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ABSTRACT OF DISSERTATION 

STATE-SPACE MODELS FO R STREAM NETW ORKS

The natural branching th a t occurs in a stream  network, in which two upstream  

reaches merge to create a new downstream reach, generates a tree structure. Fur­

thermore, because of the natural flow of water in a stream  network, characteristics 

of a downstream reach may depend on characteristics of upstream  reaches. Since the 

flow of water from reach to reach provides a natural time-like ordering throughout 

the stream  network, we propose a state-space model to describe the spatial depen­

dence in this tree-like structure with ordering based on flow. This state-space model 

includes a state  vector th a t evolves from reach to  reach as a function of upstream  

reaches, and a measurement vector th a t depends on the state and allows for general 

spatial-tem poral dependence among measurements on a reach.

Current m ethods of estimation and prediction on a stream  network are based 

on Universal Kriging, where the covariance function is defined in term s of distance 

between measurement locations. However, because of the branching structure, the 

class of valid covariance functions becomes more restrictive than  the general class 

available for spatially correlated data.

Application of a state-space model over other tree structures has been studied, 

bu t in a very different context. Areas such as multiscale resolution and Gaussian 

directed trees are similar topologically, but model assumptions for these networks 

are not always applicable to stream  networks.

Developing a state-space formulation perm its the use of the well known Kalman 

recursions. Variations of the Kalman Filter and Smoother are derived for the tree- 

structured state-space model, which allows recursive estimation of unobserved states
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and prediction of missing observations on the network, as well as com putation of 

the Gaussian likelihood, even when the da ta  are incomplete. To reduce the compu­

tational burden th a t may be associated with optim ization of this exact likelihood, a 

version of the expectation-maximization (EM) algorithm is presented th a t uses the 

Kalman smoother to fill in missing values in the E-step, and maximizes the Gaussian 

likelihood for the completed dataset in the M-step.

An example of a state-space model with param eters th a t depend on a surrogate 

for flow is presented. Simulation results for the exact likelihood, an EM algorithm, 

and a simplified EM algorithm are obtained. Maximum likelihood estimates and 

Monte Carlo standard errors for this two param eter estimation problem are pre­

sented.

Several forms of dependence for discrete processes on a stream  network are 

considered, such as network analogues of the autoregressive-moving average model 

and stochastic trend models. Network parallels for first and second differences in 

time-series are defined, which allow for definition of a spline smoother on a stream  

network through a special case of a local linear trend model.

The m ethods developed here are applied to da ta  available from M aryland’s De­

partm ent of Environmental Protection. A Moving Average is fit to a measure of 

instream cover in fish habita t da ta  in a study th a t determines th a t autocorrelation 

can be removed by using appropriate spatial covariates. A smoothing spline is ob­

tained to  describe water chemistry d a ta  on this same network. Maximum Likelihood 

estimators are found for all unknown param eters.

iv
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The proposed models describe a discrete process, and can be used as a building 

block for continuous processes on a network. A daptation of this state-space model 

and Kalman prediction equations to  allow for more complicated forms of spatial and 

perhaps tem poral dependence is a potential area of future research. O ther possi­

ble directions for future research are non-Gaussian and non-linear error structures, 

model selection, and properties of estimators.

William J. Coar 
Departm ent of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Spring 2007
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Chapter 1

IN T R O D U C T IO N

Because of the natural flow of water in a stream  network, characteristics of a 

downstream reach may depend on characteristics of upstream  reaches, where a reach 

is defined as a section of stream  between two confluences. Since the flow of water 

from reach to  reach provides a natural time-like ordering throughout the stream  

network, we propose a state-space model to  describe the spatial dependence in this 

tree-like structure with ordering based on flow. We use the inherent ordering based 

on flow as a tool in modeling dependence in a m anner general enough to encompass 

a large class of stochastic processes which possess different forms of dependence.

S tandard m ethods th a t define spatial correlation as a function of distance be­

tween two points have been considered for estimation and prediction on a stream  

network using geostatistical models (Peterson et al., 2006; Ver Hoef et al., 2006; 

Cressie et al., 2006). However, the tree structure of a stream  network reduces 

the class of valid covariance functions (Peterson et al., 2006; Ver Hoef et al., 2006). 

There have also been state-space models developed for da ta  on tree structures similar 

to  stream  networks th a t require both a forwards and backwards representation for 

prediction (Chou et al., 1994; Huang and Cressie, 2001; Tzeng et al., 2005). How­

ever, the natural evolution described by the corresponding forwards model produces 

inherent attributes th a t are not always applicable to  a stream  network. Specifically, 

given downstream information, upstream  reaches would be considered independent 

if we were to consider this backwards model. The state-space formulation in this
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dissertation fits within the spatial statistical structure of lattice d a ta  (discrete spa­

tial support) rather than  geostatistical da ta  (continuous spatial support). It allows 

a stochastic process to  evolve with flow, overcomes the need for both a forwards and 

backwards representation, and appropriately allows for conditional dependence of 

upstream  reaches given downstream information.

1.1 P rev iou s W ork

Modeling dependence within a stream  network has been done primarily through 

a function of distance between locations, as is typically done with geostatistical 

data, where observations “closer” in space tend to  be more similar. Dependence 

is usually seen through a semi-variogram (Cressie, 1993, p.58). Monestiez et al. 

(2005) and Dent and Grimm (1999) directly fitted semi-variograms, bu t the results 

were dependent on bin size selected and did not guarantee variance constraints. 

O ther geostatistical m ethods using for predicting along stream  networks have been 

developed by Ver Hoef et al. (2006) and Cressie et al. (2006). Ver Hoef et al. (2006) 

and Cressie et al. (2006) develop methods to  model dependence as a function of 

stream  distance and Euclidean distance, and use kriging as a tool for prediction at 

unsampled sites and block kriging to  estim ate reach totals. Peterson et al. (2006) 

provide a review of studies exploring patterns of spatial autocorrelation in stream  

chemistry as functions of distance.

Dent and Grimm (1999) investigated spatial trends on a steam  using one di­

mensional transects. Monestiez et al. (2005) used conditional probabilities defined 

by a directed tree to  define spatial dependence on a stream  network in term s of a 

curvilinear distance along the river. In these cases, weighted least squares was used 

to  directly model the semi-variogram.

There are numerous autocovariance models commonly used to  describe depen­

dence as a function of distance between two points (see Cressie, 1993) th a t can be
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considered for a stream  network. More recently, stream  distance has been considered 

as an alternative to  straight line distance. Stream distance is the distance over which 

water must flow from one point to another. Tools such as Geographic Information 

Systems, commonly referred to  as GIS, have made fairly accurate estimation of these 

distances possible. Ver Hoef et al. (2006) show th a t with proper weighting, many of 

the usual spatial models such as an exponential form of dependence can be used for 

stream  networks, whereas others such as the spherical covariance model are invalid 

for the tree structure of a stream  network (Ver Hoef et al., 2006; Peterson et al., 

2006; Peterson and Urquhart, 2006).

Ver Hoef et al. (2006) develop a class of valid models th a t incorporate flow 

and stream  distance by using spatial moving averages. These m ethods integrate a 

moving average function against a white noise process. The models incorporate flow 

by running the moving average function upstream, downstream, or both. The effect 

of different distance measures was investigated in Peterson et al. (2006). Once the 

distances are known and a covariance model selected, the final covariance m atrix is 

easily constructed. This then allows kriging on a stream  network once estimation 

of unknown param eters are obtained.

A weighted asymmetric hydrologic distance measure was also considered 

(Ver Hoef et al., 2006; Peterson et al., 2006; Peterson and Urquhart, 2006) in which 

locations are considered independent if water did not flow from one eventually to the 

other. A spatial weight m atrix was obtained, where individual weights were defined 

by accumulating upstream  catchment area if sites were flow connected, whereas the 

weight was set to  zero otherwise.

A ttem pts have been made to  incorporate both  stream  distance as well as 

straight-line distance. These m ethods were discussed at the Fourth Annual Con­

ference in Statistics for Aquatic Resources - Monitoring, Modeling and Manage­

ment (Oregon State University, Corvalis, OR, 2005). Cressie et al. (2006) devel­

oped kriging m ethods based on river network covariance functions developed by
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u ,(k )

D ow nstream

Figure 1.1: A simple example of a stream  network consisting of seven reaches. The 
parents of reach k  are denoted by U\{k) and U2(k).

Ver Hoef et al. (2006) for predicting change in dissolved oxygen content on a river 

network with sparse observation stations. Cressie et al. (2006) modeled dependence 

as a function of Euclidean distance as well as stream  distance, and used ordinary 

kriging and a constrained kriging for prediction.

As an alternative approach to  predicting a response observed in a stream  net­

work, the downstream flow and merging of streams depicted in Figures 1.1, 2.2, 

and 4.14 suggests the use of a state-space model to describe within-network de­

pendence. Given a state-space form, commonly used tools such as the Kalman 

Filter (Kalman, 1960) could be used for estimation and prediction. State-space 

representations for other tree structures have already been developed (Chou et al., 

1994; Basseville et al., 1992) in multiscale resolution problems and by Huang (1997), 

Huang and Cressie (2001) and Huang et al. (2002) in graphical models. These ideas 

were further enhanced for spatial prediction from large datasets involving change-of- 

resolution (Tzeng et al., 2005; Johannesson and Cressie, 2004; Johannesson et al., 

2007).

The stochastic processes studied in these cases evolve over a tree from a single 

node to  many term inal nodes, referred to  as a forwards model. The state-space rep­

resentations developed in these other tree structures closely resemble those used in
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time series. Child nodes are created independently from parent nodes on these trees, 

so a state-space model only needs to evolve from one parent to  each child individu­

ally, thus eliminating any obvious sign of a tree structure other than  notation. Be­

cause of the parent-to-child evolution on these tree structures, a recursion th a t first 

moves up and then down the tree is needed to allow for measurement on the tree at 

one point to contribute to  the estimate at another point on the same level of the tree. 

Thus, a backwards representation is required to move back up through the tree. Ap­

propriate backwards models have developed (Chou et al., 1994; Huang and Cressie, 

2001) based on on the work of Verghese and Kailath (1979), where the backwards 

model formulation was based on forwards model assumptions.

The backwards, or reverse, representation of a forward state-space formulation 

over a dyadic tree was used by Chou et al. (1994) in multiscale recursive estimation, 

such as reconstruction of noise degraded signals. Observations in multiscale repre­

sentations have a natural time-like variable, scale. Processing signals a t multiple 

scales involves pyramid-like structures, where each level in the pyramid corresponds 

to a particular scale and each node at a given scale is connected to  both a parent 

node at the next coarser scale and several descendants a t the next finer scale. The 

usual scale-to-scale resolution refinement by a factor of two leads directly to  a binary 

tree structure.

A form of the Kalman Recursions was developed for such a stochastic process 

over a tree in Chou et al. (1994). Formulation of a fine-to-coarse prediction was 

developed from an appropriate backwards representation, whereas the coarse-to- 

fine smoothing operation was derived from the forward model. Under the assumed 

structure of the error terms in the forward model, the immediate descendants of 

a parent node are conditionally independent, given information from the parent. 

This is similar in form to the conditional independence assumed by Monestiez et al. 

(2005). Since each descendant is created independently, each can be used to obtain
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a predicted value for the parent. Although the filtering algorithm involves the usual 

update step, the simultaneous predictions from both (or several) descendants of 

a parent are “fused” together to obtain a single prediction based on finer scale 

information. Conditional expectation and the joint distribution of the sta te  of the 

parent with all the observed descendent information show the appropriate weighting 

to be a function of prediction error variances of each individual prediction from the 

child nodes. Details can be found in Chou et al. (1994, Appendix A).

The down-tree smoother proposed by Chou et al. (1994) smooths only one de­

scendant a t a time. The smoothed estimate of a node involves modifying the filtered 

estim ate based on finer scale information with th a t from more coarse scales through 

the smoothed estim ate at a nodes parents. The derivations are similar to  fixed- 

interval smoothing in an ordinary tim e series. Details can be found in Chou et al. 

(1994, Appendix B).

The tree-structured models studied by Chou et al. (1994), a subclass of acyclic 

graphical models, can lead to blocky artifacts in predicted values in the same lin­

eage. These blocks occur because of predictions a t neighboring nodes come from 

different parents. Because of this, Huang (1997) proposed more general multiscale 

graphical models in term s of scale recursive dynamics on acyclic directed graphs, a 

generalization of one dimensional Markov chains where the only direct influence on 

a node is from its parents. A Bayesian approach to  the derivation of a Kalman Filter 

for acyclic directed graph was presented, and further adapted to  (Gaussian) undi­

rected graphical models where the conditional distribution of a node conditioned on 

all other nodes depends only on its neighbors.

The Gaussian density and Bayes’ theorem are used to derive the conditional dis­

tributions needed in both filtering and smoothing (Huang, 1997; Huang and Cressie, 

2001). For the acyclic directed graph, “up-tree” filtering step a t a particular node 

involves conditioning on the information from its children. This derivation relies
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heavily on the assum ption th a t conditioned on a parent node, the child nodes of 

th a t parent are independent. Moreover, this assumption also leads to  simultane­

ous predictions for each parent node from each child. Using Bayes’ theorem in this 

Gaussian case, the derived conditional expectation appropriately weights each in­

dividual prediction, as did the fusion of estimates presented by Chou et al. (1994). 

For the “down-tree” smoothing, the smoothed estim ate is derived for each child 

individually, using the smoothed information from the parent node and the filtered 

information from the “up-tree” recursions.

This work has led to a variety of applications involving spatial prediction 

(Huang and Cressie, 2001; Huang et al., 2002; Tzeng et al., 2005) and change-of- 

resolution (Johannesson and Cressie, 2004; Johannesson et al., 2007). However, 

model assumptions pertaining to the parent-to-child evolution in these processes 

prevent further consideration.

1.2 R ela tion  to  S team  N etw orks

The geostatistical models have proven to  be useful tools in prediction on stream  

networks. However, it has been shown th a t selection of an appropriate distance mea­

sure to  correspond with ecological processes must be considered (Peterson et al., 

2006). It has also been shown th a t the class of valid autocovariance functions on 

a stream  network depends on the distance measure selected (Ver Hoef et al., 2006; 

Peterson et al., 2006; Peterson and Urquhart, 2006). After exploring the spatial de­

pendencies associated with several water chemistry responses, Peterson et al. (2006) 

indicate th a t there is no clear answer of which to  use, and suggest straight line 

distance because of simplicity since the models considered had similar predictive 

capabilities.

The state-space model we propose is not designed for geostatistical spatial data, 

bu t for lattice data. We adapt the class of Autoregressive Moving Average Models
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as well as other stochastic trend models to  obtain a large class of models for different 

forms of dependencies. In these models a process evolves from many initial nodes, or 

states, to  a single term inal node. The state-space formulation will model dependence 

with respect to  geometry. An advantage of the state-space form comes from adapted 

Kalman Recursions, which eliminates the need for construction of spatial weight 

matrices and inversion of large covariance matrices associated with larger networks.

The m ethods developed for tree structures such as multiscale resolution and 

directed trees may have application in the stream  network setting, where the “down­

stream ” process is thought to be analogous to the backwards direction in a “coarse- 

to-fine” stochastic process. Although the ideas provide insight to  m ethods for stream  

networks, model assumptions for multiscale resolution and directed trees prevent 

further consideration for stream  networks. The backwards recursions on a binary 

tree s ta rt with the term inal nodes. For each set of two term inal nodes, updated 

predictions are used individually to make a prediction of the state  a t the parent 

node. These estimates are then merged with the necessary weighting to  avoid dou­

ble counting, a consequence of the conditional independence of the descendants. 

In order to utilize these recursions, it is necessary to  assume th a t given the down­

stream  reach, the two upstream  reaches are independent, an assum ption th a t is 

unreasonable in many applications for stream  networks.

The concepts of stationarity  defined by Chou et al. (1994) are different than  

than  those we consider in the stream  network, where up-tree and down-tree tran ­

sitions are used to  define covariance. The work of Ver Hoef et al. (2006) considers 

a form of dependence similar in idea to th a t of Chou et al. (1994). We do not 

consider this type of dependence in this dissertation, where we model reaches as 

independent if water does not flow from one (eventually) to another. This idea 

is consistent with the asymmetric models considered by Ver Hoef et al. (2006) and 

Peterson et al. (2006).
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1.3 O utline o f D isserta tion

In this dissertation, we adapt tools utilized in tim e series to  the tree structure of 

a stream  network. The outline is as follows. In Chapter 2 we define the state-space 

model and derive the Kalman recursions for the stream  network. We further derive 

an alternative form of the recursions for cases when model assumptions allow for 

infinite variances associated with states of first order reaches.

We define the Gaussian Likelihood for da ta  on a stream  network in Chapter 

3. For cases when model assumptions allow, we derive a concentrated likelihood, 

where a closed form expression is obtained for the initial mean vector associated 

with the states where water begins to flow. Resubstitution leads to  a function of 

fewer param eters. W hen missing data  are present, we provide an alternative state- 

space form for which the exact likelihood can be constructed. Furthermore, we 

define an Expectation-M aximization algorithm as an optimization tool for param eter 

estimation when the exact likelihood is complex.

In Chapter 4, we introduce the class of Autoregressive Moving Average (ARMA) 

Models for the tree structure of a stream  network. As in the case of a time series 

ARMA model, we use the roots of the autoregressive polynomials to obtain param ­

eter constraints ensuring second-order stationarity  and expressions for the autoco­

variance function. We also provide a construction for the sample autocovariance 

and autocorrelation functions. We show a state-space form for these ARMA mod­

els, and provide a simulation example in which several different low order models 

with varying forms of dependence are considered.

We define stochastic trend models in Chapter 5. We provide network analogues 

of the Random Walk plus Noise (RW +N) and Local Linear Trend (LLT) models. 

We also use a special case of the LLT to define a discrete smoothing spline for the 

stream  network.
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We conclude with a brief summarization of our findings, and provide direction 

for future research.
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Chapter 2

ST A T E -SPA C E  R E P R E S E N T A T IO N  FO R  A  ST R E A M  N E T W O R K

We consider a state-space representation and variation of a Kalman Filter and 

Kalman Smoother to  assist in explaining the dependence within a stream  network. 

We begin by ignoring distance between points therefore measuring dependence with 

respect to  geometry rather than  linear distance. There is no inherent tim e compo­

nent in this model, as it is replaced by flow. To describe flow, we adopt the ordering 

developed by Strahler (1957), which is a simplified version of the commonly used 

indexing for river topologies originally introduced by Horton (1945) in the studies of 

river networks. Although this indexing itself possesses a m ultitude of m athem atical 

properties, its use here is primarily to assist in describing flow through the network.

2.1 N o ta tio n

Due to the inconsistencies in hydrologic literature, we will use the following def­

initions for reach and segment. A reach is defined by a section of stream  between two 

confluences, whereas a stream  segment will be defined by a series of flow-connected 

reaches with a common order. A ttem pting to  completely specify every reach in a 

network is notationally cumbersome. The identification of a particular reach of in­

terest will be labeled by k. For convenience, generic subscripts Ui and u2 will denote 

parents of a reference reach k. If specific reference to  the parent reaches are needed 

or not obvious, the parents will be denoted by U\(k)  and u 2(k).  Any reference j  < k  

implies th a t j  is upstream  of fc, or th a t k  is a future generation of j .  Likewise, j  > k  

implies th a t j  is downstream  of k.
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Figure 2.1: Example of a stream  network identifing Strahler order of each reach. 
The order of the downstream reach is a function of the orders of the two immediate 
upstream  reaches. The order increases by one if the two upstream  orders are the 
same; otherwise, it is the maximum of the two upstream  orders.

The indexing used to  define the order, or rank, of a reach will be th a t developed 

by Strahler (1957) to describe progression through the network. By definition, the 

stream  beds for initial drainages where water begins to  flow are considered first 

order reaches. A recursive relationship then defines the order of any other reach k 

created by two parent sources, rq and u2. The order of reach k, r(k),  is defined by 

the orders i , j  of the two parent reaches: if i /  j  then r(k) = m ax(i, j ) ;  otherwise 

r ( k ) =  i +  1. See also Figure 2.1. A higher order reach is any reach downstream of 

a first order reach, where r{k) >  1. A stream  segment of order k  is a sequence of kth 

order reaches connected by water flow starting when two k — 1 order reaches merge 

and ending when a k th order reach merges with another reach of order k  or higher. 

Defined in this manner, stream  segments are disjoint in th a t no two segments can 

share a common reach.

Matrices are generally identified by capital letters with subscripts, with the 

exception being cases where more than  two indices are needed for m atrix decom­

position. Vectors will be displayed in bold with specific reference as well. For 

example, X(/c) is a vector with components associated with reach k, and 0 U1 is a 

m atrix associated with one of the parents of reach k.
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An additional summ ary table of notation adopted for this dissertation can be 

found in Appendix I.

2.2 T h e A u tocovarian ce Function

The notion of flow connected is adopted when describing within-network de­

pendence. If water from one reach (eventually) flows into another, then those 

two reaches are said to  be flow connected. Reaches th a t are not flow connected 

are considered independent. This assumption has been made for other models of 

dependence within a stream  network (Ver Hoef et al., 2006; Peterson et al., 2006; 

Peterson and Urquhart, 2006). Observations close in proximity will often be corre­

lated, and the independence assumption would not hold in this case. However, if 

measurements are corrected for appropriate spatial covariates, this dependence can 

be removed, and the assum ption is reasonable.

Modeling dependence throughout a stream  network is done through an autoco­

variance function. For a network with a finite number of reaches, the autocovariance 

function is used to define the elements in the covariance matrix. Define /C to  be 

an index set used to identify any reach in the network, with possibly an infinite 

number of reaches. Although we refer to  a particular reach by location, k is actually 

a one-dimensional indexing label. Then without loss in generality, we can define K. 

to  be Z.

D efin ition  2 .2 .1  If {X( k ) ,  k  e  /C} is a process such th a t Var (X(k) )  < oo for every 

k  <E /C, then  the autocovariance function 7 x ( -, •) of {X(A;)} is defined by

7 x (k,k' )  = Cav ( X( k ) , X( k ' ) )

= E [ ( X ( k ) ~  E X { k ) ) { X { k ' ) ~  EX(k ' ) ) } ,  k, k'  e  /C.

where 7 x{k , k ' )  =  0  when k and k' are not flow connected.
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We now define (weak) stationarity, implying th a t the first and second moments of 

the process are independent of location k.

D efin ition  2 .2 .2  A process {X( k ) ,  k  € 1C} over index set K is said to  be stationary 

if

(i) E\ X{k ) \ 2 < oo

(ii) E X ( k )  = m  for a l i k e  K

{7 x(/r) if k and k! are flow connected 

0  otherwise

where

h =  \k — k'\ =  the number of confluences between k and k ' .

We will often refer to  h as “lag” between two reaches.

R em ark 2.2.1 The above definitions are analogous to those in time series defined 

by Brockwell and Davis (1991, Section 1.3) and elsewhere, where the indexing is 

no longer over time, bu t an arbitrary  set of locations in space. Furthermore, as 

the covariance of a stationary time series is only a function of lag and independent 

of time t, stationarity  on a stream  network implies th a t dependence is strictly a 

function of flow connectivity and number of intermediate confluences.

As defined, this modeling on a stream  network describes autocovariance between 

reaches due to  the flow of water from one reach to  the next. We model th a t da ta  as 

if it were collected instantaneously, ignoring the time of collection.

2.3 S ta te-S p ace  M od el

The observation equation expresses an observation vector, Y (k), as a linear 

function of the underlying state plus noise. Define the observation (or measurement)
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equation by

Y (fc )=  GkX ( k )  + W ( k )  (2.1)

where {Gk} is a sequence of matrices with dimension th a t can depend on reach k 

and {W(fc)} is an independent sequence of random vectors with mean zero and 

positive definite covariance m atrix {/?*}.

In defining the sta te  (or process) equation for the tree-like structure of the 

stream  network, we recognize th a t any reach k  is created by two upstream  parents, 

with the exception of first order reaches, those in which water begins to  flow. Initial­

ization begins by defining an appropriate model for these first order reaches. The 

state X ( k )  a t higher order reach k  can then be expressed as a linear combination of 

both parents plus noise. This is w ritten as

X(fc) =  F*,UlX (Ul) +  F fciU2X (u 2) +  V(A) (2.2)

where FkUi defines the contribution from parent Ui(k), and {V(&;)} is a sequence 

of independent zero-mean random vectors each with positive definite covariance 

m atrix {Qk}. Although it is not a restriction of the model, we initially consider 

Gaussian error structures in both  the observation and state equations. We further 

assume th a t all first order states X ( k )  are multivariate Normal with mean a*, and 

covariance Qk, either of which may be unknown. We note th a t this model assumes 

the state  is constant over the entire reach, and transitions only occur a t a confluence 

with another reach.

The state-space model adopted for the stream  networks is very general in tha t 

the system matrices can be dependent on location within the network. In particular, 

this allows for the dimensions to  change, necessary for cases w ith unequal numbers 

of observations on different reaches. For example, a monitoring station may produce 

a regular time series at one location, while other sites are visited irregularly.
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The state-space models under this formulation can describe both stationary 

and non-stationary processes on a stream  network, as well as a combination thereof.

Because two merging reaches are not flow connected, they are assumed to  be 

unconditionally independent, as was discussed in our definition of the autocovariance 

function. For some processes, this assumption may seem unrealistic unconditionally, 

since one would expect dependence due to their close proximity (in space). However, 

such dependence can often be removed with the appropriate covariates such as 

landscape characteristics. These covariates can either enter the model in the system 

matrices, or the state-space formulation can be used to  model the residuals resulting 

from a different model th a t has accounted for the necessary covariates.

2.3.1 Lag, D ifferencing  and th e  B acksh ift O perator

Because distance is ignored and dependence is associated with geometry, up­

stream  parents as well as any other reaches further upstream  can be identified in 

terms of lag. Define the lag — \k — k'\ in the stream  network to  be the number of 

reaches upstream  th a t k  is from k' with lag=0 corresponding to  reach k. Lag can 

also be thought of as the number of generations between k and k '. In a binary tree, 

there are 2* reaches at each lag i th a t eventually merge to  create reach k. Let the 

subscript ij identify reach j  at lag i from a reference reach k.

An operation commonly used in tim e series in order to obtain stationarity 

from a nonstationary process involves differencing between increments. On a tree 

structure, an increment can be defined by moving from one generation to  the next. 

Applying this concept to a stream  network, each increment is defined by two parent 

reaches merging at a confluence to  create the downstream reach. Thus, differencing 

involves both parents.

The difference operator V on a stream  network is defined by

V X { k )  = X ( k )  -  (X M  +  X M )  =  (j _  B ) X ( k )
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where the backshift operation B  is defined by

B X { k )  =  +

Powers of the backshift operator make use of lag notation previously described, 

with B lX ( k )  = J2j=i —2r^> which is an average of all 2* ancestral reaches from 

the ith upstream  generation. Powers of V and functions of B  operate as any other 

polynomial function of a real variable. For example,

V 3X{ k )  =  (1 - B ) 3X{k )  

=  ( 1 - 3 B  + 3 B 2 -  B 3) X(k )

= X { k )  — -(X n (fc ) +  X\2  (k)) +  —(X 2i(k) +  • • • +  X 24 (A;))

~g(^3i(k) + • • • + X3s{k))

which can also be derived by V ( X 2)X(k) .

2.4  K alm an R ecursions

The Kalman Filter has proven to be a useful tool in providing inference about 

state vectors of tim e series, and has been generalized to  other da ta  structures with 

some inherent ordering, such as multi-scale da ta  (Chou et al., 1994) and acyclic 

graphical models (Huang, 1997). The Kalman filter is an estimation procedure such 

th a t the optimal predictor of the current state  vector is a linear combination of the 

optimal predictor a t the previous state  and the current observation. This allows pre­

dictions to  be continually updated as observations become available. W hen future 

observations are obtained, the Kalman smoother provides a way of further updat­

ing the predictions using this added information. Since each of these procedures 

involve com putation in steps, inversion of a large covariance m atrix is avoided when 

working with large amounts of data. Furthermore, these procedures provide tools 

for estimation with or without completely observed data.
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Before proceeding, we list the initial assumptions used in the analysis of the 

state-space models defined by (2.1) and (2.2). We continue to assume independence 

and Normality throughout, however, this can be replaced by orthogonality of random 

vectors and the results remain valid.

(a) Fk and Gk are specified matrices whose dimension may depend on k & 1C.

(b) W (k) and ~V(k) are independent Normal random  vectors.

(c) For any first order reach k, X(/c) is independent to W ( k ' )  and V(fc'), k, k' € JC.

(d) X(/c) is independent of X(fc') if k  and k' are not flow connected.

(e) E V ( k )  =  0 and E W ( k )  = 0 for all k.

(f) E  ( V { k ) V { k ) T) = Qk and E  ( W { k ) W ( k ) T) = R k.

Beginning with the additional assumption th a t a*, and Q,k are known for all 

first order reaches, a variation of the Kalman recursions is derived. The Kalman 

prediction equations are obtained for a stream  network. These equations define the 

Kalman filter, a two step process outlined in the following Theorem to obtain a 

prediction for the sta te  on reach k based on observations on or upstream  of k.

Theorem 2.4-1 (Kalman Filter)

For the state-space model defined by (2.1) and (2.2) with assumptions listed 

above, the prediction step in the Kalman Filter is defined by

X p(/c) -  Fk m X f (Ul) + FkiU2X f ( u 2) (2.3)

with prediction error variance

(2.4)
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The prediction in (2.3) is optimal in the sense that E  ^X(fc) — X(fc)j is minimized 

among all predictors X(/c) given the upstream information. These predictions and 

variances are then updated by

X '(A ) =  X>(k) + n pk( % A ? ( Y ( k ) - G kXr(k) )  (2.5)

with prediction error variance

tt{ = n i - n i G l A ^ G . Q l .  (2.6)

where A^1 is any generalized inverse of A*, =  G k ^ G f  + R^. This new prediction 

defined by (2.5) minimizes E  ^X(ft) — X(A:)j among all predictors X(fe) given the 

available information on or upstream o f k.

R em ark 2 .4 .1  In the Gaussian case, the minimum mean square predictors for X(fc) 

given the available d a ta  are defined by (2.3) and (2.5). Since conditional expectation 

is linear in the Gaussian case, these predictions are also the best linear predictors 

given the available da ta  a t each step.

Estim ation is performed recursively, progressing with the flow of water via 

Strahler order and reach-within-segment order. Stream segments progress down­

stream  with Strahler order, and reaches within a particular segment are naturally 

ordered by flow. The recursions begin with second order segments, after predicted 

and filtered values are obtained for first order streams through underlying initial 

conditions. Predicted and filtered estimates are calculated by reach-to-reach recur­

sions within each segment, a process which is repeated for all segments, in a sequence 

based on segment (Strahler) order.

To obtain an estim ate based on both  upstream  and downstream information, 

filtered values are modified two at a time with downstream information to  obtain 

smoothed predictions, an iterative process defined in the following Theorem.
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Theorem 2.4-2 (Kalman Smoother)

Smoothed estimates for upstream parent reaches are defined by

X s (uj)
X*(u2)

where QUuk =  smoothed prediction X s(uj) minimizes

E  (x.(u i)  — X(ui )J  among all predictors X (iq) given the available information on 

the stream network. The corresponding prediction error variance o f a smoothed es­

timate is formulated to be

R em ark 2 .4 .2  Similar to the case of the filtered predictions, the minimum mean 

square predictor for X(rq) given all the available data, both upstream  and down­

stream, is defined by (2.7). Since conditional expectation is linear in the Gaussian 

case, these predictions are also the best linear predictors given the available data  

on the stream  network.

Similar to  fixed-interval smoothing in time series, predicted and filtered values, 

as well as corresponding variances, are obtained for every reach in the network. 

Smoothing starts  with the reach furthest downstream, smoothing the two parent 

reaches simultaneously, proceeding upstream  until all first order reaches have been 

smoothed. In this upstream  process, we simultaneously smooth both  parent reaches, 

which by definition are on different segments. Because of the natural branching 

structure and order defined by Strahler, it is possible to smooth “up” each segment 

of a particular order until all segments of th a t order have been smoothed before 

proceeding to the next (sequentially) lower Strahler order.

(2 .8 )

with a cross covariance of

(2.9)
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In summary, the initial prediction, which is based solely on the upstream  ob­

servations, is modified once new information on the current reach is available. This 

filtered estim ate is further modified once downstream d a ta  are obtained. Together, 

Theorems (2.4.1) and (2.4.2) provide an estim ate based on all available information 

on the stream  network. Proofs of each Theorem follow.

2.4.1 D erivation  o f th e  D ow nstream  F ilter

The derivation of the Kalman filter involves two procedures, predicting and 

updating. Define U(k) to be the set of reaches upstream  of k, and U^} — {k}  U U(k)- 

The initial step involves predicting the X ( k )  based on information upstream  of reach 

k, which is the observed data  for k' £ U(k)- The second step involves updating the 

prediction based on new information from the observation at reach k, thus predicting 

X( k )  given da ta  for k' £ Uycj.

The Kalman filter in the context of the stream  network given the assumed state- 

space representation with Gaussian noise term s consists of predictions and updates 

defined by

X p(k) =  E[ X( k ) \ Y ( k ' ) , k '  £ U (k)] 

X f {k) =  E[ X( k ) \ Y ( k ' ) , k '  £ U(k]}-

Consider the joint distribution of the three vectors X(k) ,  Y (u j)  and Y (u2) 

conditioned on {Y (k' ) ,k'  £ U(k)}- Under the Normality assumptions, we see the 

conditional distribution

' Y(Ul) '
Y ( u 2) Y{k'),k' £U{k)X(k)

is

( GulXp(ui) A U1 0 G«^FlUx '
N  I GU2̂ p{u2) 0 a U2 Gu2Wu,FlU2

V Fu Qp GT
_ 1 kyUiMuîUi Wuuu2 .
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where

XS. Fk,u iX p(«i) +  FktU2X p(u2),

A Ul — GUiQp G^  +  R Ui,

and

K , u 2 = FktU1n puiF l ul +  Fk,U2wU2F l U2 +  g*.

Using conditional expectation with the M ultivariate Normal distribution (Hocking, 

1996, p.42), we find tha t

X p(k) =  E[ X( k ) \ Y ( k ' ) , k '  e U (k)]

= £[X(A;)|Y(A;'), A;' € U{ui] UW(„2]]

=  E [ X ( k ) \ Y ( Ul) , Y ( u 2) , Y ^ )  V k ' e  U{ui) U UM ]

= FktUlX p(Ul) +  Fk,Uin puiG l A '1 (Y (rq) -  GUlX pM )

+ F fe,U2X p(u2) +  Fk,U2WU2G l2A ^ 1 (Y (n2) -  GU2X p(u2)) (2.10)

with prediction error variance

U[X(/c)|Y(fc/),/c' e  W(fc)]

Fk,U2WU2G l2 

Fk^ pUlF l Ui+ F k^ U2F lU2 + Qk

—  fF GU1K F1UI
GU2WU2FTU2 j

- F fciU1n s l G^1A - 1GUlfis1F ^ 1 -  Fk,U2n pU2G l2A~2l GU2n pU2F l u 

= Fk,ui {npui -  n puiGTulA ^ G uln pJ  f £u1 

+Fk,U2 {n pU2 -  q p2 g ^ 2 a ~2 g U2n p2) F fcT„2 +  Qfc (2 .11 )

where A " 1 is a generalized inverse of A Ui. Since conditional expectation mini­

mizes mean square error in the Gaussian case, the predictions in (2.10) are optimal 

(Brockwell and Davis, 1991, p .64).

Once Y (k) is observed, the predicted values and variances are updated to  obtain 

filtered values. If we consider the joint distribution of Y (k) and X(fc) conditioned
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on { Y ( k ' ) , k ’ (EU(k)},

and again use the conditional expectation, the predictions are updated by

X f (k) =  E [ X( k ) \ Y ( k ) , Y ( k ' )  V tf  eW (i)]

=  E [ X( k ) \ Y ( k ' ) , k'  e  U(k}\

= X p(k) +  n pkGTk A ^  ( Y(k )  -  GkX p(k)) (2.12)

using the added information from Y (k). This new prediction minimizes the mean 

square error with this new information. The filtering variance associated with this 

update is

n{ = n i - o , pGTkA-k'Gkni. (2.13)

In term s of this new formulation, we see tha t

X p(k) = Fk,UlX f (Ul) + Fk,U2X f (u2) (2.14)

~  F k,u^u2Fk U2 +  Qk, (2.15)

simplifying equations (2.10) and (2.11).

2.4.2 D erivation  o f th e  U p stream  Sm ooth er

The intent of the smoother is to predict X( k )  based on all observed information. 

In the spirit of fixed-interval smoothing, the Kalman filter is first run over the 

network, saving the results from the forward recursions. Since each reach is created 

from the two upstream  parents, the algorithm will smooth upstream  two reaches at 

a time, starting with the reach furthest downstream.

The filtered estim ate for reach k  already uses information from reach k and 

above. The derivation of the smoother modifies this filtered estim ate using the

Y ( k )
X( k ) Y { k ' ) , k '  e U {(k) N GkX p(k ) 

X p(k)
A k Gkn p

WkG l
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information from downstream. Define T>̂k) to  be the set of all reaches downstream 

(hence flow connected) of k, with V^)  =  {k}  U 'D(fc). Then by definition, it is clear 

th a t {Y (k' ) ,k'  € U(k] U T>(k)} consists of all the observed da ta  used to  obtain a 

smoothed estim ate for X(k) .

To begin, consider the conditional joint distribution of X (iii), X ( u 2) and X(k) ,

X (uO
X (uj)
X( k )

Y ( k ' ) , k ' e u ik)

which is

( ' X f (ui) -

1

SO a*-
*. 0 SV Ft  1u\ k,u\

N X f {u2) 5 0 o f112 t t f  FT'k,U2
V X p(k) Fu Qf_ 1 k,inic,Ui Fk,u2f t fU2

— 
j

G

under the Normality assumptions used thus far. Further conditioning on X( k) ,  we 

find

E
X (Ul)
X (u 2) X(k),Y(k'),k' e u [k) X f (Ul) 

X f (u2) 
o f  pT^LU\r  k,U\
n f  pT*LU2 k,U2

+

( Q I P  (X(k)  -  X p(k))

Since any Y( k ' )  for k'  downstream of k can be expressed as a function of X ( k ), 

independent error terms, and incoming processes independent of X( k) ,  we see the 

conditional expectation

E
X(Ul)
X ( u 2) X { k ) , Y { k ' ) , k '  £ U {k]UV,(fc)

is equivalent to 

E
X ( Ul)
X (u 2)

X( k) ,  Xk, Y(k ' ) ,  W( k ' ) ,  Y ( k ' )  y k ' e  v [k)

where X k is the set of all downstream incoming processes th a t are not flow connected 

to k. From this we see th a t

E
X ( Ul)
X ( u 2) X ( k ) , Y { k ' ) , k' G U(k\ U V,( k ) E

X ( Ul)
X (« 2)

X ( k ) , Y ( k ' ) , k '  e U ik)
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Using this relation, the derivation of the smoothed estimates for X K )  and 

X ( u 2) is

X s K )
X s (u2)

E

X (ui)
X (n 2)

E

E

E

X K )
X K )

x ( Ul)
X K )

x ( f c ) ,Y ( f c K 'e w w u % ) Y( k ' ) ,  k'  E U(k] U T>{(*)

X ( k ) , Y ( k ' ) , k '  E U{k) Y{k ' ) , k '  E U {k]U V (k)

x f  K )  
X ^ K )  
n f  f tu \ 1 k,u\
n f  f tU2 k,U2 .

+

{ n i r lE  [X(fc) -  X p(k) \Y(k' ) ,  k' E U(k] U V {k)]

X f (u 0
x / K ) + ®ui,k ( x s( f c ) - x ^ K ) . (2.16)

where 0 Ui,k =  n{t.F ^u.(n p)^ 1. In cases where is singular, any generalized inverse 

can be used. The smoothed predictions are said to be optimal in th a t they minimize 

the mean square error conditioned on all the observations (Brockwell and Davis, 

1991, p . 64).

The derivation of the smoothing variances and covariance n uitU2 uses or­

thogonality of a residual vector when conditioning on components of the M ultivariate 

Normal distribution (see Hocking, 1996, p .44). The estim ate in (2.12) is a condi­

tional expectation, conditioned on {Y (k' ) ,k'  E U(k]}■ Hence, the residual vector 

X( k )  — X f ( k )  is independent of any Y( k ' )  for k' E U(k]. Similarly, (2.16) is also a 

conditional mean, conditioned on { Y ( k ' ) , k '  E U(k] U V(k)}, so the residual vector 

X( k )  — X s(k) is independent of any Y( k ' )  for k' E U(k] U V(k).

Subtracting both sides of (2.16) from [ X K ) r  X (u2)r  ]T and performing 

some algebraic manipulations, we see th a t

x k ) - x sK )
x k ) - x *k )

+ ©Ul,/c
®U2,fc x sK  =

x k ) - x / (u1) 
X K )  -  x ' K ) + ®ui,k

®U2,k
X p(k).
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Working towards

E[(LHS)(LHS)t ] =  E[(RHS)(RHS)T],

the left-hand side (LHS) and right-hand side (RHS) are addressed separately, s ta r t­

ing with the LHS first.

Since X s(k) is a linear combination of Y( k ' ) )  for k' 6 U[k] U T>^), then (X(k)  — 

X s(k;))±.X.a(k), so the LHS results in

0 s Qs 1U\ ,U2 +

1 tD
 

£ 
* QsU2 . &U2,k

i? [X s(^)X s(A;)r ] [ 0 ^ lifc (2.17)

when the expectation is carried through. Similarly, orthogonality will allow simplifi­

cation when the same operation is applied to the RHS. Note th a t X p( k ) , X^  (ui),  and 

X ^(u2) are linear combinations of Y( k ' )  for k 1 € M(k), so (X(ttj) — X^(iq))_LXp(A;) 

leaving the RHS to be

+ Qui,k
QlL2,k

E  [Xp{k)Xp(k)7 <r)T f)T^u\,k ^U2,k (2.18)

Since (2.17) equals (2.18), we have th a t the smoothing m atrix is

+iAUl 1̂,̂ 2
0 s Q8*uU2>Ui *LU2

K  o 
o nL (2.19)

©U2 yk
E [ - x s(k)x°(k)T + x p(k)xp(k)T] [ e Tuuk ]

Re-expressing the term s inside the expectation, we have

X ( k ) X { k ) T -  ( X s(k) -  X ( k )  +  X ( k ) ) X s{ k f  

~ X { k ) X { k ) T +  ( X p(k) -  X ( k )  +  X ( k ) ) X p(k)T .

Using orthogonality, this expectation results in

E  [X(fc)(X(fc) -  X s(k))T -  X ( k ) ( X ( k )  -  X p(fc))T] = n t - Q pk

which can be substituted back into (2.19) to  obtain the desired result

0 s Qs*LUl iLUi,U2
Qs Q5U2,Ui U2
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+ ®ui ,k 
®U2,k

m - n i ) [ e l ut e ^ ] .  (2.20)

From (2.20), it is seen th a t each smoothed vector X s (w*) has a smoothing variance 

of

The cross covariance between the smoothed vectors X s(ui) and X s(u2) is

-  W ) e l tk.

The type of cross dependence, either positive or negative, relies on FktUl and FfciU2.

2.4.3 A ltern a tive  B ackw ards R ecursive R elationsh ip

The upstream , or backwards, recursive relationship defined in (2.16) can be re­

expressed in order to  formulate an adaptation of the Kalman recursions presented 

by Durbin and Koopman (2001, Chapter 5) for cases when initial conditions are 

unknown. Furthermore, notation introduced in this backwards relationship will 

also be seen in the development of a concentrated likelihood when initial states are 

unknown.

By definition, the smoothed estim ate for the state  X( k )  is

X s(k ) =  E [ X ( k ) \ Y { k ' ) , k '  e U (k]U V (k)]

=  E [ X ( k ) \ Y ( k ' ) , k '  e u (k)u v [k)}

= E  [X(k) \ Y(k ' ) , k '  g U(k)M V ' ) , k "  G £[*)]

where the innovation v(k)  is defined by v(k)  =  y(k)  — Gk X p(k).  Using standard 

regression theory and properties of the M ultivariate Normal distribution, we see 

tha t

X s(k) = X p(k) + Y ,  Cov (X(k) ,  v(k' ) )  A ^ 1v(fc/)
k'ev.I*)
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from which it is clear th a t the smoothed estim ate is the sum of X p(fc) and a linear 

combination of the innovations v(k ' ) , k '  > k.

The weights of the downstream innovations can be determined via derivation of 

the covariances, bu t can also be seen by considering the first few backwards recur­

sions. Starting with the furthest downstream reach in the network, the smoothed 

estimate is simply the filtered value,

Defining r(k) — G '[Ak 1v(k)  when k is the furthest downstream reach, substitution

this, we can see the recursive relationship in r (k),  taking note of the definition of 

r(fc) when k  is the furthest downstream reach.

Regression theory can also be used to  show a recursive relationship in the 

smoothed variance. Since

X s(k) = xnk) + n pkG l A k lv(k) . (2 .2 1 )

of (2.14) and (2.15) into (2.16) to smooth one of the first two upstream  reaches, we

see tha t

x s(Ui) = +

(2 .2 2 )

Fk,Ui- F ktUiQ;pUiG1UiA ulG Ur andr(u*) =  G j.A u.1v(wi) +  L ^u.r(/c). Fromwhere L k,

t t sUi = Var [X(fc)|Y (k1), k! €  U(k\ U V^)]

= Var [X(k) \ Y(k ' ) , k '  e  U(k), v ( k" ) , k"  e  V [k)]
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we can see th a t

K  = E  Cov (X(fc), v(fc')) A^/Cov (X. (k) ,v(k' ))T
fc'eUjj.)

The backwards relationship can again be seen by considering the first few recursions. 

Starting with the furthest downstream reach, the smoothed variance is the filtered 

variance, defined by

n t  = n i - n pkGTk A ^ G kn i

Using (2.20) and letting N k = G j A k 1Gk (recalling reach k is the furthest down­

stream), we see tha t

nsUi = nli + &Uuk(n i-n i)eTUi'k 

=  < - ~ ^ , UtG l A k l GkFk,Utf t i

=  ^ - ^ I G l A u l G u ^ l

- n ^ /  -  Gl . A " 1 GUiCl?.)Fku .NkFk Ûi(I  -  

= K  -  K P Z A u l G u ^ i  -  wUtL l UtN kL k,Uin i

= vUln pUi

where N Ui = GTUiA~]G Ul +  L TkUtN kL Kui.

2.4 .4  N on -G au ssian  S tructure

Although the Kalman recursions for the stream  network were derived using a 

Gaussian error structure and properties of the M ultivariate Normal distribution, 

the Gaussian assumptions are not a restriction to  either the model or the resulting 

prediction equations. Assuming finite second moments, the optim al predictor in 

mean square sense is defined by conditional expectation. In the Gaussian case, this 

conditional expectation is linear. However, in the Non-Gaussian case, the optimal 

predictor is generally non-linear. In this case, the Kalman equations defined by 

Theorems (2.4.1) and (2.4.2) result in the best linear predictor in mean square 

sense. The arguement for optim ality among linear predictors is standard, and hence 

is omitted.
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2.4.5 M atrix  N o ta tio n

The following m atrix representations will be used in deriving a concentrated 

likelihood under conditions to be addressed later, bu t the general idea is to decom­

pose the innovation (Y (k) — GfcXp(/c)) into two components: one being a linear 

combination of initial state  predictions of first order reaches upstream  of k while the 

other is a linear combination of the observations upstream  of k. Note th a t indices 

in m atrix notation may identify the position of a m atrix or vector, not necessarily 

a row or column. The development of the m atrix representation follows th a t in 

Durbin and Koopman (2001, p .95) for time series, bu t matrices on a river network 

will have a block-like structure depending on a reach’s specific upstream  first order 

reaches.

The m atrix form of the observation equation is relatively straightforward, ex­

pressed by

Y  =  G X  +  W , W ~ N ( 0 , R )  (2.23)

where Y  results from stacking Y (k). W hen these vectors are ordered based on flow 

through Strahler order and reach-within-segment, the block-like structure is more 

easily seen.

The block-like structures are inherent in the m atrix form of the state  equation. 

First notice th a t any higher order reach can be w ritten as a linear combination of

first order reaches, or initial states, upstream  of th a t reach plus sta te  noise. Let X 0

be a stacked vector of initial states. If \ ( k )  = 0 for any first order k , then

X  =  FX o +  SV , (2.24)

where S  and F  have a block-like lower triangular structure. The diagonal elements 

of F  are identity matrices, Ink where nk is the dimension of X(fc). If j  identifies
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the reach corresponding to  the j th vector in X 0, then the lower triangular blocks for

reach k  are defined by

( n  Fk>,u(k') if the j th vector in X 0 is upstream  of k,
Fkj  =  |

0 otherwise

where u(k')  is the appropriate parent of k'  th a t connects j  with k. The m atrix S  

has a slightly more complicated structure since V  (k ) are not introduced with first 

order k, only with higher order reaches. Hence, the product is over a subset of 

intermediary reaches F(k\ k], specifically, the reaches I ( k',k] such th a t r(k') > 1. Call 

this set H(k',k\- Further note th a t V  is a stacked vector of V(fc), for all k. Then if j  

now identifies the reach corresponding to the j th vector V , we define 

f n  Fk',u(k') if k( j )  is upstream  of k,

0 otherwise

which is similar in form to  the m atrix F.  From this we see th a t F  has blocks of 

zeros in columns associated with first order reaches th a t are not ancestral to the kth 

reach of interest, whereas S  has blocks of zeros in columns associated with reaches 

th a t are not upstream  of k. Variation in V  only comes from 'V(k)  for higher order k 

since these error term s are not introduced until a merge between two reaches occurs. 

Let Q be a m atrix th a t defines the variation in SV.

To obtain the decomposition in v(/c), observe from (2.3) th a t

X p(k) =  Fk>UlX f ( u i )  + FkiUtX f M

= L KuxX p(ux) +  L k,U2X p(u2) +  K U1 Y ( Ul) +  K U2Y ( u 2)

where L ktUi = -  Fk:UittptG lA ~ lG Ui and K Ui = FktUittp .G l.A " 1. Recursive

substitution for upstream  k can be used to  identify the weights associated with each 

element in X 0 as well as those for each Y (k). For first order reach j  with X p( j ) in 

X 0, the corresponding weight in predicting X ( k ) , j  < k is

1 1  L ki>ûkiy
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and the weight associated with each upstream  Y  (j ) is

I J^[ Lk^u(k>) I Kj.

The general form of X p(k) can be seen as

X p(k) = E  n L k>Mk>) J X p(j) +  e  n Lk',u(k’) j XjY(j)
yfc'ei(3i/s] J j£U(k) \ k'̂ u,uik)] J

from which it can be shown th a t E [ \ k] — E [ Y ( k )  — Gk X p(k)} = 0. In m atrix 

notation, define K  and L  to  be matrices consisting of the above weights. Note tha t 

L  consists of weights associated with upstream  first order initial states and K  has 

the weights for all upstream  observations. In m atrix form, we see th a t

v -  ( /  -  G K ) y  -  G L X 0

= C*y  -  G L X o. (2.25)

Since E  [V] =  0, we see th a t C* — GL.  Moreover, it is easy to show th a t C* is a lower 

triangular m atrix, and for a fixed Xo, is used to obtain a Cholesky decomposition for 

the variance in Y . The matrices K  and L  also have the (lower triangular) block-like 

structure since the weights for predicting X( k )  are zero for any reach th a t is not 

upstream  of k. Similar to  the m atrix F,  each non-zero element in row k  of L  and K  

results from a product of matrices corresponding to  reaches th a t connect upstream  

k'  with k.

E xam ple 2.4.1 The block-like triangular structures described in the above m atri­

ces are easily seen through a simple example. Consider a small stream  network 

depicted in Figure 2.2. Here we define several of the matrices previously discussed. 

For the observation equation 2.23, we have the vectors

r v(i) i ■ X (l)  •
Y(2) X(2)
Y(3) X(3)
Y(4) , x  = X(4)
Y  (5) X(5)
Y(6) X(6)
Y(7) X(7)
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Figure 2.2: Example of a stream  network consisting of seven reaches, 

and diagonal matrices

G = diag{G(fc)}fc=1...7 W  =  diag{W (fc)}fc=1...7 .

We begin to see block-like structures in the components of the sta te  equation (2.24). 

The vectors X 0 and V  are

X 0 =

X (l)
X(2)
X(4)
X(6)

V  =

0
0

V(3)
0

V(5)
0

X(7)

since V ( k )  = 0 for first order k. The m atrix F is

F  =

I 0 0 0
0 I 0 0

7*3,1 7*3,2 0 0
0 0 I 0

7*5,37*3,1 7*5,37*3,2 7*5,4 0
0 0 0 I

F7,5F5^F 3A 7*7,5 7*5,3 7*3)2 7̂ 7,57̂ 5,4 7*7,6
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where S  is

I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 ■̂ 5,3 0 I 0 0
0 0 0 0 0 I 0
0 0 Ft, 5-F5>3 0 Ft ,5 0 I

For the decomposition in (2.25), we have

0 0 0 0 0 0 0
0 0 0 0 0 0 0

K x k 2 0 0 0 0 0
0 0 0 0 0 0 0

F5,3K X Lt,,2K 2 Ks k 4 0 0 0
0 0 0 0 0 0 0

'7,5-̂ 5, -^7,5^5,31^2 L 7 ,5 K 3 L 7 ,5K 4 K 5 K 6 0

where we recall th a t K Ui =  Fk,Ui7}P.Gl.AUtl . Lastly, with L k,Ui =  Fk,Ui -  

we have

/ 0 0 0
0 I 0 0

-̂ 3,1 7*3,2 0 0
0 0 I 0

5,3^3,1 Lt, 3L 3,2 7*5,4 0

0 0 0 I
5-^5,3^3,1 Ft, 5^ 5,3L3,2 Ft, 5L 5,4 F t,&

The m atrix C* is easily obtained from the relation C* = I  -  G K  = GL.

2.5 In itia liza tion

The recursions previously derived assume known initial conditions, specifically, 

th a t for any first order reach k, X(/c) ~  N(afc,f2/c) is normally distributed with 

known mean vector and covariance matrix. In many practical applications, these 

initial conditions will not be known. Durbin and Koopman (2001, Chapter 5) sug­

gest a modification to  the Kalman recursions to account for this, which we now adapt
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to  the recursions developed for a stream  network. Suppose the m-dimensional state 

for any first order reach is of the form

X ( k )  = a + A 5  + V 07]o, ri0 ~ N ( O , Q o)

where the to x 1 vector a is known, S is a q x 1 vector of unknown quantities, the 

to x q m atrix A  and m x (m — q) m atrix Vo are matrices th a t consist of columns of 

the identity m atrix / mxmsuch th a t A TVo — 0. The matrices A  and Vo are selection 

matrices, as they are used to  identify, or select, particular elements from the initial 

state vector. The m atrix Q0 is assumed positive definite and known. If X( k )  is 

stationary, A  = 0 and all elements in Q0 can be derived from the model param e­

ters. Essentially, this decomposes the initial state  into a constant, a non-stationary 

component, and a stationary component.

Although the vector 5 can be treated  as fixed but unknown and estimated via 

maximum likelihood, we treat it as a Normal random vector with infinite variance 

defined by

S ~  N (0 , Klg)

where we eventually let k —> oo. For first order reach k, we see th a t E ( X ( k )) =  0 

with variance Qf. which has the form

^ k  ^^oo,/c T

with SloO'k — A A T and =  VqQqVq . W ithout loss of generality, if any diagonal 

element in is non-zero, the corresponding element in a is set to  zero. W hen 

k  —> oo, the vector 5 is said to be diffuse, which results in diffuse initialization of 

the Kalman filter.
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2.5.1 D iffuse Priors

In general, diffuse initialization applies to  the non-stationary components of the 

first order states, as the stationary components are well defined by model assump­

tions. In the context of time series, nothing is known about 5 for the single starting 

point. Allowing infinite variance associated with the initial state reflects this lack of 

knowledge. The influence of this infinite variance is usually negligible after a small 

number of recursions, and the likelihood requires minor adjustm ents for numerical 

optimization.

In a stream  network, first order reaches can enter anywhere in the network. 

This influences both the recursions as well as the likelihood. Similar to  time series, 

the influence of the infinite variance may become negligible with progression down­

stream. However, the infinite variance may be re-introduced every tim e a lower 

order reach enters the network, greatly impacting the recursions. Furthermore, the 

infinite variance with every first order reach can easily dominate the likelihood, thus 

causing similar numerical problems in estimation. Consequently, the usefulness of a 

diffuse prior is a function of the network structure and the degree of non-stationary.

A common approach is to  replace the scalar k with an arbitrarily large num­

ber, bu t this numerical solution is not exact and may generate inaccuracies due 

to  numerical rounding errors (Koopman, 1997, p .101). This also requires a mod­

ification to  the likelihood in param eter estimation. The initialization approach of 

Durbin and Koopman (2001) uses a power series expansion in kT1, only keeping the 

first few terms, modifying the recursions and likelihood accordingly. We explore 

this technique adapted to  the stream  network and identify the complexities th a t 

may arise. Although the following recursions may be applicable for some models 

and network structures, it also seems reasonable to  estim ate the distribution of the 

initial state  as an alternative to a diffuse prior since there are multiple occurrences 

of first order reaches. We present a m ethod to  assist in estimation of these initial
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conditions using a concentrated likelihood in §3.2. Here we consider simple struc­

tures such as binary trees to  dem onstrate the applicability of a diffuse prior on a 

tree structure.

2.5.2 E xact K alm an R ecursions

Durbin and Koopman (2001) refer to  this modification as the “exact” Kalman 

filter. This approach is based on the variance decomposition

n j  =  K£ ^ , i +  n : ,fc +  o ( K- 1) (2.26)

where 0 (k~j ) denotes a m atrix where each element is a function f (n )  such th a t the 

limit of k-7 f (n )  as k —> oo is finite.

Durbin and Koopman (2001, Section 4.2) derive the recursive relationship of 

filtering based on a single iterative step whereas we adopt th a t two step process of 

filtering by first predicting followed by an update. (Durbin and Koopman (2001, 

p .68) refer to this two step process as the so-called contemporaneous filtering equa­

tions and show their equivalence.) As they applied this decomposition to  their single 

step filter, we apply this same decomposition to our two step filter.

Derivations for the following filter are analogous to those in

Durbin and Koopman (2001, Section 5.2), where each step of the filtering 

process is re-formulated with the variance decomposition (2.26) and consequently 

a similar decomposition of A fc. The derivation of the smoother similarly follows, 

and uses the alternative formulation of the upstream  recursions discussed in §2.4.3. 

Each of the following steps simply tracks powers of n  to identify term s th a t can be 

eliminated as k tends to  oo. The formulations in Theorems (2.4.1) and (2.4.2) are 

addressed piecewise due to the number of required substitutions of these variance 

decompositions.
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2.5 .2 .1  E xact F ilter

To begin, we carry the decomposition in (2.26) through components in the 

initial prediction and updating equations. Since =  GkClkGk + Rk is a function 

of it too will have similar a similar decomposition defined by

A k — ftAo^/j +  A^/. +  0 (k  j )

where

Aoo.fc =  Gkn p̂ kGTk , A * , fc =  Gk^ tkG l  +  R k

Two cases of this “exact” formulation are considered which depend on AooiUj. 

We consider the cases where A is non-singular or zero as suggested by 

Durbin and Koopman (2001, p. 102), where they justify this for a tim e series by 

three reasons. First, it provides a solution for the univariate case, since if y(k)  is 

univariate, then A^*, must be positive or zero. Second, the restriction is satisfied 

in most practical situations when y (k) is multivariate. And lastly, in multivariate 

cases where this restriction is not satisfied, there are techniques such as treating the 

series as univariate th a t can be employed. The univariate case has direct applica­

tion to  a stream  network, but this restriction for the multivariate case on a stream  

network has yet to be explored. We proceed as if this lim itation is justifiable for the 

state-space model on a stream  network.

The first case assumes th a t A oc>„i is nonsingular and is based on the expansion 

for A " 1 =  [kAoo,^ +  A*)Uj +  0 ( 0 ] ^  as a power series in k~1. This is

for large k where only Au} for j  =  0,1,2 are needed in the reformulation of the 

recursions. The requirement of large k is needed for the expansion to  exist and can
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be seen through univariate cases. For n-dimensional Y(w,), A UtA u^ =  In results in 

I n — ( k A q o ^  +  A*,Ui +  k  1A (£ > +  k  2 A® +  • ■ •)

x (a ™ +  » - 'a «  +  ,s- 2a <? +  - -- )

where by matching coefficients of k  for j  — 1,0, —1, —2 we obtain

A A ^  =  0 

A A (1) +  A A (0) =  I  

Aoo^AgJ +  A ^ A W  +  A gJA g) =  0

A ^ A ^  +  A ^ A W  +  A ^ A W  =  0, etc.

To solve these equations for A*$, j  — 0,1, 2, we only consider the case where A 0C)Ui

is nonsingular. Since A ^ ^  is nonsingular, it must be th a t A !^ =  0 by the first

equation. Simplification of the remaining equations results in

A (0) _  Q A (1) _  A -1 A (2) _  _  A-1 A A-1
U > U i  —  u L A U ,  —  aAqo , U i  L- * u i  ~  L A o o , u i L-:i- * , U i L A o o , U i -

In the case when A tX)iUj =  0, we see tha t

A - ^ A ^  +  C K O -

From (2.10), there are a number of manipulations required since and A Ui 

are reformulated to term s in powers of k. Expressing Tt(k,Ui) — F k ^ f t^ G ^ .  with 

£lpk in the form of (2.26), when Aoo,u, is positive definite we have

H(k,Ui)  = Fk<Ui +  0 ( k  *)]

= kF ^ Q ^ G I  +  FktUin i uf i l  +  0 ( 0  

=  KHovikiUi)+ TL*{k,Ui)+ 0 ( n ~ l )

from which we obtain

H ( k ,  U i )  A ~ l  =  ( i z H o o i k ,  U i )  +  H * ( k ,  U i ) +  0 ( t O )  x  ( f i f ^ A ^  +  k ~ 2 A ®  +  0 ( k ~ 3))
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=  Ui )  A ^  +  K  1 ( H o o i k ,  U i )  +  W * ( / c ,  Ui)A^.))

+ 0 ( k“ 2). (2.27)

W hen AooiUi =  0, we have

H(k,Ui)  = F ^ n ^ f i l  + Oi K- 1)

and

H ( k , Ui) A " 1 =  FkiUiQ ^UiGutA ~ lt +  0 ( « f  *) (2.28)

since it must be th a t 0^ „ Gj) = 0.OO) tl'i LL‘l

Following Durbin and Koopman (2001, p. 103), we see from the recursions in 

Theorem 2.4.1 th a t X.p(k) has the form

X p{k) = X p{k)i0) +  « - 1X p(fc)(1) +  0 ( k~2) (2.29)

where X p( k ) ^  =  a and X ? (k ) ^  =  0 for any first order reach k. Consequently, it is 

easy to  see th a t the innovation

v(k)  = Y(jfc) -  Gk (X p(fc)(0) +  K- lX p{k)[l) + 0 (k~2))

= Y ( k )  -  GkX p(k){0) +  k—1 ( - G kX p(k)w ) +  0 { k~2)

=  v ( & ) (0) +  k - xv(A :)(1) + 0 ( k~2). (2.30)

(Any reference to v(k)  immediately applies to  the innovation and should not be 

confused with the unobservable state  noise Y(k) . )

For parent reach iq with A 00iUj positive definite, we see th a t

H(k,  Ui)A~}v(v,i) =  (Hooik,  A ^  +  k _1 (Hooik, Ui)A(2} +  H*(k,  A ^ )  +  0(/W 2))

x (v (u ,)(0) +  K"1v (u i)(1) +  0 ( « “ 2))

+ / W 1 ( W o o ( A ; ,  U i ) A S 2}  +  H»ik,  u ^ A ^ )  v ( u i ) ( 0 )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

+K 1'H0O( k , u i) A ^ v ( u i ) w  +  0 (k 2)

where

when Aoo)Uj =  0. Prom these we see th a t F fcjUiX p(u;) +  H(k,  Uj)Au.1v(rij) becomes

as k —> oo. Then by (2.10), X p(/c)(°) can be determined accordingly by summing

(2.31) for each parent to obtain a prediction similar in form to the filtered prediction 

in Durbin and Koopman (2001, p. 103).

The recursive representation for O,̂ )ok and k is derived from (2.11). Using 

(2.27), we find for Aqo^ positive definite tha t

and summing over each parent will lead to  the recursive relationship in k and 

since the contribution of parent Ui will depend on Aoo)Ui. There are three 

possibilities, either both  AooiUi are positive definite, both  zero, or one zero while the

Aoo.uj positive definite
Aoc,Ui =  0

(2.31)

+0(0 (2.32)

whereas with (2.28) we see th a t

when Aqo<Ui = 0. W ith tha t, appropriate substitution in
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other is positive definite. In any of these cases, (2.32) and (2.33) can be used to 

obtain the necessary prediction variance decomposition.

Similar arguments are used to  derive the exact recursions for the updated esti­

mates and variances. Needed in (2.12) and (2.13), we find for positive definite 

tha t

S l 'G lA * 1 =  ( r f l l t GTt  + a r, t G l  +  0 ( « - ‘)) x  ( k - ’A™ +  /G 2Af> +  0 ( « - 3))

=  » +  S ^ G p y 1’)  +  0 (n ~ 2)

and

niGlt\-t lG„ni = ( ^ G l ’A<1) + K- 1 ( n ^ tGrA<2) + n ' tG j'A «)+ o (« -2))

x +  GkV ^ k +  0 ( k  x)

=  KQlokG lA [ ^ G kD,pock + n x ,kGTk A ^ G kQ lk + ^ kGTk A f G kQF^k 

+ n i kGTk A l1)Gkn iOtk + 0 ( K^) .

From these we find

Xf (k)m = X!’(fc)(0| + n„,iGi'A™v(t)<l» 

with variance Si* = aSi^* +  S i;. 4- 0 ( k~2) since

si{ = nj -  sjX V gX

=  «££,,* +  -  a S i ^ O ^ C X *  -  f C j G l A l 11̂

- ! £ ,  X A f G X , .  -  n : X A * +  0 ( a " ‘ )

=  « ( f i ^ - ^ X A l ,,Gl S C l) + fi’ .*

- ^ g T a P g x *  -  ~  n t t C X ’G X r  +  0 ( « " ') .

The recursive decomposition of the filtering variance becomes

=  f O  -
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as k —> oo. W hen Aoo./c =  0, there is much simplification, and we see tha t

WkG t A ,"1 =  n l kG l A - l  + 0 (K-1)

and

n pkGTk A ^ lGkn i  =  ^ G ^ G f c n ^  +  o ^ - 1).

from which we see a simplification in updating the prediction variances. The result­

ing updates are

=  f O

as k —> oo with A ^ h  — 0.

In either case for A 00i?li and A ^ ,  the initial predictions can now be expressed 

in terms of previous filtered values

X"(fc)(°> =  Fk,UlX f ( Ul)W + FkiU2X f ( u 2p

(2.34)

with variance decomposition

,k =  +  Fk,U2^L,U2Fk,U2

SKik -  +  (2-35)

both of which are analogous to  those derived in Durbin and Koopman (2001, Section

5.2) with the necessary modifications due to  the tree structure of a stream  network.
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2.5 .2 .2  T ransition  to  th e  U sual K alm an F ilter

As seen in the above derivations, the variance decomposition influences each 

step as the recursions progress downstream. Durbin and Koopman (2001, Section

5.2.2) argue th a t the conditional variance of d|Y should be finite, suggesting there 

exists some point in the recursions such th a t all future predictions will have fi­

nite variances, given the previous observations. Application of this argum ent with 

stream  networks is much more complex than  th a t in tim e series. As we will see, the 

applicability of a diffuse prior on a stream  network is primarily a function of the 

physical structure and nonstationary model assumed.

We suppose a simple tree structure, one in which lower order reaches eventually 

do not re-enter the network, such as a binary tree. More specifically, we consider a 

tree in which we can identify b disjoint initial basins Bj, j  — 1 . . .  b defined in such a 

way th a t guarantees finite Qk for every k  downstream of each initial basin yet has 

infinite components for some reaches within these initial basins. The premise is th a t 

filtering and smoothing estimates within each initial basin need adjustm ent because 

of the components th a t tend to  infinity with k . Outside of these initial basins, no 

adjustm ent is needed since all components of Qk are finite and independent of k .

Basins are defined in the following manner. In the simplest of nonstationary 

models with 5 a scalar, a basin can be a single first order reach. As long as there 

exists an observation, the filtering variance will be finite. For more complicated 

models, a basin will be defined by a set of reaches such th a t there exists two furthest 

downstream reaches, both with finite filtering variance, th a t merge. In either case, 

there exists a downstream reach, dj, which flows directly out of the basin such th a t 

oo. Defining basins in this m anner guarantees disjoint sets of reaches, and 

th a t Qpk <  oo for all k  downstream of any dj. The size of each Bj is a function of 

the physical tree structure and the nonstationary model of interest. Furthermore,
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the existence of missing data  greatly influences the ability to define disjoint basins 

needed for use of a diffuse prior.

Finite V&x[5\Bij\ is still used in an argument for finite smoothed predictions 

and variances. In §3.2, an expression for logp(<5, Y ) is derived th a t is independent 

of the initial states and can be used to  show the existence of Var[5|y(fc), k E Bij}. 

Since p(8\ Y ( k ) , k  E B^)  is Gaussian, logp(8\y(k ) , k  E B^)  is quadratic in 5 so 

its second derivative does not depend on 5. By definition, the reciprocal of the 

second derivative of logp(5\y(k) , k  E B^)  w ith respect to  8 exists, implying finite 

conditional variance.

Because Q,pk <  oo for k > d j , j  = 1...6, = 0, all predictions downstream of

any dj will have finite prediction error. W ith tha t, the usual Kalman filter can be 

used, setting fig. =  QP4 f

2.5 .2 .3  E xact K alm an Sm ooth er

The backwards recursions developed in §2.4.3 are used in formulating the exact 

smoother on a stream  network. Let dj identify the exiting reach in each local basin 

such th a t k =  0 for all k > dj. This implies th a t the only smoothed estimates 

influenced by k are those th a t are upstream  of dj. Therefore the formulations for 

the smoothed estimates and variances for k < d j , j  — 1 ...b are presented whereas 

the smoothed estimates for all other k  are obtained via the usual Kalman smoother. 

The following formulations are analogous to  those provided in Durbin and Koopman 

(2001, Section 5.3) with appropriate modification due to  the tree structure of a 

stream  network.

Using the power series expansion for A " 1 when is positive definite, it is

easy to  show th a t Lk,Ui — +  k~ 1L ^  +  0 ( « - 2) where

41 =  Fk,Ui- F k,Uin ^ UiG l A ^ UiGUl

41 =
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Since the usual recursions are used for k > dj, define r ^ ( d j )  =  r (dj) and r ^ ( d j )  — 

0, and consider expressing the recursions upstream  of dj in term s of power series 

expansions in « -1 . -Since r(rq) =  G^jA “ 1v(u,) +  L%Uir(k),  it is easy to  verify th a t

r (ui) = r ^ ( wj )  +  +  0 (« T 2), for k < dj, j  = 1 , . . . ,  b

where

r ^ ( Ui) =  A - ^ v W f a )  +  L ^ j y i\ k )  +  L i f j ^ i k )

which is analogous and similar in form to Durbin and Koopman (2001, Eq (5.21)). 

Using (2.22), the smoothed state  vector is

X s(Ui) =  X > 4) +  ^ r ( ^ )

=  X 'K )  +  + Q lUi + 0 (k " 1)) x (r<°>K) +  k T V 1̂ )  + 0 ( k- 2))

= X > , )  +  n n ^ u/ ° \ Ul) + n ^ Uir V ( Ui) +  ^ tU/ ° \ Ul) + 0 (K- 1)

where it is obvious th a t it must be tha t f l ^ r ^ f i i j )  =  0 for every reach for this 

to  make sense. Using the arguments of Durbin and Koopman (2001, p. 106), it is 

clear th a t r ^ i t j )  ^  0 guarantees V ar(X (tq)|Y ) —> oo as k —> oo. This implies 

th a t (iii) =  0 a t every reach is necessary for finite conditional variance.

Thus, it suffices to  show th a t if V ar(X (uj)|Y ) < oo, then ^ ( iq )  =  0. Now,

variation in X(ui )  comes from <5 and the additional noise components. Since the 

finite number of noise components each have finite variances, they will also have 

finite conditional variances. Furthermore, by the existence of a reach dj such th a t 

Var(<5|Y(fc'), fc' € U ^ ) )  < oo, then Var(d|Y) <  oo. Hence, it must be the case th a t 

V ar(X (uj)|Y ) <  oo. Letting k —> oo, we then have

X s(Ul) =  X ^ ) (0) +  nSolUjr (1)K )  +  n i u/ ° \ Ui), for m < d3, j  = 1 , . . .  ,b (2.36)
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with r ^ ( d j )  = r (dj) and r ^ ( d j )  =  0  since the downstream recursions do not depend 

on k .

Following (Durbin and Koopman, 2001, Section 5.3.2), we see from §2.4.3 th a t 

^  with N Ui =  G l . A ^ G Ut+ L l UiN kL ktUi. As with the smoothed

predictions for reaches upstream  of dj, the corresponding prediction variances also 

need to  be modified when using the diffuse prior on <5. W riting N Ui as a power series 

expansion in n~l , we have

N Ul = N<V +  K - ' N g  +  K-2N M  +  0 (k~3) 

which can be used recursively in

N ut -  G1.{k 2A u-)GUl + (^L ^Ui + K  1L ^ u. + k

l]m +  K 2^ k l i

when the residual terms are ignored. From this we see

X (jV<"> +  / . - ■ j v ' 11 +  x “ 2J v f ' )  ( 4 0,1. +  k - ' L \ I.  +  x ' 2l ! 2)

K '  =

+  W 4 + 4 « A 0| i £ .

r  (O)T1 ! \r( l)  T (1) t T  i X ) T  j  {I)  . j  (0)T  iy (0) t  (2)
h k , Ui l y k  ^ k . U i  +  -k/c.Ui i y k  T  ^ fc iUj ^ k  h k , u i

where and =  0  since recursions downstream of

dj do not depend on k . Notice again th a t these equations are analogous to 

(Durbin and Koopman, 2001, Eq. 5.26). W ith th a t and again ignoring the residual 

terms, we have

= ^ Ut + n i Ut

-  ( « « S o * + J * W 1+ ^ ‘N H’ + ^ 2NS ’) x +  « ’ »,)
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+ «  -  W tUtN ( V f } ^ Ut -  n ^ N ^ J

+ n j iU4 -  w iUiN W n ? Ui -  ^ , uA A A  -

- ^ u A - ^ o c a ­

using the same argument about the k term  in the exact smoother, we see th a t the 

m atrix term s with coefficients k and k2 must be zero if Var[X(A;)|Y] <  oo. W hen 

k —> oo, the smoothed state  variance becomes

when reach rq is upstream  of dj.

For the case when A 00jUi =  0, we consider one more term  in the expansions

K  -  K n ^ Ui + n i Ui + K- ' n i Ui + o ( K - 2)

A " 1 =  A - i i + ^ A ^  + 0 ( K - 2)

as suggested in Koopman and Durbin (2003, Appendix II, derivation of equation 

(31)). Using this form of the expansion, we see th a t

A l  = Fk,ut ~  FKuM , u tG l A * L G Ul

A l  =  - { F k . u ^ u A u A ^ P ^ + F k ^ u f l l A ^ l p u , )

where we notice the leading term  in is G^,. Substitution in r(iq) leads to

r(0)(«i) = G l ^ Uî \ Ul) + L (A A \ k)
r ^ K )  =  GTuA - ^ \ Ui) +  Gtu% A i y ° \ Ui) + L [ f y o\ k )  +  L A A \ k )

Since r^ ^ iq )  is premultiplied by D^0)Uj in (2.36), the smoothed estim ate can be 

simplified to

x - f a )  =  x ^ u t) ^  + n ^ u/ ° \ Ui) + n ^ uA A j {1)(k )
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when Aoo,Ut =  0. Furthermore, substitution of alternative expansions for Q?. and 

A r 1 results inU>%

< • ’ =  C + t S T ' C C + 4 E > f C
4 ?  =  G r,A < iG ,,, +  4 ”7 w f d 7 + 4 M ‘l4 7 + 4 27 < >i S ,

T (fi)T ?\r( 1) T (1) , T ( l ) T I\r{0) t  (1) , r ( 0 ) r  iu(D)r(2)
k , U i  i y k  L k , U i  +  -kfc.Ui l y k  L k , U i  +  t - ' k , U i  iVfc L k , U i

which can be used in (2.37) to determine the variance of the smoothed estimate.

Here we see th a t these equations are analogous to Koopman and Durbin (2003, Eq.

36). Simplification of this variance is possible since Gj. is the leading term  in L^ \ ,  
(2 )and L k u ., which when premultiplied by eliminates th a t contribution since

=  0.

R e m a rk  2 .5 .1  Another option to consider may be to recursively update param eter 

estimates for the initial sta te  model. By this, we could use information from one 

basin to  begin recursions in another basin, in hopes of m aintaining a finite predic­

tion error variance. However, identification of which basin to begin conditioning is 

unclear, so this option is not considered further here.
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Chapter 3

T H E  G A U S S IA N  LIK ELIH O O D

The state-space representation adopted for the stream-network d a ta  allows for 

expression of the Gaussian likelihood function in term s of the orthogonal innovations 

and corresponding prediction error variances. To accomplish this, the logical order 

of flow m ust be determined. Define Si to be the set of all ith order stream  segments. 

Since segments are disjoint, and each segment is ordered by flow, the sets Si are a 

medium over which the Kalman recursions can be executed. Recalling th a t m s is 

the highest Strahler order of all reaches in the network and th a t is defined to 

be the number of reaches on segment j  of order i, the log of the Gaussian likelihood 

can be expressed as

N  1 ms nij
l ( y \B) =  - y l ° g ( 2 7 r ) -  (log |A fc| +  v(/;)TAfcl v (£;)) (3 J )

i ~ I  j G t S i  k = 1

where y  is the vector of observations, N  is the to ta l number of observations, 'v(k) — 

y(k )  — GfcXp(fc), and A =  G k ^ l ^ k  +  R k . These innovations and variances are 

obtained from execution of the Kalman Filter over the entire network.

Even in cases of non-Gaussian error structures, we still refer to  (3.1) as the 

“Gaussian likelihood” , as did Brockwell and Davis (1991, p .255) where they indicate 

th a t the Gaussian likelihood still serves as a measure of the goodness of fit of the 

covariance structure to the data. Therefore, it is still a reasonable criterion function 

to  maximize in order to obtain param eter estimates.
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3.1 D iffuse L ikelihood

In the case where a diffuse initialization is considered, the log likelihood will not 

converge as k —> oo. Durbin and Koopman (2001) present a m ethod of obtaining 

a diffuse likelihood for a time series th a t is adapted here to the tree structure of 

the stream  network. Construction of the diffuse likelihood is subject to  the same 

constraints as those assumed for utilizing a diffuse prior, mainly, an appropriate 

nonstationary model for the specific network structure.

The goal of a diffuse likelihood is to  obtain a function logL<j(y|0) th a t can 

be used rather than  logL (y |0) to obtain param eter estimates. In order to  offset 

inflation from k —» oo, terms th a t are independent of the param eter vector are 

added to  the log of the likelihood function.

To see this, express (3.1) as sums over disjoint sets by

from which it is clear th a t l (Y\9)  diverges as n —■> oo since j A* j —> oo for any reach 

k e  UBj. The diffuse log likelihood will adjust each of these term s to  prevent this 

divergence. We assume th a t Doo,/t in a non-zero for every reach in UBj.  This avoids 

the cases were A k is independent of k for some k G UBj.

A dapting Durbin and Koopman (2001, p. 139), we define the diffuse likelihood 

to  be

where n ^  is defined to  be the number of observations, or sum of the ranks of Aqo^, 

for k €  UBj with infinite innovation variance as k —> oo. As with the Exact Kalman 

recursions, we assume is positive definite or the zero matrix.

/(Y |0) =  - y  log(27r) -  ^ (log |A fc| +  v ( k ) T

k$UBj

r 7i
log L d{y\0) = lim log L(y) +  log k

k—*oo L Z
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Following Durbin and Koopman (2001, Section 7.2.2), we know from §2.5.2 th a t 

V  =  K" 1 +  0 (k -2)

when Aqo ̂  is positive definite. Furthermore, if Aoo,fc has rank p, 

Durbin and Koopman (2001, p. 139) show th a t

— log |A fc| -  l o g l A ^ ^ l o g l / c ^ A - ^  +  O ^ -2 )!

=  —plog(K) +  log |A ^ fc +  0 (k_1)|

from which we see th a t

lim (— log |Afc| +  plog(/t)) =  lo g |A ^ fc| =  - l o g l A ^ I
K—*00 ’

for k 6  UBj. For these same k when Aoo^ is positive definite, we also see th a t 

lim v(/c)t A ^1v(A:) =  lim |v (0)(/i;) +  v (1)(fc) +  0(k~2)]T [fc^A Th +  0(k~2]K—>00 K—>00 L J 1 ’ J
x [v(0)(A:) +  vW(A:) +  O(/c-2)]

=  0 .

For the alternative case th a t A ^  =  0 with A ^ 1 =  A ~ l  +  0 ( k -1 ), we have

lim -  log | A* | =  — log |A ~i|
K '—>00 ’

and

lim \ ( k ) TA 7 1v(k )  = lim M°^(/c) +  k ^ v ^ ^ /c )  +  0 ( k ~ 2]T x  [A“ i +  0 ( k -1)1K—‘OO K—*O0 1 J L , J

x [VW(A:) +  « - 1vW(A:) +  0 ( k - 2)] 

=  v(°>r (fc)A*><°>(A;).

This leads to  the diffuse log likelihood

logLd(y|0) =  - y  log(27r) -  ^  wk -  ^ ^  (log |A fc| +  v{k )TA ^ -v {k ) )  (3.2)
k e u B j  k ^ u B j
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where

{log l A ^ I  if Aoo)fc positive definite
log |A*,fc| +  v ^ T ( k ) A ; y ° \ k )  if A ^ *  =  0

for any k € UB j .  Durbin and Koopman (2001, p .142) indicate th a t for models of 

interest, param eter estimates for 9 obtained by maximizing logL(y|(9) for fixed k  

converge to  estimates of 9 obtained by maximizing logLd(y|0). However, they do 

not provide insight to particular models of interest or any formal proof. They do 

provide an argument for a random walk plus noise model (Durbin and Koopman, 

2 0 0 1 , p .31).

3.2 C on centrated  L ikelihood

Since there will exist many first order reaches in a stream  network, it may be 

desirable to attem pt to estim ate these initial conditions instead of using a diffuse 

prior. Furthermore, a diffuse approach may seem unnatural since all observed values 

over a network will be finite. Depending on model assumptions, the existence of 

multiple first order reaches can be viewed as replications from which information 

about the initial conditions can be attained, in particular the mean and variance of 

the initial state  distribution. Assume th a t each first order reach is a random draw 

from

X ( k )  ~  N(t io ,C0)

where p j  is p x 1 and C  is p  x p  diagonal. If we define n\  to be the number of first 

order reaches in the network, then define x 0 to  be the ( p x n i ) x l  vector of stacked 

first order states. Further define p  =  Jni 0  po and C = Ini ® Co with corresponding 

dimensions (p x  n i) x 1 and (p x m )  x (p x m) .  The matrices F, G, and L  have the 

form previously described in §2.4.5. Under a Gaussian model, the joint distribution 

of initial states and Y  is defined by

X 0 ~  N  ^
' C  C F TGT

Y G F p 1 G F C  S  +  G F C F TGT
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following the m atrix form of a state-space model previously discussed. The m atrix 

E is the variance of Y |x 0, and is a function of the covariance matrices of W  and 

S V  defined in §2.4.5. Recall from §2.4.5 tha t

v  -  ( I - G K ) y - G L X o  

= C*y — G L X q

where E  [V] — 0 with block diagonal variance Varv =  D  because of orthonality in 

the innovations. Then for a fixed X 0, we obtain a Cholesky decomposition E~x =  

C*TD ~ l C*. Together with C*GF = G L , we use the relation

(yR 1 +  C B ^ D y 1 = A -  A C ( B  + D A C ) ~ l D A  (3.3)

«
to  express conditional means and variances in a form useful in evaluation of the 

likelihood considered below. First notice tha t

(E +  G F C F t Gt )~1 = - E ^ G F  ( C - 1 + F TGTi : - 1G F y 1 F t G t E - 1

= c * t d ~ 1c * -  c * t d ~ 1x  ( c ~ 1 +  x t d ~ 1x ) _1 x t d - 1c*

where X  =  GL — C*GF.  We can then see the conditional expectation

E [ x 0 | Y ]  =  fi + CFTGT (E + GFCFTGTy 1 (Y-GFfi) 
= C C ~ y  -  C X TD~lX n  + C X TD~xX( C~l + X TD - lX ) - lX TD~lXpL 

+ { C -  C X TD - lX{C~l + X TD - 1x y 1) X TD ~ y o 

= ( c  -  c x t d ~ 1x  (<c  -  (c - l + x TD~1x y 1x TD~1x c ) )  C - y  

+  (C _1 +  X T D ~ 1X y 1 X t D ~ 1v 0 

=  (R ^ 1 +  X t D ~ 1X ) ~ 1 C ' V  +  (R ” 1 +  X t D ~ 1X ) ~ 1 X T D ~ y  0 

=  ( C - 1 +  X T D ~ l X y l ( C ~ y  +  X TD~1v 0)

where v 0 =  R*Y, the component of the innovation vector th a t is independent of x 0. 

The conditional variance is easily reformulated to be
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Var[x0 |Y] =  C  -  C F TGT {i: + G F C F TGTy xG F C

= C -  C X TD ~ xX  ( c  -  (C ~x +  X t D ~ xX )  _1 X t D - xX C  

= c  -  c x Td ~ xx  ( c r 1 +  x t d ~ 1x )

=  {C~x + X t D - xX ) ~ x

which is used with the conditional mean to derive a log-likelihood th a t is independent 

of x0.

Following the work of De Jong (1988), the log of the likelihood p(Y\6)  can be 

expressed as

logp(y|0) =  logp(xo|0) +  logp(Y |xo, 0) -  logp(xo|y ,0)

from which it is seen th a t -21og of the likelihood is

Z(y|0) =  Z(xo|0) +  Z(y|x0 , 0) -  Z(x0 |y ,0)

where each component on the right hand side is decomposed into term s th a t may 

or may not be independent of C  or x 0.

Given x 0, lo g p (Y |x 0) is easily obtained by executing the Kalman Filter with 

each first order X p(/c) initialized with x(k)  with zero prediction error (D,pk — 0). 

Although the innovations v(fc) are functions of upstream  first order x(k' ),  the inno­

vation variances A* are not. Furthermore, all A*, are independent of C  since they 

were generated with zero variance associated with first order x(k) .  Since all random 

vectors are assumed normal, (3.4) reduces to

l(y\e) = log \C\ +  (x0 -  p)TC~x(xo -  fi) +  lo g \D\ +  v TD ~xv  -  Z( xo | y 0 )
which is the starting point to obtaining a likelihood independent of xo.

The innovations v(fc) are linear in x 0 since v  =  C*Y — X x 0, hence there exists 

a m atrix X k such v(Zc) =  v 0(k) — X kx Q, where v 0 (A:) and X k are the rows of C * Y
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and X xq corresponding to  reach k. The vector v 0 is also defined as the innovation 

constructed using an initial state of 0. Then l(y\0)  can be re-written as

log \C\ + log |D | +  (x0 -  /i)TC - 1(x0 -  /i) +  (v0 -  I x 0)r I T 1(vo -  Y x 0) -  Z(xo|y0)

=  log \C\ +  log |£>| + fj, -  x 0
T

' C 0 - i
n  -  x 0

_ v 0 -  Y x 0 _ 0 D v 0 -  Y x 0 _ * ( x o | y , 0 ) .
If xo is a weighted least squares estim ate after regressing (/i T, Vq )t  on (I, X T)T with 

weighting m atrix diag(C, D),  then

rm
---

--
1

c 
"c

o 1 
1

-

1 
1 

1 
1

x 0 =  M
l 

1
< O i 

i

-

1 
1 

i 
i

(x0 -  x 0),

and the error projection m atrix m atrix M  =  I  — H  for hat m atrix H  is 

M  = I

Using properties of M, /(y |0) can be expressed in the form of

' I ' I T ' c 0
- l ‘ I

-1
■ I T ' c 0

X X 0 D X X 0 D

- l

T ' C 0
- l

M t*
. v ° . 0 D . v o .

log \C\ +  log \D\ +

+  (x0 -  x 0)T [<C -1 +  X t D ~ 1X]  (x 0 -  x 0) -  f(x0|y, 6)

where one of the exponent term s is seen to  be th a t associated with the conditional 

distribution x 0|Y. By adding the appropriate term  involving the determ inant of the 

conditional variance, l(y\9) reduces to

l(y\9)  =  log |Cj +  log \D\ — log KC” 1 +  X TD~1X ) ~ 1\

+ f" 1 7 ? n ] 1 V [  ̂ 1_ v 0 _ 0 D  _ v 0 _
=  lo g \D\ +  log 11 +  C S  | +  jiT C ~ l n  +  Vq T>_1v  o

- ( C " V  +  s)T( ^ x +  S )~ l {C~ln  +  s)

=  log \D\ +  log 11 +  CSj +  fj%At C ~ 1A/ji0 +  v j£ ) _1v 0

- { C - ' A hq +  s )T {C~l +  S y ^ C ^ A / i o  +  s)

where S  — X TD ~ lX ,  s =  X TZ?_1v 0 and A  =  Jni 0 / m if m  is the dimension of each 

first order X(fc).
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Under this formulation, the likelihood can be concentrated with respect to /i0. 

Differentiating with respect to /io, the maximum likelihood estim ator for /r0 is

Ao =  (ATC - 1A - A TC - l ( C - 1 + S ) - 1C - 1A ) - 1A TC~1( C - 1 + S ) - 1s 

= (ATC ^ X{C~X +  S y 1S A ) ~ 1A TC ~1( C - 1 +  5 ) _1s

which can be substituted into /(y |$) to get

l( y\6) = lo g \D\ +  lo g \I +  C 5 | +  v ^ v q

+ $  (ATC~XA  -  A t C ~1(C~1 +  S y ' C - ' A )  n 0 

- 2 i%ATC - l {C~l +  syxs -  sT{c-X +  S ) s  
=  log \D\ +  log \I +  C 5 | +  v^Z)- 1v 0— 

sT(C~l + S ) ~ 1C ~1A ( A t C~~1(C~1 +  S y 1S A ) - xA TC - x{C~l +  5 ) _ 1 s  

- s T (C~x + S)s.

W ith this, we have a closed form expression for the maximum likelihood estim ator 

of the mean for the initial states, whereas the variance param eters can be obtained 

in the numerical optim ization of £(y|0 ).

3.3  M issing  D ata

In the case where data  are unobserved for some reaches, a number of techniques 

can be used for constructing a likelihood, although some are only approximations. 

Substitution using expressions for a smoothed Y ( k )  when Y (k) is missing or an 

Expectation Maximization (EM) algorithm can be used to  obtain approximations 

to  the likelihood whereas an alternative state-space form can be used in order to 

obtain the exact likelihood. We assume th a t the entire vector Y (k) is missing, 

denoted by Y ( k )  = ., rather than  single elements. This section is dedicated to 

obtaining an exact form of the likelihood. An expectation maximization algorithm 

is presented in §3.4.
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As a counterpart to  Brockwell and Davis (1996, p .276), we introduce a new 

series (Y*(£;)}, related to the original process (X(A;)}, by the modified observation 

equation

Y*(k )  = G*kX ( k )  + W*(fc)

where

Gl

where

Gk ifY(fc) =  . f W(Jfc) i f Y ( f c ) ^ .
W *{k) = \

0 otherwise, I N(fc) otherwise,

N(/c) ~  N(Q, InkXnk),

N (k) _L X (j)  for all first order j  ,

N(fc) T V (j)
W (j)

for all k , j

These equations constitute a state-space representation for the new series {Y*(A;)} 

which coincides with {Y (k)} for Y ( k )  ^  . and takes on a random value independent 

of the param eter vector 9 when Y { k )  is missing. Further define a new sequence

{y*(*0} by

v*(k) =  f  y(k) Y(k} *  ■
y  [ ’ \  0 Y ( k )  = .

Under this framework, there is a direct relationship between the likelihood based on 

the original observed da ta  with th a t based on the newly created sequence {y*(£;)}, 

namely

L(9 ,y )  = (2nYn^ L ( 9 , y * )

where nm is the number of occurrences of missing data. (Note: nm takes into account

the number of reaches as well as the dimension of the observation vector.) From

this we can determine the exact likelihood based on the observed da ta  from th a t 

based on the new sequence (y*(&)}.
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3.4  E xp ecta tion -M ax im iza tion  A lgorithm

W hen the objective function is complicated by missing data, an expectation- 

maximization (EM) algorithm is another tool th a t can be used to  obtain param eter 

estimates. Define W  to be a “complete” da ta  vector consisting of the observed

Y  and unobserved X . The EM algorithm is an iterative procedure th a t allows 

com putation of maximum likelihood estimates based only on the observed data

Y  (Dempster et al., 1977). Here, we follow the development of EM as given in 

Brockwell and Davis (1996, p .282). If 0W is the estim ate of the param eter vector 

after the ith iteration, then the two steps in the next iteration involve calculating 

an expectation (E-step) with respect to the density function / ( x |y ,  0W) and max­

imization (M-step) of this expectation with respect to 6. The E-step is defined by 

the conditional expectation

Paralleling th a t of Brockwell and Davis (1996, p .281), a brief analytical argu-

If 9 ^  is converging to 9, then using the fact th a t Q'(9(-l+1^\9^)  — 0 and letting 

i —> oo, we see th a t

Q(0\9^)  = E e,l} [f(0 ;X ,Y )|Y ] (3.4)

where /(0 ;X ,Y ) =  ln ( /(x ,y ;  0)).

ment shows th a t if 0 ^  converges to 0 , then 0  must also be the maximum likelihood 

estim ator based on 1(9, Y ). Using (3.4) we see th a t

Q(9\9(i)) = j  ( ln / ( x |Y ;0 ) ) / ( x |Y ;0 « ) d x  +  /(0 ;Y )

/ ( x |Y ;0 w )dx +  f'(0(i+1); Y )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

d_
dd
d_

89

J  / ( x |Y ; 9)dx + l ' (0] Y ) 

(1) +  / '(0 ;Y )

showing th a t 9 must also be a solution to  the likelihood equations I (9, Y ) =  0.

In the case where X  is a vector of missing observations such th a t the exact 

likelihood is difficult to  obtain and maximize, the EM approach may have a large

com putational advantage. For W  =  

by the complete da ta  is

n

X
Y N  (0,T,(9)), the log-likelihood given

1(9; W ) =  —J  -  J in  det£(0) -  J w rE_1(0)W
Z  Z  z

(3.5)

X ■£*, y (0) o '
Y 5 0  0

where n  is the number of observations in the complete d a ta  vector. Using properties 

of the M ultivariate Normal distribution, it is straightforward to show th a t

W |Y  ~  N

which is needed in the E-step when taking the expectation of (3.5) with respect to 

f ( x \ Y ; 9 ^ ) .  The calculation involves taking the expectation of the quadratic form 

W TE _ 1(0)W , which is found to be

E m  [W r E (0)W |Y ] =  Trace (E “ 1(0)E(0W)) +  E e(i) [W |Y ]r  E ~1(9)E0(i) [W |Y]

=  Trace (  \  T  [ °  1 J
S ^ ( 0 ) Zyy(9) J [ 0 O j y

+ W r E_1(0)W  

=  Trace ( e ^ E ^ ^ W ) )  +

since the first block entry of E ~l {6) is E ~fy(9) =  (Exx{6) -  Tlxy{9)Tl̂ { 9 ) T lyx{6))'~1. 

W ith this, it is clear th a t

Q{0\0®) =  1(9- W ) -  J w a c e  ( e ^ ( 0 ) E ^ ( 0 « ) )  . (3.6)

This application of the EM algorithm uses the Kalman recursions developed for 

the stream  network. The E-step entails estimation of the missing observations using
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their smoothed values from the downstream filter and upstream  smoother in order 

to  obtain Q(9\0^) ,  which is then maximized to  obtain flh+i). W hen the increments 

Q(i+i) _  Q(i) are small, the second term  in (3.6) can be ignored, further simplifying 

the estimation (see Brockwell and Davis, 1996, p .282).

3.5 S im ulated  E xam ple

Consider a relatively small stream  network, or only a small region of a larger 

stream  network as depicted in Figure 2.2. A univariate model is examined where 

the contributions from the upstream  reaches as well as a conditional variances are 

defined to  be functions of reach orders. This model is believed to be reasonable since 

reach order has been shown to be proportional to relative watershed dimensions, 

channel size, and stream  discharge at th a t place in the stream  system.

If i, j ,  and k are the orders of Ui, u2, and k  respectively, then the state-space 

model defined by (2 .1 ) and (2 .2 ) is

Y ( k )  = X ( k ) (3.7)

X ( k )  =  ^ ,W (w i)  +  ^ , iX ( u 2) +  F(fc) (3.8)

where Gk = 1, W (k )  = 0, and Qk — cA-, with initial assumptions th a t X ( j )  =  0

and V ( j )  ~  N(0,  r 2) for any first order reach j .  The recursions are defined as

Y(3) =  0 21Y(1) +  0 21Y(2) +  Y(3)

Y(5) =  </>22Y (3) +  </>2i Y (4) +  V  (5)

Y (7) =  </>22Y(5) +  ^ 21Y (6 ) +  Y(7).

Under this model, the param eter vector 0 — [</>2i, </>22, a fx, cr^, r 2]T, hence two

(j) param eters and three variance param eters to  estim ate based on only seven obser­

vations. As may be the case in many param etric models on stream  networks, there 

are a relatively small number of observations th a t are actually used in estimation of 

each param eter.
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In order to  construct a likelihood in term s of the innovations and prediction 

error variances, the Kalman Filter is applied sequentially over each segment. To 

initialize the filter, the predicted values for all first order streams are defined to  be 

zero, with prediction error variance r 2. W hen there are no missing observations, 

the log of the likelihood defined by (3.1) is easily obtained through execution of the 

Kalman Filter over this small network. The filter is applied sequentially over the 

sets «Si — [1 ,2 ,4 ,6 ] followed by S 2 = [{3,5,7}].

The innovations are defined by I (k)  =  Y  (k) with A k =  t 2 for any k £ Si .  

S tarting with reach 3, we see th a t

where A 3 =  o xl and A 5 — A 7 =  o \x. W ith th a t, the Log-likelihood is easily 

constructed as

To obtain param eter estimates, we use the Log-likelihood as a criterion function 

to  optimize with respect to the unknown quantities of interest. W hen missing data  

are present, an exact likelihood can still be obtained via the alternative state-space 

form described in §3.3. Suppose th a t the observation on reach 5 was unknown. The 

observation equation can be modified by

7(3) =  T(3) — <t>2iY{l) — <f>2iY(2)

1(5) =  K(5) — </>22T(3) — 4>2\Y(A)

1(7) =  Y(7)  -  <p22Y(5)  -  <hiY(6)

1(9, Y )  oc -ln(<T^) -  ^ ln (cr^) -  21n(r2)

0  otherwise
Gk if k  7̂  5

W*(k) =
W (k )  i f f  ^ 5  
N (k )  otherwise,
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where

N ( 5) ~  N ( 0,1), N ( 5) ±  X ( k )  for k € 5 lt N ( 5) Y ^

The new series {Y*(k)}  coincides with { Y ( k ) }  for k ^  5 and takes on a random 

value independent of the param eter vector 6 when k — 5. Define a new sequence

where L(8 ,y )  — L(8, y*). The one-step predictors of {Y*(t)} and their error

covariance matrices A£ are now

where Ag =  a f1, Ag =  1, and A£ =  (f)l2a2i +  a\\- The resulting Log-likelihood is

which we see is slightly more complicated than  the function with no missing data. 

However, this may not be the case with larger networks, a more complicated model, 

and more missing data.

Alternatively, the EM algorithm from §3.4 can be used to find an approximation 

to  the likelihood where param eter estimates and smoothed predictions are obtained 

in an iterative fashion. Let Y  denote the vector of observed data. We can define 

the steps of the EM algorithm by

/*(3) =  Y*(3) -  021Y*(1) — 4>2iY*(2)

I*( 5) =  0

/*( 7) =  Y * ( 7 ) - 0 22(</»22Y*(3) +  </>21Y * ( 4 ) ) - ^ 21Y*(6)

1(9, Y )  oc - i l n ( u ^ )  -  ^ l n ( ^ 2 +  1) -  ^ ln(f f^ )  -  21n(r2)
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E -step

1. Derive smoothed estim ate y s(5) for the missing observation given 0b)

2. Calculate Q(0 |0 « )  =  l ( 9 , Y s( k ) , Y )  -  ( | )

3. Calculate Q (0 |0 W) =  l ( 8 , Y s(k), Y )

M -step

1. Numerically maximize Q(9\9<'^) and Q(9\8('^) with respect to  8 to obtain 0 b+i)_

This process is iterated until || 0 b+0 _  $(*) | |2 js within a specified tolerance.

A simulation was performed to  evaluate the likelihood methods of estimation di­

cussed in this chapter. D ata were generated for the above network with the true pa­

ram eter vector 9 = [A, .6 , 9 ,4 ,8 ]T. Initially drawing data  for the first order streams, 

the da ta  for reaches 3, 5, and 7 were computed sequentially. Adding more reaches 

only complicates this model with more param eters, so observations for independent 

trees were generated in order to increase the number of observations for estimation. 

The effect of missing da ta  is determined by setting the value of reach 5 in Figure

2.2 to  be missing. Configurations of 1, 10, and 100 trees were considered to  see 

the extent th a t sample size influences param eter estimation. Furthermore, various 

degrees of missing values are considered setting Y (5) to  missing for selected trees.

Maximum Likelihood Estim ation (MLE) is performed to  obtain information 

about the param eter vector given the available data. For simplicity, the variance 

param eters cr^, crfj, and r 2 are assumed to be known, so the param eter vector to  be 

estim ated is 9 =  [fai, <t>22Y ■ Initial values for numerical optim ization were arbitrarily

chosen to  be [0.3,0.5]. O ther points in a neighborhood of [0.3,.05] were considered

initially, bu t preliminary results were not dependent on these starting  values.

Param eter estim ates were obtained using the “full” likelihood if no d a ta  were 

missing, whereas the exact likelihood was maximized when missing data  were
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Table 3.1: Maximum Likelihood Estim ates for 6 — [0 2 i , 022]T — [0.4,0.6]T

Trees
Proportion
Observed1 0212 rmse(0 2i) bias(0 2i) 022 rmse (022 ) b ias(0 22)

1 Full 1 0.5304 0.923 0.130 0.6152 1.162 0.015
Exact 0.5 0.6368 1.303 0.237 0.3643 0.562 -0.236
EM 0.5 0.6183 1.149 0.218 0.4017 0.546 -0.198
AEM 0.5 0.6427 1.492 0.243 0.9564 1.841 0.356

2 Full 1 0.4038 0.355 0.004 0.5410 0.439 -0.059
Exact 0.5 0.4857 0.516 0.086 0.3746 0.509 -0.225
EM 0.5 0.4857 0.516 0.086 0.3757 0.507 -0.224
AEM 0.5 0.4687 0.532 0.069 0.6638 0.575 0.064

10 Full 1 0.419 0.143 0.019 0.5695 0.135 -0.031
Exact 0.5 0.4303 0.180 0.030 0.5230 0.230 -0.077
EM 0.5 0.4303 0.180 0.030 0.5231 0.230 -0.077
AEM 0.5 0.4164 0.168 0.016 0.7008 0.183 0 .1 0 1

100 Full 1 0.4076 0.036 0.008 0.5941 0.041 -0.006
Exact 0.5 0.4124 0.047 0 .0 1 2 0.5911 0.048 -0.009
EM 0.5 0.4124 0.047 0 .0 1 2 0.5911 0.048 -0.009
AEM 0.5 0.3989 0.047 -0 .0 0 1 0.7111 0.118 0 .1 1 1

1 Fraction of observed values on reaches formed by a second order reach merging w ith a first 
order reach.

2 Estimates, rmse, and bias empirically determined from 95 of 100 simulated realizations.
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present. Param eter estimates for the different number of trees per network are 

shown in Table 3.1. Numerical issues resulted in unusual param eter estimates in a 

small number of simulations, hence empirical estimates for param eters, bias and root 

mean square error are determined from a trimm ed set of 95 out of 100 simulations 

of each network.

As an alternative to  maximizing the exact likelihood, the EM algorithm previ­

ously introduced was used under two formulations for Q(9\9^) .  Initially, (3.6) was 

used for estimation, followed by an “adjusted” formulation where the second term  in 

(3.6) was ignored. In both cases, complete d a ta  were obtained by using the smoothed 

estimate for the missing values via the Kalman recursions. Starting with initial es­

tim ate for 9 , the original da ta  were smoothed, and new estimates were obtained by 

maximizing (3.6) given this newly created data  vector. Subsequent estimates were 

found by re-smoothing the original da ta  using 9 from the previous iteration. The 

algorithm was iterated until param eter estimates stabilized. Additional estimates 

were obtained in the same fashion using the “adjusted” form of (3.6). Results from 

these approaches are shown in Table 3.1.

This relatively simple network possesses com putational challenges, which were 

overcome by creating replicates. W ith a small number of observations, the numerical 

optimization of the likelihood can be problematic, as was the case in this example 

with only one replication. Here, the innovation for reach 3 seemed to  dominate in 

the maximization, which resulted in 02i ~  y(i)+l(2) ■ Because of this, the information 

about 0 2 i from reaches 4 and 6  was essentially ignored. Given the nature and order­

ing of stream  networks, numerical dilemmas are likely to occur as more param eters 

are modeled relative to  the amount of observed data.

The exact likelihood was easy to obtain algebraically resulting in optimization 

without computational difficulties. Although the EM algorithms possessed no ad­

vantage, they provided illustration for its potential use. Using the Kalman Filter
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to  construct the exact likelihood is also an option, however, this may add to  the 

com putational burden since the Kalman Filter must be run with each iteration in 

the numerical optimization. Even in the cases with small numbers of trees, this 

option resulted in unreasonable computational requirements.

Although point estimates are easily obtained, properties such as bias and mean 

square error remain as open areas of research.
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Chapter 4

A U T O R E G R E S S IV E  M O V IN G  A V E R A G E S

The autoregressive moving average models, or ARMA models, specify a large 

class of models defined by stochastic linear difference equations with constant coef­

ficients. Properties of this param etric family of stationary processes in time series 

are established in Brockwell and Davis (1991, Chapter 3). In this chapter, we ex­

tend these results from tim e series to processes over the tree structure of a stream  

network.

4.1 A R M A  P rocesses

D efin ition  4 .1 .1  The process {X(/c)} on a stream  network is an autoregressive 

moving average, or ARMA(p, q), process if it is (weakly) stationary and if for some 

real constants f a , . . . ,  fa , 6\ , . . . ,  9q,

X ( k )  -  f a B X { k ) ----------- f a B pX ( k )  = Z ( k ) +  d ^ Z f a )  +  ■ • • +  6qB qZ(k)  (4.1)

where fa-) and 9{-) are polynomials of degree p  and q with no common factors, and 

are defined by

for every reach k, where Z(k)  ~  W N ( 0 ,  a2).

In a more compact form, this can be written as

<t>(B)X(k) = 6{B)Z(k) (4.2)

faz)
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6(z)  — 1 + Q\Z-\ h 9qZq.

Param eter constraints are obtained through the concepts of causality and invertibil- 

ity of an ARMA process.

4 .2  C au sality  and Invertib ility

The concepts of causality and invertibility (e.g. Brockwell and Davis, 1991) are 

considered, and involve defining a relationship between a network process X ( k )  

and the white noise process Z(k)  in terms of infinite sums. These concepts over 

the stream  network are defined in terms of mean square convergence as opposed 

to  the more restrictive absolute convergence. Although the natural branching th a t 

occurs in the stream  network makes writing these infinite sums notationally complex, 

they are obtainable and simplified using lag notation. The following results are 

extensions of ARMA(p, q) processes in time. The results and proofs herein parallel 

those presented in Brockwell and Davis (1991, Chapter 3).

D efin ition  4.2 .1  Causality

An ARMA(p, q) process defined by (4.2) on a stream  network is said to 

be a causal function of Z(k)  if there exists a sequence of constants {t/^} where 

< oo such th a t

oo , 2*

X ( k )  =  i>{B)Z{k) = ( ° )
i = 0  j = 1

the series converging in mean square, where Z ^ ( k ) is from the j th ancestral reach of 

the ith generation upstream  of k.

Proposit ion  4-2.1 Suppose X ( k )  is a zero mean stationary process over a stream 

network with autocovariance function  7 x ( -) such that Y l ’hLo \ l x ( h ) \ V ^ h < oo and
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X ( k )  _L X ( k ' )  when k and k' are not flow connected. I f  % <  °°> then the

series

OO OO i 2l

1P (B )X(k )  = ^ i B iX ( k )  =
i —0 i= 0  j = 1

converges in mean square. Furthermore, the mean square limit Y (k ) is a stationary 

process with autocovariance function

°° l/>2 °° °° 9/, 9/,
7 .(0 )  =

9=0 9 =  1 j = 0

and for  h > 0,

- 1 , 0 0  OO ,
ViS T '  / / l  ■ , V’i+h7r (h )  =  J 2 ^ ^ Z ^ x ( h - i  +  j)  +  ^ 2 ^ ^ a x ( 0 )

i —0 j —0 2=0
OO OO , OO OO I

+  Z  E  2 S ? ^ + /.'7 x (/i') +  J ]  (4-4)
/ i '= l  9=0 h ' = 1 9=0

P ro o f  First show convergence in mean square. For n > m  > 0,

E E * E 3
i —m  j = 1

E ( | ) 32 V ( 0 ) +  2 ^ 2 : S S i i 2 ‘7 V W
i= m  /i—1 i —m

n —m  n —h
M i + h ,

JL 2
= e | 77 (o) + 2 ^ 7 7 (a) x :

n —h ,
A'fi+h

29 7 2 *
2 = 7 7 1  / l = l  2 = 7 7 1

s E | 7x(0) + 2 E l 77 (Ol(Ef  ] IE

/ l = l

n —m 'n-h , 2 \ 1/2 ,2 \  J/ 2

n  „/.2

s E | 7U0) + 2 El 77 (/.)l(Ef ) (2‘E

/l=l
OO

4>ti+ h

2*
/  OO 1/2

n  2

S  E $ - 7 A '( 0 )  +  2 E v 7 | 7 x ( f c ) | E

/l=lOO \ 2 = m
29+/1 I

7 a ( 0 ) E |  +  2 ( E ^ " M O ! ) E
h=l 

2 /  00

v/i= 1

0  as m, n —> oo,
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since < oo and the sum over y /^ ' y x i h )  is bounded. Thus, by the

Cauchy Criterion, ip (B)X(k)  converges in mean square, and is well defined. Let 

Y(k )  be the mean square limit of ip(B)X(k) .

Using continuity of the inner product (Brockwell and Davis, 1991, p.45), we see

that

£[V(fc)] =  £ § ! > [ * < # ) ]
i=0 j = 1

=  0

which does not depend on location k. Cross-product term s involved in determining 

closed form expressions for second moments can be confusing. Using independence 

when reaches are not flow connected will simplify many expressions. To begin, first 

note th a t

reduces to

OO i i OO OO i OO OO i

y~] 2i+h 7a-(0 ) +
i~ 0 h'—1 i= 0 h' — 1 i—0

when the expectation is carried through the double sum. It is clear from the tree

structure th a t the coefficients for each "fx(h') will depend on the offset h. Addi­

tionally, the number of occurrences of 'yx(h') will depend on h!. The coefficients for 

7 x ( 0 ) are straightforward. Those for each 7 x {h ' ) ,h  >  1 result from first working 

upstream from k' followed by working downstream to  k ' .

The variance in Y ( k )  follows immediately by letting h = 0 in (4.5) which leads 

to  (4.4). For covariances, we can decompose the Y(k )  =  YliLo'tlJ&~l Y?j=iXij(k)  

into sums over three disjoint sets of reaches: the intermediary reaches downstream 

of k' th a t connect k  with k1, reaches upstream  of and including k' (which are also 

flow connected to  k), and those reaches not flow connected to k'.
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Let j* identify the appropriate reach th a t is downstream from and flow con­

nected to k' a t each lag i, i = 0 . . .  h — 1 with respect to k. For k' < k, the covariance 

can be simplified using flow connectivity and expressed by

( h—l .I  oo j 2i oo j 2l

E %x ‘j -m + E Is  E *«(*'). E f  E *«(*')
2 — 0  2 — 0  j  =  l 2 — 0  j  =  1

where the first sum corresponds to  the intermediary reaches (including k), and the 

second sum corresponds to the reaches common to both  infinite sums. All other 

reaches are not flow connected to both k  and k', therefore independent of any reach 

upstream  of k ' .

The covariance associated with intermediary reaches is defined by

( h —l  , o o , 2 l \  ft.—1 oo ,

El^-m-Ef E*<.#'> - E |E
2 — 0  2 — 0  j  — 1  J  2 — 0  j — 0h—l , oo

=  J 2 ^ Y j ^ x ( h ~ i + j )  (4.6)
2 — 0  j — 0

since there are 2j reaches flow connected to  Xij*  for each upstream  lag j  with respect 

to  X{k').

The covariances associated with reaches common to both infinite sums are not 

as obvious, bu t follow directly from (4.5). Letting h =  \k — k'\, the covariance from 

these reaches is defined by (4.5), which when combined with (4.6) results in (4.4). 

Since the first and second moments of Y (k ) are independent of reach k, Y (k ) is 

weakly stationary. |

R e m a rk  4 .2 .1  The conditions XX=o\ j ( h ) \V ^h < oo and Y^hLo <  0 0  are

conditions used to  guarantee mean square convergence. O ther conditions exist, 

such as IV'il <  00 j allowing a less stringent condition on the summability of

7 x(-)- The condition we adopted for {1/7 } is very weak, allowing for a large class of 

ARMA models.
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The following theorem provides the necessary and sufficient conditions for which 

X ( k )  is causal, allowing expression of X ( k )  in term s of (infinitely many) upstream  

Z(k) .  The results and its proof parallel Theorem 3.1.1 in Brockwell and Davis (1991, 

p.85).

Theorem 4-2.1 Let { X ( k ) }  be an ARMA(p,q)  process over a stream network such 

that and O(-) have no common zeros. Then { X ( k ) }  is causal i f  and only if  

(p(z /V2) ^  0 for  all z £ C such that \z\ < 1. The coefficients {ipj} in (4-3) are 

determined by the relation

OO
^(*) =  E  ^3zj  =  0(*)M *)> M <  - /x  (4-7)

j =o v

P ro o f  For sufficient conditions for causal X ( k ) ,  assume f>{zj\pT) ^  0 if \z\ < 1. 

We set out to obtain a set of coefficients £» th a t meet the conditions of Proposition 

4.2.1.

By assumption, there exists e >  0 such th a t 1 /4>{z/^/2) has power series expan­

sion

\ i oo 
* \  6

for \z\ < 1 +  e (Brockwell and Davis, 1991, p.85). Thus, we see th a t £ j\/2 *(1 +  

e/2)* —> 0 as i —> oo, which implies there exists K  £  [0, oo) such th a t

161 .  K  ,  ■ n i<  — — ;xtt for i =  0 , 1 , . . . .
V ?  (1 +  e /2 )*

Hence, we see th a t 161 * is finite and find £* through the relation

00 1 1
€(*) =  E & z* =  T F T ’U  ^  v"2

which exists since

OO OO
< E M

2=0 2=0
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by assumption. From this we see th a t ^(z)<j>(z) =  1 for \z\ < V2, \  and define the

operator £(B).

