Repository logo
 

A comparison of wearable measurement systems for estimating trunk postures in manual material handling

Date

2017

Authors

Arroyo Vera, Jose Gustavo, author
Rosecrance, John, advisor
Gilkey, David, committee member
Reiser, Raoul, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Epidemiologic studies have established that awkward trunk postures during manual materials handling are associated with an increased risk of developing occupational low back disorders. With recent advances in motion capture technology, emerging wearable measurement systems have been designed to quantify trunk postures for exposure assessments. Wearable measurement systems integrate portable microelectromechanical sensors, real-time processing algorithms, and large memory capacity to effectively quantify trunk postures. Wearable measurement systems have been available primarily as research tools, but are now quickly becoming accessible to health and safety professionals for industrial application. Although some of these systems can be highly complex and deter health and safety professionals from using them, other systems can serve as a simpler, more user-friendly alternative. These simple wearable measurement systems are designed to be less intricate, allowing health and safety professionals to be more willing to utilize them in occupational posture assessments. Unfortunately, concerns regarding the comparability and agreement between simple and complex wearable measurement systems for estimating trunk postures are yet to be fully addressed. Furthermore, application of wearable measurement systems has been affected by the lack of adaptability of sensor placement to work around obstructive equipment and bulky gear workers often wear on the job. The aims of the present study were to 1) compare the Bioharness™3, a simple wearable measurement system, to Xsens™, a complex wearable measurement system, for estimating trunk postures during simulated manual material handling tasks and 2) to explore the effects of Xsens sensor placement on assessing trunk postures. Thirty participants wore the two systems simultaneously during simulated tasks in the laboratory that involved reaching, lifting, lowering, and pushing a load for ten minutes. Results indicated that the Bioharness 3 and Xsens systems are comparable for strictly estimating trunk postures that involved flexion and extension of 30° or less. Although limited to a short range of trunk postures, the Bioharness also exhibited moderate to strong agreement and correlations with the Xsens system for measuring key metrics commonly used in exposure assessments, including amplitude probability distribution functions and percent time spent in specific trunk posture categories or bins. The Bioharness is suggested to be an a more intuitive alternative to the Xsens system for posture analysis, but industrial use of the device should be warranted in the context of the exposure assessment goals. In addition, a single motion sensor from the Xsens system placed on the sternum yielded comparable and consistent estimates to a sensor secured on the sternum relative to a motion sensor on the sacrum. Estimates included descriptive measures of trunk flexion and extension and percent time spent in specific trunk posture categories. Using one motion sensor instead of two may serve as an alternative for sensor placement configuration in situations where worker portable equipment or personal preference prevents preferred sensor placement.

Description

Rights Access

Subject

Citation

Associated Publications