 (Figure 2.4). Since the evaporation from the 14m soil is higher 

than in the default SiB3, the PAW continues to decrease until it is similar to the levels in 

the default soil by 2004. At this point the extra buffering capacity  from the deeper soil 

profile does not provide any further resistance to drought stress, as the soils are not 

refilled during the wet season in the treatment plot.

 Using site observations of LAI enables SiB3 to more accurately simulate fluxes 

from the canopy, as well as water uptake by the trees. Relative to the default SiB3, the 

observed LAI improves the ANPP drought response from 2002-2005 (Figure 2.3a). The 

lower LAI reduces GPP, LH, and respiration in both plots, and modeled GPP (31.5 MgC/

ha/yr) is very close to the values derived from ecosystem flux measurements (Table 2.3; 

Malhi et al., 2009). LAI is especially low in the treatment plot, and hence ET is lower, 

leading to more soil moisture and less ecosystem stress (the product of soil moisture 

stress, humidity stress, and temperature stress). The relative decreases in ANPP and ET 

are closer to observations (Figure 2.3). 
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 The volumetric water content  (VWC) is underestimated during the dry  seasons (for 

the control) and the dry-down (for the treatment) in all three versions of SiB3 applied at 

Tapajós (Figure 2.5), especially in the layers below 3.5 m. Potentially this error is due to 

the sandy soil used in the default SiB3. The soil from the LAI experiment has slightly 

higher water content and is thus the closest to observations. Therefore we found that a 

more realistic soil texture did not improve simulations of ecosystem fluxes, although 

changes to canopy LAI did. Experiments using more clay-rich soil in SiB3 still indicated 

over-sensitivity to reduced rainfall with a 10 m soil (60% clay and 38% sand following 

Nepstad et al. (2004), parameters shown in Table 2.1).

3.2 Caxiuanã exclusion

 At Caxiuanã, GPP was estimated from the nearby eddy covariance tower (Carswell 

et al., 2002; Malhi et al., 2009) and was modeled using an ecosystem model with site-

specific parameters (Fisher et al., 2007). The control GPP according to these values 

ranges from 30.9 to 38.2 MgC/ha/yr. SiB3’s GPP falls within this range (34.7 MgC/ha/yr) 

(Table 2.4). Because of SiB3’s assumption that NPP is 50% of GPP, the simulated NPP is 

too high compared to previous estimates (Metcalfe et al., 2010; Malhi et al., 2009). 

SiB3’s total ecosystem respiration is within the range of observations, although the 

observations support a higher fraction of respiration from autotrophic components (Table 

2.4). 

 The default SiB3 is only marginally affected by the enforced drought (Figure 2.6). 

The average measured sap flow at  Caxiuanã was 44% lower in the treatment  plot in 2002, 
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and 41% lower in 2003 (Fisher et  al., 2007). The effect was greatest in the dry season, 

when treatment sap  flow was reduced by up to 82% compared to the control (Figure 2.7). 

However, SiB3’s ET is barely affected by the drought and there is little seasonality in the 

ET response. At most the annual ET decreases by  4.8% in 2004. Measured NPP in 2005 

at the exclusion plot was 77% of the NPP in the control plot (Metcalfe et al., 2010). In the 

default SiB3 exclusion, NPP is roughly 90% of the control value from 2003-2005. GPP 

decreased by ~13% in 2002 and 2003 according to the model of Fisher et al. (2007), 

while the decrease during those years in SiB3 was 3% and 8%. An increase in respiration 

was observed in the treatment plot, mostly from increases in canopy  and stem respiration 

(Metcalfe et al., 2010). These observations are consistent with seasonal leaf respiration 

measurements made elsewhere in the Amazon (Metcalfe et al. 2010b, Miranda et al. 

2005). As with Tapajós, the default SiB3 simulates a decrease in all components of 

respiration when productivity declines (Table 2.4). The increase in respiration with 

drought at Caxiuanã is not well understood, and the majority of land surface models 

would likely also predict declines in respiration via direct links from GPP to respiration 

or functions that relate respiration to moisture stress. 

 Decreasing total plant  available soil moisture in SiB3 enables a better simulation of 

the exclusion experiment. This can be accomplished either by reducing the soil depth to 2 

m, or by  changing the soil texture inputs. The 2m soil results in a very strong seasonal 

cycle in PAW in both the control and TFE plots (Figure 2.8). In response to the strong 

changes in PAW in the control plot, the model predicts some moisture stress in the dry 

season, and reduced latent heat and photosynthesis. Modeled GPP is 32.2 ± 3.4 MgC/ha/
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yr, which is still within the range of values reported for Caxiuanã (Table 2.4). In the 

treatment plot, SiB3 with adjusted the soil depth better matches both the NPP and sap 

flow observations. In 2005, the modeled NPP in the treatment plot was 77% of that in the 

control plot, the same as the observed decrease (Metcalfe et al., 2010). The 2 m soil is the 

only version that captures the strong decrease in treatment plot sap flow early  in the dry 

seasons of 2002 and 2003 (Fisher et al., 2007) (Figure 2.7). However, the fractional 

decrease in ET is not as large as the observed fraction (figure 2.6d) because ET is 

systematically underestimated in the control plot (figure 2.6e, figure 2.7a).

 Changing soil texture parameters also decreases the soil moisture (Table 2.1) 

because the sandier soil has lower porosity, and the higher ksat produces more drainage. 

The SiB3 with observed soil and LAI parameters produces the lowest values of NPP in 

both the control and treatment plots and the closest match to observations in 2005 (Figure 

2.6). Modeled GPP is 28.4 ± 1.8 MgC/ha/yr, which is on the low end of previous values 

reported at Caxiuanã (Table 2.4). However, there is no improvement in the modeled 

seasonal effect of the drought on ET (Figure 2.7).

 The default SiB3 has too much soil moisture at Caxiuanã (Figure 2.9). Even with 

the reduced rainfall, SiB3’s soil is able to recuperate much of what is lost through ET 

during the wet seasons. Also SiB3’s ET is ~20% too low, so more water is available for 

soil recharge. This is consistent with the default SiB3 showing very  little drought 

response. The VWC is similar in the version with 2m soil depth, but the total plant 

available water content is less, resulting in a more severe (and more realistic) response. 

Using the sandier soil texture decreases the VWC to levels below what was observed.
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3.3 Optimal soil depth at Caxiuanã and Tapajós

 We ran a series of experiments to find the optimal rooting depth in SiB3 at the two 

exclusion sites. At Tapajós, the 10 m soil has the least error in the control plot for annual 

ANPP and monthly  latent heat flux, while the 15 m soil has the least error in the 

treatment plot. A 14 m soil best  captures the timing and intensity of drought effects on 

ANPP and ET, and therefore we choose 14 m as the optimal depth at Tapajós (Table 2.5).

 At Caxiuanã, the 10 m soil captures the relative amount of ET during the dry  

seasons in the control and treatment plots. However, the deep  soil provides too much of a 

buffer for the forest  to drought. A shallow soil better captures the observed NPP and ET. 

We choose 2 m as the optimal depth (Table 2.6). During the rainfall exclusion experiment 

at Caxiuanã, roots were observed to 9 m (Fisher et al., 2007). The fact that SiB3 requires 

such a small soil water reservoir to match observed drought response indicates that the 

default SiB3 (with 10 m soil) is too resistant to drought at this site.

3.4 Environmental controls on ET and NPP

 Observations from the control plots at both sites indicate that under normal 

conditions, soil moisture does not limit  ET (Meir et al., 2009; Carswell et al., 2002). On 

days when both measurements are available, the correlation between VWC in the Tapajós 

control plot and latent heat from the K67 tower is negative (r = -0.57, n=73 days, 95% 

significant t-test). Although not  significant at 95%, the relationship is also negative 

between VWC and sap flow in the Caxiuanã control plot  (r = -0.29, n=26 days). SiB3 

also simulates a significant negative relationship  between daytime VWC and ET in the 
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control plots (r = -0.39 at Tapajós and r = -0.48 at Caxiuanã). ET in the SiB3 control plots 

has high positive correlations with VPD, canopy air space temperature, and incoming 

radiation. These variables are all higher during the dry season, when soil moisture is low. 

Both observations and SiB3 show increased ET during dry seasons in regions that are not 

water-limited (e.g.: Carswell et al., 2002; Saleska et al., 2003; Baker et al., 2011). 

Observations also show high correlations between ET and net radiation in the equatorial 

Amazon forest, with a weaker relationship in regions where water stress occurs (Hasler 

and Avissar, 2007).

 When water supply is limited, meteorological drivers have less impact and soil 

moisture exerts a stronger control on ET and NPP. At Caxiuanã, the trees in the treatment 

plot became water-stressed and a positive correlation between sap flow and VWC 

emerged (r = 0.33, n=28 days). A strong positive correlation was also observed between 

ANPP and VWC at Tapajós (r=.72, p=0.012) (Brando et al., 2008). In SiB3, VWC and 

ET have a weak positive correlation (r = 0.05) at Tapajós. At Caxiuanã, the relationship is 

negative in both cases, since the forest  was not water stressed in the SiB3 treatment 

experiment. With the shallow soil at  Caxiuanã, there is a weak but significant positive 

correlation between VWC and ET (r=0.26) in the treatment plot. Modeled NPP is highly 

correlated with incoming radiation at both sites, and with VPD at Caxiuanã. In the default 

SiB3 treatment case, there is a strong relationship emerges between NPP and VWC 

(r=0.67) at Caxiuanã.
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3.5 Thresholds in ecosystem resistance

 In terms of monitoring and predicting drought impacts, a useful concept is the idea 

“thresholds” in ecosystem resistance. These are points after which the response to the 

drought increases very rapidly and in a perhaps irreversible manner. Some thresholds 

were observed during the exclusion experiments. At Tapajós in October 2001 (the second 

year of exclusion), the PAW decreased to less than 30% of the PAWmax in the entire soil 

profile, and stayed there for most of the rest of the experiment. 2002 was anomalously 

dry, even in the control plot (Nepstad et al., 2007). In November 2002, water stress (as 

indicated by measurements of pre-dawn leaf water potential) reached a critical point, 

after which large tree survivorship  decreased significantly  (Nepstad et al., 2007: see their 

Figure 5). At Caxiuanã, sap flow reduced rapidly  starting in mid-August 2002. During 

this time, volumetric water content from 0-5 m was less than 0.16 m3/m3 (Figure 2.9). In 

the observed soil/LAI version of SiB3 this coincides with PAW below 40%. Therefore at 

both experiments, PAW below 30-40% of PAWmax coincides with a strong ecosystem 

response.

 SiB3 appears to reach a drought threshold during 2001-2002 at  Tapajós. The 

average dry  season precipitation at Tapajós was 470 mm, but  during the six month dry 

season of 2001, only 215 mm of rain fell. Coincident with this unusually  dry dry  season, 

there were large reductions in PAW, photosynthesis, and latent heat, and increases in 

sensible heat flux (Figure 2.4) in all versions of SiB3. After December 2001, the 

treatment’s cumulative water deficit diverges from the control plot. The average PAWfrac, 

soil moisture stress factor, and total ecosystem stress factor decreased from 0.56, 0.87, 
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and 0.65 in 2001 to 0.18, 0.55, and 0.40 in 2002, respectively. The CWD decreased from 

-223 mm in 2001, to -708 mm in 2002. The timing of this response agrees well with the 

decline in PAW to below 30% of maximum PAW reported by Nepstad et al. (2007).

 Drought stress was not simulated in the default SiB3 Caxiuanã experiment (Figure 

2.8). The highest levels of ecosystem stress occurred after two years of exclusion, during 

December 2003. At this time, PAWfrac and ecosystem stress were 0.38 and 0.62, and the 

water deficit was -457 mm.  To further investigate the thresholds at Caxiuanã, we run the 

default SiB3 with rainfall reduced by 75%, rather than 50%. Soil moisture steadily drops 

during the first two years of exclusion (2002-2003). The most dramatic decreases in 

latent heat flux and photosynthesis occur between the dry seasons of 2002 and 2003. By 

late 2003, average latent heat flux is 40% less in the treatment plot  than in the control 

plot, and photosynthesis is 60% less. Average dry  season PAW, soil moisture stress, and 

total ecosystem stress were 0.41, 0.80, and 0.63 in the dry season of 2002, and were 0.09, 

0.36, and 0.27 in the dry season of 2003, respectively. The CWD increased  from -440 

mm in the dry season of 2002 to -870 mm in the dry season of 2003. Soil moisture levels 

off in the following two years, at this point the soil is near wilt point and the ability of 

plants to withdraw water is severely limited.

 In summary, SiB3 simulated strong reductions in GPP and ET when PAWfrac was 

between 0.09-0.41 at  Caxiuna and between 0.18-0.56 at Tapajós. At these values the soil 

moisture stress factor was 0.37-0.80 at Caxiuanã and 0.55-0.87 at Tapajós, and CWD was 

between -440 and -870 mm at Caxiuanã and between -223 and -708 mm at Tapajós. 

Compared to the observed response at Caxiuanã, SiB3 did not simulate stress at  the 
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observed levels of soil moisture. This suggests that  adjustments to SiB3’s soil moisture 

stress calculations could improve results at Caxiuanã. For example, adjusting the wssp 

parameter (Equation 2.1) could result in slightly higher stress for medium-range PAW, 

although such tuning would likely intensify the drought response at Tapajós.
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4. DISCUSSION

 Our preliminary results show that the default SiB3 captures the response and timing 

of the drought reasonably  well at Tapajós, although the intensity of the drought is slightly 

overestimated compared to observations. On the other hand, the drought and decreasing 

soil moisture have little effect on the default SiB3 at Caxiuanã, possibly due to 

overestimation of soil moisture availability  or underestimation of stress at moderate 

moisture levels. We next discuss some areas that might affect SiB3’s ability  to reproduce 

the observed drought responses.

4.1 Exploring differential responses at Caxiuanã and Tapajós

 The two forest sites responded differently to drought in both the observations and in 

SiB3. As discussed in the introduction, the forest at Caxiuanã responded faster to the 

drought in terms of mortality, LAI and soil respiration. Considering the differences in the 

precipitation climatology and depth to water table between the sites, it is possible that the 

forest at Tapajós has more highly-developed drought tolerance-mechanisms than at 

Caxiuanã. We hypothesize that  the forest at Tapajós has both the need and the ability  to 

develop deeper roots than at Caxiuanã. These differences are not represented in the 

default version of SiB3. Our results show better agreement with observations using a 2 m 

soil at Caxiuanã and a 14 m soil at Tapajós.
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 The SiB3 photosynthesis and ET are more sensitive to drought at  Tapajós. 

Differences between the sites in the model include initial soil moisture, driving 

meteorology, and parameters related to canopy geometry and thickness, roughness length, 

PBL and canopy air space resistances, and fraction C3/C4 vegetation. The Tapajós 

meteorology  has less annual rainfall, a more severe dry season, and lower humidity. 

Running the Caxiuanã parameters with the Tapajós meteorology results in a stronger 

drought response than seen with the Caxiuanã meteorology. In particular, lowering the 

humidity at Caxiuanã evokes a stronger response. The increased VPD in the canopy air 

space increases the ET and dries the soil faster. Therefore, part of SiB3’s difficulty  with 

simulating the Caxiuanã exclusion is that it is simply too wet (in terms of both 

precipitation and humidity) for the model to respond under its current configuration. This 

is consistent with the seasonal replenishment of soil moisture simulated by SiB3 in the 

treatment plot at Caxiuanã (Figure 2.9). Relatively high amounts of water vapor in the 

canopy  air limit evaporation at Caxiuanã compared to observations (Fisher et al., 2007; 

Figure 2.7). This could keep the SiB3 soil from drying out  and delay the occurrence of 

drought stress in the model.

