
Robust Resource Allocation in a Client/Server Hybrid
Network for Virtual World Environments

Luis D. Briceño1, H. J. Siegel1,2, Anthony A. Maciejewski1, Ye Hong1, Brad Lock1,

Mohammad Nayeem Teli2, Fadi Wedyan2, Chuck Panaccione2, and Chen Zhang2

This research was supported by the NSF under grant CNS-0615170 and by the Colorado State University
George T. Abell Endowment

1Electrical & Computer Engineering, 2Department of Computer Science

{ldbricen, hj, aam}@colostate.edu

Introduction

�What is heterogeneous computing (HC)?

� HC is the coordinated use of different types of machines,
networks, and interfaces to maximize performance

�What is a virtual world environment?
�a virtual world environment is a multi-user program that

creates a game world

�What is the goal of this research?

� in this study we maximize the robustness in the system

� robustness for this study is the number of additional
players that can be added

Pending Work

�The implementation of the heuristics is done

�more experimentation with the parameters
of these heuristics is required

Cost in an MMOG

�support of Massive Multiplayer Online Games

(MMOGs) has a significant cost:
�game server configuration costs

�customer service

�technical problems during and after launch

�many MMOGs use a logical single server architecture

�World of Warcraft game world is divided into shards that
are processed by a single server

�disadvantages of a logical single server architecture:

�initial procurement of servers is expensive
�hard to scale architecture based on demand

Three Robustness Questions

� what behavior of the system makes it robust?
�the system is robust if RTmax ≤ βmax and

RTmin ≥ (RTmax – ∆max)

� what uncertainties is the system robust against?
�the system is robust against new players

joining the game
� quantitatively, exactly how robust is the system?

�the number of new players that can be connected

directly to the Main Server and still have a system that
meets the robustness criteria

Heuristics

�ROAR: greedy heuristic that combines exploration

�Tabu Search: combines global and local search
�Discrete Particle Swarm Optimization: mimics flocking

behavior of birds to explore solutions

�Genetic Algorithm: mimics evolution by combining
solutions to produce better solutions (or offspring)

�Ant Colony Optimization: mimics the behavior of ants

to produce solutions

�Generic Players Iterative Maximization: combines
random search with a greedy search

heuristics are used to maximize the number of additional
players that can be connected to the Main Server while

maintaining the desired performance metrics

Example of Interaction in an MMOG

P1 shot
first

U1

U2

U3

U4

U5

U6

UN-1

UN

Main
Server

…

Ux: user x

Main Server decides

who shot first

Proposed Solution

U1

SSα/U2

U3

U4

U5

UN-1

UN

Main
Server

…

SSβ/U6

Ux: user x

� users’ computers are converted into secondary servers (SS)

� SS are used to assist the Main Server in computation

Robustness Metric

� robustness of the system

�based on perceived fairness

�how responsive does the system need to be to avoid

users from realizing the system is unfair

�a constraint of is used to limit the worst responsiveness

the system allows (βmax)

�∆max is the time window (value is fixed)

�2 constraints should be used

�RTmax ≤ βmax

�RTmin ≥ (RTmax – ∆max)

Maximum Response Time (RTmax)

CompMS

•CompMS

Compi

t(k-1) t(k) t(k+2)t(k+1) t(k+3)

Comm(Ux,SSi)

Comm(MS,SSi)

RTmax

�user x missed the t(k) deadline by (CompMS – ∆)
time units (with 0 < ∆ < CompMS)

�the worst time for Ux to interact with the
environment is when ∆� CompMS

�the worst time for any user to interact with the environment
can be bounded by with ∆ = CompMS

•CompMS

Ux just missed its deadline

Ux action

∆ = CompMS

Comm(SSi,Ux)

Comm(SSi,MS)

)x(RTmaxmaxRT xU∀

=

Minimum Response Time (RTmin)

CompMS

•CompMS

Compi

t(k-1) t(k) t(k+2)t(k+1) t(k+3)

Comm(Ux,SSi)

Comm(MS,SSi)

RTx

�assume RTx ≥ RTmin (for any Ux)

�minimum time any user requires to interact with the

virtual world environment is RTmin time units

� with ∆ = 0

•CompMS

Comm(SSi,Ux)

Comm(SSi,MS)
Ux action

•∆ = 0

)x(RTminminRT xU∀

=

Response Time for User X (RTx)

RTx: response time from user x (Ux) to the server and back

MS: Main Server; SS: secondary server

CompC: computation at node C

Comm(A,B): communication time from A to B

∆: uncertainty in the arrival time of the user action to the MS

CompMS

•CompMS

•CompMS

Compi

t(k-1) t(k) t(k+2)t(k+1) t(k+3)

Comm(Ux,SSi)

Comm(SSi,MS)

RTx

Ux action

RTx = Comm(Ux,SSi) + Compi + Comm(SSi,MS)
+ CompMS + Comm(MS,SSi) + Comm(SSi,Ux) + ∆

Comm(MS,SSi)

Comm(SSi, Ux)

∆

