Repository logo
 

On the role of topology in autonomously coping with failures in content dissemination systems

dc.contributor.authorStern, Ryan, author
dc.contributor.authorPallickara, Shrideep, advisor
dc.contributor.authorStrout, Michelle, committee member
dc.contributor.authorTurk, Daniel, committee member
dc.date.accessioned2007-01-03T06:25:58Z
dc.date.available2007-01-03T06:25:58Z
dc.date.issued2014
dc.description.abstractContent dissemination systems provide a substrate that allows large numbers of entities to communicate with each other. These entities could be processes, sensors, and networked instruments that produce and consume data streams. To ensure scaling, the content dissemination substrate comprises a large number of distributed nodes. As the number of participating nodes increases, the likelihood of failures also increases. These failures can occur for any number of reasons, including: faulty hardware, programmer or user error, power failure, and network outages. Node failures can result in partitions with the original set of connected nodes disintegrating into smaller, disjoint subsets. Brewer's CAP theorem limits the choices for a partitioned system: availability or consistency but not both. It is therefore desirable to ensure that partitions are less likely. This thesis explores how nodes comprising the content dissemination system can be organized into topologies with the objective of improved partition tolerance. The topologies we consider are based on random, regular, power law, and Watts-Strogatz small world graphs. Connections within these topologies can account for network proximity and are suitable for real-time communications. We explore specific attributes of a topology that contribute to its partition resiliency, such as clustering coefficients, distribution of random links, and preferential attachment. Metrics we use to profile suitability of different topologies include: communication path lengths, migration of workloads, and the impact on system throughput. This research will allow designers to choose topologies or configure metrics to achieve performance objectives and the degree of partition tolerance.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierStern_colostate_0053N_12783.pdf
dc.identifier.urihttp://hdl.handle.net/10217/88605
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectautonomous failure resilience
dc.subjecttopologies
dc.subjectsmall-world systems
dc.subjectpower-laws
dc.subjectcontent dissemination systems
dc.titleOn the role of topology in autonomously coping with failures in content dissemination systems
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineComputer Science
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stern_colostate_0053N_12783.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description: