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ABSTRACT 

 

THE INTENSIFICATION REVOLUTION IN DRYLAND CROPPING SYSTEMS:  

IMPLICATIONS FROM FIELD TO LANDSCAPE SCALE 

 

A global transformation in semi-arid cropping systems is occurring as dryland (non-

irrigated) farmers shift from crop rotations reliant on year-long periods of bare fallow to more 

intensively cropped systems. Bare fallow has reduced year-to-year variability in crop yields, but 

it has also constrained crop productivity and, therefore, reduced carbon (C) inputs to soils. 

Exposure to tillage and erosion, combined with C limitation, has gradually degraded dryland 

soils and reduced their capacity to capture water and supply plant nutrients, requiring dryland 

farmers to rely on external inputs to support plant growth. However, the emergence of no-till has 

enabled dryland farmers to save enough water to replace bare fallows with crops, a practice 

called cropping system intensification. Cropping intensification has potential implications for the 

environment and economy of dryland agriculture as it impacts every aspect of the agroecosystem 

– from soil health, to weed and nutrient management, to crop yields. This dissertation seeks to 

unravel the economic and environmental implications of cropping system intensification at both 

the field and landscape scale in the US High Plains, and to understand the social dynamics 

underpinning this revolution.  

I quantified the impacts of cropping system intensification on a range of soil health 

parameters on 96 dryland, no-till fields in the High Plains. Three levels of cropping system 

intensity – wheat-fallow, mid-intensity, and continuous – were represented along a potential 

evapotranspiration gradient that increases from northwestern Nebraska to southeastern Colorado. 
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I conducted in-depth interviews with farmers to examine the motivations, perceptions, and social 

interactions that influence decisions about whether and how much to intensify, and to collect 

detailed field histories including input use and crop yields. To scale up the implications of these 

field-level analyses, and to assess the current extent of the cropping revolution in the High 

Plains, I conducted a spatial analysis using high-resolution satellite crop data to examine changes 

in cropping patterns over time at the landscape scale. 

I found that cropping system intensification was positively associated with soil organic 

carbon, aggregation, and fungal biomass, and these effects were robust amidst variability in 

environmental and management factors. I also found that intensified systems were associated 

with greater potentially mineralizable and total nitrogen (N), and arbuscular mycorrhizal fungal 

colonization of wheat roots, suggesting that cropping intensity enhances internal cycling of N 

and phosphorus (P). Continuous dryland farmers also achieved greater total crop production 

using fewer external inputs than wheat-fallow farmers, leading to enhanced profitability. To 

explain the social dynamics underpinning the cropping system revolution, I build on Carolan’s 

application of Bourdieusian social fields to agriculture, and find several overlapping fields within 

Carolan’s more general fields of sustainable and conventional agriculture, which are reflected in 

different degrees of intensification. I identify strategies for change, some of which would serve 

to reshape social fields, and others which leverage existing social positions and relationships, to 

enable farmers to overcome the barriers constraining cropping system intensification. Results 

from the spatial analysis suggest that, from 2008 to 2016, the High Plains witnessed a profound 

shift in cropping systems, as the historically dominant wheat-fallow system was replaced by 

intensified rotations as the dominant systems across the landscape. I estimated that these patterns 

over the 9-year study period increased annual grain production and annual net farm operating 

 iii 



income, slightly reduced herbicide use, and increased C sequestration, contributing to 

greenhouse gas reductions. I projected each of these implications to a scenario of 100% 

continuous cropping adoption to estimate the potential environmental and economic impacts of 

cropping system intensification in the High Plains. Overall, my findings suggest that dryland 

cropping systems are gradually intensifying in the High Plains, and these trends are likely 

reversing historical negative environmental and economic trends to enhance the profitability and 

environmental sustainability of dryland agroecosystems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv 



ACKNOWLEDGEMENTS 

 

This dissertation would not have been possible without my friends and mentors to whom 

I am profoundly grateful for their care and advice. Thank you first to my parents for your love 

and support, and for cultivating my passion by taking a sincere interest in my work. To my 

committee: Jessica, Mary, and Michael. Thank you for setting me on the doctoral path when I 

had been on another. Your passion inspires me to ask questions about the world, and in sharing 

your expertise you have given me tools to answer them. I could not have asked for more helpful 

mentorship. Thank you especially to Michael, for introducing me to sociology and helping me 

explore a new way to look at the world. Lastly, and most importantly, to my friend and advisor, 

Meagan. Your thoughtful guidance shaped my scattered enthusiasm into focused passion, and 

you always led me down the right path. Your dedication and kindness set an example for which 

everyone around you strives, myself included. I feel lucky and honored to have been your first 

doctoral student. To all of you, thank you. My time as a graduate student has been the greatest 

experience of my life, and it’s hard to let it go. I take solace in knowing that, while I leave this 

chapter behind, I take with me all of your lessons from the time we shared. 

 

 

 

 

 

 

 

 v 



TABLE OF CONTENTS 

 

ABSTRACT………………………………………………………………………………………ii 
ACKNOWLEDGMENTS………………………………………………………………………...v 
LIST OF TABLES……………………………………………………………………………...viii 
LIST OF FIGURES………………………………………………………………………………ix 
CHAPTER 1: INTRODUCTION……………………………………………………………..…..1 
REFERENCES………………..…………………………………………………………………..6 
CHAPTER 2: INTENSIFYING ROTATIONS INCREASES SOIL CARBON, FUNGI, AND 
AGGREGATION IN SEMI-ARID AGROECOSYSTEMS…………………………………….10 

2.1 INTRODUCTION…………..…………………………………………………………...10 
2.2 MATERIALS AND METHODS………..……………………………………………….14 

 2.2.1 CROPPING SYSTEMS……………………………………………………………14 
 2.2.2 STUDY SITES…………………………………………………………………......15 
 2.2.3 SOIL SAMPLING.………………………………………………………………....15 
 2.2.4 SOIL CARBON & WATER-STABLE AGGREGATES………………………….16 
 2.2.5 PHOSPHOLIPID FATTY ACIDS (PLFA)………………………………………..18 
 2.2.6 STATISTICAL ANALYSIS…………………………………………………….…18 
 2.3 RESULTS…………..……………………………………………………………….……20 
 2.3.1 SOC………………………………………………………………………………...20 
 2.3.2 AGGREGATE STABILITY AND AGGREGATE-ASSOCIATED C…………...21 
 2.3.3 MICROBIAL PLFA……………………………………………………………….22 
 2.3.4 RELATIONSHIPS BETWEEN AGGREGATION, FUNGI, AND SOC…………22 
 2.3.5 STRUCTURAL EQUATION MODEL…………………………………………...22 
 2.4 DISCUSSION…………………………..………………………………………………..23 
 2.4.1 CROPPING SYSTEM INTENSITY AND SOC…………………………………..23 
 2.4.2 AGGREGATES……………………………………………………………………25 
 2.4.3 MICROBIAL COMMUNITIES…………………………………………………...26 
 2.4.4 CONCLUSIONS…………………………………………………………………..28 
REFERENCES…………………………………..………………………………………………40 
CHAPTER 3:  ECOLOGICALLY BASED NUTRIENT AND WEED MANAGEMENT IN 
DRYLAND CROPPING SYSTEMS BENEFITS ECONOMICS AND ENVIRONMENT……48 
 3.1 INTRODUCTION………………………………………………………………………..48 
 3.2 METHODS……………………………………………………………………………….52 
  3.2.1 CROPPING SYSTEMS……………………………………………………………52 
  3.2.2 STUDY SITES….………………………………………………………………….53 
  3.2.3 SOIL AND PLANT SAMPLING AND ANALYSIS……………………………..54 
  3.2.4 INPUT USE AND PARTIAL ENTERPRISE BUDGETS………………………..55 
  3.2.5 STATISTICAL ANALYSIS………………………………………………………56 
 3.3 RESULTS………………………………………………………………………………..57 
  3.3.1 SOIL AND PLANT ANALYSES…………………………………………….……57 
  3.3.2 INPUTS, YIELDS, AND NET OPERATING INCOME………………….………59 
 3.4 DISCUSSION……………………………………………………………………………60 

 vi 



  3.4.1 CONCLUSION…………………………………………………………………….64 
REFERENCES…………………………………………………………………………………..72 
CHAPTER 4: THE SEMI-ARID CROPPING REVOLUTION: A CASE OF CONTESTED 
TRUTHS AND CONFLICTING IMAGINARIES…………………………………………...…80 
 4.1 INTRODUCTION……………………………………………………………………….80 
 4.2 BRIEFLY SETTING THE CONCEPTUAL STAGE…………………………………...83 
 4.3 METHODS………………………………………………………………………………85 
 4.4 RESULTS………………………………………………………………………………..86 
  4.4.1 THEME #1: THE EMERGING SOIL HEALTH PARADIGM…………………...87 
  4.4.2 THEME #2: PERCEPTIONS OF RISK AND PROFITABILITY………………..94 
  4.4.3 THEME #3: CROP INSURANCE……………………………………………….102 
 4.5 SUGGESTED STRATEGIES FOR CHANGE………………………………………...104 
  4.5.1 STRATEGY #1: LESSONS FROM THE SOIL HEALTH MOVEMENT……...104 
  4.5.2 STRATEGY #2: PROFITABILITY……………………………………………...105 
  4.5.3 STRATEGY #3: CROP INSURANCE…………………………………………..106 
 4.6 CONCLUSION…………………………………………………………………………107 
REFERENCES…………………………………………………………………………………113 
CHAPTER 5: LANSCAPE-SCALE CROPPING TRANSFORMATION IN THE HIGH 
PLAINS: ECONOMIC AND ENVIRONMENTAL IMPLICATIONS………………………..129 
 5.1 INTRODUCTION……………………………………………………………………...129 
 5.2 METHODS……………………………………………………………………………..133 
  5.2.1 STUDY AREA…………………………………………………………………...133 
  5.2.2 DATA…………………………………………………………………………….133 
  5.2.3 CROP ACREAGE………………………………………………………………..134 
  5.2.4 CROP ROTATIONS……………………………………………………………..135 

5.2.5 C SEQUESTRATION, HERBICIDE USE, GRAIN PRODUCTION, AND NET 
INCOME ANALYSES…………………………………………………………………135 

 5.3 RESULTS………………………………………………………………………………136 
  5.3.1 CHANGES IN CROPLAND……………………………………………………..136 
 5.3.2 IMPLICATIONS OF CROPPING SYSTEM INTENSIFICATION…………….138 
 5.4 DISCUSSION…………………………………………………………………………..140 
 5.4.1 CONCLUSION…………………………………………………………………...145 
REFERENCES…………………………………………………………………………………153 
CHAPTER 6: SUMMARY…………………………………………………………………….166 
REFERENCES…………………………………………………………………………………171 
APPENDIX 1: SOCIOLOGICAL INTERVIEW QUESTIONNAIRE………………………...172 

 
 
 
 
 
 
 

 
 
 

 vii 



LIST OF TABLES 

 
 

TABLE 2.1 - SOIL PROPERTIES AND MANAGEMENT HISTORIES OF STUDY SITES...30 
TABLE 2.2 - SAND-CORRECTED C CONCENTRATION (%) OF WATER-STABLE 
AGGREGATES AND MINERAL SIZE FRACTIONS………………………………………...31 
TABLE 4.1 - CHARACTERISTICS OF FARMERS INTERVIEWED………………………109 
TABLE 5.1 – FIELD-SCALE VALUES USED TO SCALE UP IMPLICATIONS OF 
CROPPING SYSTEM INTENSITY TO THE LANDSCAPE LEVEL………………………..146 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 viii 



LIST OF FIGURES 
 
 
 

FIGURE 2.1 - HYPOTHESIZED RELATIONSHIP BETWEEN CROPPING SYSTEM 
INTENSITY AND THE MECHANISTIC DRIVERS OF SOC ACCRUAL AS AFFECTED BY 
CLIMATE, SOIL TEXTURE, AND MANAGEMENT………………………………………...32 
FIGURE 2.2 - STUDY LOCATIONS COLOR-CODED BY CROPPING SYSTEM 
INTENSITY.…………………………..…………………………………………………………33 
FIGURE 2.3 - CROPPING SYSTEM INTENSITY EFFECTS ON SOC CONCENTRATION IN 
THE BULK SOIL…………………………..……………………………………………………34 
FIGURE 2.4 - CROPPING SYSTEM INTENSITY EFFECTS ON WATER STABLE 
AGGREGATION ASSESSED VIA MEAN WEIGHT DIAMETER IN SURFACE SOILS (0-10 
CM DEPTH).…………………………..………………………………………………………...35 
FIGURE 2.5 - TOTAL C CONTENT OF THE: A) FREE SILT AND CLAY, B) FREE 
MICROAGGREGATE, AND C) MACROAGGREGATE FRACTIONS FOR SURFACE 
SOILS (0-10 CM DEPTH).…………………………..………………………………………….36 
FIGURE 2.6 - CROPPING SYSTEM INTENSITY EFFECTS ON A) MICROBIAL PLFA, B) 
FUNGAL:BACTERIAL PLFA RATIO, AND C) FUNGAL PLFA……………………………37 
FIGURE 2.7 - A) RELATIONSHIP BETWEEN FUNGAL BIOMASS AND MWD OF 
WATER-STABLE AGGREGATES…………………………………………………………….38 
FIGURE 2.8 - STRUCTURAL EQUATION MODEL………………………………………….39 
FIGURE 3.1 - STUDY LOCATIONS COLOR-CODED BY CROPPING SYSTEM 
INTENSITY……………………………………………………………………………………...65 
FIGURE 3.2 - CROPPING SYSTEM INTENSITY EFFECTS ON A) TOTAL N, AND B) 
POTENTIALLY MINERALIZABLE N (PMN)………………………………………………...66 
FIGURE 3.3 - A) CROPPING SYSTEM EFFECTS ON % AMF COLONIZATION OF 
WINTER WHEAT ROOTS, B) THE RELATIONSHIP BETWEEN % AMF COLONIZATION 
AND POTENTIAL EVAPOTRANSPIRATION (PET), SEPARATED BY CROPPING 
SYSTEM INTENSITY, AND C) THE RELATIONSHIP BETWEEN WHEAT P 
CONCENTRATION AND % AMF COLONIZATION, SEPARATED BY CROPPING 
SYSTEM INTENSITY…………………………………………………………………………..67 
FIGURE 3.4 - FERTILIZER NITROGEN (N) AND PHOSPHORUS (P) USE BY CROPPING 
SYSTEM INTENSITY FROM 2010 TO 2014………………………………………………….68 
FIGURE 3.5 - CROPPING SYSTEM INTENSITY EFFECTS ON ACID EQUIVALENTS (AE) 
OF A) GLYPHOSATE, B) 2,4-D, AND C) DICAMBA APPLIED FROM 2010 TO 2014……69 
FIGURE 3.6 - CROPPING SYSTEM INTENSITY EFFECTS ON A) ANNUALIZED GRAIN 
YIELD FROM 2010 TO 2015, AND B) CONTINUOUS CROPPING EFFECTS ON WHEAT 
YIELDS RELATIVE TO SUMMER FALLOW FROM 2012 TO 2015………………………..70 
FIGURE 3.7 - CROPPING SYSTEM INTENSITY EFFECTS ON ANNUALIZED NET 
OPERATING INCOME IN $ FROM 2010 TO 2014…………………………………………...71 
FIGURE 4.1 HEURISTIC MODEL OVERLAYING CAROLAN’S (2005) FIELDS WITH 
DISTINCT SUB FIELDS OF PRACTICE AMONG DRYLAND FARMERS IN THE HIGH 
PLAINS………………………….……………………………………………..………………110 
FIGURE 4.2 THREE DIFFERENT PROFITABILITY STRATEGIES AND THEIR 
COMPARATIVE RELATIONSHIPS TO GRAIN PRODUCTION AND YIELD RISK…….111 

 ix 



FIGURE 4.3 ALLOWABLE CROP INSURANCE PRACTICES BY COUNTY AS 
DESIGNATED BY THE RISK MANAGEMENT AGENCY………………………………...112 
FIGURE 5.1 PATTERNS IN DRYLAND CROPPING SYSTEM INTENSITY IN 3-YEAR 
ROTATION WINDOWS FROM 2008 TO 2016 IN THE HIGH PLAINS REGION OF 
COLORADO, KANSAS, AND NEBRASKA…………………………………………………147 
FIGURE 5.2 MAPS OF DRYLAND CROPPING SYSTEM INTENSITY DERIVED FROM 3-
YEAR ROTATION WINDOWS STARTING IN 2008 AND 2014, AND THE CHANGE IN 
CROPPING SYSTEM INTENSITY BETWEEN THE TWO ROTATION WINDOWS IN THE 
HIGH PLAINS REGION OF COLORADO, KANSAS, AND NEBRASKA…………………148 
FIGURE 5.3 DRYLAND AREA GROWING VARIOUS CROPS OR UNDER SUMMER 
FALLOW MANAGEMENT FROM 2008 TO 2016 IN THE HIGH PLAINS REGION OF 
COLORADO, KANSAS, AND NEBRASKA…………………………………………………149 
FIGURE 5.4 CHANGE IN FOOTPRINTS OF ALTERNATIVE DRYLAND CROPS FROM 
2008-2010 TO 2014-2016 IN THE HIGH PLAINS REGION OF COLORADO, KANSAS, 
AND NEBRASKA……………………………………………………………………………..150 
FIGURE 5.5 DRYLAND CROP DIVERSITY, CALCULATED AS THE EFFECTIVE 
NUMBER OF CROP SPECIES, FROM 2008 TO 2016 IN THE HIGH PLAINS REGION OF 
COLORADO, KANSAS, AND NEBRASKA…………………………………………………151 
FIGURE 5.6 LANDSCAPE-SCALE ESTIMATES OF A) GLYPHOSATE USE, B) 2,4-D USE, 
C) DICAMBA USE, D) ANNUAL GRAIN PRODUCTION, E) ANNUAL NET INCOME, 
AND F) C SEQUESTRATION IN THE HIGH PLAINS REGION OF COLORADO, KANSAS, 
AND NEBRASKA FOR EACH 3-YEAR ROTATION WINDOW FROM 2008 TO 2016…..152 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 x 



CHAPTER 1: INTRODUCTION 

 

Dryland agriculture, by definition, requires farmers to cope with the uncertainty and 

scarcity of water. Bare fallow periods have been the primary strategy by which dryland (non-

irrigated) farmers have stabilized crop yields for decades or centuries in semi-arid regions, which 

constitute 20% of Earth’s land area (Bot et al., 2000; Koohafkan and Stewart, 2008). However, 

while bare fallows minimized year-to-year variability in crop yields by storing water (Greb, 

1979), they also constrained overall crop production by requiring two whole years to grow a 

single crop (Peterson et al., 1996). Low crop productivity and diversity in crop-fallow systems 

have reduced soil carbon (C) by almost 60% by limiting C inputs (Bowman et al., 1990; Peterson 

et al., 2004), contributing to degraded soils with a hampered ability to properly store water and 

supply nutrients to plants (Grant et al., 2002; Shaver et al., 2002; Sherrod et al., 2003). As a 

result, dryland farmers today are heavily reliant on chemical sources of nutrients to support crop 

growth and herbicides to control weeds (Anderson, 2003). Ultimately, the dependence on costly 

inputs, combined with years of low commodity prices, has forced dryland farmers into a crisis of 

profitability. Net farm income has dropped 50% since 2013 (USDA-ERS, 2017), leading to the 

decline of full-time farmers and expanding farm sizes (Carolan, 2016). Meanwhile, rising 

consumption of herbicides and fertilizers continues to exact high environmental and human 

costs, evidenced by oceanic dead zones (Diaz and Rosenberg, 2008), groundwater contamination 

(Sebilo et al., 2013), and degradation of natural ecosystems due to atmospheric N deposition and 

pesticide pollution (Du et al., 2014; Simkin et al., 2016). 

The story told in this dissertation is that of the effort to reverse these negative economic 

and environmental trends in the US High Plains, an important grain-growing region including the 
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states of Colorado, Kansas, and Nebraska. The emergence of no-till in the 1980s enabled dryland 

farmers to replace year-long bare fallows (summer fallow) with a crop, a practice called cropping 

system intensification (Peterson et al., 1996). Since then, a cropping system “revolution” has 

taken place in semi-arid regions around the world, resulting in the intensification of tens of 

millions of dryland crop acres (Smith and Young, 2000; Maaz et al., 2017). This dissertation 

seeks to understand the implications of this revolution in the High Plains, one of the semi-arid 

regions where this revolution is taking place. 

The dissertation begins with a study of the mechanisms of soil organic carbon (SOC) 

accrual along a gradient of cropping system intensity. Building SOC is a critical but daunting 

challenge in semi-arid agroecosystems. Greater SOC can enhance soil functions like nutrient 

provision and retention, substrate provision for biodiversity, and erosion control (Wall, 2012), 

but building SOC in dryland systems is constrained by high erosion rates and low C inputs 

(Plaza-Bonilla et al., 2015). For dryland farmers, low levels of SOC and aggregation exacerbate 

the risks of farming in a water-limited environment – risks that will compound with climate 

change (Ko et al., 2012; USGCRP, 2014). The objective of Chapter 2 is to quantify the potential 

for cropping system intensification to enhance SOC storage and aggregation relative to 

traditional crop-fallow systems and to evaluate the relative effects of management, texture, and 

climate on SOC levels. I hypothesized that SOC would increase with cropping system intensity 

directly through greater C inputs, and indirectly through greater fungal biomass and aggregation, 

and that these effects would be robust across a range of environmental and management 

contexts. 

The third chapter examines whether or not cropping system intensity represents an 

ecologically-based weed and nutrient management strategy, and quantifies cropping system 
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impacts on crop yields, input use, and profitability. Previous studies have suggested that 

intensifying from the traditional winter wheat (Triticum aestivum)-fallow system to a mid-

intensity system like wheat-corn (Zea mays)-fallow increases the nitrogen (N) requirement by 

44% (Kolberg et al., 1996), and that nutrient requirements may be even greater for continuous 

cropping systems that have eliminated summer fallow altogether (Grant et al., 2002). However, 

cropping system intensification also offers the opportunity to recouple C and N cycles by 

increasing crop production and residue inputs to soil, which may limit N losses to the 

environment and enable farmers to reduce fertilizer inputs (Drinkwater and Snapp, 2007; 

Gardner and Drinkwater; 2009). Furthermore, cropping systems reliant on long bare fallows are 

subject to “long fallow syndrome,” wherein populations of arbuscular mycorrhizal fungi (AMF) 

are drastically reduced in the absence of a host plant (Thompson, 1987; Harinikumar and 

Bagyaraj, 1988). AMF have the potential to increase their host plants’ access to immobile 

nutrients like phosphorus (P) (Al-Karaki et al., 2004), and thus reducing summer fallow through 

cropping system intensification may represent a means to increase plant P uptake with fewer P 

inputs. Additionally, through greater plant competition with weeds and the ability to rotate 

different chemicals, cropping system intensification may enable no-till farmers to control weeds 

using fewer herbicides (Derksen et al., 2002; Anderson, 2009; Nichols et al., 2015). The 

objectives of this chapter are to 1) Quantify cropping system intensity effects on microbially-

mediated nutrient cycling, specifically AMF colonization of wheat roots and potentially 

mineralizable nitrogen (PMN), and 2) Quantify cropping system effects on herbicide and 

fertilizer use and crop yields, and estimate implications for profitability on working dryland 

farms. I hypothesized that intensification would increase the nutrient supply capacity of soil, 
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enabling intensified farmers to achieve greater crop production while using fewer inputs, 

increasing profitability. 

