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ABSTRACT OF DISSERTATION 

ESTIMATION FOR LEVY-DRIVEN CARMA PROCESSES 

This thesis explores parameter estimation for Levy-driven continuous-time 

autoregressive moving average (CARMA) processes, using uniformly and closely 

spaced discrete-time observations. 

Specifically, we focus on developing estimation techniques and asymptotic 

properties of the estimators for three particular families of Levy-driven CARMA 

processes. Estimation for the first family, Gaussian autoregressive processes, was 

developed by deriving exact conditional maximum likelihood estimators of the pa­

rameters under the assumption that the process is observed continuously. The 

resulting estimates are expressed in terms of stochastic integrals which are then ap­

proximated using the available closely-spaced discrete-time observations. We apply 

the results to both linear and non-linear autoregressive processes. For the second 

family, non-negative Levy-driven Ornestein-Uhlenbeck processes, we take advantage 

of the non-negativity of the increments of the driving Levy process to derive a highly 

efficient estimation procedure for the autoregressive coefficient when observations 

are available at uniformly spaced times. Asymptotic properties of the estimator 

are also studied and a procedure for obtaining estimates of the increments of the 

driving Levy process is developed. These estimated increments are important for 

identifying the nature of the driving Levy process and for estimating its parameters. 

For the third family, non-negative Levy-driven CARMA processes, we estimate the 

coefficients by maximizing the Gaussian likelihood of the observations and discuss 

the asymptotic properties of the estimators. We again show how to estimate the 

iii 



increments of the background driving Levy process and hence to estimate the pa­

rameters of the Levy process itself. We assess the performance of our estimation 

procedures by simulations and use them to fit models to real data sets in order to 

determine how the theory applies in practice. 

Yu Yang 
Department of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2008 

IV 



ACKNOWLEDGEMENTS 

I would like to express my deepest and most sincere gratitude to Professor 

Peter Brockwell, my advisor, and Professor Richard Davis, my co-advisor. With 

their enthusiasm, their inspiration, and their great efforts to explain things clearly 

and simply, they helped to make statistics fun for me. It was a great pleasure for 

me to conduct this thesis under their supervision. I feel very lucky to have them as 

my mentors. Knowing them is actually one of the best things that ever happened 

to me in my life. 

I gratefully appreciate the precious opportunity I got to learn from many profes­

sors, while attending Colorado State University. I feel especially grateful for having 

met Professor Hari Iyer, Professor Jan Hannig and Professor Jennifer Hoeting. They 

always take the time to answer questions and to offer encouragement. My time at 

CSU wouldn't have been this enjoyable without them. 

This thesis could not be finished without many help from my colleagues and 

friends. I wish to extend my warmest thanks to all of them, especially to Megan 

Higgs, Derek Sonderegger and Sunghoon Chung for their kindness and support. 

I want to give my special thanks to my husband Zhi whose patient love enabled 

me to complete this work. And I would also like to thank my parents, Chengfu 

Yang and Dianling Diao. They bore me, raised me, supported me and love me. To 

them, I dedicate this thesis. 

The financial support of the Department of Statistics and the National Science 

Foundation (DMS 0308109) are gratefully acknowledged. 

v 



CONTENTS 

1 Introduction 1 
1.1 Motivation 1 
1.2 Levy Processes 2 
1.2.1 Definition 2 
1.2.2 Examples of Levy Processes 3 
1.2.3 Second-order Levy Processes 7 
1.3 Levy-driven CARMA Processes 7 
1.3.1 Definition and Properties 7 
1.3.2 Sampled Process 13 
1.4 Objectives 16 
1.4.1 Background 17 
1.4.2 Empirical Data Description 19 
1.5 Overview 19 

2 Continuous-time Gaussian Autoregression 22 
2.1 Introduction 22 
2.2 Gaussian CAR(p) and Corresponding Sampled Process 23 
2.3 Inference for Continuously Observed Autoregressions 27 
2.4 Estimation for CAR(p) Processes 30 
2.5 Estimation for CTAR(p) Processes 33 
2.6 Estimation When the Threshold is Unknown 37 

3 Non-negative Levy-driven Ornstein-Uhlenbeck Processes 43 
3.1 Introduction 43 
3.2 Stationary Levy-driven Ornstein-Uhlenbeck Processes 44 
3.3 Parameter Estimation via the Sampled Process 46 
3.4 Estimating the Levy Increments 47 
3.5 Gamma-driven CAR(l) Process 49 
3.6 Examples 53 
3.7 Estimation for Continuously Observed Process 55 

4 Non-negative Levy-driven CARMA Processes 59 
4.1 Introduction 59 
4.2 Maximum Gaussian Likelihood Estimation via the Sampled Process . . . 59 
4.3 Recovering the Background Driving Levy Process 64 
4.4 Applications to Simulated Series 67 

VI 



4.5 Analysis of Todorov's Realized Volatility Series 71 

5 Conclusion 74 
5.1 Future Work 74 
5.2 Summary 75 

vn 



LIST OF FIGURES 

1.1 A sample path of a Brownian motion 4 

1.2 A sample path of a compound Poisson process 5 

1.3 A sample path of a gamma process 6 

1.4 A sample path of an inverse Gaussian process 6 

1.5 Realization and ACF of a gamma-driven CARMA(2,1) process 13 

1.6 Daily returns and realized volatilities for DM/$ exchange rate data 20 

2.1 Canadian lynx trapping data analysis using CTAR(2) model 42 

3.1 True probability density vs. histogram of the estimated Levy increments. 55 

3.2 Fitted pdf vs. histogram of the estimated Levy increments (DM/$ data). 56 

4.1 Probability density vs. kernel density for inverse Gaussian increments. . 69 

4.2 Probability density vs. kernel density for gamma increments 71 

4.3 Empirical vs. fitted model ACF of the DM/$ realized volatility data. . . 72 

4.4 Fitted pdf vs. kernel density estimate of Levy increments (DM/$ data). . 73 

vm 



LIST OF TABLES 

2.1 Estimation results for Gaussian CAR(2) (linear) 33 

2.2 Estimation results for CTAR(l) (non-linear, known threshold) 35 

2.3 Estimation results for CTAR(2) (non-linear, known threshold) 36 

2.4 Estimation results for CTAR(l) (non-linear, unknown threshold) 39 

3.1 Estimation results for gamma-driven Ornstein-Uhlenbeck process 54 

3.2 Estimation results for driving Levy process 54 

4.1 Estimation results for inverse-Gaussian-driven CARMA(2,1) process. . . 68 

4.2 Estimation results for gamma-driven CARMA(2,1) process 70 

IX 



Chapter 1 

I N T R O D U C T I O N 

1.1 Motivation 

Today, in the world's economies and financial markets, one major challenge is 

to form realistic models to represent the economy and those markets. In response 

to this challenge, researchers have been doing a great deal of work in econometrics 

using continuous-time models during the past few decades, partly motivated by the 

very successful use of continuous-time models in option pricing following the seminal 

work of Black, Scholes and Merton. 

An obvious argument that favors the use of continuous-time models over tradi­

tional discrete-time models is that most economic processes are inherently continu­

ous in time. More convenience and flexibility in handling irregularly spaced data also 

make continuous-time models better candidates. Besides, due to rapidly developing 

technologies, data are more frequently available at higher frequency, for example, 

the currently available tick-by-tick transaction data. It is then more natural to 

deal with fast sampled data using continuous-time models rather than discrete-time 

models. 

However, a major problem faced in continuous-time modeling is that we do 

not have a continuous-time record of observations. Thus, parameter estimation of 

continuous-time models using available discrete-time data has become an important 

subject, which is also the motivating factor behind much of the thesis. 
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1.2 Levy Processes 

Among all the continuous-time models, we will focus on continuous-time autore-

gressive moving average (CARMA) processes driven by second-order Levy processes. 

Before proceeding any further, we first record a few essential facts concerning Levy 

processes, named after the great French mathematician Paul Levy. 

1.2.1 Definition 

Suppose we are given a filtered probability space (fi, T, {J-t)o<t<<x, P), where 

Ĵ o contains all the P-null sets of J7 and (J-'t) is right-continuous. 

Definition 1.2.1 (Levy Process). {L(t),t > 0} is an (^i)-adapted Levy process 

if L(t) E Ft for alU > 0 and 

(1) L(0) = 0 a.s. 

(2) Lit) has independent increments, i.e., L(t) — L(s) is independent of !Fa, for 

any 0 < s < t < oo. 

(3) L(t) has stationary increments, i.e., L(t + s) — L(s) has the same distribution 

as L(t), for any s,t > 0. 

(4) L(t) is stochastically continuous, i.e., for all e > 0 and all t > 0, 

\imP(\L(t)-L(s)\ > e ) = 0. 
s—>t 

Every Levy process has a unique modification which is cadlag (right continuous 

with left limits) and which is also a Levy process. We shall therefore assume that 

our Levy process has these properties. For further properties of Levy processes, see 

the books of Protter (2004), Applebaum (2004) and Sato (1999). The characteristic 

function of L(t), 4>t{0) :— E (exp(i6L(t))), has the form 

<t>t{9) = exp(i£(0)), flei, 
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where £(#) is often called characteristic exponent and satisfies the following Levy-

Khinchin formula, 

£{0) = i9m - \Q2tf + f (eWx - 1 - i0xJ (_U)(x)) u(dx), 

for some m E R, rj > 0, and measure i/ on the Borel subsets of M0 = K\ {0}. The 

measure v is called the Levy measure of the process L and has the property, 

/ min(|?/|2, l)is(du) < oo. 
JRo 

From the Levy-Khinchin formula, we see that, in general, a Levy process can be 

decomposed into three parts: a constant drift part, a Brownian motion part, and 

a pure jump part. If A is a Borel subset of {x : \x\ > e} for some e > 0, then the 

number of jumps with sizes in A, occurring in any time interval of length t > 0, 

has the Poisson distribution with mean ti/(A). If v is a finite measure, i.e. ^(M0) = 

j R u(dx) < oo, then almost all paths of L have a finite number of jumps on every 

compact interval and the process is said to have finite activity. Otherwise, if u(RQ) = 

oo, then an infinite number of jumps occur in any interval of positive length with 

probability one and the process is said to have infinite activity. As we shall see 

later in Section 1.2.2, Poisson processes and compound Poisson processes have finite 

activity, while gamma processes and inverse Gaussian processes have infinite activity. 

1.2.2 Examples of Levy Processes 

The triplet (m,rj,u) in the characteristic exponent is called the Levy triplet, 

which describes each Levy process completely. A wealth of distributions for L(t) is 

attainable by suitable choices of Levy triplets. 

In the following we list a few frequently-used Levy processes. 

Brownian Motion. If v is the zero measure, then {L(t)} is a Brownian motion 

with E(L(t)) = rnt and Var(L(t)) = rft. A sample path of a Brownian motion 

with m — — 1 and r/ = 1 is shown in Figure 1.1. 
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Figure 1.1: A sample path of a Brownian motion. 

Poisson Process. A Poisson process with intensity parameter A > 0 starts at 0, 

with L(s) following a Poisson(As) distribution. The Levy triplet of a Poisson 

process is given by (0,0, A<5(1)), where 8(1) denotes the Dirac measure with 

total mass 1 concentrated at the point 1. 

Compound Poisson Process. The compound Poisson process is a Levy process 

with triplet (ra,0, XF) where A 6 (0,oo) is the mean rate of occurrence 

of jumps per unit time, F is the distribution of the jump-sizes and m — 

f\x\<i x^dF(x). Figure 1.2 shows a sample path of a compound Poisson process 

with A = 1 and jump-sizes following standard normal distribution. 

In the special case, when L is a non-decreasing Levy process (also called a subordi-

nator), its Levy exponent £(0) can be written in the form 

£(6) = idm* + f (e0x - 1) v(dx), :i.ii 
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Figure 1.2: A sample path of a compound Poisson process. 

where m* = m — JJX|<:1 xdu{x) and we shall refer to m* as the drift. Non-

decreasing Levy processes are widely used for financial modeling. See, for example, 

Barndorff-Nielsen and Shephard (2001), and Schoutens (2003). Three frequently-

used subordinators are defined below. 

Gamma Process. If m* — 0 and i/(du) = aur1e^ /3u/{„>0}du, L(t) is a 

gamma process. L(s) has a Gamma(as,/3) distribution. Since z-'(Ko) = 

f^° Oiu~le"0udu — oo, gamma processes have an infinite number of jumps 

on every interval with positive length. Figure 1.3 shows a sample path of a 

gamma process with a — 6 and (3 = \/6. 

Inverse Gaussian Process. If m* = 0 and v(du) = (27r)^1/2^u^-3/2^ 

exp (—r)2u/2)I{u>Q)d,u with 5 > 0 and 7 > 0, we obtain an inverse Gaussian 

process L(t). Like the gamma process, the inverse Gaussian process has infi­

nite activity. A sample path of L(t) with 8 = 3 and 7 = 2 is shown in Figure 

1.4. 
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Figure 1.4: A sample path of an inverse Gaussian process. 
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Stable Subordinator. When m* = 0 and u(du) = ct(5vTx~~®du, where a > 0 and 

0 < (3 < 1, we obtain the stable subordinator with exponent (3 and scale 

parameter a1^. In this case L(t) has the positive stable distribution with 

Laplace transform 

E [exp (-AL(t))] = exp [- toA / 3 / r ( l - 0)] , A > 0. 

1.2.3 Second-order Levy Processes 

For the second-order Levy processes, E(L(l))2 < oo and there exist real con­

stants \x and a such that 

E{L(t)) = ^t and Var(L(f)) = a2t, for t>0. 

To avoid problems of parameter identifiability in the CARMA process defined in the 

next section, we assume throughout that L is scaled so that Var(L(l)) = 1. Then 

Var(L(i)) = t for t > 0 and we shall refer to the process L as a standardized second-

order Levy process. Throughout Chapter 3 and Chapter 4, we shall be concerned 

with CARMA processes driven by standardized second-order Levy processes. 

1.3 Levy-driven C A R M A Processes 

1.3.1 Definition and Properties 

Definition 1.3.1 (Levy-driven C A R M A Process). A second-order Levy-

driven continuous-time ARMA(p, q) process is defined (see Brockwell, 2001b) via 

the state-space representation of the formal stochastic differential equation 

a(D)Y(t) = ab(D)DL(t), t > 0, (1.2) 

where a is a strictly positive scale parameter, D denotes differentiation with respect 

to t, {L(t),t > 0} is a second-order Levy process, 

a(z) := zv + a\zv~x + • • • + ap , 

b{z) := b0 + blz + -'- + bp„lz
p-\ 



and the coefficients bj satisfy bq = 1 and bj = 0 for q < j < p. The 

behavior of the process is determined by the process L and the coefficients 

{CLJ, 1 < j < p; bj,0 < j < q;cr}. To avoid trivial and easily eliminated complica­

tions, we shall assume that a(z) and b(z) have no common factors. The state-space 

representation includes the observation and state equations, 

Y(t) = ab 'X(t) , 

and 

dX(t) - AX(t)dt = edL(t), 

where the superscript ' denotes taking transpose, 

(1.3) 

;i.4) 

x(«) 

X0{t) 
* i ( 0 

xp_2(t) 
xp^(t) 

,e = 

" 0 " 
0 

0 
1 

,b = 

bo 
h 

bp-2 

. hv~x . 

where Xj(t) is the j t h mean-square and pathwise derivative D^Xo^t), j — 0,. 

and 

A = 

, P - 1 , 

0 
0 

0 
-dp 

1 
0 

0 
— <2p_i 

0 
1 

0 
"~flp-2 ' • 

• 0 
• 0 

• 1 

• ~ax 

In the special case when {L(t)} is a standard Brownian motion, (1.4) is an Ito 

equation with solution {X.(t),t > 0} satisfying 

X(t) = eAtX(0) + f eA{t~u)edL(u), 
Jo 

(1.5) 

where the integral is defined under the framework of Ito integrals as the L2 limit of 

approximating Riemann-Stieltjes sums. For any second-order driving Levy process, 

{L(t)}, the integral can be defined in the same way. If, in addition, {L(t)} is a non-

decreasing Levy process (and hence has bounded variation on compact intervals) as 
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is the case in Chapter 3 and Chapter 4, {X(i)} can be defined as a Riemann-Stieltjes 

integral by (1.5) for each sample path, which really makes things a lot easier. From 

(1.5), we can also write 

X(t) = e4 ( t" s )X(s) + f eA(t~u)edL(u), for all t > s > 0, (1.6) 
J s 

showing, by independence of the increments of {L(t)}, that {X(£)} is Markov. The 

following proposition gives necessary and sufficient conditions for stationarity of 

{K(t)}. For a proof, see Brockwell and Marquardt (2005). 