4.2 Implications for modeling forest drought tolerance

 Tropical forests employ  several mechanisms to cope with dry conditions, and one 

should not expect the entire Amazon forest to respond similarly to a drought (e.g. Phillips 

et al., 2009). Deep roots are important for capturing the seasonal cycles of surface fluxes 

under normal conditions and for the drought response at Tapajós. However, different 
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drought response mechanisms at Caxiuanã mean that we get improved results with a 

shallow soil. Since rooting and soil depth varies throughout the Amazon, it is realistic to 

have variable soil depth in ecosystem models. Although since these parameters are poorly 

observed, a method for estimating them must be used. Climatic data and soil texture have 

been used in previous studies to estimate root depth (Schenk and Jackson, 2005). 

Defining deep  roots as those below 2 m, they found a low likelihood for deep roots in 

equatorial rain forests. In this study, two very different soil depths were found to have the 

best results at the two exclusion sites, although observations at both sites demonstrate that 

the real soils are at least  8 m deep (Fisher et al., 2008; Belk et al., 2007). The climatic 

conditions at the sites (longer dry seasons, more frequent dry  dry  seasons, and less annual 

rainfall at Tapajós according to GPCP) justify a conceptual model of greater need for a 

large and accessible water supply  at Tapajós. Therefore a future direction for modeling 

tropical forests can include a climatic predictor of forest drought resistance, which could 

aid in capturing the heterogeneous effects of drought. More observations of root and soil 

depth, precipitation, and response to drought in tropical forests could help  further 

constrain this parameterization. 

 Variable LAI and realistic soil parameters can also help improve model predictions 

of tropical drought stress. Factors not addressed in this study, such as whether it is 

primary or secondary forest, tree size, species distribution, and wood density, also affect a 

forest’s drought response (Nepstad et al., 2007; Phillips et al., 2010). Gradients in nutrient 

variability, fire and disturbance history  also influence species composition, and the ability 

of trees to develop deep rooting systems (Quesada et al., 2009).
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4.3 Limitations in SiB3

 In both exclusion experiments, trees responded differently to the drought based on 

tree size, species, and position in the canopy (Nepstad et al., 2007, da Costa et al., 2010). 

SiB3 can only produce one response because the entire grid cell is represented with the 

same set of plant  characteristics. Tiling is an approach used in other ecosystem models 

(ie: NCAR’s Community Land Model, Oleson et al., 2010) that could improve SiB3’s 

drought response. 

 The default SiB3 does not  include dynamic changes to forest structure that were 

observed during the exclusions, such as decreased leaf area index, decreased litterfall 

(Meir et al., 2009; Brando et al., 2008), increased tree mortality (da Costa et al., 2010; 

Nepstad et al., 2007), and changes to surface roots (Metcalfe et al., 2008). A version of 

SiB with prognostic phenology is being developed (based on Stöckli et al., 2008), and a 

good test of this model will be at the exclusion sites. An important next step for SiB is to 

incorporate some of the spatially and temporally  varying parameters that affect drought 

tolerance, such as soil depth and LAI.
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Default Soil 
Parameter 

(IGBP)

Obs soil and 
LAI 

Parameters 
@Caxiuana

van 
Genuchten 
parameters 

@Caxiuana1

Obs soil and 
LAI 

Parameters 
@Tapajos

van 
Genuchten 
parameters 
@Tapajos2

van 
Genuchten 
parameters 
@Tapajos3

%clay/sand 36/42 15/79 60/38

porosity 0.436 0.389 Theta-S = 
0.434

0.441 0.450 0.397

field 
capacity

0.347 0.217 0.380

wilt point 0.204 0.091 Theta-R = 
0.070

0.263 0.220 0.290

PAWmax 
(P-WP)

0.232 0.298 0.364 0.178 0.23 0.107

b parameter 8.634 5.295 12.45

sat -0.214 -0.070 -0.2411

Ksat 1.74x10-6 0.002161 3.52x10-6

zm 0.272 0.362 -0.1198

wopt 75 75 75

wsat 0.590 0.538

Table 2.1. Soil parameters in Tapajos and Caxiuana default SiB. The Caxiuana experiment is discussed in 
Section 2.2.4. b is used in the soil moisture/potential relationship; sat is the matric potential at saturation 
(m); Ksat is the hydraulic conductivity at saturation (m/s); zm is an exponent used in determining soil 
moisture effect on heterotrophic respiration, wopt is the optimum soil moisture for heterotrophic 
respiration, and wsat is a parameter for soil respiration at saturation. 1Average parameters from Fisher et 
al., 2008; 2Belk et al., 2007; 3Markewitz et al., 2010. 
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Tapajos 
Control

Tapajos 
TFE

Caxiuana 
Control

Caxiuana 
TFE

Default 6.7537 6.7537 6.9288 6.9288

1999 6.30 5.79

2000 6.30 5.79

2001 5.94 5.39 5.5 5.4

2002 6.15 4.53 4.8 4.5

2003 5.63 4.26 5.5 4.5

2004 5.46 4.33 5.5 4.5

2005 6.07 4.51 5.5 4.5

Table 2.2. Leaf area index used in the LAI sensitivity tests. Tapajos LAI are 
from Brando et al. (2008) and Caxiuana LAI are from Fisher et al. (2007). The 
default values are 6.9288 at Caxiuana, and 6.7537 at Tapajos.
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Tapajos 
(00-04)

GPP NPP 
(ANPP)

Total 
respiration

Rhet Rauto Rcan

Obs: K67 
tower

31.4 ±  0.4 14.4 ± 1.3 
(11.4± 1.2)

29.8 ± 4.4 14.9 ± 1.4 14.9 ± 4.2

Obs: Tap. 
Control, 
TFE

(12.9, 9.9)

SiB 
Control 
(Default)

34.7 ± 2.0 17.3 ± 1.8 
(13.0)

34.6 ± 3.5 17.2 ± 3.6 10.7 ± 0.4 6.7 ± 0.4

SiB TFE 
(Default)

25.9 ± 7.0 12.2 ± 4.6 
(9.2)

27.7 ± 6.4 14.0 ± 4.0 8.8 ± 2.0 4.9 ± 1.4

Table 2.3. Average annual carbon fluxes at Tapajos from observations at the K67 tower (Malhi et al., 
2009), from observations at the control and TFE plots (2000-2004, Brando et al., 2008), and from SiB3 
(2000-2004). Units are Mg C/ha/yr.
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Caxiuana 
(02-05)

GPP NPP Total 
respiration

Rhet Rauto Rcan

Obs: Cax. 
Tower

38.2 ± 2.0 10.0 ± 1.2 30.1 ± 4.2 9.4 ± 0.8 21.4 ± 4.1

Obs: Cax. 
Control

30.9-31.4* 10.6 ± 0.9 32.6 ± 2.9 10.2 ± 1.0 22.4 ± 2.8

Obs: Cax. 
TFE

26.9-27.1* 8.2 ± 1.0 36.6 ± 3.7 10.9 ± 1.5 25.8 ± 3.4

Obs: 
Carswell 
’02

36.3

SiB3 
Control

34.7 ± 2.4 17.4 ± 2.3 34.6 ± 2.7 17.3 ± 2.6 9.9 ± 0.3 7.4 ± 0.3

SiB3 TFE 32.2 ± 2.6 16.0 ± 2.2 32.3 ± 4.1 16.1 ± 4.1 9.5 ± 0.3 6.7 ± 0.5

Table 2.4. Average annual carbon fluxes at Caxiuana from observations at the flux tower tower (Malhi et 
al., 2009), from observations at the control and TFE plots (2005, Metcalfe et al., 2010). GPP in the control 
and treatment plot is from the modeling study of Fisher et al. (2007) for 2002 and 2003 (denoted by the *). 
Also shown is GPP estimated from eddy covariance (Carswell 2002). The last two rows are average values 
from default SiB3 during the modeled exclusion (2002-2005). Units are Mg C/ha/yr.
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Tapajos: 
ANPP

1 2 3 4

Observation 77.4 2003; 58%

SiB3 - 10 m 1 1.98 70 2002; 46%

SiB3 - 11 m 1 1.68 71.2 2003; 51%

SiB3 - 12 m 1.01 1.4 73 2003; 53%

SiB3 - 14 m 1.03 1.1 75.6 2003; 58%

SiB3 - 15 m 1.04 1.04 77.2 2003; 60%

Table 2.5a. Metrics used for determining optimal soil depth at Tapajos based on 
ANPP as reported by Brando et al.,  2008. 1) RMSE between the control plot 
ANPP in the model and observations (Brando et al.,  2008). 2) RMSE between the 
treatment plot ANPP in the model and observations. 3) Percent control/treatment 
ANPP: 5 year average. 4) Year of most severe decline in ANPP & percent 
control/treatment during that year

Tapajos: LH 1 2 3 4

Observation 91 52 2003; 77%

SiB3 - 10 m 17.39 82 54 2003; 68%

SiB3 - 11 m 17.4 83 54 2003; 69%

SiB3 - 12 m 17.43 85 54 2003; 72%

SiB3 - 14 m 17.47 87 54 2003; 76%

SiB3 - 15 m 17.49 88 54 2004; 77%

Table 2.5b. Metrics used for determining optimal soil depth at Tapajos based on 
monthly latent heat flux measured at the KM83 tower,  and compared to the 
modeling study of Markewitz et al.  (2010).  1) RMSE between the control plot 
latent heat in the model and observed latent heat at the km 83 tower (2001-2003). 
2) Percent control/treatment ET: 5 year average (2000-2004). 3) Percent of 
annual latent heat flux occurring during dry season. 4) Year of most severe 
decline in ET & percent control/treatment during that year.
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Caxiuana: 
NPP

1 2 3

Observations 77 10.6 8.2

SiB3 - 10 m 92 17.4 16

SiB3 - 3 m 84 16.7 14

SiB3 - 2 m 77 16.2 12.5

Table 2.6a. Metrics used for determining optimal soil 
depth at Caxiuana based on NPP as reported by Metcalfe et 
al. (2010).  1) Percent control/treatment NPP (2005). 2) 
Control NPP in 2005. 3)Treatment NPP in 2005

Caxiuana: 
ET

1a 1b 2a 2b 3a 3b

Observations 56 61 2.45 64 1.50 60

SiB3 - 10 m 100 97 2.54 60 2.49 60

SiB3 - 3 m 92 85 2.47 59 2.27 56

SiB3 - 2 m 84 78 2.4 58 2.07 51

Table 2.6b. Metrics used for determining optimal soil depth at Caxiuana based on sap flow 
as reported by Fisher et al. (2007). 1) Percent control/treatment ET in 2002 and 2003. 2) 
Control ET (2002 - 2003), percent occurring during dry season. 3) Treatment ET (2002 - 
2003), percent occurring during dry season
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Figure 2.1. Annual precipitation during the Tapajos (left) and Caxiuana (right) experiments. At 
Tapajos, 1999 precipitation is from July-Dec, and 2005 precipitation is from Jan-Aug.

Tapajos

    
 
                       Caxiuana

Figure 2.2 Root profiles as observed at Tapajos (Belk et al., 
2007) and at Caxiuana (Fisher et al., 2007). Bars indicate 
standard errors from Caxiuana measurements. Orange 
circles indicate SiB3 root profile for 10m soil in tropical 
forest biome.
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Figure 2.3a Above-ground net primary productivity (ANPP) in the treatment plot 
compared to the control plot at Tapajos. Observations are from Brando et al. 2008. 
3b, c. Actual values of ANPP in the control and treatment for SiB3 and the 
observations. 3d. As in 3a but for evapotranspiration. In this case, “observed” 
values are from the soil model of Markewitz et al. 2010. 3e,f. As in 3b and c but 
for evapotranspiration.
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Figure 2.4 Monthly mean results from the SiB3 experiments at Tapajos. Observations are from the K83 
flux tower.
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Figure 2.5 Average volumetric water content at Tapajos control (left) and treatment (right). 
Solid lines are the SiB3 experiments, and open circles are observations, with the line showing 
standard deviation. Measurements from Markewitz et al. 2010. Dashed lines indicate the wilt 
point for each soil texture.
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Figure 2.6a Net primary productivity (NPP) in the treatment plot 
compared to the control plot at Caxiuana. Observations are according to 
Metcalfe et al. 2010, which were only taken in 2005. 6b, c. Actual values 
of NPP in the control and treatment plots for SiB3 and the observations. 
6d. As in 6a but for evapotranspiration. In this case, SiB3 is compared to 
observations of sap flux from Fisher et al., 2007, which were taken in 
2002 and 2003. 6e, f. As in 6b,c but for evapotranspiration.
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Figure 2.7 Monthly mean observed sap flow and modeled ET at Caxiuana control plot, b at the 
treatment plot, and c in the treatment plot compared to the control plot. Sap flow is from  daily 
measurements by Fisher et al., 2007. The blue and orange lines will be discussed later in the text. 
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Figure 2.8 Monthly mean results from the SiB3 experiments at Caxiuana.
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Figure 2.9 Volumetric water content at Caxiuana control and treatment. Solid lines are from the SiB3 
experiments, and open circles are observations from Fisher et al., 2007. Dashed lines indicate the wilt 
point for each soil texture.
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CHAPTER THREE: 

REPRESENTING SEASONAL AND INTERANNUAL
DROUGHT RESISTANCE IN AN ECOSYSTEM MODEL
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1. INTRODUCTION

 Severe drought in tropical forests dries the soil and can lead to decreased 

productivity, CO2 emissions, and increased mortality rates. Ecosystem models assume 

spatially  uniform drought resistance across the Amazon. However, the exclusion 

experiments at Tapajós and Caxiuanã revealed slightly  higher drought tolerance at the 

Tapajós forest. In this chapter, we use results from the exclusion experiments, 

precipitation statistics, soil texture, and forest cover to derive an index of stress 

resistance, which challenges this assumption. High values of the index denote forest that 

has evolved mechanisms to withstand drought, while low values occur in forests that 

have little need for drought avoidance techniques. We will test the hypothesis that such an 

index can accurately represent seasonal and interannual responses to drought.
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2. DATA AND METHODS

2.1 Formulation of Stress Resistance Index

 We use three data sets for calculating the total stress resistance index: GPCP 

precipitation, IGBP-DIS soil texture, and forest cover from the SIMAMAZONIA project 

(http://www.csr.ufmg.br/simamazonia/). Monthly  mean precipitation from the Global 

Precipitation Climatology Project (GPCP), version 2.1 (Huffman, 1997; Adler, 2003), is 

available from 1979-2009 on a 2.5°x2.5° latitude/longitude grid. We chose this product 

because of the relatively long time period of 31 years. SiB3 is usually  run at 1°x1° grid in 

offline simulations. Therefore, we downscale the GPCP data to a 1°x1° grid. The two 

other data sets are forest cover from 2001 (Soares-Filho et  al., 2006) and soil texture from 

the International Geosphere-Biosphere Programme (IGBP, 2000).

 The total stress resistance index (TSRI) is calculated following the chart in Figure 

3.1. Ultimately, the TSRI is a function of climate, soil texture, and forest cover. We 

assume that climate will affect root depth, such that forests with occasional dryness have 

greater need to develop deep roots. 

TSRI = [root depth(CSRI(annual P, # of dry seasons that are unusually dry, MCWD) + 

f(texture) + f(forest cover)]         Equation 3.1

http://www.csr.ufmg.br/simamazonia/
http://www.csr.ufmg.br/simamazonia/
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 The climatological stress resistance index (CSRI) is a function of the annual 

precipitation, the frequency of drier than usual dry  seasons, and the maximum 

climatological water deficit (MCWD) (Figure 3.2). The annual precipitation is calculated 

beginning the year in September, to line up with the beginning of the hydrologic year in 

much of the Amazon basin. Dry dry seasons are determined as follows. We first define 

the dry season as months with less than 100 mm precipitation based on the average 

seasonal cycle at each point. The mean and standard deviation of dry season precipitation 

is calculated. Dry dry seasons occur when the dry season precipitation is less than one 

standard deviation below the mean dry season precipitation. 

