ABSTRACT. Syllogisms with or without negative terms are studied by using Gergonne's ideas. Soundness, completeness, and decidability results are given.

1. BACKGROUND AND MOTIVATION

Gergonne [2] relates the familiar A, E, I, and O sentences without negative terms to five basic sentences that express the "Gergonne relations." These relations are: exclusion, identity, overlap, proper containment, and proper inclusion. What makes these relations especially interesting is that for any pair of non-empty class terms exactly one of them holds.

Faris [1] develops a formal system that takes the Gergonne relations as basic. His system takes advantage of Łukasiewicz's [4], which attempts to formalize the Aristotelian syllogistic. The following paper results from two ideas: 1) If Gergonne had been interested in studying A, E, I, and O sentences with negative terms, the count of Gergonne relations would be seven rather than five; and 2) The most Aristotelian way to develop a syllogistic system based on the these seven relations is by following Smiley's [5] rather than Łukasiewicz's [4].

After developing the Aristotelian "full syllogistic" based on seven relations, we will discuss a subsystem that is adequate for representing AEIO-syllogisms with or without negative terms.

2. THE SYSTEM

Sentences are defined by referring to:

- terms: A, B, C, ...
- simple quantifiers: =, =+, C++, C+-, C-, C--, Z
- comma: ,

Q₁, ..., Qₙ is a quantifier provided i) each Qᵢ (1 ≤ i ≤ n) is a simple quantifier, ii) Qᵢ precedes Qⱼ if i < j, where precedence among simple

quantifiers is indicated by the above ordering of simple quantifiers, and
iii) at least one quantifier is not a Q_i. No expressions are quantifiers other
than those generated by the above three conditions. So, for example,
$=, c^{++}, =, c^{+}, =, c^{--}, =, c^{+}, c^{--}, ZAB$ are sentences, but $=, c^{++}, AA$ is not. Qab is a simple
sentence iff Qab is a sentence and Q is a simple quantifier. Read simple
sentences as follows: $=ab$ as “The a are the b,” $=ab$ as “The a are
the non-b,” $c^{++}ab$ as “The a are properly included in the b,” $c^{+-}ab$ as
“The a are properly included in the non-b,” $c^{--}ab$ as “The non-a are
properly included in the b,” $c^{+-}ab$ as “The non-a are properly included
in the non-b,” and Zab as “Some a are b, some a are non-b, some non-a
are b, and some non-a are non-b.” Read Q_1, \ldots, Q_nab by putting “or”
between sentences that correspond to Q_iab. So, read $=, c^{++}ab$ as “The
a are the b,” or the a are properly included in the b” (or “All a are b.”)
$=, c^{--}, c^{+}, c^{--}, Zab$ may be read as “Some a are not b.”

The deducibility relation (\vdash), relating sets of sentences to sentences,
is defined recursively. Read “$X \vdash y$” as “y is deducible from X.” Set
brackets are omitted in the statement of the following definition. “X, y”
is short for “$X \cup \{y\}$” and “x, y” is short for “$\{x\} \cup \{y\}$.” “a”, “b”, . . .
range over terms; and “p”, “q”, . . . range over “+”, and “-”. p^* is “+”
iff p is “-”. $cd(Pab) = Qab$ iff every quantifier that does not occur in P
occurrs in Q. Read “cd” as “the contradictory of.”

\[(B1) \quad =ab \vdash =ba\]
\[(B2) \quad =ab \vdash =ba\]
\[(B3) \quad c^{pq}ab \vdash c^{q^*p^*}ba\]
\[(B4) \quad Zab \vdash Zba\]
\[(B5) \quad =ab, Qbc \vdash Qac, \quad \text{where } Q \text{ is } =, =-, \text{ or } c^{pq}\]
\[(B6) \quad =ab, =bc \vdash =ac\]
\[(B7) \quad =ab, c^{pq}bc \vdash c^{p^*q}ac\]
\[(B8) \quad c^{pq}ab, c^{qr}bc \vdash c^{pr}ac\]
\[(R1) \quad \text{If } X \vdash y \text{ and } y, z \vdash w \text{ then } X, z \vdash w\]
\[(R2) \quad \text{If } X, y \vdash Pab \text{ then } X, Qab \vdash cd(y) \text{ if no quantifier in } P \text{ is a}
\text{quantifier in } Q\]
(R3) If X, Pab ⊨ y and X, Qab ⊨ y then X, Rab ⊨ y if each quantifier in R is in P or Q.

(L1) X ⊨ y iff X ⊨ y in virtue of B1–R3.

So, for example, =¬AB, c++BC ⊨ c--AC (by B7) and c--AC, c++CD ⊨ c--AD (by B8). So =¬AB, c++BC, c++CD ⊨ =, =--C, c++, c--C, ZCD (by R2).

THEOREM 1. (D1) If X, y ⊨ Pab then X, y ⊨ cd(Qab) if no simple quantifier occurs in both P and Q. (D2) If X, y ⊨ cd(Pab) and X, y ⊨ cd(Qab) then X, y ⊨ cd(Rab) if each quantifier in R is in P or Q. (D3) If X, y ⊨ z and v, w ⊨ y then X, v, w ⊨ z.

Proof. Begin each proof by assuming the antecedent. (D1) Then X, Qab ⊨ cd(y) (by R2). Then X, y ⊨ cd(Qab) (by R2). (D2) Then X, Pab ⊨ cd(y) and X, Qab ⊨ cd(y) (by R2). Then X, Rab ⊨ cd(y) (by R3). Then X, y ⊨ cd(Rab) (by R2). (D3) Then X, cd(z) ⊨ cd(y) and v, cd(y) ⊨ cd(w) (by R2). Then X, v, cd(z) ⊨ cd(w) (by R1). Then X, v, w ⊨ z (by R2).

A model is a quadruple (W, v+, v−, v), where i) W is a non-empty set, ii) v+ and v− are functions that assign non-empty subsets of W to terms such that v+(a) ∪ v−(a) = W and v+(a) ∩ v−(a) = ∅, and iii) v is a function that assigns t or f to sentences such that the following conditions are met:

(i) v(=ab) = t iff v+(a) = v+(b)
(ii) v(=¬ab) = t iff v+(a) = v−(b)
(iii) v(≤pqab) = t iff v+(a) ⊂ v+(b)
(iv) v(Zab) = t iff v+(a) ∩ v+(b) ≠ ∅ for each p and q
(v) v(Q1, …, Qnab) = t iff for some i (1 ≤ i ≤ n) v(Qiab) = t

y is a semantic consequence of X (X ⊨ y) iff there is no model (W, …, v) such that v assigns t to every member of X and v assigns f to y. X is consistent iff there is a model (W, …, v) such that v assigns t to every member of X. X is inconsistent iff X is not consistent.

THEOREM 2 (Soundness). If X ⊨ y then X ⊨ y.
Proof. Straightforward. (For B1, note that for any model \(\langle W, \ldots, \nu \rangle \), if \(\nu_+(a) = \nu_+(b) \) then \(\nu_+(b) = \nu_+(a) \). For R2, suppose no quantifier in \(P \) is a quantifier in \(Q \), and suppose that \(X, Qab \not\in cd(y) \). Then there is a model \(\langle W, \ldots, \nu \rangle \) in which \(\nu \) assigns \(t \) to every member of \(X \), \(\nu(Qab) = t \), and \(\nu(cd(y)) = f \). Note that \(\nu(cd(y)) = f \) iff \(\nu(y) = t \). And note that since no quantifier in \(P \) is a quantifier in \(Q \), \(\nu(Pab) = f \). So \(X, y \not\equiv Pab \).

A chain is a set of sentences whose members can be arranged as a sequence \(\langle Q_1[a_1a_2], Q_2[a_2a_3], \ldots, Q_n[a_na_1] \rangle \), where \(Q_i[a_ia_j] \) is either \(Q_iaiaj \) or \(Q_iajai \) and where \(a_i \neq a_j \) if \(i \neq j \). So, for example, \(\{=AB, =-, C++CB, ZCA\} \) is a chain. A pair \(\langle X, y \rangle \) is a syllogism iff \(X \cup \{y\} \) is a chain. So \(\{AB, =-, C++CB, \} \) is a syllogism.

A normal chain is a set of sentences whose members can be arranged as a sequence \(\langle Q_1[a_1a_2], Q_2[a_2a_3], \ldots, Q_n[a_na_1] \rangle \), where \(a_i \neq a_j \) if \(i \neq j \). A simple normal chain is a normal chain in which each quantifier is simple. So, for example, \(\{=, =-AB, =BA\} \) is a normal chain. And \(\{=AB, =BA\} \) is a simple normal chain.

By definition, \(e(=ab) \) is \(=ba \), \(e(=ab) \) is \(=ab \), \(e(Cpqab) \) is \(C^r*a*b \), and \(e(Zab) \) is \(Zba \).

\(\{Q_1ab, Q_2bc\} \) a-reduces to \(Q_3ac \) iff the triple \(\langle Q_1ab, Q_2bc, Q_3ac \rangle \) is recorded on the following Table of Reductions:

\[
\begin{array}{ccc}
Q_1ab & = & =- \\
- & = & =- \\
- & = & =- \\
C^{pq} & C^{pq} & C^{pq*} \\
C^{pr} & C^{pq} & C^{pq*} \\
\end{array}
\]

So, for example, \(\{=AB, =BC\} \) a-reduces to \(=AC \), and \(\{C++AB, C+-BC\} \) a-reduces to \(C+-AC \).

If \(X_1 \) is a simple chain then a sequence of chains \(X_1, \ldots, X_m \) \((=Y_1) \), \(\ldots, Y_n \) is a full reduction of \(X_1 \) to \(Y_n \) iff: i) \(X_m \) is a normal chain and if \(m > 1 \) then, for \(1 \leq i < m \), if \(X_i \) has form \(\{Qab\} \cup Z \) then \(X_{i+1} \) has form \(\{e(Qab)\} \cup Z \), and ii) there is no pair in \(Y_n \) that a-reduces to a sentence and if \(n > 1 \) then, for \(1 \leq i < n \), if \(Y_i \) has form \(\{Q_1ab, Q_2bc\} \cup Z \) then \(Y_{i+1} \) has form \(\{Q_3ac\} \cup Z \). \(X \) fully reduces to \(Y \) iff there is a full reduction of \(X \) to \(Y \).

THEOREM 3. Every simple chain fully reduces to a simple normal chain.

Proof. Assume \(X_1 \) is a simple chain. We construct a sequence of chains that is a full reduction of \(X_1 \) to \(Y_n \). Step 1: If \(X_1 \) is a simple
normal chain let \(X_1 = Y_1 \) and go to Step 2. If \(X_1 \) is not a simple normal chain find the alphabetically first pair of sentences in \(X_1 \) of form \((Qab, Qcb)\) and replace \(Qcb \) with \(e(Qcb) \), forming \(X_2 \). Repeat Step 1 (with \("X_1" \) in place of \("X_1" \)).

Step 2: If no pair of sentences in \(Y_1 \) a-reduces to a sentence, then \(X_1 \) fully reduces to \(Y_1 \). If a pair of sentences in \(Y_1 \) a-reduces to a sentence \(x \) find the alphabetically first pair that a-reduces to \(x \) and form \(Y_2 \) by replacing this pair with \(x \). Repeat Step 2 (with \("Y_1" \) in place of \("Y_1" \)). \(\Box \).

So, for example, given the sequence \(\langle \{=AB\}, \{=AB, =BA\} \rangle \), \(\{=AB\} \) fully reduces to \(\{=AB, =BA\} \). And, given the sequence \(\langle \{C++AB, C--BC, C++CA\}, \{C++AB, C++BC, C++CA\}, \{C++AC, C++CA\} \rangle \), \(\{C++AB, C--BC, C++CA\} \) fully reduces to \(\{C++AC, C++CA\} \). Some chains fully reduce to themselves. \(\{C++AB, C--BC, ZCA\} \) is an example.

