Repository logo
 

Processing and characterization of thin cadmium telluride solar cells

dc.contributor.authorWojtowicz, Anna, author
dc.contributor.authorSites, James R., advisor
dc.contributor.authorSampath, W. S., committee member
dc.contributor.authorde la Venta, José, committee member
dc.date.accessioned2018-01-17T16:45:36Z
dc.date.available2018-01-17T16:45:36Z
dc.date.issued2017
dc.description.abstractCadmium telluride (CdTe) has the highest theoretical limit to conversion efficiency of single-junction photovoltaic (PV) technologies today. However, despite a maximum theoretical open-circuit voltage of 1.20 V, record devices have historically had voltages pinned around only 900 mV. Voltage losses due to high recombination rates remains to be the most complex hurdle to CdTe technology today, and the subject of on-going research in the physics PV group at Colorado State University. In this work, an ultrathin CdTe device architecture is proposed in an effort to reduce bulk recombination and boost voltages. By thinning the CdTe layer, a device's internal electric field extends fully towards the back contact. This quickly separates electrons-hole pairs throughout the bulk of the device and reduces overall recombination. Despite this advantage, very thin CdTe layers also present a unique set of optical and electrical challenges which result in performance losses not as prevalent in thicker devices. When fabricating CdTe solar cells, post-deposition treatments applied to the absorber layer are a critical step for achieving high efficiency devices. Exposure of the polycrystalline CdTe film to a chlorine species encourages the passivation of dangling bonds and larger grain formation, while copper-doping improves device uniformity and voltages. This work focuses on experiments conducted via close-space sublimation to optimize CdCl2 and CuCl treatments for thin CdTe solar cells. Sweeps of both exposure and anneal time were performed for both post-deposition treatments on CdTe devices with 1.0 μm absorber layers. The results demonstrate that thin CdTe devices require substantially less post-deposition processing than standard thicker devices as expected. Additionally, the effects of CdTe growth temperature on thin devices is briefly investigated. The results suggest that higher growth temperatures lead to both electrical and stoichiometric changes in CdTe closely associated with lower carrier lifetimes and poorer overall performance.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierWojtowicz_colostate_0053N_14461.pdf
dc.identifier.urihttps://hdl.handle.net/10217/185649
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectCdCl2
dc.subjectprocessing
dc.subjectultrathin
dc.subjectCuCl
dc.subjectcadmium telluride
dc.subjectsolar cells
dc.titleProcessing and characterization of thin cadmium telluride solar cells
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplinePhysics
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wojtowicz_colostate_0053N_14461.pdf
Size:
9.74 MB
Format:
Adobe Portable Document Format