Proposition 1.3.1 7/{X(0)} is independent of {L(t),t > 0} and E(L(1)2) < oo, 

then {K(t)} is strictly stationary if and only if the eigenvalues of matrix A all have 

strictly negative real parts and {X(t)} has the distribution of J0°° e~~AuedL(u). 

Remark 1.3.1 It is easy to check that the eigenvalues of matrix A, which we shall 

denote by \x,... , Xp, are the same as the zeroes of the autoregressive polynomial 

a{z). The corresponding right eigenvectors are 

[ i A, \) ••• xri]',i = i,...>p. 

Remark 1.3.2 If we introduce a second Levy process {M(t),0 <t< oo}, indepen­

dent of L and with the same distribution, the stationary CARMA process defined 

over non-negative t can be extended so that it is a stationary process over all real 

t. Define the following extension of L: 

L*(t) = L{t)I[Qt00)(t) - M(-£- )Voo,o]W, - oo < t < oo. 

Then, provided the eigenvalues of A all have negative real parts, i.e., 

Tle{Xj)<0,j = l,...,p, (1.7) 

the process {X(t)} defined by 

X ( t ) = f eA{t-u)edL*(u), (1.8) 
J ~oo 
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is a strictly s tat ionary process satisfying equation (1.6) (with L replaced by L*) for 

all t > s and s € (—00, 00) with the corresponding CARMA process given by 

/

oo 

g{t-u)dL*(u), (1.9) 

•00 

where the function g(t) = ab'eAteI[o,oo)(t), is referred to as the kernel of the 

C A R M A process {Y(t)}. Henceforth, we restrict our attention to stationary 

CARMA processes satisfying (1.7) and refer to L* as the background driving Levy 

process and denote it by L for simplicity. From (1.9) we easily find that the mean, 

EY(t), and autocovariance function, 7(^1) := Cov(Y(t + h),Y(t)), are given by 

where JJ, — EL{\) and 

where 

EY(t) = abo/i/ap, 

7(/i) = a2b'eA^Eb, 

0 0 

£ = / eAvee'eA'ydy. 
0 

It can also be shown that the spectral density of the process Y is 

m = I 
2' &M |2 

which is clearly a rational function of the frequency UJ, —oc < u < 00. 

Remark 1.3.3 When the zeroes Ai,--- , \p of a(z) are distinct and satisfy the 

causality condition (1.7), Brockwell (2001a) showed that the expression for the ker­

nel g takes a simple form, 

^ b(X) 
'(K 9(h) = aY^^~-)e
XrhI[o^)(h), (1.10) 

r=l 

and the autocovariance function of Y can be written as 

7 M = ^ V "\"i)"\-*i) 
7 ^ ° Z^„l(\.\n(-\.\e 
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where a!(z) denotes the derivative of a(z). When the autoregressive roots are dis­

tinct, we also obtain a very useful presentation of the CARMA(p, q) process Y from 

(1.10). Defining 

ar = <J——, r = l , . . . , p , 1.11) 
a'(Ar) 

we can write 

where 

Y(t) = j^Yr(t), (1.12) 
r=\ 

Yr(t) = / are
K(i~u)d,L{u). (1.13) 

—oo 

This expression shows that the component processes Yr satisfy the simple equations, 

Yr(t) = Yr{s)eXr{t"s) + f are
Kit-u)dL(u), t>s,r = l,...,p. (1.14) 

J s 

Taking s = 0 and using Lemma 2.1 of Eberlein and Raible (1999), we can also write 

Yr(t) = Yr(0)eKt + aTL{t) + f arXre
XAt-u)L(u)du, t > 0, (1.15) 

Jo 

where the last integral is a Riemann integral and the equality holds for all finite 

t > 0 with probability 1. Defining 

Y W ^ l F . W r - , ^ ) ] ' , (1.16) 

we obtain from (1.8), (1.10) and (1.13), 

Y(t) = aBIT1X(t), (1.17) 

where B = diag[6(Ai)]Li a n d R = [^Ti^v T h e i n i t i a l v a l u e s ^-(0) in (1.15) 

can therefore be obtained from those of the components of the state vector X(0). 

The process Y provides us with an alternative canonical state representation 

of Y(t), t > 0, namely 

Y(t) = [l,--- ,l)Y(t), (1.18) 
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w here Y is the solution of 

dY{t) = diag[\i]p
i=1Y(t)dt + aBR^edL, (1.19) 

with Y(0) = aBR^X(0). 

Example 1.3.1 (The CARMA(2,1) Process). In this case, b{z) = b0 + z, 

a(z) — (z — Xi)(z — A2) and A] and A2 satisfy causality condition (1.7). Assuming 

A] 7̂  A2, we have from (1.10) that 

g(h) = (ale
x^ + a2e

x*k)I[0,oo)(h), 

where ar — a(b0 + Ar)/(Ar — A3_r), r = 1,2. From (1.17) the canonical state vector 

is 

Y(t) 
Yi(t) A2(60 + Ai) - (60 + A1; 

- A i ( 6 0 + A2) 60 + A2 
X(t), 

Ai — A2 

a,nd the canonical representation of Y is, based on (1.12) and (1.13) 

Y(t) = Y1(t) + Y2(t), 

where 

Yr(t) = J are
XAt~u)dL(u), r = 1,2. 

• / — 0 0 

For illustrative purposes, we show one realization of a gamma-driven CARMA(2,1) 

process on time interval [0, 2000] as well as its sample autocorrelation function (ACF) 

in Figure 1.5. The parameters we use are 01 = 1.3619, a2 — 0.0444, b0 = 0.2062, 

a — 0.2888 and L is the standardized gamma process with E(L(t)) = O.bt. 

R e m a r k 1.3.4 Based on (1.9), we can easily conclude that together with non-

negativity of the kernel g and the non-decreasing property of the driving Levy 

process L, the process Y will be non-negative as is necessary if Y is used to represent 

volatility. For general CARMA processes, Tsai and Chan (2005) showed that the 

kernel is non-negative if and only if the ratio b(-)/a(-) is completely monotone. In 
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Figure 1.5: Realization and ACF of a gamma-driven CARMA(2,1) process. 

particular, for a stationary CARMA(2,1) process defined by (1.2) (we shall discuss 

this process further in later chapters), a necessary and sufficient condition for the 

kernel to be non-negative is that the two roots Ai and A2 of a(z) — 0 are real and 

60 > min(|Ai|). 

1.3.2 Sampled Process 

When we observe a Levy-driven CARMA process at uniformly spaced times 

0, h, 2h,. . ., the sampled process we obtain is actually a discrete-time autoregressive 

moving average (ARMA) process. There are certainly a lot of connections be­

tween continuous-time ARMA processes and discrete-time ARMA processes, some 

of which we shall utilize later in Chapter 4. Thus, it is necessary that we give a brief 
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introduction to the discrete-time ARMA processes. For more details regarding the 

sampled process, see Brockwell (2001b). 

Definition 1.3.2 ( A R M A Process). A zero-mean discrete-time ARMA(p,q) 

process {Yn} with autoregressive coefficients 0 i , . . . , <fip, moving average coefficients 

91,... , 9q) and white noise variance a\, is defined to be a (weakly) stationary solution 

of the p t h order linear difference equations, 

4>{B)Yn = 6{B)Zn, n = 0, ± 1 , ± 2 , . . . , (1.20) 

where B is the backward shift operator (BYn = Yn^\ and BZn = Zn_\ for all n), 

{Zn} is a sequence of uncorrelated random variables with mean zero and variance 

a\ (abbreviated to {Zn} ~ WN(0,CTJ)) and 

4>(z) := 1 - (f>iz - (f>pz
p, 

6{z) :=l + elz + --- + dqz
q, 

with 0 , ^ 0 and (pq ^ 0. We define <j>{z) := 1 if p = 0 and 6{z) := 1 if q = 0. 

We shall assume that the polynomials 4>(z) and 8(z) have no common zeroes and 

tha.t (j)(z) = 1 — 4>iz — • • • — (f)pz
p is non-zero for all complex z such that \z\ < 

1. This last condition guarantees the existence of a unique stationary solution 

of (1.20) which is also causal, i.e., is expressible in the form Yn = 5Z° t 0 V^n- j 

for some absolutely summable sequence {ipj}. The process {Yn} is said to be an 

ARMA(p, q) process with mean /i if {Yn — fu,} is an ARMA(p, q) process. A more 

restrictive definition of ARMA process imposes the further requirement that the 

random variables Zn be independent and identically distributed, in which case we 

write {Zn} ~ IID(0, o^). The process {Yn} is then strictly (as well as weakly) 

stationary and we shall refer to {Yn} as a strict ARMA process. If we impose the 

further constraint that each Zn is Gaussian, then we write {Zn} ~ IIDN(0, a2
d) and 

refer to {Yn} as a Gaussian ARMA process. There are many structural similarities 
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between ARMA and CARMA processes. For example, there is a corresponding 

canonical representation analogous to that in Remark 1.3.3 of Section 1.3.1. It 

takes the form (cf. (1.12) and (1.13)), 

p 

Yn = J2Yr,n, (1-21) 

and 
n 

Yr,n = Y, Pr£~kZk, r=l,...,P, ( 1 . 2 2 ) 

/c= — oo 

where £"*, r — 1 , . . . ,p are the (distinct) zeroes of 0(z), and 

From (1.22) we also obtain the relations (cf. (1.14)), 

Yr,n = SrYr,^ + 8rZk, U = 0, ± 1 , . . . ; T = 1, . . . , P. (1.23) 

Remark 1.3.5 If Y is a Gaussian CARMA process defined as in Definition 1.3.1 

with standard Brownian motions as the driving process, then it is well-known (see 

e.g. Doob (1944), Phillips (1959), Brockwell (1995)) that the sampled process 

{y„(/l)
 : = Y(nh),n = 0 ,1 ,2 , . . .} with fixed h > 0 is a (strict) Gaussian ARMA(r, s) 

process with 0 < s < r < p. 

Sampling a general Levy-driven CARMA(p, q) process with autoregressive roots 

A] , . . . , Xp such that e A l , . . . , eAp axe distinct is most clearly illustrated by inspection 

of (1.14) with t = nh and s = (n—l)h. These equations for the discrete-time process 

{Yn } in the canonical representation of Y(t) match the corresponding equations 

for the canonical components of a discrete-time ARMA process if we set 

£r - eXrh (1.24) 

and 
pnh 

(3rZn == / are
Xr{nh-u)dL(u), r = l,...,p. (1.25) 

J{n-\)h 
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If Y is the CAR(l) process, equations (1-24) and (1.25) show that the sampled 

process is the strict AR(1) process satisfying 

Y(nh) = eXhY({n - l)h) + Zn, n = 0 , ± 1 , . . . , (1.26) 

where 

Zn = a T eX(nh-u)dL(u). (1.27) 
J(n-l)h 

The noise sequence {Zn} is iid 

If the same argument is applied when p > 1, the determination of f3r and an iid 

sequence {Zn} to satisfy the relations (1.25) breaks down since Zn must be the same 

for all r. However if we sample each component in the canonical representation of 

the CARMA process we obtain a strict AR(1) process by the same argument as 

given above for the CAR(l) process. 

Remark 1.3.6 If L is Gaussian, then, as already pointed out, the sampled process 

is a Gaussian ARMA(r, s) process with 0 < s < r. If L is non-Gaussian, the 

sampled process will have the same spectral density and autocovariance function as 

the sampled Gaussian-driven CARMA process with the same parameters. So from 

a second-order point of view, the two sampled process will be the same. 

1.4 Objectives 

Our main goal is to make inferences for Levy-driven CARMA processes based on 

closely-spaced data. Besides estimating parameters of the CARMA process {Y(t)}, 

we would also like to identify the increments of the Levy process and suggest an 

appropriate parametric model for the driving Levy process L(t). The idea we shall 

employ is to use results for continuously observed processes to assist in making 

inferences based on closely-space discrete observations. 

In particular, three special families of Levy-driven CARMA models will be dis­

cussed in this thesis. They are: (1) CARMA(p, 0) driven by Gaussian processes 
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(i.e., continuous-time Gaussian autoregressions or Gaussian CAR(p)); 

(2) CARMA(1,0) driven by non-decreasing Levy processes (i.e. non-negative 

Levy-driven Ornstein-Uhlenbeck (or C A R ( l ) ) processes); and (3) general 

CARMA(p, q) (1 < q < p) driven by non-decreasing Levy processes. 

1.4.1 Background 

The problem of fitting continuous-time Gaussian autoregressions (linear and 

non-linear) to closely and regularly spaced data has been of interest for many years. 

For the linear case Jones (1981) and Bergstrom (1985) used state-space representa­

tions to compute exact maximum likelihood estimators and Phillips (1959) did so 

by fitting an appropriate discrete-time ARMA process to the data. In this thesis, 

we take a different point of view. We use exact conditional maximum likelihood 

estimators for the continuously-observed process to derive approximate maximum 

likelihood estimators based on the closely-spaced discrete observations. We do this 

for both linear and non-linear Gaussian autoregressions and obtain very clean and 

elegant results. 

In financial econometrics, a stationary non-negative Levy-driven Ornstein-

Uhlenbeck (or CAR(l)) process was introduced by Barndorff-Nielsen and Shephard 

(2001) as a model for stochastic volatility. Their model for log asset price G had 

the form 

dG{t) = (ju + 0V{t))dt + ^JV{ijdw{t), (1.28) 

where w(t) is a standard Brownian motion. The volatility process V is an indepen­

dent stationary non-negative Ornstein-Uhlenbeck process driven by non-decreasing 

Levy process L, 

V(t) = a f e'x{t~u)dL(u), A > 0. (1.29) 

Such a model allows for a wide variety of marginal distributions for volatility, de­

pending on the driving Levy process L, and allows also for the presence of jumps. 
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For such processes we take advantage of the non-negativity of the increments of 

the driving Levy process to derive a highly efficient estimation procedure for the 

parameters when observations are available at uniformly spaced times. We also 

reconstruct the background driving Levy process from a continuously observed re­

alization of the process and use this result to estimate the increments of the Levy 

process itself when the observation spacing is small. Asymptotic properties of the 

coefficient estimators are also studied. 

According to Barndorff-Nielsen and Shephard's model (1.28) and (1.29), the 

autocorrelation function of the process V is of the form p(h) = exp(—X\h\). This is 

quite restrictive for modeling purposes. However, if we replace the process V by a 

CARMA process driven by a non-negative Levy process, we can obtain a much wider 

class of not-necessarily monotone autocorrelation functions for the volatility. With 

very flexible parameters, this class of processes introduces a huge range of possible 

autocorrelation functions and marginal distributions. For example, a non-negative 

Levy-driven CARMA(2,1) process was used by Todorov and Tauchen (2006) and 

Todorov (2006) to represent stochastic volatility and applied in the latter paper 

to model the German Deutsche Mark/US Dollar exchange rate. For Todorov's 

analysis it was only the moments of the CARMA process which were relevant, so 

that the determination of the type of underlying Levy process and its parameters 

was not considered. As to the estimation for a particular Levy-driven CARMA(2,1) 

process, we propose using the maximum Gaussian likelihood estimation techniques, 

separating the estimated CARMA(2,1) model into two CAR(l)s according to the 

canonical state representation, and then using the CAR(l) which corresponds to 

the close-to-zero autoregressive root to finally recover the background driving Levy 

process. This estimation procedure also applies to more general CARMA processes. 
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1.4.2 Empirical Data Description 

For the empirical application of our estimation procedures for CARMA 

processes driven by non-decreasing Levy processes, we shall use the daily returns on 

the German Deutsche Mark/US Dollar (DM/$) exchange rate series. This data was 

kindly provided by Viktor Todorov. It covers the period from December 1, 1986 

through June 30, 1999. Missing data, weekends, fixed holiday and similar calen­

dar effects were removed with a total of 3045 days left. Figure 1.6 shows the daily 

returns and realized volatility of this DM/$ exchange rate data. 

This daily data originally comes from a larger data set, which is sampled at 

a. higher frequency of 288 times per day (or 5-minute returns). The original data 

was explained in detail by Andersen et al. (2001). According to Andersen et al., 

the 288-times-per-day frequency is high enough so that our daily realized volatilities 

are largely free of measurement error, yet low enough so that microstructure biases 

(such as non-synchronous trading) are not a major concern. They constructed the 

daily realized volatilities by summing 288 squared 5-minute returns. 

We will explore this daily return data further in Chapter 3 and Chapter 4. 

1.5 Overview 

The remainder of the thesis focuses on developing estimation techniques and 

asymptotic properties of the estimators for those three particular families of Levy-

driven CARMA processes discussed in Section 1.4. In Chapter 2, we consider es­

timation for Gaussian CAR(p) processes, both linear and non-linear. In order to 

find exact conditional maximum likelihood estimators of the parameters under the 

assumption that the process is observed continuously, we derive the exact condi­

tional probability density of the (p — l)s* derivative of an autoregression of order p 

with respect to Wiener measure. The resulting estimates are expressed in terms of 

stochastic integrals which are then approximated using the available discrete-time 
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Figure 1.6: Daily returns and realized volatilities for DM/$ exchange rate data. 

observations, we apply the results to (linear) CAR(p) processes, deriving explicit 

expressions for the maximum likelihood estimators of the coefficients and illustrat­

ing the performance of the approximations. Since the exact conditional probability 

density we derived does not require the CAR(p) to be linear, we also apply our 

results to non-linear autoregressions. In the non-linear examples considered we re­

strict attention to the continuous-time threshold autoregressive (CTAR) processes, 

which are continuous-time analogues of the discrete-time threshold models of Tong 

(1983). 

In Chapter 3, we discuss the problem of estimating the parameters of a non-

negative Levy-driven Ornstein-Uhlenbeck process and the parameters of the back­

ground driving Levy process, based on observations made at uniformly and closely 
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spaced times. The idea is to obtain a highly efficient estimator of the CAR(l) co­

efficient by estimating the corresponding coefficient of the sampled AR(1) process 

using the estimator of Davis and McCormick (1989) for non-negative discrete-time 

AR(1) processes. This estimator is then used to estimate the corresponding realiza­

tion of the driving Levy process using a generalization of an argument due to Tuan 

(1977). The exact recovery of the driving Levy process requires continuous observa­

tion of the Ornstein-Uhlenbeck process and deconvolution. The integral expressions 

determining the driving Levy process are therefore replaced by approximating sums 

using the available discrete-time observations. 

Chapter 4 is concerned with inference for a non-negative causal CARMA(p, q) 

process, driven by a non-decreasing Levy process. It is assumed that observations 

of the CARMA process at uniformly and closely spaced times are available. The 

goal is to estimate both the coefficients of the CARMA process and the distribution 

of the increments of the driving Levy process. Estimation of the coefficients of 

the CARMA process is carried out by maximizing the Gaussian likelihood of the 

observations. As in Chapter 3, the estimation of the distribution of the increments 

of the driving Levy process is achieved using a generalization of the argument due 

to Tuan (1977). The performance of the procedure is illustrated with two simulated 

examples. We also apply our techniques to the German Deutsche Mark/US Dollar 

exchange rate series for empirical modeling purposes. 

In the last chapter, we summarize the results and indicate future directions for 

research. 



Chapter 2 

CONTINUOUS-TIME GAUSSIAN AUTOREGRESSION 

2.1 Introduction 

In Section 2.2 we define the continuous-time AR(p) (abbreviated to CAR(p)) 

process driven by Gaussian white noise and briefly indicate the relation between 

the CAR(p) process {Y(t),t > 0} and the sampled process {Yn := Y(nh),n — 

0 ,1 ,2 , . . . } . The process is a discrete-time ARMA process, a result employed 

by Phillips (1959) to obtain maximum likelihood estimates of the parameters of the 

continuous-time process based on observations of {Fn ,0 < nh < T}. From the 

state-space representation of the CAR(p) process it is also possible to express the 

likelihood of observations of {Y„ '} directly in terms of the parameters of the CAR(p) 

process and thereby to compute maximum likelihood estimates of the parameters as 

in Jones (1981) and Bergstrom (1985). For a CAR(2) process we use the asymptotic 

distribution of the maximum likelihood estimators of the coefficients of the ARMA 

process {Yn } to derive the asymptotic distribution, as first T —> oo and then 

h —• 0, of the estimators of the coefficients of the underlying CAR process. 

In Section 2.3 we derive the probability density with respect to Wiener measure 

of the (p — l)s* derivative of the (not-necessarily linear) autoregression of order p. 

This forms the basis for the inference illustrated in Sections 2.4, 2.5 and 2.6. In 

the non-linear examples considered we restrict attention to continuous-time thresh­

old autoregressive (CTAR) processes, which are continuous-time analogues of the 

discrete-time threshold models of Tong (1983). 



23 

In Section 2.4 we apply the results to (linear) CAR(p) processes, deriving ex­

plicit expressions for the maximum likelihood estimators of the coefficients and il­

lustrating the performance of the approximations when the results are applied to 

a discretely observed CAR(2) process. In Section 2.5 we consider applications to 

CTAR(l) and CTAR(2) processes with known threshold and in Section 2.6 we show 

how the technique can be adapted to include estimation of the threshold itself. The 

technique is also applied to the analysis of the Canadian lynx trappings, 1821 - 1934. 

2.2 Gaussian CAR(p) and Corresponding Sampled Process 

We begin with the definition of the (linear) Gaussian CAR(p) process. 

Definition 2.2.1 (Gaussian CAR(p)). A continuous-time Gaussian autoregres-

sive process of order p > 0 is defined symbolically to be a stationary solution of the 

stochastic differential equation, 

a(D)Y{t) = aDW(t), (2.1) 

where a(D) = Dp 4- a,\Dp~~l + • • • + ap, the operator D denotes differentiation with 

respect to t and {W(t),t > 0} is a standard Brownian motion. Since DW(t) does 

not exist as a random function, we give meaning to equation (2.1) by rewriting it 

in state-space form, 

y(t) = M, . . . ,o ]x( t ) , (2.2) 

where the state vector X(t) = [X0(t),..., Xp_i(t)] ' satisfies the Ito equation, 

dX(t) = AX(t)dt + edW(t), (2.3) 

ith 

A 

0 
0 

0 
-ap 

1 
0 

0 
— Q p - l 

0 
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As defined in Section 1.3, Xj(t) denotes the j mean-square and pathwise derivative 

&Xo(t),j = 0,...,p-l. 

We are concerned in this chapter with inference for the autoregres-

sive coefficients, a,i,...,ap, based on observations of the process Y at times 

0, h, 2 / i , . . . , h[T/h], where h is small and [x] denotes the integer part of x. 

One approach to this problem, due to Phillips (1959), is to estimate the coeffi­

cients of the discrete-time ARMA process {Yjlh) := Y(nh),n = 0 ,1 ,2 , . . .} and from 

these estimates to obtain estimates of the coefficients a 1 ; . . . , ap in equation (2.1). 

The sampled process {Yn, } is a stationary solution of the Gaussian ARMA(p',g') 

equations, 

<j>(B)Y^ = 9(B)Zn, {Zn}^WN(0,52(h))} (2.4) 

where 4>(B) and 0(B) are polynomials in the backward shift operator B of orders p' 

and q' respectively, where p' < p and q' < p'. (For more details see, e.g., Brockwell 

(1995).) 

An alternative approach is to use equations (2.2) and (2.3) to express the like­

lihood of observations of {Yn } directly in terms of the parameters of the CAR(p) 

process and then to compute numerically the maximum likelihood estimates of the 

parameters as in Jones (1981) and Bergstrom (1985). 

In this thesis, we take a different point of view by assuming initially that the 

process Y is observed continuously on the interval [0, T]. Under this assumption 

it is possible to calculate exact (conditional on X(0)) maximum likelihood estima­

tors of a\,..., ap. To deal with the fact that observations are made only at times 

0, h, 2h,.. ., we approximate the exact solution based on continuous observations 

using the available discrete-time observations. This approach has the advantage 

that for very closely-spaced observations it performs well and is extremely simple to 

implement. 
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This idea can be extended to non-linear (in particular threshold) continuous-

time autoregressions. We illustrate this in Sections 2.4, 2.5 and 2.6. The assumption 

of uniform spacing, which we make in all our examples, can also be relaxed providing 

the maximum spacing between observations is small. 

Before considering this alternative approach, we first examine the method of 

Phillips as applied to CAR(2) processes. This method has the advantage of requiring 

only the fitting of a discrete-time ARMA process to the discretely observed data 

and the subsequent transformation of the estimated coefficients to continuous-time 

equivalents. We derive the asymptotic distribution of these estimators as first T —> 

oo and then h —> 0. 

Example 2.2.1 For the CAR(2) process defined by 

(D2 + aiD + a2)Y(t) = aDW(t), 

the sampled process {F„ := Y(nh),n = 0 ,1 , . . .} satisfies 

yBw - 4>[k)Y^\ - 4h)Y™2 = zn + oMzn-u {zt} ~ WN(O, s2(h)). 

For fixed h, as T —» oo, the maximum likelihood estimator of ($ = 

• [T/W 

bf\$\e^' 
based on observations Y"/ ',... ,Y,TJh] satisfies (see Brockwell and Davis (1991), 

p.258) 

y/T/h(P-!3)=>>N(0,M(P)), (2-5) 

where 

(2.6) 
EUtV't EVtV't 

and the random vectors U t and V t are defined as U f = [Utl • • • , Ut+i-p] and V t = 

[Vt, • • • , Vt+i-q]', where {Ut} and {Vt} are stationary solutions of the autoregressive 

equations, 

4>{B)Ut = Zt and 6{B)Vt = Zt. (2.7) 
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In order to determine the asymptotic behavior as T —> oo of the maximum 

likelihood estimators (h),(p2(h)\, we consider the top left 2x2 submatrix M2 of 

the matrix M. For small h we find that M2 has the representation, 

M2 = 1 - 1 
•1 1 

(2aj/i + 4=(2 - V^K/i2 + ^(2 - \/3)a?/i3) 
v 3 o 

+ 
0 1 
1 0 

aia2h
3 + 0(h4) as h -> 0. 

The mapping from (4>\,4>2) to (01,02) is as follows: 

«i = -\og(-<t>2)/h, 

a2 _L l o g (^ + /f^) l o g ~+h 

The matrix 

C da.2 da-2 

therefore has the asymptotic expansion 

0 
C = 

-&[l + s£h + &^h2 + b?- 12 

From (2.8) and (2.9) we find that 

CM2C = -
h 

2ai 0 
0 2aia2 

' l + o(l)) as / i - > 0 , 

(2.8) 

(2.9) 

(2.10) 

and hence, from (2.5) that the maximum likelihood estimator a of a = \a\, a2] based 

on observations of Y at times 0, h, 2h,..., h[T/h], satisfies 

Vf(k - a) => iV(0, V), as T -> 00, 

where 

V 
2ai 0 
0 2a!a2 

;i + o(l)) as h-*Q. (2.11) 
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Remark 2.2.1 Since the moving average coefficient 9^h' of the sampled process 

is also a function of the parameters a\ and 02, and hence of cp\ and (f>2 , the 

question arises as to whether the discrete-time likelihood maximization should be 

carried out subject to the constraint imposed by the functional relationship between 

cp\ \<j>2 and 0(h\ However, as we shall see, the unconstrained estimation which we 

have considered in the preceding example leads to an asymptotic distribution of the 

estimators which, as h —* 0, converges to that of the maximum likelihood estimators 

based on the process observed continuously on the interval [0,T]. This indicates, at 

least asymptotically, that there is no gain in using the more complicated constrained 

maximization of the likelihood, so that widely available standard ARM A fitting 

techniques can be used. 

Remark 2.2.2 As the spacing h converges to zero, the autoregressive roots 

exp(-Xjh) converge to 1, leading to numerical difficulties in carrying out the 

discrete-time maximization. For this reason we consider next an approach which 

uses exact results for the continuously observed process to develop approximate max­

imum likelihood estimators for closely-spaced discrete-time observations. The same 

approach can be used not only for linear continuous-time autoregressions, but also 

for non-linear autoregressions such as continuous-time analogues of the threshold 

models of Tong (1983). 

2.3 Inference for Continuously Observed Autoregressions 

We now consider a more general form of (2.1), i.e. 

(Dp + aiD
p~l + ••• + ap)Y(t) = a(DW(t) + c), (2.12) 

in which we allow the parameters a,\,..., ap and c to be bounded measurable func­

tions of Y(t) and assume that a is constant. 
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(2.14) 

The equation (2.12) has a state-space representation analogous to (2.2) and 

(2.3), namely 

Y(t) = aX0(t), (2.13) 

where 

dXQ = X1{t)dt, 

dX1 = X2(t)dt, 

dXp^2 ~ Xp-i(t)dt, 

dXp^ = [-OpXo(t) aiXp_i(t) + c]dt + dW{t), 

and we have abbreviated a,;(F(t)) and c(Y(t)) to a* and c respectively. 

Assuming that X(0) — x, we can write X(£) according to (2.14) in terms 

of {Xp_i(s),0 < s < £} using the relations, Xp_2(i) = xp„2 -+- fQ Xp^i(s)ds, . . . , 

X0(t) = x0 + J0 Xi(.s)ds. The resulting functional relationship will be denoted by 

X{t) = F{Xp..1,t). (2.15) 

Substituting from (2.15) into the last equation in (2.14), we see that it can be written 

in the form, 

dXp^ = G(Xp-Ut)dt + dW(t), (2.16) 

where G(Xp_i,t), like F(A"p_i,t) depends on {Xp_i(s),0 < s < t}. 

Theorem 2.3.1 Equation (2.14) with initial condition X(0) = x = [xo,x\, 

• • • ,xp_i] has a unique (in law) weak solution X = (X(£),0 < t < T). The proba­

bility density of the random function Xp_i = (Xp_i(i),0 < t < T) conditioning on 

X(0) with respect to Wiener measure can be written as 

j-T 

M(Xp_1 )r) = exp 
2 

where G(Xp-i,s) is defined as in (2.16). 

\ f G2(Xp-.us)ds+ [ G(Xp-Us)dW(s) 
* Jo Jo 
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Proof: Let B be a standard Brownian motion (with B(0) = xp-\) defined on the 

probability space (C[0, T), B[0, T], PXp^) and, for t < T, let Tt = a{B(s), s < t}vM, 

where N is the sigma-algebra of PXp j-null sets of Z5[0,T]. The equations 

dZ0 = Zidt, 

dZi = Z2dt, 

'• (2-17) 

dZp^ = Zp^idt, 

dZp_i = dB{t), 

with Z(0) = x = [xQ,xi,' • • ,XP~I]'J clearly ha,ve the unique strong solution, Z(t) = 

F(B, t), where F is defined as in (2.15). Let G be the functional appearing in (2.16) 

and suppose that W is the Ito integral defined by W(0) = xp_i and 

dW(t) = -G(B,t)dt + dB(t) = -G(Zp^,t)dt + dZp^(t). (2.18) 

For each T, we now define a new measure Px on FT by 

dPx=^M(B,T)dPXp^, (2.19) 

where 

M{B,T) = exp (2.20) ~l f G2{B,s)ds+ [ G(B,s)dW{s) 
. 2 JQ Jo 

Then by the Cameron-Martin-Girsanov formula (see e.g. 0ksendal (1998), p. 152), 

{W(t), 0 < t < T} is a standard Brownian motion under Px. Hence we see from 

(2.18) that the equations (2.16) and (2.3) with initial condition X(0) = x have, for 

t G [0,T], the weak solutions (Zp_i(t),W(t)) and (Z(t),W(t)) respectively. More­

over, by Proposition 5.3.10 of Karatzas and Shreve (1991), the weak solution is 

unique in law, and by Theorem 10.2.2 of Stroock and Varadhan (1979) it is non-

explosive. 
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If / is a bounded measurable functional on C[0,T], 

£ x / ( V i ) ^ x M ( M ( B , T ) / ( B ) ) 

= J f(0M(t,T)dPXp^). 

In other words, M(£,T) is the density at £ € C[0,T], conditional on X(0) = x, 

of the distribution of Xp_\ with respect to the Wiener measure PXp_Y and, if we 

observed Xp_\ — £, we could compute conditional maximum likelihood estimators 

of the unknown parameters by maximizing M(£,T). • 

Remark 2.3.1 For parameterized functions a* and c, this allows the possibility of 

maximization of the likelihood, conditional on X(0) = x, of {Xp-i(t),0 < t < T}. 

Of course a complete set of observations of {Xp-\(t),0 < t < T} is not generally 

available unless X0 is observed continuously. Nevertheless the parameter values 

which maximize the likelihood of {Xp-i(t),0 < t < T} can be expressed in terms 

of observations of {Y(t),0 < t < T} as described in subsequent sections. If Y 

is observed at discrete times, the stochastic integrals appearing in the solution for 

continuously observed autoregressions will be approximated by corresponding ap­

proximating sums. Other methods for dealing with the problem of estimation for 

continuous-time autoregressions based on discrete-time observations are considered 

by Stramer and Roberts (2004) and by Tsai and Chan (1999, 2000). 

2.4 Estimation for CAR(p) Processes 

For the CAR(p) process defined by (2.1), if {x(s) = [x0(s),xi(s), 

• • • ,x p„i(s)] ' , 0 < s < T} denotes the realized state process on the interval [0,T], 

we have, in the notation of Theorem 2.3.1, 

-21ogAf(xp_! , s )= / G2ds-2 
Jo 

Gdxp^i(s) (2.21) 
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where 

G = -aiXp-iis) - a2xp„2(.s) apx0{s). (2.22) 

Differentiating log M partially with respect to a,\,..., ap and setting the derivatives 

equal to zero gives the maximum likelihood estimators, conditional on X(0) = x(0), 

a,\ Jo x
P-i^s Jo xp~ixod's Jo xp—i<^xp—i 

(2.23) 

Jo xp-ixods • • • J0 XQUS J L Jo xQdXp-

Note that this expression for the maximum likelihood estimators is unchanged if x 

is replaced throughout by y, where yQ denotes the observed CAR(p) process and j/j 

denotes its j t h derivative. 

Differentiating log M twice with respect to the parameters taking 

expected values and assuming that the zeroes of the autoregressive polynomial a all 

have negative real parts, we find that 

^ l o g M 
E-

<9a2 ~ T E as T —• oo, (2.24) 

where E is the covariance matrix of the limit distribution as T —» oo of the random 

vector [Xp-i(t),Xp-2(t), • • • ,X0(t)]'. It is known (see Arato (1982)) that 

S"1 = 2 K L = 1 (2.25) 

where m^ = m™ and for j > i, 

if j — i is odd, 

\Efclo(-1)fcai-i-fcai+fc» otherwise, 

where a0 := 1 and a,j :— 0 if j > p or j < 0, and that the estimators given by (2.23) 

satisfy 

\ / T ( a - a ) = » A^O.E-1), (2.26) 

where E"1 is given by (2.25). The asymptotic result (2.26) also holds for the Yule-

Walker estimates of a as found by Hyndman (1993). 



32 

In the case p = 1, E"1 = 2ci\ and when p = 2, E"1 is the same as the leading 

term in the expansion of the covariance matrix V in (2.11). 

In order to derive approximate maximum likelihood estimators for closely-

spaced observations of the CAR(p) process defined by (2.1) we shall use the re­

sult (2.23) with the stochastic integrals replaced by approximating sums. Thus if 

observations are made at times 0, h, 2/i, . . . , we replace, for example, 

,T 1 lVh]-l 

/ x,(s)'2ds by - V (x((i + l)h)-x(ih))2, 
J* h U 

/ xl(s)dxl{s) by —• V (x((i + l)h) - x(ih)) J» h U 
x(x((i + 3)h) - 2x((i + 2)h) + x((i + l)h)), 

taking care, as in the latter example, to preserve the non-anticipating property of 

the integrand in the corresponding approximating sum. 

Example 2.4.1 For the CAR(2) process defined by 

(D2 + a1D + a2)Y{t) = (rDW(t), 

Table 2.1 shows the result of using approximating sums for the estimators defined by 

(2.23) in order to estimate the coefficients ax and a2. The coefficients were estimated 

based on 1000 replicates on time interval [0, T] of the linear CAR(2) process with 

a\ = 1.8 and a,2 = 0.5. 

As expected, the variances of the estimators are reduced by a factor of approx­

imately 5 as T increases from 100 to 500 with h fixed. As h increases with T fixed, 

the variances actually decrease while the bias has a tendency to increase. This leads 

to mean squared errors which are quite close for h — .001 and h = .01. The as­

ymptotic covariance matrix S _ 1 in (2.26), based on continuously observed data, is 

diagonal with entries 3.6 and 1.8. For h = .001 and h = .01, the variances 3.6/T 

and 1.8/T agree well with the corresponding entries in the table. 
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Table 2.1: Estimation results for Gaussian CAR(2) (linear). 

h 

0.001 ax 

&2 

0.01 oi 

0-2 

0.1 ax 

a-2 

r=ioo 
Sample mean Estimated variance 
of estimators of estimators 

1.8120 0.03585 
0.5405 0.02318 
1.7864 0.03404 
0.5362 0.02282 
1.5567 0.02447 
0.4915 0.01902 

T=500 
Sample mean Estimated variance 
of estimators of estimators 

1.7979 0.006730 
0.5048 0.003860 
1.7727 0.006484 
0.5007 0.003799 
1.5465 0.004781 
0.4588 0.003217 

2.5 Es t ima t ion for CTAR(p) Processes 

Definition 2.5.1 (Continuous-time Threshold CAR(p)). We define the 

continuous-time threshold CAR(p) (abbreviated to CTAR(p)) process with a single 

threshold at r exactly as in (2.13) and (2.14), except that we allow the parameters 

CLI , . . . , ap and c to depend on Y(t) in such a way that 

al(Y(t)) = a!i
J\ i = l,...,p; c(Y(t)) = JJ\ 

where J = 1 or 2 according as Y(t) < r or Y(t) > r. 

Thus we obtain a continuous-time analogue of the threshold models of Tong 

(1983), except that Tong's model has multiple thresholds. Continuous-time thresh­

old models have been used by a number of authors (e.g. Tong and Yeung (1991), 

Brockwell and Williams (1997)) for the modeling of financial and other time series. 

In this thesis, we shall consider only the case of a single threshold since the problems 

associated with more than one are quite analogous. 

The density derived in Theorem 2.3.1 is not restricted to linear continuous-

time autoregressions as considered in the previous section. It applies also to non­

linear autoregressions and in particular to CTAR models as defined in Definition 
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2.5.1. In the following we illustrate the application of the continuous-time maximum 

likelihood estimators and corresponding approximating sums to the estimation of 

coefficients in CTAR(l) and CTAR(2) models. 

Example 2.5.1 Consider the CTAR(l) process defined by 

DY[t) + a[1]Y(t) = aDW(t), if Y{t) < 0, 

DY{t) + af]Y{t) = aDW(t), if Y(t) > 0, 

with a > 0 and a[ j^ a['. We can write 

Y(t) = aX(t), 

where 

dX{t) + a(X(t))X{t)dt == dW{t)} 

and a(x) = a\ if x < 0 and a(x) — a\ if x > 0. Proceeding as in Section 2.4, 

- 21ogM is as in (2.21) with 

G = -a (
1

1 )x(s)4 ( s ) < 0 - a(
1

2)x(s)/a;(s)>o. (2.27) 

Maximizing log M as in Section 2.4, we find that 

,(i) _ JQ Ix(s)<ox(s)dx(s) 
CI] rp 

Jo Ix{s)<^{s)2ds 

and 

*(2) = JQ Ix(s)>ox{s)dx(s) 

J0 Ix(s)>ox(s)2ds 

where, as in Section 2.4, x can be replaced by y in these expressions. For observations 

at times 0, h, 2h,. . . , with h small the integrals in these expressions were replaced by 

corresponding approximating sums and the resulting estimates are shown in Table 

2.2. This time, those estimated coefficients were obtained based on 1000 replicates 

on [0,T] of the threshold AR(1) with threshold r = 0, a[l) = 6, af] = 1.5. 



35 

Table 2.2: Estimation results for CTAR(l) (non-linear, known threshold). 

h 

0.001 

0.01 

0.1 

a? 
a?1 

a?> 
a?} 

a?) 

ai2) 

r=ioo 
Sample mean 
of estimators 

6.0450 

1.5240 

5.8978 

1.5135 

4.7556 

1.3891 

Estimated variance 
of estimators 

0.41207 

0.04824 

0.39427 

0.04771 

0.27969 

0.03840 

T=500 
Sample mean 
of estimators 

5.9965 

1.4986 

5.8472 

1.4875 

4.7085 

1.3682 

Estimated variance 
of estimators 

0.07185 

0.00891 

0.06785 

0.00883 

0.04506 

0.00711 

Again we see that as T increases from 100 to 500, the variances of the estimators 

are reduced by a factor of approximately 5. Ash increases with T fixed, the variances 

decrease while the bias tends to increase, the net effect being (as expected) an 

increase in mean squared error with increasing h. 

Example 2.5.2 Consider the CTAR(2) process defined by 

D2Y(t) + a\]DY{t) + a(
2

l)Y(t) = oDW{t), if Y{t) < 0, 

D2Y(t) + a[2)DY{t) + a{
2

2)Y{t) = aDW{t), if Y{t) > 0, 

with a\ ^ o[ or aj ^ a2 , and a > 0. We can write 

Y(t) = [a,0}X(t), 

where 

dX(t) = AX(t)dt + edW(t), 

and A = A{1) if x < 0 and A = A^ if x > 0, where 

A^ = 
—a0 —a ( i ) 

^ 2 ) = 
(2) (2) 

-a2 -a\ 

0 
1 

Proceeding as in Section 2.4, —21ogM is as in (2.21) with 

G = \^-a[l)Xi(s) - a{
2

l)x(s)J Ix(s)<0 + (^-a^x^s) - a{
2

2)x{s)j 4(s)>o- (2.28) 
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Maximizing logM as in Section 2.4, we find that 

Ad) 
Jo 4(s)<0x?(s)ds J0 Ix(a)<0xi(s)x0(s)ds 
Jo Ix(s)<Qx1(s)x0(s)ds JQ Ix{s)<0xl(s)ds 

J0 Ix(s)<oXi(s)dxi(s) 

J0 Ix(s)<oX0{s)dx1(s) 

;(2) A ( 2 ) i , while [fij , a2 ]' satisfies the same equation with 7x(s)<o replaced throughout by 

-<x(s)>0-

As in Section 2.4, a; can be replaced by y in these expressions. For observations 

at times 0, h, 2h,..., with h small, the integrals in these expressions were replaced by 

corresponding approximating sums and the resulting estimates are shown in Table 

2.3. 1000 replicates on [0,T] of the threshold AR(2) with threshold r = 0, a\l) = 1.5, 

a2 = 0.4, a\ = 4.6, a2 = 2, were used to estimate those coefficients. 

Table 2.3: Estimation results for CTAR(2) (non-linear, known threshold). 

h 

0.001 

0.01 

0.1 

a? 
<$> 

a? 
af 
a? 
<$> 

af} 

42 ) 

*P 
a£> 

(2) 

(2) 

r=ioo 
Sample mean 
of estimators 

1.5187 

0.4763 

4.6084 

2.3186 

1.5262 

0.4729 

4.3819 

2.2697 

1.5091 

0.4402 

2.7053 

1.7654 

Estimated variance 
of estimators 

0.05441 

0.04119 

0.21224 

0.72069 

0.05234 

0.04056 

0.19823 

0.68915 

0.04177 

0.03489 

0.11312 

0.41380 

T=500 
Sample mean 
of estimators 

1.5071 

0.4163 

4.5755 

2.0456 

1.5163 

0.4135 

4.3480 

2.0025 

1.4928 

0.3851 

2.7014 

1.5599 

Estimated variance 
of estimators 

0.01128 

0.00480 

0.03995 

0.08881 

0.01095 

0.00473 

0.03746 

0.08509 

0.00805 

0.00411 

0.01874 

0.05221 

The pattern of results is more complicated in this case. As T is increased from 

100 to 500 with h fixed, the sample variances all decrease, but in a less regular 

fashion than in Tables 2.1 and 2.2. As h increases with T fixed, the variances also 

decrease. The mean squared errors for h = .001 and h = .01 are again quite close. 
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2.6 Estimation W h e n the Threshold is Unknown 

In the previous section we considered the estimation of the autoregressive coef­

ficients only, under the assumption that the threshold r is known. In this section we 

consider the corresponding problem when the threshold also is to be estimated. The 

idea is the same, that is to maximize the (conditional) likelihood of the continuously-

observed process, using the closely-spaced discrete observations to approximate what 

would be the exact maximum likelihood estimators if the continuously-observed data 

were available. We illustrate first with a CTAR(l) process. The goal is to use obser­

vations {y(kh), k = 1, 2 , . . . ; 0 < kh < T } , with h small, to estimate the parameters 

a\ ',a[ ,c[ ,c\ ,<7 and r in the following model. 

D (Y{t) - r) + a\l) (Y(t) - r) + c? = aDWt, if Y(t) < r, 
(2.29) 

D (Y{t) -r) + a(,2) (Y{t) - r) + cf) = aDWt) if Y{t) > r. 

The process Y* = Y — r, satisfies the threshold autoregressive equations, 

DY*(t) + a[1]Y*(t) + c[1] = aDWt, if Y*(t) < 0, 

DY*(t) + af]Y*{t) + c(!2) = aDWu if Y*(t) > 0, 

with state-space representation, 

Y*(t) = aX(t), 

where 

dX(t) = G(X,t)dt + dW(t), 

as in equation (2.16), and 

( i ) \ / (2)~ 

1- /.w<o - a^x(s) + *-
a \ a 

G(x, *) = -( a^xis) + ^- 4 ( a ) < 0 - a^x(s) + ^ - ) / , ( s )>0 . 

Substituting for G in the expression (2.21), we obtain 

- 2 l o g M ( x ( s ) , s ) = f G2ds-2 I Gdx(s) 
Jo Jo 



/ f a{^x(s) + - i - J Ix{s)<0ds + / | a{2)x(s) + — ) Ix(s)>ods 

rT ( c(1)\ ^ / c(2)\ 
+2 / a(

1
1)x(s) + - i - J l ( s ) < 0<k(s)+2 / ( a f ^ s ) + - i - /l(B)>0da;(s) 

1 y (a^y* + c^)2 Ir<Qds + J (ya?y* + cf)yir>ods 

+2 J (a^y* + ci1') Ir<0dy* + 2 J ( a f V + cty Ir>0dy* 

,(!) „(2) J l ) .(2) Minimizing — 2 log M(x(s),s) with respect to a; , a-[ , q ', and c\ with er fixed 

gives, 

tf\r) / y*2Iy<0ds Iy.<0ds-[ y*Iy*<0ds 
Jo Jo \Jo 

Uo o 

T 

y*Iy,<Qdy* / Ir<0ds- / Ir<0dy* I y*Iy.<0ds 
o 

;(D ci i ;(r) / y*2ly'<ods Ir<0ds-( y*Iv*<0ds 
Jo Jo \Jo 

~ / Iy*<ody* / y*2Ir<0ds - / y*Ir<0dy* \ y*Iy*<0ds 
Jo Jo Jo 

(2.30) 

~(2} "(2) 

with analogous expressions for a\ and c\ . An important feature of these equations 

is that they involve only the values of y* = y — r and not a. 

For any fixed value of r and observations y, we can therefore compute the maxi­

mum likelihood estimators a[ (r), a\ (r), c\ (r) and c[ (r) and the corresponding 

minimum value, m(r), of —2<r2logM. The maximum likelihood estimator f of r is 

the value which minimizes m(r) (this minimizing value also being independent of 

a). The maximum likelihood estimators of ^ and c ^ are the values ob­

tained from (2.30) with r = r. Since the observed data are the discrete observations 

{y(h),y(2h),y(3h),...}, the calculations just described are all carried out with the 

integrals in (2.30) replaced by approximating sums as described in Section 2.4. 

If the data y are observed continuously, the quadratic variation of y on the 

interval [0, T] is exactly equal to a2T. The discrete approximation to a based on 
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{y(h),y(2h),...}is 

a 
\ 

[T/h]-l 

£ (y((k + l)h)-y(kh)Y/T. 
k=\ 

(2.31) 

Example 2.6.1 Table 2.4 shows the results obtained when the foregoing estimation 

procedure is applied to a CTAR(l) process defined by (2.29) with a[x) = 6, c\1] = .5, 

, (2) (2) (2) 

i — 1.5, c\ = .4, a = 1 and r = 10. In this table, estimations were made based 

on 1000 replicates of the process on [0, T]. 

Table 2.4: 1 

h 

0.001 

0.01 

0.1 

• ! " 
cS" 
«S" 
42) 

a 
r 

4 " 
4" 

(2) 

J2) 
c i 
(7 

r 

^ 

^ 

«i2) 

c(2) 

a 
r 

Estimation results for 
T 

Sample 
mean 

5.9179 

0.3787 
1.7149 

0.2891 
0.9996 
9.9963 

5.7201 

0.4271 

1.7373 

0.2877 
0.9914 
10.011 

4.1166 

0.3953 

1.7308 

0.2636 
0.9191 
10.074 

-100 
Sample 
variance 

1.5707 

0.7780 
0.4105 

0.1476 
5.00xl0-6 

0.0244 

1.3175 

0.7524 

0.4248 

0.1598 
4.82xl0"5 

0.0278 

0.7861 

0.5638 

0.5109 

0.2391 
5.00xl0~4 

0.0425 

3TAR(1) 
T--

Sample 
mean 

5.9758 

0.3448 
1.5370 

0.3415 
0.9991 
9.9769 

5.7507 

0.3235 

1.5567 

0.3227 
0.9913 
9.9807 

4.1087 
0.2834 

1.5924 

0.2658 
0.9208 
10.038 

(non-linear, 
=500 

Sample 
variance 

0.1950 

0.1561 

0.0511 

0.0273 
4.78xl0- 7 

0.0041 

0.1834 

0.1699 

0.0538 

0.0357 
4.55xl0"6 

0.0058 

0.1587 

0.2287 

0.0805 

0.1003 
4.60xl0~5 

0.0191 

unknown 
T= 

Sample 
mean 

5.9835 

0.3832 

1.5178 

0.3601 
0.9991 
9.9818 

5.7614 

0.3535 

1.5360 

0.3407 
0.9907 
9.984 

4.1115 

0.2708 

1.5851 

0.2666 
0.9160 
10.030 

threshold). 
=1000 

Sample 
variance 

0.0904 

0.0753 
0.0224 

0.0133 
4.84xl0"7 

0.0020 

0.0910 

0.0705 

0.0239 

0.0162 
4.91xl0~6 

0.0024 

0.0720 
0.0944 

0.0324 

0.0472 
4.79xl0"5 

0.0086 

The pattern of results is again rather complicated. As expected however there 

is a clear reduction in sample variance of the estimators as T is increased with h 

fixed. For T — 1000 the mean squared errors of the estimators all increase as h 
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increases, with the mean squared errors when h — .001 and h = .01 being rather 

close and substantially better than those when h = .1. 

Example 2.6.2 Although the procedure described above is primarily intended for 

use in the modeling of very closely-spaced data, in this example we illustrate its 

performance when applied to the natural logarithms of the annual Canadian lynx 

trappings, 1821 - 1934 (see e.g. Brockwell and Davis (1991), p.559). Linear and 

threshold autoregressions of order two were fitted to this series by Tong and Yeung 

(1991) and a linear CAR(2) model using a continuous-time version of the Yule-

Walker equations by Hyndman (1993). 

The threshold AR(2) model fitted by Tong and Yeung (1991) to this series was 

D2Y(t) + a[1]DY(t) + a(
2

]Y(t) - axDW(t), if Y(t) < r, 

D2Y(t) + a?DY{t) + a{
2

2)Y(t) = a2DW{t), if Y(t) > r, 
(2.32) 

with 
a\1] = 0.354, ai2) = 0.521, ax = 0.707, 

a(j2) = 1.877, 4 2 ) = 0.247, a2 = 0.870, 
(2.33) 

and threshold r = 0.857. 

An argument exactly parallel to that for the CTAR(l) process at the beginning 

of this section permits the estimation of the coefficients and threshold of a CTAR(2) 

model of this form with ox = o2 — a, h = 1 and with time measured in years. It 

leads to the coefficient estimates, 

a[l) = 0.3163, af] = 0.1932, <jx = 1.150, 
(2.34) 

aS2) = 1.2215, 4 2 ) = 0.9471, a2 = 1.150, 

with estimated threshold r = 0.478. (Because of the large spacing of the obser­

vations in this case it is difficult to obtain a good approximation to the quadratic 

variation of the derivative of the process. The coefficient a was therefore estimated 

by a simple one-dimensional maximization of the Gaussian likelihood (GL) of the 
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original discrete observations (computed as described by Brockwell (2001a)), with 

the estimated coefficients fixed at the values specified above.) 

In terms of the Gaussian likelihood of the original data, the latter model (with 

—21og(GL) = 220.15) is considerably better than the Tong and Yeung model (for 

which —21og(GL) = 244.41). Using our model as an initial approximation for 

maximizing the Gaussian likelihood of the original data, we obtain the following 

more general model, which has higher Gaussian likelihood than both of the preceding 

models (-21og(GL) = 161.06), 

D2Y(t) + 1.1810£>y(t) + 0.308F(t) - 0.345 = 1.050DW(t), if Y(t) < -0.522, 

D2Y(t) + 0.07l5DY(t) + 0.452F(t) + 0.500 = 0.645ZW(t), if Y(t) > -0.522. 

(2.35) 

Simulations of the model (2.32) with parameters as in (2.33) and (2.34) and of 

the model (2.35) are shown together with the logged and mean-corrected lynx data 

in Figure 2.1. Inside Figure 2.1, Figures (a) and (b) show simulations of the CTAR 

model (2.32) for the logged and mean-corrected lynx data when the parameters 

are given by (2.33) and (2.34) respectively. Figure (c) shows a simulation (with 

the same driving noise as in Figures (a) and (b)) of the model (2.35). Figure (d) 

show the logged and mean-corrected lynx series itself. As expected, the resemblance 

between the sample paths and the data appears to improve with increasing Gaussian 

likelihood. 



42 

(a) Model (2.33) (b) Model (2.34) 

(c) Model (2.35) (d) Lynx data 

20 40 60 

time 

80 100 

Figure 2.1: Canadian lynx trapping data analysis using CTAR(2) model. 



Chapter 3 

N O N - N E G A T I V E LEVY-DRIVEN ORNSTEIN-UHLENBECK 

PROCESSES 

3.1 Introduction 

In Section 3.2, we define the stationary Levy-driven Ornstein-Uhlenbeck (or 

CAR(l)) process, {Y(t),t > 0}. In Section 3.3, we characterize the sampled AR(1) 

process, {Yn = Y(nh),n — 0 , 1 ,2 , . . . } , and the distribution of its driving white 

noise sequence in terms of the parameters of the underlying CAR(l) process and 

its driving Levy process. The autoregressive coefficient of the sampled process is 

then estimated with very high efficiency using the method of Davis and McCormick 

(1989). From the relation between the sampled and continuous-time processes we 

then obtain corresponding parameter estimates for the CAR(l) process. The idea of 

using the sampled process to estimate the parameters of the underlying continuous-

time process was first used by Phillips (1959), but in our case the non-decreasing 

property of the driving Levy process and the non-negativity of the corresponding 

discrete-time increments permits a very large efficiency gain. In Section 3.4, we show 

how to recover the driving Levy process under the assumption that the process is 

observed continuously and then approximate the results using closely-spaced discrete 

observations. In Section 3.5, we derive the asymptotic distribution of the coefficient 

estimator when the driving Levy process is a gamma process and illustrate with a 

simulated example the performance of the estimators of both the CAR(l) parameters 

and the driving Levy process. When the continuously observed process is available, 
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the autoregression coefficient can be identified with probability 1. This is discussed 

in Section 3.7. 

3.2 Stationary Levy-driven Ornstein-Uhlenbeck Processes 

Throughout this chapter, we shall be concerned with CAR(l) (or stationary 

Ornstein-Uhlenbeck) processes driven by standardized second-order non-decreasing 

Levy processes, which are defined in details in Section 1.2. 

An interesting fact about any non-decreasing Levy process is that its Laplace 

transform fm)is) '•= E(exp(—sL{t))) has the form 

fL{t)(s) = exp(- i$(s ) ) , &(s) > 0, 

where 

$(s) = m+ f {l-e-sx)v{dx), 
J(Q,oo) 

with the drift term m > 0 and the Levy measure v on the Borel subsets of (0, oo) 

satisfying 

/ — u(du) < oo. 
V(0,oo) 1 + U 

Then, based on Definition 1.3.1, the Levy-driven CAR(l) process is defined as 

follows. 

Definition 3.2.1 (Levy-driven C A R ( l ) process). A CAR(l) process driven by 

the Levy process {L(t),t > 0} is defined to be a strictly stationary solution of the 

stochastic differential equation, 

dY(t) + aY{t)dt = adL(t). (3.1) 

In the special case when {L(t)} is a Brownian motion, (3.1) is interpreted as an Ito 

equation with solution {Y(t),t > 0} satisfying 

Y{t) = e~atY{0) + a f e~a{i~u)dL{u), (3.2) 
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where the integral is defined as the L2 limit of approximating Riemann-Stieltjes 

sums. For any second-order driving Levy process, {L(t)}, the process {V(i)} can 

be defined in the same way, and if {L(t)} is non-decreasing (and hence of bounded 

variation on compact intervals) {Y(t)} can also be defined pathwise as a Riemann-

Stieltjes integral by (3.2). We can also write 

Y(t) = e-° ( ' - f l )y(s) + a f e~a{t-u)dL{u), for all t > s > 0, (3.3) 
i s 

showing, by independence of the increments of {L(t)}, that {Y{t)} is Markov. The 

following proposition implied by Proposition 1.3.1 gives necessary and sufficient 

conditions for stationarity of {Y(t)}. 

Proposition 3.2.1 IfY(0) is independent of {L{t),t > 0} and E{L{\f) < oo, 

then Y(t) is strictly stationary if and only if a > 0 and Y(0) has the distribution of 

<Tf?e-"»dL(u). 

Remark 3.2.1 By introducing a second Levy process {M(t),0 < t < oo}, inde­

pendent of L and with the same distribution as shown in Remark 1.3.2, we can 

extend {Y(t),t > 0} to a process with index set (—00,00). Then, provided a > 0, 

the process {Y(t)} defined by 

Y(t) = 0 [ e-a{t~u)dL*(u), (3.4) 
J—00 

is a strictly stationary process satisfying equation (3.3) (with L replaced by L*) for 

all t > s and s G (—00,00). Henceforth, we refer to L* as the background driving 

Levy process (BDLP) and denote it by L for simplicity. 

Remark 3.2.2 From (3.4) we have the relation 

Y(t) - e-a{t-s)Y(s) + a f e-
a^u)dL(u), t>s> - 0 0 . (3.5) 

J s 
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Taking s = 0 and using Lemma 2.1 of Eberlein and Raible (1999), we find that 

Y{t) = e~atY(0) + aL{t) -aa [ e~a{t~u)L{u)du, t > 0, (3.6) 
Jo 

where the last integral is a Riemann integral and the equality holds for all finite 

t > 0 with probability 1. 

3.3 Parameter Estimation via the Sampled Process 

Setting t = nh and s = (n — \)h in equation (3.5), we see at once that for any 

h > 0, the sampled process {Y} ',n = 0 ,1 ,2 , . . .} is the discrete-time AR(1) process 

satisfying 

Y^ = ^ 1 \ + Zn, n = 0,1,2,..., (3.7) 

where 

and 

= e-a\ (3.8) 

/•nh 

Zn = a e-a{nh-u)dL{u). (3.9) 
J(n-l)h 

The noise sequence {Zn} is iid and positive since L has stationary, independent and 

positive increments. 

If the process {Y(t), 0 < t < T} is observed at times 0, h, 2h,..., Nh, where 

N = [T/h], i.e., N is the integer part of T/h, then, since the innovations Zn of 

the process {Yn } are non-negative and 0 < 0 < 1, we can use the highly efficient 

Davis-McCormick estimator of </>, namely 

JN = , m i n . , 7 ^ T - (3-1 0) 
1(h) • Yn 
k — m m —7,, . 

\<n<N V( ' 
~ ~ In-1 

To obtain the asymptotic distribution of 4>N as N —* oo with h fixed, we need to 

suppose that the distribution function F of Zn satisfies F(0) — 0 and that F is 

regularly varying at zero with exponent a, i.e., that there exists a > 0 such that 

Fitx) 
lim ——- = xa for all x > 0. 
t|o F(t) 
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(These conditions are satisfied by the gamma-driven CAR(l) process as we 

shall show in Section 3.5.) Under these conditions on F, the results of 

Davis and McCormick (1989) imply that <j)N
 —> 0 a - s ' a s N —> oo with h fixed 

and that 

lim P h^iffl - 4>)ca <x]= Ga(x), (3.11) 

where kN = F-^N'1), ca = (EY{H)a)1/a' and GQ is the Weibull distribution func­

tion, 

G . W = ( ' - a t p { - I " } l ,f
l
X-°n (3.12) 

10, it x < 0. 

From the observations {Yn \ n = 0 , 1 . . . , N} we thus obtain the estimator (jrN 

and, from (3.8), the corresponding estimator, 

a^ = -h-l\og^] (3.13) 

of the CAR(l) coefficient a. Provided the distribution function F of the noise terms 

Zn in the discrete-time sampled process satisfies the conditions indicated above, we 

can also determine the asymptotic distributions of this estimator. In particular, 

using a Taylor series approximation, we find that 

lim P 
N~*oc 

(-h)e-ahcakrf ( a i ? - a) < x] = Ga(x), (3.14) 

where Ga is given in (3.12). Since v a r ( y ^ ) = a2/(2a), we use the estimator, 

(h) N 

N Byi(h)-F£,)a >15) 
i=0 

-2 _ 2aw \^f„(h) vW 

to estimate a2. 

3.4 Estimating the Levy Increments 

So far, we have made no assumptions about the driving Levy process except 

for non-negativity and existence of EL(1)2. In order to suggest an appropriate 
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parametric model for L and to estimate the parameters, it is important to recover 

an approximation to L from the observed data. If the CAR(l) process is continu­

ously observed on [0,T], then the argument of Tuan (1977) can be used to recover 

{L(t),0 < t < T}. His L2-based spectral argument which he applied to Gaussian 

processes, also applies to the Levy-driven CAR(l) process to give 

L(t) = a'1 Y(t)-Y(Q) + a / Y(s)ds (3.16) 

A direct justification of this result can be obtained by defining L as in (3.16) and 

then showing that Y(Q)e~at + a J* e~a{t-u)dL{u) = Y{t). Thus, using Remark 3.2.2 

of Section 3.2, we have 

lu 

Y(0)e~at + a / e-o ( ' -u )dL(u) 
Jo 

=y(0)e~ a t + aL{t) - m l e~a{t-u) L{u)di 
Jo 

ft "| ft r pu 
=Y{0)e~at+ Y(t)-Y(Q) + a Y{s)ds -a e'

a{t~u) Y(u)-Y{0) + a Y{s 
L Jo J Jo L Jo 

=Y(t) + a I Y(s)ds -a I e~a{t-u)Y {u)du - a2 I Y(s) I e-a{t-u)du ds 
Jo Jo Jo J s 

=Y(t) 

as required. 

From (3.16), the increment of the driving Levy process on the interval ((n — 

l)h,nh] is given by 

r rnh 

A LW := L(nh) - L{(n - l)h) = a~x Y{nh) -Y({n - l)/i) + a Y{u)du . 
L J(n-\)h 

Replacing the CAR(l) parameters by their estimators and the integral by a trape­

zoidal approximation, we obtain the estimated increments, 

A 4h) = -N1 k(h) - >ffl + WKYW + Ywi)/2 (3.17) 
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3.5 G a m m a - d r i v e n C A R ( l ) Process 

In this section, we illustrate the preceding estimating procedure in the case 

when L is a standardized gamma process. Thus L(t) has the gamma density fi(t) 

with exponent jt, scale-parameter 7"1/2 , mean 7^ 2 i and variance t. The Laplace 

transform of L(t) is 

fm(s) := Eexp(-sL(t)) = e x p { - t $ ( s ) } , &(s) > 0, (3.18) 

where $(s) = 7log(l + fts), (5 = 7- 1 / 2 and 7 > 0. 

Based on the /i-spaced observations {Fn , n = 0 , 1 , . . . , N}, we estimate the 

discrete-time autoregression coefficient 4> and the CAR(l) parameters a and a2 using 

(3.10), (3.13) and (3.15) respectively. We then estimate the Levy increments as in 

(3.17) and use them to estimate the parameter 7 of the standardized gamma process 

L. To obtain the asymptotic distributions of <jrN and aN' as N —> 00 with h fixed, 

we first show that the distribution function F of Zn in (3.7) is regularly varying 

at zero with exponent jh and then determine the coefficients kN = F~1(N"1) and 

ca = (EYi 'ay/a in (3.11). To do so, we use the Laplace transform (3.18) to 

investigate the behavior of the density of Z\ = a J0 e~a(h~t">dL{t) = a J0 e~atdL(t) 

near zero. 

Define Wh := Zxja = £ e~atdL{t). The Lapl ace transform of Wh is 

fwh(s) exp 

exp 

§{se~at)dt 

rh 

/ -ylog{l + pse~at)dt 
Jo 

(3.19) 

The exponent in (3.19) has the power series expansion, 

ph rh 
- 1log(l + 0se-at)dt=-1 log 

Jo Jo 

aog(s/3)-^ + ^7a/i2 + 7 
j3sa 

'1 - eah) -

s(3e-at{\ + 

1 

1 

4/32s2a 

(3se~at 

(l-e2ah) + 

dt 
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as s —> oo. Hence fwh(s) has the corresponding expansion, 

where C i , C 2 , . . . are constants depending on 7, /3, h and a. Since fzAs) = fwh(as), 

slhh,{s) -> (af3)-^hel^ah\ as s - • 00. 

By Theorem 30.2 of Doetsch (1974), the density fzx of Zi has the expansion, 

in a neighborhood of zero, 

• /Z l1 j r ( 7 / i ) a r ( 7 ^ + 1) aT(7h + 2) 

So 

/ Z l ( x ) ^ (a /3 ) -^e^ a ' l 2 / r (7 / i ) , as x - 0, 

and 

FZl{x) ~ a;7/ l(a/3)-T / le^a ' '7r(7/z + 1), as a; -> 0. (3.20) 

Thus the distribution F of Zn is regularly varying at zero with exponent 7/1. 

From the definition of fcjv in (3.11), we have jj = fQ
 N Fzx{du). This equation, 

together with (3.20), gives 

k~N
x ~ (a/?)"1 [r(7/i + l ) ] ~ 1 / ( ^ e*

ah Nl^h\ as iV ^ 00. (3.21) 

In order to calculate cyh, we need to find E[Y„, } , where F„ = X ^ o ftZn-j-

The Laplace transform of F„ is 
0 0 

So 

/ y ( h ) (s) = E e~sY» =\\E e — "»-' 
j = 0 

log / ^ h ) (s) = ^ l 0 § /^i (S<^) 

00 

= X^losM(so-^) 

1 

V / log(l + /3sa^e"ay)d2/, 
, - n JO 

j=0 

= - 7 ^ 
j=0 
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and hence 

/yw(s ) = exp - J^ [diiogl1 + Psatj?) - dilog(l + / t o r ^ e - 0 " ) ] 
3=0 

/ 7 = exp — dilog(l + ft so) 

where dilog is the dilogarithm function, dilog(x) = f*\og(u)/(l — u)du. Using 

Theorem 2.1 of Brockwell and Brown (1978), we get 

E\Yw\ih = — - — r -,—lh DfY(h) (s) ds 

aTil-jh) 
-7/1-1 7 ,., exp -dilog(l + Qsa) log(l + psa)ds, (3.22) 

where £) / denotes the derivative of / . Then c ^ = E[Yn ' 

cally evaluated from (3.22) for fixed /i. 

can be numeri-

Theorem 3.5.1 For a sequence of observations {Yn ,n = 0 , 1 , . . . , iV} from a 

gamma-driven CAR(l) process, we have aN —> a a.s. and 

lim P 
N—*oo 

-ahj-\f-(h) h)e-ahk~N
l{a^ - a)ca < x\= Ga(x), 

where Ga is as in (3.12), a = 7/1, dN is defined in (3.13), kN
l is given in (3.21), 

and ca is evaluated through (3.22). 

Proof: At the beginning of Section 3.3, we have shown that Yn is a stationary 

discrete-time AR(1) with autoregression coefficient 0 6 (0,1) and iid noise sequence 

{Zn}. According to (3.20), the distribution function F of Zn is regularly varying 

at zero with exponent a — 7/1 and satisfies the condition F(0) = 0. Since 0 < 

Zn < o{L{nh) - L((n - l)h), Ju^F(du) < 00 for all £ > 0. By Corollary 2.4 of 

m (h) Davis and McCormick (1989), we have <f>y^' —» 0 a.s., which implies aN 

From the same corollary, we also conclude that 

a a.s. 

lim P 
N~-*oo 

~-if2W kN i4>N ~ §)clh < X = Glh(x), 
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where (pN
 a n d kN

x are given in (3.10) and (3.21) respectively, and c7^ is evaluated 

through (3.22). Using a Taylor series expansion, we find from this result that 

lim P 
N~*oo 

{-h)e~ahk~N\af - a)clh < x = Glh{x) 

U 

Theorem 3.5.1 gives the limiting distribution of <jrN' for fixed h as N —> oo. It 

is of interest also to consider the behavior of the estimator as h also goes to zero. 

For any non-negative random variable Y with density function f(u), we have 

[EYl ,1/s usf(u)du 
uo 

i / s 

1 + s / us-lf{u)du 
0 

1 / . 

exp I / u 1 / ( ' " ) ^ ) = exp [EY X) as s —> 0, 

as long as EY l is finite. Applying this result to y„ ) and using Theorem 2.1 of 

Brockwell and Brown (1978), we obtain 

lim clh = exp (E(Y^h)) *) = exp I / fY(h){s)ds 

= exp (7^d i l o g(1 +^dsV (3.23) 

The behavior of fc^1, defined in (3.21), is more complicated. Using L'Hospital's 

Rule, we have 

l o g r ( s + l) T'(s + 1) 
lim = - lim —. — = - F (1) = 7 B , 
s->0 S s-0 T(S + 1 ) 

where 7# is the Euler-Mascheroni constant, with numerical value of 0.5772- • •. 

Hence 

lim[r(7/* + l ) r 1 / ( 7 ' ° = e ^ 
h—>0 

and 

k~N
x ~ {o0YxelENlKlh) as N - • oo and h -> 0. (3.24) 
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When h is small, k^x and c7^ can be well approximated by (3.23) and (3.24). Since 

the rate of convergence in Theorem 3.5.1, as indicated by k^ , increases as h de­

creases and since the limiting distribution G1h becomes degenerate as h —> 0, this 

suggests the possibility of super-convergence of aN to a as N —> oo and h —> 0. In 

fact, in Section 3.7, we show that for any fixed T > 0, aTJh —> a a.s. as /i —> 0. 

3.6 Examples 

In this section, we will illustrate the estimation procedure with both a simulated 

example and the German Deutsche Mark/US Dollars (DM/$) exchange rate series 

data as described in Section 1.4.2. 

Example 3.6.1 Consider the gamma-driven CAR(l) process defined by, 

DY{t) + 0.6Y(t) = DL{t), t € [0,5000], (3.25) 

was simulated at times 0,0.001,0.002,... , 5000, using an Euler approximation. The 

parameter 7 of the standardized gamma process was 2. The process was then 

sampled at intervals h = 0.01, h = 0.1 and h = 1 by selecting every 10th, 100th and 

1000th value respectively. We generated 100 such realizations of the process and 

applied the above estimation procedure to generate 100 independent estimates, for 

each h, of the parameters a and a. The sample means and standard deviations of 

these estimators are shown in Table 3.1, which illustrates the remarkable accuracy 

of the estimators. 

To estimate the parameter 7 of the driving standardized gamma process, the 

following procedure was used. For each h and each realization, the estimated 

CAR(l) parameters were used in (3.17) to generate the estimated increments 

AL{n\ n = 1, . . .,5000/h. These were then added in blocks of length 1/h to obtain 

5000 independent estimated increments of L in one time unit. Figure 3.2 shows 

the histogram (bars) of the increments for one realization with h — .01, together 
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Table 3.1: Estimation results for gamma-driven Ornstein-Uhlenbeck process 

Spacing 

h=\ 

/i=0.1 

/i=0.01 

Parameter 

a 
a 
a 
a 
a 
a 

Gamma increments 
Sample mean Sample std deviation 
of estimators of estimators 

0.59269 
0.99796 
0.59999 
1.00011 
0.60000 
0.99990 

0.00381 
0.01587 
0.00000 
0.01281 
0.00000 
0.01175 

with the true probability density (solid line) of the increments per unit time of the 

driving gamma process L. Even if we did not know that the background driving 

Levy process is a gamma process, the histogram strongly suggests that this is the 

case. For each h and for each realization of the process, the sample mean 7 of the 

estimated increments per unit time was then used to estimate the parameter 7 of 

the driving standardized Levy process, giving a set of 100 independent estimates of 

7 for each h. The sample means and standard deviations of these estimators are 

shown in Table 3.2. 

Table 3.2: Estimation results for driving Levy process. 
Spacing 

h= 1 
h = 0.1 

h = om 

Parameter 

7 
7 
7 

Sample mean Sample std deviation 
of estimators of estimators 

1.99598 0.05416 
2.00529 0.03226 
2.00547 0.02762 

Example 3.6.2 Taking the spacing h = 1, we apply our estimation procedure to 

the realized volatilities constructed from German Deutsche Mark/US Dollar ex­

change rate series data. For details on this data set, see Section 1.4.2. 

The fitted CAR(l) model was 

DY(t) + 1.3189Y(t) = 0.3567DL(t), t e [0,3045]. 
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Figure 3.1: True probability density vs. histogram of the estimated Levy increments. 

Then Levy increments, which turned to be all positive, were recovered as 

discussed in Section 3.4. Using those increments, we -fitted three different Levy 

processes by method of moments. The three processes we tried were: gamma 

process, reciprocal gamma process and inverse gaussian process. Figure 3.2 shows 

the histogram (bars) of estimated increments and the fitted probability densities 

(solid lines) for those three Levy processes. As we shall see, the inverse Gaussian 

process fits the increments best. The fitted marginal probability density for the 

inverse Gaussian process is 

3.8389t 
h{t)(x) = „5.9518t -1 .5 

'2ir 
x-1 &exp{-7.3686t2s"1 - 1.2019x}I{x>0}(x). 

3.7 Estimation for Continuously Observed Process 

It is interesting to note that from a continuously observed realization on [0, T] 

of a CAR(l) process driven by a non-decreasing Levy process with drift m — 0, the 
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Figure 3.2: Fitted pdf vs. histogram of the estimated Levy increments (DM/$ data). 

value of a can be identified exactly with probability 1. This contrasts strongly with 

the case of a Gaussian CAR(l) process. The result is a corollary of the following 

theorem. 

Theorem 3.7.1 If the CAR(l) process {Y(t),t > 0} defined by (3.1) is driven by 

a non-decreasing Levy process L with drift m and Levy measure v, then for each 

fixed t, 
Y(t + h)-Y(t) 

h 
+ aY(t) —-• m a.s. as h 1 0. 

Proof: From (3.6) we find that 

Y(t + h)- Y(t) =Y(0)(e~a{t+h) - e~at) + a(L(t + h) - L{t)) 

-CUT I e-^~^(e-
ah - l)L{u)du -CUT I 

Jo Jt 

t+h 
,—a(t+h—u) L(u)du. 
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Dividing each side by h, letting h [ 0, and using the fact (Statland (1965)) that 

\im(L{t + h)-L(t))/h = m , 

we see that 

Y{t + h)~ Y{t) ^ m_aY(0)e-*t+a
2a [ era^L(u)du-aaL{t) = m-aY(t). • 

h Jo 

Corollary 3.7.1 If m = 0 in Theorem 3.7.1 (this is the case if the point zero 

belongs to the closure of the support of L(l)), then for each fixed t, with probability 

1, 

a = hm • . (3.26) 
hio h 

For each fixed T > 0, a is also expressible, with probability 1, as 

« - sup ^ y < 5 > - ' ° S y " > . (3.27) 
0<s<i<T t — S 

Proof: By setting L(t) = 0 for all t in the defining equation (3.1) we obtain the 

inequality, for all s and t such that 0 < s < t < T, 

log Y(s) - logY(£) < a{t-s), 

from which it follows that 

log Y(s)-log Y(t) 
a > sup . (3.28) 

0<s<t<T t — S 

From Theorem 3.7.1 with m = 0 we find that 

Y(t)-Y(t + h) 

—ww) >flMftia 

From the inequalities (3.28) and 1 — x < — logx for 0 < x < 1, we obtain the 

inequalities, 
Y(t) - Y{t + h) logYjt) - logY{t + h) 

hY(t) - h - ' 
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and letting h j . 0 gives (3.26). But this implies that 

l o g y ( s ) - l o g y ( t ) 
a < sup 

o<s<t<r t — s 

which, with (3.28), gives (3.27). • 

Remark 3.7.1 If observations are available only at times {nh : n = 0 , 1 , 2 , . . . , 

[T/h]}, and if the driving Levy process has zero drift, Corollary 3.7.1 suggests the 

estimator, 

A(/0 logY(nh)-\ogY((n + l)h) 
aT — sup . 

0<n<[T/h] " 

This estimator is precisely the same as the estimator (3.13). Its remarkable accuracy 

has already been illustrated in Table 3.1. The analogous estimator, based on closely 

but irregularly spaced observations at times t ] , t2, • • • ,^N such that 0 < t\ < ti < 

• • • < tN < T, i s 
l o g y ( * „ ) - l o g y ( t n + 1 ) 

aT = sup — . 

By Corollary 3.7.1, both estimators converge almost surely to a as the maximum 

spacing between successive observations converges to zero. 



Chapter 4 

NON-NEGATIVE LEVY-DRIVEN C A R M A PROCESSES 

4.1 Introduction 

In this chapter, we extend the results from previous chapter (see also 

Brockwell et al. (2007)) to make inference on the general stationary Levy-driven 

CARMA process defined in Section 1.3.1, whose sampled process was discussed in 

Section 1.3.2. In Section 4.2, we describe how estimators of the parameters are 

obtained by maximizing the Gaussian likelihood of the observations and discuss the 

asymptotic properties of the estimators. In Section 4.3, we show how the increments 

of the driving Levy process are determined for a given specified set of parameters. 

In Section 4.4, we apply the analysis to simulated CARMA(2,1) processes driven by 

inverse Gaussian and gamma Levy processes. For the simulations, we have chosen 

the CARMA coefficients to be the maximum Gaussian likelihood estimates of the 

coefficients based on Todorov's realized volatility series. In Section 4.5, we apply the 

technique to the realized volatility series itself in order to determine which driving 

Levy process is most compatible with the data. 

4.2 Maximum Gaussian Likelihood Estimation via the Sampled Process 

Observations are assumed to be available at the closely and uniformly spaced 

times 0,h,2h, ... ,Nh, where N denotes the integer part of T/h. Our inference 

will therefore be based on observations of the sampled process, {Yn := Y(nh),n — 

0 , 1 , 2 , . . . , [T/h]}. 
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If Y is a Gaussian CARMA process, i.e. if L in Definition 1.3.1 is a Brownian 

motion, then it is well-known (see e.g. Doob (1944), Phillips (1959), Brockwell 

(1995)) that the sampled process {Yn}, for any fixed h > 0, is a discrete-time 

ARMA(r, s) process with 0 < s < r < p, driven by independent and identically 

distributed Gaussian white noise. 

The probabilistic structure of the sampled Levy-driven CARMA(p, q) process 

with distinct autoregressive roots is most clearly illustrated by inspection of (1.12) 

and (1.14) with t = nh and s = (n — \)h. These equations show that the sam­

pled process {Yn} is the sum of the sampled component processes {YTin} where the 

r th sampled component process is a discrete-time autoregression of order 1 with 

coefficient eXrh. Thus {Yr;n} satisfies the AR(1) equation 

Yr>n = eXrhYr^ + Zr,n, n = 0, ± 1 , . . . , (4.1) 

with iid noise, 
pnh 

Zr,n = ar / eXAnh-v)dL{u). (4.2) 
J(n-l)h 

If B denotes the backward shift operator, and we apply the operator H i ^ r ^ — 

eXihB) to each side of (4.1), then sum over r = 1 , . . . ,p, we find that 

[ ] ( 1 - e^hB)Yn = Un, (4.3) 

i = i 

where the sequence {Un} has the autocovariance structure of a moving average 

process of order less than p. Hence (see Brockwell and Davis (1991), p.89), equation 

(4.3) can be written as 
v 

]](1 - ex>hB)Yn = Wn + dxWn-x + ••• + V I ^ W H , (4.4) 
t = i 

where {Wn} is a white noise sequence, but not necessarily iid (except when p = 1). 

ARMA processes with non-iid driving noise are called weak, as opposed to strong, 

ARMA processes. 
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Remark 4.2.1 As h —> 0, it is easy to check that, to within an error which is op(/i2), 

Wn can be replaced on the right-hand side of (4.4) by Y%=i ®i(L(nh) — L((n — l)h)), 

and the moving average polynomial, 1 + 9XB -\ (- 9p_iBp~~l, by ^ L i ai IL^ iU ~ 

j Qj. Since the increments L(nh) — L((n — l)h) are independent, the 

behavior of the sampled process resembles that of a strong ARMA process for small 

h. 

Remark 4.2.2 Our goal, in estimating the coefficients of the sampled process by 

maximum Gaussian likelihood, is to obtain almost surely consistent estimators of 

the coefficients of the sampled process and to use them to find corresponding max­

imum Gaussian likelihood estimates of {a,\,..., ap ; b\,..., bq}. From these, as will 

be described in Section 4.3, we estimate the increments of the driving Levy process. 

Almost sure consistency of the maximum Gaussian likelihood estimators holds for 

the (weak) ARMA process {Yn}, but in order to establish the standard asymptotic 

normal distribution of the estimators as T —» oo with h fixed, stronger conditions 

on the driving discrete-time white noise are required, e.g. the driving noise should 

be iid or a martingale difference sequence with constant conditional variance (see 

Brockwell and Davis (1991), Theorem 10.8.2 and Hannan (1973), Theorem 3). How­

ever for small h, Remark 4.2.1 suggests that the standard asymptotic distribution of 

the estimators under the iid assumption (Brockwell and Davis (1991), p. 386-387) 

should be approximately valid. This is borne out by the simulations described in 

Section 4.4 (see Remark 4.4.1 below). In the following example we derive, for the 

sampled CARMA(2,1) process with assumed iid noise, the asymptotic distribution 

of the maximum Gaussian likelihood estimators of {ai)a2,b0} as T —> oo with h 

fixed , and show that the limit of this asymptotic distribution as h —> 0 is the same 

as the asymptotic distribution as T —* oo of the maximum Gaussian likelihood es­

timators of a Gaussian CARMA(2,1) process observed continuously on the interval 

[o,n-
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Example 4.2.1 For the CARMA(2,1) process defined in Example 1.3.1, the sam­

pled process {Yn := Y(nh), n = 0 ,1 , . . .} satisfies 

Yn - 4>{h)Yn^ - 4h)Yn_2 = Zn + 6^Zn.u {Zn} ~ WN(0, 52(h)). 

For fixed h, as T —> oo, the maximum likelihood estimator of /3 = \<I>{{\($\0W 

based on observations Y\,. .. ,Y[T/h] is strongly consistent and, if we were to make 

the assumption that the sequence {Zn} is iid (see Remark 4.2.1 above), then (see 

Brockwell and Davis (1991), p.258) 

y/T/h(J3-0)^N(O,M(J3)), (4.5) 

where 

M(j3) = 52 EXJtU't EVt\J't 
EUtV't EVtV't 

i ~ i 

(4.6) 

and the random vectors U t and Vt axe defined as Ut — [Ut, • • • , Ut+i-p]' and Yt — 

[Vt, • • • , Vt+i-g]', where {Ut} and {Vt} are stationary solutions of the autoregressive 

equations, 

4>{B)Ut = Zt and 9(B)Vt = Zt. (4.7) 

In order to study the asymptotic behavior as T —+ oo of the maximum likelihood 

estimators tf\$\ew , when h is small, we consider the expansion 

M = 
2ax 

7? 

+ 
CL\ 

B -B -2b2
0C 

-B B 2b\C 
2b2

0C 2b2
0C b0C

2/ax 

In2 

A2 

V2 -B -bQCV/ai 

-B B + Aa2b
2 b0C

2/ai 

-bQCV/ai b0C
2/ai b2C2/a2 

-Q -CH/2 
g d ( f + 48aia2b

2
0) C{n+l2a1a2bQ + 12a2b

2
0)/2 

_ -CH/2 C(H + I2axa2b0 + 12a2b
2)/2 -C2l/{4axbQ) 

(4.8)' 

?>A2 

+ 0{h4) as fc - • 0, 
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where 

A a2 + axb0 JQI 

B =a2 - 2axa2b0 + a\bl + 2a2b\ + 2axb\ + b^, 

C =a2 + axb0 + bo, 

V = - a2 + axb0 + b2
Q, 

£ =4axa2 + 9a2b0 - 8aja2b0 + Aa\bl
Q - Uaxa2bo + 9af b6

Q - %a2b
6

0 + Q>axbl + bg, 

G =4a\al - 3a2 + 3axalb0 - &a\a2b0 + 4a\b2
0 - 6a26o + 7<A.a2bl + 9a? b̂  

+ axbl + Qa\b1 — 3a2bo, 

H =2a\ - 3axa2bQ - 8a2b
2

Q + ba\b2 + 9 ^ + 6b4
0, 

1 = - a\- 4a1a2b0 + a\b2
Q - 2a2bl - 4axbl - YJbA

Q. 

Based on the mapping from ((px,(p2,9) to (ax,a2,b0), the components 

{Cy'i hj — 1)2,3} of the matrix 

c = 

da\ dai da\ 

80,2 da 2 80,2 
d<j>i dS2 d8 
dbg dbg dbp 
d4>\ dfa dO 

have the asymptotic expansions 

(4.9) 

Cxx = 0, 

C12 = C2i = T + ax + -±h + • • 
h 2 

a 13 

G 22 

C31 " 
a2 + b2

0 {a2 + b2)ax (a2 + b2){a\ + 4b2) 

12b0 

ai_ _ 
2h 

+ 24b0 

4a2 

h + 72b0 
-/i2 + 

12 + 
n n a2 + bg i ai(3bg + a 2 ) , 

12b0 24b0 

2 
+- ô O + 246§ 

7bgaf + bgo^ + a2af - 3aj + 4bg 
72b0 

a? \ , , b„ 0? N, 2 

A2 
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From (4.8) and (4.9) we find that 

2 
CMC = 

A2h 

axB 4a?a26§ 2axb\C 
4a\a2bl aYa2{B + 4aia2bQ — 4ai6g) 2axa2bQC 
2a,blC 2a1a2b0C b0C

2 
t iw 0 i 

1 + 0(1)), 

(4.10) 

as /i —> 0, and hence, from (4.5) that the maximum likelihood estimator 0 of 0 = 

[ai,a,2, bo]' based on observations of Y at times 0, h, 2 / i , . . . , h[T/h], satisfies 

Vf(0 -0)=> N(0, V), as T -»• oo, (4.11) 

where V = hCMC. 

Remark 4.2.3 The leading term in the expansion of the covariance matrix V coin­

cides with the asymptotic covariance matrix obtained by Tuan (1977) for the maxi­

mum Gaussian likelihood estimator of 0 := [ai, a2, b0}' of the corresponding Gaussian 

CARMA process observed continuously on the interval [0,T], namely J'1, where 

J. jk 
1 

2vr J 
r L 

\ d a{iu>) 1 

i 80j b{iu) j 

( d a(—ico) | 

1 dek b(-iu) j 
b(iuj) 

a(iu>) 
dw, for j , k = 1, 2,3. 

4.3 Recovering the Background Driving Levy Process 

In order to suggest an appropriate parametric model for the driving Levy 

process, it is necessary to recover the realization of L from a given realization of 

Y on [0,T] for given or estimated values of {cij, 1 < j < p; bj, 0 < j < q; a}. In 

general this requires knowledge of the initial state vector X(0), but if this is avail­

able or if we are willing to assume a plausible value for X(0), then an argument 

due to Tuan (1977) can be used to recover L. In this section, we shall assume that 

the polynomial a and polynomial b have all their zeroes in the left half-plane. Since 

the covariance structure of our Levy-driven process is exactly the same (except for 

slight notational changes) as that of Tuan's Gaussian CARMA process and since 
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his result holds for Gaussian CARMA processes with arbi t rary mean, his L -based 

spectral argument can be applied directly to the Levy-driven CARMA process to 

give, for t > 0, 

L(t) = a-1 \Y^-q-l){t) - Y{p-q-l)(Q)}- ] T bg-jX^-^iu) - J^ ajX
{p-j){u) du, 

(4.12) 

where X^°\ ... , A^p ^ are the components of the state process X defined in (1.8). 

The Levy process increment on the interval (s,t] is therefore 

AL := L{t) - L{s) =a~l \Y{p-^l\t) - Y{p~q~l\s)] 

YJ\~]X
{v-3\u)-Y.a3X^\u) 

7 = 1 

du, t > s > 0. 

(4.13) 

These increments are easily expressed in terms of Y and X(0) by noting 

that (1.3) characterizes X^ as a CARMA(g,0) process driven by the process 

{cr-1 JQ\Y(u)du}. Making use of this observation, introducing the q x 1 state vector 

Xq(t) := [X^{t),...,X^-l\t))' and proceeding exactly as we did in solving the 

CARMA equations in Section 1.3.1, we find that for q > 1, 

Xq{t) = Xq{0)eBt + a"1 [ eB{t-u)eqY{u)du, (4.14) 
Jo 

where 

B = 

while for q = 0, 

0 
0 

0 
_ -6o 

1 
0 

0 
-bi 

0 •• 
1 •• 

0 •• 

- b 2 •• 

0 
0 

1 
• -bq-\ _ 

and eq = 

0 
0 

0 
1 

x(°)(t) , - 1 Y(t). (4.15) 

The remaining derivatives of X^ up to order p — 1 can be determined from (4.14) 

and (4.15), completing the determination of the state vector X(t). Then the driving 

Levy process is found from (4.12). 



66 

In the CAR(l) case, L(i) takes the extremely simple form, 

L(t) = a - l Y(t) - y(0) - A / Y(s)ds 
Jo 

(4.16) 

where A is the autoregressive root, A = —a\. 

In the case when the autoregressive roots are distinct, we can take advantage 

of the simple expression (4.16) and the canonical representation of Y as follows. We 

use the transformation (1.17) to recover the canonical state process Y defined by 

(1.13) and (1.16) from X, and then apply (4.16) to each of the component processes 

Yr to obtain p (equivalent) representations of L(t), namely 

L(t) = ar 
- I Yr(t)-Yr(0)~ Ar / Yr(u)du 

o 
l , . . . , p . (4.17) 

If Y is observed continuously on [0,T] we can use any one of these p very 

simple equations to recover L from the realization of Y, the value of X(0) and the 

parameters of the CARMA process. Of course for calculations it is simplest to 

choose (if possible) a value r in (4.17) for which Ar is real. 

Example 4.3.1 (The CARMA(2,1) Process). For a specified parameter 

set {ai, a2, b0,a} and assumed initial value X^(0), the state vector X(i) = 

[X^(t),X^(t)]' at time t > 0 can be constructed from the relations, 

X(°)(t) = A-(0)(0)e-6ot + a- 1 / e-
boit-u)Y(u)du, 

Jo 

and 

X^{t) = -bQX{0){t) + a-'Yit). 

The canonical state vector Y(t) is then given in Example 1.3.1 and the increments 

of L obtained from either of the two equations (4.17). 

We have assumed throughout this section that Y is observed continuously. If 

Y is observed at closely-spaced discrete times, the integrals must be replaced by 

approximating sums. This is done in the illustrative examples of the following 

sections. 
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4.4 Applications to Simulated Series 

In this section, we illustrate the estimation procedure with simulated 

CARMA(2,1) processes driven by inverse Gaussian and gamma processes. The coef­

ficients of the simulated models were chosen to coincide with the maximum Gaussian 

likelihood estimates for the realized volatility series of Todorov (2006) which is dis­

cussed in more detail in Section 4.5. The corresponding defining differential equation 

is 

(£>2 + 1.36233£>+0.04445)y(£) = 0.28886 (0.20603+D)DL{t), t e [0,2000]. (4.18) 

In Example 4.4.1 we consider this process driven by a standardized inverse Gaussian 

process and in Example 4.4.2 we suppose that the driving process is a standardized 

gamma process. In each case we choose the parameter, \i := EL{\), of the driving 

process to be 0.50015. (This particular value was chosen so that the mean of the 

process Y is equal to the sample mean of Todorov's realized volatility series.) Models 

are fitted to replications of the simulated series and the fitted models are compared 

with those generating the data. 

Example 4.4.1 (The inverse-Gaussian-driven CARMA(2,1) Process). The 

standardized inverse Gaussian process, with EL(t) = pit (and Var(L(i)) = t) is the 

Levy process with marginal probability densities 

Mx)=S^ f-*^} w'x)- (4j9) 

A CARMA(2,1) process driven by a standardized inverse Gaussian process is there­

fore determined by 5 parameters, ai,a2,bo,cy and pi. 

In our simulation study, 100 realizations of the CARMA(2,1) process (4.18) 

driven by the standardized inverse Gaussian process with parameter pi — 0.50015 

were generated at times 0, 0.01, 0.02, . . . , 2000, using an Euler approximation. Each 
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realization was then sampled at intervals h = 0.1 and h = 1 by selecting every 10th 

and every 100th value respectively. For each realization we computed maximum 

Gaussian likelihood estimators of the parameters a i ,a 2 ,6 0 and a. The parameter \i 

was estimated by equating the mean of the fitted model to the sample mean of the 

simulated series. The sample means and standard deviations of these estimators are 

shown in Table 4.1. 

: Estimat 
Spacing 

h=\ 

fc=0.1 

ion results fo 
Parameter 

a i 

a-2 

bo 
a 

V 
ax 

a2 

bo 
a 
fi 

r inverse-Gaussian-driven CARMA(2,1) 
Sample mean 
of estimators 

1.38802 
0.04676 
0.21173 
0.28521 
0.54724 
1.38202 
0.04733 
0.20982 
0.28709 
0.55254 

Sample std deviation 
of estimators 

0.13093 
0.01588 
0.03362 
0.02194 
0.10276 
0.06132 
0.01232 
0.02611 
0.01670 
0.10375 

process. 

Remark 4.4.1 For the spacing h = 0.1, the sample covariance matrix of the esti­

mates of [ai,a2, bo]' is 

1 0 M ) 
37.6068 4,4291 11.9388 
4.4291 1.5176 2.3772 

11.9388 2.3772 6.8173 

Evaluating the asymptotic covariance matrix y/2000 (see equation (4.11)) using the 

parameters of the simulated process defined by (4.18), we obtain the corresponding 

covariance matrix, 

l0(-4> 
30.9129 3.7302 11.3213 

3.7302 1.4103 2.4425 
11.3213 2.4425 7.4132 

showing that the asymptotic covariance V/T of the maximum likelihood estimators 

for a continuously observed Gaussian process on [0,T] provides a good approximation 
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in this case to the covariance of our estimators when T = 2000 and h = 0.1. (See 

Remark 4.2.2.) 

To illustrate the estimation of the Levy increments L(n) — L(n—1), we simulated 

the same process on the interval [0,5000], sampled it at integer times, estimated the 

parameters by maximum Gaussian likelihood, and, with these parameter values, es­

timated the Levy increments as described in Section 4.3, using the CAR(l) process 

corresponding to the autoregressive root with smaller absolute value. A kernel den­

sity (dash-dot line) estimate of the probability density of the estimated increments 

is shown in Figure 4.1, together with the inverse Gaussian density (solid line) of the 

increments per unit time of the Levy process used to generate the series. A small 

fraction (.035) of the increments were estimated to be small and negative. These 

were set to zero. The fit appears to be very good. 

Figure 4.1: Probability density vs. kernel density for inverse Gaussian increments. 
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Example 4.4.2 (The gamma-driven CARMA(2,1) Process) . The standard­

ized gamma process, with EL(t) — fit (and Var(L(t)) = t) is the Levy process with 

marginal probability densities 

h{t)(x) = YTjfii*'' * exP (~^x) hx>o}(x)- (4-2°) 

The CARMA(2,1) process driven by a standardized gamma process is, like the 

inverse-Gaussian-driven process, determined by the 5 parameters, 01,02,60,0" a n d 

As in the previous example, we generated 100 realizations of the process at 

times 0, 0.01, 0.02, . . . , 2000, using an Euler approximation, and then sampled each 

realization at intervals h = 0.1 and h = 1 by selecting every 10th and every 100th 

value respectively. 

For each resulting series we computed maximum Gaussian likelihood estimators 

of the parameters a\, 02, 60 and a and estimated \i by equating the mean of the fitted 

model to the sample mean of the simulated series. The sample means and standard 

deviations of these estimators are shown in Table 4.2. 

Table 4.2: Estimation results for gamma-driven CARMA(2,1) process. 
Spacing 

h=\ 

/i=0.1 

Parameter 

60 
a 

60 
a 

Sample mean Sample std deviation 
of estimators of estimators 

1.38396 0.10057 
0.04902 0.01603 
0.21157 0.02932 
0.29057 0.02187 
0.52306 0.11560 
1.37186 0.06300 
0.04884 0.01390 
0.21001 0.02740 
0.28924 0.01683 
0.53017 0.10189 

The Levy process increments were estimated as described in Example 4.4.1, 

and in Figure 4.2 a comparison is made between the true distribution (solid line) 
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of the increments of the driving process and a kernel density (dash-dot line) based 

on the estimated Levy increments. Again the small negative estimates were set to 

zero before computing the kernel density estimate and again the fit between the 

generating and empirical densities is good. 

Figure 4.2: Probability density vs. kernel density for gamma increments. 

4.5 Analysis of Todorov's Realized Volatility Series 

In this section, we will illustrate the estimation procedure with the German 

Deutsche Mark/US Dollars (DM/$) exchange rate series data as described in Section 

1.4.2. 

The CARMA(2,1) model fitted by maximizing the Gaussian likelihood is 

(£>2 + 1.36233JD + 0.04445)y(i) = 0.28886 (0.20603+£>)£>L(i), t G [0,3045]. (4.21) 

In Figure 4.3, we show the excellent fit of the autocorrelation function (solid line) 

of Y to the empirical autocorrelations (vertical bars) up to a lag of 80 days. Our 
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next objective is to estimate the Levy increments in order to identify an appropriate 

driving Levy process to complete the specification of the model (4.21). 

1 1 1 1 1 1 1 1 1 

0.9 • 

0.8 | 

0.7 -

J °-6 " 
a> 
t 0 .5 -
o 
o 

I 0.4-

0.3 -

0.2 -

0.1 -
ol-

0 10 20 30 40 50 60 70 80 
Lag (in days) 

Figure 4.3: Empirical vs. fitted model ACF of the DM/$ realized volatility data. 

The estimates of the Levy increments L{n) — L(n — 1) were obtained by con­

structing a realization of the component CAR(l) process corresponding to the esti­

mated autoregressive root Ai = —0.03345 and proceeding as described in Example 

4.3.1 to estimate the Levy increments from it. After setting the estimated small 

negative increments to zero, a kernel estimate (dash-dot lines) of the probability 

density of the increments was computed and is shown in Figure 4.4 together with 

probability densities (solid lines) of four potential densities of L(l) for standard­

ized Levy processes having the same mean (0.6187) as that of the kernel density 

estimate. The four potential standardized driving Levy processes L we tested are 

inverse Gaussian process with marginal probability density (4.19), gamma process 

with marginal probability density (4.20), reciprocal gamma process with marginal 
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probability density 

fLit)(x) = {fJ' *{ + ™2) * - ^ 3 exp { - ( ^ + „t)x^} / { x > 0 }(x) , 

and positive hyperbolic process with marginal probability density 

h(t)(x) = y exp | - -(<J2x_ 1 + >y2x) l 7{x>0}(^), 

where J > 0 and 7 > 0 can be evaluated through 

& = -2 ~ (^2f + ^ V ~ 4 ^) 
7 

In 7 + - In (72t + 7 V 2 - 4/x) 

Sz = Yt + Yfi2 - 4/i. 

Among the four Levy processes, the best fitting appears be the standardized gamma 

process with \i = 0.6187. This suggests the model (4.18) for the data with L a 

standardized gamma process with ji = 0.6187. 

1 1.5 
gamma 

2.5 0.5 1 1.5 2 
inverse Gaussian 

2.5 

0.5 1 1.5 2 
reciprocal gamma 

0.5 1 1.5 2 
positive hyperbolic 

2.5 

Figure 4.4: Fitted pdf vs. kernel density estimate of Levy increments (DM/$ data). 



Chapter 5 

CONCLUSION 

In this thesis we have developed inferential techniques for continuous-time 

Levy-driven autoregressive moving average (CARMA) processes using uniformly 

and closely spaced discrete-time observations. In the non-Gaussian case we have 

gone beyond previous approaches by investigating the nature and parameters of the 

driving Levy process itself. Many interesting and important questions remain. Some 

of these are outlined below. 

5.1 Future Work 

If we relax the assumption of closely-spaced observations of the CARMA process 

driven by a Levy process L, it is possible to write down the moving average compo­

nent of the sampled (ARMA) process explicitly in terms of integrals with respect to 

L. If the spacing h is small then it is, to order op(h
2), a moving average driven by iid 

noise. It would be interesting to use the exact representation of this moving average 

in terms of L to obtain estimation procedures which are good for any value of h 

and to establish the asymptotic distribution of the maximum Gaussian likelihood 

estimators as T —> oo for arbitrary fixed h. 

Although, at least in principle, the techniques of Chapter 4 apply to Levy-driven 

CARMA(p, q) processes for general p > q, our numerical examples have focussed 

on the CARMA(2,1) case, partly because this model, with one small and one larger 

autoregressive root, has been found to be effective in modeling certain financial time 
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series. Further numerical studies, applying the techniques to higher-order processes, 

are needed. 

Best linear prediction of a Levy-driven CARMA process based on discrete obser­

vations is of course the same as for a Gaussian process since the predictors and their 

mean squared errors depend only on the autocovariance structure of the process. It 

would be interesting however to determine minimum mean squared error predictors 

and their mean squared errors, taking into account the non-Gaussian nature of the 

driving process. 

In Chapter 3, the asymptotic distribution of the Davis-McCormick estimator 

of the Ornstein-Uhlenbeck coefficient was derived under the assumption of slow 

variation of the density of the increments of the sampled process near zero, an 

assumption satisfied by the gamma-driven process. Although the estimator was also 

found in simulation studies to perform extremely well for processes not satisfying this 

assumption, a theoretical investigation of the large-sample behavior of the estimator 

in such cases would be of great interest. Generalization of the Davis-McCormick 

estimator to higher order CAR or CARMA would also be of interest. 

In the Barndorff-Nielsen and Shephard model for log asset price, (1.27) and 

(1.28), the volatility is not an observed quantity. For this reason a great deal of 

effort has gone into the estimation of volatility. Estimated volatility sequences are 

referred to as realized volatility. Our estimation of the driving Levy process L thus 

depends on the reliability of the realized volatility. It is natural therefore to ask if 

the driving Levy process can be estimated more directly in terms of the observed 

log asset prices without the intermediate construction of the realized volatility. 

5.2 S u m m a r y 

This thesis deals with estimation of the parameters of Levy-driven CARMA 

processes using available discrete-time observations. Three particular families of 

Levy-driven CARMA processes were discussed: 
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Gaussian Autoregression. Prom the Radon-Nikodym derivative with respect to 

Wiener measure of the distribution of the (p — l ) t h derivative of a continuous-

time linear or non-linear autoregression, observed on the interval [0,T], we 

have shown how to compute maximum likelihood parameter estimators, con­

ditional on the initial state vector. For closely-spaced discrete observations, 

the integrals appearing in the estimators are replaced by approximating sums. 

The examples illustrate the accuracy of the approximations in special cases. 

If the observations are not uniformly spaced but the maximum spacing is 

small, appropriately modified approximating sums can be used in order to 

approximate the exact solution for the continuously observed process. 

Non-negative Levy-driven Ornstein-Uhlenbeck (or C A R ( l ) ) . We devel­

oped a highly efficient method, based on observations at times 0, h, 2h, 

. . . , Nh, for estimating the parameters of a stationary Ornstein-Uhlenbeck 

process {Y(t)} driven by a non-decreasing Levy process {L(t)}. If h is small, 

we used a discrete approximation to the exact integral representation of L{t) 

in terms of {V(s),s < t} to estimate the increments of the driving Levy 

process, and hence to estimate the parameters of the Levy process. Under 

specified conditions on the driving Levy process we obtained the asymptotic 

distribution of the estimator of the CAR(l) coefficient as N —* oo with h 

fixed. 

The accuracy of the procedure was illustrated with a simulated example of a 

gamma-driven process. We also showed for a pure-jump Levy-driven CAR(l) 

process, that the coefficient a is determined almost surely by a continuously 

observed realization of Y on any interval [0,T]. This distinguishes Y sharply 

from the corresponding Gaussian process. 
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Non-negat ive Levy-driven CARMA(p, i j ) . We developed a general procedure 

to estimate the parameters of a stationary CARMA process {Y(t)} driven 

by a non-decreasing Levy process {L(t)}, and to estimate the increments of 

the background driving Levy process, based on closely-spaced observations 

at times 0, h, 2h,..., Nh. The results extend those obtained for the Levy-

driven stationary Ornstein-Uhlenbeck process. The idea is to use maximum 

Gaussian likelihood to obtain strongly consistent estimators of the CARMA 

coefficients and then, with these coefficients, to construct a realization of the 

canonical CAR(l) components of the CARMA process from the observed data. 

From these we construct the corresponding realization of the driving Levy 

increments. 

For the CARMA(2,1) model fitted by maximum Gaussian likelihood to a real­

ized volatility series for the German Deutsche Mark/US Dollar daily exchange 

rate, simulation studies support the validity of the discrete approximations 

made to results which are exact for continuously observed processes. When 

the technique is applied to the data itself, we are able to compare the perfor­

mance of a variety of possible standardized Levy models for the driving noise. 

It appears from our results that, of the four models considered (gamma, inverse 

Gaussian, reciprocal gamma, and positive hyperbolic), the gamma process is 

the most compatible with the Levy increments estimated from the data. 
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