\(\{P_1[a_1a_2], \ldots, P_n[a_n a_1]\} \) is a strand of \(\{Q_1[a_1 a_2], \ldots, Q_n[a_n a_1]\} \) iff each \(P_i \) is a simple quantifier in \(Q_i \) and \(a_i \) is the first term in \(P_i[a_{i+1}a_i] \) iff \(a_i \) is the first term in \(Q_i[a_{i+1}a_i] \), where \(P[a] \) is \(Pab \) or \(Pba \). So, for example, \(\{=AB, =- AB\} \) is a strand of \(\{=, C++AB, =-, C++AB\} \).

A simple normal chain is a \(cd\)-pair if it has one of the following forms:

\[
\{=ab, =- ba \text{ (or } Cpqba \text{ or } Zba\}\}, \{= ab, Cpqba \text{ (or } Zba\}\},
\text{or}\ \{Cpqab, Cqrba \text{ (or } Zba\}\}.
\]

THEOREM 4 (Syntactic decision procedure). If \(\langle X, y \rangle \) is a syllogism then \(X \vdash y \) iff every strand of \(X \cup \{cd(y)\} \) fully reduces to a \(cd\)-pair.

Proof. Assume \(\langle X, y \rangle \) is a syllogism. We use Lemmas 1–3, below. (If) Suppose every strand of \(X \), \(cd(y) \) fully reduces to a \(cd\)-pair. Then by Lemmas 1 and 2, \(X, cd(y) \) is inconsistent. Then \(X \vdash y \). (Only if) Suppose some strand of \(X \), \(cd(y) \) does not fully reduce to a \(cd\)-pair. Then, by Theorem 3, some strand of \(X \), \(cd(y) \) fully reduces to a simple normal chain that is not a \(cd\)-pair. Then, by Lemmas 1 and 3, \(X \), \(cd(y) \) is consistent. Then \(X \not\vdash y \). \(\Box \)

LEMMA 1. A chain is inconsistent iff each of its strands is inconsistent.

Proof. Note that a model satisfies \(\{Q_1ab\} \cup X \) and \(\{Q_2ab\} \cup X \) if it satisfies \(\{Q_3ab\} \cup X \), where the quantifiers in \(Q_3 \) are the quantifiers in \(Q_1 \) and \(Q_2 \). \(\Box \)

LEMMA 2. If a simple chain \(X \) fully reduces to a \(cd\)-pair, then \(X \) is inconsistent.
LEMMA 2.1. Each cd-pair is inconsistent.

LEMMA 2.2. If a simple normal chain \(\{Q_3ac\} \cup X \) is inconsistent and \(\{Q_1ab, Q_3bc\} \) a-reduces to \(Q_3ac \), then \(\{Q_1ab, Q_3bc\} \cup X \) is inconsistent.

LEMMA 2.3. If a simple chain \(\{Qab\} \cup X \) is inconsistent, then \(\{e(Qab)\} \cup X \) is inconsistent.

LEMMA 3. If a simple chain \(X \) fully reduces to a simple normal chain that is not a cd-pair, then \(X \) is satisfied in an \(m \)-model, where \(m \leq n + 2 \) and \(n \) is the number of terms in \(X \).

Proof. Use the following three lemmas.

LEMMA 3.1. If a simple chain fully reduces to a simple normal chain \(X \) that is not a cd-pair, then \(X \) is satisfied in an \(m \)-model, where \(m \leq n + 2 \) and \(n \) is the number of terms in \(X \).

Proof. Assume the antecedent. We consider three cases determined by the number of occurrences of "Z" in \(X \).

Case 1: "Z" does not occur in \(X \). If either "=" or "=−" occurs in \(X \) then \(X \) has form \(\{=ab, =ba\} \) or \(\{=−ab, =−ba\} \). Use \(\langle \{1, 2\}, \ldots, \nu \rangle \), where, for each term \(x \), \(\nu_+(x) = \{1\} \). If neither "=" or "=−" occurs in \(X \) then \(X \) has form \(\{\nu(P_1a_1a_2), \ldots, \nu(P_{n-1}a_{i+1}), \ldots, \nu(P_{n-1}a_na_1)\} \), where \(p_{2i} = p_{2i+1}^* \), for \(1 \leq i < n \), and \(p_{2n} = p_1^* \). We use induction on the number \(n \) of terms in \(X \) to show that \(X \) is satisfied in a 3-model. Basis step: \(n = 2 \). \(X \) has form \(\{\nu(P_1a_2a_2), \nu(P_2a_2a_1)\} \). Use \(\langle \{1, 2, 3\}, \ldots, \nu \rangle \), where \(\nu_{p_1}(a) = \{1\} \), and, for terms \(x \) other than \(a \), \(\nu_+(x) = \{1, 2\} \). Induction step: \(n > 2 \). By the induction hypothesis \(\{\nu(P_{i-1}a_1a_3), \ldots, \nu(P_{i-1}a_{i+1}), \ldots, \nu(P_{n-1}a_na_1)\} \) is satisfied in a 3-model \(\langle W_i, \ldots, \nu \rangle \), where \(p_{2i} = p_{2i+1}^* \), for \(2 \leq i < n \), and \(p_{2n} = p_1^* \). Construct a model \(\langle W_i, \ldots, \nu' \rangle \), \(\nu'_2(a_2) = \nu_{p_1}(a_1) \cup \nu'_3(a_3) \), and, for other terms \(x \), \(\nu'_+(x) = \nu_+(x) \). Then \(\nu'(\nu(P_1a_2a_2)) = t. \nu'_3(a_2) = \nu_{p_4}(a_3) - \nu_{p_1}(a_1) \) and \(p_2^* = p_3 \). So \(\nu'(\nu(P_3a_2a_3)) = t. \)

Case 2: "Z" occurs exactly once in \(X \). Then \(X \) has at least three members and has form \(\{Zab\} \cup \{\nu(P_1bc, \ldots, \nu(r^4a)\} \). We use induction on the number of terms in \(X \) to show that \(X \) is satisfied in a 4-model. Basis step: \(n = 3 \). \(X \) has form \(\{Zab\} \cup \{\nu(P_1bc, \nu(r^4ca)\} \). Construct a model \(\langle \{1, 2, 3, 4\}, \ldots, \nu \rangle \), where \(\nu_r(a) = \{1, 2\} \), \(\nu_p(b) = \{1, 3\} \), and, for other terms \(x, \nu_q(x) = \{1, 3, 4\} \). Induction step: \(n > 3 \). Follow the model construction in the induction step in Case 1.
LEMMA 3.2. Suppose QI is $v'(e)$, $v_q(e)$, Q, and for terms x other than b, $\nu_+^t(x) = \nu_+(x)$. Suppose Q is “$=$”. Construct model $\langle W, \ldots, \nu' \rangle$, where $\nu'_+ (b) = \nu_+(c)$ and, for terms x other than b, $\nu_+^t(x) = \nu_+(x)$. Suppose Q is “$=$”. Construct model $\langle W, \ldots, \nu' \rangle$, where $\nu'_+ (b) = \nu_+(a) \cap \nu_+(c) \cup (\nu_-(a) \cap \nu_-(c))$, and, for other terms x, $\nu_+^t(x) = \nu_+(x)$. Finally, suppose that Q is “\subseteq_{pq}”. The strategy is to construct a model $\langle W', \ldots, \nu' \rangle$ such that X is satisfied in it by letting $\nu'_+ (b) = \nu_q(e) \cup \{M\}$, and, for terms x other than b, $\nu'_+ (x) = \nu_+(x)$. Then $\nu'(Zab) = t$ and $\nu''(\subseteq_{pq}bc) = t$.

We construct $\langle W', \ldots, \nu' \rangle$. If a and c are the only terms in X, let $\alpha = \nu_+(a) \cap \nu_q(c)$ (and, thus, a has at least one member. If terms d_1, \ldots, d_n occur in X, where these terms are other than “a” or “c”, pick $p_1 - p_n$ such that α has at least one member, where $\alpha = \nu_+(a) \cap \nu_q(c) \cap \nu_p(d_1) \cap \cdots \cap \nu_p(d_n)$. Let $W' = W \cup \{M\}$, where $M \notin W$. Let $\nu'_+ (x) = \nu_+(x) \cup \{M\}$ if $\alpha \subseteq \nu_+(x)$; otherwise, let $\nu'_+ (x) = \nu_+(x)$. Then $\nu'_- (x) = \nu_-(x) \cup \{M\}$ if $\alpha \subseteq \nu_-(x)$; otherwise, $\nu'_- (x) = \nu_-(x)$. We show that X is satisfied in $\langle W', \ldots, \nu' \rangle$. Suppose $\nu(Qde) = t$. Suppose Q is “$=$”. Then $\nu'_+ (d) = \nu_+(d) \cup \{M\}$ and $\nu'_+ (e) = \nu_+(e) \cup \{M\}$ or $\nu'_+ (d) = \nu_+(d)$ and $\nu'_+ (e) = \nu_+(e)$. Then $\nu' (\text{de}) = t$. Suppose Q is “$=$”. Then $\nu'_+ (d) = \nu_+ (d) \cup \{M\}$ and $\nu'_+ (e) = \nu_+(e)$ or $\nu'_+ (d) = \nu_+(d)$ and $\nu'_+ (e) = \nu_-(e) \cup \{M\}$. Then $\nu' (-\text{de}) = t$. Suppose Q is “\subseteq_{pq}”. If $\alpha \subseteq \nu_p(d)$ then $\nu'_+ (d) = \nu_p(d) \cup \{M\}$ and $\nu'_+ (e) = \nu_q(e) \cup \{M\}$. If $\alpha \notin \nu_p(d)$ then $\nu'_+ (d) = \nu_p(d)$ and either $\nu'_+ (e) = \nu_q(e)$ or $\nu'_+ (e) = \nu_q(e) \cup \{M\}$. Then $\nu' (\text{pq} \text{de}) = t$. Finally, suppose Q is “Z”. Then, for any p and q, $\nu_p(d) \cap \nu_q(e) \subseteq \nu'_+ (d) \cap \nu'_+ (e)$. Then $\nu'(Zde) = t$.

LEMMA 3.2. If a simple chain $\{Q_3ac\} \cup X$ is satisfied in an n-model $\langle W, \ldots, \nu \rangle$, where n is the number of terms in $\{Q_3ac\} \cup X$, if $\{Q_1ab, Q_2bc\}$ a-reduces to Q_3ac, then $\{Q_1ab, Q_2bc\} \cup X$ is satisfied in an m-model, where $m \leq n$ and n is the number of terms in $\{Q_1ab, Q_2bc\} \cup X$.

Proof. Assume the antecedent. Suppose Q1 is “$=$”. Construct $\langle W, \ldots, \nu' \rangle$, where $\nu'_+ (b) = \nu_+(a)$, and, for terms x other than b, $\nu'_+ (x) = \nu_+(x)$. Suppose Q1 is “$=$”. Construct $\langle W, \ldots, \nu' \rangle$, where $\nu'_+ (b) = \nu_-(a)$, and,
for terms \(x \) other than \(b \), \(\nu'_+(x) = \nu_+(x) \). Use similar constructions if \(Q_2 \) is \("="\) or \("\sim\"\). So, the only \(a \)-reduction left is this: \(\{C^{pq}ab, C^{pq}bc\} \) \(a \)-reduces to \(C^{pq}ac \). Construct a model \(\langle W', \ldots, \nu' \rangle \) such that \(W' = W \cup \{M\}, M \notin W \), and \(\nu'_{p'}(a) \cap \nu'_+(c) \) has at least two members, including \(M \). To do this follow the procedure in Case 3 of Lemma 3.1. Then construct a model \(\langle W', \ldots, \nu'' \rangle \) such that \(\nu''(b) = \nu'_{p'}(a) \cup \{M\} \) and, for other terms \(x \), \(\nu''_{p'}(x) = \nu'_+(x) \).

LEMMA 3.3. If a simple chain \(\{Qab\} \cup X \) is satisfied in an \(n \)-model, where \(n \) is the number of terms in \(\{Qab\} \cup X \), then \(\{e(Qab)\} \cup X \) is satisfied in an \(n \)-model, where \(n \) is the number of terms in \(\{e(Qab)\} \cup X \).

Proof. Straightforward.

THEOREM 5 (Semantic decision procedure). If \(\langle X, y \rangle \) is a syllogism then \(X \vdash y \) iff \(X, cd(y) \) is not satisfied in an \(m \)-model, where \(m \leq n + 2 \) and \(n \) is the number of terms in \(X \).

Proof. Assume \(\langle X, y \rangle \) is a syllogism. (Only if) Immediate. (If) Assume \(X, cd(y) \) is not satisfied in an \(m \)-model, where \(m \leq n + 2 \) and \(n \) is the number of terms in \(X \). Then every strand of \(X, cd(y) \) is not satisfied in an \(m \)-model where \(m \leq n + 2 \) and \(n \) is the number of terms in \(X, cd(y) \). Then every strand of \(X, cd(y) \) fully reduces to a cd-pair (by Theorem 3 and Lemma 3 of Theorem 4). Then \(X \vdash y \) (by Theorem 4).

Given Theorem 5, it is natural to ask whether, for any \(n \), there is an \(n \)-termed syllogism that requires an \(n + 2 \) model to show that it is invalid. The answer is Yes. If \(n = 2 \), use \(\{(Z_1a_2), cd(Z_2a_1)\} \). If \(n > 2 \), use \(\{(Z_1a_2, C^{++}a_2a_3, \ldots, C^{++}a_{n-1}a_n), cd(Z_{an}a_1)\} \). Consider a model \(\langle W, \ldots, \nu \rangle \) in which \(\{Z_1a_2, C^{++}a_2a_3, \ldots, C^{++}a_{n-1}a_n, Z_{an}a_1\} \) is satisfied. Note that \(\nu_+(a_1) \) has at least two members, since \(\nu(Z_1a_2) = t \). So \(\nu_+(a_n) \) has at least \(n \) members. \(\nu_-(a_n) \) has at least two members since \(\nu(Z_{an}a_1) = t \).

THEOREM 6 (Completeness). If \(\langle X, y \rangle \) is a syllogism and \(X \vdash y \) then \(X \vdash y \).

Proof. Assume the antecedent. Then, by Theorem 4, every strand of \(X, cd(y) \) fully reduces to a cd-pair. So, by Lemmas 1–4, below, \(X \vdash cd(cd(y)) \). That is \(X \vdash y \).

LEMMA 1. If \(\{x, y\} \) is a cd-pair, then \(x \vdash cd(y) \).

Proof. 1) \(=ab \vdash =ba \) (by B1). So \(=ab \vdash cd(=ba) \) (and \(cd(C^{pq}ba) \) and \(cd(Zba) \)) (by D1). 2) \(=ba \vdash =ab \) (by B2). So \(=ba \vdash cd(=ab) \) (by D1). And \(=ab \vdash =ba \) (by B2). So \(=ab \vdash cd(C^{pq}ba) \) (and
EXTENDED GERGONNE SYLLOGISMS 561
cd(Zba) (by D1). 3) \(C^{pq}ba \vdash C^{qr}\neg ab \) (by B3). So \(C^{pq}ba \vdash cd(\neg ab) \) (and \(cd(\neg ab) \)) (by D1). \(C^{pq}ba \vdash C^{qr}ba \) (by B3). So \(C^{pq}ba \vdash cd(C^{qr}ba) \) (by D1). \(C^{qr}ba \vdash C^{sr}\neg ab \) (by B3). So \(C^{qr}ba \vdash cd(C^{pq}ba) \) (by D1). 4) \(Zba \vdash Zab \) (by B4). So \(Zba \vdash cd(\neg ab) \) (and \(cd(\neg ab) \)) (by D1).

LEMMA 2. If \(X = \{Q_{3ac}\} \cup Z, Y = \{Q_{1ab},Q_{2bc}\} \cup Z, \{Q_{1ab},Q_{2bc}\} \) a-reduces to \(Q_{3ac} \), and \(X - \{x\} \vdash cd(x) \), for every \(x \) such that \(x \in X \), then \(Y - \{y\} \vdash cd(y) \), for every \(y \) such that \(y \in Y \).

Proof. Assume the antecedent. Case 1: \(y \in Z \). \(\{Q_{3ac}\} \cup Z - \{y\} \vdash cd(y) \). We use

LEMMA 2.1. If \(\{Q_{1ab},Q_{2bc}\} \) a-reduces to \(Q_{3ac} \) then \(Q_{1ab}, Q_{2bc} \vdash Q_{3ac} \).

Proof. Given B5–B8, we only need to show that: i) \(\neg ab = bc \vdash \neg ac \); ii) \(C^{pq}ab, =bc \vdash C^{pq}ac \); and iii) \(C^{pq}ab, =bc \vdash C^{pq}ac \). For i), \(=bc \vdash =cb \) (by B1) and \(\neg ab \vdash \neg ba \) (by B2). \(=bc, =\neg ba \vdash \neg ca \) (by B5). So \(\neg ab, =bc \vdash \neg ca \) (by D3). \(=ca \vdash \neg ac \) (by B2). So \(\neg ab, =bc \vdash \neg ac \) (by R1). Use similar reasoning for ii) and iii).

So \(Q_{1ab}, Q_{2bc} \vdash Q_{3ac} \) (by Lemma 2.1). So \(\{Q_{1ab},Q_{2bc}\} \cup Z - \{y\} \vdash cd(y) \) (by D3).

Case 2: \(y = Q_{1ab} \). \(Z \vdash cd(Q_{3ac}) \). \(Q_{2bc}, cd(Q_{3ac}) \vdash cd(Q_{1ab}) \) (by Lemma 2.1 and R2). So \(Z, Q_{2bc} \vdash cd(Q_{1ab}) \) (by R1).

Case 3: \(y = Q_{2bc} \). Use reasoning similar to that for Case 2.

LEMMA 3. If \(X = \{Qab\} \cup Z, Y = \{e(Qab)\} \cup Z, and X - \{x\} \vdash cd(c) \), for every \(x \) such that \(x \in X \), then \(Y - \{y\} \vdash cd(y) \), for every \(y \) such that \(y \in Y \).

Proof. Assume the antecedent. Case 1: \(y \in Z \). \(\{Qab\} \cup Z - \{y\} \vdash cd(y) \). \(e(Qab) \vdash Qab \) (by B1–B4). So \(\{e(Qab)\} \cup Z - \{y\} \vdash cd(y) \) (by D3). Case 2: \(y = e(Qab) \). \(Z \vdash cd(Qab) \). \(cd(Qab) \vdash cd(e(Qab)) \) (by B1–B4 and R2). So \(Z \vdash cd(e(Qab)) \) (by R1).

