Repository logo
 

Modeling of twisted and coiled artificial muscle for actuation and self-sensing

dc.contributor.authorAbbas, Ali, author
dc.contributor.authorZhao, Jianguo, advisor
dc.contributor.authorBradley, Thomas, committee member
dc.contributor.authorMaciejewski, Anthony, committee member
dc.date.accessioned2018-06-12T16:13:50Z
dc.date.available2018-06-12T16:13:50Z
dc.date.issued2018
dc.description.abstractSoft robots are a new type of robots with deformable bodies and muscle-like actuations, which are fundamentally different from traditional robots with rigid links and motor-based actuators. Owing to their elasticity, soft robots outperform rigid ones in safety, maneuverability, and adaptability. With their advantages, many soft robots have been developed for manipulation and locomotion in recent years. Nevertheless, two issues prevent the wide applications of developed soft robots: cumbersome actuation methods (e.g., pneumatics) and limited sensing capability to feedback the robot's shape. To address these two issues, this thesis leverages a recently discovered twisted and coiled artificial muscle for soft robots. This artificial muscle can generate large force and displacement; moreover, we recently found that it has self-sensing capability, i.e., its electrical resistance will increase if the muscle is elongated by an external force. With the dual actuation and self-sensing capability, we expect to accomplish closed-loop control of soft robots for precise motion without external sensors, potentially solving the two issues for existing soft robots. This thesis will focus on three aspects for the twisted and coiled artificial muscle. First, we model the actuation from a physics perspective. Such a model utilizes parameters related to the working principle and material properties of the actuator, eliminating the requirements for tedious system identifications. Experiments are conducted to verify the proposed model, and the results demonstrate that the proposed model can predict the static performance and dynamic response for the muscle. Second, we test and model the sensing capability of the artificial muscle. Specifically, we establish a physics-based model to predict the external force and the displacement if the resistance is given and experimentally validate its correctness. Third, we apply the actuation and sensing of the artificial muscle to soft robots. To demonstrate we can leverage the muscle to actuate soft robots, we fabricate a soft manipulator with multiple muscles as well as a robotic fish tail. To demonstrate the sensing capability, we embed the muscle into soft materials and successfully measure two curvatures of a two-segment soft robot. Based on the work presented in this thesis, our future work will integrate the actuation and sensing capability of the twisted and coiled artificial muscle to enable closed-loop shape control of soft robots.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierAbbas_colostate_0053N_14666.pdf
dc.identifier.urihttps://hdl.handle.net/10217/189293
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjecttwisted and coiled actuators
dc.subjectself-sensing for soft robots
dc.titleModeling of twisted and coiled artificial muscle for actuation and self-sensing
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineMechanical Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abbas_colostate_0053N_14666.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format