 MCWD is calculated following Malhi et al. (2009a). First, the mean annual 

precipitation cycle is calculated. Then, the wettest month is found, and we assume that 

the soil is saturated at this time (soil water deficit, SWD=0). Over the next 11 months, we 

calculate SWD as the accumulation of precipitation minus evaporation (assumed to be 

100 mm/month):

 SWD(n) = SWD(n-1) + P(n) - E(n)      Equation 3.2

 MCWD  = min(SWD(1:12))

The deficit is constrained to be negative at all times (a negative deficit denotes more 

water is drawn from the soil column via evaporation than is added through precipitation). 

 The dry season lasts anywhere from zero to five months in the Amazon forest. The 

western equatorial Amazon receives the most rainfall (more than 3 m per year - Figure 

3.2) and even during the driest three months of the year the average rainfall is greater 

than 7 mm/day. Annual rainfall decreases and dry  season severity and MCWD increase to 
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the south and east of the maximum rainfall. 

 The three precipitation statistics are collected for three regions: tropical forests in 

Asia, Africa, and Central/South America. In each region, the spatial mean and standard 

deviation are calculated, and the data set  is standardized. Negative values are assumed to 

denote drier conditions and therefore stronger resistance (for example, less annual 

rainfall, more frequent very dry  seasons, or higher MCWD) (for this reason, the number 

of dry dry  seasons is multiplied by  -1). Positive values denote wetter conditions and 

therefore we assume that these forests have less need for adaptive mechanisms. Finally, 

we average the three data sets to create the climatological stress resistance index (CSRI - 

Figure 3.2d) (note that the final index only exists where SiB3 has tropical evergreen 

forest).

 For a large portion of the Amazon basin, average monthly precipitation is always 

greater than 100 mm and there is no climatological dry season. We analyzed occurrence 

of low precipitation months over the 31-year GPCP record and the maximum water 

deficit at these points (the maximum water deficit is calculated similar to the MCWD 

except deficit is calculated each year, rather than based on the mean annual cycle). 

Although some points have years with a ~3 month dry season, the soils remain fairly 

moist at all times. We conclude that these parts of the forest do not encounter water stress 

very often and so a high value of the CSRI is appropriate (= low stress resistance).

 The next step was to create a data set useable by SiB3 based off the map in Figure 

3.2. The most straightforward way to parameterize drought tolerance is by  adjusting the 

amount of water available to the forest. Practically speaking, this means adjusting the 
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root depth. Previous work comparing SiB3 to observations during two rainfall exclusion 

experiments yielded an optimal rooting depth of 14 m and 2 m at the Tapajós and 

Caxiuanã National Forests, respectively. Based on these values, we calculate the TSRI at 

the two sites as:

TSRI = (rootd*(% forest)) + (8*(% nonforest - % deforested)) + (0*(% deforested))

             Equation 3.3

 Here, the assumption is that on the grid-cell level, forest cover mediates resistance. 

Where nonforest vegetation exists, we assume a root depth of 8 m (e.g. non-forested land 

near Paragominas, Nepstad et al., 1994). High levels of deforestation significantly 

decrease the stress resistance of the remaining forests.

 We assume that the mean root depth in the Amazon is 10 m, since several 

ecosystem models have demonstrated improved results using this depth in the tropical 

forest biome or plant functional type (Baker et al., 2008; Lawrence and Chase, 2009; 

Verbeeck et al., 2011). Because the CSRI is standardized, we assume 10 m depth 

corresponds with a CSRI of 0. Also, we assume a maximum depth of 18 m, 

corresponding with a CSRI of 1.0. We linearly  extrapolate between these four points 

(Tapajós, Caxiuanã, mean and maximum values) to arrive at  an equation relating root 

depth to the CSRI:

 TSRI = 7.82999*(CSRI) + 10.111       Equation 3.4
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 Next, we account for soil texture. Deep  roots are more likely in seasonal forests 

with course or fine soil texture (Schenk and Jackson, 2004), therefore in these regions we 

increase root depth by 10%. Finally, the index is adjusted for forest cover. This step is the 

same as described above with Equation 3.3, but now it is applied to the all tropical forest 

biomes in south/central America. The result is the final TSRI shown in Figure 3.3. Stress 

resistance is highest along the forest edges, where occasional droughts or strong rainfall 

seasonality have forced forest adaptations. Resistance is low in the forest interior, where 

rainfall is almost always high, and near the mouth of the Amazon River, where a local 

maximum in precipitation is located. Resistance is decreased in grid cells with significant 

deforestation.

 As stated above, the values in the index are most closely related to root  depths. We 

compare some values to observations in Table 3.1. The observations are weighted 

according to Equation 3.3. Manaus is located in a region with high annual precipitation 

and little interannual variability  (annual rainfall is >2500 mm and there is no 

climatological dry  season). Therefore, our index predicts very low drought  resistance at 

this site, although roots are observed to 8 m. Near Paragominas, 54% of the land is 

deforested, and this strongly reduces resistance. Annual rainfall is ~1900 mm, and six 

years have unusually dry dry  seasons. At this site there is good match between the 

observations and our index. 

 It is important to note that while root depth is the simplest way to incorporate 

evolved stress resistance into SiB3, it would be inaccurate to say the TSRI is a map of 
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root depths. Site to site root depth depends on several factors, such as soil type, local 

long-term climate, and geology – all of which are poorly observed in tropical forests. 

However, using the SRI in SiB3 results in realistic responses to seasonal and interannual 

droughts, and therefore we propose that the index is an appropriate indicator of stress 

resistance.

2.2 Model simulations 

 In the results, SiB3-SRI uses the new index. SiB3-Unstressed is the default 

version of SiB3, with moderate levels of stress resistance in all tropical forests. Despite 

the nomenclature, SiB3 SRI has higher stress resistance in some regions where the SRI is 

very high (dark blue in Figure 3.3). Both models are run from 1983-2006 and driven by 

NCEP Reanalysis meteorology, with precipitation scaled to GPCP to account for known 

biases in the reanalysis in South America. The models run through the first 23 years once 

for spin-up, and the results presented here are from the second set of runs. The horizontal 

resolution is 1°x1°, and the model time step is 10 minutes.
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3. RESULTS

3.1 New Parameterization: Effects on seasonal fluxes

Seasonal cycles of latent, sensible, and carbon fluxes in SiB3 are consistent with 

observations from multiple tower sites throughout Amazonia (Baker et al., 2011a). The 

new parameterization has little effect on these seasonal cycles. Here we briefly  review the 

model response at  two sites: Manaus (K34; 2.60°S, 60.20°W) and Reserva Jaru (JRU; 

10.08°S, 61.93°W).

 Manaus has a very wet climate on average, with >2500 mm/year of rainfall. During 

the driest two months of the year, there is 107-109 mm rainfall (August and September, 

respectively) (Figure 3.5a). Incoming and net radiation peak during the dry season (July 

through October). In the observations, both sensible and latent  heat fluxes peak in the dry 

season at Manaus, coinciding with peak incoming radiation. Carbon flux shows slight 

uptake during most of the year, and slight efflux during the late wet season. SiB3 also 

produces peak LH and SH during the dry  season, although the peak is a few months early 

in SH. However, the magnitude of wet season LH is underestimated, and SH is 

overestimated. This is likely related to a dry bias in the reanalysis that drives SiB3, 

especially during the wet season (Baker et al., 2011a). The sign of SiB3’s carbon flux 

matches observations most of the year. The two exceptions are the early and late wet 

season. SiB3 simulates the lowest GPP of the year during the early wet season, and 

therefore the forest is a carbon source. The soils in SiB3 are saturated, and the canopy 
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assimilation is controlled by light availability. At the end of the wet season, SiB3 

switches from a source to a sink a few months before observed, as GPP responds rapidly 

to increasing radiation and respiration decreases slightly.

 The grid cell containing Manaus in SiB3 has much lower resistance in the SRI run, 

but there is very little effect on the seasonal cycles of latent and sensible heat flux, 

photosynthesis, and respiration (Figure 3.4a). Due to the reduced drought resistance in 

SiB3-SRI, dry  season ET and GPP are reduced by up to 2% and 4%. The respiration is 

lower every  month, and so the amplitude of the seasonal cycle in carbon flux is damped 

in SiB3-SRI.

 The respiration response is interesting. The largest  differences occur during the dry 

season. During the day, the soils dry slightly as plants transpire water. The drying effect is 

greater in SiB3-SRI because of the shallower soil, and heterotrophic respiration is higher 

during the day in this model. At night, heterotrophic respiration is higher in SiB3 

Unstressed. Meanwhile, canopy  autotrophic respiration is always higher in SiB3 

Unstressed because there is less soil moisture stress, and autotrophic respiration is also 

always higher because there is more assimilation in SiB3 Unstressed. The overall effect is 

for similar respiration during the day but higher respiration at night in SiB3 Unstressed. 

Over the coarse of a month, the total respiration is higher in SiB3-Unstressed.

 At JRU, the dry season is very  pronounced, and precipitation is less than 100 mm/

month from May through September (Figure 3.4b). Very dry dry  seasons occurred five 

times during the GPCP 31 year record, and 63% of the grid cell is deforested. The 

occurrence of seasonal and interannual drought increases this site’s drought resistance, 
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but the low forest cover decreases it. Overall, the SiB3-SRI has higher drought resistance 

at this point. 

 Observed LH and SH show very limited seasonality  at JRU (Figure 3.4b). The 

carbon flux shows uptake during the wet season and efflux during the dry season. The 

site has a very thin soil, which likely influences this seasonal cycle. 

 As with Manaus, the changes to the seasonal cycle are small and mostly  occur 

during the dry  season, when water limitations might occur. Dry season ET and GPP 

increase in SiB3-SRI by 1-2% and 3.5%, respectively. Respiration is marginally  higher in 

SiB3-SRI. As a result, the late wet season efflux is increased. Higher GPP during the 

latter part of the year results in stronger uptake in the dry season and weaker efflux in the 

early wet season. Since our stress resistance index does not consider variations in 

geology, it is not surprising that we do not match the observed seasonal cycle of carbon 

flux at JRU.

 The basin-wide seasonal cycles are similar to previous versions of SiB3 (e.g. Baker 

et al., 2008; Baker et al., 2011b) (Figure 3.5). In the northern hemisphere, precipitation is 

relatively high all year, with a dry season from September through March. Net radiation 

is lowest during the wet season, and peaks at the beginning and end of the dry  season. 

SiB3’s seasonal cycle of photosynthesis is similar to that of radiation. The high rainfall 

prevents water limitation and photosynthesis is mostly light-limited. Respiration is 

slightly higher during the rainy season. As a result, the forest acts as a carbon sink during 

the beginning and end of the dry season (when GPP and radiation are highest), and as a 

carbon source during the mid-dry and mid-wet seasons. The simulated seasonal cycles of 
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GPP and respiration are similar in both versions of the model.

 In the southern hemisphere, the dry season is more pronounced and occurs from 

June through September, coinciding with the austral winter. Incoming radiation peaks late 

in the dry season. On average, water limitation on photosynthesis is limited, and 

photosynthesis shows very little simulated seasonal variation. It has a slight minimum at 

the end of the wet season. Respiration is highest during the wet season. The forest is a 

carbon source during the wet season, and a carbon sink during the dry season. In SiB3-

SRI, forest drought resistance is lower than in SiB3 Unstressed. GPP is less during the 

dry season and respiration is slightly less year-round. As a result, the wet season source is 

smaller (Jan. - May) and the late dry season sink is smaller.

3.2 Effect on ecosystem response to interannual climate variations

 In SiB3 SRI, the forest is generally  more sensitive to interannual variability. Figure 

3.6 shows the difference between SiB3 SRI and SiB3 Unstressed in the northern 

hemisphere tropical forests, southern hemisphere tropical forests, and for the domain-

wide tropical forests. The domain-wide differences are mostly due to differences in the 

southern hemisphere. GPP tends to be lower in SiB3-SRI during or following years with 

anomalously low precipitation (e.g. 1991, 1997), and vice versa following anomalously 

wet years (e.g. 1988, 2000). Because of SiB3’s assumption of carbon balance, the 

respiration differences lag the GPP differences. For example, SiB3-SRI assimilates less 

CO2 during 1992 than the default SiB3, and so the following year, less carbon is 

available for respiration. However, there is year-to-year variability  in the NEE, with 
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differences between the models ranging from -0.07 to 0.09 Pg C/yr. The basin-wide NEE 

is on the order of +/- 0.20 Pg C/yr, and so variations in net ecosystem exchange between 

the models can be substantial. The models also differ in sensible and latent heat fluxes. 

Changes to these fluxes have implications for the weather and climate (Harper et al., 

2010), and will be the subject of a follow-up paper to this study. Because differences in 

the model appear to be related to the El Niño Southern Oscillation (ENSO) (Figure 3.6f), 

we next examine correlations between the Multivariate ENSO Index (MEI) and modeled 

fluxes.

 The MEI is based on six variables observed over the tropical Pacific: sea-level 

pressure, the zonal and meridional components of the surface wind, sea surface 

temperature, surface air temperature, and total cloud fraction. A positive MEI indicates El 

Niño, while negative MEI indicates La Nina. We compute the monthly lag correlation 

between the MEI and several SiB3 variables. Figure 3.7 shows the correlations that are 

significant at  99%. A positive MEI (El Niño) is correlation with negative precipitation 

anomalies, and positive temperature and radiation anomalies in tropical South America 

(Figure 3.7). The negative correlation with precipitation is greatest in the southern 

hemisphere at a lag of 0 months, while in the northern hemisphere it is greatest at a lag of 

3 months.

 The effects of interannual variability on annual fluxes in SiB3 Unstressed are 

discussed by  Baker et al. (2011b), so here we focus on monthly fluxes and explore some 

differences between the two versions of SiB3. During El Niño there is reduced 

precipitation throughout much of the Amazon basin (particularly in the east), and warmer 
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temperatures (Figure 3.8a,b). Negative precipitation anomalies persist for the 6 months 

preceding and following an MEI event (Figure 3.7a). Basin-wide GPP is negatively 

correlated with the MEI at  positive lags (following an El Niño). A significant correlation 

emerges in SiB3-SRI at lag 0 (r = -0.20) and peaks at 6-7 months (r = -0.44) (Figure 

3.7d). The forest does not respond as quickly or as strongly  in SiB3 Unstressed: GPP 

becomes significantly correlated with the MEI at a lag of 3 months (r = -0.21) and peaks 

at 7-9 months (r = -0.37). Spatially, the strongest response in GPP occurs in the eastern 

Amazon where GPP is reduced due to soil moisture limitations (Figure 3.9c, d). However, 

in the west GPP increases since precipitation is not as strongly affected but net radiation 

increases. The eastern Amazon response to the MEI is stronger in SiB3-SRI. Precipitation 

remains low for 6 to 9 months, during which time soil moisture is gradually depleted in 

both runs. After about nine months, the two versions of SiB3 converge.

 While GPP is more sensitive to interannual variability  in SiB3-SRI, respiration is 

more sensitive in SiB3 Unstressed. The spatial patterns of correlations between 

respiration and the MEI are very similar between the models (Figure 3.8e, f). Respiration 

decreases due to the drier conditions in Guyana, Suriname, and northern Brazil. 

Elsewhere, respiration increases as a response to warmer temperatures. Domain-wide in 

SiB3 Unstressed, the respiration has a significant positive correlation with MEI at  lag 1-6 

months, but it is only significant at 2 months lag for SiB3-SRI (Figure 3.7e). The 

correlations are stronger in the southern region in both models.

 El Niño’s are associated with efflux of carbon from the domain. The tendency for 

reduced GPP and enhanced respiration during El Niño results in positive NEE 
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correlations with the MEI. The response from NEE is stronger in SiB3-SRI than in SiB3 

Unstressed. In SiB3-SRI, the positive correlations with the MEI emerge one month prior 

to the peak MEI. Domain-wide, the highest correlations occur at a lag of 5 months in 

SiB3-SRI (r = 0.55) and at a lag of 6-7 months in SiB3 Unstressed (r = 0.48) (Figure 

3.7f). Spatially, the high correlations occur in a zonal pattern south of the Equator and are 

clearly  stronger in SiB3-SRI (Figure 3.8g, h). However, the mechanisms behind the 

enhanced carbon source during El Niño’s are not spatially uniform. In the east, they result 

from decreased GPP, while in the west they  are linked with increased respiration. In the 

northern hemisphere forests (around Columbia and Ecuador), increased respiration and 

photosynthesis result in very small net flux, especially in SiB3 Unstressed. Negative 

correlations between NEE and the MEI exist  in the northeast, associated with decreased 

respiration during El Niño. These results show that El Niño has a spatially  varying 

response on the Amazon forests, and that representing forest resistance in the model 

results in generally stronger interannual carbon fluxes.

3.3 Case study of two interannual droughts

 Here we analyze the effect of two strong droughts on the Amazon forest, as 

simulated in SiB3-SRI. A strong El Niño occurred during 1997-1998. Most of tropical 

South America had less than average rainfall in 1997, with precipitation anomalies up to 

650 mm/year centered along the equator (Fig. 9a). In 1998, the negative anomalies were 

strongest to the northwest and southeast. Most of the southern hemisphere forest had 

reduced precipitation, but increased precipitation occurred in the north central forest (Fig. 
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10a). 

 Compared to SiB3 Unstressed, the SRI generally  increases stress resistance in the 

eastern basin and along the edge of the forest, and decreases resistance in the western 

basin (Figure 3.3). Strong reductions in GPP were simulated in SiB3-SRI in the western 

and central Amazon during 1997. The strongest decreases occurred in the western 

Amazon (up to 0.62 kg C/m2/yr, or 6.2 Mg C/ha/yr). Respiration increased in the central-

western Amazon basin, linked to increased temperatures, but  decreased elsewhere. The 

net effect  on NEE is anomalous carbon uptake in much of the eastern forests, where 

respiration decreased. In the western forests, the combination of decreased GPP and 

increased respiration led to an anomalous carbon source. Overall the SRI decreased the 

forest carbon uptake in 1997, compared to the Unstressed SiB3, mostly  due to the 

stronger GPP reductions in SiB3-SRI.

 The drought intensified through early  1998, and GPP was anomalously low almost 

everywhere in the domain (Figure 3.10). The highest decreases occurred in the western 

forests. Respiration also was anomalously high in most regions, with the exception of the 

southwestern basin. The high respiration and low GPP combined for strong carbon fluxes 

to the atmosphere in 1998 (up to .75 kgC/m2). On average the basin emitted 0.1 kgC/m2. 

The area of evergreen forest in SiB3 is 3.01x1012 meters, so this represents a flux of .3 Pg 

C to the atmosphere. In this case, the SRI decreased the flux of carbon from the forest 

compared to the Unstressed model, mostly because respiration increased more in SiB3 

Unstressed.

 During the drought of 2005, soil water was reduced by 18-20% its normal levels for 
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the month of August (Figure 3.11). The drought was most  severe during the dry season 

(JJA). SiB3-SRI simulated reductions of canopy photosynthesis of ~0.10 kgC/m2/month 

in the western Amazon, where precipitation reductions were the strongest. The model 

also shows reduced GPP (up to 0.18 kg C/m2/month) in the southeastern Amazon, where 

deforestation has impacted forest stress resistance (38-88% deforestation in this region). 

As mentioned before, the changes to forest resistance in the model can have important 

implications for surface heat and moisture fluxes. For example, the difference in latent 

heat flux between the two models is up to 2.0 mm/day. SiB3-SRI’s average August latent 

heat flux in this region is 3-4 mm/day, and so this is on the order of a 50% reduction in 

moisture flux to the atmosphere. Therefore, reductions in forest resistance can reduce the 

precipitation recycling, potentially reinforcing drought conditions. 
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4. DISCUSSION
 

  The SRI improves modeled response to severe droughts associated with El 

Niño and Atlantic SSTs. The changes to seasonal drought response are very small. The 

index is useful for representing a spatially variable response to drought stress that is 

consistent with observations. During El Niño events, the SRI results in strong GPP 

decreases in northeast Brazil, and increases in the western Amazon near Columbia and 

along the southern edges of the forest (near the border of Brazil with Peru and Bolivia). 

Respiration increases throughout most of the region, although it decreases to the 

northeast (near Guyana, Suriname, and northern Brazil). GPP is more tightly  correlated to 

the MEI in SiB3 SRI, while respiration has higher correlations with the MEI in the 

Unstressed SiB3. Overall, El Niño is associated with efflux of carbon from the region – 

especially in the northeast, near the mouth of the Amazon River, and in the southern 

boundary forests. The SRI increases the carbon flux compared to the Unstressed SiB3.

 Observations of impacts of the 2005 drought are often conflicting. Ground-based 

measurements suggest increased forest mortality and decreased growth, while satellite 

measurements suggest increased productivity  due to higher radiation. Our analysis of 

response to the 2005 drought shows decreases in photosynthesis of 0.10 to 0.18 kg C/m2/

month. Over the three months of most severe water deficits and over the area affected by 

the 2005 drought, this is equivalent to a decrease in photosynthesis of 0.57-1.03 PgC. 
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This is only slightly  less than the biomass loss estimated by Phillips et al. (2009), which 

included changes to productivity  and mortality. In addition, the evaporation is reduced by 

up to half of its usual value, strongly  reducing atmospheric moisture content and feeding 

back to the canopy.

 Ideally we should test  the validity of the SRI. The method used in this paper is to 

test the seasonal and interannual fluxes it produces in SiB3 against observations from 

flux towers. A second way would be strategically  placed rainfall exclusion experiments. 

An experiment in the everwet western basin would enable testing of the hypothesis that 

stress resistance is low there. One in the southeast would be enlightening since this is 

where climate change is projected to have the greatest impacts on precipitation. A third, 

newly evolving way to test the SRI is through satellite observations. Satellite-derived 

vegetation indices have high level of uncertainty  in the Amazon due to cloud and aerosol 

contamination. Nevertheless, these metrics of forest health are improving. New products 

include canopy fluorescence (from the GOSAT satellite) and canopy water content from 

QuickSCAT (Lee et al., 2012). 
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Climatologic
al Stress 

Resistance 
Index

observed or 
optimal root 

depth (meters)

%nonforest 
(% 

deforested)

adjusted for 
forest 

coverage

final Total 
Stress 

Resistance 
Index

Hypothetical 
minimum

Caxiuana

Manaus

Hypothetical 
average

Tapajos

Paragominas

Hypothetical 
maximum

-1.9359 2

-1.0217 5-10 m (2 m) 8% (7%) 2

-1.1126 8 m 16.8% (7.3%) 7.416

0.0 10

0.6415 10+ m (15.13) 12.5% (11.2%) 14

0.9628 18 m 53.9% (53.8%) 8.306

1.0 18

Table 3.1 Root depths in parentheses are the optimal values found in SiB3 simulations of the Tapajos and 
Caxiuana rainfall exclusion experiments. 



84

GPCP monthly mean
precipitation, downscaled to 

1x1 grid

Annual precipitation
# of dry dry seasons

MCWD

CSRI, standardized across 
tropical forests in central/

south America

SiB3 experiments at Tapajos and 
Caxiuana rainfall exclusion 

experiments

optimized rootd for SiB3 = 2 m at 
Caxiuana; 14 m at Tapajos

TSRIi = (rootd*(%forest)) +               
(8 * (%nonforest - %deforested))

TSRIi = CSRI*7.8299 + 10.111

linear interpolation between CSRI and TSRI at exclusion sites

CSRI Optimal rootd TSRIi

Caxiuana -1.0217 2 2.17

Average 0 10

Tapajos 0.6415 14 15.13

Maximum 1.0 18

Is MCWD>100 mm?YES

Course or fine soil

Medium-textured soil

NO

TSRIi = TSRIi*1.10

TSRIf = (TSRIi*(%forest)) + (8 * (%nonforest - %deforested))

Figure 3.1. Method for calculating the final Total Stress Resistance Index
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Figure 3.2. A-C Precipitation statistics used in calculating the Climatological Stress Resistance Index 
(CSRI). D. The CSRI
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Figure 3.4. Average seasonal cycles at A) Manaus (left) and B) Reserva Jaru 
(right).
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Figure 3.5. Area-averages for northern (A-C) and southern (E-G) 
hemisphere forests. Points included in the average are in D and H. In 
B,C and F,G the solid lines are from SiB3-Con, and dashed lines are 
from SiB3-SRI. Figure reproduced from Baker et al., 2011b.
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Figure 3.6. Difference between the models’ annual average fluxes (A-E). F) 
Precipitation in each region, and the Multivariate ENSO Index (MEI).
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Figure 3.7. Correlations between monthly variables and the Multivariate ENSO Index (MEI). 
Negative lags indicate the variable leads the MEI, and positive lags indicate the variable lags 
the MEI. Only correlation coefficients significant at 99% are shown.
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Figure 3.8. Monthly correlations at lag 0 between the MEI and 
precipitation,  air temperature, GPP, respiration, and NEE (R-GPP). For 
C-H, warm (red) colors indicate a carbon source associated with positive 
MEI (El Nino); cool (blue) colors indicate a carbon sink during El Nino. 
Only correlation coefficients significant at 90% are shown.
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Figure 3.9. Annual anomalies 
during 1997 (anomalies from the 
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the tropical forest biome are 
shown.
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Figure 3.10. Annual anomalies 
during 1998 (anomalies from the 
1983-2006 mean).  Only points in 
the tropical forest biome are 
shown.



92

!
!""#$%%&$'()*'+,-.

$
$

"#$%&

&%&

#$%&

"'#% ()% *$% +,% ,+% $*%

$ /!0# /!0" /10# /10" $/"0# $" $"0# $10" $10# $!0" $!0# $
**23'4

!"#$%

&$&

"#$%

!'"$& !()$& !*#$& !%+$& !+%$& !#*$&

, ,

!"#$%&'()*%+,-./%0112%,3"4'$56

!#789!:;

% 91/<= 91/<8 91/<1 91/1> 91/18 %1/18 %1/12 %1/1? %1/<< %1/<2 %1/<? ,

+,@.%9%01126%A%,@.

!

"#$%$

"&'%$

$%$

"(&%$ ")*%$ "+#%$ "',%$ ",'%$ "#+%$

 -0.15 -0.12 -0.09 -0.06 -0.03  0.0  0.03  0.06  0.09  0.12  0.15 !

!""#$%&'&()$*++,$-./0-12

34567389

kgC/m2/month

!"#$%

&$&

"#$%

!'"$& !()$& !*#$& !%+$& !+%$& !#*$&

 -2.0 -1.6 -1.2 -0.8 -0.4  0.0  0.4  0.8  1.2  1.6  2.0  

!"#$%#&'$"#&()*+,&-*.*/#&0112&-%34")5

6789:6;<

mm/day

Figure 3.11. Anomalies during the 2005 drought. A) Precipitation anomalies in GPCP 
during JJA. B) SiB3-SRI anomalous soil water during August (anomaly is from the 
average August, 1983-2006). C, D) Anomalous GPP and latent heat flux from SiB3-SRI.
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CHAPTER 4: 

ROLE OF DEEP SOIL MOISTURE IN MODULATING 

CLIMATE IN THE AMAZON RAINFOREST
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A version of this chapter was published by the American Geophysical Union (AGU). 
Reproduced by permission of AGU:
Harper AB, AS Denning, IT Baker, MD Branson, L Prihodko, DA Randall (2010): Role 
of deep soil moisture in modulating climate in the Amazon rainforest. Geophysical 
Research Letters, 37, L05802, doi: 10.1029/2009GL042302. Copyright 2010 AGU.

1. INTRODUCTION

More than one-third of the Amazon’s evergreen forests experience dry seasons 

lasting at least three months (Nepstad et al., 1994), and yet the forest seems to thrive 

during the dry, sunny months. Understanding the mechanisms that  enable the forest to 

live through extended dry periods is of particular importance considering that changes in 

both climate and land use are predicted to cause a drier Amazonian climate (Cox et al., 

2004). 

 Adding more realistic root and soil functions in SiB3 resulted in more realistic 

surface fluxes at certain sites in the Amazon (Baker et al., 2008). This paper aims to 

examine the effects of these changes on the simulated hydrologic cycle when SiB3 is 

coupled to a single column version of a GCM. Ultimately, SiB3 will be coupled to a 

global GCM. This study contributes to our understanding of the interactions between 

surface properties and climate in Amazonia. 
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2. METHODS

2.1. SiB 

 SiB is based on a land‐surface parameterization scheme that computes biophysical 

exchanges (Sellers et al., 1986) and ecosystem metabolism (Sellers et al., 1996; Denning 

et al., 1996). SiB calculates fluxes of heat, moisture, momentum, and CO2 from the 

gradients of each between the canopy air space (CAS) and the free atmosphere, scaled by 

a resistance. The monthly maximum value of the normalized difference vegetation index, 

from the Advanced Very High‐Resolution Radiometer data, is used to derive parameters 

such as leaf area index and photosynthetically  available radiation. The potential 

photosynthetic rate is scaled by these parameters, along with three stress factors that act 

to maximize carbon assimilation while minimizing water loss. Stress can originate from 

less than optimal temperature, canopy air space humidity, and soil moisture. This study 

focuses on the latter. 

 We compare two versions of SiB3, SiB3 Stressed and SiB3 Unstressed, which have 

four main differences. The latter version corresponds to the deep soil SiB3 discussed by 

Baker et  al. (2008). The root depths are 3.5 and 10 meters in SiB3 Stressed and SiB3 

Unstressed, respectively, allowing the latter to hold more soil moisture. In SiB3 Stressed 

transpired water is removed from the soil based on root fractions in each layer, which 

does not account for the importance of hydraulic redistribution and deep roots. Although 
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root density  is low in the deepest layers, most of the water resides in these layers. 

Observational studies have noted the ability  of deep roots to access large amounts of 

water (e.g., Jipp  et al., 1998, Nepstad et al., 1994). In SiB3 Unstressed, transpired water 

is removed from an “apparent” root fraction, accounting for both actual root fraction and 

moisture content in each layer. 

 In SiB3 Stressed, soil moisture stress increases rapidly  once soil moisture drops 

below the wilting point. This response is realistic on a plant‐by‐plant basis. However, in 

reality  soil moisture and water table depth can vary greatly within a grid cell, and not all 

plants reach the wilting point at the same time. Therefore, in SiB3 Unstressed, soil 

moisture stress increases more gradually  in response to decreasing soil moisture. Finally, 

the optimum soil moisture for heterotrophic respiration is increased from 67% to 75% of 

saturation in SiB3 Unstressed, which is more in line with observations in the Amazon 

(Baker et al., 2008). 

2.2. SCM 

 We performed numerical simulations using a single‐column version (SCM) of 

BUGS5, an atmospheric GCM that has evolved from the 1980’s UCLA GCM. The model 

uses a modified sigma coordinate with a prognostic planetary  boundary  layer (PBL) 

(Randall et al., 1985). The PBL depth changes due to horizontal mass flux divergence, 

entrainment of air from above the PBL, and loss of mass due to convection. The 

entrainment rate is predicted by integrating the turbulent kinetic energy (TKE) 

conservation equation over the depth of the PBL (Denning et al., 2008). Positive 
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entrainment occurs due to production of TKE by buoyancy and shear, while consumption 

by downward buoyancy fluxes and dissipation of TKE reduce entrainment. The PBL 

depth is constrained to be between 10 and 160 hPa. 

 BUGS5 uses a modified Arakawa‐Schubert cumulus parameterization with 

prognostic closure (Ding and Randall, 1998), and cloud microphysics as described by 

Fowler and Randall (2002). The radiative transfer scheme is based on work by  Gabriel et 

al. (2001) and Stephens et al. (2001). Aerosol loading is assumed to be light  during the 

wet season, and heavier during the late dry season when fires are common. Values for 

aerosol optical thickness, single scattering albedo, and asymmetry  factor are assigned as 

in Table 4.1 based on observations from Franchito et al. (2002), Andreae et al. (2002), 

Schafer et al. (2002), and Tarasova et al. (1999). 

