Repository logo
 

The impacts of thermokarst activity on a stream in the McMurdo Dry Valleys

dc.contributor.authorSudman, Zachary William, author
dc.contributor.authorGooseff, Michael, advisor
dc.contributor.authorBledsoe, Brian, committee member
dc.contributor.authorWohl, Ellen, committee member
dc.date.accessioned2015-08-28T14:35:15Z
dc.date.available2015-08-28T14:35:15Z
dc.date.issued2015
dc.description.abstractThe McMurdo Dry Valleys (MDV) of Antarctica are a unique ice-free landscape that is host to vibrant ecosystems despite the harsh environment (<10 cm water equivalent/yr, -20°C mean air temperature). Aquatic ecosystems in the MDV are dependent on the ephemeral glacial runoff streams which feed the closed basin perennially ice covered lakes. The upland zones of the Dry Valleys have been shown to have some of the slowest ground surface change rates in the world. However, recent observations in the coastal valley transition zones suggest that this area may be nearing a threshold of rapid landscape change. One of the recent observations that supports this idea is the discovery of extensive thermokarst degradation (permafrost thaw features) along the banks of Crescent Stream in Taylor Valley. In 2012, a large stretch of the West Branch of Crescent Stream was found to have significant thermokarst bank failures, while the adjacent East Branch was found to be unaffected. The thermokarst impacts within this setting are important to understand because of the disturbances that massive sediment loading can impose on downstream biological communities. Annually repeated terrestrial LiDAR scans (3) were compared to determine the rates of ground surface change due to thermokarst degradation. It was found that the areal extent of the thermokarst was decreasing, however the average linear rates of retreat remained constant. Field measurements including, pebble counts, fine sediment counts, and sieve samples were analyzed to determine the effects of the thermokarst on the stream bed material. It was found that the West Branch and the reach downstream of the confluence were consistently finer than the unaffected East Branch. This suggests that the finer bed material is due to the thermokarst bank degradation. Stream power was calculated for multiple reaches to be used as a metric for the mobilization of the streambed material. It was found that both branches infrequently experience flows substantial enough to mobilize the bed material. Even the finer bed material of the impacted West Branch reach required flows that had a 5 % chance of exceedance for mobilization of the bed. These findings suggest the West Branch of Crescent Stream and the biota supported by this branch of the stream, continue to adjust to the sediment introduced from the thermokarst bank degradation.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierSudman_colostate_0053N_13105.pdf
dc.identifier.urihttp://hdl.handle.net/10217/167134
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectdry valleys
dc.subjectthermokarst
dc.subjectstream
dc.subject.lcshAntarctica
dc.titleThe impacts of thermokarst activity on a stream in the McMurdo Dry Valleys
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineCivil and Environmental Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sudman_colostate_0053N_13105.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format