The fourth chapter presents a sociological analysis with the objective of identifying the 

social dynamics and barriers to adoption influencing the rate and extent of cropping system 

intensity on the landscape. In the High Plains, transitions to intensified cropping systems have 

been slow relative to other regions, and cropping systems have stratified into varying degrees of 

intensity (Smith and Young, 2000; Cochran et al., 2006; Hansen et al., 2012). Prior attempts to 

explain the wave of cropping system intensification have largely focused on simple economic 

rationales, and thus we lack a critical understanding of the social dynamics underlying the 

revolution in semi-arid cropping systems (Kaan et al., 2002; Hansen et al., 2012). I examined the 

motivations, perceptions, and social interactions of dryland farmers that practice different levels 

of cropping system intensity in the High Plains, and present strategies to facilitate transitions to 

intensified cropping systems. 

The sociological analysis also serves to contextualize the final chapter – a spatial analysis 

of cropping patterns at the landscape scale, which quantifies the magnitude and characterizes the 

nature of cropping system intensification in the High Plains. Understanding the rate of cropping 

system intensification at the landscape scale is critical to estimating the economic and 

environmental implications of the semi-arid cropping revolution. Here, I use high-resolution 

satellite data to quantify dryland cropping patterns from 2008 to 2016, and I use these estimates 

to scale up the field-level research documented in previous chapters on soil C, herbicide use, 

yields, and profitability. Through this analysis, I seek to answer three questions: 1) To what 

extent is cropping system intensity increasing in the High Plains? 2) Which crops are replacing 
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summer fallow and where? 3) What are the implications of observed intensification in the High 

Plains for C sequestration, grain yield, herbicide use, and net farm incomes?  
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CHAPTER 2: INTENSIFYING ROTATIONS INCREASES SOIL CARBON, FUNGI, AND 

AGGREGATION IN SEMI-ARID AGROECOSYSTEMS 

 

2.1 Introduction 

Increasing soil organic carbon (SOC) in semi-arid agroecosystems is a critical 

sustainability challenge for the 21st century. Semi-arid regions, defined as regions with a 

precipitation to potential evapotranspiration (PET) ratio of 0.2-0.5 (UN, 2011), constitute 20% of 

Earth’s land surface and support a large agricultural population that is under increasing pressure 

from land degradation and desertification (Bot et al., 2000; Koohafkan and Stewart, 2008). 

Dryland farming in these regions depends solely on precipitation and uses no supplemental 

water, which presents a need for, and a challenge in increasing SOC. Warmer temperatures under 

future climate scenarios will further exacerbate water limitation in semi-arid climates (Ko et al., 

2012; USGCRP, 2014). Dryland agriculture contributes to climate change through energy use 

during its life cycle (e.g., fertilizer production) and emissions of greenhouse gases from soils, but 

agricultural soils can also sequester carbon dioxide from the atmosphere. Not only are dryland 

soils an underutilized resource for enhancing C sequestration to mitigate climate change (Lal, 

2004), but increasing SOC is also a key climate change adaptation strategy for dryland farmers. 

Increasing SOC has the potential to mitigate the risks associated with increasing water limitation 

by enhancing water infiltration and storage (Franzluebbers, 2002). Greater SOC can also enhance 

soil functions like nutrient provision and retention, substrate provision for biodiversity, and 

erosion control (Wall, 2012), but increasing SOC in dryland systems is constrained by high 

erosion rates, low C inputs, and accelerated mineralization from tillage (Plaza-Bonilla et al., 

2015). 
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Environmental constraints on C inputs are further exacerbated by the common practice of 

a year-long period called summer fallow, where no crops are grown and weeds are controlled so 

that the soil can accumulate rainwater and increase the yield of the following crop. Summer 

fallow periods have historically helped stabilize wheat yields, but they are inefficient and 

management intensive. Precipitation storage efficiency is typically less than 35% under best 

management (Nielsen and Vigil, 2010), and fallow periods require frequent tillage and/or 

herbicides for weed control. No-till management (where weeds are controlled through herbicides 

instead of tillage) enhances water storage and enables dryland farmers to replace summer fallow 

periods with a crop, a form of cropping system intensification. Within no-till systems, cropping 

system intensification may increase SOC by increasing overall productivity relative to more 

traditional crop-fallow systems, where a crop is only grown once every two years (Sherrod et al., 

2003; Peterson and Westfall, 2004). In semi-arid agroecosystems around the world, dryland 

farmers are undergoing transitions from crop-fallow to intensified cropping systems (Maaz et al., 

2017), in what has been called a revolution in semi-arid cropping (Smith and Young, 2000). This 

widespread transformation in dryland agroecosystems may have significant implications for C 

sequestration and enhancing the resilience of dryland agriculture through gains in SOC. 

However, the mechanisms and extent to which cropping system intensity increases SOC 

independent of shifts in tillage practices are unclear and may be influenced by climate, soil type, 

and management strategy. 

Given the limited productivity and associated amount of available C inputs to dryland 

soils, understanding the mechanisms and drivers of how C becomes stabilized is important to 

halt or reverse losses of SOC. Accrual of SOC can occur when C is protected from 

decomposition, either through adsorption on soil mineral surfaces, or when it is physically bound 
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in soil aggregates (Jastrow, 1996). Protection of SOC in soil aggregates is a primary mechanism 

of SOC stabilization in agroecosystems and is highly sensitive to management (Tisdall and 

Oades, 1982). Several studies have observed the accumulation of SOC in aggregate pools as a 

significant driver of C accrual during the conversion from conventional till to no-till systems (Six 

et al., 1999). Similarly, cropping system intensification contributes greater C inputs to soil by 

replacing fallow periods with a growing crop, and has been associated with greater 

macroaggregation, microbial biomass, and SOC (Shaver et al., 2003; Peterson and Westfall, 

2004; Sherrod et al., 2005; Mikha et al., 2010). Greater root and microbial biomass can enhance 

aggregation as roots, fungal hyphae, and microbial polysaccharides are all important stabilizing 

forces in the formation of aggregates (Jastrow et al., 1998). 

In addition to the direct influence of greater C inputs on SOC accrual, cropping system 

intensification may also indirectly enhance SOC through changes in the microbial community 

(Fig. 2.1). Functional classifications of microbial communities enable researchers to test 

hypotheses relating microbial communities to ecosystem processes. For example, the relatively 

coarse metric of the ratio of fungi to bacteria in soil is often related to its C sequestration 

potential (Strickland and Rousk, 2010). A recent study using RNA and protein profiling in 

conjunction with phospholipid fatty acid (PLFA) analysis provided new evidence linking fungal 

dominance to soil C storage potential (Malik et al., 2016), implicating fungi in a central role in 

SOC accrual (Fig. 2.1). Fungi contribute to SOC stabilization by physically entangling soil 

particles in hyphae to form aggregates and by secreting cohesive substances like glycoproteins 

that enhance aggregation (Wilson et al., 2009). In addition to their role in aggregation, some 

evidence suggests that fungi may have a higher C use efficiency, and thus retain more C in the 

soil during the decomposition process relative to bacteria (Waring et al., 2013; Kallenbach et al., 

 12 



2016; Malik et al., 2016). Still, the functional importance of the fungi:bacteria ratio remains a 

point of controversy due to the wide range of functional diversity across both groups, and several 

lines of evidence have disputed the relationship between fungal dominance and C stabilization 

(Rousk and Frey, 2015). 

Cropping system intensity also influences soil moisture and the availability of C 

substrates (Farahani et al., 1998b; Sherrod et al., 2003), both of which are strong determinants of 

microbial community dynamics (Drenovsky et al., 2004). For example, increasing the 

availability of C substrates by reducing the duration of fallow periods can increase populations of 

arbuscular mycorrhizal fungi (Thompson, 1987; Harinikumar and Bagyaraj, 1988). Additionally, 

cropping system intensification is often achieved by growing a greater diversity of crops, and 

previous studies have linked crop diversity to higher fungi:bacteria ratios and microbial biomass 

(Lange et al., 2014; McDaniel et al., 2014). However, Acosta-Martinez et al. (2007) found that 

cropping system intensity increased microbial biomass, but not always fungal biomass, and 

Stromberger et al. (2007) observed few differences between the microbial community structures 

of different dryland crop rotations. Further investigation into the effects of no-till crop rotations 

on microbial communities is needed to understand the potential role of microbes as mediators of 

C stabilization in dryland agroecosystems. 

The effects of cropping system intensity on microbial communities and aggregation as 

drivers of C sequestration may change based on environmental factors like soil clay content and 

climate (Acosta-Martinez et al., 2003; Sherrod et al., 2003; Peterson and Westfall, 2004). As 

SOC accrual associated with cropping system intensity has primarily been observed in controlled 

experimental systems, and mainly considered in combination with reduced tillage (e.g., Norton et 

al., 2012), further exploration is needed into the extent that cropping system intensification 
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impacts the mechanisms of SOC stabilization independent of tillage and across a range of 

environmental and management factors. 

I conducted a study on dryland, no-till farms and long-term experiment stations in the 

semi-arid Great Plains, USA that captured a wide range of crop rotations, soil textures, PET 

rates, and management histories. This allowed me to quantify the potential for cropping system 

intensification to enhance SOC storage and aggregation relative to traditional crop-fallow 

systems and to evaluate the relative effects of management, texture, and climate on SOC levels. I 

hypothesized that SOC would increase with cropping system intensity directly through greater C 

inputs, and indirectly through greater fungal biomass and aggregation, and that these effects 

would be robust across a range of environmental and management contexts (Fig. 2.1). 

 

2.2 Materials and Methods 

2.2.1 Cropping systems 

Wheat-fallow (WF) is the dominant dryland cropping system in the semi-arid Great 

Plains (Hansen et al., 2012). This system consists of growing winter wheat (Triticum aestivum) 

from September to July, then fallowing for 14 months until the next wheat planting. No-till 

farmers in this region often reduce summer fallow frequency from one out of two years (WF), to 

one out of three or four years (mid-intensity; MID), by rotating winter wheat with crops like corn 

(Zea mays), sorghum (Sorghum bicolor), proso millet (Panicum miliaceum), peas (Pisum 

sativum), or sunflowers (Helianthus annuus). They may also eliminate summer fallow altogether 

via continuous cropping (CON). 
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2.2.2 Study sites 

Sampling was conducted in 2015 and 2016 on 96 dryland, no-till fields in eastern 

Colorado and western Nebraska, representing 54 fields from working farms and 42 fields from 

long-term experiment stations (Fig. 2.2). Each of three levels of cropping intensity – WF (n=27), 

MID (n=37) and CON (n=26) – was represented along a potential evapotranspiration (PET) 

gradient that increased from 1368 mm yr-1 in northwestern Nebraska to 1975 mm yr-1 in 

southeastern Colorado (Fig. 2.2). Additionally, two 30-year old Conservation Reserve Program 

perennial grass plots (30-yr CRP) at the three long-term experiment stations in Colorado (Fig. 

2.2) were sampled as a reference for comparison with the cropping systems (n=6). To assign a 

value of PET to each site, a linear equation was used based on known PETs from 6 locations as 

measured by open-pan evaporation (Peterson et al., 2001) and the latitude of each site. I used 

climate data from 1980-2010 to assign a value of 30-yr average annual precipitation to each 

field. Average annual precipitation at the study sites ranged from 349-472 mm and means by 

cropping intensity were statistically equivalent (PRISM, 2017). Five-year field histories were 

collected for each field (Table 2.1). I collected N fertilizer use data from working farms for the 

years 2010-2014 to calculate annualized fertilizer use. No field received compost or manure. All 

fields were under tilled WF management for several decades prior to implementation of no-till 

and the current crop rotation. Every field was planted to winter wheat in the fall of 2015. 

 

2.2.3 Soil sampling 

In the fall of 2015, soil samples from the 0-20 cm depth were taken using a corer (2 cm 

dia.) at 4 locations within each field that represented corners of a 10 x 10 m square and geo-

referenced for later samplings. At each location, I composited 10 soil cores. Field replicates were 
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analyzed separately for SOC and later averaged to obtain field-level means. Soil samples used to 

determine texture and pH were composited and analyzed by field. Soil texture was determined 

by hydrometer, and pH using a 1:1 slurry of soil and deionized water at Ward Laboratories in 

Kearney, NE. At the three long-term experiment stations in Colorado (see Fig. 2.2), samples 

were taken from both a summit and toeslope position in each field to examine if the differences 

in water availability at upland and lowland positions influenced SOC. Samples on all other fields 

were taken from a flat topographical position and labeled as a summit. 

Additionally, soil samples were taken in spring of 2016 at the same locations as the fall 

sampling. The spring sampling was to a shallower 0-10 cm depth because the surface soil layers 

are more likely to be influenced by management practices, and surface soil physical properties, 

such as aggregation, can confer important functionality on water infiltration and storage (Mann, 

1986; Shaver et al., 2002). A 5.5 cm slide-hammer corer was used to take one 0-10 cm depth soil 

sample per sampling location (4 cores per field) to assess water-stable aggregation, bulk density, 

SOC, total N, and PLFA. Bulk density, SOC, and total N were analyzed by sampling location (4 

field replicates), and later averaged to obtain field-level means. Soils to determine water-stable 

aggregation and PLFA were composited and analyzed by field. Subsamples of field moist soils 

(20 g) were weighed, dried at 105°C, and reweighed to determine gravimetric water content. 

Toeslope positions at the long-term experiment stations were excluded in the spring sampling. 

All samples were kept on ice in coolers for 4 to 36 hours before being refrigerated at 4°C.  

 

2.2.4 Soil carbon & water-stable aggregates 

I determined SOC and total N on spring and fall air-dried soils. Soils were ground on a 

roller grinder and analyzed for total C and N on a LECO CHN-1000 auto analyzer (St. Joseph, 
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MI). Soil inorganic C was assessed using the modified pressure calcimeter method (Sherrod et 

al., 2002), and subtracted from total C to determine concentrations of SOC. 

A wet sieving method adapted from Elliot (1986) was performed on 80 g air-dried 

subsamples to separate soils into large macroaggregate (>2000 um), small macroaggregate (250-

2000 um), free microaggregate (53-250 um), and free silt and clay (<52 um) size fractions. Air-

dried soils were submerged in water for 5 minutes prior to sieving for slaking. Sieves were 

manually moved up and down 50 times over a period of 2 minutes in a shallow pan of deionized 

water. Each size fraction was collected in pre-weighed aluminum pans, dried in a forced-air oven 

at 60°C and weighed. Floating litter was decanted into a separate pan, dried, and weighed. 

Aggregate mean weight diameter (MWD) was calculated as an indicator of aggregate stability 

according to Van Bavel (1950). Very few large macroaggregates were present, so they were 

combined with small macroaggregates for subsequent sand correction and C analysis. 

Concentration of C of each size fraction was measured following similar methods as the bulk 

soil, described above. 

A sand correction was performed on both the macroaggregate and microaggregate 

fractions to compare sand-free weights and C content between soils with different sand contents. 

Briefly, 5 g subsamples were mixed with 5% sodium hexametaphosphate and shaken to disperse 

aggregates. This solution was then passed through 53 um and 250 um sieves for microaggregate 

and macroaggregate fractions, respectively. Sand that remained on top of the sieve was dried and 

weighed. Sand-free C content of the aggregate fractions was calculated as: 

 

Sand-free % C = % C ⋅ (1-proportion of sand)-1 

 

 17 



2.2.5 Phospholipid fatty acids (PLFA) 

PLFA analyses were conducted on subsamples of the soils used to measure aggregation. 

Immediately upon passing through the 8 mm sieve, soils were further sieved to 2 mm and frozen 

at -20°C within 2 days of sampling before being freeze-dried. PLFAs were extracted and 

separated at Ward Labs (Kearney, NE) as described in Hamel et al. (2006). Briefly, two grams of 

lyophilized soil (dry weight equivalent) was extracted in 9.5 ml mixture of dichloromethane 

(DMC)/methanol/citrate buffer (1:2:0.8 v/v) for 1 h at 240 rpm. Then, 2.5 ml of DMC and 10ml 

of a saturated KCl solution were added to each tube, shaken for 5 min, and centrifuged to 

separate the organic fraction. Soil lipid extracts were separated in silica gel columns, 

transmethylated, and PLFAs were quantified by gas chromatography on an Agilent 7890A GC. 

The fatty acid methyl ester 18:2 w6c was used to represent fungal biomass, and 10:0 2OH, 14:0 

iso, 15:0 iso, 15:0 anteiso, 16:0 iso, 16:1 w7c, 17:0 iso, 17:0 anteiso, 17:0 cyclo, and 18:1 w7c 

were used to represent bacterial biomass (Frostegård and Bååth, 1996). Only bacterial and fungal 

PLFAs (65 total biomarkers) were added to represent microbial biomass (polyunsaturated and 

PLFA biomarkers longer than 20 C chains were excluded from the analysis). 

 

2.2.6 Statistical analysis 

The relationships between cropping system intensity and SOC at 10 cm and 20 cm, 

aggregate MWD and C content, and microbial PLFA were tested using multiple linear 

regression. Models were selected using backwards selection with cropping system intensity as a 

categorical variable, and all management factors (# years in no-till, # years in rotation, and 

fertilizer use) and environmental factors (PET, % clay, pH, and slope) until all remaining terms 

were significant (α=0.05). To account for environmental and management factors as covariates, 
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least-squared means for each level of cropping system intensity were generated and tested for 

significant pairwise comparisons. The relationships between aggregation and SOC, and between 

fungal biomass and macroaggregation were tested using linear regressions. Differences between 

C concentrations and C:N ratios of aggregate size classes were tested for significance using 

ANOVA, and pairwise comparisons were made using a Tukey post hoc analysis. P-values less 

than 0.05 were considered significant. I used R for all data analyses (R Core Team, 2013), and 

multiple linear regressions were generated and tested for significance using the packages lme4 

(Bates et al., 2014), lsmeans (Lenth and Hervé, 2015), and lmerTest (Kuznetsova et al., 2015). 

Due to the small sample size, CRP fields were excluded from statistical analyses and are 

presented in figures for the purpose of a relative comparison only. 

I used structural equation modeling (SEM) to test the fit of my hypothesized model (Fig. 

2.1). SEM tests whether experimental data fit a proposed model using a covariance matrix 

(Kline, 2015). A non-significant (p>0.05) Chi-square test indicates that the model fits the data 

(Grace et al., 2010). SEM calculates path coefficients that represent the strength and 

directionality (positive or negative) of relationships between variables, and partitions variance 

when a response variable is connected by two or more explanatory variables. Because of this 

variance partitioning, removal of a path between two variables can impact path coefficients 

between other variables. A positive path coefficient for MID or CON reflects a positive effect of 

mid-intensity or continuous rotations relative to WF, respectively. 

I began with the hypothesized model but found that it did not fit the data (Chi-square p-

value<0.001). I refined the model by adding significant paths (α=0.05), identified by visualizing 

relationships between residuals of previously unconnected variables. I also removed insignificant 

paths. I compared the models that significantly fit the data using Akaike information criterion. 
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The final model (Fig. 2.8) was significant (Chi-square p-value>0.05) and had a lower AIC than 

the others I compared it to. Structural equation models were created and tested using the lavaan 

package in R (Rosseel, 2011). 

 

2.3 Results 

Intensified cropping systems had higher SOC, aggregation, and fungal and total microbial 

biomass, and these trends were robust amidst variability in environmental and management 

conditions.  

 

2.3.1 SOC 

I observed greater SOC concentrations in CON relative to MID and WF rotations at both 

the 0-10 and 0-20 cm depths (Fig. 2.3). Cropping system intensity (p=0.02), PET (p<0.001), % 

clay (p<0.001), and slope position (p<0.001) explained 54% of the variability in SOC at the 0-10 

depth. Similar to the shallow depth, cropping system intensity (p<0.01), PET (p<0.001), % clay 

(p<0.001), and slope position (p<0.001) explained 54% of the variability in SOC at the 0-20 

depth. After accounting for PET, % clay, and slope as covariates, SOC concentrations in WF, 

MID, and CON averaged 1.09%, 1.15%, and 1.28% at 0-10 cm, and 0.92%, 0.89%, and 1.03% at 

0-20 cm, respectively (Fig. 2.3). SOC levels were 17% higher in CON rotations than WF at the 

0-10 cm depth, but CON was not significantly different from MID (Fig. 2.3). However, SOC 

concentrations in CON rotations were 16% greater than MID, and 12% greater than WF to a 

depth of 20 cm. SOC concentrations in CON and the less intensified rotations were about 80% 

and 70% of those in the 30-yr old CRP at both depths, respectively. SOC concentrations in MID 
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rotations were similar to that of WF at both 0-10 cm and 0-20 cm depths (Fig. 2.3). There were 

no significant cropping intensity effects on bulk density (Table 2.1). 

 

2.3.2 Aggregate stability and aggregate-associated C 

Aggregate MWD and C content increased with cropping system intensity (Figs. 4, 5). 

Cropping system intensity (p>0.01), PET (p=0.03), and % clay (p<0.01) explained 30% of the 

variability in MWD of water-stable aggregates in the 0-10 cm depth. After accounting for PET 

and % clay as covariates, aggregate MWD in CON rotations was about twice as large as those in 

WF, and aggregate MWD in MID rotations was intermediate of the two (Fig. 2.4). Aggregate 

MWD in the 30-yr CRP was 4 times greater than CON rotations, and 8 times greater than WF 

(Fig. 2.4).  

Cropping system intensity was unrelated to the sand-corrected C concentration across 

size classes. The C concentrations of macroaggregates were the highest, and C concentrations of 

the free silt and clay fraction were the lowest, regardless of cropping system intensity (Table 

2.2). There were few differences in C:N ratio between aggregate size classes and ratios varied 

from 9-14 (data not shown), but the C:N ratio of the bulk soil was higher in CON compared to 

WF rotations (Table 2.1). Clay % was a significant covariate in the models of C in each 

aggregate size class, and # years no-till was also a covariate in the model of free silt and clay C. 

Total C content of the free silt and clay fraction was lower in MID rotations compared to WF, 

but was no different than CON rotations (Fig. 2.5A). There were no significant differences in C 

content of free microaggregates (Fig.5B). Total C content of macroaggregates was about 3 times 

greater in CON compared to WF rotations (Fig. 2.5C). 
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2.3.3 Microbial PLFA 

Total PLFA concentration (a proxy for microbial biomass), the fungi:bacteria ratio, and 

total fungal PLFA concentration increased with cropping system intensity. There was no 

relationship between cropping system intensity and bacterial PLFAs (data not shown). Cropping 

system intensity (p=0.04), % clay (p<0.01), and pH (p<0.01) explained 31% of the variability in 

microbial biomass. Total PLFA in CON rotations was 35% greater than that of WF, and MID 

rotations were intermediate between the two. Total PLFA in 30-yr CRP was 1.5, 1.8, and 2.1 

times greater than CON, MID, and WF rotations, respectively (Fig 6A). Cropping system 

intensity was the only significant predictor of the fungi:bacteria ratio (p<0.01, R2=0.18) and total 

fungal PLFAs (p<0.01, R2=0.15). CON rotations had three times higher fungi:bacteria ratios than 

WF and MID rotations were intermediate of the two (Fig. 2.6B). Total fungal PLFA was 3 times 

greater in CON rotations compared to WF, but was not significantly different from MID 

rotations (Fig. 2.6C). 

 

2.3.4 Relationships between aggregation, fungi, and SOC 

Aggregate MWD in dryland cropping systems increased linearly with fungal biomass 

(MWD=119.8+4.0×fungal PLFA, F=15.82, p<0.001, R2=0.20, Fig. 2.7A). SOC increased 

linearly with aggregate MWD (SOC=0.828+0.001×MWD, p<0.001, R2=0.23, Fig. 2.7B).  

 

2.3.5 Structural equation model 

Cropping system intensity had positive direct and indirect effects on fungal biomass, 

SOC, and aggregate MWD in the final structural equation model (Fig. 2.8). CON rotations had 

positive effects on fungal biomass, which was also positively affected by SOC. CON, but not 
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MID rotations, indirectly influenced aggregate MWD as mediated through increases in SOC. The 

positive effects of CON on fungal biomass also mediated positive effects on SOC and aggregate 

MWD. Soil clay content positively affected fungal biomass and SOC, and PET negatively 

affected SOC. Overall, the structural equation model explained 30 and 50% of the variability in 

aggregate MWD and SOC, respectively. 

 

2.4 Discussion 

I examined the relationship between cropping system intensity and soil properties under 

no-till management. My findings suggest that cropping system intensity was positively 

associated with SOC and aggregation, and that these trends were potentially mediated by greater 

fungal biomass. That these trends were present across wide ranges in soil texture, climate, and 

management history suggests that continuous cropping is a suitable strategy for increasing SOC, 

even in higher PET climates. 

 

2.4.1 Cropping system intensity and SOC  

Even with no-till management, summer fallow periods in WF and MID rotations can only 

store a maximum of 40% of total precipitation to use for the next crop, as weeds and evaporation 

result in significant water losses during this time (Peterson et al., 1996). Replacing summer 

fallow periods with crops increases the overall precipitation use efficiency of cropping systems 

(Farahani et al., 1998a), and as a result, cropping system intensification can potentially double 

the total amount of crop residue production relative to WF (Peterson and Westfall, 2004). 

Although I did not measure C input, others have found that SOC concentrations often mirror the 

gradient of C inputs associated with cropping system intensity and perennial grasslands (Sherrod 
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et al., 2005; Engel et al., 2017). However, I observed that differences in SOC were only observed 

when summer fallow was completely eliminated, as there were no significant differences in SOC 

in MID rotations compared to WF (Fig. 2.3). The structural equation model offers one possible 

mechanistic explanation for the observed differences in SOC between the cropping systems. The 

final model suggested that the effects of PET and clay more strongly influenced SOC than the 

additional C inputs associated with MID rotations relative to WF, but that the combined direct 

and indirect effects of CON rotations on SOC were enough to overcome these environmental 

factors (Fig. 2.8). Additionally, greater precipitation use efficiency in CON systems may also 

contribute to more SOC by maintaining soil water content at lower levels throughout the year 

relative to less intense rotations, thereby reducing organic matter decomposition (Paustian et al., 

2000). 

Assuming that all fields started at similar levels of SOC at the initiation of the present 

crop rotation, continuous cropping was associated with an average increase of 0.08 Mg C ha-1yr-1 

relative to WF at the 0-10 cm depth. This is consistent with prior estimates of C accrual (0.07-

0.16 Mg C ha-1yr-1) associated with dryland cropping system intensification (Peterson and 

Westfall, 2004; Engel et al., 2017). In addition to the host of agronomic benefits associated with 

greater SOC, the total C emissions associated with the life cycle of dryland no-till grain 

production in the U.S. is on average 0.1 Mg C ha-1 yr-1 (Nelson et al., 2009), and thus the 

conversion to no-till continuous cropping from no-till wheat-fallow has the potential to offset the 

C footprint of grain production in these systems through enhanced soil C sequestration. I also 

observed 0.11% higher SOC concentrations to a depth of 20 cm in CON compared to MID 

rotations. Relative to less intensified rotations, CON systems more closely mimic natural 

regional ecosystems by supporting a growing crop every year, and this similarity is evident in 
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SOC and other soil properties that are closer to the levels of the 30-yr CRP in continuously 

cropped soils. However, I note that levels of SOC in CON soils are still much lower than the 

grassland soils, suggesting that significant constraints to SOC accumulation exist in annual 

cropping systems. 

 

2.4.2 Aggregates 

Cropping system intensity and associated higher C inputs were associated with higher 

water-stable aggregation and macroaggregate-associated C (Figs. 4 and 5). Higher intensity 

rotations may contribute to aggregation through enhanced above and belowground C inputs, and 

greater residue cover on the soil surface protects aggregates from the destructive forces of wind 

and rain (Kong et al., 2005; Mulumba and Lal, 2008). Annually cropped semi-arid 

agroecosystems are particularly susceptible to erosion due to constraints on plant production and 

residue cover, and the greater amount of aggregation in the 30-yr CRP relative to the cropping 

systems reflects the contributions of perennial roots and constant plant cover to enhancing soil 

structure.  

I predicted a co-increase in both SOC and aggregate MWD in intensified rotations as the 

greater level of C inputs become physically protected in aggregates, which would contribute to 

the accumulation of SOC (Fig. 2.1). Additionally, as SOC is a driver of aggregation, I predicted 

and observed a similar positive effect of SOC on aggregate MWD (Tisdall and Oades, 1982; 

Figs. 2.1, 2.8). I was surprised to find that removing the direct effect of aggregate MWD on SOC 

improved the fit of the structural equation model, but I found that SOC directly and indirectly 

increases MWD as mediated through soil fungi, as is discussed in section 2.4.3 (Fig. 2.8). A 

more sensitive indicator of aggregate-associated C may have revealed a more direct influence of 
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aggregation on SOC in the structural equation model. Others have suggested that increases in 

microaggregates within macroaggregates are responsible for a majority of the difference in SOC 

between differently managed cropping systems (Six and Paustian, 2014). I did not isolate 

microaggregates within macroaggregates here due to low overall aggregation across the study 

sites. 

I note that analyzing the relationship between SOC and aggregate MWD independent of 

environmental and management factors revealed a positive relationship, as expected (Fig. 2.7B). 

This is in agreement with others who have examined the relationship between SOC and 

aggregate MWD, highlighting aggregation as an important C stabilization mechanism in dryland 

soils (Kemper and Koch, 1966; Shaver et al., 2003). Greater proportions of C-rich 

macroaggregates in CON rotations contributed to higher SOC concentrations in the bulk soil 

relative to WF (Fig. 2.3, Fig. 2.5C, Table 2.2). The C:N ratio was similar across aggregate size 

classes and mineral fractions, and generally ranged from 9-14. These low values relative to fresh 

inputs suggest that much of the occluded C in macroaggregates is likely derived from more 

highly processed C (Elliott, 1986; Jastrow, 1996). Plant C inputs can become stabilized as 

microbial byproducts of decomposition and tightly bind to soil mineral surfaces (Cotrufo et al., 

2013). An accumulation of this microbially processed C in macroaggregates (and possibly in 

microaggregates within macroaggregates) is potentially responsible for much of the observed 

difference in SOC between different cropping systems. 

 

2.4.3 Microbial Communities 

I found that both fungal biomass and fungi:bacteria ratio increased with cropping system 

intensity (Fig. 2.6), lending support for the interpretation of fungi:bacteria as a soil property that 
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influences C dynamics and is sensitive to management (De Vries et al., 2012; Waring et al., 

2013). Rotation intensity likely influenced the fungal community through changes in the soil C:N 

ratio, and overall greater SOC (Waring et al., 2013; Malik et al., 2016). Past studies have drawn 

links between greater N fertilizer use, lower soil C:N, and lower fungal dominance in soils 

(Bardgett and McAlister, 1999; Waring et al., 2013). Annualized N fertilizer use from 2010-2014 

was no greater in intensified systems (Table 2.1) despite achieving greater total crop production 

compared to WF (Rosenzweig et al., in review), and this likely contributed to the observed 

increase in soil C:N with cropping system intensity (Table 2.1). Thus, it is possible that lower 

nutrient availability in intensified systems may be contributing to the observed increase in 

fungi:bacteria (Strickland and Rousk, 2010). Additionally, intensification is most often achieved 

through growing a greater diversity of crops, and crop diversity, independent of intensity, can 

enhance microbial biomass, fungal dominance, and ultimately SOC (Lange et al., 2014; 

McDaniel et al., 2014). I did not observe a relationship between pH and fungi:bacteria, possibly 

due to a lack of variability in pH across sites (Table 2.1). I also found little influence of the 

number of years in no-till on microbial communities, possibly because most sites had at least 5 

years of no-till management, which is long enough to exert a considerable effect relative to 

conventional tillage (Rosenzweig et al., 2016). 

The influence of cropping system intensity on SOC and aggregation may be attributed to 

the role of fungi in mediating the processes that control these properties. The relationship 

between SOC and fungi is circular, as fungi contribute to C sequestration, and soils with more 

SOC also tend have more fungi (Strickland and Rousk, 2010). My findings from the structural 

equation model suggest that SOC and fungi positively influenced each other, supporting the idea 

of a positive feedback loop (Fig. 2.8). While the link between fungi, C use efficiency, and SOC 
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remains controversial (Strickland and Rousk, 2010), it is generally accepted that fungi contribute 

to SOC accrual by enhancing the physical protection of organic matter in aggregates (Six et al., 

2006). The positive linear relationship between fungal biomass and aggregate MWD 

corroborates past work examining the link between them (Fig. 2.7A). Aggregation also has 

important feedbacks with overall agroecosystem performance in semi-arid climates, as 

aggregates create pore space and improve the soil’s ability to reduce surface runoff (and erosion) 

and capture water (Shaver et al., 2003), which is the most limiting factor to crop production in 

dryland systems. 

 

2.4.4 Conclusions 

While WF remains the most common cropping system in the semi-arid High Plains, this 

and other semi-arid regions around the world are undergoing a profound transition to intensified 

dryland cropping systems, and thus it is critical to understand the implications of this 

transformation (Hansen et al., 2012; Maaz et al., 2017). I found different levels of SOC, 

aggregation, and fungal biomass between different levels of cropping system intensity and tested 

hypothesized links between them. Overall, my results suggest that cropping system intensity, 

independent of tillage, increases SOC both directly, through greater C inputs to soil, and 

indirectly, through effects on microbial communities and aggregation. I observed these 

relationships to be remarkably robust across a wide climatic gradient, and amidst variability in 

soil texture and management history. These results corroborate others who have found greater 

aggregation and SOC in more intensely cropped systems, but also shed new light on the central 

role that fungi may play in C storage in dryland agroecosystems. I found that the elimination of 

summer fallow in semi-arid cropping systems has the potential to offset the C emissions 
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associated with no-till grain production, and provide gains in SOC that will contribute to the 

long-term success of dryland agriculture.  
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Table 2.1. Soil properties and management histories of study sites. Means are reported for each variable, with the range of values 
presented below each mean in parentheses. Values for annualized N fertilizer use and soil C:N represent means + standard error. Soils 
were sampled to 20-cm depth with the exception of values for bulk density and soil C:N, which are for the 0-10 cm depth. Letters 
represent significant differences between cropping systems (α=0.05). Annualized N fertilizer use is the total amount of N fertilizer 
applied over the years 2010-2014 divided by 5. WF=wheat-fallow; MID=rotations with fallow every 3 or 4 years; CON=continuous 
rotations; 30-yr CRP=Conservation Reserve Program shortgrass prairie strips restored 30 years ago (n=6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cropping 

system 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) pH 

Years 

no-till 

Years in 

rotation 

N fertilizer 

(kg N ha-1 yr-1) 

Bulk Density 

(g cm-3) Soil C:N 

WF 22 
(10-31) 

39 
(19-50) 

41 
(22-71) 

7.4 
(6.3-8.5) 

20 
(0-30) 

23 
(10-50) 

31+1.0a 1.0 
(0.8-1.3) 

8.7+0.1b 

MID 21 
(8-36) 

36 
(15-60) 

43 
(22-76) 

7.3 
(6.3-8.3) 

19 
(1-30) 

19 
(3-30) 

45+1.6a 1.0 
(0.8-1.2) 

8.9+0.1a
b 

CON 22 
(8-40) 

38 
(17-53) 

40 
(14-75) 

7.4 
(6.3-8.3) 

22 
(4-30) 

21 
(5-30) 

34+1.4a 1.0 
(0.8-1.2) 

9.2+0.1a 

30-yr CRP 18 
(8-25) 

33 
(21-46) 

49 
(29-71) 

7.7 
(7.2-8.2) 

30 30 NA 0.9 
(0.8-1.0) 

10.3+0.2 
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Table 2.2. Sand-corrected C concentration (%) of water-stable aggregate and mineral size 
fractions. Values represent means + standard error. Letters represent significant differences 
between size fractions within cropping system intensity. No significant cropping system 
differences were observed. WF=wheat-fallow (n=20); MID=rotations with fallow every 3 or 4 
years (n=29); CON=continuous rotations (n=18); 30-yr CRP=Conservation Reserve Program 
shortgrass prairie strips restored 30 years ago (n=6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 WF MID CON 30-yr CRP 

Macroaggregates 
(>250 um) 

2.40+0.03a 2.46+0.03a 2.24+0.05a 2.23+0.08 

Microaggregates 
(53-250um) 

1.65+0.02b 1.86+0.02b 2.12+0.04ab 2.92+0.07 

Silt and Clay  
(0-53 um) 

1.13+0.02c 1.09+0.01c 1.17+0.02b 0.97+0.02 
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Figure 2.1. Hypothesized relationship between cropping system intensity and the mechanistic 
drivers of SOC accrual as affected by climate, soil texture, and management. Plus and minus 
signs denote positive and negative relationships, respectively. MWD=Mean weight diameter of 
water-stable aggregates, PET=Potential evapotranspiration, SOC=Soil organic carbon. 
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Figure 2.2. Study locations color-coded by cropping system intensity. Multiple fields per 
location were sampled, and all three levels of cropping system intensity were present at each of 
the experiment stations. 
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Figure 2.3. Cropping system intensity effects on SOC concentration in the bulk soil. Bar heights 
and error bars represent model generated least-squared means + standard error.  Significant 
covariates in models at both depths were % clay, PET, and slope position. Lower case letters 
represent significant differences between treatments at the 0-10 cm depth (p<0.05), and upper 
case letters represent significant differences between treatments at the 0-20 cm depth (p<0.05). 
WF=wheat-fallow (n=27); MID=rotations with fallow every 3 or 4 years (n=37); 
CON=continuous rotations (n=26); 30-yr CRP=Conservation Reserve Program shortgrass prairie 
strips restored 30 years ago (n=6). 
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Figure 2.4. Cropping system intensity effects on water stable aggregation assessed via mean 
weight diameter in surface soils (0-10 cm depth). Bar heights and error bars represent model 
generated least-squared means + standard error. PET and % clay were significant covariates in 
the model. Letters represent significant differences between treatments (p<0.05). WF=wheat-
fallow (n=20); MID=rotations with fallow every 3 or 4 years (n=29); CON=continuous rotations 
(n=18); 30-yr CRP=Conservation Reserve Program shortgrass prairie strips restored 30 years ago 
(n=6). 
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Figure 2.5. Total C content of the: a) free silt and clay, b) free microaggregate, and c) 
macroaggregate fractions for surface soils (0-10 cm depth). Bar heights and error bars represent 
model-generated least-squared means + standard error. Letters represent significant differences 
in C between cropping system intensities. Clay % was a significant covariate in the models for 
each of the size classes, and years no-till was also a covariate in the model of the free silt and 
clay fraction. WF=wheat-fallow (n=20); MID=rotations with fallow every 3 or 4 years (n=29); 
CON=continuous rotations (n=18); 30-yr CRP=Conservation Reserve Program shortgrass prairie 
strips restored 30 years ago (n=6). 
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Figure 2.6. Cropping system intensity effects on a) Microbial PLFA, b) Fungal:bacterial PLFA 
ratio, and c) Fungal PLFA. Bar heights and error bars represent model generated least-squared 
means + standard error. Clay % and pH were significant covariates in the model of total PLFA 
abundance. Letters represent significant differences between treatments (p<0.05). WF=wheat-
fallow (n=20); MID=rotations with fallow every 3 or 4 years (n=29); CON=continuous rotations 
(n=18); 30-yr CRP=Conservation Reserve Program shortgrass prairie strips restored 30 years ago 
(n=6). 
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Figure 2.7. a) Relationship between fungal biomass and MWD of water-stable aggregates. 
MWD=119.78+3.99*fungal PLFA (p<0.001, R0.20), and b) relationship between MWD of 
water-stable aggregates and SOC concentrations to 10 cm depth. SOC=8.28+0.01*MWD 
(p<0.001, R2=0.23). WF=wheat-fallow (n=20); MID=rotations with fallow every 3 or 4 years 
(n=29); CON=continuous rotations (n=18); 30-yr CRP=Conservation Reserve Program 
shortgrass prairie strips restored 30 years ago (n=6). 
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Figure 2.8. Structural equation model. PET=Potential evapotranspiration, MID=rotations with 
fallow every 3 or 4 years, CON=continuous rotations, Fungal Biomass=Abundance of the fungal 
PLFA 18:2 w6c, MWD=Mean weight diameter of water-stable aggregates, SOC=Soil organic C 
concentration. Magnitudes of MID and CON effects are relative to WF as the intercept. Numbers 
in boxes represent R2 values and numbers along the arrows are standardized path coefficients, 
which represent the magnitude of the effect. Significance of each pathway is denoted by 
***p<0.001, **p<0.01, *p<0.05, ⋅p<0.1. 
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CHAPTER 3: ECOLOGICALLY BASED NUTRIENT AND WEED MANAGEMENT IN 

DRYLAND CROPPING SYSTEMS BENEFITS ECONOMICS AND ENVIRONMENT 

 

3.1 Introduction 

Global agricultural production has risen steadily over the past several decades and must 

continue to keep up with rising food demand. At the same time, production practices must shift 

to reduce nutrient losses and external chemical inputs that threaten ecosystem function and 

economic performance (Carolan, 2016; Hunter et al., 2017). Rising nutrient requirements 

associated with increasing crop production have largely been addressed through greater additions 

of synthetic fertilizers (Tilman et al., 2001). Increasing consumption and costs of nitrogen (N) 

and phosphorus (P) fertilizer, in addition to rising herbicide use, place an economic burden on 

farmers, reflected in the widening disparity between low commodity prices and high input costs 

(Liebman et al., 2001; van der Ploeg, 2006; Fuglie et al., 2007; Carolan, 2016). Net farm 

incomes since 2013 have declined 50% (ERS, 2017), leading to the decline of full-time farmers 

and expanding farm sizes (Carolan, 2016). Meanwhile, synthetic N and P fertilizer and 

herbicides continue to exact high environmental and human costs, evidenced by oceanic dead 

zones (Diaz and Rosenberg, 2008), groundwater contamination (Sebilo et al., 2013), and 

degradation of natural ecosystems due to atmospheric N deposition and pesticide pollution (Du 

et al., 2014; Simkin et al., 2016). Reducing the need for external inputs would reduce impacts on 

environmental health and increase farmer profits if yields could be sustained. However, N and P 

are the most limiting nutrients in agricultural production (Chapin, 1991), and the onset of 

herbicide resistant weeds is driving greater use of even more expensive and herbicides with 

greater toxicity levels (Mortensen et al., 2012). The challenge, then, is to identify an alternative 
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strategy for maintaining or increasing agricultural production while sustainably managing 

nutrients and weeds. 

This challenge is being played out in an accelerated timeframe in the semi-arid dryland 

cropping systems of the US High Plains, just one of many semi-arid regions around the world 

that are undergoing a profound shift in cropping system management (Smith and Young, 2000; 

Maaz et al., 2017). The rise of no-till has enabled sufficient water savings to reduce the need for 

year-long bare fallow periods, called summer fallow, that have traditionally characterized 

dryland cropping systems (Hansen et al., 2012). Large and rapid gains in crop productivity are 

being realized as dryland farmers replace summer fallow with crops, a practice called cropping 

system intensification. One of the tradeoffs of these productivity gains is that costly herbicides 

are required to replace tillage as the primary form of weed control. Additionally, researchers 

have suggested that even a slight increase in cropping system intensity may increase fertilizer 

requirements. For example, Kolberg et al. (1996) estimated that in the High Plains, intensifying 

from the traditional winter wheat (Triticum aestivum)-fallow system to a mid-intensity system 

like wheat-corn (Zea mays)-fallow increases the N requirement by 44%. Nutrient requirements 

may be even greater for continuous cropping systems that have eliminated summer fallow 

altogether (Grant et al., 2002). As tens of millions of acres in semi-arid regions around the world 

are intensifying, including millions in the High Plains (Smith and Young, 2000; Hansen et al., 

2012; Maaz et al., 2017), there is a need to determine the impact of cropping system intensity on 

herbicide and fertilizer use in no-till systems. 

The challenge of meeting rapidly increasing crop nutrient requirements while mitigating 

environmental harm necessitates an ecologically based nutrient management strategy. Despite 

theoretically higher nutrient requirements, cropping intensification may represent such a strategy, 
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as it is associated with greater crop production and subsequent soil carbon (C) inputs, which 

offers the opportunity to recouple C and N cycles (Drinkwater and Snapp 2007). Cropping 

system intensification can increase crop production and residue returns to soil by up to 100% 

(Peterson and Westfall, 2004), which may provide a larger N sink and build reservoirs of organic 

N that are released more slowly over time compared to highly mobile mineral N pools (Sherrod 

et al., 2003; Gardner and Drinkwater, 2009). Most applied inorganic fertilizer N is at risk of loss 

to the environment, as major grain crops only take up ~40% of applied N in the year of 

application (Gardner and Drinkwater, 2009). The remaining N can leach or run off into 

waterways leading to degradation of aquatic ecosystems or escape as NH3 or potent greenhouse 

gases like N2O that contribute to climate change (Galloway et al., 2003). When the breakdown of 

organic material provides most plant N (i.e., when C and N cycles are coupled), more N is 

retained in the soil because organic N that is mineralized in the rhizosphere has a much lower 

risk of loss (Gardner and Drinkwater, 2009). Thus, tighter N cycling in agroecosystems limits 

wasteful and harmful environmental losses of N and may enable farmers to reduce fertilizer use 

(Drinkwater et al., 1998). 

Intensified cropping systems may also stimulate plant uptake of N and P relative to 

wheat-fallow through changes in soil microbial communities. Wheat-fallow, which is reliant on 

only one crop and 14 months of bare fallow every other year, represents a highly simplified 

cropping system. Simplified cropping systems reduce the capacity of the soil to supply plant-

available nutrients, and generate greater reliance on inorganic fertilizer (Drinkwater and Snapp, 

2007). A lack of internal nutrient cycling capacity creates a “fertilizer treadmill,” wherein 

mineral fertilizer use begets a greater dependence on mineral fertilizer (Drinkwater and Snapp, 

2007). The long summer fallow period that is still prevalent in many dryland cropping systems 
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imposes C limitations on the microbial community that may inhibit its growth and activity. I 

previously observed that microbial biomass was 20% and 35% greater in mid-intensity and 

continuous cropping systems in the High Plains relative to wheat-fallow, respectively (Chapter 

2), and I suspect that the alleviation of C limitation has significant impacts for plant nutrient 

availability via impacts on the microbial community. In particular, arbuscular mycorrhizal fungi 

(AMF) can increase plant nutrient uptake, but are susceptible to “long fallow syndrome” wherein 

populations of AMF are drastically reduced in the absence of a host plant (Thompson, 1987; 

Harinikumar and Bagyaraj, 1988). AMF form a symbiotic relationship with most crop types, in 

which AMF colonize the host plant’s roots and trade water and nutrients in return for C (Auge, 

2001; Allen, 2007). AMF are particularly effective at increasing their host plant’s access to 

immobile nutrients like P, and higher colonization rates achieved through inoculation have been 

attributed to increased plant P concentrations and grain yields in semi-arid cropping systems (Al-

Karaki et al., 2004). Increasing the availability of C substrates through cropping system 

intensification may increase populations of AMF and associated benefits to nutrient accessibility, 

and potentially provide a means of reducing dependence on P fertilizer. 

In addition to the potential impacts of agricultural simplification on fertilizer dependency, 

a lack of crop production and diversity may also foster herbicide dependency (Anderson, 2009). 

Herbicide use is on the rise globally, indicated by a 15-fold increase in glyphosate consumption 

over the past two decades (Benbrook, 2016). No-till systems, in particular, require high rates of 

herbicide application, a reality that is only becoming more severe as weeds continue to develop 

herbicide resistance (Young, 2006). However, the combination of no-till and cropping 

intensification maintains surface residue and increases plant competition with weeds, potentially 
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providing an ecological alternative to synthetic herbicide (Derksen et al., 2002; Anderson, 2009; 

Nichols et al., 2015). 

There are serious tradeoffs with risk and yield associated with cropping system 

intensification in water-limited environments. For example, farmers growing a continuous crop 

rotation eliminate summer fallow before growing wheat, which can incur a substantial wheat 

yield penalty and increase the risk of crop failure (Vigil and Nielsen, 1997; Holman et al., 2016). 

Thus, a wide suite of soil health, yield, and economic impacts of cropping system intensification 

need to be elucidated so farmers can be fully informed when making difficult crop management 

decisions. I coupled detailed management and yield data with a suite of soil analyses on working 

dryland, no-till farms and long-term experiment stations in the High Plains states of Colorado 

and Nebraska to address the following objectives: 1) Quantify cropping system intensity effects 

on microbially-mediated nutrient cycling, specifically AMF colonization and potentially 

mineralizable N (PMN), 2) Quantify cropping system effects on herbicide and fertilizer use; 3) 

Quantify cropping system intensity effects on crop yields and estimate implications for 

profitability. I hypothesized that intensification would increase the nutrient supplying capacity of 

soil, enabling intensified farmers to achieve greater crop production while using fewer inputs, 

increasing profitability. 

 

3.2 Methods 

3.2.1 Cropping systems 

Wheat-fallow (WF) has traditionally been the dominant dryland cropping system in the 

semi-arid High Plains (Hansen et al., 2012). This system consists of growing winter wheat from 

September to July, then bare fallowing for 14 months (summer fallow) until the next wheat 
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planting. No-till farmers in this region often reduce summer fallow frequency from one out of 

two years (WF), to one out of three or four years (mid-intensity; MID), by rotating winter wheat 

with crops like corn, sorghum (Sorghum bicolor), proso millet (Panicum miliaceum), peas 

(Pisum sativum), or sunflowers (Helianthus annuus). They may also eliminate summer fallow 

altogether via continuous cropping (CON), most often through a diverse crop rotation. 

 

3.2.2 Study sites 

Soil, plant, and management data was gathered from 96 dryland, no-till fields in eastern 

Colorado and western Nebraska, representing 54 fields from working farms and 42 fields from 

long-term experiment stations (Fig. 3.1). Each of three levels of cropping intensity – WF (n=27), 

MID (n=37) and CON (n=26) – were represented along a potential evapotranspiration (PET) 

gradient that increased from 1368 mm yr-1 in northwestern Nebraska to 1975 mm yr-1 in 

southeastern Colorado (Fig. 3.1). To assign a value of PET to each site, a linear equation was 

used based on known PETs from 6 locations as measured by open-pan evaporation (Peterson et 

al., 2001) and the latitude of each site. All sites receive 350-450 mm of annual precipitation. At 

the three long-term experiment stations in Colorado (see Fig. 3.1), total soil N was assessed from 

both a summit and toeslope position in each plot. Samples on all other fields were taken from a 

flat topographical position and labeled as a summit. All fields were under tilled WF management 

for several decades prior to implementation of no-till and the current crop rotation. Every field 

was planted to winter wheat in the fall of 2015. See Chapter 2 for more detailed site descriptions. 
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3.2.3 Soil and plant sampling and analysis 

Soil and plant sampling to assess total N, PMN, AMF colonization of wheat roots, and 

wheat P concentration was conducted in May and June of 2016 to coincide with wheat heading. 

AMF colonization is typically highest at wheat heading due to optimal soil temperatures and 

ample photosynthate supply to roots (Al-Karaki et al., 2004). A 5.5 cm slide-hammer corer was 

used to take one 0-10 cm depth soil sample from each of four points that form the corners of a 10 

x 10 m square on each field and geo-referenced for later samplings. Soils were composited and 

analyzed for bulk density, texture, and pH as described in Chapter 2. Total N was determined 

from all 96 fields, while PMN, AMF colonization, and wheat P concentration were determined 

from a subset of fields (n=51) that were growing Byrd variety winter wheat. About 5-10 whole 

winter wheat plants from each sampling location were harvested for AMF colonization and P 

concentration analyses. 

I determined total N and PMN on air-dried soils. Soils to assess total N were ground on a 

roller grinder and analyzed on a LECO CHN-1000 auto analyzer (St. Joseph, MI). PMN was 

determined using a 7-day anaerobic incubation (Drinkwater et al., 1996). Briefly, soils were 

sieved to 2 mm and divided into two groups for initial extraction and incubation. Initial 

extraction soils (5g) were shaken with 50mL 2M KCl for 1 hr, filtered, and extracts were frozen 

for later analysis. Incubated soils were added to 10 mL of deionized water, flushed with N2 gas 

for 1 minute, capped, and stored at 30°C for 7 days before being extracted similar to the initial 

extraction soils. Samples were analyzed for NH4
+-N and NO3

--N colorimetrically using a 

microplate reader (Biotek, VT) using methods described by Finney et al. (2015), and PMN was 

calculated as the concentration of NH4
+-N in the incubated sample minus the NH4

+-N 

concentration in the initial extraction sample. 
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Intact wheat plants were kept cool after harvest, and roots were separated from 

aboveground biomass. Aboveground biomass was dried at 30°C and shipped to Ward 

Laboratories in Kearney, NE for analysis of P concentration. Wheat roots were rinsed, cleared 

with 10% KOH, acidified with 2% HCl, and stained with Trypan blue within 24 hrs following 

the methods of Phillips and Hayman (1970) and Koske and Gemma (1989). Stained roots were 

then stored in vials of deionized water at 4°C for subsequent AMF colonization analysis. AMF 

colonization was assessed following the gridline intersect method (McGonigle et al., 1990). Four 

replicates for each field were analyzed and later averaged to obtain field-level means of % 

colonization. 

 

3.2.4 Input use and partial enterprise budgets 

For each working farm field whose operator was willing to report data (n=42), I collected 

yearly data from 2010-2014 on N and P fertilizer use, glyphosate, 2,4-D, and dicamba use, and 

yields for each crop from 2010 to 2015. No field received compost or manure, and amounts of 

nutrients applied other than N and P were negligible. The net operating income for each cropping 

system was calculated using partial enterprise budgets. Fertilizer prices for each year from the 

National Agricultural Statistics Service (NASS, 2017) were converted to $/ha of N and P and 

multiplied by the amount of N and P applied each year in kg/ha to obtain fertilizer expenditures 

in $/ha. Amounts of herbicide were converted to acid equivalents (AE)/ha, and multiplied by the 

2017 cost of each herbicide in $/AE calculated from University of Nebraska to obtain herbicide 

expenditures in $/ha (UNL, 2017). Additional expenditures included planting and seed costs, 

herbicide and fertilizer application costs, and harvest costs, and were estimated for each crop in 

each year using custom rates as reported by Colorado State University (CSU, 2017). The cost of 
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pea seed was derived from Burgener et al. (2005). Based on results of interviews with the 

farmers in this study, I assumed that each summer fallow period required 4 separate applications 

of herbicide. 

Annualized grain production was calculated by dividing the total amount of grain 

production from 2010 to 2014 by 5. To calculate revenues generated from crop production, 

yields were multiplied by crop prices for each crop in each year (NASS, 2011; 2015; 2017). Net 

farm operating income was calculated as revenues minus expenses for each year, excluding fixed 

costs, and then divided by 5 to calculate annualized net operating income in $/ha/yr. 

Additionally, to assess the wheat yield penalty of continuous cropping relative to summer 

fallowing, I collected wheat yield data from a broader set of fields (5 to 10 fields per farmer) 

from 2012 to 2015, and recorded whether the preceding year was summer fallow or cropped. 

 

3.2.5 Statistical analysis 

The relationships between cropping system intensity and annualized grain yield, wheat 

yield penalty, fertilizer and herbicide use, net operating income, total N, PMN, and % AMF 

colonization were tested using multiple linear regression. Models were selected using backwards 

selection with cropping system intensity as a categorical variable, and all management factors (# 

years in no-till and # years in rotation) and environmental factors (PET, % clay, pH, and slope) 

until all remaining terms were significant. To account for environmental and management factors 

as covariates, least-squared means for each level of cropping system intensity were generated 

and tested for significant pairwise comparisons. I chose α=0.1 to determine significance because 

of the inherent variability that cannot be accounted for in an observational study of this 

magnitude (e.g., weather variability, management decisions not captured in interviews, etc.). The 
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relationships between % AMF colonization and plant P, and between % AMF colonization and 

PET, were tested using linear regressions. I used R for all data analyses (R Core Team, 2013), 

and multiple linear regressions were generated and tested for significance using the packages 

lme4 (Bates et al., 2014), lsmeans (Lenth and Hervé, 2015), and lmerTest (Kuznetsova et al., 

2015). 

 

3.3 Results 

Overall, I found support for my hypothesis that cropping system intensification in 

general, and continuous cropping in particular, would enhance the N and P supply capacity of 

soil by increasing total N and PMN, and fostering AMF colonization correlated with enhanced P 

uptake. Farmers practicing continuous cropping reduced herbicide use compared to WF, and 

achieved greater annualized grain production despite applying similar total amounts of fertilizer. 

Simultaneous production gains and reductions in input use translated into greater estimated net 

farm operating income for intensified cropping systems. 

 

3.3.1 Soil and plant analyses 

I observed positive effects of cropping system intensity on total soil N and PMN at a 

depth of 0-10 cm. Cropping system intensity (p=0.04), PET (p<0.001), % clay (p<0.001), and 

slope position (p<0.001) explained 59% of the variability in total N. After accounting for PET, % 

clay, and slope as covariates, total N stocks were 12% higher in CON rotations than WF 

(p=0.04), but CON was not significantly different from MID (Fig. 3.2a). Cropping system 

intensity (p<0.01), % clay (p<0.001), and an intensity-by-clay interaction (p=0.02) explained 

47% of the variability in PMN. After accounting for % clay and the intensity-by-clay interaction 
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as covariates, PMN was 30% higher in CON rotations than WF (p=0.06), but CON was not 

significantly different from MID (Fig. 3.2b). The trends and magnitude of the differences in 

PMN between intensities are similar when the intensity-by-PET interaction is removed from the 

model (data not shown), indicating that the interpretation of these differences is not confounded 

by the interaction.  Analyzing the interaction between intensity and % clay revealed that % clay 

had a strong positive effect on PMN in WF rotations (R2=0.62, p<0.01), and a slight positive 

effect in MID rotations (R2=0.21, p=0.06), but no effect in CON rotations. 

AMF colonization increased with cropping system intensity (Fig. 3.3a), and was 

negatively impacted by PET (Fig. 3.3b). Cropping system intensity (p=0.001), PET (p=0.47), 

and an intensity-by-PET interaction (p<0.01) explained 59% of the variability in % AMF 

colonization. PET was retained in the model due to the significant interaction between PET and 

intensity. After accounting for PET and the intensity-by-PET interaction as covariates, MID and 

CON rotations had roughly 2 and 3 times more colonization than WF (p=0.02, p<0.001), 

respectively (Fig. 3.3a). Additionally, CON rotations had 54% more AMF colonization than 

MID rotations (p=0.01). The trends and significant differences in AMF colonization between 

intensities are similar when the intensity-by-PET interaction is removed from the model (data not 

shown), indicating that the interpretation of these differences is not confounded by the 

interaction. However, analyzing the interaction between intensity and PET revealed that PET had 

a stronger negative effect on % AMF colonization in CON rotations (p<0.001, R2=0.63) than in 

MID rotations (R2=0.22, p=0.03), and PET had no effect on AMF colonization in WF rotations 

(Fig. 3.3b). Wheat aboveground biomass P concentrations positively increased with AMF 

colonization (R2=0.16, p=0.03, Fig. 3.3c). 
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3.3.2 Inputs, yields, and net operating income 

Annualized fertilizer use from 2010 to 2014 was similar between cropping system 

intensities, as a result of smaller amounts of fertilizer applied per crop in CON rotations. 

Cropping system intensity (p=0.002) and PET (p<0.001) explained 55% of the variability in 

annualized N fertilizer use. MID rotations applied about 59% more N fertilizer per year (18 kg 

N/ha/yr) than both CON and WF rotations (p=0.007; Fig. 3.4a). In CON rotations, N applied per 

crop was about 22 and 34 kg N/ha less than WF (p=0.05) and MID rotations (p<0.001), 

respectively (Fig. 3.4b). Annualized P fertilizer use and P applied per crop did not differ by 

cropping system intensity (Fig. 3.4c, 3.4d). 

Glyphosate, 2,4-D, and dicamba use from 2010 to 2014 decreased substantially with 

cropping system intensity (Fig. 3.5). There were no significant covariates in the models of 

glyphosate and dicamba use by intensity, but pH (p<0.01) was a significant covariate in the 

model of 2,4-D. CON rotations used 50% the amount of glyphosate (p=0.07, Fig. 3.5a), 20% the 

amount of 2,4-D (p<0.001), and 32% the amount of dicamba (p=0.03) applied in WF rotations. 

Additionally, MID rotations used 57% (p<0.01) and 82% (p=0.049) the amount of 2,4-D and 

dicamba as WF rotations, respectively. 

Annualized grain yields from 2010 to 2015 increased with cropping system intensity, 

despite a wheat yield reduction associated with the elimination of summer fallow (Fig. 3.6). 

Cropping system intensity (p<0.001), N fertilizer use (p=0.01), and PET (p<0.01) explained 71% 

of the variability in annualized grain yield. After accounting for N fertilizer and PET as 

covariates, MID and CON rotations produced 46% and 60% (p<0.01) more grain per year than 

WF, respectively. I separated all wheat yields into two cropping treatments based on whether 

wheat was preceded by summer fallow or continuous cropped. Cropping treatment (p<0.001) and 
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PET (p<0.001) explained 36% of the variability in wheat yields. After accounting for PET as a 

covariate, on average across 2012 to 2015, wheat that followed a crop yielded 29% less than 

summer fallowed wheat (p<0.001). 

I observed positive effects of cropping system intensity on annualized net farm operating 

income from 2010 to 2014 (Fig. 3.7). Cropping system intensity (p=0.04) and PET (p<0.001) 

explained 61% of variability in net farm operating income. After accounting for PET as a 

covariate, net profits of CON rotations were an estimated $47/ha/yr (80%) more than WF 

(p=0.06), and MID rotations made $42/ha/yr (70%) more than WF (p=0.08). There was no 

difference in net operating income between CON and MID rotations. 

 

3.4 Discussion 

The results demonstrate that cropping system intensification represents an ecologically 

based and economically sound strategy for meeting crop nutrient requirements and managing 

weeds. This seems to hold true across a wide range of soil types, climates, and management 

styles present throughout the semi-arid High Plains, although the magnitude of some of the 

benefits of intensification appear to decrease as PET increases.  

Enhanced crop production in intensified cropping systems helps to increase soil N 

retention, indicated by greater total N stocks despite similar levels of fertilizer N input relative to 

WF (Fig. 3.2). In addition to greater crop production serving as a larger N sink, previous research 

has demonstrated that greater C inputs to soil associated with cropping system intensification 

lead to more microbial biomass (Sherrod et al., 2005; Chapter 2). However, increased soil and 

microbial N stocks do not necessarily signify increased nutrient recycling. Higher soil C:N ratios 

(Chapter 2) and lower soil nitrate in intensified systems (Westfall et al., 1996) indicate that N 
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limitation increases with intensification, and suggests that N is being rapidly assimilated into 

microbial biomass and soil organic matter where it may not necessarily be readily available for 

plant uptake. However, I found higher PMN in continuous systems relative to WF, indicating 

that the additional N being retained in the soil is potentially available for plant uptake. Enhanced 

crop diversity can stimulate microbial biomass and nutrient cycling activity (Davis et al., 2012; 

King and Hofmockel, 2017), and greater cropping system intensity is typically associated with 

higher crop diversity. Thus, the results suggest that continuous cropping leads to more N in 

organic pools, which ultimately becomes available through mineralization, suggesting that C and 

N cycles are coupled in continuous cropping systems. Enhanced retention and internal cycling of 

N enables continuous crop farmers to realize high levels of crop production while applying less 

N fertilizer, indicated by the significantly lower amount of N applied per crop and similar or 

greater annualized grain yield in continuous relative to WF and mid-intensity rotations. Although 

total N concentrations were higher in continuously cropped soils, and P concentrations were 

similar between the cropping system intensities, I am unable to determine whether or not farmers 

who practice continuous cropping are mining soil N or P, as I did not calculate nutrient budgets. 

Cropping system intensity also influences nutrient availability via effects on AMF. I 

found that increasing the presence of a plant host by reducing or eliminating summer fallow 

greatly increased AMF colonization of winter wheat, which was related to enhanced P uptake. 

This finding is in agreement with others who have demonstrated the deleterious effect of bare 

fallows on AMF ((Thompson, 1987; Harinikumar and Bagyaraj, 1988) and subsequent effects on 

plant P status (Thompson, 1987). Bowman and Halvorson (1997) also found that continuous 

cropping increased winter wheat P concentrations relative to WF, but they attributed this 

observation to greater P recycling from plant residues. The findings suggest that AMF are also a 
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critical component of greater P uptake in continuous cropping systems. The beneficial effects of 

greater P uptake may help plants maintain growth during drought, as the availability of P is 

greatly reduced when soil moisture is low (Viets Jr., 1972), and greater P uptake can improve 

plants’ drought response due to effects on stomatal conductance and root growth (Auge, 2001). 

AMF likely also improve precipitation use efficiency in dryland agroecosystems by increasing 

aggregation, thereby improving water capture (Shaver et al., 2002; 2003; 2012; Gianinazzi et al., 

2010; Chapter 2). The importance of AMF to P uptake becomes clear in light of a lack of a 

relationship between P fertilizer use and plant P concentration. AMF, cropping system intensity, 

and PET were the only significant factors in models of plant P, and P fertilizer use was not 

correlated with plant P (data not shown). 

In addition to cropping intensity, previous studies have also demonstrated the benefits of 

input reduction and no-till on populations of AMF (Munyanziza et al., 1997; Corkidi et al., 2002; 

Gottshall et al., 2017). Verzeaux et al. (2016) found that no-till and the absence of N fertilization 

benefited AMF populations and led to similar rates of N uptake and aboveground biomass in 

winter wheat relative to conventional N fertilization. I found no relationship between AMF 

colonization and N or P fertilization or the number of years in no-till, possibly due to relatively 

low inputs in dryland systems relative to temperate systems where these relationships are often 

examined. Additionally, even though all fields in this study had been in no-till management for 

at least 5 years, most wheat-fallow systems had very low AMF colonization (<6%). These results 

suggest that cropping system intensification, independent of input use and tillage system, is a 

necessary condition for enhancing AMF colonization in dryland agroecosystems without the use 

of inocula. However, the magnitude of the benefit of intensification decreased as PET increased. 
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This is likely due to overall smaller plants in hotter and drier climates, which would reduce the 

supply of C to AMF, and more severe water limitations that restrict AMF growth (Auge, 2001).  

While summer fallow can stabilize wheat yields from year to year, it requires an 

extensive amount of herbicide or tillage to control weeds. Herbicide costs often make up 20-30% 

of a producer’s input costs in the Great Plains (Derksen et al., 2002), and there is growing 

recognition of herbicides’ role in ecosystem degradation and danger to human health (Liebman 

et al., 2001; Gilliom et al., 2006; Mortensen et al., 2012). Early studies on weed management in 

dryland cropping systems sought to control weeds via reduced tillage, but found that weeds 

persisted in summer fallow regardless of tillage management (Fenster et al., 1968). More 

recently, the importance of crop rotation, and specifically the synergistic effects of combined 

crop rotation and no-till effects have come to light (Anderson, 2009). Cropping system 

intensification in this study enabled no-till, mid-intensity and continuous farmers to reduce 

consumption of three of the most prolific herbicides in dryland grain production by 30% and 

60%, respectively, relative to no-till wheat-fallow (Fig. 3.5). At the same time, the results lend 

support to mounting evidence that ecological approaches to weed management can provide 

effective weed control and be more profitable than herbicide-only based approaches (Anderson, 

2003; Pimentel et al., 2005; Liebman et al., 2008; Davis et al., 2012). 

The differences in profitability between the cropping systems, reported as net operating 

income, reflect a larger trend in the agricultural economy. For 50 years, the cost of inputs has 

risen while commodity prices have stagnated (Fuglie et al., 2007), placing a “double squeeze” on 

farmer profits (van der Ploeg, 2006; Carolan, 2016). Continuous farmers, and mid-intensity 

farmers to a lesser degree, were able to increase yields while reducing inputs. This enabled them 

to act on both sides of the double squeeze, which led to greater profitability (Fig. 3.7). Often, 
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profitability of dryland cropping systems in the High Plains is conflated with wheat yields, likely 

due to the historic significance of wheat in this region (Nielsen et al., 2015; Holman et al., 2016). 

However, although I found a 29% wheat yield reduction associated with continuous cropping, 

these results demonstrate that wheat yields were not synonymous with profitability due to the 

expenses of maintaining summer fallow. The multi-year, systems-based approach demonstrates 

the benefits provided by growing more crops rather than maximizing yield of a single crop. 

 

3.4.1 Conclusion 

Addressing the global economic and environmental challenges associated with rising 

fertilizer and herbicide use requires the establishment of internal capacity in agroecosystems to 

supply nutrients and control weeds. This capacity has been all but lost in simplified 

agroecosystems, including those reliant on summer fallow that once dominated many semi-arid 

climates. However, semi-arid regions around the world are witnessing a “revolution” in dryland 

cropping (Smith and Young, 2000), in which no-till is enabling farmers to intensify and diversify 

crop rotations. I found support for the hypothesis that continuous cropping in the High Plains can 

increase N retention and cycling and P uptake by plants, mediated by increased associations with 

AMF. This enhanced capacity to supply nutrients in continuously cropped soils enabled 

continuous dryland farmers to achieve more grain production using the same amount of 

fertilizers compared to those practicing wheat-fallow. Additionally, the combination of no-till 

and reduced summer fallow enabled intensified farmers to drastically reduce herbicide use. 

Overall, I conclude that cropping system intensification represents an opportunity to achieve 

more grain production while managing weeds and nutrients with fewer external inputs, leading to 

greater profitability and better environmental outcomes. 
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Figure 3.1. Study locations color-coded by cropping system intensity. Multiple fields per 
location were sampled, and all three levels of cropping system intensity were present at each of 
the experiment stations. 
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Figure 3.2. Cropping system intensity effects on a) Total N, and b) potentially mineralizable N 
(PMN). Bar heights and error bars represent model generated least-squared means + standard 
error. Clay, pH, PET, and slope were significant covariates in the model of total N, and clay was 
a significant covariate in the model of PMN. Letters represent significant differences between 
treatments (p<0.1). WF=wheat-fallow; MID=rotations with summer fallow every 3 or 4 years; 
CON=continuous rotations. 
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Figure 3.3. a) Cropping system effects on % AMF colonization of winter wheat roots, b) the 
relationship between % AMF colonization and potential evapotranspiration (PET), separated by 
cropping system intensity, and c) the relationship between wheat P concentration and % AMF 
colonization, separated by cropping system intensity. Bar heights and error bars represent model 
generated least-squared means + standard error. PET and a PET-by-intensity interaction were 
significant covariates in the model of % AMF colonization. Letters represent significant 
differences between treatments (p<0.1). WF=wheat-fallow; MID=rotations with summer fallow 
every 3 or 4 years; CON=continuous rotations. 
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Figure 3.4. Fertilizer nitrogen (N) and phosphorus (P) use by cropping system intensity from 
2010 to 2014. Annualized N and P use was calculated as the total amount of N and P applied 
over the 5-year period divided by 5. N and P applied per crop were calculated as the total amount 
of N and P applied over the 5-year period divided by the number of years in which a crop was 
planted. Bar heights and error bars represent model generated least-squared means + standard 
error. PET was a significant covariate in the model of annualized N, N per crop, and annualized 
P. Letters represent significant differences between treatments (p<0.1). WF=wheat-fallow; 
MID=rotations with summer fallow every 3 or 4 years; CON=continuous rotations. 
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Figure 3.5. Cropping system intensity effects on acid equivalents (AE) of a) glyphosate, b) 2,4-
D, and c) dicamba applied from 2010 to 2014. Bar heights and error bars represent model 
generated least-squared means + standard error. pH was a significant covariate in the model of 
2,4-D use. Letters represent significant differences between treatments (p<0.1). WF=wheat-
fallow; MID=rotations with summer fallow every 3 or 4 years; CON=continuous rotations. 
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Figure 3.6. Cropping system intensity effects on a) annualized grain yield from 2010 to 2015, 
and b) continuous cropping effects on wheat yields relative to summer fallow from 2012 to 2015. 
Annualized grain yield was calculated as the total amount of grain production from 2010 to 2015 
divided by 6. Bar heights and error bars represent model generated least-squared means + 
standard error. Annualized N fertilizer applied and PET were significant covariates in the model 
of annualized grain yield, and PET was a significant covariate in the model of wheat yields. 
Letters represent significant differences between treatments (p<0.1). WF=wheat-fallow; 
MID=rotations with summer fallow every 3 or 4 years; CON=continuous rotations. 
 

 

 

 

 

 

 

 

 

 

 70 



 

Figure 3.7. Cropping system intensity effects on annualized net operating income in $ from 2010 
to 2014. Annualized net operating income was calculated as the net operating income over the 5-
year period divided by 5. Bar heights and error bars represent model generated least-squared 
means + standard error. PET was a significant covariate in the model net operating income. 
Letters represent significant differences between treatments (p<0.1). WF=wheat-fallow; 
MID=rotations with summer fallow every 3 or 4 years; CON=continuous rotations. 
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CHAPTER 4: THE SEMI-ARID CROPPING REVOLUTION: A CASE OF CONTESTED 

TRUTHS AND CONFLICTING IMAGINARIES  

 

4.1 Introduction 

Agriculture in the High Plains—a sub-region of the Great Plains, including eastern parts 

of Colorado, Wyoming, and New Mexico, and also western parts of the Midwest states of 

Nebraska, Kansas, and South Dakota—is undergoing a transformation. For almost 90 years since 

the Dust Bowl struck this region, dryland (rainfed) farmers have largely relied on one type of 

cropping system to stay viable in a climate characterized by water scarcity and unpredictability. 

The wheat-fallow system involves growing winter wheat for 10 months, followed by a 14-month 

period without a crop called summer fallow. Wheat-fallow was universally adopted after the 

Dust Bowl in part because high-power tractors and improved weed control implements 

facilitated maintenance of summer fallow periods, and also in response to recommendations 

from the Soil Conservation Service (now the Natural Resources Conservation Service) to 

alternate strips of wheat and fallow to impede rampant soil erosion (Greb, 1979; Helms, 1990). 

Precipitation accumulates in the soil during the year long summer fallow period, which enables 

farmers to mitigate some of the risk of wheat failure due to drought (Peterson et al., 1996). 

However, while wheat-fallow provides some degree of yield and income stability, it can reduce 

the productivity and profitability of dryland farmers because it requires two years to grow a 

single crop (Kaan, 2002; Peterson and Westfall, 2004). Low levels of crop productivity and 

diversity combined with over a century of tillage have left soils degraded, further exacerbating 

the risks of a profession already fraught with uncertainty. But while wheat-fallow still remains a 
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ubiquitous practice in the High Plains, farmers are transitioning toward more economically and 

environmentally beneficial cropping systems. 

Exponential growth in the adoption of no-till over the last two decades has enabled vast 

numbers of dryland farmers to transition to intensified cropping systems, which are crop 

rotations that have reduced the frequency of summer fallow, to the point in some cases of 

eliminating it entirely (Hansen et al., 2012). Transitions to intensified systems were rapid in 

Canada and the Northern Great Plains following the advent of no-till, but the High Plains have 

been slower to follow suit (Smith and Young, 2000; Cochran et al., 2006; Hansen et al., 2012). 

Due to the potential for cropping system intensification to reverse century-old trends in soil 

degradation and revitalize the profitability of dryland agriculture in this region, there is a need to 

understand the factors driving or inhibiting transitions to intensified cropping systems in the 

High Plains. 

Scholars are only beginning to examine farm-level social dynamics of the transformation 

to intensified and diversified cropping systems (Bennett and Cattle, 2013; Carlisle, 2016; Ingram 

et al., 2016; Basche and Roesch-McNally, 2017) which some have called the “semi-arid 

cropping revolution” (Smith and Young, 2000). Meanwhile, another body of literature seeks to 

understand this revolution through an analysis of macro scale forces like policies and markets. 

Maaz et al. (2017) largely attribute increasing crop diversity in Canada and Australia to policy 

and market changes and research advancements, although Smith and Young (2000) found that 

market prices and policy had little relationship to summer fallow frequency in Canada and the 

Northern Great Plains. There is also a sizable body of scholarship that attributes the growing 

wave of cropping system intensification to simple economic or agronomic rationales, assuming 

that most producers transition mainly to increase profitability (Kaan, 2002; Hansen et al., 2012). 
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While perceived profitability has been found to correlate with adoption of intensified cropping 

systems (Saltiel et al., 1994), such perceptions are highly dependent on social interactions and 

information networks (Carlisle, 2016). Additionally, while it is generally accepted that a mid-

intensity rotation (e.g., wheat-corn-fallow) increases net economic returns relative to wheat-

fallow, the economics of continuous cropping are much less straightforward because of different 

input requirements and increased risk of crop failure (Dhuyvetter et al., 1996; Kaan, 2002; Aiken 

et al., 2013). To my knowledge, there has been no attempt to explain the sociological drivers and 

constraints contributing to cropping system intensification trends in the High Plains.  

While the economic risks can increase with continuous cropping, these systems tend to 

provide the greatest soil health and environmental benefit (Shaver et al., 2003; Sherrod et al., 

2003; Acosta-Martinez et al., 2007). Notably, continuous rotations have the potential to offset 

the carbon dioxide emissions associated with the life cycle of no-till grain production through 

enhanced soil carbon sequestration, which contributes to simultaneous climate change adaptation 

and mitigation (Chapter 2). Additionally, as intensification is most often achieved by increasing 

the diversity of crops in rotation, a wide range of benefits from risk mitigation to better weed 

control and reduced pesticide inputs typically accompanies greater cropping intensity (Derksen 

et al., 2002). These complex trade-offs and interactions between risk, profitability, and soil 

health suggest that the decision about whether and how much to intensify is more complicated 

than the prevailing narratives around profitability acknowledge. An understanding of the social 

dynamics influencing the degrees of cropping system intensity on the landscape could help 

identify strategies to overcome the barriers constraining intensification. 

No-till is a prerequisite for successful cropping system intensification (Peterson et al., 

1996). While barriers that prevent the adoption of no-till are relevant to the broader agricultural 
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shift occurring on the landscape, these barriers have been extensively studied and reviewed 

(Nowak, 1983; Lyon et al., 2004; Knowler and Bradshaw, 2007), and thus I focus solely on the 

decisions related to cropping system intensification once no-till adoption has already occurred. In 

contrast to the adoption of discrete technologies or practices, transitions from wheat-fallow to 

intensified cropping systems represent a more complicated shift in farming system, and thus may 

suffer from slow diffusion as predicted for complex innovations (Pannell, 1999; Padel, 2001; 

Rogers, 2003; Blesh and Wolf, 2014). 

In summary, this paper seeks to generate a greater understanding of the drivers and 

constraints governing cropping system intensification in the High Plains. The argument is ground 

in in-depth interviews with dryland, no-till farmers throughout the High Plains representing three 

levels of cropping system intensity from wheat-fallow to continuous. From these insights I 

suggest strategies for social change that can facilitate farmer transitions to intensified cropping 

systems. The argument is theoretically animated by Carolan’s (2005) earlier application of 

Bourdieu, specifically the latter’s concept of “field” to better understand tensions created by 

contested worldviews and practices in agriculture.   

 

4.2 Briefly Setting the Conceptual Stage  

In contrast to individualistic and rationalistic approaches to behavior and perception, a 

focus on Bourdieusian fields de-centers the individual as an analytic unit, looking instead toward 

the social and embodied nature of action as a source of knowledge, understanding, and affect 

(Bourdieu, 1977). Central to this literature is the idea that social activity, much of it mundane, 

not only reproduces worlds but also creates them. This research tradition seeks to apprehend 

from whence deeply held understandings—or “spirit” (Weber, 1993), “field” (Bourdieu, 1977), 
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“ethic” (Appadurai, 2013), “imaginary” (Anderson, 1983; Taylor, 2004)—arise, noting that 

while “understanding makes the practice possible, it is also true that the practice largely carries 

the understanding” (Strauss 2006:330).  

Practices are guided by what Bourdieu (1990:66) has called the “practical sense,” which 

refers to patterns rooted within the respective communities of an individual. Practices should not, 

however, be reduced to merely learned rules of “appropriate” behavior. Practices can also 

engender a “feel for the game” (Bourdieu 1990:66) that is notably disruptive to the status quo, 

leading to imaginaries that have the potential to provoke resistance and change (Carolan 2016). 

Behavioral change, then, when viewed through this lens, emphasizes acts and social networks of 

trust and knowledge for understanding why agents do and think as they do. 

One way to think about this approach is through the analysis provided in Modern Social 

Imaginaries (Taylor 2004). Taylor (2004), building on Anderson (1983), explains in this work 

how social imaginaries are conceptions of the world held by “ordinary people” (Taylor 

2004:106) that are carried by, and which in turn legitimate, practices that are forward looking, 

informing not only how things usually go but also how they ought to go. In this sense, then, 

fields (or what Taylor refers to as imaginaries) are deeply consequential, shaping actors’ 

motivations, values, identities, and understandings of what is and what ought to be. 

Such approaches have been applied widely in the critical agrifood literature, from the 

“good farmer” literature (e.g., Burton 2004; Sutherland and Burton 2011) to more specifically 

Carolan’s (2005) application of the Bourdieusian field concept to understanding contesting fields 

in agriculture. In that latter’s piece, a heuristic was developed to help think through the social 

processes at work that cause, for example, some farmers to look at an agro-ecological space and 

see a poorly managed field, while other farmers can look at the exact same space and see a 
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highly valuable management practice in place. This chapter builds on this tradition and Carolan’s 

piece in particular to understand those competing agro-imaginaries as they play out in the High 

Plains among wheat farmers. 

 

4.3 Methods 

The design of this study and the questionnaire were approved by the Colorado State 

University Institutional Review Board. Interviews with 23 farmers were conducted in 2015 and 

2016 following the precepts of grounded theory (Glaser and Strauss, 1967), with slight alteration. 

Although this method does not presuppose an understanding of the phenomenon at hand, but 

rather allows relevant themes to emerge throughout the interview process, the first interviews 

were inspired by the semi-structured, open-ended interview questionnaire used by Blesh and 

Wolf (2014; Appendix 1). Relevant themes were coded into applicable categories, which were 

constantly compared throughout the course of data collection, enabling higher order themes to 

emerge. Each interview lasted between one and two hours. Sampling was concluded when new 

themes ceased to emerge. 

Each level of cropping system intensity – wheat-fallow, mid-intensity, and continuous – 

was present in each of three climatic zones (north, middle, and south) located in eastern 

Colorado and western Nebraska (Table 4.1). The northern zone contained farmers in Nebraska, 

while the middle and southern zones contained farmers in northeastern and southeastern 

Colorado, respectively. All primary operators identified as male. Almost every farmer either 

grew up on a farm that practiced wheat-fallow or practiced it himself before transitioning to the 

present crop rotation. Interviewees were identified by snowball sampling, as each participant was 

asked to suggest at least one other farmer who fit the criteria. All interviewed farmers practice 
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dryland agriculture (no irrigation) with <500 mm annual precipitation and use no-till practices. 

By seeking out farmers across a wide geographical range along the full spectrum of cropping 

system intensity, I was able to access a variety of social networks, thereby overcoming a 

common shortfall in snowball sampling (Gilbert, 1995). I captured a wide range of farm sizes 

(Table 4.1) and ages, although age data was not formally recorded. 

 

4.4 Results 

Applications of Bourdieu’s theory of practice to agriculture have evolved from a singular 

field of farming (e.g., Raedeke et al., 2003) to the distinct yet overlapping fields of conventional 

and sustainable agriculture (Carolan, 2005). Carolan justified the construction of multiple fields 

by noting that arguments for a singular farming field “conceptually oversimplify the diverse 

array of attitudinal proclivities, cultural rules and resources, and objective network constraints 

that exist within the production realm of agriculture” (2005:395). In attempting to understand the 

factors that influence the occurrence of summer fallow in the High Plains, I build on this analysis 

and find a complex set of distinctions between social networks, information sources, perceptions, 

and practices, which necessitates further reconstruction of the social (sub-) fields in agriculture. 

In doing so, I identify numerous overlapping social fields within the broader fields of 

conventional and sustainable agriculture (Figure 4.1). Gleaning from the findings of the 

abovementioned interviews, I “map” the sub fields of no-till wheat-fallow, no-till mid-intensity, 

and soil health practitioners against Carolan’s (2005) more general fields of conventional and 

sustainable agriculture. This tentative analytic and conceptual exercise is explained (and 

justified) further in the following discussion.  Three emergent themes from the research reveal 

the forces that shape and are shaped by the social landscape of dryland agriculture: 1) the 
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emergence of a soil health paradigm, 2) perceptions of risk and profitability, 3) crop insurance 

policy. Discussion of each theme is followed by strategies for facilitating transitions to 

intensified cropping systems, based on the insights that emerged from the interviews. 

 

4.4.1 Theme #1: The Emerging Soil Health Paradigm 

In 2013, the Natural Resources Conservation Service (NRCS) launched the first soil 

health initiative in the US. The “Unlock the Secrets of the Soil” campaign, as it was called, laid 

the foundation for the national conversation about soil health. Soil health is a management 

philosophy centered on four principles: 1) Keep the soil covered as much as possible, 2) Disturb 

the soil as little as possible, 3) Keep plants growing throughout the year, and 4) Diversify as 

much as possible using crop rotation and cover crops (NRCS, 2013). While many producers 

likely followed these principles for decades if not centuries prior to 2013, NRCS codified and 

formalized these few simple rules, and the movement that has since emerged established an 

infrastructure and platform for the dissemination of the soil health philosophy. In the years since 

2013, farmers and ranchers, food and agribusinesses, environmental organizations, and, to a 

lesser extent, universities have joined the movement to spread the soil health ideology through 

farming conferences, articles, videos, films, and personal communication. I found evidence of an 

impact of this larger movement on the ideologies and practices of dryland farmers in the High 

Plains. Some farmers strongly identified with the soil health philosophy, and this new way of 

thinking manifested in transitions to continuous cropping systems and innovations beyond 

cropping system intensification like the integration of livestock and cover crops.  

Several of the soil health tenets are relevant to decisions about summer fallowing. I found 

adherence to these principles, specifically the tenets related to maximizing diversity and time 
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with a growing plant, to be a strong motivation underlying transitions to continuous crop 

rotations. 

 

My goals are just to diversify myself even more… and return more to my land. – 
M9, continuous 
 
We're going to try to have no fallow periods even between crops. We're trying to 
go to continuous root all the time. You know, our philosophy is… I want to keep 
a growing crop year round. – M6, continuous 
 
 

One of the overarching beliefs held by proponents of the soil health paradigm is that 

mimicking nature through ecologically-based practices can reduce reliance on chemical 

herbicides and fertilizers. I found that soil health practitioners translated this belief into practice, 

resulting in differences in input use between continuous and less intensified farmers. I expected 

even greater fertilizer use in continuously cropped systems, as intensified producers replace 

fallow periods that don’t require any fertilizer with crops that do. But, I found that annualized 

fertilizer use between 2010 and 2014 was over 40% lower in continuous rotations relative to 

mid-intensity, which can be attributed to continuous farmers applying about half the amount of N 

fertilizer per crop of less intensified farmers (Chapter 3). 

Continuous farmers also use about 50% of the glyphosate used by wheat-fallow farmers, 

and less than 20% and 40% of the amount of 2,4-D and dicamba, respectively, constituting 

substantial reductions in the three most prolific herbicides used in grain production (Chapter 3). 

Mid-intensity producers often cited better weed control as a motivation for intensifying, but for 

reasons other than increasing plant competition. Many mid-intensity producers rotate wheat with 

Round-up Ready crops like corn, which enables them to control the weeds that are typically a 

problem in wheat.  
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SR: You said that throwing in corn would be the best for that piece of ground. 
Why is that? 
M3, mid-intensity: Just weed control. You'd be able to throw a different herbicide 
at it. 

 
 
 

Soil health practitioners, on the other hand, were more likely to acknowledge the 

ecological, rather than the chemical, means by which cropping system intensification helps 

control weeds. Replacing fallow periods with a crop increases plant competition with weeds, and 

thus reduces the amount of herbicide required (Derksen et al., 2002). 

 

Palmer amaranth is starting to show up here, and where it's raising hell is in edible 
beans. So that was the reason I put peas in the rotation because that will give us 
another crop in the rotation that will outcompete Palmer. The peas will choke it 
out before it ever gets going. – N4, continuous 

 
 

As I will discuss, whether or not producers acknowledge the ability for ecological 

processes to profitably and effectively replace chemical inputs depends on whose knowledge 

they trust, and consequently I find that a gradient of input use is aligned along the social 

organization of dryland agriculture, as illustrated by the continuum at the bottom of Figure 4.1. 

A critical source of motivation for soil health practitioners in the High Plains lies in the 

stories of farmers in wetter climates who have successfully transitioned to highly diverse 

continuous cropping systems. A number of high profile dryland farmers have become important 

figures in the soil health movement, and several of them were mentioned by the soil health 

practitioners in this study as inspiration for transitioning to a continuous crop rotation. These 

high profile farmers communicate their stories through the infrastructure of the soil health 

movement: conferences, videos, magazine articles, and farmer-to-farmer communication. The 
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specific outcomes that soil health practitioners are inspired to achieve are often related to 

reductions in chemical inputs or improvements in soil health. 

 

I'd love to be the Gabe Brown of Eastern Colorado. I'd love to have his yields and 

no chemicals and no fertilizers. That would be perfect. – M6, continuous 

 

Several knowledge claims circulate within soil health networks that underpin the belief 

that cropping system intensification and diversification can reduce the need for chemical 

fertilizer. An example is the claim that growing a greater diversity of plants will foster more 

microbial diversity in the soil, and that microbial diversity will enhance nutrient cycling and the 

amount of soil nutrients available for plants. Several farmers referred to this claim as the 

“diversity aboveground equals diversity belowground” rationale, and cited it as a reason why 

they strive to grow as great a diversity of crops as possible. 

 

If you want to build healthy soil and build a functioning soil I think you have to 
have a diversity of root exudates and a diversity of food aboveground, which will 
equate to diversity belowground, which will ultimately improve the function of 
the soil. – M9, continuous 

 
 

“Mainstream” (i.e. university and government) agronomists often communicate the 

benefits of cropping system intensification in terms of better weed control or greater overall crop 

production. These benefits are easy to communicate because they are easy to “see” (e.g., weed-

free rows), and have long been associated with desirable outcomes in production agriculture 

(Burton, 2004). In contrast, soil health benefits like greater microbial activity are more 

epistemologically distant, or harder to “see” (Carolan, 2006a), and thus they often make less 
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compelling cases to intensify. However, the awareness about complex soil processes illustrated 

by the farmer in the quote above represents a deeper knowledge about soil health that motivated 

his transition to a diverse and continuous crop rotation. Unlike those embedded in (sub-) fields 

located on the left side of Figure 4.1, this knowledge enabled him to “see” the soil health benefits 

of continuous cropping.  This “vision” helped override the privileging of logics that celebrate the 

epistemologically “near” benefits of, say, short-term profit maximization but that otherwise 

result in long-term detrimental effects, such as upon unseen microbial communities. 

Soil health claims like “diversity aboveground equals diversity belowground” were 

mentioned almost exclusively by soil health practitioners. This is not to say that farmers outside 

of the soil health field have never been exposed to such knowledge claims. For example, farmers 

across the spectrum of conventional and sustainable agriculture attend the regional High Plains 

No-till Conference, at which soil health practitioners or proponents often give presentations and 

explain how they believe soil health management practices affect the intricate workings of soil 

function. But the science of soil health, like the science of human health, is complex and often 

unresolved, and obtaining knowledge about the soil system requires a great deal of trust in 

“experts” that make such knowledge claims. Trust serves to reduce the complexity and 

uncertainty present in the science of soil health, and enables farmers to “know” how the soil 

functions (Luhmann, 1979). On the other hand, a lack of trust in those who claim “diversity 

aboveground equals diversity belowground” may inhibit the motivations of other farmers to 

diversify in the hopes of reducing fertilizer use. As this and several other claims about soil health 

are still a matter of debate in mainstream scientific research, it appears that the emergence of soil 

health social networks has created a distinct set of knowledge in this social field. 
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The farmers who cited soil health rationales as motivation for eliminating summer fallow 

place their trust in different sources of information than the inhabitants of other social fields, 

which results in the emergence of contested truths. Most importantly, conventional farmers and 

even other farmers in the field of sustainable agriculture believe that summer fallow is a 

necessary component of a profitable dryland farming system in the High Plains, while soil health 

practitioners largely believe that fallow is a detriment to profitability. One mid-intensity farmer 

referred to the producers who eliminated fallow as “a group of cover crop-livestock-holistic-soil 

health-it doesn't matter we're going to prove this works no matter if it's economical or not,” 

illustrating the common belief among dryland farmers that summer fallow is an economic 

necessity, and soil health practices are economically detrimental.  

The soil health practitioners identified nationally recognized leaders in the soil health 

movement as sources of information, including an NRCS agent, a high-profile farmer and 

rancher from North Dakota, and several private sector soil scientists. This differs from the 

information sources of other inhabitants of the field of sustainable agriculture, and also those 

practicing conventional agriculture, who tended to receive their information from local land 

grant universities, neighboring farmers, and product dealers. Soil health practitioners were more 

likely to distrust mainstream research, while less intensified producers use it to justify their use 

of summer fallow. 

 

For years, I guess all the old-timers, my dad and all the older [farmers], they said 
that wheat-fallow is the most profitable system. And my dad read a study that I 
think K-State did that said they did the feasibility on different cropping systems 
and they came out with the same conclusion. – S4, wheat-fallow 

 
[A researcher] did 5 years of research with wheat behind peas and wheat summer 
fallow and I saw his research because one day he gave me hell about it when I 
was giving a talk and said that I shouldn't be telling guys that yields would be 
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pretty good. And I said, ‘Well… that's been our experience and that's been the 
experience of guys that I've talked to that have raised peas is that their wheat 
yields are staying pretty consistent.’  ‘Well I've got research that shows it don't’ 
and he's like, ‘my research showed that it costs you about 20 bushel wheat yield 
per acre.’ Well OK [researcher], you're a shitty farmer. I don’t know, I've heard a 
lot of guys say a lot of shit that comes out of [that research station] they just throw 
it out the window because their research and other research don't jive… And he's 
like, ‘this is God's law: you're going to lose a lot of yield if you grow peas.’ 
There's another 50 farmers around the room that will disagree with you but… so I 
don't even pay any attention to researchers anymore really.  – N4, continuous 
 
 

This is not to say that the mainstream scientific consensus stands in opposition to the 

merits of soil health practices, although mainstream researchers are less likely to make the broad 

claims of the potential impacts of these practices compared to the proponents of soil health. As 

such, soil health practitioners tend to trust each other’s knowledge and that of private scientists 

who are unified in their support of the soil health principles.  

Whether or not knowledge claims are accepted as truth ultimately depends on the degree 

of trust placed in the source of the information, and the decision about who to trust is 

inextricably linked to identity (Carolan and Bell, 2003). Many farmers in this study who practice 

continuous cropping in part construct their sense of self around their ties to the soil health 

philosophy.  The most enduring behavior change is realized when a person’s identity becomes 

intertwined with the behavior itself (e.g., “I am the type of farmer who practices continuous 

cropping”; e.g., Burton 2004). In reforming their sense of self in conjunction with transitions to 

continuous cropping, soil health practitioners also reform their networks of trust, what they 

know, and ultimately reconstitute the dominant habitus. One farmer said he didn’t trust the 

research from a local experiment station because “they're not friends of soil health” (M6, 

continuous farmer). The farmer’s mistrust of the experiment station’s research was driven by the 

perception that the researchers are biased against the soil health philosophy, and not, say, the 
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scientific rigor with which the research was conducted. This judgment of the researchers as 

opposed to the research itself illustrates the point of Carolan and Bell (2003) that “whose science 

you trust will… ultimately determine which one represents the truth.” Carolan (2006b) noted that 

the rise of sustainable agriculture as a legitimate farm management system could be attributed to 

the fact that “more people now trust sustainable agriculture and the proponents of sustainable 

agriculture to be speaking the truth.” The same can be said for the emergence of the soil health 

paradigm. In other words, by trusting soil health proponents, soil health practitioners have a 

lower threshold for what they deem to be “true enough” about the benefits of soil health 

practices. In this case, soil health practitioners reject the long-standing “truth” that summer 

fallow is a necessity in a semi-arid climate. 

 

4.4.2 Theme #2: Perceptions of Risk and Profitability 

Challenges in adopting ecologically based systems are often framed as difficulties in 

overcoming the chasm between choosing to promote human and ecosystem wellbeing vs. 

choosing to maximize profit (Morel and Léger, 2016). However, cropping system intensification 

can simultaneously improve soil health (Sherrod et al., 2005) and increase net profitability by 25-

40% compared to WF (Kaan, 2002), and thus bridge the chasm of profit/environment. But I 

found that farmers inhabiting different social fields have different definitions and perceptions of 

“profitability”, and thus the potential benefits of cropping system intensification can be 

interpreted in contrasting ways. This is less to suggest that farmers, or at least some farmers, are 

not interested in having profitable operations. The point, rather, is that profitability can mean 

wildly different things depending on the (sub-) field one is embedded in—e.g., short-term 
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economic profit maximization vs. long term social, ecological, and economic profit optimization 

(Flora and Curtiss, 2014). 

These perceptions ultimately influence the chosen degree of cropping system 

intensification. Additionally, farmers do not make decisions concerning adoption of risky 

agricultural practices based on the intent of profit maximization alone (Shapiro et al., 1992), but 

they instead integrate their perceptions of risk and profitability (Anderson and Dillon, 1992). I 

identified three distinct strategies for navigating the interactions between profitability and risk: 

risk avoidance, yield maximization, and input reduction (Figure 4.2). 

Cropping system intensification in the semi-arid High Plains involves considerable risk 

and uncertainty. It is a region with greater day-to-day and year-to-year weather variability than 

almost any other region in the country (Nolan Doesken, personal communication). For dryland 

farmers, there is considerable risk that each investment in the seeds, chemicals, and labor 

required to plant a crop will be lost to drought, hail, or fire. WF farmers avoid risk through 

infrequent crop plantings, and reduce risk of losses to drought by summer fallowing to increase 

the chances of a successful wheat crop. 

 

You could almost argue that wheat-fallow in some circumstances is more 
profitable than a more intensive cropping rotation. In this part of the state, where 
it's more arid and I have less moisture, the reality is that if you grow 2 crops out 
of 3 years, that's that much more moisture you're pulling out. So as long as the 
weather's providing enough moisture, it all works great. But if your shortfall is on 
moisture, just going out there and doing one wheat crop, that has really good 
genetics that can grow really good yield every other year, there is an argument to 
kinda stay towards that. My experience is summer crops tend to be more erratic 
on their success, because rainfall in the summer months can be erratic... And so 
statistically, guys bet on their wheat crop year in and year out because it's kind of 
a known quantity and they know what to expect. – S5, WF 
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Many WF farmers’ perceptions of profitability are inseparable from the perceived risk of 

drought. But while WF minimizes yield risk, farmers that only rely on one type of crop are 

highly vulnerable to market risk. Low wheat prices leave WF farmers with no other profitable 

options, and while they may have consistent wheat yields, their profitability is highly influenced 

by volatile markets. WF often results in the smallest amount of total crop production compared 

to the other cropping systems, and provides the least benefit to soil health, which may in fact 

increase susceptibility to yield risk in the long-term as soil health declines. But as Bowman and 

Zilberman (2013:44) note, “A risk-averse farmer… may be less likely to adopt new technologies, 

even if they are likely to reduce his susceptibility to risk or increase productivity or income over 

the long run.” Profitability simply represents the difference between monetary costs and returns, 

but it is clear that the time-scale on which farmers perceive profitability determines the strategies 

they will employ. Heavily focused on short-term risks, WF farmers choose yield consistency and 

risk avoidance over profitability or long-term risk mitigation through improvements in soil 

health.  

Additionally, thinking about profitability beyond the myopic (neoliberal) understanding 

that reduces “it” to economic capital, toward a stance recognizing all capitals—in no particular 

order: social, cultural, natural, built, financial, human, and political—illuminates the relevance of 

social networks and communities of practice upon decision-making, as various types of capital 

have different exchange rates depending on the field that one inhabits. WF farmers are willing to 

trade in natural capital in the form of soil health in order to achieve consistent (at least in the 

short term) returns of economic and other forms of capital derived from a high-yielding crop. 

The symbolic and cultural capital embodied by a large wheat crop has high value in the social 

fields of conventional agriculture, as many farmers and bankers confer the qualities of a “good 
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farmer” on those with impressive yields (Burton, 2004). Thus, yield risk embodies other risks 

that extend beyond the threat of economic losses to those influencing social and cultural status. 

Mid-intensity producers capitalize on yield gains associated with cropping system 

intensity without increasing risk to wheat yields. I call this the yield maximization strategy, 

whereby farmers rotate different crops to reduce disease and weed pressure and reduce 

market/price risks while maintaining summer fallow periods, which combine to support higher 

wheat yields. They also add summer crops that have the potential to increase total grain yields by 

75% relative to WF (Peterson and Westfall, 2004). A typical response from farmers when asked 

about their motivation for transitioning from wheat-fallow to a mid-intensity rotation was, 

“Economics. Trying to get more crops - 2 crops out of the 3 years instead of 1 crop every 2 

years” (M8, mid-intensity). Wheat yield drag, the penalty to wheat yield associated with 

moisture reductions from eliminating summer fallow, is the primary barrier impeding continuous 

cropping among yield maximizers. There is an obvious economic cost associated with lower 

wheat yields. 

 

Well my last experience with [continuous cropping] is that it cost me about 
$200,000. Just because the peas weren't yielding that great and completely 
destroyed my wheat yields and it even lessened my corn yields 2 years later. – 
M3, mid-intensity 

 
 
 

However, even among mid-intensity producers there was a diversity of reasons 

for not tolerating wheat yield drag. While some farmers’ concerns over low wheat yields 

are mainly economic, others rationalize the use of summer fallow from the standpoint of 

protecting natural capital, which indicates a division of mid-intensity farmers in both the 

conventional and sustainable agricultural fields (Figure 4.1). 
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M1, mid-intensity: I planted cover crops strips in a fallow field a couple of 
different years… and it was 18 bushels less [wheat] production where I had the 
cover crop vs. where I just no-tilled, summer fallowed it. And then the other issue 
that crept up in that situation was then the residue from that wheat crop, it was a 
lot poorer wheat crop, that residue – the hard wind broke that off. I actually ended 
up having to go apply manure to the cover crop strips to keep the topsoil from 
blowing away.  
SR: It's the opposite effect of what you wanted. 
M1: That scared us pretty bad. Our whole entire rotation depends on that dense, 
heavy wheat residue... And the best way we've found to produce that is with 
summer fallow wheat. 

 
 

While yield maximizers may strive for the simultaneous accrual of natural and economic 

capital, adherence to this productivist model is characterized by a high input, high output strategy 

(Wilson, 2001; Burton, 2004). The viability of high-input business models as a means of 

maximizing profitability is waning, as the cost of inputs like fertilizer, seeds, and herbicide has 

risen steadily since the 1960s while commodity prices have stagnated or decreased (Carolan, 

2017). These looming trends have placed a “double squeeze” on farmer profits (Van der Ploeg, 

2006). 

I found that farmers practicing continuous cropping, and especially soil health 

practitioners, have found a potential strategy to overcome the double squeeze. They utilize a low-

input model to increase profitability, demonstrated by much lower herbicide use compared to the 

other cropping systems (Chapter 3). I previously discussed how the practice of continuous 

cropping helps achieve herbicide reductions, and also noted that soil health practitioners were 

inspired by others who have managed to drastically reduce input use. But it’s largely the way 

continuous farmers perceive the costs and risks of summer fallowing that motivate transitions to 

continuous cropping systems.  
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You start penciling out this wheat-summer fallow system. You got all this money 
tied up in fertilizer and herbicides and all that, and then you spend the whole year 
killing things [weeds] so you have $50/acre tied up in your wheat crop before you 
even put it in the ground. So I was trying to eliminate that. And that's how I kinda 
found these cover crops and stuff because I was trying to eliminate that fallow 
period after millet or any of those periods where I had to spray or do something. – 
M9, continuous 

 
 

In stark contrast to WF and mid-intensity producers, who utilize summer fallow to 

mitigate yield risk, continuous farmers view summer fallow as an even riskier strategy. Summer 

fallowing can be an expensive practice, especially for no-till farmers. It takes multiple herbicide 

spray operations with costly chemicals to prevent weeds from growing during fallow periods. 

These spray operations are becoming even more expensive due to herbicide resistant weeds, 

which force farmers to use more expensive or greater quantities of herbicides. Therefore, 

summer fallow is an economic investment that improves the likelihood, but does not guarantee 

the success of the following wheat crop, as any number of natural or economic disasters can 

make a wheat crop unprofitable. One farmer said, “I can't have a fallow period, I'm just throwing 

money into a black hole with no guarantees” (M6, continuous). Additionally, summer fallow 

only stores about 25-30% of the precipitation that falls (Peterson et al., 1996), and thus 

continuous farmers perceive this to be a waste of the region’s most precious resource. 

 

There’s this concept that, well because we're dry in the arid west that [summer 
fallow] is the only way I can build soil moisture – that I can't grow a crop every 
year. But it really is a fallacy… I mean even the ARS studies they're showing a 
30% water storage efficiency. So it's like OK so like you get 10 inches of rain this 
year and you're just going to give 7 inches of it up just for the hell of it and you're 
going to try to get 3 inches in the ground. I mean there’s no way I know, that 30% 
efficiency can sound like a good idea. But in the case of wheat-fallow that's what 
they keep advocating. – S8, continuous. 
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Still, farmers practicing continuous cropping assume enormous risks to wheat yield in the 

short-term, potentially sacrificing economic capital for natural capital in the form of soil health. 

Continuous cropping simultaneously exacerbates and mitigates yield risk relative to the WF 

strategy (Dhuyvetter et al., 1996). The risk of a failed wheat crop due to drought is high because 

reserves of soil moisture are consistently low (Aiken et al., 2013). However, by leveraging crop 

diversity, continuous farmers may be less susceptible overall to sweeping losses to drought, hail, 

or fire because different crops grow at different times of the year (Di Falco and Perrings, 2005; 

Bowman and Zilberman, 2013). Additionally, price/market risk is mitigated through 

diversification. As explained by one farmer: “I don't have all my eggs in one basket. If the price 

of wheat is terrible at least you have some of the other crops to fall back on” (N2, continuous).  

Continuous producers, and those practicing sustainable agriculture in general, have a 

long-term view of profitability as they consider the potential for enhanced resilience conferred 

by soil health benefits. Continuous rotations improve soil structure relative to less intensified 

rotations (Shaver et al., 2003), which can help the soil collect and store more water from 

precipitation. Practitioners of sustainable agriculture see losses of natural capital like degraded 

soil structure directly translating to economic losses.  

 

In that instance when I seen that lake form in that [neighbor’s] field, that showed 
a water infiltration problem. It didn't rain an awful lot in that particular field, it 
just rained enough that that soil was so poor that it could not hold the rain that 
came… And I think that's how important moisture is – you have to utilize it. It 
doesn't matter what falls from the sky, it matters what ultimately infiltrates your 
field and isn't stuck in a lagoon or ponded up in the middle of your field. I've been 
trying to build soil health… to try to accept rain events that come very rapidly. It's 
hard to tell what the future will bring but I think if you can prepare yourself now 
for events down the road – so the moisture I am getting now I'm building – 
growing as many plants and as diverse plants as I can to build that soil so that if I 
do come to a very dry time hopefully I've built my soils enough and raised my 
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organic matter and still have my soils covered that I can better make it through 
that dry period because my soils will be more resilient. – M9, continuous. 

 
 

This quote demonstrates long-term vision and planning. The farmer assumes greater risk 

in the short term by continuous cropping and growing cover crops in the hopes of acquiring 

natural capital that can protect future profits. 

In addition to risk management concerns, producers identified a lack of profitable crops 

other than wheat as a barrier impeding their motivation to intensify.  

 

The big thing to me is if I could find a crop that was suited to our area to put in 
that summer fallow period that would be economical. If you could make money 
on that crop, I'd be willing to give up wheat yield in order to eliminate that fallow 
period. – M1, mid-intensity 

 
If local price of wheat is $4, that's a money loser. There's no way you can raise it 
for $4. But again, that's one of the things that is prompting us talking about doing 
more milo and less fallow. But, I don't know, the price of milo's terrible too. I 
mean it's down, it's almost $3 probably. So neither one of the prices are good. 
And either one of them is probably going to be a money loser – S4, wheat-fallow 

 
 

Mounting economic, environmental, and market challenges will further threaten the 

viability of wheat monocultures, and the mitigation of risks afforded by crop diversification will 

likely be an important adaptation strategy (Lin, 2011; Maaz et al., 2017). Additionally, with 

herbicide resistant weeds and macroeconomic forces driving up the cost of inputs, there is now a 

stronger economic case than ever for an input reduction strategy, and I may see greater 

abandonment of the traditional productivist model in the pursuit of profitability. One farmer 

observed the consequences for those who do not adapt to changing environmental or economic 

conditions: 
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When it got so dry in the 2000's, everybody thought they should keep summer 
fallowing… You know it's funny. All the guys my age that used to farm… they're 
all gone. They're all working for the railroad or they're crop advisers at Simplot. – 
N4, continuous 

 

 

4.4.3 Theme #3: Crop Insurance 

The high risks inherent in dryland agriculture make federal crop insurance an influential 

factor in agricultural decision-making in the High Plains. In a shift in focus from income support 

to risk management, the 2014 Farm Bill ended direct payments and increased subsidies for crop 

insurance programs. Studies based on older farm bills suggest that crop insurance payments may 

have an effect on the profitability rankings of different dryland cropping systems (Nail et al., 

2007). While the impact of more recent policy changes has yet to be quantified, farmers 

interviewed in this study generally viewed crop insurance policies as a barrier to cropping system 

intensification. 

The clearest policy impediment to continuous cropping is that it is not an insurable 

practice in every county in the High Plains (Figure 3.4). In other words, farmers in counties not 

designated for continuous cropping by the Risk Management Agency (RMA) are unable to 

insure wheat, usually their most profitable crop, unless there is a year-long summer fallow period 

preceding wheat planting. The only exception is that a farmer can apply for an individualized 

crop insurance plan if they can produce at least a 5-year yield history under continuous cropping, 

which requires producing crops for at least 5 years with no insurance. Many mid-intensity 

producers cited this prohibitive policy as a reason for not even considering continuous cropping, 

as they were unwilling to take risks with uninsurable wheat. One farmer said that if continuous 

cropping was an insurable practice in his county, “we would look into it… but that's the thing, 

there's no way you can really do it if it's not insurable because it's a really huge gamble” (M7, 
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mid-intensity). Additionally, even in counties that are insurable for continuous cropping, farmers 

often have to pay significantly higher premiums for continuously cropped vs. summer fallowed 

wheat. Higher premiums for lower guarantees are presumably justified because of the greater 

assumed wheat yield risk associated with continuous cropping. However, not all farmers 

practicing continuous cropping agree that it is riskier than summer fallowing. 

 

We still to this day are being penalized in paying double premium because I don't 
fallow before our wheat. Even though we've had 20 years of success, they won't 
change the policy. I couldn't insure it for quite a while and they eventually 
allowed us to insure it but it was, they would cut your APH in half, your 
guarantee in half and double your premium when I first did that. So I just dropped 
my insurance for 5 years. I came back with actual production history and proved 
my yields so they couldn't cut it in half. And then I took insurance again, but I'm 
still paying a higher premium. – N2, continuous 

 
 

Despite these impediments, some farmers still practice continuous cropping throughout 

the full extent of the High Plains, either by paying higher premiums or by foregoing crop 

insurance completely, and relying on diversification to mitigate risk. Successful cropping system 

intensification requires the diversification of crop rotations, where wheat is rotated with one or 

more different kinds of crops. But many dryland farmers have never grown crops other than 

wheat, and thus they haven’t established proven yield histories for those crops. If a farmer hasn’t 

established a proven yield history on a given crop, they are insured at a transitional yield, or T-

yield, based on the county average yield for that crop. Many farmers said that their county’s T-

yields are so low that the economic risk of growing a new crop is too great, even if they were to 

collect crop insurance. 
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The other barrier to switching to milo in a rotation is most farmers that are doing 
wheat-fallow, if they want to grow milo, they have to take the T-yield, or whatever 
the county average is. And most of those T-yields are set at below economic values 
and so it's a really big risk. I saw this in my dad's operation, is he could go out there 
and plant a thousand acres of milo but because he had very little history, he had no 
crop insurance to back it up. So if he's going to his banker and saying, ‘I'm going to 
go plant a thousand acres of milo because CSU extension says I'm going to make 
more money,’ the banker says, ‘well what if it fails?’ ‘Well I guess I'll lose this many 
thousands of dollars’ and so the banker's like, ‘well why would you do that? Stick 
with wheat, you've got the insurance to back it up.’ And so crop insurance, I saw that 
at my dad's, we never were really able to make that transition to a more intensive milo 
rotation because crop insurance was probably the final straw that just could not, the 
risk was just too big. – S5, WF 

 
 

It can take several years to establish a proven yield history that is higher than the county T-

yield. The risks incurred in the transition years can be difficult to justify to a banker or a 

landlord, especially for young farmers or those with little fluid capital. Low T-yields make it 

difficult to try new crops, which is an impediment to cropping system intensification. 

 

4.5 Suggested Strategies for Change 

Based on insights gleaned from the above three emergent themes, how might we leverage 

this new understanding to motivate and enable farmers to innovate? I offer the following 

strategies specific to the case of facilitating cropping system intensification, but also with 

potential implications for sustainable agriculture more broadly.  

 

4.5.1 Strategy #1: Lessons from the Soil Health Movement 

A lack of successful examples of continuous cropping in the High Plains constrains 

motivations to intensify. In effectively communicating stories of successful intensification and 

diversification, and establishing networks of trust with scientists that are open to these practices, 
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the soil health movement has catalyzed a transformative departure from the traditional practice 

of dryland farming. The findings support others who have shown that farmers are highly 

influenced by their peers who have used an agricultural practice with success (Warner, 2008). 

Demonstrating successful continuous cropping in the High Plains may contribute to greater use 

of this system throughout the region. Targeted outreach, specifically by “recruiting” highly 

networked non-intensified farmers or product dealers to adopt the soil health philosophy, may 

also be an effective means of normalizing soil health practices. Additionally, as mainstream 

researchers tend to have more cultural capital with farmers outside of the soil health field, it will 

be important to keep an open mind about what constitutes a viable practice by considering the 

successes that some farmers have achieved with a soil health approach. Likewise, there is a need 

for more mainstream research to test the claims made by soil health proponents. Establishing 

mainstream scientific support for the soil health practices and principles that hold up under 

empirical scientific inquiry could serve to reshape the dominant social field by associating 

conventional networks of trust with knowledge claims about soil health. 

 

4.5.2 Strategy #2: Profitability 

The soil health movement catalyzed transitions to continuous cropping within a group of 

producers that take a long-term view of profitability and place a high value on natural capital. 

But soil health practices like continuous cropping may not be appropriate for all dryland farmers 

unless new innovations can reduce the risk and enhance the short-term profitability of these 

emerging systems. Breeding efforts and market development for important regional rotational 

crops like millet, grain sorghum (called milo), or field peas could increase the short-term 

profitability of intensified cropping systems, and consequently catalyze more transitions to 

 105 



intensified and diversified systems, as has been observed in Canada, Australia, and most recently 

in the inland Pacific Northwest (Maaz et al., 2017). In lieu of strong markets for traditional 

commodities, several soil health practitioners have begun integrating livestock and grazed cover 

crops (or forages) into their crop rotations to generate another income stream. They also grow 

non-traditional crops for this region, which allows them to enter alternative markets. Studying 

and communicating the potential for livestock integration and alternative crops to enhance 

profitability may be another way to facilitate intensification, as some farmers said they would be 

willing to assume added risks if they could make more money.  

Additionally, there is a need to better understand and communicate the potential for 

intensified cropping systems to enhance profitability by enabling input reductions. Linking 

abstract concepts like soil health to highly visible outcomes like herbicide payments could serve 

to make the effects of soil health practices more tangible and help to overcome epistemic barriers 

to sustainable agriculture (Carolan, 2006a). This would require a shift in the way mainstream 

research is conducted and interpreted, from defining the success of an agronomic practice from a 

short-term productivist view to a longer-term view of profitability and multi-capital optimization. 

As input reduction is likely to become more advantageous over time relative to yield 

maximization, the benefits of this profitability strategy are increasingly persuasive.  

 

4.5.3 Strategy #3: Crop Insurance 

The barriers imposed by crop insurance are linked to the policies that focus on specific 

commodities or practices. In 2015, RMA began offering whole-farm revenue protection in every 

county in every state in the country, signaling a shift toward diversity-friendly insurance policies 

that enable more freedom in crop management. However, I observed that whole-farm insurance 
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itself might be impeded by barriers to adoption. Only one farmer interviewed in this study 

utilized this new policy (S8, continuous), whereas everyone else had crop-specific revenue 

protection policies. While potential barriers to whole-farm insurance adoption did not emerge as 

a topic of inquiry in the bulk of the interviews, one farmer cited over-complexity and privacy 

issues as a hindrance to adoption (N2, continuous).  

Changes in crop insurance policy alone may not be enough to foster agricultural 

innovation. Crop insurance provides an important safety net, but it is inherently risk averse and 

unwelcoming to new practices due to requirements for established yield and income histories. 

Establishing and supporting other financial incentives, such as conservation payments and 

similar programs, may be a more desirable route for encouraging innovation. 

 

4.6 Conclusion 

Moving beyond simple economic rationales to explain a growing wave of cropping 

system intensification, I provide evidence for a social dynamic shaping the degree to which 

farmers are willing to intensify. For almost a century, the dominant social body of dryland 

agriculture ascribed to an imaginary that embedded the use of summer fallow in dryland 

agricultural practice. The soil health movement served to socially construct a new imaginary that 

rejects this traditional notion, and gave rise to a new social field of soil health practitioners with 

different values, perceptions, and knowledges than other dryland farmers. In contrast to the 

motivations of soil health practitioners to reduce inputs and build natural capital, many other 

farmers have transitioned to mid-intensity cropping systems for productivist motivations, citing 

evidence from mainstream research that replacing summer fallow with crops increases total food 

production. Still, the perceived risks associated with cropping system intensification, reinforced 
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by crop insurance policies squared in the traditional imaginary, prevent many dryland farmers 

from moving beyond a wheat-fallow rotation.  

To facilitate innovation in sustainable agriculture generally, and cropping system 

intensification specifically, I suggest strategies like “recruiting” highly networked individuals to 

the soil health philosophy, or changing the mindset of mainstream agronomic researchers to be 

more inclusive of long-term viewpoints and profitability strategies beyond yield maximization, 

which would help to reshape the conventional social fields through existing networks of trust. 

Additionally, I suggest strategies such as maximizing short-term profitability of intensified 

cropping systems through market development, which would leverage our understanding of 

farmer perceptions in their existing social positions to facilitate intensification. A combination of 

these two types of strategies may help fit sustainable agricultural practices into existing 

imaginaries, and form new imaginaries that drive sustainable innovation.  
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Table 4.1. Characteristics of farmers interviewed. 
N: Northern zone; M: Middle zone; S: Southern zone; WF: Wheat-fallow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Farmer ID Cropping System Intensity 
Acres 

Farmed 
N1 Continuous 4600 
N2 Continuous 16000 
N3 WF, Mid-intensity 9000 
N4 Continuous 3500 
N5 WF 2000 
N6 WF 2000 
N7 WF, Mid-intensity 3400 
M1 Mid-intensity 12000 
M2 Mid-intensity 10000 
M3 Mid-intensity 20000 
M4 WF 9000 
M5 Continuous 4000 
M6 Continuous 5500 
M7 WF, Mid-intensity 7000 
M8 Mid-intensity 3600 
M9 Continuous 1600 
M10 Continuous 1980 
S1 Mid-intensity 9900 
S2 Mid-intensity 21000 
S3 Continuous 4000 
S4 WF 47500 
S5 WF 10000 
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Figure 4.1. Heuristic model overlaying Carolan’s (2005) fields with distinct sub fields of practice 
among dryland farmers in the High Plains. 
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Figure 4.2. Three different profitability strategies and their comparative relationships to grain 
production and yield risk. 
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Figure 4.3. Allowable crop insurance practices by county as designated by the Risk Management 
Agency. 
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CHAPTER 5: LANDSCAPE-SCALE CROPPING TRANSFORMATION IN THE HIGH 

PLAINS: ECONOMIC AND ENVIRONMENTAL IMPLICATIONS 

 

5.1 Introduction 

A global revolution in semi-arid cropping systems is underway, with implications for the 

environment and economies of semi-arid regions (Smith and Young, 2000; Maaz et al., 2017). 

Semi-arid regions constitute 20% of Earth’s land surface and are home to nearly 1 billion people 

(UNSO/UNDP, 1997). These large and growing populations have placed enormous pressure on 

dryland (non-irrigated) farms of semi-arid regions and the natural resources on which they 

depend. As much as 40% of agricultural land globally suffers from severe soil degradation 

(Koohafkan and Stewart, 2008), and dryland soils are especially vulnerable due to water 

limitations that constrain crop productivity and exacerbate soil erosion (Bot et al., 2000). Crop 

production and soil health are further constrained in semi-arid cropping systems by a year long 

period called summer fallow, where no crops are grown and weeds are controlled, commonly 

practiced in dryland agriculture in many regions. While summer fallow reduces risk of crop 

failure by accumulating precipitation in the soil, decades of crop rotations with frequent summer 

fallow have led to degraded soils and management systems dependent on large and increasing 

amounts of chemical inputs (Peterson et al., 1998; Derksen et al., 2002; Chapter 3). However, 

over the last several decades, technological advancements have enabled farmers to intensify 

cropping systems by replacing summer fallow with a crop, which has the potential to reverse 

these detrimental economic and environmental trends.  

Typically, agricultural intensification is supported by a greater use of chemical inputs. 

For example, the observed doubling in global agricultural production from the 1960s to the 
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1990s coincided with almost a 7-fold increase in nitrogen (N) inputs and a 3-fold increase in 

pesticide use, with cascading effects for the environment and human health (Tilman, 1999; et al., 

2001; Galloway et al., 2003; Gilliom et al., 2006). In contrast, semi-arid cropping intensification 

can increase crop production and residues returned to the soil while reducing chemical inputs 

(Chapter 3). As a result, reducing summer fallow frequency can simultaneously contribute to 

desirable environmental and economic outcomes (Kaan et al., 2002; Shaver et al., 2002; Sherrod 

et al., 2003; Peterson and Westfall, 2004; Chapter 3). However, the extent of recent 

intensification patterns, and the potential impacts of broader adoption, have not been 

characterized at regional and landscape scales.  

The transformation in semi-arid cropping systems has been documented in several 

regions around the world, including Australia, Canada, and the Northern Great Plains (Smith and 

Young, 2000; 2003; Hansen et al., 2012; Maaz et al., 2017), but the extent of the revolution has 

not been quantified in the High Plains of the US – an important grain growing region in the 

Western Great Plains including the states of Colorado, Kansas, and Nebraska. Since the Dust 

Bowl in the 1930s, most dryland farmers in the High Plains have grown a rotation of winter 

wheat and summer fallow to mitigate the risk of farming in a highly variable and dry climate. 

However, many no-till farmers are transitioning from wheat-fallow to a mid-intensity rotation 

(e.g., wheat-corn-fallow), and some have even eliminated summer fallow completely through 

diverse crop rotations, a practice called continuous cropping. Continuous cropping likely 

provides a greater environmental and economic benefit relative to mid-intensity and wheat-

fallow (Chapter 3), but previous estimates of intensification have only been derived from 

changes in individual crop or fallow acreages, and thus we lack an estimate of cropping systems-

level changes. For example, Hansen et al. (2012) report a reduction in summer fallow acres by 
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70% in the US Northern Great Plains since 1990, and Maaz et al. (2017) report similar 

reductions in several Canadian provinces, suggesting that millions of hectares are being 

intensified. A better understanding of the extent and degree of cropping system intensification 

could provide policymakers with information about the economic and environmental 

implications of these transformations, and place these shifts into the broader context of the global 

cropping revolution. 

Agricultural communities across the United States, including those in the High Plains, are 

facing a crisis of profitability. From 2013 to 2017, net farm income declined 50%, and most 

farmers today cannot survive without off-farm income and government subsidies (Carolan, 2016; 

ERS, 2017). Over the past several decades, farmers have increasingly paid more for inputs like 

equipment and chemicals, while commodity prices have remained stagnant or declined, a 

phenomenon called the “double squeeze” (van der Ploeg, 2006). Given the pressure on profits, 

summer fallow creates an economic burden due to the high cost of herbicides required to manage 

weeds in no-till systems, and gross incomes that are constrained by an entire year without crop 

production. However, total grain production can be enhanced by 60-75% in intensified systems 

relative to wheat-fallow (Peterson et al., 2004), and substantial herbicide reductions can be 

achieved through increased plant competition with weeds and the ability to rotate different 

herbicides in intensified systems (Derksen et al., 2002; Chapter 3). Additionally, I found that, 

despite achieving greater crop production, continuous crop farmers in the High Plains apply 

similar amounts of N fertilizer as traditional wheat-fallow farmers, leading to 80% greater net 

income (Chapter 3). Thus, the intensification of cropping systems may provide an opportunity to 

act on both sides of the double squeeze – to reduce inputs while enhancing crop production. 
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Due to the large amounts of land dedicated to dryland crop production, even 

proportionately small shifts in cropping patterns can translate to significant environmental 

impacts (Lal, 2004). Scaling field-level estimates of C sequestration to the landscape level can 

inform US and international climate policy aimed at increasing terrestrial C offsets (Conant et 

al., 2011). Parton et al. (2015) estimated that the Great Plains region (which encompasses the 

High Plains) only accounts for 5% of US agricultural greenhouse gas emissions, but also found 

that this region has the potential to become a net C sink through the adoption of sustainable 

agricultural technologies, particularly through reduced tillage. Intensified cropping systems 

increase soil organic carbon (SOC) beyond the effects of reducing tillage through greater crop-

derived C input to soil (Sherrod et al., 2003; Chapter 2). The analysis by Parton et al. (2015), 

however, did not include the C sequestration benefits of cropping system intensification, and 

thus may have underestimated the region’s potential to mitigate climate change.  

I conducted a spatial analysis of cropping patterns in the High Plains from 2008-2016 to 

answer three questions: 1) To what extent is cropping system intensity increasing in the High 

Plains? 2) Which crops are replacing summer fallow and where? 3) What are the implications of 

observed intensification in the High Plains for C sequestration, grain yield, herbicide use, and net 

farm incomes? Assessing cropping system intensification patterns and potential implications in 

the High Plains will generate insights that will help us understand the broader semi-arid cropping 

revolution occurring around the world. 
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5.2 Methods 

5.2.1 Study area 

The study area consists of the main semi-arid dryland cropping counties in the High 

Plains states of Colorado, Kansas, and Nebraska. Counties were selected if a majority of the area 

receives less than <500 mm average annual precipitation, estimated using rasterized data from 

PRISM (2017). Average annual precipitation from 1980-2010 for the study area is 432 mm 

(PRISM, 2017). The study years included a representative range of wetter and drier than normal 

years. Annual precipitation in the study period (2008-2016) ranged from 266 mm in 2012 to 605 

mm in 2015 (PRISM, 2017). All selected counties had at least 2000 acres in dryland wheat 

production as of 2016. 

 

5.2.2 Data 

All crop acreage and crop rotation analysis was performed using the Croplands Data 

Layer (CDL) provided by the National Agricultural Statistics Service (NASS). The CDL is a 

geo-referenced raster data layer using a combination of satellite imagery and extensive 

agricultural ground truthing (NASS, 2017). The CDL contains agricultural land cover data for 

the contiguous United States, and has been used to estimate crop acreage, crop rotations, and 

rotational diversity over time (Stern et al., 2012; Plourde et al., 2013; Yang et al., 2013; Sahajpal 

et al., 2014). CDL maps for Colorado, Kansas, and Nebraska for the years 2008 to 2016 were 

analyzed using arcGIS. CDLs from 2008 and 2009 were generated at 56 m resolution, and were 

reprocessed to a 30 m resolution to match the resolution of the other years.  

The CDL has low accuracy in classifying non-agricultural land-uses (NASS, 2017), and 

thus the 2011 National Land Cover Database (NLCD) was used to mask-out non-agricultural 
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classes and grasslands, as others have done to isolate croplands specifically (e.g., Plourde et al., 

2013). Spatial irrigation data was used to mask-out irrigated acreage in Colorado using data from 

2010 (and 2015 and 2016 only for the Republican River Basin) available from Colorado 

Decision Support Systems through the Colorado Department of Natural Resources (CDWR, 

2017). Nebraska drylands were isolated by masking irrigated lands using data from 2005 

available from the Nebraska Department of Natural Resources (NDNR, 2017), and similarly for 

Kansas using data centered around 2007 provided by the Kansas Applied Remote Sensing 

Program (Peterson et al., 2011). 

 

5.2.3 Crop acreage 

Crop pixel counts were converted to acres then hectares. I compared CDL estimates of 

crop acreage to Farm Service Agency (FSA) data from 2011 to 2016 (FSA, 2017). CDL data 

typically underestimate acres of crops relative to FSA or NASS data (Johnson, 2013), but 

accuracies in this study were high for major crops like corn (97%), winter wheat (92%), and 

sorghum (84%). Accuracies were lower for minor crops like millet (71%) and peas (42%), 

suggesting that there is much more land in production for these crops than estimated here (FSA, 

2017). 

While I removed much of the grasslands from the dataset using the NLCD, I found that 

many fallow acres were incorrectly classified as grasslands or open space in 2008, but 

classification improved gradually through subsequent years. Others have encountered similar 

confusions between grasslands and croplands (e.g., Reitsma et al., 2016), necessitating a means 

of correctly identifying these classes. I obtained more accurate assessments of fallow land (92% 

accuracy compared to FSA data) by classifying any fallow, grassland, or open space classes as 
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fallow only if they were rotated with other crops. I calculated the effective number of crop 

species (ENCS) for each year from 2008 to 2016 as an index of crop species diversity (Gotelli 

and Chao, 2013) as described in Aguilar et al. (2015). 

 

5.2.4 Crop rotations 

Cropping system intensities were assessed in 3-year sequences, and new rasters were 

generated denoting the 3-year cropping system intensity for each pixel (Figure 5.2). Crops were 

divided into three classes: winter wheat, fallow (including grassland and open space classes 

rotated with crops as previously discussed), and other crops. Crop-fallow was designated as all 

sequences with 2 occurrences of fallow or a wheat-fallow-wheat sequence, mid-intensity was 

designated as all sequences with 1 occurrence of fallow, and continuous was designated as all 

sequences with 0 occurrences of fallow. Sequences with 3 occurrences of fallow were classified 

as grassland or open space, and removed from subsequent analysis. The rasters of cropping 

system intensity were compared for each 3-year rotation window to produce maps of changes in 

cropping system intensity through time (Figure 5.2). Acreage for each crop in each year was 

calculated from the number of pixels in the CDL for each crop class (Figure 5.3). Crop footprint 

maps were developed for each 3-year rotation window by including pixels if they grew a 

particular crop at any point in the 3-year period (Figure 5.4). 

 

5.2.5 C sequestration, herbicide use, grain production, and net income analyses 

Concurrent studies measured the differences in SOC, annualized grain yield, and input 

use between the different cropping system intensities in the High Plains across the geographic 

extent of the study area examined here (Chapters 2 and 3). Data used for the spatial and regional 
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analysis in this study include least-squared means and standard errors generated by statistical 

models of cropping system intensity and significant soil, management, and climate covariates 

(Table 5.1). Sampling procedures for each metric are described in Chapters 2 and 3. I obtained 

regional assessments of C sequestration, herbicide use, grain production, and net income by 

multiplying the least-squared means and standard errors for each cropping system by the number 

of hectares in each cropping system for each year. 

 

5.3 Results 

Substantial levels of cropping system intensification occurred from 2008 to 2016 as 

summer fallow was replaced by alternative (non-wheat) crops. This regional transformation in 

cropping systems is likely associated with increases in soil C sequestration and crop production, 

and decreases in herbicide use, contributing to higher net farm incomes. 

 

5.3.1 Changes in cropland 

Dry cropland in the study area increased from 3.9 to 4.0 million hectares from 2008 to 

2016. Crop-fallow was the dominant dryland cropping system in 2008, consisting of 2.1 million 

hectares, or 53% of dry cropland (Figure 5.1). By 2016, however, crop-fallow only represented 

42% of dry cropland, with mid-intensity and continuous rotations constituting 43% and 15% of 

dry cropland, respectively. Over the 9-year period, land in mid-intensity rotations increased by 

0.3 million hectares, and land in continuous rotations increased by 0.2 million hectares, while 

land in crop-fallow decreased by 0.4 million hectares (Figure 5.1, Figure 5.2). The extra 0.1 

million hectares in intensified rotations likely came from land taken out of the Conservation 

Reserve Program. Transitions to continuous rotations were most pronounced in northeastern 
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Colorado and southwestern Nebraska, whereas transitions to mid-intensity rotations were most 

pronounced in western Kansas (Figure 5.2). 

Reductions in summer fallow from 1.8 to 1.3 million hectares (48% to 33% of dry 

cropland) from 2008 to 2016 were largely matched by increases in alternative (non-wheat) crops 

(Figure 5.3a). Four crops (corn, sorghum, millet, and field peas) increased by nearly 0.4 million 

hectares, from 17% of dry cropland in 2008 to 26% by 2016 (Figure 5.3), while increases in 

winter wheat remained proportional to overall increases in dry cropland. Corn and sorghum 

made up the vast majority of alternative crop acreage, although pea and millet acreage also 

increased substantially over the 9-year period (Figure 5.3b). Surprisingly, sunflower acreage 

decreased by about a third. There was a great deal of interannual variability in crop acreage. 

Crop prices were surprisingly unrelated to annual trends in crop acreage (data not shown). I 

suspect that large drops in acreage, as observed in corn and sorghum in 2014, are mostly related 

to abnormally wet conditions that prevented planting (PRISM, 2017). 

Alternative crops were adopted in distinct sub-regions within the High Plains (Figure 

5.4). Growth in sorghum production largely occurred in western Kansas and southeastern 

Colorado, and replaced much of the corn production in these regions. Corn was largely adopted 

further north (Figure 5.4). Millet adoption mostly occurred in mid and northeastern Colorado and 

the southern Nebraska panhandle, and peas were adopted almost exclusively in northeastern 

Colorado and Nebraska (Figure 5.4). I found a slight increase in ENCS from 2008 to 2014, 

indicating increasing diversity in dryland cropping systems (Figure 5.5). 
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5.3.2 Implications of cropping system intensification 

Cropping intensity corresponds to decreases in herbicide use. I found that continuously 

cropped farmers applied roughly 50%, 80%, and 60% less glyphosate, 2,4-D, and dicamba than 

wheat-fallow farmers, respectively, across this region (Chapter 3). Scaling up these estimates to 

the landscape level suggests modest reductions in the use of three common herbicides 

(glyphosate, 2,4-D, and dicamba) were achieved from 2008 to 2016, despite increases in overall 

cropland. Annual glyphosate use decreased by 70 Mg acid equivalent (AE) (1%) (Figure 5.6a), 

2,4-D use decreased by 150 Mg AE (6%) (Figure 5.6b), and dicamba use fell 7 Mg AE (1%) 

from 2008 to 2016 (Figure 5.6c). 

Using farmer-reported yield histories from 2010-2015, I found that mid-intensity and 

continuous rotations had 46% and 60% greater annualized grain production relative to wheat-

fallow, respectively, after accounting for the effects of fertilizer use and climate (as described in 

Chapter 3). Expanding these estimates to the landscape scale suggests larger gains in crop 

production were realized than can be accounted for by increases in dry cropped acres alone 

(Figure 5.6d). Production increases associated with land conversion to cropland were 0.17 Tg 

grain (3%) from 2008 to 2016. Including the annualized yield differences between cropping 

system intensities suggests an increase of 0.53 Tg grain production (9%) from 2008 to 2016 

(Figure 5.6d). 

Comparisons of partial enterprise budgets from 2010 to 2014 (Chapter 3) demonstrate the 

potential implications of cropping system intensification for regional economies. I found that 

annualized net incomes were 70% and 80% higher in mid-intensity and continuous crop rotations 

compared to wheat-fallow, respectively (Chapter 3). Scaling these results to the landscape level 

suggests that that annual net operating incomes in dryland agriculture increased by $80 million 
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(10%) from 2008 to 2016 (Figure 5.6e). For comparison, total net farm cash income in the study 

area, including irrigated land and livestock, was $2.6 billion in 2012 according to NASS census 

data (NASS, 2017). 

I concurrently assessed soil organic carbon (SOC) stocks to 10 cm on 96 dryland no-till 

fields across the full extent of the study area (Chapter 2). After accounting for potential 

evapotranspiration (PET) and soil clay content as covariates, I found that no-till mid-intensity 

rotations stored on average 0.02 Mg C/ha/yr and no-till continuous rotations stored 0.08 Mg 

C/ha/yr relative to no-till wheat-fallow (Chapter 2). Scaling these results to the landscape-level 

trends in cropping system intensity suggests that annual soil C sequestration increased 38% from 

2008 to 2016, with levels of annual C sequestration from dryland agriculture increasing from 63 

Gg C/yr to 88 Gg C/yr, or 0.32 MMTCO2e, by 2016 (Figure 5.6f). 

We predicted theoretical maximum grain production (Figure 5.6d), and net income gains 

(Figure 5.6e), maximum C sequestration (Figure 5.6f), and theoretical minimum herbicide usage 

(Figure 5.6a, 5.6b, 5.6c) by calculating these metrics based on a scenario of 100% adoption of 

no-till, continuous cropping practices. Theoretical minimum glyphosate usage (at 100% 

continuous adoption) is 3760 Mg AE/yr, or about 60% of the current level (Figure 5.7a). 

Minimum 2,4-D usage is 640 AE/yr, or 28% of current levels (Figure 5.7b). Minimum dicamba 

usage is 240 Mg AE/yr, less than half of current levels (Figure 5.7c). Theoretical maximum grain 

production is 8.23 Tg grain/yr (Figure 5.7e), or about 24% of current levels. The theoretical 

maximum net operating income based on 100% continuous no-till suggests that over $1 

billion/yr could be generated before fixed costs, representing a 26% increase over today’s 

operating incomes. If all dryland crop acreage transitioned to continuous rotations, annual C 
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sequestration would surpass 310 Gg C/yr relative to a baseline of 100% no-till wheat-fallow, or 

223 Gg C/yr above current levels (Fig. 5.6f). 

 

5.4 Discussion 

Our results suggest there are high rates of cropping system intensification and 

diversification, even in the volatile and dry climate of the High Plains. Notably, since 2008, the 

dominant dryland cropping system by land area changed from wheat-fallow to mid-intensity 

rotations. This crossover is a historic landmark for agriculture in this region, as it almost 

certainly represents the first widespread transformation in dryland cropping systems in the High 

Plains since the Dust Bowl. Additionally, as no-till is usually a prerequisite for cropping system 

intensification (Peterson et al., 1996), increasing intensity likely reflects increasing no-till 

adoption, which suggests that no-till adoption in the High Plains is higher than previously 

reported. There are no recent studies of no-till adoption in the High Plains, but estimates from 

2004 suggested about 20% of total cultivated land in this region was under no-till management 

(CTIC, 2011; Hansen et al., 2012). Based on our estimates of cropping system intensification, it 

is now likely that over half of dryland acres in the High Plains are under no-till or reduced-till 

management relative to conventionally tilled wheat-fallow.  

Trends towards increasing cropping system intensity likely reflect numerous shifts that 

are encouraging or enabling farmers to intensify. First, as previously mentioned, high no-till 

adoption rates are likely enabling intensification for many dryland farmers. Technological 

diffusion often follows an “S” curve, with slow initial adoption largely due to lack of information 

about the technology, followed by exponential growth as innovators and early adopters generate 

and spread information about emerging technologies (Rogers, 2003). Since no-till and 
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intensification in the High Plains began, largely in the 1980s, farmers and researchers have 

learned a great deal about these innovations and their agronomic and economic benefits. Long-

term cropping systems experiments have been critical in generating information about 

intensification, demonstrating the potential to build soil structure and SOC (Shaver et al., 2002; 

Sherrod et al., 2003), maximize precipitation use efficiency leading to greater crop production 

(Peterson et al., 1996; Farahani et al., 1998), and generate more income (Kaan et al., 2002). 

However, no-till is becoming more difficult due to the increasing pervasiveness of herbicide 

resistant weeds, which require greater amounts and more expensive herbicides to control 

(Young, 2006). Intensified and diversified crop rotations offer a potential solution to increasing 

herbicide costs through ecologically-based weed management that reduces reliance on herbicides 

(Anderson, 2004). 

Second, transitions to continuous cropping are linked to the emerging soil health 

movement, which has been effective in disseminating stories of intensified and diversified 

dryland farmers who have been able to increase yields while using fewer chemical inputs 

(Chapter 4). Coupled with greater understanding of the soil health benefits of intensification, the 

opportunity to capitalize on input reduction as a profitability maximization strategy likely 

motivated and enabled many producers to continuous crop (Carlisle, 2016; Chapter 4). Still, 

continuous rotations only represent 15% of the dry cropped area, and are increasing at a slower 

rate than mid-intensity cropping systems (Figure 5.1). Continuous cropping is still considered 

high risk by many farmers, highlighting the need for more research and outreach related to 

continuous cropping (Nielsen, unpublished data). 

Third, genetic improvements in alternative crops have created more economically viable 

choices for dryland farmers in the High Plains. For example, new drought-resistant corn varieties 
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have improved corn yields and survival in the High Plains, enabling its use as a staple crop, 

though it remains one of the more risky crops in dryland rotations under variable weather 

conditions. Breeding research and alternative crop development has been found to be a key 

driver of intensification in other regions, such as the development of canola in Canada and 

Australia (Maaz et al., 2017). Lastly, improved access to markets and local infrastructure for 

processing is likely a key driver of increases in sorghum and pea adoption in particular. New pea 

processing facilities in western Nebraska likely drove the observed exponential increases in pea 

adoption in the region (Strepanovik, 2016). These large sub-regional increases in pea adoption, 

as well as sorghum and millet, are likely underlying the trend toward increasing diversity in the 

broader High Plains region. Still, there are many barriers – social, economic, political, and 

environmental – that are likely to impede intensification to some degree (Carlisle, 2016; Chapter 

4). To assess the extent to which farmers are able to overcome these barriers, the simple 

procedure developed in this study for measuring cropping system intensity can track the progress 

of the transformations moving forward by annually tracking cropping patterns. This analysis can 

be applied to quantify the extent of the cropping system revolution in other regions as well, 

although it requires high-resolution spatial crop data that is not available in every country.  

Cropping system intensification represents a win-win strategy for environment and 

economy, and these results suggest that there are significant regional economic benefits of the 

widespread transformation. Improving the economic outcome of dryland agriculture is 

increasingly critical as water resources for irrigation in the High Plains are dwindling while 

competition for water from growing urban areas is increasing (Dennehy et al., 2002), and thus 

the region is likely to see more frequent conversions from irrigated to dryland agriculture. 

Economic estimates suggest trends could result in several billion dollars in lost revenue in the 
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Texas High Plains (Guerrero et al., 2010; Yates et al., 2013). Therefore, boosting dryland 

economic prospects will be critical to maintaining economic stability in the region. I estimated 

that the effect of intensification alone (comparing net operating income at 100% wheat-fallow vs. 

100% continuous crop adoption) represents roughly 23% of the study region’s entire net farm 

income, and thus cropping system intensification may be a key strategy for protecting the High 

Plains agricultural economy in the face of growing water scarcity. The economic benefits of 

intensification are associated with greater grain production and lower herbicide use, both of 

which have societal benefits beyond economics. 

Trends toward increasing crop rotational diversity in the High Plains run counter to 

increasing monoculture in the broader Central US region (Plourde et al., 2013). Increasing crop 

diversity associated with intensification also provides some degree of economic stability. 

Diversification helps stabilize year-to-year incomes, as it mitigates profit risk, which includes 

yield risk and price risk for inputs and outputs (Di Falco and Perrings, 2005; Bowman and 

Zilberman, 2013). The ENCS of about 3 suggests that 3 crops (wheat, corn, and sorghum) 

dominate the majority of dryland crop production in the study region (Aguilar et al., 2015), but 

an increase of 0.4 from 2008 to 2016 means minor crops like millet and peas are increasingly 

playing important roles in High Plains agriculture.  

The environmental benefits of changes in cropping patterns over the 9-year study period 

were modest, but theoretical maximum levels of C sequestration suggest large potential impacts 

should intensification continue. While there are no emissions reduction goals in Kansas or 

Nebraska, an executive order in Colorado set statewide emissions reduction goals of 26% by 

2025 relative to 2005 levels (Hickenlooper, 2017). Colorado agriculture produced 9 million 

metric tons of CO2 greenhouse gas equivalents (MMTCO2e), or about 7% of the state’s 
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emissions in 2005 (Arnold et al., 2014). Our estimates of C sequestration due to intensification 

alone as of 2016 are roughly 0.32 MMTCO2e/yr relative to a baseline of no-till wheat-fallow. 

These C sequestration rates contribute over 3.5% emissions reductions in the agricultural sector 

of Colorado. However, the theoretical C sequestration rate at 100% continuous crop represent 

emissions reductions is 0.82 MMTCO2e/yr above today’s levels, which is almost a tenth of the 

greenhouse gas emissions in the agricultural sector of Colorado. While it is highly unlikely that 

this level of adoption would be achieved by 2025, and considering these estimates are also 

derived from land including counties in Kansas and Nebraska, these results demonstrate the 

potential for agricultural soils to contribute towards emissions reduction goals. Furthermore, soil 

C sequestration not only acts in the service of climate change mitigation, but also provides 

agroecosystem services associated with soil organic matter. Soil functions like water capture and 

storage, erosion control, and nutrient supply contribute to agricultural resilience and have the 

potential to improve farm economies (Wall et al., 2012; Robertson et al., 2014). 

These are likely conservative estimates of actual C sequestration for several reasons. 

First, estimates of SOC stocks reported in Chapter 2 are likely underestimating actual SOC 

stocks, considering bulk density measurements were lower than previously reported from long-

term experimental sites. For example, average bulk density measurements used from long-term 

experimental sites ranged from 0.91-1.11 g/cm2 while Sherrod et al. (2005) estimated the same 

fields to be 1.24-1.59 g/cm2. Second, calculating C sequestration relative to a baseline of 100% 

no-till wheat-fallow does not account for C accrual associated with no-till. Ogle et al. (2005) and 

Parton et al. (2015) attribute C sequestration gains of 0.1 Mg C/ha/yr associated with no-till 

adoption in dry temperate agroecosystems independent of cropping patterns. As no-till adoption 

usually occurs in conjunction with cropping system intensification, actual C sequestration 
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associated with trends in cropping system intensification are likely much higher. Thus, 100% 

adoption of continuous no-till cropping systems would lead to C sequestration rates of over 822 

Gg C/yr, or 3 MMTCO2e/yr, relative to a baseline of tilled wheat-fallow. These SOC gains are 

also only for the top 10 cm, although accrual likely occurs at least to 20 cm depth, further 

suggesting that these may be underestimates of C sequestration. 

 

5.4.1 Conclusion 

Recent evidence suggests that semi-arid dryland cropping systems around the world are 

intensifying. However, this evidence was based on estimates of changes in annual crop and 

fallow acreages, and thus we lacked an understanding of the degree of system-level 

intensification (mid-intensity vs. continuous) and the implications for the environment and 

economy. I conducted a spatial analysis of multi-year cropping patterns to quantify cropping 

system intensification in the High Plains in order to understand the rate at which dryland farmers 

are intensifying and where they are intensifying, and to estimate the potential environmental and 

economic outcomes. I found that the High Plains, despite having an extremely dry and volatile 

climate that likely constrains intensification, saw a profound shift in the dominant cropping 

system within the last few years; intensified cropping systems now make up the majority of dry 

croplands in the region. I estimated that this transformation has the potential to contribute to 

greenhouse gas mitigation targets, increase food production, and generate millions of dollars for 

farmers in the High Plains. As satellite data becomes more widely available, this analysis could 

be extended to other semi-arid regions around the world to provide policymakers with critical 

information about the implications of the semi-arid cropping revolution. 
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Table 5.1. Field-scale values used to scale up implications of cropping system intensity to the 
landscape level. Data are model-generated least-squared means + SE. PET=Potential 
evapotranspiration. AE=Acid Equivalent 

 

 

 

 

 

 

 

  Wheat-fallow Mid-intensity Continuous Covariates 
Glyphosate (kg AE/ha/yr) 1.79+0.28 1.42+0.15 0.93+0.25 - 
2,4-D (kg AE/ha/yr) 0.82+0.10 0.47+0.05 0.15+0.08 pH 
Dicamba (kg AE/ha/yr) 0.17+0.03 0.14+0.02 0.05+0.03 - 
Annualized Grain Yield 
(Mg/ha/yr) 1.27+0.11 1.85+0.11 2.03+0.20 

N fertilizer use, 
PET 

Annualized Net Income 
($/ha/yr) 147+36 250+24 264+39 PET 

SOC stock (Mg/ha) 10.65+0.41 11.10+0.38 12.30+0.42 
PET, % Clay, 
Slope 
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Figure 5.1. Patterns in dryland cropping system intensity in 3-year rotation windows from 2008 
to 2016 in the High Plains region of Colorado, Kansas, and Nebraska. 
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Figure 5.2. Maps of dryland cropping system intensity derived from 3-year rotation windows 
starting in 2008 (left panel) and 2014 (middle panel), and the change in cropping system 
intensity between the two rotation windows (right panel) in the High Plains region of Colorado, 
Kansas, and Nebraska. 
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Figure 5.3. Dryland area growing various crops or under summer fallow management from 2008 
to 2016 in the High Plains region of Colorado, Kansas, and Nebraska. Data derived from the 
NASS Croplands Data Layer. 
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Figure 5.4. Change in footprints of alternative dryland crops from 2008-2010 to 2014-2016 in the 
High Plains region of Colorado, Kansas, and Nebraska. Data represent net changes in cropland 
followed by the % change in parentheses. 
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Figure 5.5. Dryland crop diversity, calculated as the Effective Number of Crop Species, from 
2008 to 2016 in the High Plains region of Colorado, Kansas, and Nebraska. Data derived from 
the NASS Croplands Data Layer. 
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Figure 5.6. Landscape-scale estimates of a) Glyphosate use, b) 2,4-D use, c) Dicamba use, d) Annual Grain Production, e) Annual Net 
Income, and f) C sequestration in the High Plains region of Colorado, Kansas, and Nebraska for each 3-year rotation window from 
2008 to 2016. Data denote means (solid lines) + standard error (dashed lines), and green solid lines represent the theoretical maximum 
or minimum level for each metric based on 100% continuous crop adoption. 
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CHAPTER 6: SUMMARY 

 

This dissertation documented the soil health and management implications of cropping 

system intensification across a wide range of environmental and management variability in the 

High Plains, and scaled up these results to estimate the potential environmental and economic 

impacts at the landscape level. I hypothesized that SOC would increase with cropping system 

intensity directly through greater C inputs, and indirectly through greater fungal biomass and 

aggregation, and that these effects would be robust across a range of environmental and 

management contexts. Results from comparisons of SOC between cropping systems supported 

this hypothesis, and suggest that continuous cropping has the potential to provide gains in SOC 

and improved soil structure that will help offset C emissions and enhance the resilience of 

dryland agroecosystems. Continuous rotations had 17% and 12% higher SOC concentrations 

than wheat-fallow in 0-10 cm and 0-20 cm depths, respectively. Aggregate stability in 

continuous rotations was about twice that in wheat-fallow rotations, and fungal biomass was 

three times greater in continuous rotations than wheat-fallow, but was not significantly different 

from mid-intensity rotations. Using structural equation modeling, I observed that continuous 

cropping, potential evapotranspiration, % clay content, and fungal biomass together explained 

50% of the variability in SOC, and that SOC appears to enhance aggregation directly and as 

mediated through increases in fungal biomass. Overall, the model suggests that cropping system 

intensity increases SOC both directly, through greater C inputs to soil, and indirectly, by 

increasing fungal biomass and aggregation. Further research should examine what pools are 

accumulating the added C in intensified systems, and determine the origin and availability of 

accrued C. Is the accumulated C the result of microbial byproducts that have tightly bound to 
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mineral surfaces (Cotrufo et al., 2013), or is it protected as particulate organic matter in 

aggregates? Addressing these questions would help explain the fate of C and generate insights 

for managing these pools. 

I hypothesized that continuous cropping systems would also have an enhanced capacity 

to provide plant-available nutrients relative to wheat-fallow, enabling continuous farmers to 

achieve greater crop production with the same or fewer inputs, leading to increased profitability. 

The results supported this hypothesis. Total N and PMN were 12% and 30% greater in 

continuous rotations relative to wheat-fallow, respectively, suggesting that internal N cycling 

was stimulated in continuous systems. Additionally, mid-intensity and continuous rotations had 

roughly 2 and 3 times more AMF colonization than wheat-fallow, respectively, and AMF 

colonization was positively correlated with plant P concentration. Others have explained greater 

winter wheat P concentrations in continuous rotations relative to wheat-fallow through greater P 

recycling from plant residues (Bowman and Halvorson, 1997), but my findings suggest that 

AMF are also a critical component of greater P uptake in continuous cropping systems. These 

cropping intensity effects on nutrient cycling corresponded with 22 and 34 kg/ha less N fertilizer 

applied per crop in continuous cropping relative to wheat-fallow and mid-intensity rotations, 

respectively, despite the same or greater total crop production. Additionally, continuous farmers 

used less than half the total herbicide as wheat-fallow farmers. Continuous rotations net profits 

were an estimated $47/ha/yr (80%) more than wheat-fallow, and mid-intensity rotations net 

profits were $42/ha/yr (70%) more than wheat-fallow. These results suggest that cropping 

system intensification represents an opportunity to achieve more grain production while 

managing weeds and nutrients with fewer external inputs, leading to greater profitability and 

better environmental outcomes. Further research should examine which preceding crops foster 
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the most AMF colonization in wheat, or enable the greatest reductions in herbicide and fertilizer 

use. Additionally, the contribution of the microbial community to higher PMN in continuous 

systems is unclear. Do higher PMN levels simply suggest greater N accumulation in soil, or is 

this observation related to a more active microbial community that is better able to cycle N? 

In examining the motivations underlying farmers’ decisions about whether or not to 

intensify, I build on Carolan’s (2005) application of Bourdieusian social fields to agriculture to 

find several overlapping fields within Carolan’s more general fields of sustainable and 

conventional agriculture, which are reflected in different degrees of intensification. I identified 

three main themes that help explain the occurrence of summer fallow on the landscape. First, the 

emergence of the soil health movement connected a group of farmers to a paradigm that is 

incongruous with the practice of summer fallow, motivating them to transition to continuous 

cropping systems. Networks of farmers and experts that ascribe to the soil health philosophy 

have generated a new truth that summer fallow is no longer a necessity in the High Plains. 

Second, I identified three distinct strategies for navigating the complex interactions between 

profitability and risk inherent in the decision about cropping system intensification: risk 

avoidance, yield maximization, and input reduction. Wheat-fallow farmers avoid yield risk 

through frequent summer fallow by avoiding crop growth during unpredictable summer climatic 

conditions, and by maintaining adequate levels of soil moisture. Mid-intensity farmers maximize 

crop yields by incorporating a summer crop and applying large amounts of fertilizer, while also 

maintaining summer fallow to maximize subsequent wheat yields. Continuous farmers absorb a 

29% wheat yield reduction by eliminating summer fallow, but they make up for this economic 

loss by reducing inputs and factoring in the economic gain of growing an additional crop. Lastly, 

crop insurance presents numerous barriers to cropping system intensification that prevent 
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continuous cropping in some counties. I recommend strategies for change to increase cropping 

system intensification, including conducting soil health research at mainstream institutions, and 

supporting breeding and marketing efforts to improve the profitability of alternative crops. 

Future research should examine the effects of the recently introduced whole-farm crop insurance 

program on the willingness of farmers to adopt sustainable agricultural practices.  

To assess the progression of the semi-arid cropping revolution in the High Plains, and to 

scale up the economic and environmental implications of the field-level analyses, I conducted a 

spatial analysis using satellite data to examine changes in cropping patterns over time and space 

at the landscape scale. I use these estimates to scale up my previous field-level research in this 

region on soil C, herbicide use, yields, and profitability. Over the 9-year study period, the 

historically dominant wheat-fallow system was replaced by intensified rotations as the dominant 

systems by land area. This shift coincided with a 0.5 million-hectare decline in summer fallow 

and a concurrent increase in alternative (non-wheat) crops, resulting in higher crop diversity 

across the region. I estimate that, from 2008 to 2016, these patterns resulted in a 0.53 Tg (9%) 

increase in annual grain production, an $80 million (10%) increase in annual net farm operating 

income, slight reductions in herbicide use, and an 88 Gg C/yr increase in C sequestration that 

corresponds to greenhouse gas reductions of 0.32 million metric tons of CO2 equivalents per year 

(MMTCO2e/yr). I project each of these implications to a scenario of 100% intensification and 

estimate that, relative to 2016 levels, herbicide use would be reduced by more than half, grain 

production would increase by 25%, net operating income would increase by $223 million (26%), 

and greenhouse gases would be reduced by an additional 0.8 MMTCO2e/yr. Further analyses 

should incorporate estimates of no-till adoption to obtain more accurate estimates of C 

sequestration associated with the cropping revolution, as no-till is usually a prerequisite for 
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intensification (Peterson et al., 1996) and sequesters substantial amounts of C (Parton et al., 

2015). 

In summary, these results suggest that cropping system intensification, in conjunction 

with no-till, represents a win-win management strategy for the farmers and the environment. 

Greater crop production in continuous rotations helps alleviate the C limitations that have 

hindered soil health in simplified systems, and enables the regeneration of key soil functions. 

Greater crop diversity and improved soil health associated with intensification reduces dryland 

farmers’ dependency on external inputs for the management of weeds and nutrients, and allows 

them to realize greater crop production and profitability. At the same time, soil C sequestration 

and reduced inputs help mitigate climate change while limiting the loss of harmful chemicals to 

the environment. Future research should examine the potential for maximizing crop diversity 

within continuous crop rotations to further enhance these benefits. 
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APPENDIX 1: SOCIOLOGICAL INTERVIEW QUESTIONNAIRE 

 

1) Tell me about your farming operation. 

2) How did you become involved in agriculture? 

3) How did the [transition] come about? How did you get [here] from wheat-fallow (or 

whatever came before)?  

4) Was anything particularly daunting or challenging? What were the barriers (or risks) to 

transitioning to a new type of farming? How did you deal with that? What lessons came 

out of the experience? 

5) What resources were helpful/available to you during the transition?  

6) Do you consider the transition complete? Do you approach your farm differently now? 

How do you think about the work that you do?  

7) What role, if any, does crop insurance play in your decisions about what crops to plant? 

In what other ways does crop insurance affect the way you manage your farm? 

8) Does continuous cropping affect the crop insurance premium for wheat? If so, by what 

percent? 

9) Who do you talk to now? When and where do you talk with others about farming? Are 

there groups that form based on different views about farming? Are there only certain 

people you can talk with about farming? Do you feel free to say what you want to say? 

Do some people judge what you do?  

10)  Do you think it’s important for other growers to intensify and diversify rotations? If yes, 

are you involved in teaching/mentoring others? 
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11)  Do you open your farm for demonstrations? Are these formal or neighborly visits (or 

both)? How does it work? Do you visit other farms? 

12)  What is your history of involvement with federal government programs? What, if any, 

programs do you currently participate in? Do you have any ideas for policy changes at 

the level of USDA, NRCS, etc. that would incentivize [transitioning]? What would those 

incentives look like? 

14) How do you feel the transition affects your short-term profitability? Long-term? Do you 

foresee any challenges in the future that may affect the profitability of your operation? 

Do you think you will make any changes to deal with those challenges? Have you noticed 

any other impacts of the transition? (Probe: on farm) 

15)  What advice would you offer to other farmers considering [a transition]?  

16)  Is there anything else you would like to say? Are there things I might do differently 

when I talk with farmers about these issues? 

17)  Is there anyone else you recommend I talk with for this project? 
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