 Horizontal advective tendencies of temperature and water vapor are prescribed 

using relaxation forcing (Randall and Cripe, 1999). Profiles of temperature and water 

vapor are relaxed toward their observed upstream values, scaled by  a relaxation 

timescale. Relaxation forcing guarantees that the modeled soundings of the state variables 

will be realistic and enables comparisons of SiB’s results to surface observations of 

fluxes of heat, moisture, and carbon dioxide. 

 The SCM is forced by six‐hourly NCEP Reanalysis II (Kalnay et al., 1996). Since 

the footprint  of the column (2.5°×2.5°) is larger than the footprint  of the tower, we do not 

expect the model to exactly mimic the tower observations, but we do expect the same 

seasonal cycles. We run the model from 2001–2003 five times to allow for soil moisture 

spin-up. The results shown are from the fifth iteration.
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2.3. Site Description 

 The flux tower in the Tapajós National Forest was operated from 2001 to 2004 as 

part of the Large‐scale Biosphere‐Atmosphere Experiment in Amazonia (LBA), an 

international research initiative led by Brazil. The tower is near the kilometer 83 marker 

on the Santarem‐Cuiaba highway  (BR 163), approximately 70 km south of Santarem, in 

Para, Brazil (3.01°S, 54.58°W). Data from the tower includes half‐hourly  measurements 

of air temperature, precipitation, radiation, and fluxes of heat and water vapor. The 

experimental design and instrumentation are fully described by Goulden et al. (2004), da 

Rocha et al. (2004), and Miller 

et al. (2004). 
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3. RESULTS

3.1. Seasonal Hydrologic Cycle 

 In SiB3 Stressed, evaporation has a strong seasonal cycle due to increased 

ecosystem stress. In the dry season this version of the model, the forest transports 

moisture away from areas of sustained ET. The dry season precipitable water content is 

0.6 to 1.6 mm higher, and moisture advection is 1–2 mm day-1 stronger compared to SiB3 

Stressed (Figure 4.1b, d). The monthly rainfall totals are not strongly affected by these 

changes, and modeled and observed rainfall is similar in both versions of the model 

(Figure 4.1a). 

 The stronger hydrologic cycle in SiB3 Unstressed is consistent  with observations. 

The plot of P‐E (Figure 4.1e) represents our best estimate of the observed hydrologic 

cycle at the tower. Calculated advection from NCEP Reanalysis variables is also shown 

in Figure 4.1d. SiB3 Unstressed is within the range of the observations during most 

months, and particularly during the dry seasons. 

3.2. Seasonal Heat and Moisture Fluxes 

 Simulated fluxes of sensible and latent heat are compared to tower observations in 

Figure 4.2. The seasonal cycles of latent and sensible heat are too strong in SiB3 

Stressed. The errors are largest during the dry  season, when latent heat is too low and 
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sensible heat is too high. The seasonal cycle of latent  heat flux is more realistic in SiB3 

Unstressed, consistent with results from Baker et al. (2008), who showed that similar 

changes in an offline version of SiB3 resulted in improved fluxes of CO2 at the same site. 

 The differences between SiB3 Stressed and Unstressed have important implications 

for simulating the regional climate. The canopy air space (CAS) is cooler and more moist 

in SiB3 Unstressed, although in the observations it  is always cooler and drier near the 

surface. During the dry season, weaker PBL buoyancy and shear result  in less TKE 

production and a generally shallower PBL in SiB3 Unstressed (Figure 4.2f). Because of 

the decreased PBL depth and temperature and increased PBL moisture, it is unlikely that 

SiB3 Unstressed will produce a hydrologic shutdown like that in SiB2/BUGS5 (Liu, 

2004). The improvements in SiB3 Unstressed could improve simulations of precipitation 

and moisture fluxes in a global coupled GCM. 

3.3. Dynamical Implications 

 Increased atmospheric moisture can result in increased condensation and latent 

heating. SiB3 Unstressed consistently has stronger atmospheric heating during the dry 

season from the surface to 500 hPa. During the wet season, SiB3 Unstressed (SiB3 

Stressed) has stronger heating from 400–600 hPa (from 700–925 hPa and from 200–300 

hPa). The differences in atmospheric heating between the models primarily by upward 

motion, which must  be compensated for by descending air elsewhere (Hoskins and 

Karoly, 1981). It is not unreasonable to expect that using SiB3 Unstressed in a global 

model will result in stronger dry season atmospheric heating throughout the Amazon. 
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This would result in stronger rising motion above the basin, a low‐level vorticity source 

and an enhanced surface trough to the west (Hoskins and Karoly, 1981). The increased 

low‐level moisture in SiB3 Unstressed results in higher vertically  integrated moist  static 

energy and weaker gross moist stability during most months of the simulation, consistent 

with the results of a stronger hydrologic cycle in this version of the model. 

3.4. Wet Season Characteristics 

 Wet season onset is defined as the first pentad with greater than 3.33 mm day−1 of 

rain, where at  least three of the following six pentads are above and four of the previous 

six pentads are below the threshold (Li and Fu, 2004) (Table 4.2). Figure 4.3 shows the 

evolution of the PBL, rainfall, and moisture advection during the transition between dry 

and wet seasons. Prior to wet season onset, SiB3 Unstressed has lower surface sensible 

heat flux and buoyancy, leading to lower TKE production and entrainment at the PBL 

top. Both versions of the model relax to the same upstream water vapor profile, but in 

SiB3 Unstressed the PBL is less diluted by  free tropospheric air, surface evaporation is 

higher, and hence the PBL relative humidity is higher. 

 In the model, the degree to which these factors influence wet season characteristics 

is related to the relative importance of local and large‐scale processes. In 2002, the wet 

season begins 15 days earlier in SiB3 Unstressed compared to SiB3 Stressed (Figure 

4.3e). Throughout the wet season, the mean entrainment rate and PBL depth are lower, 

evaporation is higher, and the rainfall rate is higher (Figure 4.3 does not show the full wet 

season). In late 2002 and early 2003, the upstream profile is drier than the previous year. 



102

During the 2003 wet season, the PBL is deeper in SiB3 Unstressed, and evaporation and 

precipitation are lower. In both dry  seasons, the rainfall intensity  is more realistic in SiB3 

Unstressed, although cumulative wet season rainfall is more realistic in SiB3 Stressed in 

2003 and both models end the wet season too early (Table 4.2).
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4. DISCUSSION

 This study highlights the importance of root‐zone processes in the hydrologic cycle 

and circulation of the Amazon region. Previous versions of SiB and other ecosystem 

models parameterize root‐zone moisture stress based on shallow soils where roots can 

only access water in their respective layers. This study and others (Baker et al., 2008; Liu, 

2004) show that such parameterizations do not accurately capture the seasonal cycles of 

heat, moisture, and carbon dioxide fluxes at sites throughout the Amazon. The changes 

made to SiB3 are motivated by  observations in the Amazon and differ from historical 

land surface treatments in the tropics. In the single column model, all large‐scale 

dynamics are constrained by  NCEP II reanalysis and therefore the model’s effect on the 

atmosphere is limited to local processes. Despite this, the changes to the land surface 

affect the hydrologic cycle, boundary layer, tropospheric dynamics, and wet season 

characteristics. The improved surface representation will likely  affect the large‐scale 

circulation and regional hydrologic cycle if implemented into a fully coupled GCM. 
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[7] We compare two versions of SiB3, S3_Stressed and
S3_Unstressed, which have four main differences. The latter
version corresponds to the deep soil SiB3 discussed by
Baker et al. [2008]. The root depths are 3.5 and 10 meters in
S3_Stressed and S3_Unstressed, respectively, allowing the
latter to hold more soil moisture. In S3_Stressed transpired
water is removed from the soil based on root fractions in
each layer, which does not account for the importance of
hydraulic redistribution and deep roots. Although root density
is low in the deepest layers, most of the water resides in these
layers. Observational studies have noted the ability of deep
roots to access large amounts of water [e.g., Jipp et al., 1998,
Nepstad et al., 1994]. In S3_Unstressed, transpired water is
removed from an “apparent” root fraction, accounting for
both actual root fraction and moisture content in each layer.
[8] In S3_Stressed, soil moisture stress increases rapidly

once soil moisture drops below the wilting point. This re-
sponse is realistic on a plant‐by‐plant basis. However, in
reality soil moisture and water table depth can vary greatly
within a grid cell, and not all plants reach the wilting point at
the same time. Therefore, in S3_Unstressed, soil moisture
stress increases more gradually in response to decreasing
soil moisture. Finally, the optimum soil moisture for het-
erotrophic respiration is increased from 67% to 75% of
saturation in S3_Unstressed, which is more in line with
observations in the Amazon [Baker et al., 2008].

2.2. SCM
[9] We performed numerical simulations using a single‐

column version (SCM) of BUGS5, an atmospheric GCM
that has evolved from the 1980’s UCLA GCM. The model
uses a modified sigma coordinate with a prognostic plane-
tary boundary layer (PBL) [Randall et al., 1985]. The PBL
depth changes due to horizontal mass flux divergence, en-
trainment of air from above the PBL, and loss of mass due to
convection. The entrainment rate is predicted by integrating
the turbulent kinetic energy (TKE) conservation equation
over the depth of the PBL [Denning et al., 2008]. Positive
entrainment occurs due to production of TKE by buoyancy
and shear, while consumption by downward buoyancy
fluxes and dissipation of TKE reduce entrainment. The PBL
depth is constrained to be between 10 and 160 hPa.
[10] BUGS5 uses a modified Arakawa‐Schubert cumulus

parameterization with prognostic closure [Ding and
Randall, 1998], and cloud microphysics as described by
Fowler and Randall [2002]. The radiative transfer scheme is
based on work by Gabriel et al. [2001] and Stephens et al.
[2001]. Aerosol loading is assumed to be light during the
wet season, and heavier during the late dry season when
fires are common. Values for aerosol optical thickness,

single scattering albedo, and asymmetry factor are assigned
as in Table 1 based on observations from Franchito et al.
[2002], Andreae et al. [2002], Schafer et al. [2002], and
Tarasova et al. [1999].
[11] Horizontal advective tendencies of temperature and

water vapor are prescribed using relaxation forcing [Randall
and Cripe, 1999]. Profiles of temperature and water vapor
are relaxed toward their observed upstream values, scaled by
a relaxation timescale. Relaxation forcing guarantees that
the modeled soundings of the state variables will be realistic
and enables comparisons of SiB’s results to surface ob-
servations of fluxes of heat, moisture, and carbon dioxide.
[12] The SCM is forced by six‐hourly NCEP Reanalysis II

[Kalnay et al., 1996]. Since the footprint of the column
(2.5° × 2.5°) is larger than the footprint of the tower,
we do not expect the model to exactly mimic the tower
observations, but we do expect the same seasonal cycles.
We run the model from 2001–2003 five times to allow

Table 1. Aerosol Optical Propertiesa

Wet
Season

Transition
Season

Dry
Season

Optical thickness (SW) .050 .080 .100
Single scattering albedo (SW) .989 .989 .989
Asymmetry factor (SW) .743 .743 .743
Optical thickness (LW) .030 .040 .100
Single scattering albedo (LW) .696 .696 .588
Asymmetry factor (LW) .779 .779 .631

aBased on preliminary model runs, the wet season is January through
June, the transition season is July and August, and the burning season is
September through December.

Figure 1. (a–e) Monthly mean composites of the hydrolog-
ic cycle. In Figure 1d, comparison is made to moisture ad-
vection calculated from NCEP Reanalysis precipitation,
evaporation, and precipitable water.
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S3_Stressed. The errors are largest during the dry season,
when latent heat is too low and sensible heat is too high. The
seasonal cycle of latent heat flux is more realistic in
S3_Unstressed, consistent with results from Baker et al.
[2008], who showed that similar changes in an offline ver-
sion of SiB3 resulted in improved fluxes of CO2 at the same
site.
[17] The differences between S3_Stressed and Unstressed

have important implications for simulating the regional
climate. The canopy air space (CAS) is cooler andmore moist

in S3_Unstressed, although these variables are overestimated
compared to observations. During the dry season, weaker
PBL buoyancy and shear result in less TKE production and a
generally shallower PBL in S3_Unstressed (Figure 2f).
Because of the decreased PBL depth and temperature and
increased PBLmoisture, it is unlikely that S3_Unstressed will
produce a hydrologic shutdown like that in SiB2/BUGS5
[Liu, 2004]. The improvements in S3_Unstressed could
improve simulations of precipitation and moisture fluxes in a
global coupled GCM.

3.3. Dynamical Implications
[18] Increased atmospheric moisture can result in in-

creased condensation and latent heating. S3_Unstressed
consistently has stronger atmospheric heating during the dry
season from the surface to 500 hPa. During the wet season,
S3_Unstressed (S3_Stressed) has stronger heating from
400–600 hPa (from 700–925 hPa and from 200–300 hPa).
The differences in atmospheric heating between the models
have important implications for the local and regional cir-
culation. In the tropics, a heating source aloft is balanced

Table 2. Comparison of Wet Season Characteristics Between
S3_Stressed, Unstressed, and Observations at KM83

S3_Stressed S3_Unstressed KM83

2002 dates Jan. 15–June 8 Jan. 1–June 18 Jan. 10–June 28
2002 rainrate (mm day−1) 5.87 6.04 6.25
2002 total rainfall (mm) 821 966 1062
2003 dates Jan. 15–May 5 Jan. 20–May 5 Jan. 25–June 13
2003 rainrate (mm day−1) 8.22 7.70 6.47
2003 total rainfall 945 847 938

Figure 3. Pentad‐averaged values for NDJFM of (a, b) PBL depth, (c, d) entrainment at the PBL top, (e, f) precipitation
rate, (g, h) vertically averaged moisture advection, and (i, j) PBL relative humidity. The solid (dashed) vertical lines indicate
pentad of wet season onset in S3_Unstressed (S3_Stressed). In Figures 3e and 3f, the dotted horizontal line indicates the
threshold rain rate for the wet season onset (3 mm/day−1).
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[7] We compare two versions of SiB3, S3_Stressed and
S3_Unstressed, which have four main differences. The latter
version corresponds to the deep soil SiB3 discussed by
Baker et al. [2008]. The root depths are 3.5 and 10 meters in
S3_Stressed and S3_Unstressed, respectively, allowing the
latter to hold more soil moisture. In S3_Stressed transpired
water is removed from the soil based on root fractions in
each layer, which does not account for the importance of
hydraulic redistribution and deep roots. Although root density
is low in the deepest layers, most of the water resides in these
layers. Observational studies have noted the ability of deep
roots to access large amounts of water [e.g., Jipp et al., 1998,
Nepstad et al., 1994]. In S3_Unstressed, transpired water is
removed from an “apparent” root fraction, accounting for
both actual root fraction and moisture content in each layer.
[8] In S3_Stressed, soil moisture stress increases rapidly

once soil moisture drops below the wilting point. This re-
sponse is realistic on a plant‐by‐plant basis. However, in
reality soil moisture and water table depth can vary greatly
within a grid cell, and not all plants reach the wilting point at
the same time. Therefore, in S3_Unstressed, soil moisture
stress increases more gradually in response to decreasing
soil moisture. Finally, the optimum soil moisture for het-
erotrophic respiration is increased from 67% to 75% of
saturation in S3_Unstressed, which is more in line with
observations in the Amazon [Baker et al., 2008].

