Repository logo
 

Analysis of CuCl thin-film deposition and growth by close-space sublimation

dc.contributor.authorNicholson, Anthony, author
dc.contributor.authorSampath, Walajabad, advisor
dc.contributor.authorSakurai, Hiroshi, committee member
dc.contributor.authorSites, James, committee member
dc.date.accessioned2016-07-13T14:50:20Z
dc.date.available2016-07-13T14:50:20Z
dc.date.issued2016
dc.description.abstractThere is a growing need to implement high fidelity, scalable computational models to various thin-film photovoltaic industries. Developing accurate simulations that govern the thermal and species-transport diffusion characteristics within thin-film manufacturing processes will lead to better predictions of thin-film uniformity at varied deposition conditions that ultimately save time, money, and resources. Thin-film deposition and growth of Copper I Chloride (CuCl) by the Close-Space Sublimation (CSS) process was investigated in an extensive range of operating and thermal conditions. A simulation model based on the ANSYS FLUENT® solver platform was developed to encompass the kinetic behavior of the CuCl species within the CSS domain while predicting the growth rate at varied system parameters. Surface physics associated with the process, notably sublimation and adsorption, were studied, quantified, and applied to the continuum-based thin-film deposition model. Experimentation of CuCl thin-film growth was performed across a range of substrate and source temperatures for verification of the model’s computational accuracy. Furthermore, characterization of the inherent growth mode exhibited by CuCl was studied in conjunction with simulation and experimental tasks. It was concluded that the simulation model provided predictions for the CuCl thickness as a function of temperature within the range of typical CSS conditions. Equally important was the elucidation of the CuCl growth mechanism, which displays a Volmer-Weber growth mode on the Fluorine-doped Tin Oxide coated layer of the substrate. Such knowledge along with the current modeling capabilities will be useful in extending the computational method to predicting the non-uniformities present in CuCl and other thin-film depositions.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierNicholson_colostate_0053N_13513.pdf
dc.identifier.urihttp://hdl.handle.net/10217/173497
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleAnalysis of CuCl thin-film deposition and growth by close-space sublimation
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineMechanical Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nicholson_colostate_0053N_13513.pdf
Size:
9.67 MB
Format:
Adobe Portable Document Format