Repository logo
 

Direct fluorination of K2B12H12 and synthesis and characterization of metal salts of B12F122-

dc.contributor.authorPeryshkov, Dmitry V., author
dc.contributor.authorStrauss, Steven H., advisor
dc.contributor.authorRappe, Anthony K., committee member
dc.contributor.authorElliott, C. Michael, committee member
dc.contributor.authorBernstein, Elliot R., committee member
dc.contributor.authorRidley, John R., committee member
dc.date.accessioned2007-01-03T05:15:50Z
dc.date.available2007-01-03T05:15:50Z
dc.date.issued2011
dc.description.abstractA significantly improved large-scale (10 g) perfluorination of K2B12H12 is described. The advantages of the new procedure are: (i) a ten-fold increase in the scale of the reaction with no sacrifice in yield or product purity; (ii) acetonitrile is used as the solvent instead of anhydrous HF; and (iii) a glass reaction vessel is used instead of a Monel reactor. DFT calculations and experimental data are reported that suggest that the absence of acidity significantly increased the rate and improved the efficiency of the reaction. Number of salts of Li+; Na+; K+; Rb+; Cs+; NH4+, Ag+; Mg2+; Ca2+; Ba2+; Co2+; Ni2+; and Zn2+ and the B12F122- anion were prepared and 24 crystal structures (some compounds were prepared by others) were determined. The thermal stabilities of the Mm(L)nB12F12 salts were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It was found that Cs2B12F12 is stable up to 600 °C under an inert atmosphere, which is the highest temperature among weakly coordinating fluoroanions. The compounds K2B12F12, Rb2B12F12, Cs2B12F12, and Ag2B12F12 were prepared as ligand-free solids. It was found that the K2(H2O)0,2,4B12F12 system of compounds can undergo rapid interconversion among the three crystalline phases, two of them reversibly in presence of water vapor. The reversible interconversion was found to be a reconstructive (i.e., topotactic) solid-state reaction and, when carried out very slowly, a single-crystal-to-single-crystal transformation. The exchange of H2O(g) with either D2O or H218O in crystalline K2(D2O)2B12F12 or K2(H218O)2B12F12 at 25 °C was also rapid. The new concept of latent porosity, as ligands rapidly enter a lattice and displace some of the weak and non-directional M•••F(B) bonds in salts of the large, highly-symmetric, superweak anion B12F122-, is presented and discussed.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierPeryshkov_colostate_0053A_10251.pdf
dc.identifier.urihttp://hdl.handle.net/10217/47384
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleDirect fluorination of K2B12H12 and synthesis and characterization of metal salts of B12F122-
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineChemistry
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Peryshkov_colostate_0053A_10251.pdf
Size:
8.66 MB
Format:
Adobe Portable Document Format
Description: