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ABSTRACT 

ASSESSING THE EFFECTS OF FLUVIAL ABRASION ON BONE SURFACE                          

MODIFICATIONS USING HIGH-RESOLUTION 3-D SCANNING 

 

 

Cut marks and carnivore tooth marks on fossil bones are important traces of the behavior 

and ecology of our ancestors.  However, these traces are often obscured by other taphonomic 

processes such as fluvial abrasion.  Previous studies on the effect of fluvial abrasion on cut marks 

suggest that sediment abrasion in fluvial environments can change the overall morphology of cut 

marks. Thus, analyzing the effects of fluvial abrasion on cut mark and tooth mark morphology is 

crucial to interpreting archaeological bone assemblages accurately. The objective of this research 

is to understand the effects of fluvial abrasion on cut marks and mammalian carnivore tooth marks 

using high-resolution 3-D data.  

An experimental study was undertaken by tumbling cattle and deer bones in a rock tumbler 

filled with sand and water. Bones were abraded in a rock tumbler with a sand and water mixture 

for 152 hours. The 3-D data from cut marks and carnivore tooth marks was collected and analyzed 

using a white-light confocal profilometer. Qualitative macroscopic analysis shows that bone 

surfaces became smoother and polished after tumbling. Most cut marks and tooth marks were still 

visible. Results indicate that 57.1 percent of the cut marks lost their characteristic internal parallel 

striations and 18.4 percent of the cut marks were highly abraded and reduced to rounded 

indentations after tumbling. However, 65.3 percent of the cut marks preserved at least one 

diagnostic feature. Most of the tooth marks (78.3%) preserved all characteristic features, such as 

crushed internal surfaces, high breadth: depth ratios, and U-shaped cross-sections and 100 percent 
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of the tooth marks carried at least one diagnostic feature after tumbling. Only 21.7 percent of the 

tooth marks lost one diagnostic feature (crushed internal surface). Quantitative analysis based on 

the 3-D data also indicates that fluvial abrasion has a greater effect on cut marks than tooth marks. 

Measurements obtained from 3-D analysis of the cut marks and tooth marks show that some 

measurements of the micromorphology of cut marks changed significantly after tumbling, while 

tooth marks were not significantly altered by tumbling. Additionally, multivariate analysis using 

the measurements of the micromorphology allowed discrimination between cut marks and tooth 

marks with 100% accuracy before and after tumbling. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Implication of stone tool cut marks and carnivore tooth marks on fossil bones 

Bone surface modifications created by different agents, such as carnivores and hominins, 

can provide vital information about the taphonomic history of a bone assemblage in an 

archaeological site (Fisher, 1995; Blumenschine et al., 1996). It is known that butchering an animal 

leaves marks on bones (Binford, 1981). Thus, the presence of stone tool cut marks on fossil bones 

is an indication of hominin access to those bones (Shipman and Rose, 1983). Hominins may have 

utilized several materials from animal carcasses, such as meat, marrow, bones, horns, skin and 

tendons, to feed themselves or make tools and clothes (Shipman and Rose, 1983). Butchering 

marks on bones thus offer substantial information about subsistence behavior, and social and 

economic structure of hominins (Fisher, 1995). Just like hominins, carnivores leave traces such as 

tooth marks on bones during carcass consumption (Sutcliffe, 1970; Binford, 1981; Haynes, 

1980,1983; Capaldo and Blumenschine, 1994), and these traces thus indicate carnivore 

involvement in archaeological assemblages (Haynes, 1980; Binford, 1981; Potts and Shipman, 

1981).  

Stone tool cut marks and carnivore tooth marks found in archaeological faunal assemblages 

offer vital information about the feeding behaviors of hominins and carnivores, and their 

ecological interactions (Binford 1981; Blumenschine, 1988, 1995; Capaldo, 1995; Pante et al., 

2012). The morphology of cut marks can provide clues about the butchery behaviors of hominins, 

such as skinning, disarticulation and defleshing (Binford, 1981; Noe-Nygaard, 1989; Merritt, 

2012). Additionally, bone surface modifications can provide important information about the order 
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of hominin and carnivore access to animal carcasses in an archaeological assemblage (Pante et al., 

2012; Pante, 2013).   

Assemblages that preserve evidence of hominin and carnivore feeding activities have been 

discovered in Early Pleistocene archaeological sites, such as Olduvai Gorge (Tanzania), Koobi 

Fora (Kenya), and Swartkrans Cave (South Africa) (Bunn, 1981; Potts and Shipman, 1981; Oliver, 

1994; Pickering et al., 2005; Pobiner et al., 2008; Pante, 2013). Researchers have analyzed the 

morphology of these traces (Walker and Long, 1977; Potts and Shipman, 1981; Shipman and Rose, 

1983; Blumenschine et al., 1996; Greenfield, 1999; Noe-Nygaard, 1989; Bello and Soligo, 2008; 

Boschin and Crezzini, 2012; Bello, 2011; Pante et al., 2017), and compared their locations and 

frequencies with experimentally-created feeding trace models (Blumenschine, 1988, 1995; 

Capaldo, 1995; Pante et al., 2012; Pante, 2013). These models were created to understand the 

feeding ecology of hominins and carnivores by simulating different carcass consumption scenarios 

based on the incidences of long bones bearing cut marks, hammerstone percussion marks, and 

carnivore tooth marks (Blumenschine, 1988, 1995; Capaldo, 1995; Pante et al., 2012; Pante, 2013). 

The models were used to assess the relative timing of hominin and carnivore access to flesh 

marrow, and grease from carcasses (Pante et al., 2012), inferring the relative involvement of 

hominin and large carnivore activity in an archaeological bone assemblage (Blumenschine, 1995).  

1.2 The importance of understanding the effects of fluvial abrasion on the bone surface 

modifications 

Many archaeological sites are preserved in fluvial environments and have been affected by 

sediment abrasion during transport and deposition (Behrensmeyer, 1988). Therefore, fluvial 

abrasion is one of the natural processes that can affect morphology and frequency of bone surface 

modifications (Shipman and Rose, 1983, 1988; Pante, 2013). This suggests that fluvial abrasion 



3 

 

has the potential to affect interpretations on the behavior and the ecology of hominin feeding (Pante 

et al., 2012).  

Several studies have investigated the effects of sediment abrasion on bone surfaces that 

result from hydraulic processes (Fernandez-Jalvo and Andrews, 2003; Thompson et al., 2011; 

Griffith et al., 2016). These studies emphasize that the sediment abrasion rate on bones is 

influenced by several factors, including bone condition, proportions of sediment/water, transport 

modes, sediment type, sediment grain size, and sediment grain morphology. However, few studies 

(Shipman and Rose, 1983,1988; Gaudzinski-Windheuser et al., 2010) have been undertaken to 

understand the effects of fluvial abrasion on cut marks.  

Shipman and Rose (1983, 1988) have carried out the most systematic observations of the 

effects of fluvial abrasion on cut mark morphology and found that cut marks are highly abraded 

and lose their diagnostic features after only a few hours of abrasion in a tumbler. A later study 

conducted by Gaudzinski-Windheuser et al. (2010) determined that cut marks are highly eroded, 

and can be completely eroded after only 16 hours of sediment abrasion results from hydraulic 

movement.  

1.3 The problem statement 

The studies mentioned above (Shipman and Rose, 1983,1988; Gaudzinski-Windheuser et 

al., 2010) were limited to only qualitative analysis and did not provide detailed quantitative data 

gathered from the cut marks. Thus, there is to date very little knowledge of the specific effects of 

sediment abrasion on cut mark morphology. Additionally, the effect of sediment abrasion resulting 

from hydraulic movement on carnivore tooth marks remains completely unknown. It is clear that 

further research is necessary to gain a more comprehensive understanding of the effects of fluvial 

processes on the morphology of both cut and tooth marks. 
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1.4 Objective of the research 

The purpose of the present research is to investigate how sediment abrasion resulting from 

water movement affects stone tool cut mark and carnivore tooth mark morphology and whether it 

is still possible to distinguish cut marks from tooth marks with a high level of accuracy after fluvial 

abrasion. In the present study, it is hypothesized that sediment abrasion from hydraulic processes 

will obscure the diagnostic features of cut marks and carnivore tooth marks by altering their 

micromorphology. To test this hypothesis, cut- and tooth-marked bones were abraded in a rock 

tumbler for 152 hours (using sand and water) and the effects of this process were observed using 

qualitative and quantitative criteria. Qualitative criteria are based on visual observation of rounding 

and polishing of the bone surfaces, and the effect of these processes on the potential identifiability 

of cut and tooth marks. Quantitative criteria were collected using a White-light non-contact 

confocal profilometer that provides high resolution 3-D data on the micromorphology of cut marks 

and carnivore tooth marks before and after tumbling. This study is thus a significant step to try and 

understand the effects of fluvial abrasion on bone surface modifications and the first to provide 

detailed quantitative data on the process. 

1.5 Outline of the thesis 

In the following chapters of this thesis the qualitative and quantitative results of these 

experiments will be presented. Chapter 2 offers the literature background related to the 

morphology of bone surface modifications and the effects of sediment abrasion that results from 

water movement on bone surfaces and bone surface modifications. Chapter 3 explains the 

materials and methodology used in the study. Chapter 4 presents the results obtained from the 

qualitative and quantitative analyses. Chapter 5 discusses the methodology used to collect and 
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measure the data and the findings of the study. Lastly, in Chapter 6, conclusions based on the 

results of the study and suggestions for future studies are offered. 
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CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Carcass consumption by hominins and carnivores 

It is widely suggested that hominins and large carnivores modified bones and left 

characteristic marks on bone surface during carcass consumption (Binford, 1981; Gifford, 1981; 

Potts and Shipman, 1981; Shipman and Rose, 1983; Blumenschine et al., 1996). Hominins 

consumed animal carcasses by butchering the carcass parts and removing marrow from bone using 

stone tools (Bunn, 1981; Blumenschine and Selvaggio, 1988; Selvaggio, 1994). Butchery is the 

process of segmentation of an animal carcass by humans to transport and consume it (Lyman, 

1987). In removing consumable parts of an animal using stone tools, distinctive marks such as cut 

marks and percussion marks are left on bone (Gilbert and Richards, 2000). Carcass consumption 

by carnivores also produces characteristic marks on bone surfaces (Sutcliffe, 1970; Binford, 1981; 

Haynes, 1980,1983; Capaldo and Blumenschine, 1994). During feeding, carnivores modify bones 

using their teeth and leave four main kinds of tooth marks on bones; “punctures, pits, scores and 

furrows” (Binford, 1981, p. 44). Gnawing can cause the formation of punctures or pits, depending 

on the resistance of the gnawed bone portion (Binford, 1981). Scoring marks result from rubbing 

teeth against compact bone, sometimes resembling cut marks. Furrowing marks, the advanced 

stages of puncturing, are formed by repetitive jaw motion (Binford, 1981). The presence of these 

kinds of modifications on fossil bones led researchers to focus on the causal link between behaviors 

and marks (Bunn, 1981; Potts and Shipman, 1981). 

Before the 1970s, faunal analyses focused mainly on prehistoric butchery methods, 

assuming that bone assemblages were derived only from hominin behaviors, and underestimated 
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other taphonomic agents that may have contributed (Lyman, 1987). “A taphonomic agent is the 

source of energy or force production, such as gravity, a hominin, or a carnivore, from which 

taphonomic processes are generated” (Lyman, 1987, p. 254). At that time, it was widely accepted 

that if the archaeological assemblages could be explained by human behavior observed in 

ethnoarchaeological studies, hominins were the likely agent of these accumulations. Thus, the 

possibility that other taphonomic agents had altered the assemblages was underestimated (Lyman, 

1987). In the 1970s, the importance of cause and effect in taphonomy was noticed, and the focus 

of taphonomic analyses “shifted from identifying the agent on the basis of inferred behaviors to 

first identifying the taphonomic agent and then inferring the behaviors of that agent” (Lyman, 

1987, p. 258). This awareness brought along a wide range of studies on identifying the agents and 

the characteristic morphological features of the marks that the agents caused (Shipman and Rose, 

1983). 

2.2 Morphology of cut marks and carnivore tooth marks 

Many researchers have studied the traces of carcass consumption produced by hominins 

and carnivores to reveal hominin feeding ecology (Binford, 1981; Brain, 1981; Bunn, 1981; Potts 

and Shipman, 1981; Blumenschine, 1988, 1995; Noe-Nygaard, 1989; Pante et al., 2012).  

Establishing characteristic features of marks is vital to be able to identify the responsible agent 

that created these marks and formed the archaeological assemblages (Potts and Shipman, 1981; 

Shipman and Rose, 1983).  Diagnoses of cut marks created by hominins using stone tools can 

sometimes be difficult because similar marks can be generated by carnivores during carcass 

consumption (Potts and Shipman, 1981) or trampling by ungulates (Behrensmeyer, 1986; 

Dominguez-Rodrigo et al., 2009). Therefore, researchers established diagnostic features of cut 

marks, carnivore tooth marks and other processes to distinguish between the responsible agents of 
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the marks on fossil samples (Bunn, 1981; Potts and Shipman, 1981; Shipman and Rose, 1983; 

Olsen and Shipman, 1988; Noe-Nygaard, 1989; Dominguez-Rodrigo et al., 2009).  

Potts and Shipman (1981) undertook a study on the morphology of cut marks and carnivore 

tooth marks using a scanning electron microscope (SEM) to diagnose the taphonomic agents of 

the marks on fossils from Olduvai Gorge, Tanzania. They identified a set of morphological criteria 

to differentiate cut marks from carnivore tooth marks on bones (Potts and Shipman, 1981). The 

slicing process by stone tools produces parallel longitudinal striations within main grooves of the 

cut marks due to the non-uniform morphology of their cutting edges. A chopping process applied 

perpendicularly at the bone surface creates cut marks that have V-shaped cross-sections. Upper 

parts of chopping marks are usually wider than those of slicing marks, and chopping marks do not 

have fine parallel striations in comparison with slicing marks (Potts and Shipman, 1981). Tooth 

scratches display flattened bottoms and lack fine parallel striations in comparison with slicing and 

scraping marks, which makes differentiation of these marks possible. They claimed that 

magnification may be necessary to differentiate these marks because it is often difficult to 

distinguish small tooth scratches from slicing marks by the naked eye (Potts and Shipman, 1981). 

Bunn (1981) and Shipman and Rose (1983) also identified diagnostic features of cut marks 

and tooth marks. Bunn (1981) points out that the grooves that form cut marks can be one or 

multiple, and their length can range from a couple of millimeters to a couple of centimeters. In 

general, the grooves are V-shaped in transverse section (Bunn, 1981). However, some cut marks 

have a partially flat base because cutting edges of stone tools become blunt as a result of 

overutilization (Bunn, 1981). Shipman and Rose (1983) specify that although slicing marks 

occasionally seem V-shaped in transverse section, their shape varies. They (Shipman and Rose, 
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1983) observed parallel narrow striations within slicing marks and found a great number of 

shoulder effects in their study.  

Carnivore tooth marks are usually discernable from cut marks with the unaided eye because 

they are often wider than cut marks and have U-shaped cross-sections (Bunn, 1981). Tooth 

scratches are also more irregular in trajectory than slicing marks (Shipman and Rose, 1983). Since 

the information that stone tool cut marks and carnivore tooth marks can provide is significant to 

understand hominin feeding ecology (Binford, 1981; Potts and Shipman, 1981; Blumenschine, 

1988, 1995; Fisher, 1995; Pante et al., 2012), these researchers aimed to be able to identify and 

distinguish the marks on fossil bones by conducting these detailed studies.  

Blumenschine et al. (1996) state that it is possible to identify the agents of bone 

modification with the high level of accuracy (99%) based on the diagnostic features of cut marks 

and tooth marks (e.g. low breadth:depth ratio for cut marks, high breadth:depth ratio and crushing 

in the internal surface for tooth marks) using only a hand lens and low-power light microscope.  

However, the level of accuracy in detecting the agent of bone modification at a macro scale 

depends on the level of expertise of researchers and this remains unassessed for most researchers 

(Pante et al., 2017). Further, Pante et al. (2017, p. 8) claim that “the accuracy of individual 

identifications is impossible to evaluate with these traditional methods.” 

Recent studies have used technologies capable of capturing 3-D data from bone surface 

modifications to examine the micromorphology of cut marks and tooth marks (Bello and Soligo, 

2008; Boschin and Crezzini, 2012; Pante et al., 2017). Bello and Soligo (2008) pioneered this work 

by using an Alicona 3D Infinite-Focus imaging microscope to capture the micromorphology of 

cut marks. This technology allows for the collection of quantitative data from cut marks including 

cross-sectional form, the sharpness and depth (Bello and Soligo, 2008). A subsequent study was 
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conducted by Boschin and Crezzini (2012) using a Hirox Digital Microscope KH-7700 measured 

depth, breadth and angles of cut marks.   

Most recently, a study undertaken by Pante et al. (2017) attempted to standardize how 3-D 

data is collected from bone surface modifications. Pante et al. (2017) were the first to measure 

both cut marks and tooth marks using surface area, volume, depth, width, length, roughness, angle, 

and floor radius of the marks. They found the method used was able to discriminate between stone 

tool cut marks and carnivore tooth marks with a high level of accuracy (97.5%) (Pante et al., 2017). 

This study is the foundation for all the research presented here as both the method and equipment 

employed are identical. 

2.3 The importance of stone tool cut marks and carnivore tooth marks 

The morphology and placement of cut marks are used to identify different butchery 

activities of carcass processing by hominins (Binford, 1981; Noe-Nygaard, 1989; Merritt, 2012) 

such as skinning, disarticulation and defleshing (Merritt, 2012). Merritt (2012) undertook an 

experimental study and measured some morphological features of the cut marks (width and depth) 

using a binocular microscope at 32x magnification. Merritt (2012) claims that cut marks produced 

by skinning and disarticulation are wider and deeper than those created by defleshing activity. Cut 

marks result from skinning activity are mostly located on lower legs and head (Binford, 1981), 

while dismembering cut marks are generally present at the joint surfaces of bones (Noe-Nygaard, 

1989). Filleting is defined as the process of removing a large amount of meat from bone (Binford, 

1981) and creates several shallow parallel cut marks (Noe-Nygaard, 1989). Filleting marks are 

mostly found on the neck of the bones (the area between epiphysis and shaft) since removing meat 

from irregular surfaces of bones is difficult (Binford, 1981). Since marrow removal results in a 

different type of mark (percussion mark) (Blumenschine and Selvaggio, 1988; Selvaggio, 1994), 
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this activity will not be explained here. As a conclusion, morphology and placement of cut marks 

on bone surfaces are important to reveal butchering behavior of hominins (Noe-Nygaard, 1989). 

In addition to carcass processing behaviors of hominins, the relative timing of hominin and 

carnivore carcass consumption can be inferred from bone surface modifications (Blumenschine, 

1995, 1988; Capaldo, 1995; Selvaggio, 1998; Pante et al., 2012; Pante, 2013). However, these 

inferences rely on the frequency and location of bone surface modifications rather than the 

morphology of the marks themselves. Statistical feeding trace models that simulate different 

feeding scenarios were developed by Blumenschine (1988, 1995), Capaldo (1995), Selvaggio 

(1998), and Pante et al. (2012). These models rely on variations in the proportions of cut-, tooth-, 

and percussion-marked long bones in assemblages of modern bones (Blumenschine, 1988, 1995; 

Capaldo, 1995; Selvaggio, 1998; Pante et al., 2012; Pante, 2013). They offer different orders for 

hominin and carnivore access to carcasses and allow researchers to make inferences about hominin 

feeding interactions with large carnivores from fossil bone assemblages. These models have been 

applied to interpreting bone assemblages discovered in archaeological sites within Olduvai Gorge 

(Tanzania) to identify hominin feeding ecology in these sites (Blumenschine, 1995; Selvaggio, 

1998; Pante et al., 2012; Pante, 2013).  They found that the bone surface modification data obtained 

from the assemblages in the FLK (Zinjanthropus site), Olduvai Gorge, Tanzania, is consistent with 

a carnivore-to-hominin-to-carnivore model of site formation, suggesting that hominins at this site 

had secondary access to carcasses (Selvaggio, 1998; Pante et al., 2012). Pante (2013) points out 

that data from the JK2 site at Olduvai Gorge indicates that there might be multiple occupations at 

this sites and carnivores and hominins could have access to flesh and marrow during different 

occupations. Hominins could have early access to carcasses during one occupation while 

carnivores had sole access to carcasses during another occupation (Pante, 2013). 
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 Pante and Blumenschine (2010) undertook an experimental study to find out whether the 

incidences of cut-, tooth-, and percussion-marked long bones change when the bones are 

transported by flowing water. It was mentioned before that incidences of long bones bearing these 

marks has been used to reveal the sequence of hominin and carnivore access to animal carcasses 

(Blumenschine, 1995, 1988; Capaldo, 1995; Selvaggio, 1998; Pante et al., 2012; Pante, 2013).  

The authors (Pante and Blumenschine, 2010) used a flume with low maximum flow velocity 

(50cm/s). The flume was filled with water but not sediment. The findings of the experiment 

indicated that hydraulic transport did not have an important influence on the proportions of cut-, 

tooth-, or percussion-marked bones. Therefore, they (Pante and Blumenschine, 2010) state that the 

method based on the incidences of long bones bearing cut, tooth, and percussion marks can be still 

used to uncover the relative timing of hominin and carnivore carcass consumption for fossil 

assemblages deposited in low-energy fluvial environments.  

2.4 The effects of fluvial abrasion on bones and cutmarks  

Bones in fluvial channels are exposed to sediment abrasion during hydraulic transport 

(Shipman and Rose, 1988). Thus, abrasion observed on a bone’s surface may indicate hydraulic 

transport of bones in an assemblage (Fernandez-Jalvo and Andrews, 2003). The likely variables 

that can affect the sedimentary abrasion rate on bones in fluvial environments were examined by 

several researchers using an SEM or a ESEM (environmental scanning electron microscope) 

(Shipman and Rose, 1988; Fernandez-Jalvo and Andrews, 2003; Thompson et al., 2011). 

Fernandez-Jalvo and Andrews (2003) conducted an experimental study to understand the 

influence of sediment type and bone condition on the abrasion rate of large mammal bones. They 

tumbled different types of bone (fresh, dry, very weathered and fossil bones) with various sediment 

types (gravels, coarse sands, fine sands plus silts and clay plus silt with water) for a total of 360 
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hours. The authors assessed the level of rounding and created grades “based on comparative 

criteria between bones of this experiment” (Fernandez-Jalvo and Andrews, 2003, p. 152). 

Therefore, these grades should not be thought of as the particular phases of abrasion (Figure 1). 

The authors observed that gravel was the most erosive sediment type for all types of bones and 

fresh bones showed more rounding than dry bones after tumbling with coarse or fine sands 

(Fernandez-Jalvo and Andrews, 2003). Additionally, clay and silts caused more rounding on 

fossilized and weathered bones than coarse or fine sands while fresh bones were barely abraded 

by clay and silts (Figure 1). Consequently, this study suggests that sediment type and bone 

condition have a significant effect on the abrasion level on large mammal bones (Fernandez-Jalvo 

and Andrews, 2003). 

 

Figure 1. “Diagram of relative grades of rounding in the large mammal bone experiment” 

(Fernandez-Jalvo and Andrews, 2003, p. 153). 

Thompson et al. (2011) undertook another study that examined the possible factors that 

could affect the level of abrasion on bone surfaces. They investigated the influence of different 
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transport modes (bedload, saltation, suspension) and bone types (fresh, weathered, archaeological 

and fossilized) on the level of wear on bones (Thompson et al., 2011). The authors stated that fresh 

bones experienced the highest wear during saltation, while transport as bedload caused the 

maximum wear on archaeological (dry) bones. Additionally, weathered bones had the highest wear 

during transport as bedload while fossilized bones had the highest wear during suspension 

(Thompson et al., 2011). Therefore, this study shows that that the level of wear could be dependent 

on sediment transport mode and bone type (Thompson et al., 2011). 

A recent study was conducted by Griffith et al. (2016) to investigate the effects of size and 

morphology of sediment grains, and duration of abrasion on the abrasion rate of fresh sheep bones 

in an annular flume for a total of 120 hours. They used silt, sand, and gravel (seven different grain 

size classes) and identified grain sphericity of the sediments. Results of the study show that grain 

size, grain sphericity, and duration of abrasion have a significant influence on the abrasion rate 

and greater sediment grains caused higher abrasion rate (Griffith et al., 2016). A negative 

correlation was found between abrasion rate and grain sphericity when data from all sediment 

types are included in the analysis, indicating that more angular grains caused higher abrasion rates. 

Also, a positive relationship was observed between duration of abrasion and the abrasion rate 

(Griffith et al., 2016). Based on the findings of this study (Griffith et al., 2016), it is possible to 

suggest that sediment grain size, sediment grain morphology, and duration of abrasion are 

important factors that can affect the abrasion rate of fresh mammal bones. 

Gaudzinski-Windheuser et al. (2010) carried out an experimental study and examined the 

effects of sediment abrasion resulted from unidirectional and multidirectional water movements 

on bone and cut marks. The authors (Gaudzinski-Windheuser et al., 2010) utilized a stereo light 

microscope and 3-D surface scans to observe damage on bone and cut marks. For both water 
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motions, bone morphology was important for abrasion degree on bones. During tumbling, cattle 

bones were abraded faster than sheep bones, and cut marks on the cattle bones nearly vanished 

while the cut marks on the sheep bones were still visible (Gaudzinski-Windheuser et al., 2010). 

The presence of periosteum played a significant role in the abrasion rate for both types of water 

movement, likely because it acted as a shield of the bone surface.  After removal of the periosteum, 

the abrasion was accelerated on the bones. In unidirectional tumbling, increases in the amount of 

water in the tumbler resulted in a decrease in abrasion rate. For multidirectional tumbling, abrasion 

rate was affected by the presence of water but not by the amount (Gaudzinski-Windheuser et al., 

2010). Multidirectional movement produced faster abrasion on bones than the unidirectional 

motion. This study based on qualitative analysis presented that most cut marks on cattle bones 

were altered (mostly broadened) or completely eroded after 3 to 6 hours of unidirectional and 

multidirectional tumbling. After 16 hours of multidirectional tumbling, the cut marks on sheep 

bones were altered and most cut marks on cattle bones were obliterated (Gaudzinski-Windheuser 

et al., 2010). This experimental study (Gaudzinski-Windheuser et al., 2010) demonstrates that 

sediment abrasion from water movement has the potential to alter or erase cut marks on bone 

surfaces. 

Shipman and Rose (1983, 1988) carried out another experimental study using SEM to 

reveal the probable effects of fluvial abrasion on both bone surfaces and stone tool cut marks. They 

used bone from small mammals and different types of sediment for tumbling, but did not include 

water for all tumbling experiments. Shipman and Rose (1983, 1988) used 700 ml of water and 300 

ml of poorly sorted sand with bones that had cut marks. Shipman and Rose (1988) stated that 

apparent abrasion was observed on most bones after 35 hours of tumbling.  It was also observed 

that grain size and the composition of sediments also affected the abrasion rate of the bones 
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(Shipman and Rose, 1988). Sediments that had the smaller particle size such as ash and loess 

caused faster bone abrasion when other conditions are the same, indicating that the composition 

of the sediment plays an important role in the speed and amount of abrasion. Further, the authors 

observed that all determinative microscopic characteristics of the cut marks such as fine striations 

vanished after five hours of tumbling and only some remaining rounded hollows could be observed 

after 80 hours of tumbling (Shipman and Rose, 1983, 1988). Therefore, based on the results of 

qualitative analyses the authors claim that “hydraulically transported bones cannot be expected to 

show cut marks that can be identified on the basis of SEM inspection” (Shipman and Rose, 1988, 

p. 320). 
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CHAPTER 3  

 

MATERIALS AND METHODOLOGY 

The objective of this research is to understand the effects of fluvial abrasion on cut marks 

and carnivore tooth marks using a technology that collects high-resolution 3-D data from bone 

surface modifications.  

3.1 Sample  

This research used limb bone fragments from six adult cattle and five sub-adult deer with 

unfused epiphyses. The cattle bones came from a local market, and the deer bones were received 

from the Paleoanthropology and Zooarchaeology Laboratory at Colorado State University, Fort 

Collins, Colorado. The bones (three tibiae and three femora) in the cattle sample were previously 

frozen with a small amount of flesh and grease remaining, while the bones from the deer sample 

(two tibiae and three femora) were partially weathered.  

3.2 Experimental procedure 

The condition of bones was observed and recorded prior to any experiments. Among the 

criteria recorded were the weathering stages of the bones as defined by Behrensmeyer (1978) and 

whether the bones carried periosteum and soft tissue. The cattle bones from the local market were 

all determined to be weathering Stage 0 or fresh. However, the deer bones were in variable states 

of weathering. Three deer bones indicate weathering Stage 1 while two shows Stage 0. 

Once the condition of bones was recorded cut and tooth marks were inflicted on bone 

surfaces. Cut marks were created by slicing defleshed bones with chert and/or obsidian flakes in a 

direction perpendicular to the long axis of the bone. Unretouched flakes made from chert and 

obsidian were selected for creating cut marks because it has been suggested that cut marks 
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produced by stone tools have different morphological features from those created by metal knife 

or blade (Bello and Soligo, 2008; Boschin and Crezzini, 2012). All cut marks were produced on 

degreased bone surfaces with the periosteum removed. Tooth marks were created by a large dog 

(2). 53 cut marks and 26 tooth marks were created. However, due to issues with sand particles 

getting stuck in the marks, three cut marks and three tooth marks were not scanned after tumbling 

and these marks were excluded from qualitative and quantitative analyses. Also, one cut mark was 

excluded from quantitative analysis since it was completely eroded after tumbling. Consequently, 

49 cut marks and 23 tooth marks were used for both qualitative and quantitative analyses (Table 

1). All marks were labeled on bone surfaces, and they were photographed and scanned following 

the below procedure prior to any additional modification. 

 
Figure 2. The dog that created the tooth marks 
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Table 1. List of specimens and the distribution of the cut marks and the tooth marks 

Specimen Animal Weathering 

Stage 

Type of Bone The number 

of CM 

The number 

of TM 

B1 Cattle 0 Tibia 1 4 

B2 Cattle 0 Tibia 2 10 

B3 Cattle 0 Tibia 9 0 

B4 Cattle 0 Femur 3 4 

B5 Cattle 0 Femur 2 5 

B6 Cattle 0 Femur 5 0 

B7 Deer 1 Femur 3 0 

B8 Deer 1 Tibia 7 0 

B9 Deer 0 Femur 7 0 

B10 Deer 0 Femur 2 0 

B11 Deer 1 Tibia 8 0 

Total 49 23 

 

3.3 Qualitative analysis before tumbling 

Before the tumbling procedure, morphological features of all cut marks and carnivore 

toothmarks were examined and compared with the morphological criteria presented by Potts and 

Shipman (1981), Shipman and Rose (1983) and Blumenschine et al. (1996) for identifying the 

marks. It was observed that the cut marks and tooth marks carried almost all diagnostic features 

before tumbling, such as V-shape cross section, low breath: depth ratio, and internal striations for 

cut marks and U-shaped cross section, high breadth: depth ratio, and crushed internal surface for 

tooth marks. Then, all specimens were photographed to compare with results after tumbling. 

3.4 Quantitative analysis before tumbling 

3.4.1 Scanning procedure 

3-D reconstructions of cut marks and tooth marks were created using a Nanovea ST400 

white-light non-contact confocal profilometer (Figure 3). The profilometer has a 3-mm optical pen 

that has a resolution of 40 nm on the z-axis and can collect 3-D data from an area as wide as 150 

mm x 150 mm in width and 20 mm in depth (Pante et al., 2017). Once 3-D reconstructions were 

created they were analyzed using Digital Surf’s Mountains® software.  
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Figure 3. Nanovea ST400 white-light confocal profilometer. 

The 3-D reconstructions of cut and tooth marks were created following the procedures 

outlined by Pante et al. (2017). Bones were placed on the platform so that marks were flat in both 

the x- and y- axes. The long axis of the mark was directed perpendicular to the direction of 

movement of the optical pen to collect cross-section profiles along the marks. Many marks were 

not completely straight and in these cases, the marks were placed on the platform in a way that the 

longest section of the mark was directly perpendicular to the orientation of the optical pen 

movement (x-axis). In two cases, multiple tooth marks were scanned together due to their 

proximity and contact with one another. While processing the data of these marks, they were 

separated from each other using a function of the software. 

After the bones were placed on the platform, areas desired for scanning were chosen using 

a video microscope.  To process and calculate the 3-D data accurately, a large, unmodified area 

around the marks was included in each scan, as prescribed by Pante et al. (2017). Markers were 

inscribed around modifications in order to allow the same area of a bone’s surface to be selected 
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in scans taken before and after they were abraded in the tumbler. Using a knife or Dremel, one 

symbol was created at a bottom corner of a mark and the other at a top corner (Figure 4 and Figure 

5). These points are easily selected using the video microscope to highlight an area for scanning 

and ensured that data was collected from the same location of a bone’s surface. Bones were 

scanned at an x resolution of 5 µm and y of 10 µm. The frequency was set to 300 Hz and 1000 Hz. 

 

Figure 4. “V” shaped symbols around the cut marks and the borders of the scanned areas. 

 

Figure 5. “O” shaped symbols around the cut marks and the borders of the scanned areas. 
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3.4.2 Data processing 

The scans of the marks were processed before taking measurements. The software forms a 

new studiable after each stage of data processing. “A studiable is a 2-D visual representation of 

the xyz coordinates for each measured point” (Pante et al., 2017, p.3). The first step of 3-D data 

processing was filling in non-measured points, which plugged holes in the data resulting from 

variations in the reflectivity of bone surfaces as described by Pante et al. (2017).  For this step, an 

algorithm was used to fill missing data and smooth the area. The next step was to remove the form 

of the bone from scans using a polynomial algorithm provided by the software. The mark and a 

small area around it were excluded from the form removal process to keep the mark morphology 

unmodified. This algorithm can range from a polynomial degree of 1 to 13 and be changed until 

the area outside the mark becomes nearly flat. In order to minimize variation between pre-and 

post-tumbling marks, a polynomial degree of three or four were selected. Form removal is 

necessary to isolate the borders and deepest points of the marks from the external unmodified bone 

surface (Pante et al., 2017). However, in some cases (32 cut marks) the polynomial algorithm was 

ineffective and scans were leveled using a line by line method. Studiables of a cut mark resulted 

from filling missing data and form removal are shown in Figure 6. The last stage of data processing 

involved removing data from the scan that extended beyond the length of the mark. 
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Figure 6. Two studiables from a single cut mark a) studiable formed as a result of filling missing 

data, b) studiable created by removing form of the bone after missing data was filled. Scales on 

the figures represent the relationship between color and depth in the studiables. 

 

Cross-sectional 2-D profiles were extracted from scans from the deepest point and center 

of the marks. The deepest profile was found using the “through lowest point” option in the profile 

extraction implement of the software. To find the central profile, the total number of profiles 

intersecting each mark was divided by two. 

3.4.3 Data measurement 

Measurement of scans follows the procedure outlined by Pante et al. (2017). Measurements 

were collected from both the entire 3-D model and from 2-D profiles extracted from the profile.  

The 3-D data collection procedure included measurements of surface area, volume, maximum 

depth, mean depth, maximum length, and maximum width (Figure 7). Details on how these 
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measurements are collected using the software can be found in Pante et al. (2017) and are not 

described further here.  Measurements from the 2-D profiles included maximum depth, area, width, 

roughness, opening angle and floor radius (Figure 8 and Figure 9). To do this the locations of the 

mark edges on the profile were determined from the 2-D studiables.  

  

Figure 7. Two studiables from a single cut mark that shows 3-D data measurements based on the 

studiable shown in Figure 6b a) studiable showing the location of the deepest point (at the center 

of the white circle) and measurements of maximum length and maximum width, b) studiable 

showing the measurements of surface area, volume, maximum depth, and mean depth. 

 

0 2665 µm

µm

0

14770

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

Distances Unit A B

HDist µm 13509.403 319.245

Points Unit Min

X µm 1195.000

Y µm 2620.000

A

Min

B

0 2665 µm

µm

0

14770

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

Parameters Unit Hole

Surface µm² 2702324.879

Volume µm³ 9.380e+007

Max. depth/height µm 115.119

Mean depth/height µm 34.711

a b 



25 

 

 

Figure 8. Area of a hole from the cross-sectional profile extracted from the deepest point of a single 

cut mark based on the studiable shown in Figure 6b. 

 

Figure 9. Highlighted part of the cross-sectional profile in Figure 8, showing opening angle and 

floor radius (R).   
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3.5 Tumbling procedure  

After initial scans and photographs were collected, bones were subjected to tumbling to 

simulate fluvial abrasion. A low-speed rock tumbler (Thumler’s Model B Rock Tumbler) with 15 

lb capacity was used for this process. The chamber of the tumbler rotates 21 times per minute and 

maintains a constant speed.  The tumbler was filled with a mixture of 750 ml of poorly sorted sand 

and 1750 ml of water.  This replicate the ratio of sand to water (0.4286) used by Shipman and Rose 

(1988) (300 ml of sediment/700 ml of water) in their tumbling experiments to allow comparisons 

between our results.  The grain size of the minerals ranged from medium to very fine, while the 

average sphericity and roundness values were estimated to be 0.51 based on Krumbein and Sloss, 

(1951, p. 111) and Powers (1953, p. 118). This places the sediment particles in the rounded class 

based on the roundness scale that Powers presented (1953, p.118). The sand used in this experiment 

was dominated by quartz and also included other minerals such as feldspar and iron rich minerals. 

The sediment was replaced after each tumbling experiment. 

Bones were placed and tumbled with sediment and water in the rock tumbler. Since not all 

bones could fit in the tumbler, five separate tumbling experiments were performed. For the cattle 

bones, only two bones were tumbled together for each experiment. For the deer bones, two to three 

bones were tumbled together. Each trial was run for 152 hours in the tumbler, nearly double that 

of Shipman and Rose (1983). The long time was selected because after 92 hours of tumbling bone 

surfaces did not appear to change significantly.  Thus, the length of time in the tumbler was 

extended for all samples. 

3.6 Qualitative analysis after tumbling 

After tumbling, the type and degree of modification occurred on bone surfaces and the bone 

surface modifications were analyzed. Qualitative analysis started with photographing all samples. 
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Then, changes on bone surfaces were recorded by comparing with the photos of the bones taken 

before tumbling. The next step was to determine whether the marks preserved their diagnostic 

features based on the criteria used for diagnosing cut marks and carnivore tooth marks (Potts and 

Shipman, 1981; Shipman and Rose, 1983; Blumenschine et al., 1996). For this purpose, a hand 

lens with 14x magnification was used to examine morphology of the marks in detail.  

3.7 Quantitative analysis after tumbling 

Scanning, data processing and data measurement of the bone surface modifications after 

tumbling followed the same procedure that was carried out before tumbling. However, cross-

sectional profiles were extracted from four different locations since the locations of the deepest 

and central point changed for almost all marks after tumbling (Table 2). These four points are the 

deepest point, the central point, the location with the same y value of the deepest point of the mark 

before tumbling (extra profile), and the location with the same y value of the central point of the 

mark before tumbling (extra profile) (Figure 10). 

Table 2. The locations that the cross-sectional profiles were extracted from before and after 

tumbling. 
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1st Extra profile  The location with the same y value of the 

deepest point of the mark before tumbling. 

2nd Extra profile  The location with the same y value of the 

central point of the mark before tumbling. 
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Figure 10. Locations where cross-sectional profiles were taken on extracted scanning surface of a 

cut mark a) before and b) after tumbling 

3.8 Statistical analysis 

Statistical analyses were performed using Microsoft Excel and PAST-Paleontological Statistics 

Software Package 3.14 (Hammer et al., 2001). A t-test was applied on Microsoft Excel to 

determine whether tumbling significantly affected the bone surface modifications. Also, mean, 

median, and standard deviation values of the mark parameters were measured and recorded. A 

discriminant analysis (LDA) was performed using the PAST software to identify how accurately 

cut marks and tooth marks can be differentiated from each other based on the measured variables 

before and after tumbling. 
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CHAPTER 4   

 

RESULTS 

4.1 Results of the qualitative analysis 

4.1.1 Changes in bone morphology from tumbling 

152 hours of tumbling with sand and water affected the general morphology of bone.  

Abrasion was visible with the naked eye on most bone surfaces. The dominant form of abrasion 

observed on the bones was ablation, defined as the removal of material from the bone surface by 

Thompson et al. (2011) and Griffith et al. (2016). Bones also became smoother and polished. The 

broken edges of some bones were more abraded than their cortical surfaces, while others were 

abraded more evenly. Some protrusions and crests on bones were highly abraded. For example, a 

high degree of abrasion was observed on several irregularly-shaped epiphyseal surfaces of two 

sub-adult deer bones (Figure 11). In addition to these changes, depressions and linear incisions 

formed on some cattle bones during tumbling, but not on the deer bones (Figure 12). These 

depressions and incisions are easily differentiated from both the abraded and unabraded tooth 

marks and cut marks, due to their lack of internal striations and greater width. In one case, 

exfoliation developed on a bones surface after tumbling (Figure 13). This surface was not 

exfoliated before abrasion but had several white circular marks on the cortical bone which could 

have been an indication of an initial stage of exfoliation.  
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Figure 11. High level of abrasion on the epiphyses of two deer bones. a and c) before tumbling, b 

and d) after tumbling. Highly abraded areas were shown by the arrows. 

 

 

 

 

 

 

 

a b 

c d 



31 

 

    

   

Figure 12. Images of the surfaces of two different cattle bones before and after tumbling. a and c) 

before tumbling, b and d) after tumbling. Red arrows show the depressions and blues arrows show 

the straight incisions. 

 

       

Figure 13. a) the bone surface before tumbling b) exfoliation on the bone surface after tumbling. 
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4.1.2 Changes in mark morphology after tumbling 

After tumbling, most of the cut marks and all of the tooth marks were still visible. 

Qualitative analysis indicates that 57.1 percent of the cut marks lost internal parallel striations, and 

18.4 percent of the cut marks were highly abraded and reduced to rounded indentations. Eight cut 

marks on the exfoliated surface lost inner striations after tumbling. Also, one cut mark was 

completely eroded. However, 65.3 percent of the cut marks maintained at least one diagnostic 

feature.  For example, some did not preserve internal striations, but maintained their V-shaped 

cross-sections, while others had a low breadth: depth ratio, but were not clearly V-shaped. 

Shoulders, defined as a buildup of bone on the edge of the mark (Bello and Soligo, 2008), were 

initially present on 30 of 49 cut marks, but after tumbling, the shoulders of 19 of these cut marks 

were almost or completely dissolved (Figure 14). One hundred percent of the tooth marks 

preserved at least one diagnostic feature. Only 21.7 percent of the tooth marks lost one diagnostic 

feature and in all cases it was the crushed internal surface that was lost.  
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Figure 14. 3-D view of two different cut marks with shoulders, a and b) shows one cut mark before 

tumbling (a) and after tumbling (b), c and d) shows another cut mark before tumbling (c) and after 

tumbling (d). 

Based on the observations made during this study, a four-stage abrasion scale was created 

to associate the degree of modification to cut and tooth marks with changes that occur to a bone’s 

surface from fluvial abrasion (Table 3). The stages are associated with the time the bones were in 

the tumbler. Stage four was not observed during this experiment, but characteristic events of this 

stage were predicted based on observations reported by other researchers. 
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Table 3. The abrasion scale. 

Stage Time 

(Tumbler) 

 

Bone Surface Cut Marks Tooth Marks 

 

1 

 

10 h 

 

Slight polishing, 

especially on the 

convex surfaces. 

Broken edges are 

slightly rounded. 

They preserve all diagnostic 

features. 

They preserve all 

diagnostic features. 

 

2 

 

92 h 

The whole bone 

surface is 

apparently polished 

and smoother. 

They are visible and 

preserve all diagnostic 

features. No apparent 

alteration. 

They are visible and 

preserve all 

diagnostic features. 

No apparent 

alteration. 

 

 

3 

 

 

152 h 

Highly polished, 

but some deep 

concave surfaces 

remain unchanged. 

Most of the cut marks lose 

inner striations, but some 

still preserve other 

characteristic features. Only 

a few cut marks became 

highly abraded and reduced 

to rounded indentations. 

Most of them 

preserve all 

diagnostic features. 

A few tooth marks 

lost some 

characteristic 

features. 

 

4 

 

More 

than 250 

h 

High degree of 

abrasion. Broken 

edges are highly 

rounded. Small 

bone fractures 

become pebble-

shaped. 

They lose all diagnostic 

features and become 

unidentifiable. 

Most of them lose 

diagnostic features 

and become 

unidentifiable, but 

some may still be 

identifiable. 

 

4.2 Results of the quantitative analysis 

4.2.1 3-D measurements 

Mean values of the measured parameters of the cut marks indicate that surface area, 

volume, and maximum width increased while maximum depth, mean depth, and maximum length 

decreased after tumbling. The T-tests employed for cut mark parameters indicate that surface area, 

maximum depth, mean depth, maximum length, and maximum width changed significantly after 

tumbling, while volume did not show a significant change. The increase in width and decrease in 
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mean depth and maximum length show that the cut marks became wider, shorter, and shallower 

after tumbling. 

Mean values for the tooth marks display that volume, maximum depth, mean depth, 

maximum length, and maximum width increased, while only surface area decreased. Results of 

the T-tests show that none of the tooth mark parameters indicated a significant change after 

tumbling. Summary statistics and the results of t-test for 3-D measurements are found in  Table 4 

and  Table 5. 

4.2.2 Profile measurements 

Mean values of the profile measurements from the cut marks show that maximum width, 

angle, and radius increased while maximum depth, area, and roughness decreased after tumbling. 

Results of the T-tests present that maximum depth, maximum width, roughness, angle, and radius 

values of the cut marks changed significantly after tumbling, while area for most profiles did not 

show a significant change.  

Mean values of the tooth mark parameters are inconclusive because they are not consistent 

between profile measurements (Table 4). For instance, the mean area values of tooth marks show 

an increase after tumbling for the deepest and central profiles, but indicate a decrease for the 

deepest and central profiles which used measurements from the extra profiles (Table 4.b and 4.c). 

The t-tests show that only maximum depth values measured from the deepest profiles indicate a 

significant change after abrasion. Summary statistics and the results of T-test for the profile 

measurements are found in Table 4 and Table 5. 
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Table 4 . Summary statistics. Mean, median, and standard deviation of the measurements of cut marks and tooth marks before and 

after tumbling. Ra refers to roughness. 

Table 4.a                     Measurements from 3-D studiables (before tumbling)                  Measurements from 3-D studiables (after tumbling) 

    

Surface 

Area 

(µm2) 

Volume 

(µm3) 

Maximum 

Depth 

(µm) 

Mean 

Depth 

(µm) 

Maximum 

Length 

(µm) 

Maximum 

Width 

(µm) 

Surface 

Area 

(µm2) 

Volume 

(µm3) 

Maximum 

Depth 

(µm) 

Mean 

Depth 

(µm) 

Maximum 

Length 

(µm) 

Maximum 

Width 

(µm) 

C
u

t 
M

a
rk

s 

M
ea

n
 

2318825.4 85015510.2 106.7 37.0 8195.3 435.0 2873198.3 86507551.0 93.0 32.3 7995.0 529.7 

M
ed

ia
n
 

2119949.9 83440000.0 106.7 37.9 7567.1 426.2 2546949.9 83120000.0 91.5 34.8 7483.5 477.0 

S
t.

 

D
ev

 

752454.4 30436985.2 17.7 8.1 2675.8 114.7 1405364.4 31823959.8 23.3 9.7 2676.3 173.4 

T
o

o
th

 M
a

rk
s M

ea
n

 

8507028.1 657563478.3 218.0 71.0 6748.2 2228.7 8375263.9 671333913.0 237.2 75.0 6771.5 2290.4 

M
ed

ia
n
 

6563124.7 454500000.0 204.9 65.8 5922.4 1943.5 6671974.7 469100000.0 212.7 68.2 6101.9 2098.3 

S
t.

 

D
ev

 

7440951.0 777184933.9 92.1 29.4 4418.9 1105.7 6133207.2 677892696.8 95.8 28.9 4179.8 1010.0 
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Table 4.b       Measurements from deepest profile  

              (before tumbling) 
       Measurements from deepest profile 

                        (after tumbling) 
Measurements from 1st extra profiles 

    
Max. 

Depth 
(µm) 

Area 

(µm2) 

Max. 

Width 
(µm) 

Ra 
Angle 

(°) 

Radius 

(µm) 

Max. 

Depth 
(µm) 

Area 

(µm2) 

Max. 

Width 
(µm) 

Ra 
Angle 

(°) 

Radius 

(µm) 

Max. 

Depth 
(µm) 

Area 

(µm2) 

Max. 

Width 
(µm) 

Ra 
Angle 

(°) 

Radius 

(µm) 

C
u

t 
M

a
rk

s 

M
ea

n
 

103.1 16570.9 345.0 3.2 118.1 280.0 86.5 16512.8 427.4 2.9 131.9 607.3 68.2 15344.3 430.1 2.1 140.1 717.9 

M
ed

ia
n
 

101.4 16084.8 330.0 2.9 119.0 225.2 86.7 16838.4 395.0 2.3 136.7 356.3 67.6 14421.6 435.0 1.9 145.5 391.0 

S
t.

 D
ev

 

21.6 6604.1 84.0 1.1 18.6 160.9 23.5 6734.8 158.5 1.3 22.6 854.4 21.1 6230.0 145.5 0.9 19.1 1047.4 

T
o

o
th

 M
a

rk
s 

M
ea

n
 

218.1 244300.8 1991.5 6.6 154.7 3832.4 236.9 259804.7 1960.0 7.0 154.1 3204.8 193.7 214971.4 1873.3 6.1 155.9 14802.6 

M
ed

ia
n
 

208.4 217165.1 2000.0 5.2 155.8 2260.8 213.6 225708.9 1730.0 6.7 156.2 2509.5 172.7 159613.7 1630.0 5.3 157.7 2463.4 

S
t.

 

D
ev

 

94.7 210584.3 892.8 4.0 8.6 3481.7 96.5 201504.5 832.6 4.1 10.0 2563.9 93.1 170918.6 728.8 3.2 10.4 54095.0 
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Table 4.c       Measurements from central profile  

              (before tumbling) 
       Measurements from central profile 

                        (after tumbling) 
Measurements from 2nd extra profiles 

    
Max. 

Depth 
(µm) 

Area 

(µm2) 

Max. 

Width 
(µm) 

Ra 
Angle 

(°) 

Radius 

(µm) 

Max. 

Depth 
(µm) 

Area 

(µm2) 

Max. 

Width 
(µm) 

Ra 
Angle 

(°) 

Radius 

(µm) 

Max. 

Depth 
(µm) 

Area 

(µm2) 

Max. 

Width 
(µm) 

Ra 
Angle 

(°) 

Radius 

(µm) 

C
u

t 
M

a
rk

s 

M
ea

n
 

69.6 13550.0 338.3 2.2 126.3 484.1 57.6 11721.0 391.4 1.7 141.1 968.0 58.5 12411.4 403.9 1.8 141.2 985.8 

M
ed

ia
n
 

71.3 11948.3 340.0 2.1 126.9 267.0 58.7 10331.5 385.0 1.6 144.7 382.3 59.3 10767.5 415.0 1.7 143.9 454.1 

S
t.

 D
ev

 

18.8 6622.7 101.2 0.8 17.7 662.4 20.1 5141.7 154.5 0.5 19.1 1995.6 20.2 5890.1 134.7 0.7 19.2 1941.6 

T
o

o
th

 M
a

rk
s 

M
ea

n
 

94.0 75795.0 1335.7 3.3 164.8 4150.4 101.1 76352.5 1340.9 3.8 162.0 3703.3 101.2 72539.3 1276.1 3.5 163.4 3694.2 

M
ed

ia
n
 

80.6 47631.4 1045.0 2.5 165.8 2856.9 94.1 57256.1 1045.0 3.0 162.9 2680.0 84.4 47662.9 1050.0 3.0 163.6 2310.6 

S
t.

 

D
ev

 

48.7 70577.7 694.7 1.9 5.4 4653.8 45.6 63931.3 628.8 2.0 8.7 4208.9 64.2 66676.6 602.3 2.2 6.3 5148.0 
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Table 5. T-tests comparing the measurements of tooth and cut marks before and after tumbling. 

5.a) for 3-D measurements, 5.b) for deepest profiles, 5.c) for central profiles, 5.d) for deepest 

profiles with extra profiles, 5.e) for central profiles with extra profiles.  

Table 5.a: t-test comparison of mark parameters before and after tumbling 

 Surface 

Area 

(µm2) 

Volume 

(µm3) 

Maximum 

Depth 

(µm) 

Mean 

Depth 

(µm) 

Maximum 

Length 

(µm) 

Maximum 

Width 

(µm) 

Cut 

Marks 

0.0002 0.45 0.0001 <0.0001 0.005 <0.0001 

Tooth 

Marks 

0.70 0.69 0.06 0.20 0.82 0.20 

 

 

 

 

Table 5.b: t-test comparison of mark parameters before and after tumbling 

 Maximum 

Depth 

(µm) 

Area 

(µm2) 

Maximum 

Width 

(µm) 

Roughness 

(Ra) 

Angle 

(°) 

Radius 

(µm) 

Cut  

Marks 

<0.0001 0.96 0.0003 0.16 0.0003 0.005 

Tooth 

Marks 

0.03 0.39 0.68 0.65 0.57 0.27 

Table 5.c: t-test comparison of mark parameters before and after tumbling 

 Maximum 

Depth  

(µm) 

Area 

(µm2) 

Maximum 

Width  

(µm) 

Roughness 

(Ra) 

Angle 

(°) 

Radius 

(µm) 

      Cut  

    Marks 

<0.0001 0.02 0.02 0.003 <0.0001 0.03 

Tooth 

Marks 

0.17 0.92 0.95 0.26 0.18 0.45 

Table 5.d: t-test comparison of mark parameters before and after tumbling 

 Maximum 

Depth 

(µm) 

Area 

(µm2) 

Maximum 

Width 

(µm) 

Roughness 

(Ra) 

Angle 

(°) 

Radius 

(µm) 

Cut    

Marks 

<0.0001 0.19 <0.0001 <0.0001 <0.0001 0.002 

Tooth 

Marks 

0.02 0.13 0.17 0.42 0.48 0.35 
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Table 5.e: t-test comparison of mark parameters before and after tumbling 

 Maximum 

Depth 

(µm) 

Area 

(µm2) 

Maximum  

Width 

(µm) 

Roughness 

(Ra) 

Angle 

(°) 

Radius 

(µm) 

Cut    

Marks 

<0.0001 0.15 0.0005 0.01 <0.0001 0.02 

Tooth 

Marks 

0.43 0.71 0.57 0.58 0.32 0.5 
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4.3 Cut mark vs. tooth mark 

Multivariate linear discriminant analysis (LDA) was performed using the all measured 

parameters of the marks to find out how accurately cut marks and tooth marks can be distinguished 

from each other before and after tumbling. Results of the discriminant analysis show that the cut 

marks and tooth marks can be distinguished from each other with 100 % accuracy before and after 

tumbling (Figure 15).  

         

Figure 15. Discriminant analysis of measurements of the cut marks and the tooth marks a) before 

tumbling b) after tumbling. CM represents cut mark and TM represents tooth mark. 

  

a b 
% 100 % 100 

  X         CM 

 Δ      TM 
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CHAPTER 5  

 

DISCUSSION 

5.1 Bone surface morphology 

It is evident from these tumbling experiments that fluvial abrasion can affect bone surface 

morphology. Bone surfaces showed evidence of smoothing and polishing after tumbling. 

Smoothing and polishing on bone surfaces were also observed in the studies of Gaudzinski-

Windheuser et al. (2010) and Griffith et al. (2016). In the present study, it was observed that the 

abrasion rate of the medullary cavities of bones was minimal.  This is consistent with the 

observations of Shipman and Rose (1988), who found that concave surfaces were abraded less 

than convex surfaces. In these experiments, it was observed that sand became compacted in the 

medullary cavities of the bones during tumbling, and this may have protected these surfaces from 

abrasion. 

After tumbling, depressions and parallel straight incisions were apparent on the surfaces of 

some cattle bones. Depressions only occurred on cattle bones that were tumbled together. This 

suggests that the depressions on the bone surfaces may be the result of the bones impacting one 

another during tumbling. The parallel straight incisions formed only on the surfaces of two cattle 

bones that were tumbled together. For this reason, it was presumed that these incisions resulted 

from the frequent friction of the bones against each other. The depressions can be easily 

distinguished from the abraded and unabraded tooth marks and cut marks because they are much 

wider and have smoother surfaces. Some of the incisions superficially resemble tooth scratches 

because they are U-shaped in cross section. However, they are shallower than abraded and 

unabraded tooth scratches observed in this study. These findings suggest that the interaction of 
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bones with each other during transport in fluvial environments cannot be expected to produce 

marks that can be mistaken for cut marks and tooth marks. However, the interaction between bones 

and other objects, such as rocks, during transport was not tested and the effect of collisions between 

bones and other objects remains unknown. 

5.2  Changes in cut mark morphology 

The results of the qualitative analysis on cut marks are largely inconsistent with previous 

research (Shipman and Rose, 1983, 1988; Gaudzinski-Windheuser et al., 2010) in that the level of 

the abrasion on cut marks is comparatively lower in the present study. Shipman and Rose (1983, 

1988) presented that the slicing marks created on clean animal bones lost all defining features after 

five hours of tumbling (using a geologic tumbling barrel). They (Shipman and Rose, 1988) asserted 

that “hydraulically transported bones cannot be expected to show cut marks that can be identified 

on the basis of SEM inspection” (Shipman and Rose, 1988, p. 320). Additionally, Gaudzinski-

Windheuser et al. (2010) found that most cut marks on cattle bones were altered or completely 

eroded after as little as 3 to 6 hours of abrasion. However, the results of the present study indicate 

that most cut marks on bones that were tumbled for much longer periods of time (152 hours) were 

still visible and 65.3 percent of the cut marks still preserved at least one diagnostic feature.  

The results of the present study also indicate that shoulders associated with stone tool cut 

marks can be affected by fluvial abrasion. Shoulders were initially present on 30 of 49 cut marks. 

After tumbling, the shoulders of 19 of these cut marks were nearly or completely dissolved and 

only 11 cut marks preserved these forms. These results suggest that shoulders may be destroyed 

by fluvial abrasion, but not in every instance.  

Quantitative analyses of cut mark micromorphology show significant changes resulted 

from tumbling.  Variables measured from the 3-D studiables show significant changes to surface 
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area, maximum depth, mean depth, maximum length and maximum width of the cut marks, while 

measurements from 2-D profiles show changes in the maximum depth, maximum width, 

roughness, angle, and radius of the cut marks. While the surface area, volume, maximum width, 

angle, and radius values increased after tumbling, maximum depth, mean depth, maximum length, 

area, and roughness decreased. These results indicate that the cut marks became wider, shorter, 

and shallower, which as a result show that fluvial abrasion has potential to affect cut mark 

morphology.  

5.3 Changes in tooth mark morphology 

Both the qualitative and quantitative analyses show that morphology of tooth marks was 

only slightly affected by tumbling. Only 21.7 percent of the tooth marks lost one diagnostic feature 

(crushed inner surface), which reduced the identifiability of the tooth marks.  However, unlike cut 

marks 100 percent of tooth marks maintained at least one diagnostic characteristic.  Measurements 

taken from tooth mark parameters show that only maximum depth values of the tooth marks 

measured from the deepest profiles changed significantly after abrasion. As explained before, the 

locations of the deepest point and central point on most of the marks changed after tumbling. 

However, since the location of the deepest points changed after tumbling significant alterations in 

maximum depth taken from the deepest profiles is not unexpected. Measurements from the deepest 

profiles show both increases and decreases in maximum depth after tumbling.  

5.4 Cut mark vs. tooth mark 

Qualitative analyses of cut and tooth marks show that the cut marks were more abraded 

than the tooth marks and became differentially less identifiable when compared with tooth marks. 

The greater effect of abrasion on cut marks suggests that frequencies of cut marks in fluvially-

deposited fossil assemblages may be underestimated relative to carnivore tooth marks. This would 
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likely result in inaccurate assessments of the relative contributions of hominins and carnivores to 

archaeological sites when frequencies of bone surface modifications are compared with modern 

feeding trace models based on the incidences of cut-, tooth-, and percussion-marked long bones 

(Blumenschine, 1988, 1995; Capaldo, 1995; Selvaggio, 1998; Pante et al., 2012; Pante, 2013). 

While Pante and Blumenschine (2010) found that the incidences of cut-, tooth-, and percussion-

marked long bones did not differ between hydraulically transported and non-transported bones, 

they did not test the effect of abrasion on the differential preservation of marks and as a result 

likely underestimated the effect of fluvial processes on these important measures of hominin and 

carnivore feeding behavior.  

Quantitative analysis of tooth and cut marks also show abrasion has a greater effect on cut 

marks than tooth marks. However, unlike the qualitative analyses it is still possible to distinguish 

between these marks after tumbling with 100% accuracy using multivariate analysis of the 

measured parameters. These results bolster the need for quantitative methods in the identification 

of tooth and cut mark on fossil bones, particularly when they are recovered in fluvial environments.  

5.5 Different level of abrasion between cut marks and tooth marks 

The greater effects of abrasion on cut marks can in part be explained by differences in their 

depth values of tooth and cut marks before tumbling.  The mean of the mean depth values for the 

cut marks was much lower (37 µm) than those of the tooth marks (71 µm) before tumbling. This 

is also supported by a comparison of the cut marks that were made on cattle bones against those 

made on deer bones. The cut marks on the deer bones were deeper (the mean of the mean depth is 

39.7 µm) than the cut marks on the cattle bones (the mean of the mean depth is 33.7 µm). 

Quantitative comparisons of the morphological changes that result after tumbling show that the 

deeper cut marks on deer bone are also less affected by fluvial abrasion. For example, the following 
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variables changed for cut marks on cattle bones, but not deer after tumbling: maximum depth and 

maximum length (3-D measurements). Overall these findings indicate that shallower marks are 

more susceptible to quantitative morphological changes than deeper marks and cut marks are less 

likely to remain identifiable in fluvial environments. 

5.6 Variations in abrasion  

Several studies have shown that the type of sediment, sediment grain size, sediment grain 

morphology, bone condition and proportion of sediment/water can affect the abrasion rate of bone 

(Shipman and Rose, 1988; Fernandez-Jalvo and Andrews, 2003; Gaudzinski-Windheuser et al., 

2010; Griffith et al., 2016). This suggests that studies conducted under different conditions can 

yield different results. Therefore, the inconsistency between the results of the present study and 

the other studies (Shipman and Rose, 1983, 1988; Gaudzinski-Windheuser et al., 2010) could stem 

from using different types and proportions of materials. Shipman and Rose (1983, 1988) used 

different types of sediment such as loess, fine sand, mixed sand, coarse sand, and gravel. These 

sediment types could cause different degrees of abrasion on bone surfaces (Fernandez-Jalvo and 

Andrews, 2003; Griffith et al., 2016). Also, they (Shipman and Rose, 1983, 1988) did not use water 

in every tumbling experiment, which could increase the level of abrasion on bone (Gaudzinski-

Windheuser et al., 2010; Thompson et al., 2011). In the tumbling experiments of Gaudzinski-

Windheuser et al. (2010), the ratio of sand to water (0.014, 0.007) is much lower than the ratio 

used in the present study (0.4286). This could have resulted in the lower abrasion rates observed 

here, as Gaudzinski-Windheuser et al. (2010) claimed that an increase in the amount of water 

caused a decrease in the level of abrasion.  Griffith et al. (2016) found that gravels caused higher 

abrasion on fresh bones than fine and coarse sands. Consequently, the greater level of abrasion on 

the cut marks in these studies could result from using different type of sediment and exclusion of 
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water.   Therefore, the experimental conditions used in this study should be considered when 

interpreting the results.  Bones are carried in fluvial channels that contain various types of sediment 

and have different water flow velocities (Behrensmeyer, 1988). Therefore, we should expect the 

effect of transport in fluvial channels on bones and bone surface modifications to be highly 

variable. 

5.7 The limitations of the study 

Shipman and Rose (1988) and Thompson et al. (2011) acknowledged the disadvantages of 

using rock tumbler for abrasion experiments. Rock tumblers cannot accurately create all conditions 

of natural fluvial processes (Shipman and Rose, 1988; Thompson et al., 2011). In the present study, 

the continual contact of the bones with each other during 152 hours in the tumbler may have 

resulted in the formation of the depressions and the parallel straight lines on the bone surfaces. The 

conditions that created these marks on the bones may not accurately reflect natural fluvial 

environments. It has also been argued that a tumbler causes sediment to strike bone surfaces more 

than would occur in a fluvial environment (Shipman and Rose, 1988), which would accelerate 

rates of abrasion. Behrensmeyer (1982) demonstrated that the degree of abrasion is not directly 

related to the distance that bones were transported, but to the level of interaction between the bones 

and sediment during transport (Behrensmeyer, 1982). In the present research, hours of tumbling 

were not translated into distance that the bones would be transported in natural settings because 

the tumbler would give rise to more rapid abrasion of bone surfaces than natural fluvial abrasion 

(Shipman and Rose, 1988). On the other hand, “it does offer substantial advantages in terms of 

simplicity, replicability, control over variables, and a good return in knowledge for effort 

expended” (Shipman and Rose, 1988, p. 318).  It is for these reasons a tumbler was chosen for this 

study. 
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The methodologies that have been applied provide detailed qualitative and quantitative 

results for assessing the effect of fluvial abrasion on bone surface modification, but also have some 

limitations. It is difficult to take cross-sectional profiles from the exact same locations on the marks 

before and after tumbling. As a result, assessments of modifications to the 2-D profiles may be 

inaccurate. The procedure implemented (creating “V” and “O” symbols around the marks, taking 

the four profiles from four different locations after tumbling) helped minimize the impact of this 

problem. Also, it was occasionally difficult outline the marks to collect the 3-D measurements, 

because bone surfaces are not completely smooth and have a lot of hollows and ridges that can 

obscure mark borders. The borders of these parts of the marks after tumbling were estimated by 

looking at the location of the hollows on the 2-D studiables created before tumbling. Thus, the 

borders of the marks and the hollows were occasionally inferred.  

Pante et al. (2017) tested the precision of this 3-D quantitative method for measuring cut 

and tooth marks and the measurements were taken by three different analysts. Pante et al. (2017) 

found that profile measurements indicated higher error than 3-D measurements, suggesting that 3-

D measurements were more reliable in comparison to 2-D measurements. They claim that the 

higher error in profile measurements could result from the difficulty of taking the cross-sectional 

profiles from the exact same locations in separate scans (Pante et al., 2017). Since the same issue 

occurred in the present study, the 3-D measurements are also likely to be more reliable than the 

profile measurements in the present study. For the cut marks, most of the variables in both 3-D 

and profile measurements show significant change after tumbling. For the tooth marks, only the 

maximum depth values from the deepest profiles changed significantly after tumbling while the 

maximum depth values from 3-D measurements do not indicate significant differences. 
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Another limitation resulted from a few tooth marks that became larger and did not fit the 

scanned areas after tumbling. The borders of these marks were set as large as possible after 

tumbling.  However, this problem could be remedied by scanning a larger area before tumbling in 

future studies. 

  



50 

 

CHAPTER 6   

 

CONCLUSION 

Vertebrate fossils are often preserved in fluvial environments (Behrensmeyer, 1988) and 

as a result, have been exposed to sediment abrasion (Shipman and Rose, 1988). Therefore, it is 

vital to understand the effects of fluvial abrasion on bone surface modifications to make inferences 

about hominin behavior and feeding ecology from these feeding traces on fossils recovered from 

fluvial environments (Pante, 2013). Despite these implications, the effect of fluvial abrasion on 

stone tool cut marks was previously investigated by only a few studies (Shipman and Rose, 1983, 

1988; Gaudzinski-Windheuser et al., 2010) while the effect on mammalian carnivore tooth marks 

was completely unknown. Additionally, no previous experimental studies produced detailed 

quantitative information from these marks before and after tumbling. Therefore, this study is not 

only the first to identify the differential effect of fluvial abrasion on cut and tooth marks, it is also 

the first to quantify these differences using high-resolution 3-D data. 

In the present study, the qualitative and quantitative analyses indicated that fluvial abrasion 

has the potential to affect cut mark morphology. While the degree of abrasion was high enough to 

remove internal striations and to reduce the identifiability of cut marks, most of the cut marks 

retained at least one diagnostic feature. The quantitative analyses indicated that sediment abrasion 

resulting from hydraulic abrasion significantly altered the micromorphology of cut marks. 

Specifically, the cut marks became wider, shorter, and shallower after abrasion.  

The study also shows that the carnivore tooth marks were affected less than cut marks by 

abrasion. It is thought that this different level of abrasion resulted from the higher depth values of 

tooth marks in comparison to those of cut marks. One hundred percent of the tooth marks preserved 
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at least one of their qualitative diagnostic features, while almost all quantitative measures of the 

micromorphology of the tooth marks were not altered significantly after tumbling. The only 

significantly altered measure was maximum depth of the 2-D profiles. 

The differential effect of fluvial abrasion on cut marks and tooth marks has implications 

for inferences about hominin and carnivore behavior that are based on the assemblage-wide 

frequencies of cut-, tooth-, and percussion-marked long bones. The frequencies of bone surface 

modifications in fossil assemblages have been used to infer the relative order of hominin and 

carnivore access to carcasses and the type and amount of foods consumed by hominins at 

archaeological sites (Blumenschine, 1995; Selvaggio, 1998; Pante et al., 2012; Pante, 2013). This 

study has shown that application of these models in fluvial environments should consider that 

frequencies of cut marks may be underestimated due to the effect of hydraulic abrasion. 

This study also demonstrates the importance of 3-D quantitative methods for the 

identification of the bone surface modifications, particularly when fossils are found in fluvial 

environments. Multivariate analysis of the measured parameters allows discrimination between 

cut marks and tooth marks with 100% accuracy before and after abrasion.   This level of accuracy 

and precision cannot be obtained with qualitative methods. 

Future research on the effects of fluvial abrasion on bone surface modifications should be 

conducted under different experimental conditions. Researchers should use different types of 

sediment and bone and different proportions of sediment/water in their abrasion experiments to 

produce more comprehensive interpretations about the effects of fluvial abrasion on the bone 

surface modifications. Examining the effects of fluvial abrasion on cut mark and tooth mark 

morphology remains essential necessary if we are to make reliable inferences about the feeding 

ecology and behavior of hominins and mammalian carnivores. 
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