Repository logo
 

Complex metal mixture reduces apparent protein carbonylation in a tolerant aquatic macroinvertebrate, Arctopsyche grandis

dc.contributor.authorDuggan, Sam B., author
dc.contributor.authorRamsdell, Howard, advisor
dc.contributor.authorClements, William, committee member
dc.contributor.authorLegare, Marie, committee member
dc.date.accessioned2016-01-11T15:13:50Z
dc.date.available2016-01-11T15:13:50Z
dc.date.issued2015
dc.description.abstractMining is widespread and an economically important industry. Unfortunately, acid mine drainage (AMD) can pollute ecosystems with a cocktail of contaminants too complex for accurately forecasting its health consequences. However, through quantification of fundamental toxic events, the effects of complex mixtures can be observed. This project explored two potentially insightful and convenient endpoints. First, oxygen consumption (MO2), a well-established and sensitive indicator of respiratory impairment was utilized. Second, protein carbonyl content (PCC), an experimental ecological biomarker widely lauded in biomedical circles as a highly conserved indicator of health status was assessed for its utility in a metal tolerant aquatic macroinvertebrate, Arctopsyche grandis. A. grandis were exposed to eight environmentally relevant target concentrations (in duplicate) of AMD for eight days at a temperature controlled greenhouse containing artificial flow-through streams. As expected, MO2 was inversely related to treatment concentration (R2=0.35, p=0.015). Protein carbonyl content, however, diverged from predictions. Protein carbonyl content analysis detected significantly more oxidative protein injury in control treatments than in metal-rich AMD treatments (p<0.001). Moreover, there was not a significant difference in PCC between different AMD concentrations. Protein carbonyl content's departure from anticipated results likely is the consequence of dynamic interactions between direct and indirect effects at the chemical, biochemical, physiologic and behavioral levels. The results of this project illustrate flaws of utilizing a single biochemical marker to observe effects of a toxic mixture. Rather, a broad suite of biomarkers should be assayed to determine sublethal toxicity. These results also illustrates how multiple stressors can yield unanticipated outcomes.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierDuggan_colostate_0053N_13324.pdf
dc.identifier.urihttp://hdl.handle.net/10217/170353
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleComplex metal mixture reduces apparent protein carbonylation in a tolerant aquatic macroinvertebrate, Arctopsyche grandis
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineEnvironmental and Radiological Health Sciences
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Duggan_colostate_0053N_13324.pdf
Size:
399.56 KB
Format:
Adobe Portable Document Format