2.2. SCM
[9] We performed numerical simulations using a single‐

column version (SCM) of BUGS5, an atmospheric GCM
that has evolved from the 1980’s UCLA GCM. The model
uses a modified sigma coordinate with a prognostic plane-
tary boundary layer (PBL) [Randall et al., 1985]. The PBL
depth changes due to horizontal mass flux divergence, en-
trainment of air from above the PBL, and loss of mass due to
convection. The entrainment rate is predicted by integrating
the turbulent kinetic energy (TKE) conservation equation
over the depth of the PBL [Denning et al., 2008]. Positive
entrainment occurs due to production of TKE by buoyancy
and shear, while consumption by downward buoyancy
fluxes and dissipation of TKE reduce entrainment. The PBL
depth is constrained to be between 10 and 160 hPa.
[10] BUGS5 uses a modified Arakawa‐Schubert cumulus

parameterization with prognostic closure [Ding and
Randall, 1998], and cloud microphysics as described by
Fowler and Randall [2002]. The radiative transfer scheme is
based on work by Gabriel et al. [2001] and Stephens et al.
[2001]. Aerosol loading is assumed to be light during the
wet season, and heavier during the late dry season when
fires are common. Values for aerosol optical thickness,

single scattering albedo, and asymmetry factor are assigned
as in Table 1 based on observations from Franchito et al.
[2002], Andreae et al. [2002], Schafer et al. [2002], and
Tarasova et al. [1999].
[11] Horizontal advective tendencies of temperature and

water vapor are prescribed using relaxation forcing [Randall
and Cripe, 1999]. Profiles of temperature and water vapor
are relaxed toward their observed upstream values, scaled by
a relaxation timescale. Relaxation forcing guarantees that
the modeled soundings of the state variables will be realistic
and enables comparisons of SiB’s results to surface ob-
servations of fluxes of heat, moisture, and carbon dioxide.
[12] The SCM is forced by six‐hourly NCEP Reanalysis II

[Kalnay et al., 1996]. Since the footprint of the column
(2.5° × 2.5°) is larger than the footprint of the tower,
we do not expect the model to exactly mimic the tower
observations, but we do expect the same seasonal cycles.
We run the model from 2001–2003 five times to allow

Table 1. Aerosol Optical Propertiesa

Wet
Season

Transition
Season

Dry
Season

Optical thickness (SW) .050 .080 .100
Single scattering albedo (SW) .989 .989 .989
Asymmetry factor (SW) .743 .743 .743
Optical thickness (LW) .030 .040 .100
Single scattering albedo (LW) .696 .696 .588
Asymmetry factor (LW) .779 .779 .631

aBased on preliminary model runs, the wet season is January through
June, the transition season is July and August, and the burning season is
September through December.

Figure 1. (a–e) Monthly mean composites of the hydrolog-
ic cycle. In Figure 1d, comparison is made to moisture ad-
vection calculated from NCEP Reanalysis precipitation,
evaporation, and precipitable water.
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for soil moisture spin‐up. The results shown are from the
fifth iteration.

2.3. Site Description
[13] The flux tower in the Tapajos National Forest was

operated from 2001 to 2004 as part of the Large‐scale
Biosphere‐Atmosphere Experiment in Amazonia (LBA), an
international research initiative led by Brazil. The tower is
near the kilometer 83 marker on the Santarem‐Cuiaba
highway (BR 163), approximately 70 km south of Santarem,
in Para, Brazil (3.01°S, 54.58°W). Data from the tower in-
cludes half‐hourly measurements of air temperature, pre-
cipitation, radiation, and fluxes of heat and water vapor. The
experimental design and instrumentation are fully described
by Goulden et al. [2004], da Rocha et al. [2004], and Miller
et al. [2004].

3. Results

3.1. Seasonal Hydrologic Cycle
[14] In S3_Stressed, evaporation has a strong seasonal

cycle due to increased ecosystem stress in the dry season

(Figure 1). Evaporation is sustained through the dry season
in S3_Unstressed because of the plants’ ability to access
deep soil moisture throughout the entire rooting profile. In
this version of the model, the forest transports moisture
away from areas of sustained ET. The dry season precipi-
table water content is 0.6 to 1.6 mm higher, and moisture
advection is 1–2 mm day−1 stronger compared to S3_Stressed
(Figures 1b and 1d). The monthly rainfall totals are not
strongly affected by these changes, and modeled and observed
rainfall is similar in both versions of the model (Figure 1a).
[15] The stronger hydrologic cycle in S3_Unstressed is

consistent with observations. The plot of P‐E (Figure 1e)
represents our best estimate of the observed hydrologic
cycle at the tower. Calculated advection from NCEP Re-
analysis variables is also shown in Figure 1d. S3_Unstressed
is within the range of the observations during most months,
and particularly during the dry seasons.

3.2. Seasonal Heat and Moisture Fluxes
[16] Simulated fluxes of sensible and latent heat are

compared to tower observations in Figure 2. The seasonal
cycles of latent and sensible heat are too strong in

Figure 2. (a–h) Comparison of modeled and (when available) observed variables. In Figures 2g and 2h, NCEP II Reanal-
ysis values are from 1000 hPa and the tower observations are from a height of 10 meters.
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S3_Stressed. The errors are largest during the dry season,
when latent heat is too low and sensible heat is too high. The
seasonal cycle of latent heat flux is more realistic in
S3_Unstressed, consistent with results from Baker et al.
[2008], who showed that similar changes in an offline ver-
sion of SiB3 resulted in improved fluxes of CO2 at the same
site.
[17] The differences between S3_Stressed and Unstressed

have important implications for simulating the regional
climate. The canopy air space (CAS) is cooler andmore moist

in S3_Unstressed, although these variables are overestimated
compared to observations. During the dry season, weaker
PBL buoyancy and shear result in less TKE production and a
generally shallower PBL in S3_Unstressed (Figure 2f).
Because of the decreased PBL depth and temperature and
increased PBLmoisture, it is unlikely that S3_Unstressed will
produce a hydrologic shutdown like that in SiB2/BUGS5
[Liu, 2004]. The improvements in S3_Unstressed could
improve simulations of precipitation and moisture fluxes in a
global coupled GCM.

3.3. Dynamical Implications
[18] Increased atmospheric moisture can result in in-

creased condensation and latent heating. S3_Unstressed
consistently has stronger atmospheric heating during the dry
season from the surface to 500 hPa. During the wet season,
S3_Unstressed (S3_Stressed) has stronger heating from
400–600 hPa (from 700–925 hPa and from 200–300 hPa).
The differences in atmospheric heating between the models
have important implications for the local and regional cir-
culation. In the tropics, a heating source aloft is balanced

Table 2. Comparison of Wet Season Characteristics Between
S3_Stressed, Unstressed, and Observations at KM83

S3_Stressed S3_Unstressed KM83

2002 dates Jan. 15–June 8 Jan. 1–June 18 Jan. 10–June 28
2002 rainrate (mm day−1) 5.87 6.04 6.25
2002 total rainfall (mm) 821 966 1062
2003 dates Jan. 15–May 5 Jan. 20–May 5 Jan. 25–June 13
2003 rainrate (mm day−1) 8.22 7.70 6.47
2003 total rainfall 945 847 938

Figure 3. Pentad‐averaged values for NDJFM of (a, b) PBL depth, (c, d) entrainment at the PBL top, (e, f) precipitation
rate, (g, h) vertically averaged moisture advection, and (i, j) PBL relative humidity. The solid (dashed) vertical lines indicate
pentad of wet season onset in S3_Unstressed (S3_Stressed). In Figures 3e and 3f, the dotted horizontal line indicates the
threshold rain rate for the wet season onset (3 mm/day−1).
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CHAPTER 5:

LAND-ATMOSPHERE INTERACTIONS DURING 

AMAZONIAN DROUGHTS
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1. INTRODUCTION

Severe drought in the Amazon basin has been linked to El Niño and warming in 

the northern tropical Atlantic. Both conditions are predicted to continue or potentially 

increase in the future (Li et al., 2006; van Oldenborgh et al., 2005; Cox et al., 2008). 

Until recently, most ecosystem models did not include the mechanisms that allow the 

Amazon to thrive during the dry seasons (e.g. Saleska et al., 2003). Adding more realistic 

root and soil functions in SiB3 resulted in more realistic surface fluxes at sites throughout 

the Amazon (Baker et al., 2008), and in a more active hydrologic cycle when SiB3 was 

coupled to a single column GCM (Harper et al., 2010). We have also developed a version 

of SiB3 with spatially varying stress resistance. Offline simulations using SiB3-SRI 

showed large impacts to surface heat and moisture fluxes during droughts, which could 

have important implications for moisture recycling and climate.

As we understand more about the mechanisms of drought adaptation in the 

Amazon, we are able to improve our land surface models to achieve more realistic 

seasonal cycles of latent and sensible heat fluxes, and surface fluxes of CO2. A question 

that still needs to be answered is how does the forest drought tolerance feed back to affect 

the climate of Amazonia, and what are the implications for how the forest might respond 

in the future? The following chapter tests two hypotheses: 1. The ability of the forest to 
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resist drought stress will decrease drought intensity, and 2. Forest response to drought can 

influence remote circulation and precipitation patterns.
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2. METHODS
 

2.1 SiB3

 This study  utilizes the Simple Biosphere model coupled to the BUGS5 GCM. The 

coupled model is run for 10 years (1997-2006) using three versions of SiB3 - “Stressed”, 

“Unstressed”, and “SRI”. Monthly sea surface temperatures and sea ice concentrations 

are prescribed (AMIP, Atmospheric Model Intercomparison Project). The Stressed and 

Unstressed model were used in a previous study (Harper et  al., 2010; Chapter 4) coupled 

to a single column model of BUGS5. The SRI model is described fully in the two 

previous papers. Here we briefly  review the differences between these models. In all 

versions, it is assumed that roots exist throughout the soil column. Root density is highest 

in the upper soil layers, and then decreases exponentially with depth.

 In SiB3 Stressed, the soil is 3.5 meters deep and water is removed for 

transpiration based solely on root fraction in each layer. In addition, soil moisture stress 

increases rapidly as the soil water potential approaches the wilt point, through the 

equation:

SMstress =
1−

θwp

θi

1−
θwp

θ fc

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠
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⎟

i=1

nsoil

∑        Equation 1
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where wp and fc are the water potential at wilt  point and field capacity, respectively. i 

is the water potential in layer i, and SiB3 has ten soil layers.

 In SiB3 Unstressed, the soil is 10 meters deep, and roots are weighted by the soil 

moisture present in each layer:

rootri =
1−

θwp

θi
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⎜
⎜
⎜
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⎟
⎟

(rootfi )        Equation 2

where rootf is the actual root  fraction, and rootr is the “apparent” root fraction used for 

extracting water for transpiration. The apparent root fraction can be higher or lower than 

the actual root fraction depending on the amount of moisture in each individual layer 

(Baker et al., 2008). In practice, this enables the deep layers to access soil moisture in 

amounts disproportionate to their root density  and helps avoid unrealistic soil moisture 

stress in the model. In addition, the soil moisture stress calculation is changed from 

Equation 1 to Equation 3 - which creates a more gradual stress response to decreasing 

soil moisture.  

SMstress =
(1+ wssp) * pawfrac

(wssp + pawfrac)
      Equation 3

A gradual response is more fitting for modeling purposes, since grid cells encompass 

many plants which reach wilt point at a different time.

 SiB3 SRI utilizes the same soil moisture stress equation and apparent root 

fractions as SiB3 Unstressed. In addition, this version relies on a Stress Resistance Index 
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(SRI), which is based on the following assumptions. First, we assume that plants in 

regions with periodic severe drought have higher drought tolerance than the ever-wet 

regions of the tropical forests. Second, we assume that very fine and very coarse soil 

textures increase drought tolerance. Third, we assume that deforestation reduces the 

overall drought tolerance of forests in a grid cell, primarily through the removal of deep 

rooting systems. Further justification and explanation of the SRI can be found in Chapter 

3.

 Overall, the forests in SiB3 Stressed are least  able to tolerate dry conditions 

(hence the name “Stressed”). Low soil moisture in SiB3 induces stomatal closure, which 

reduces evapotranspiration and photosynthesis. This response is based on isohydric 

plants, which attempt to maintain a minimum leaf water potential in order to prevent 

xylem cavitation and hydraulic failure under drought conditions. Both SiB3 Unstressed 

and SiB3 SRI have higher drought tolerance than SiB3 Stressed. Forest drought 

resistance is highest in SiB3 Unstressed in the interior of the Amazon forest (in the 

western basin), and in the eastern-most and southern-most forests (Figure 5.1). The SRI is 

low in these two general areas due to consistently wet conditions and deforestation, 

respectively.

2.2 BUGS5

 BUGS5 uses a dynamical core based on a spherical geodesic grid (Ringler et al., 

2000). The geodesic grid solves the vorticity  and divergence equations with second-order 

accuracy. We use a resolution of 10242 grid cells, which is approximately  equal to 2-2.5 



114

degrees. The radiation scheme is adopted from NCAR’s Community Atmosphere Model 

(CAM). This utilizes a 2-stream method for calculating broadband and heating rates in 

the shortwave and longwave (Gabriel et al., 2001; Stephens et al., 2001). The method 

also accounts for infrared scattering (Stephens et al., 2001).
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3. RESULTS

3.1 Overall model performance

 The mean January precipitation shows the observed patterns of high precipitation 

in BUGS5 in the Intertropical Convergence Zone (ITCZ), in the South Pacific 

Convergence Zone (SPCZ), and over tropical land (Figure 5.2). It also captures the high 

precipitation in the storm tracks over the northern Pacific and Atlantic oceans. However, 

magnitudes of precipitation are overestimated throughout much of the tropics, and global 

precipitation is 25-30% higher than GPCP. There is also too much water vapor in the 

atmosphere - precipitable water is about 3 mm higher than observed. Most of the 

overestimation is in the regions of the over-vigorous precipitation: along the ITCZ, in the 

SPCZ and over tropical South America. Compared to observations from the (1985-1989), 

the modeled outgoing longwave radiation (OLR) is too high. According to the Earth 

Radiation Budget Experiment (ERBE), observed low values of OLR are present over 

tropical land masses (Africa, Indonesia, and South America). In BUGS5, OLR is too high 

and albedo is too low over all of these regions. This indicates an underestimation of cloud 

cover, especially high clouds. The albedo is also too low in some of the ocean subtropical 

dry areas: for example in the Indian Ocean and west of Australia. The model has a warm 

bias in the northern latitudes and tropical Africa and South America. In some parts of 

Russia there is no snow on the ground in January, and the albedo is too low. 
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 The tendency for the model to overpredict tropical rainfall in some places while 

underpredicting cloud cover in others is also seen during July. The model captures 

observed precipitation maxima in the western Pacific, and in the ITCZ in the eastern 

Pacific. However, in general precipitation in the tropical Pacific is too high, as is 

precipitation in the tropical Indian Ocean. Precipitable water is also too high in most of 

the tropics. Modeled OLR is higher than the global observed average, and surface 

temperatures are warmer over Northern Hemisphere land.

 Two tunable parameters in BUGS5 could improve some of these results. The 

climate in BUGS5 is very sensitive to the ice-phase parameterization (Fowler and 

Randall, 2002). “Detsnow” is a parameter representing the fraction of snow that  is 

detrained at the top  of convective updrafts, with larger values of detsnowfac denoting less 

detrainment. Snow detrains into anvil clouds and often evaporates before reaching the 

surface. Detrainment of snow results in a wetter and colder climate (Fowler and Randall, 

2002), and so an appropriate adjustment might be to reduce detrainment in order to 

reduce the precipitable water content. A second parameter is alpham, which is used in the 

prognostic equation of cumulus kinetic energy. CKE is inversely  proportional to the 

square root of alpha. Increasing alpham reduces cumulus mass flux, weakens CKE and 

decreases precipitation. Future sensitivity tests with BUGS5 should involve both 

increasing alpham and increasing detsnowfac, but are beyond the scope of the current 

investigation.

 We zoom in on tropical South America and compare annual precipitation between 

the three models and GPCP. Observed precipitation has a maximum in the northwestern 
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Amazon. The rainfall decreases to the south and east, with minimum values occurring 

over eastern Brazil. The models capture the mean pattern of high rainfall in the northwest 

and lower rainfall in the southeast. However, all models produce too much rainfall in the 

ITCZ, resulting in a zonal band of high precipitation near the Equator. There is also too 

much rainfall over high topography  and in the SACZ. Precipitation is especially  high 

over the Andes, which the model has difficulty  representing due to their sharp relief 

(Figure 5.4e, f).

 The northern Andes mountain range is problematic for GCMs due to its 

narrowness. Near Quito, Equador, the range is less than 2° across, which is smaller than 

the model resolution (Figure 5.5, Bartholomew, 1962). Elevation changes from roughly 

200 m to 3,800 m in the highlands, to a maximum of 5,897 m atop  the volcano Cotopaxi, 

and back to 200 m. In BUGS5 the maximum elevation along the “A” line is only 1,098 

m. The mountains are better resolved to the south but maximum elevation of the 

mountains is not represented. The mountain Sillajhuay (5,982 m) sits near the Chilean/

Bolivian border on the “B” Line. In BUGS5 the maximum elevation at 20°S is 3,805 m.

3.2 Modeled seasonal climate in tropical South America

 Observed rainfall is high in tropical South America during the austral summer 

(DJF) (Figure 5.6, right column). A rainfall maximum extends from the northwest 

Amazon to the southeast  through the SACZ. Circulation at 200 hPa is characterized by 

the Bolivian high and Nordeste low (Figure 5.7). At 850 hPa, air flows westward from the 

tropical Atlantic Ocean and Caribbean Sea, across the continent toward the Andes. 
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 During the austral fall (MAM), precipitation remains high in the southern Amazon 

forests. The dry season for most of the Amazon forest occurs during the austral winter 

(JJA), although precipitation is high in the northern hemisphere forests during this 

season. Precipitation is relatively low everywhere during SON, with the exception of the 

northwestern Amazon basin.

 Seasonal precipitation patterns are similar in the three versions of the model. 

These are controlled by  large-scale forcings - such as the ITCZ’s migration following 

peak solar radiation and moisture advection from the trade winds. The models produce 

too much rainfall over the highlands of southeast Brazil during DJF and along the coast 

near the mouth of the Amazon River from December-May (Figure 5.6). PBL winds in the 

model slow down soon after passing over land, resulting in premature moisture 

convergence and exaggerated rainfall near coasts (Figure 5.8). In reality, the trade winds 

carry  moisture westward across the Amazon, and the highest rainfall occurs in the 

western Amazon basin, when the Andes force the wind to turn toward the south (Figure 

5.7). At 200 hPa, the Bolivian high is too weak and located too far to the east in SiB3 

Stressed. The anticyclone is stronger in SiB3 SRI and SiB3 Unstressed. This supports 

previous results which suggested the importance of surface biophysiology on atmospheric 

circulation (Harper et al., 2010 - Chapter 4). Atmospheric heating related to the highly 

exaggerated precipitation along the Andes in the model likely  influences the incorrect 

placement of this circulation feature.

 During the austral winter, the model produces an unrealistic low-level anticyclone 

in southern Brazil, and upper-level cyclone above the Venezuelan coast (Figure 5.7). In 
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this case, the low-level circulation is most  unrealistic in SiB3 Unstressed and SRI. In 

general, precipitation is slightly  higher than observed in the models from June-November 

(Figure 5.6). 

 We define two regions for further analysis. The southern Amazon region (SAR) is 

defined as all tropical forest points from 5°-14°S, and 285°-310°W (shown in Figure 

5.4a). (Note the naming of this region is for convenience only, since the region includes 

forest points not technically  part of the Amazon River basin.) In the SAR, the observed 

mean rainfall is 5.8 mm/day (Figure 5.9). The dry  season occurs from June through 

September. Mean precipitation is close to observed in the three versions of the model 

(Table 5.1), although the standard deviation of monthly precipitation is almost twice as 

strong in the observations. The wet season precipitation is lower than observed, due to the 

model placing maximum precipitation to the southeast  of the observed maximum (ie: 

DJF, Figure 5.6). 

 The second region is the northwestern region (NWR), which includes all tropical 

forest points from 0°-5°S, and 286°-291°W (Figure 5.4c). In the NWR, mean observed 

rainfall is 9.12 mm/day. This region is wet year-round, and the month with the least 

rainfall (August) receives 6.65 mm/day. The driest months are July  through September. 

The models underestimate rainfall in the NWR (Table 5.2, Figure 5.9), mostly during the 

wettest months of MAM (Figure 5.6). 

 Recall that  drought resistance is lowest in SiB3 Stressed. In the SAR, SiB3 SRI is 

slightly more resistant than SiB3 Unstressed (Figure 5.1). In the NWR, SiB3 Unstressed 

is much more resistant. All versions of the model experience large-scale dry periods, but 
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how the forest responds and the feedbacks between the land and the atmosphere will be 

different. We create composites of “dry” periods based on the rainfall anomalies in the 

regions defined above. The anomalies are computed from 5-month running means with 

the seasonal cycle removed, and represent lower frequency dry and wet periods than 

month-to-month variations in precipitation. Only grid cells with tropical evergreen biome 

are used to create the anomaly time series. Dry periods are defined any two (or more) 

consecutive months with less than 1 standard deviation below the mean precipitation 

(Figure 5.9). We differentiate effects of the forest resistance on the atmosphere during dry 

season and wet season droughts. By comparing model differences during dry periods, we 

can examine effects of forest drought resistance on atmospheric conditions during these 

times. 

3.3 Impacts of stress resistance on seasonal fluxes 

 To gain an understanding of the primary differences between the models, we first 

analyze seasonal surface fluxes. Surface fluxes are sensitive to forest drought resistance 

during the dry season (e.g. Chapter 2). Increased drought tolerance enables plants to open 

their stomata more during the dry  season, and increase photosynthesis and 

evapotranspiration. In the southern tropical forests, seasonal drought has increased forest 

resistance. In SiB3-SRI, this increased resistance leads to stronger latent heat flux and 

weaker sensible heat  flux during JJA along the southern edges of the Amazon forest 

(Figure 5.10). The largest differences occur from 9°-13°S, 50°-54°W (up to 35 and 45 W 

m-2 difference in sensible and latent heat fluxes, respectively). As a result, the PBL is 
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cooler and more moist in SiB3 SRI. The northern tropical forests experience less frequent 

drought and have decreased drought resistance in SiB3 SRI compared to SiB3 

Unstressed. In Venezuela, the latent heat flux is lower and sensible heat flux is higher 

during the dry season (DJF) in SiB3-SRI (Figure 5.10), resulting in a slightly  warmer and 

drier PBL.

 According to NCEP Reanalysis, the air is drier and warmer at 850 hPa during dry  

seasons compared to wet seasons (Figure 5.12). Modeled dry seasons are drier and cooler 

than wet seasons. Flux towers in forests from 10°-20°S show minimum temperatures 

during the dry season, although dry seasons are warmer in equatorial forests (da Rocha et 

al., 2009). The decreased Bowen ratio in SiB3 Unstressed and SiB3 SRI result in cooler 

temperatures in the southeastern forests than SiB3 Stressed. In southeastern Brazil, SiB3 

Unstressed is slightly  drier than the other two models, which makes it closer to the 

reanalysis in this region (Figure 5.12). In general, the differences in precipitation, 850 

hPa specific humidity  and precipitable water between the models are not significant at 

90%, although the atmosphere in SiB3 Unstressed tends to be slightly more moist.

 The differences between the model are also apparent in diurnal composites. We 

focus on July 2003 in SiB3 SRI and SiB3 Stressed. In the SAR, the soil moisture 

constraints in SiB3 Stressed result in overall higher stress levels in this model, and so 

GPP is lower all day (Figure 5.13). The increased sensible heat flux and decreased latent 

heat flux result in a warmer and drier canopy  air space in SiB3 Stressed. Stomatal 

resistance is also high, and mid-day temperature stress restricts stomatal opening further. 

The stomatal resistance increases to prevent excessive water loss, and both ET and GPP 
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decrease after noon. Total precipitation during July  2003 precipitation is closer to the 

observed value in SiB3 SRI (62 mm compared to 102 mm in SiB3 Stressed and 40 mm in 

GPCP). Similar to previous results (Harper et al., 2010), higher stress resistance results in 

the forest acting as a moisture source to other regions, as indicated by the difference 

between precipitation and evaporation. In SiB3 SRI, P-E is negative during the day since 

evaporation increases and precipitation only has a slight late-afternoon maximum. Some 

of the excess moisture also remains in the local atmosphere and results in higher 

precipitable water content.

 In the northwest region, SiB3 SRI has less soil moisture stress but more 

temperature stress, while the Stressed model has strong late afternoon humidity stress 

(Figure 5.14). However in general, neither model experiences strong ecosystem stress 

during July 2003, and daytime stomatal resistance and GPP are similar between the 

models. However, the dry canopy air space in the Stressed model causes increased ET 

due to higher VPD. In this region, the monthly  precipitation is closer to observations in 

SiB3 Stressed (174 mm compared to 217 mm in GPCP and 115 in SiB3 SRI).

3.4 Dry periods in the Southern Amazon Region

 Observed dry  periods in the Southern Amazon region (SAR) occurred during the 

1997 El Niño and 2005 drought (Table 5.1). During these times, average precipitation in 

the region was 4.70+/-3.38 mm/day. All versions of the model capture the anomalous dry 

conditions during the 97/98 El Niño, but none reproduce the 2005 drought. Stress 

resistance in the SAR is highest in SiB3-SRI, with resistance increasing from west to east 
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(Figure 5.1). In SiB3 Stressed, there are 22 months that fit  the criteria for dry months, 

compared to 13 months in GPCP. SIB3 Unstressed and SRI had 14 and 12 dry  months, 

respectively. Average precipitation is very similar during the dry months, ranging from 

5.77 mm/day in SiB3 Stressed to 5.80 mm/day in SiB3 Unstressed.

 Since anomalously dry  months occur at different times in the models and the 

observations (Table 5.1), we focus on wet season of 1997-1998 and the dry  season of 

1999. During the wet season drought of 97-98, the high level of stress resistance in SiB3 

Unstressed results in slightly higher precipitation in the SAR compared to SiB3 Stressed 

(7.2 vs 6.6 mm/day) (Table 5.1 and Figure 5.15d). Since the forest experiences less soil 

moisture stress, the plants are able to transpire throughout the drought. The latent heat 

flux is higher and sensible heat flux is lower. There is slightly  stronger rising motion at 

500 hPa in SiB3 Unstressed (not shown), indicating stronger convection through the 

droughts. 

 Recall that the differences between the models are restricted to the tropical forest 

biome. Despite this, the ability  of the forest  to tolerate dry periods can enhance 

precipitation downwind of the Amazon. During the wet season droughts, rainfall in 

southeastern Brazil is up to 5 mm/day stronger in SiB3 Unstressed than SiB3 Stressed. 

This region also experiences much higher latent heat flux, higher precipitable water 

content, lower surface pressure, and stronger CAPE in the Unstressed model. There is 

slightly more convergence in the SACZ in SiB3 Unstressed at 850 hPa. At 200 hPa, there 

is an anomalous high above the Pacific Ocean off the Chilean coast, and an anomalous 

low in southern South America in all the models. This is a reversal of climatological wet 
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season circulation (Figure 5.7). The low is strongest in SiB3 Unstressed. These 

circulation patterns result in relatively more rainfall in the SACZ in SiB3 Unstressed. 

 During dry season droughts in the SAR, there is on average more rainfall in the 

Stressed model, although for the dry months in 1999 the rainfall is stronger in in SiB3 

SRI (Table 5.1, Figure 5.16d). During 1999, the latent heat flux is much stronger in SiB3 

SRI than in SiB3 Stressed (113 vs 82 W/m2). This flux is equivalent to 1.2 mm/day 

stronger evaporation in SiB3 SRI. The sensible heat flux is on average 20 W/m2 lower in 

SiB3 SRI. During the dry  season droughts, and anomalously  southeasterly flow advects 

anomalously dry  air from southern Brazil into the Amazon (Figure 5.16 j,l). Therefore, 

the additional evaporation simulated by SiB3 SRI represents an important mechanisms 

for the forest to cope with dry  conditions, and weakens the drought intensity in the 

region.

3.5 Dry periods in the northwestern region

 In the northwestern region, the forest drought resistance is much lower in SiB3 

SRI than in SiB3 Unstressed (Figure 5.1), while SiB3 Stressed has the lowest  resistance 

overall. During observed dry periods, mean precipitation was 7.74 +/- 2.32 mm/day. The 

models are drier, with the closest  being SiB3 Unstressed (6.10 +/- 0.86 mm/day). There 

were 12 dry months in the observations and in SiB3 Unstressed, but droughts were longer 

in SiB3 SRI and Stressed. This results is similar to that in the SAR - increased stress 

resistance resulted in shorter and less severe droughts compared to SiB3 Stressed.
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 We focus on droughts during the peak of the wet and dry seasons (Feb.-May and 

July-Sept., respectively). During the peak wet season droughts, the Unstressed model has 

the most precipitation (6.5 mm/day) and SiB3 SRI has the least (5.9 mm/day) (Figure 

5.17). As seen in the SAR, differences in the forest drought response affect  moisture 

recycling and convection. The former is stronger in SiB3 Unstressed, as evidenced by 

higher latent heat flux, a more moist PBL, and more precipitable water content. However, 

convective activity  is stronger in the Stressed model as indicated by  stronger rising 

motion at 500 hPa, and higher CAPE. The higher moisture content has more influence 

and precipitation in the region is stronger in SiB3 Unstressed. Because of limited drought 

resistance in SiB3 SRI, the latent heat flux is similar to that in the Stressed model, and 

omega and CAPE are even lower than in the Unstressed model. Therefore in this case, the 

reduced convection results in reduced precipitation. 

 The impact of forest drought resistance is felt throughout the troposphere. In SiB3 

Stressed the 200 hPa geopotential heights are anomalously low, while in SiB3 Unstressed 

they  are anomalously  high and winds are strong. Similar to the wet season droughts in the 

SAR, there is a tendency  for rainfall in the SACZ to be sensitive to forest drought 

response. In SiB3 Stressed, the 850 hPa winds show an enhancement of normal wet 

season patterns. Along the equator, winds move westward, and then curve to the 

southeast as they encounter the Andes. In SiB3 Unstressed, winds are southeasterly 

across most of the basin. As a result the precipitation in the SACZ is reduced. The 

conditions in SiB3 Unstressed are similar to the “easterlies” regime discussed by Jones 

and Carvalho (2002), although there is no corresponding increase in precipitation in the 
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equatorial Amazon. A reversal of the low-level jet along the eastern flank of the Andes is 

associated with a reduction in South American monsoonal precipitation. The anticyclonic 

rotation in southern Brazil at 850 hPa could be linked to the strong 97/98 El Niño, since 

the Unstressed model is the only version that includes this time period in the composites 

in Figure 5.16. The anticyclonic rotation has been linked to subsidence over the Amazon 

during El Niño’s (Grimm 2003).
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4. DISCUSSION
 

 This study was based on investigating two hypotheses. First, that stress resistance 

decreases drought intensity. Second, that forest drought response affects precipitation and 

circulation in remote regions.

4.1 Does stress resistance decrease drought intensity?

 Any mechanism that  increases evapotranspiration can increase rainfall through 

enhanced precipitation recycling. However, competing mechanisms such as moisture 

divergence and large-scale subsidence can reduce precipitation. In the southern Amazon 

region, we found evidence for enhanced precipitation due to higher stress resistance in 

most cases (wet season droughts in the SAR and NWR, and the 1999 dry season drought 

in the SAR). In addition, precipitation was lower in the NWR wet season droughts in 

SiB3 SRI due to decreased stress resistance. Average precipitation during all dry months 

was higher in both SiB3 Unstressed and SiB3 SRI compared to SiB3 Stressed in both 

regions. However, in the SAR the Stressed model’s precipitation during dry periods is 

closer to observations (Tables 5.1, 5.2). The duration of droughts was also shorter in the 

Unstressed and SRI model. There is not a direct, linear relationship between stress 

resistance and drought intensity. For example, SiB3 SRI has higher stress resistance on 

average in the SAR but SiB3 Unstressed had stronger precipitation during droughts. 
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4.2 Does forest drought response affect remote precipitation and circulation?