LEMMA 4. If each strand \(Y \cup \{z\} \) of \(X \cup \{y\} \) is such that \(Y \vdash cd(z) \), then \(X \vdash cd(y) \).

Proof. Use D2 and R3. (The proof is illustrated below.)

The proof of the above theorem provides a mechanical procedure for showing that \(X \vdash y \) given that \(X \vdash y \). We illustrate by showing that \(\neg, C^{++}AB, =BC \vdash cd(\neg, C^{++}AC) \). First, fully reduce the following strands as indicated: i) \(\{\neg AB, =BC, =\neg AC\} \) to \(\{\neg AB, =BC, =\neg CA\} \); ii) \(\{\neg AB, =BC, =AC\} \) to \(\{\neg AB, =BC, =\neg CA\} \).
to \(\{=AC, C^{+}CA\} \); iii) \(\{C^{++}AB, =BC, =AC\} \) to \(\{C^{++}AB, =BC, =CA\} \); and iv) \(\{C^{++}AB, =BC, C^{+}AC\} \) to \(\{C^{++}AC, C^{+}CA\} \). By the proof of Lemma 1: \(=AC \vdash cd(=CA); =AC \vdash cd(C^{+}CA) \); \(C^{++}AC \vdash cd(=CA) \); and \(C^{++}AC \vdash cd(C^{+}CA) \). By the proof of Lemma 2: \(=AB, =AC \vdash cd(=AC); =AB, =AC \vdash cd(C^{+}CA) \); \(C^{++}AB, =BC \vdash cd(=AC) \); and \(C^{++}AB, =BC \vdash cd(C^{+}CA) \). By the proof of Lemma 3: \(=AB, =AC \vdash cd(=AC); =AB, =AC \vdash cd(C^{+}AC) \); \(C^{++}AB, =BC \vdash cd(=AC) \); and \(C^{++}AB, =BC \vdash cd(C^{+}AC) \). By D2, \(=AB, =AC \vdash cd(=, C^{+}AC) \) and \(C^{++}AB, =BC \vdash cd(=, C^{+}AC) \). By R3, \(=, C^{++}AB, =AC \vdash cd(=, C^{+}AC) \).

3. GERGONNE SYLLOGISMS

Faris [1] is motivated by an interest in providing a decision procedure for Gergonne syllogisms. Faris construes syllogisms as sentences, following Łukasiewicz’s [4], rather than as inferences, as in Smiley’s [5]. For us, a Gergonne syllogism is a syllogism consisting of Gergonne sentences, which are defined as follows, using Gergonne’s symbols in [2]. The Gergonne-quantifiers are: \(H =_{df} =, C^{+}C; X =_{df} C^{+}Z; I =_{df} =; C =_{df} C^{++}, \) and \(Z =_{df} C^{+}, C^{+}C, C^{+}Z \). A Gergonne-sentence is any sentence of form \(Ql, \ldots, Qmab \), where \(Qi \) is a Gergonne-quantifier. So Theorem 4 above gives an alternative solution to the problem that motivated Faris’ [1], since every Gergonne syllogism may be expressed in our system. Note, for example, that “\(H, XAB \)” is expressed as “\(=, C^{+}C, C^{+}C, ZAB \)”.

4. SYSTEM B

In this section we develop a subsystem B which expresses no sentences other than those that may be expressed by using sentences of form “All . . . are \(- - \)-”, “No . . . are \(- - \)-”, “Some . . . are \(- - \)-”, or “Some . . . are not \(- - \)-”, where the blanks are filled by expressions of form \(x \) or non-\(x \) (the “A, E, I, and O sentences, respectively, with or without negative terms.”)

The B-quantifiers (“B” for “basic”) are: \(=, C^{+}A(A^{+}) \); \(=, C^{+}C(A^{++}) \); \(=, C^{+}C(A^{+}) \); \(=, C^{-}A(A^{-}) \); \(=, C^{-}C(A^{-}) \); \(=, C^{-}C(A^{+}) \); \(=, C^{+}C(A^{+}) \); and \(=, C^{+}C(A^{+}) \). \(Qab \) is a B-sentence iff \(Qab \) is a sentence and \(Q \) is a B-quantifier. So, for example, \(A^{+}A \) is a B-sentence. And a B-syllogism is a syllogism composed of B-sentences.
We define \(y \) is \(B \)-deducible from \(X \) (\(X \vdash_B y \)), where \(X, y \) is a set of \(B \)-sentences, and where \(\text{ct}(A^{pq}ab) = A^{pq*}ba \), \(\text{cd}(A^{pq}ab) = O^{pq}ab \), and \(\text{cd}(O^{pq}ab) = A^{pq}ab \):

\[(B1) \quad A^{pq}ab \vdash_B A^{q*r}ba\]
\[(B2) \quad A^{pq}ab, A^{qr}bc \vdash_B A^{pr}ac\]
\[(R1) \quad \text{If } X \vdash_B y \text{ and } y, z \vdash_B w \text{ then } X, z \vdash_B w\]
\[(R2) \quad \text{If } X, y \vdash_B \text{ct}(z) \text{ or } \text{cd}(z) \text{ then } X, z \vdash_B \text{cd}(y)\]
\[(L1) \quad \text{If } X \vdash y, \text{ then } X \vdash y \text{ in virtue of } B1-R2.\]

THEOREM 7. (D1) \text{If } X, y \vdash_B z \text{ and } u, v \vdash_B y \text{ then } X, u, v \vdash_B z.\]

Proof. Use the reasoning for the proof of Theorem 1. \(\square\)

THEOREM 8 (Soundness). \text{If } X \vdash_B y \text{ then } X \models y.

Proof. Straightforward. \(\square\)

By definition, \(e(A^{pq}ab) \) is \(A^{q*r}p*ba \) and \(e(O^{pq}ab) \) is \(O^{q*r}p*ba \). And, by definition, a set \(X \) of sentences \(b \)-reduces to a sentence \(y \) iff \(\langle X, y \rangle \) has form \(\{A^{pq}ab, A^{qr}bc\}, A^{pr}ac \).

If \(X \) is a chain of \(B \)-sentences then a sequence of chains \(X_1, \ldots, X_m \) \((=Y_1), \ldots, Y_n \) is a full \(B \)-reduction of \(X \) to \(Y_n \) iff: i) \(X_m \) is a normal chain and if \(m > 1 \), then, for \(1 \leq i < m \), if \(X_i \) has form \(\{Qab\} \cup Y \), then \(X_H 1 \) has form \(\{e(Qab)\} \cup Y \); and ii) there is no pair of sentences in \(Y_n \) that \(b \)-reduces to a sentence and if \(n > 1 \) then, for \(1 \leq i < n \), \(Y_i \) has form \(\{A^{pq}ab, A^{qr}bc\} \cup X \) and \(Y_{i+1} \) has form \(\{A^{pr}ac\} \cup X \). \(X \) fully \(B \)-reduces to \(Y \) iff there is a full \(B \)-reduction of \(X \) to \(Y \).

THEOREM 9. Every chain of \(B \)-sentences fully \(B \)-reduces to a normal chain of \(B \)-sentences.

Proof. Imitate the proof of Theorem 3. \(\square\)

A normal chain of \(B \)-sentences is a \(cd \)-\(B \)-pair iff it has one of the following forms: \(\{A^{pq}ab, A^{q*r}ba\} \) or \(\{A^{pq}ab, O^{q*r}p*ba\} \).

THEOREM 10 (Syntactic decision procedure). \(\langle X, y \rangle \) is a B-syllogism then \(X \models y \) iff \(X, \text{cd}(y) \) fully \(B \)-reduces to a \(cd \)-\(B \)-pair.

Proof. Assume \(\langle X, y \rangle \) is a B-syllogism. We use Lemmas 1 and 2, below. (If) Suppose \(X, \text{cd}(y) \) fully \(B \)-reduces to a \(cd \)-\(B \)-pair. Then, by Lemma 1, \(X, \text{cd}(y) \) is consistent. Then \(X \models y \). (Only if) Suppose \(X \models y \). Then \(X, \text{cd}(y) \) is inconsistent. Then \(X, \text{cd}(y) \) fully \(B \)-reduces to a \(cd \)-\(B \)-pair (by Lemma 2 and Theorem 9). \(\square\)
LEMMA 1. If a chain X of B-sentences fully B-reduces to a cd-B-pair then X is inconsistent.

Proof. Imitate the proof of Lemma 2 of Theorem 4.

LEMMA 2. If a chain X of B-sentences fully B-reduces to a normal chain of B-sentences that is not a cd-B-pair, then X is satisfied in a 3-model.

LEMMA 2.1. If a chain of B-sentences fully B-reduces to a normal chain of B-sentences X that is not a cd-B-pair, then X is satisfied in a 3-model.

Proof. Assume the antecedent. We consider three cases determined by the number of occurrences of “O” in X.

Case 1: “O” does not occur in X. We use induction on the number n of terms in X. Basis step: $n = 2$. Then X has form $\{A^pab, A^pba\}$ or form $\{A^pqa, A^qpb\}$. If $p = q$, use $\{(1, 2, 3), \ldots, \nu\}$, where $\nu_+(x) = \{1\}$, and, for terms x other than a, $\nu_+(x) = \{2, 3\}$. Induction step: $n > 2$. Then X has form $\{A^p2a_1a_2, \ldots, A^p2i-1a_i+1, \ldots, A^p2n-1a_na_1\}$, where $p_{2i} = p_{2i+1}$. By Case 1 of Lemma 3.1 of Theorem 4, $\{c^p2a_1a_2, \ldots, c^p2i-1a_i+1, \ldots, c^p2n-1a_na_1\}$, where $p_{2i} = p_{2i+1}$, for $1 \leq i < n$, and $p_{2n} = p_1$, is satisfied in a 3-model. So X is satisfied in a 3-model.

Case 2: “O” occurs exactly once in X. Suppose there are exactly two terms in X. Then X has form A^pqa, O^qrb (or O^qa, A^qrb). 3-models are easily constructed to show that X is consistent. Suppose there are more than two terms in X. We use induction on the number n of terms in X to show that X is satisfied in a 3-model. Basis step: $n = 3$. Then X has form $\{O^pqa, A^r^sb, A^s^uca\}$. So there is a strand of X with one of the following forms: $\{c^pqa, c^r^sb, c^s^uca\}$, $\{c^pqa, c^r^sb, c^s^uca\}$, and $\{c^pqa, c^r^sb, c^s^uca\}$. So, by Case 1 of Lemma 3.1 of Theorem 4, X is consistent if $p = u$ or $p = r$. Suppose $p \neq u$ and $q \neq r$. Then X has form $\{O^pqa, A^r^sb, A^s^uca\}$. If $p = q$, there is a strand of X with form $\{=ab, =bc, =ca\}$ or form $\{=ab, =bc, =ca\}$. If $p \neq q$, there is a strand of X with form $\{=ab, =bc, =ca\}$ or form $\{=ab, =bc, =ca\}$. Each of these four chains can easily be shown to be satisfied in a 3-model. Induction step: $n > 3$. X has form $\{O^pqa, A^r^sb, A^s^uca, \ldots\}$. By the induction hypothesis, O^pqa, A^rs^uca, \ldots is satisfied in a 3-model (W, \ldots, ν). Construct $\langle W, \ldots, \nu'\rangle$, where $\nu'_+(c) = \nu_+(b)$, and, for terms x other than c, $\nu'_+(x) = \nu_+(x)$. Note that $\nu'(A^r^sb) = t$, since $\nu'_+(b) = \nu_+(c)$, and $\nu'(A^s^uca) = t$, since $\nu'_+(c) = \nu_+(b)$.

