Repository logo
 

Potential indirect effects of aerosol on tropical cyclone development

Date

2010

Authors

Krall, Geoffrey Michael, author
Cotton, William R., advisor
van den Heever, Susan C., committee member
Eykholt, Richard Eric, 1956-, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Observational and model evidence suggest that a 2008 Western Pacific typhoon (NURI) came into contact with and ingested elevated concentrations of aerosol as it neared the Chinese coast. This study uses a regional model with two-moment bin emulating microphysics to simulate the typhoon as it enters the field of elevated aerosol concentration. A continental field of cloud condensation nuclei (CCN) was prescribed based on satellite and global aerosol model output, then increased for further sensitivity tests. The typhoon was simulated for 96 hours beginning 17 August 2008, the final 60 of which were under varying CCN concentrations as it neared the Philippines and coastal China. The model was initialized with both global reanalysis model data and irregularly spaced dropsonde data from a 2008 observational campaign using an objective analysis routine. At 36 hours, the internal nudging of the model was switched off and allowed to evolve on its own. As the typhoon entered the field of elevated CCN in the sensitivity tests, the presence of additional CCN resulted in a significant perturbation of windspeed, convective fluxes, and hydrometeor species behavior. Initially ingested in the outer rainbands of the storm, the additional CCN resulted in an initial damping and subsequent invigoration of convection. The increase in convective fluxes strongly lag-correlates with increased amounts of supercooled liquid water within the storm domain. As the convection intensified in the outer rainbands the storm drifted over the developing cold-pools, affecting the inflow of air into the convective towers of the typhoon. Changes in the timing and amount of rain produced in each simulation resulted in differing cold-pool strengths and size. The presence of additional CCN increased resulted in an amplification of convection within the storm, except for the extremely high CCN concentration simulation, which showed a damped convection due to the advection of pristine ice away from the storm. This study examines the physical mechanisms that could potentially alter a tropical cyclone (TC) in intensity and dynamics upon ingesting elevated levels of CCN.

Description

Rights Access

Subject

aerosol
Atmospheric aerosols
tropical cyclone
Atmospheric models
atmospheric modeling
Cyclones -- Tropics

Citation

Associated Publications