 As discussed in Harper et al. (2010), changes to atmospheric moisture content and 

convection result in changes to atmospheric heating profiles due to condensation. In the 

previous study, using a single column version of BUGS5, we found increased low-level 

moisture in SiB3 Unstressed, accompanied by higher vertically integrated moist static 

energy and weaker gross moist stability. All of these factors point toward a more active 

hydrologic cycle in the unstressed version of the model. In this study, the daytime 

moisture divergence and precipitation were greater in SiB3 SRI during the dry season of 

2003. This can affect circulation patterns such as the Bolivian high. Circulation patterns 

are different between the models both in the mean (Figure 5.6) and during anomalously 

dry periods (Figures 5.15-17). The changes in circulation resulted in more intense 

precipitation in southern Brazil during wet season droughts in the SAR in SiB3 

Unstressed and during wet season droughts in the NWR in SiB3 Stressed.
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SiB3 Stressed SiB3 Unstressed SiB3 SRI GPCP

Average regional 
precipitation

5.77+/-1.91 5.80+/-1.96 5.79+/-2.0 5.80+/-3.52

Dry Months Nov. 97 - June 
98

Nov. 97 - Jan. 98 Apr. - May 97 Sept. 97 - June 
98

June - Aug. 99 June - July 00 Nov. 97 - Apr. 98 June - Aug. 05

June - Sept. 00 Dec. 02 - Feb. 03 May - Sept. 99

Apr. - May 02 Nov. 04 - Apr. 05 Oct. - Nov. 04

Oct. 03 - Feb. 04

Oct. - Nov. 04

Total dry months 22 14 12 13

Average precipitation 
during dry months

5.23+/- 1.66 6.24+/-2.05 5.30+/-1.67 4.70+/-3.38

Average during dry 
season dry months

2.80 2.47 2.59 1.40

Average during wet 
season dry months

6.54 6.87 6.28 6.77

Table 5.1. Top: Months that are anomalously dry in the models and observations. Dry season months are 
in bold. Bottom: Precipitation statistics for the Southern Region. 
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SiB3 Stressed SiB3 Unstressed SiB3 SRI GPCP

Average regional 
precipitation

6.52+/-1.04 6.66+/-1.17 6.44+/-1.25 9.12+/-2.53

Dry Months Mar. - Aug. 97 May - June 97 Oct. 97 - Feb. 98 Aug - Sept. 97

July - Sept. 99 Dec. 97 - Mar. 98 May - Aug. 00 Oct. 99 - Feb. 01

Feb. - Mar. 00 May - June 99 Nov. - Dec. 01 Dec. 03 - Mar. 04

Nov. - Dec. 00 June - July 05 Mar. - Apr. 03 June - July 05

Dec. 02 - Feb. 03 Aug. - Sept. 06 July - Oct. 06

Total dry months 16 12 17 12

Average precipitation 
during dry months

5.65+/-0.77 6.10+/-0.86 5.73+/-0.86 7.74+/-2.32

Average during dry 
season dry months

4.86 6.45 5.04 6.33

Average during wet 
season wet months

6.01 5.98 6.01 8.45

Table 5.2 Top: Months that are anomalously dry in the models and observations. Bottom: Precipitation 
statistics for the northwestern region.
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SRI - Unstressed difference in stress resistance Area Mean = -0.7

Figure 5.1. Difference in stress resistance between SiB3 SRI and SiB3 Unstressed. 
Note that both models have higher stress resistance than SiB3 Stressed. The average 
difference in the southern Amazon region is 1.05 (SRI is slightly more resistant), and 
the average in the northwestern region is -7.52 (Unstressed is more resistant).

SRI less resistant               SRI more resistant
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Figure 5.2.  Average January precipitation (A, B), precipitable water (C,D), OLR (E,F), albedo 
(G,H),  and surface temperature (I,J) in SIB3 SRI and observations. Model average is from 
197-2006, GPCP data is from 1997-2006, ERBE is from 1985-1989, and NCEP II Reanalysis is 
from 1979-1998.
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Figure 5.3. As in Figure 2 but for July.
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Figure 5.5. Topography in BUGS5 at 10242 resolution (units of km) (left), and actual topography in 
South America (right). (from The Advanced Atlas of Modern Geography,  Bartholomew, J., 1962). 
Bottom: the Cotopaxi volcano, photo from Gerard Prins. The line labeled “A” crosses Cotopaxi, 
south of Quito, Ecuador. The “B” line follows 20S latitude line and crosses Sillajuay on the 
Bolivian/Chilean border.

Figure 5.4. Annually averaged precipitation rates for the models and observations (Global Precipitation 
Climatology Project), 1997-2006. Also shown are the regions discussed throughout the text: A) 
“Southern Region:” 5-14S, 50-75W; C) “NW Box:” 0-5S, 69-74W. Averages from these regions only 
include points considered evergreen forest in SiB3.

A)                  
         B)

 
          C)
 
       D)
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Figure 5.6 Seasonal precipitation in SiB3 Stressed (left column), SiB3 Unstressed (second column), 
SiB3 SRI (third column), and observations (right column). Seasonal means are for DJF (first row), 
MAM (second row), JJA (third row), and SON (bottom row).
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Figure 5.8 Average precipitation and PBL winds during January (A) and July (B) in 
SiB3 - SRI. Note the native resolution using geodesic grid cells.
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Figure 5.7 Streamlines of circulation at 200 hPa (top) and 850 hPa (bottom) in the models and NCEP II 
Reanalysis (1997-2006). The models and the reanalysis have been conservatively remapped to a T42 
resolution.
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Figure 5.9. Precipitation in the three regions shown in Figure 5.4, averaged over evergreen forest 
biomes only. Right: Standardized monthly anomalies from deseasonalized 5-month running mean 
precipitation.
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A) SiB3 SRI - Stressed; JJA         B) SiB3 SRI - Unstressed
      Sensible Heat                               Sensible Heat

C) SiB3 SRI - Stressed; JJA                 D) SiB3 SRI - Unstressed
     Latent Heat                                            Latent Heat

Figure 5.10 Impact of the stress resistance index on seasonal surface 
fluxes during JJA. A) SiB3 SRI - SiB3 Stressed sensible (A) and latent 
(C) heat; B) SiB3 SRI - SiB3 Unstressed sensible (B)  and latent (D)heat.
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C) SiB3 SRI - Stressed; DJF              D) SiB3 SRI - Unstressed
     Latent Heat                                         Latent Heat

A) SiB3 SRI - Stressed; DJF              B) SiB3 SRI - Unstressed
     Sensible Heat                                      Sensible Heat

Figure 5.11 As in Figure 5.10 but for DJF
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Figure 5.12 Differences between dry and wet season precipitation,  850 hPa specific humidity, 
precipitable water, and 850 hPa temperature in the three versions of the model and in NCEP2 Reanalysis.
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Figure 5.13 Diurnal composites in the Southern Amazon region during July, 2003.
!"#$%!&' !"#$%!()*++*,

Figure 5.14 Diurnal composites in the northwestern region during July, 2003.
!"#$%!&' !"#$%!()*++*,
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Figure 5.15 Model differences during wet season droughts in the southern Amazon region (box shown in 
D-I). Precipitation anomalies (seasonal cycle removed) in each of the models (A-C). Differences between 
SiB3 Unstressed and SiB3 SRI (D-I). Anomalous winds and specific humidity at 850 hPa in each of the 
models (J-L) and anomalous winds and geopotential height at 200 hPa in each of the models (M-O).
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Figure 16. As in Figure 5.15 but for dry season droughts. Note that conditions were not anomalously dry 
during the winter of 1999 the SAR in SiB3 Unstressed.
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Figure 5.17. As in Figure 5.15 but for the northwestern region.
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CHAPTER 6: 

CONCLUSIONS
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 This body of work represents a progression in our understanding of Amazon forest 

response to drought and potential viability  in a drier climate. Previous work with SiB3 

focused on including drought tolerance mechanisms and matching observed seasonal 

cycles of carbon, heat, and moisture fluxes throughout Amazonia (Baker et al., 2008; 

Baker et al., 2011a). One concern was that of “over-fixing” the problem of seasonal 

drought stress, such that the model never experiences stress. This motivated our study of 

SiB3 at the two rainfall exclusion sites. We then incorporated what we learned from the 

exclusions to develop an index of stress resistance for SiB3. Now instead of the model 

always being “stressed” or “unstressed”, the forest is able to have a spatially varying 

response to drought. The final steps of the work were to examine the effects of forest 

drought response on feedbacks between the forest and atmosphere. Whether the forest 

continues to transpire and photosynthesize during droughts will have important impacts 

on the future of the Amazon region. At the beginning of this dissertation, we set out to 

address the following five questions. 

6.1 How well do we understand Amazon forest stress response during extremely dry 

conditions?

 Unfortunately, very little is known on this topic, but recent experiments and drought 

studies have added insight into the forest response. Drought impacts on the Amazon 

forest vary spatially  based on background climate, soil texture, water table dynamics, and 
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rooting strategies of plants. The first  part of this work (Ch. 2) encompasses the response 

of two plots of old-growth forest  in the equatorial Amazon. The two sites - Caxiuanã and 

Tapajós - have important differences in root and water table depth, meteorology, soil 

texture, species distribution, and disturbance history, all of which influence how the 

forest responds to dry conditions. We evaluated SiB3’s response to drought and 

investigated ways to make the model more realistic in terms of drought impacts on ET 

and NPP. We also looked into metrics such as fraction of maximum PAW and water 

deficit for determining possible ecosystem thresholds in drought tolerance.

 The default version of SiB3 matches observed seasonal cycles of latent heat flux 

and NEE throughout the region (Baker et al. 2008), and it replicates the effects of the 

exclusion at Tapajós in a manner consistent with observations. However, at Caxiuanã 

SiB3 does a poor job of simulating the effects of the exclusion, and in terms of drought 

effects on NPP and ET we get the best  results using a version of SiB3 with an artificially 

shallow soil. Our simulation also improves when we use observed values of LAI, as the 

variation in canopy structure throughout the experiment represents important reactions of 

the forest to drought. Another improvement we note in the model is the use of soil texture 

and hydraulic conductivity that match site observations. For example, changing the 

saturated soil hydraulic conductivity  increases drainage and produces a more realistic 

drought response. 
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6.2 Can modeled plant available water and ecosystem stress indicate thresholds in 

ecosystem drought tolerance?

 In addition to informing future model development, this study points us to some 

important thresholds in tropical forest  drought response. These have been discussed from 

an observational point of view (e.g. Meir and Woodward 2010; Malhi et al., 2009b; 

Nepstad et  al., 2008), and can lend guidance for monitoring the forest under a changing 

climate. In general, the forest’s functioning (as indicated with modeled GPP and ET) is 

most affected when PAW drops below 30-35% of its maximum value and CWD is greater 

than -500 mm. At Tapajós, it  took SiB3 three years to reach these levels, and the 

superposition of a dry dry  season on the exclusion experiment likely  aided in depleting 

soil moisture to these levels. At Caxiuanã, the model required very strong (75%) 

reductions in rainfall for two years to reach this threshold. The timing of the changes in 

photosynthesis and latent heat flux in SiB3 at Tapajós matches well with observed 

decreases in PAW and ANPP and increases in tree mortality. 

6.3 How do climatology, soil texture and forest cover affect forest stress resistance?

 In Chapter 3, the concept of stress resistance is developed, based on the hypothesis 

that precipitation climatology, forest cover, and soil type impact the ability of a forest to 

tolerate drought. The assumption is that regions that experience periodic drought have 

developed mechanisms with which to withstand drier conditions. We also assume that 

deforestation decreases stress resistance through removal of rooting systems and reduced 

precipitation recycling, and that deep roots are more likely in seasonal forests with coarse 
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or fine soil texture. We create an index of stress resistance that can be used in ecosystem 

models. Compared to the default version of SiB3, using the SRI increases stress 

resistance in the eastern basin and decreases resistance in the western basin. 

 The SRI has little effect on mean seasonal cycles of carbon fluxes and latent and 

sensible heat  flux. Differences arise during dry periods – such as during the dry  season or 

during anomalously dry years. During these times, photosynthesis decreases, especially 

in the southern hemisphere forests, and NEE increases. Both of these are more strongly 

correlated with the MEI in SiB3-SRI – indicating that the effect of spatially  varying stress 

resistance is to increase carbon efflux from the Amazon forest during El Niños. 

Photosynthesis is also decreased during the unusually strong drought of 2005.

 In addition, during droughts the sensible heat flux increases and latent heat flux 

decreases. The changes could lead to a warmer, drier PBL and could further inhibit 

precipitation. This provides justification for the final two parts of this work, which 

involve coupling SiB3 to a GCM.

6.4 How does forest stress resistance affect the climate?

 In Chapter 4, we test the impacts of drought tolerance mechanisms in SiB3 in a 

single column version of the BUGS5 GCM. One version of SiB3 experiences strong 

ecosystem stress during the dry  season (SiB3 Stressed), while the other has a more 

realistic ability to sustain evaporation and photosynthesis through the dry season (SiB3 

Unstressed). This latter version has a larger soil moisture pool, the ability  of roots to 

access water anywhere in the rooting profile, and a more gradual increase in soil moisture 
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stress with decreasing soil moisture.

 We compare two versions of SiB3 to understand the effects of surface biophysics 

on the seasonal hydrologic cycle, atmospheric circulation and wet season characteristics 

in the equatorial Amazon. Results are compared to observations at the Tapajós tower, 

located in the equatorial forest. The more realistic surface biophysics in SiB3 Unstressed 

result in a more active and realistic hydrologic cycle, with stronger evapotranspiration 

and moisture divergence during the dry seasons. The surface changes also affect the latent 

heating of the lower troposphere and the column moist static energy. Therefore, 

accurately representing surface processes is vital for understanding and simulating the 

climate of the region.

6.5 Can forest stress resistance affect drought intensity, and circulation in regions 

outside of Amazonia?

 Lastly, we examine effects of drought tolerance on climate in the full GCM during 

ten years (1997-2006). In this study, we add the version of SiB3 with the SRI, in addition 

to SiB3 Stressed and Unstressed. We found that increased stress resistance usually 

decreased drought intensity, and that changes in surface fluxes in Amazonia impact 

circulation patterns elsewhere in South America. 

 Forests can tolerate drought conditions by avoiding plant water deficits, tolerating 

the deficits, or by employing water use efficiency mechanisms (Jones, 1994). This study 

suggests a fourth mechanism: drought mitigation. In the Amazon, access to deep  soil 

moisture is important for drought survival. This study highlights the importance of these 
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mechanisms for precipitation recycling and possible drought mitigation. Dry periods 

were generally  less intense and lasted for fewer months in the models with higher stress 

resistance.

 Although this study does not directly address land use change, an important 

implication is that forest preservation is extremely  important for enabling the Amazon 

forest to withstand a potentially  drier climate. The more primary forest  there is, the more 

we can expect for precipitation recycling to reduce drought intensity as suggested by 

results in Chapter 5. Simulations with SiB3 SRI offline showed that  in the southeastern 

Amazon, where deforestation decreased the SRI, the 2005 drought reduced forest 

productivity  (Ch. 3). Deforestation can result in enhanced forest mortality during 

droughts, and forests along edges are more prone to desiccation and fire impacts (Malhi 

et al., 2008). A positive feedback exists between dryness, forest cover, and fire incidence. 

The combination of deforestation and climate change in the future could have very severe 

impacts on the Amazon.

 Parts of the Amazon that are subject to occasional drought might be more drought 

tolerant than previously  thought. Results showing extreme ecosystem stress and forest 

dieback under climate change should be revisited to ensure the proper feedbacks are 

occurring between the land and atmosphere. On the other hand, interior forests might be 

less drought tolerant than is currently  represented in ecosystem models. This could be 

especially problematic since recent  intense droughts affected parts of the forest that are 

usually very wet (Phillips et al., 2009; Lewis et al., 2011). 
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