Case 3: “O” occurs at least twice in X. We use induction on the number of terms n in X. Basis step: $n = 2$. X has form $\{O^pqa, O^r^rb\}$. It is
easy to show that X is satisfied in a 3-model. Induction step: \(n > 2 \). X has form \(\{O^{pq}ab, Q^{rs}bc, \ldots, O^{uv}de, \ldots\} \). Suppose Q is "A" and \(r = s \) or Q is "O" and \(r \neq s \). By the induction hypothesis, \(\{O^{pq}ac, \ldots, O^{uv}de, \ldots\} \) is satisfied in a 3-model \(\langle W, \ldots, \nu \rangle \). Construct 3-model \(\langle W, \ldots, \nu' \rangle \), where \(\nu'_q(b) = \nu_q(c) \), and, for terms \(x \) other than \(c \), \(\nu'_+(x) = \nu_+(x) \). Suppose Q is "A" and \(r \neq s \) or Q is "O" and \(r = s \). By the induction hypothesis, \(\{O^{pq}ac, \ldots, O^{uv}de, \ldots\} \) is satisfied in a 3-model \(\langle W, \ldots, \nu \rangle \). Construct 3-model \(\langle W, \ldots, \nu' \rangle \), where \(\nu'_q(b) = \nu_q(c) \), and, for terms \(x \) other than \(c \), \(\nu'_+(x) = \nu_+(x) \).

LEMMA 2.2. If \(\{A^{pq}ac\} \cup Y \) is satisfied in a 3-model and if term \(b \) does not occur in a member of \(Y \), then \(\{A^{pq}ab, A^{qr}bc\} \cup Y \) is satisfied in a 3-model.

Proof. Assume that \(\{A^{pq}ac\} \cup Y \) is satisfied in a 3-model \(\langle W, \ldots, \nu \rangle \). Construct \(\langle W, \ldots, \nu' \rangle \), where \(\nu'_p(b) = \nu_+(a) \), and, for terms \(x \) other than \(b \), \(\nu'_+(x) = \nu_+(x) \).

LEMMA 2.3. If \(\{Qab\} \cup Y \) is satisfied in a 3-model, then \(\{e(Qab)\} \cup Y \) is satisfied in a 3-model.

Proof. Straightforward.

THEOREM 11 (Semantic decision procedure). If \(\langle X, y \rangle \) is a B-syllogism then \(X 1= Y \) iff \(X, cd(y) \) is not satisfied in a 3-model.

Proof. Assume \(\langle X, y \rangle \) is a B-syllogism. (Only if) Immediate. (If) Suppose \(X, cd(y) \) is not satisfied in a 3-model. Then, by Theorem 9 and Lemma 2 of Theorem 10, \(X, cd(y) \) fully B-reduces to a cd-B-pair. So, by Theorem 10, \(X 1= y \).

Theorem 11 extends the result in Johnson's [3]. There it is shown, in effect, that any invalid syllogism constructed by using B-sentences other than those of form \(A \rightarrow ab \) or \(0 \rightarrow ab \) is satisfied in a 3-model. There are invalid B-syllogisms that require a domain with at least three members to show their invalidity. This is an example: \(\{\{A \rightarrow AB, A \rightarrow BC\}, 0 \rightarrow AC\} \).

THEOREM 12 (Completeness). If \(\langle X, y \rangle \) is a B-syllogism and \(X 1= y \) then \(X \vdash_B y \).

Proof. Assume the antecedent. Then, by Theorem 10, \(X \cup \{cd(y)\} \) fully B-reduces to a cd-B-pair. Use the following three lemmas.

LEMMA 1. If \(\{x, y\} \) is a cd-B-pair, then \(x \vdash_B cd(y) \) and \(y \vdash_B cd(x) \).

Proof. (1) \(A^{pq}ba \vdash_B A^{pq}ab \), that is, \(ct(A^{pq}ab) \) (by B₁). So \(A^{pq}ab \vdash_B cd(A^{pq}ba) \) (by R₂). So \(A^{qp}ba \vdash_B cd(A^{pq}ab) \) (by R₂). (2) \(A^{pq}ab \vdash_B
LEMMA 2. If $X = \{A^{pr}ac\} \cup Z$, $Y = \{A^{pq}ab, A^{qr}bc\} \cup Z$, and $X - \{x\} \vdash_B cd(x)$, for each sentence x in X, then $Y - \{y\} \vdash_B cd(y)$, for each sentence y in Y.

Proof. Imitate the proof of Lemma 2 of Theorem 6.

LEMMA 3. If $X = \{Qab\} \cup Z$, $Y = \{e(Qab)\} \cup Z$, and $X - \{x\} \vdash_B cd(x)$, for each sentence x in X, then $Y - \{y\} \vdash_B cd(y)$, for each sentence y in Y.

Proof. Imitate the proof of Lemma 3 of Theorem 6.

5. CONCLUSION

Our interest has been in extending the Aristotelian syllogistic. But, in conclusion, we mention Smiley's classic result in [5] about the Aristotelian syllogistic, which follows from the results obtained above. First, delete sentences of form $A^{--}ab$ and $O^{--}ab$ from system B. Let $Aa - b = \varnothing$ if $a = b$; otherwise, let $Aa - b$ be a set of sentences that can be arranged as follows: $(A^{++}a_1a_2 \text{ or } A^{--}a_2a_1), \ldots, A^{++}a_na_{n+1} \text{ or } A^{--}a_{n+1}a_n$, where $a_1 = a$ and $a_{n+1} = b$. Then, by Theorem 10, a chain of sentences in this subsystem is inconsistent iff it has one of the following forms: i) $Aa - b, O^{++}ab \text{ or } O^{--}ab$; ii) $Aa - b, A^{+-}bc, Ac - a$; or iii) $Aa - b, A^{+-}bc, Ad - c, O^{+-}da \text{ or } O^{+-}ad$. Next, delete sentences of form $A^{--}ab$ and $O^{--}ab$ from this system. The resulting system can express all of the Aristotelian syllogisms. So, as Smiley [5] says, an Aristotelian syllogism (X, y) is valid iff $X, cd(y)$ has one of the following forms: i') $Aa - b, O^{++}ab$, ii), or iii). (Smiley uses A, E, I, O instead of our $A^{++}, A^{+-}, O^{+-}, O^{++}$, respectively.) So, for example, "$A^{++}BC, A^{++}BA$; so $O^{+-}AC$" (Darapti) is valid since "$A^{++}BC, A^{++}BA, A^{+-}AC$" has form ii).

REFERENCES

Department of Philosophy,
Colorado State University,
Fort Collins, Colorado 80523,
U.S.A.