Repository logo
 

Estimates of sublimation in the Upper Colorado River basin

dc.contributor.authorPhillips, Morgan, author
dc.contributor.authorCotton, William, advisor
dc.contributor.authorStednick, John, committee member
dc.contributor.authorSchumacher, Russ, committee member
dc.date.accessioned2007-01-03T06:11:33Z
dc.date.available2007-01-03T06:11:33Z
dc.date.issued2013
dc.description.abstractSnowpack stored in mountain environments is the primary source of water for the population of much of the western United States, and the loss of water through direct evaporation (sublimation) is a significant factor in the amount of runoff realized from snow melt. A land surface modeling study was carried out in order to quantify the temporal and spatial variability of sublimation over the Upper Colorado River basin through the use of a spatially distributed snow-evolution model known as SnowModel. Simulations relied on forcing from high resolution atmospheric analysis data from the North American Land Data Assimilation System (NLDAS). These data were used to simulate snow sublimation for several years over a 400 by 400 km domain in the Upper Colorado River Basin at a horizontal resolution of 250 m and hourly time-steps. Results show that total volume of sublimated water from snow varies 68% or between 0.95 x 107 acre feet in WY 2002 to the maximum of 1.37 x 107 acre feet in WY 2005 within the ten years of the study period. On daily timescales sublimation was found to be episodic in nature, with short periods of enhanced sublimation followed by several days of relatively low snowpack water loss. The greatest sublimation rates of approximately 3 mm/day were found to occur in high elevation regions generally above tree line in conjunction with frequent windblown snow, while considerable contributions from canopy sublimation occurred at mid-elevations. Additional sensitivity runs accounting for reduced canopy leaf area index as a result of western pine beetle induced tree mortality were also carried out to test the models sensitivity to land surface characteristics. Results from this comparison show a near linear decrease in domain total sublimation with reduced LAI. Model performance was somewhat satisfactory, with simulations underestimating precipitation and accumulated SWE, most likely due to biases in the precipitation forcing and errors in determining precipitation phase.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierPhillips_colostate_0053N_11792.pdf
dc.identifierETDF2013500408ATMS
dc.identifier.urihttp://hdl.handle.net/10217/81052
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relationwwdl
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectUpper Colorado River Basin
dc.subjectsublimation
dc.subjectsnow
dc.subjectmodeling
dc.subjecthydrology
dc.titleEstimates of sublimation in the Upper Colorado River basin
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineAtmospheric Science
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Phillips_colostate_0053N_11792.pdf
Size:
6.03 MB
Format:
Adobe Portable Document Format
Description: