Repository logo
 

In-situ laser tagging of barium ions in liquid xenon for the EXO experiment

dc.contributor.authorHall, Kendy, author
dc.contributor.authorFairbank, William, advisor
dc.contributor.authorToki, Walter, committee member
dc.contributor.authorMarconi, Mario, committee member
dc.contributor.authorRoberts, Jacob, committee member
dc.date.accessioned2007-01-03T08:09:49Z
dc.date.available2007-01-03T08:09:49Z
dc.date.issued2012
dc.description.abstractThe goal of the Enriched Xenon Observatory (EXO) collaboration is to measure the half-life of neutrino-less double beta decay using a ton size liquid 136Xe detector with zero back-ground. Zero background detection can only be achieved if the daughter nucleus, 136Ba, can be tagged. The EXO collaboration is investigating several techniques to tag the 136Ba daughter. The goal of this thesis is to investigate the prospects of directly observing a single 136Ba+ ion in the liquid using a laser aimed at the decay site, hence in-situ laser tagging. Because the energy levels of Ba+ ions are expected to be altered from the vacuum configuration, in-situ laser tagging can only be accomplished if the spectroscopy of the Ba+ ions in liquid xenon is understood. An ultra-pure liquid xenon test apparatus with a liquid xenon purity monitor has been built to study the spectroscopy of the Ba+ ions. An unexpected discovery of the nonresonant multiphoton ionization of liquid xenon using pulsed UV lasers was made while characterizing the purity monitor. The discovery was vital to the ability to accurately measure the purity of the liquid xenon. The spectroscopy of Ba+ ions in liquid xenon and the multiphoton ionization studies are the two key topics that are presented in this thesis.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierHall_colostate_0053A_11102.pdf
dc.identifierETDF2012400239PHYS
dc.identifier.urihttp://hdl.handle.net/10217/67447
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleIn-situ laser tagging of barium ions in liquid xenon for the EXO experiment
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplinePhysics
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hall_colostate_0053A_11102.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format
Description: