Repository logo
 

Evaluating channel morphologic changes and bed-material transport using airborne lidar, upper Colorado River, Rocky Mountain National Park, Colorado

Date

2014

Authors

Mangano, Joseph F., author
Rathburn, Sara, advisor
Wohl, Ellen, committee member
Bledsoe, Brian, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

A debris flow associated with the 2003 breach of Grand Ditch in Rocky Mountain National Park, Colorado provided an opportunity to determine controls on channel geomorphic responses following a large sedimentation event. Due to the remote site location and high spatial and temporal variability of processes controlling channel response, repeat airborne lidar surveys in 2004 and 2012 were used to capture conditions along the upper Colorado River and tributary Lulu Creek i) one year following the initial debris flow, and ii) following two bankfull flows (2009 and 2010) and a record-breaking long duration, high intensity snowmelt runoff season (2011). Locations and volumes of aggradation and degradation were determined using lidar differencing. Channel and valley metrics measured from the lidar surveys included water surface slope, valley slope, changes in bankfull width, sinuosity, braiding index, channel migration, valley confinement, height above the water surface along the floodplain, and longitudinal profiles. Reaches of aggradation and degradation along the upper Colorado River are influenced by valley confinement and local controls. Aggradational reaches occurred predominantly in locations where the valley was unconfined and valley slope remained constant through the length of the reach. Channel avulsions, migration, and changes in sinuosity were common in all unconfined reaches, whether aggradational or degradational. Bankfull width in both aggradational and degradational reaches showed greater changes closer to the sediment source, with the magnitude of change decreasing downstream. Local variations in channel morphology, site specific channel conditions, and the distance from the sediment source influence the balance of transport supply and capacity and, therefore, locations of aggradation, degradation, and associated morphologic changes. Additionally, a complex response initially seen in repeat cross-sections is broadly supported by lidar differencing, although the differencing captures only the net change over eight years and not annual changes. Lidar differencing shows great promise because it reveals vertical and horizontal trends in morphologic changes at a high resolution over a large area. Repeat lidar surveys were also used to create a sediment budget along the upper Colorado River by means of the morphologic inverse method. In addition to the geomorphic changes detected by lidar, several levels of attrition of the weak clasts within debris flow sediment were applied to the sediment budget to reduce gaps in expected inputs and outputs. Bed-material estimates using the morphologic inverse method were greater than field-measured transport estimates, but the two were within an order of magnitude. Field measurements and observations are critical for robust interpretation of the lidar-based analyses because applying lidar differencing without field control may not identify local controls on valley and channel geometry and sediment characteristics. The final sediment budget helps define variability in bed-material transport and constrain transport rates through the site, which will be beneficial for restoration planning. The morphologic inverse method approach using repeat lidar surveys appears promising, especially if lidar resolution is similar between sequential surveys.

Description

Rights Access

Subject

Citation

Associated Publications