The second criterion to  utilize Proposition 4.2.1 is the covariance constraint. 

Again following Brockwell and Davis (1991j p.85), notice th a t the covariance associ­

ated with <f)(B)X(k) is th a t corresponding to  6(B)Z (k )  where Z ( k ) are white noise. 

Since 0(B)  has finite order q, then for any h >  q, 7 g(B)z(k)(h) = 0 and

which is finite when Z(k)  has finite variance. Then by Proposition 4.2.1 we can 

apply the operator i ( B )  to both sides of (f>(B)X(k) =  0(B)Z(k )  to find th a t

i = 0 j = 1

where the sequence {ipi} is determined by (4.7).

For necessary conditions, assume th a t { X ( k ) }  is causal, indicating X ( k )  is the

^2le(B)z(k)(h )V2  =  y ^ J'le(B)z(k)(h)V2

m m z ( k ) =  m ) z ( k )  =  E  f  E  z m  =  x (k )

mean square limit of tjj(B)Z(k)  with * <  0 0 . Then

0(B)Z (k )  =  <t>(B)X(k) = 4>(B)'i/;(B)Z(k).

Defining rj(z) to  be

7i(z) <t>(z)^(z)
OO

we see from 0(B)Z (k )  = rj(B)Z(k)  th a t

i= 0 j = 1 i=0 j = 1
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Multiplying each side by and taking expectations, we see th a t 0* =  tji for 

i = 0 , . . . ,  q, and rji = 0 for i > q. W ith that, we have

9{z) = 17(z)

=  \z\ <
Now, if cf)(z) = 0 and \ip{z)\ < oo for \z\ < V2  \  then 9(z) = 0, hence </>(■) and 

#(•) would have a common zero contradicting the assumption of no common zeros. 

Thus, <f(z) 7  ̂ 0 for any \z\ < which is equivalent to (fi(z/\/2) ^  0 for any \z\ < 1.

I

Param eter constraints on 9 are defined through the concept of invertibility of a 

process on the stream  network.

D efin ition  4 .2 .2  Invertibility

The process X ( k )  on a stream  network is said to  be invertible if there exists a 

sequence of constants {7q} such th a t <  00  and

OO
*(fl)X (fc) =  £ § £ * « ( * )  =  Z(A0, (4.8)

i = 0  j  =  1

the series converging in means square, where Xij(k)  is from the j th ancestral reach 

of the ith generation upstream  of k.

The following theorem identifies necessary and sufficient conditions for 

{ X (A:)} to  be invertible. The results and its proof parallel Theorem 3.1.2 in 

Brockwell and Davis (1991, p.8 6 ).

Theorem Let { X ( k ) }  be an ARMA(p,q)  process over a stream network such

that $(■) and 9{-) have no common zeros. Then { X ( k ) }  is invertible i f  and only if  

the smallest root of 9 { z / \ f  2) is outside the unit circle, ie, 9{z /y/2) 7  ̂ 0 for  all z  € C 

such that \z\ <  1. The coefficients {tvj} in (4-8) are determined by the relation
OO

7r(2:) =  = <t>(z ) / 6(z )’ \z \ ^ ~ 7 z  (4 9 )
j =o
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P ro o f For sufficient conditions for invertible X( k ) ,  assume 0 ( z / V 2) ^  0 if \z\ <  1. 

Then there exists e >  0 such th a t l / 6 ( z / \ / 2 )  has power series expansion
OO

N < 1 + £ -

Furthermore, since Ym Lo ^  < 0 0  and the covariance associated with 0(B) Z(k)  

is zero for any h > q, we use Proposition 4.2.1 to  apply r](B) to both sides of 

<t>(B)X(k) =  0(B)Z(k )  so th a t

oo 2i

r](B)d(B)Z(k)  = 7}(B)<l>(B)X(k) = i r (B)X(k)  = ' 5 2 ^ J 2 X v W  = Z W
i = 0 1

The sequence {77} is determined by (4.9).

For necessary conditions, assume th a t (X(fc)} is invertible, indicating Z(k)  is 

the mean square limit of n ( B ) X ( k )  for some sequence {7Tj}with Y hLo ^  <  °°- 

Since <p(B) is of finite order p  and 7 z(h)  =  0 for h >  1, by Proposition 4.2.1 we have

4>(B)Z(k) = (j)(B)Tr(B)X(k) 

= v(B)<i>(B)X(k)

= 7x(B)9(B)Z(k)  (4.10)

Letting rj(z) — n(z)0(z)  = f°r \z \ ^  \  we see from (4.10) th a t

p , 2* 00 2i

E | E z«w = E |E
i ~ 0  j  =  1 i —0 j —1

M ultiplying each side by Zjy(fc) and taking expectations, we see th a t — 77* for 

i =  0 . . .  p, and rji =  0 for i > p. W ith tha t, we have

4 > ( z / \ / 2) =  p ( z / V 2 )

=  7 r ( z / \ / 2 ) 0 ( z / v /2 ) ,  \z \ < \/2.

Now, if Q(z / \ /2) =  0 and |7r(z/\/2)| <  0 0  for |z| <  V 2 , then (f>(z) =  0 , hence <j>(-) 

and O(-) would have a common zero contradicting the assumption of no common 

zeros. Thus, 9 ( z / \ / 2) 7  ̂ 0 for any \z\ < \/2 . |
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Figure 4.1: Region for causal AR(2)

E x a m p le  4 .2 .1  (The ARMA(1,1) Process)

The ARM A (1,1) defined by

X ( k )  -  £  ( X ( Ul) + X ( u 2)) =  Z(k)  +  (Z{Ul) +  Z ( u 2)) (4.11)

is both causal and invertible under the constraints th a t \(f>\ < \ f2 and \Q\ < y/2. The

only root of 4>{z/\/2 ) is V2/(j>, so if y/2/4> > 1 , then 4> < V 2  and X ( k )  is causal.

Similar arguments hold for determining the single constraint on 0.

E x a m p le  4 .2 .2  (The AR(2) Process)

The AR(2) defined by

(1 -  4>iB -  <j)2B 2)X{k)  = Z(k)  (4.12)
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is causal when the all the roots of (j>{z/\/2) are outside the unit circle. For an AR(2) 

to be causal, the param eters (0 j, 0 2) must lie in the triangular region defined by the 

intersection of the three regions

a/2 0 i +  02 < 2,

02  — \ / 2 0 i <  2 ,

10 2 1 <  2

which can be seen in Figure 4.1. Causal autoregressive polynomials with complex 

roots are identified through the quadratic formula, which are easily seen to  be those 

(0 i , 0 2 ) in the causal region such th a t 0 2 < —0 f /4.

4.3  T h e A u tocovarian ce F unction  o f  a  C au sa l/In vertib le  A R M A (p ,q )  
P rocess

Only ARMA(p, q) processes th a t are both causal and invertible are considered. 

Two m ethods are presented for determining the autocovariance function (ACVF) 

for these processes.

4.3.1 M eth od  I

By Theorem 4.2.1, we know th a t <  Since Z(k)  ~  W N ( 0 , a 2),
V ̂

then by Proposition 4.2.1, the ACVF 7 x (k) is

T*w=££it£ L- ( « 3 >
i = 0

The coefficients 0* can be determined by matching coefficients for powers of B  

in the expression

(1 -  cj)XB  -  02B 2 ------- 0p5 p)(0o +  0 i B  +  0 2R 2 +  . . . )  =  (1 +  0XB  +  02B 2 ■■■ + 6qB q)

where it is seen th a t

1 =  0 0
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01 =  ■lp1 -

&2 =  4>2 -  M l  -  M o

03 =  f a -  M2 ~ M l  ~ Mo

or equivalently,

p

i’i - ' Y l  M i - j  = * = 0 , 1, • • ■ (4.14)
3 =1

which can be solved recursively to obtain each fy.

Another way to  obtain ipi is via a solution to  a system of equations with constant 

coefficients. For large i, (4.14) has the form of a pth order difference equation. Using

results in Brockwell and Davis (1991, Sec. 3.6), the general solution is w ritten as

s r t — 1 

i = l  j —0

where £, are the s distinct roots of <j>(z) and r, is the multiplicity of £*. Thus, 

X)i=i r* =  p, the order of 4>(z). The cty and coefficients for 0 < j  < max(p, q + 1) — p 

are determined by initial conditions.

R e m a rk  4 .3 .1  The autocovariance function of a causal ARMA(p, q) is geometri­

cally decreasing at a rate  faster than  1 /  y/2h since

<
V 2 h »

from which we see X)So l7 x (^ ) | <  0 0 .

E x a m p le  4.3 .1  For the ARMA(1,1), the coefficients ipk can be determined by 

matching coefficients

ip0 =  1
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ipi = 0  +  0

02 =  001

0*-x(0 +  0)

which can then be used to determine the second moments. The alternative m ethod

using the general solution to  a set of linear difference equations with constant coef­

ficients and single root £1 — 1 /<f>,

0 k =  aw4>k, k > \  

where aw is determined by the initial conditions

0 o  =  1

0 i  -  0 o 0  = 0-

Using the general solution, we know ipi — a lo0 =  0 +  0 from which it is easy to  see 

tha t

0  +  0
a io —

If h =  \k — k'\, the variance is determined to  be

(4.15)

when ^  <  1, a condition satisfied since |0| <  \ /2 by the constraint on 4>(z). Fur­

thermore,

(4.16)
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and

j ( h ) =  ( j )  7(1) (4.17)

for any h >  2 .

The coefficients ipi are obviously not absolutely summable for any 4> such tha t 

1 <  (f) <  V2.  However, if \4>\ < \ / 2 , ^  s^41 finite.

R e m a rk  4 .3 .2  As with an MA(1) in tim e series, for any MA(1) with 6 = (9, a 2) and

covariance 7 (fi), there exists an alternative MA(1) representation with param eter

vector O' =  (2/6,  (02a2)/2)  which has the same covariance. Since we only observe 

Y(k) ,  there is no way to  distinguish between the two. One reasonable m ethod for this 

is to set param eter constraints such th a t one is selected over the other. Constraints 

on 6 th a t result in an invertible Y( k )  allow for this.

4 .3 .2  M e th o d  II

Recall th a t for any causal ARMA(p, q) process, X ( k )  can be w ritten as

OO , 2i

* ( fc) =  E f r  E W -
i—0 j —1

M ultiplying each side by any upstream  Xjj(fc) and taking expectations, we find a 

system of equations defined by

l ( h ) -  y  2 (1~'l)+7 (fi -  1 )  y  2 (p“ 'l)+7 (|/i -  p\) = (4T8)
j —h

for 0  < h < m  and

7 ( ^ ) - y 7 ( ^ - l )  t ^ l ( h - p )  = 0 (4.19)

for h > m  where m  =  max(p,q  +  1) and (x)+ = m ax{0,x}. The coefficients ipj-h, 

should be expressed in terms of elements in (j) and 0 through the expansion tp(z) = 

9{z)/4>{z). Thus, for large h, we find 7 (h) to be in the form of a homogeneous linear
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difference equation, where the solution for 7 (h) is a linear function of polynomial 

roots. Note however, th a t the roots are not those of 4>{z), bu t those of <j>{z/2). 

The p  coefficients aq as well as "f(h),h =  0 , . . . ,  m  — p  can be obtained from the m  

equations defined by 4.18.

For a strictly AR(p) model, the above equations allow expression of the ACVF 

in terms of the polynomial roots of 4>(z/2 ), where

can be directly substituted into (4.18) to obtain aq. W hen q > 0, these equations 

are non-linear in 0, as will be seen in deriving initial conditions for optim ization in 

the MA(1).

E x a m p le  4 .3 .2  For the strictly AR model of order 2, we have

and then be solved to obtain expressions for a x and a 2. Furthermore, since 

4>(B)X(k) =  (1 — < f̂1S ) ( l  — ^  B ) X ( k ) ,  we see th a t

4>i — £1 1 + £2 1

p

l ( h )  = h +  a 2&— h 
■2 >

which is substituted back into

7(0) -  0 i7 ( l)  -  027(2) =  o-2 

7 ( 1 )  -  y 7 ( 0 )  -  y 7 ( l )  =  0

and

$2 =  - e r  V

where £1 and £2 are the roots of <p(z/2) (Recall th a t the solution to the homogeneous 

difference equations defined by (4.19) are in terms of the roots of <f>(z/2) rather than 

<j>(z/y/2) ). W ith substitution, we find
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which is used to obtain the expression

-  ( g v - V ) t - - f f - )  ( f c “ 2 -  2 , _ l 5 ‘  - f e _ !  -  2 ) ; ‘ ■
In the case of complex roots, we have £2 =  £1 and =  rexp*A =  r(cos(A) +  

i sin(A) where

J  ta n ” 1 1̂ |  0 ! < O
\  T r - t a n - 1 | ^ |  >  0  '

Since 0 2 <  0 for a causal AR(2) with complex roots, A is restricted to  A € (0, tt).

W ith tha t, we derive the expression

a 2r4r~h (r2 sin(A +  Ah) +  2 sin(A — Ah))
^  ( r2 — 2) (r4 — 4r2 cos(2A) +  4) sin(A)

4.3 .3  Sam ple A u tocovarian ce Function

Following Brockwell and Davis (1991, Chapter 7), define the sample autoco­

variance function to be

7 (h) = rCl ^  (x(k) — x) (x(k') — x ) . (4.20)
( k , k ' ) : \ k - - k ' \ = h

Note th a t the sum is over all occurrences of a particular lag h while the divisor is 

the to ta l number of observations. In a tim e series context, using n  as the divisor 

ensures a non-negative definite sample covariance matrix. Furthermore, for large n 

and reasonable h, the differences in j ( h )  due the the different divisor is negligible. 

The impact of using the number of occurrences of lag h rather than  n  on the non­

negative definiteness has not been determined for the tree structure here.

Once j (h )  is obtained, the sample autocorrelation function (ACF) easily follows

by

m  =  «•*»>

The network analogue for a Partial Autocorrelation Function as well as the 

impact of a tree structure on the non-negative definite constraint of the estim ated 

covariance m atrix have not been considered, and are left as an area for future re­

search.
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4.4  S ta te -S p a c e  F o rm

Any causal ARMA(p, q) model can be w ritten in the state-space form given by 

(2.1) and (2.2). Furthermore, there may exist more than  one state-space represen­

tation for a given causal ARMA (p. q) model. We present one such representation 

which is analogous to th a t for a tim e series (Brockwell and Davis, 1991, p .468), rec­

ognizing th a t others do exist, and may have system matrices with smaller dimension 

than  those provided here.

The dimensions of the system matrices and vectors increase with p  and q. If we 

define r — max(p, q +  1 ), we can obtain a state-space representation for the general 

ARMA(p, q) model. Further define 60 = 1 and note th a t fa = 0 for i > p  whereas 

Qi = 0 for i > q. From (2.1), we find the observation equation for the ARMA(p, q) 

model to be

Y  (k) f lr - l ^  0r— 2
2r~1 2r~2 X(fc)

where [0j / ( 2 j ) ]T is a 1 x 2J vector with each element equal to 9j/(2J). The state 

vector is defined to be

X rA(k)
X rj2(/c)

x r_u (fc) 

x (fc) =  ^ (fc)

* 1 , 1  ( f c )

* 1M
X ( k )

where X.hj (k)T is a vector of elements X( k ' )  such th a t \k—k'\ =  h and k'  is upstream  

of parent j .  In the state  equation, we see a block-like structure since X(fc) consists 

of elements from each parent. The system m atrix associated with parent i is defined 

by

Fii yk
FIi,k

<p r —1 
2r~12r 2 r_1 2

where the rows of F*k are defined to  select the appropriate elements from X(iq).
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E x a m p le  4 .4 .1  The ARMA(2,2)

In a state-space representation, the observation equation for the univariate 

ARMA(2,2) can be w ritten as

Y( k )  =  [ 92/4  02/4  02/4  02/ i  0 ^ 2  0^/2 1 ] X{k)  (4.22)

where

'  * 2,1 (k)
* 2 ,2  (k)
* 2 ,3  (k)

X ( k )  = * 2  A ( k )

*m (A 0
* 1  >2(fc)

_ X ( k )

The corresponding m atrix in the state equation

by

F\ tk

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 02/4 02/4 01/2

(4.23)

where the m atrix for parent u2 similarly follows. W ith that, the state-space repre­

sentation for the ARMA(2, 2) is easily obtained. The covariance m atrix associated 

with the white noise process is defined by

Q(k) 0 6x6 0 6 x1 
_2

0 l x 6  &

Param eter constraints for the stationary case are established through the concepts 

of causality and invertibility of a process on a stream  network.

4 .5  q -C o rre la te d  P ro c esse s

Here we present the network analogue to the existence of an MA(g) represen­

tation for a ^-correlated process in tim e series. If h denotes a previous generation
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of X( k ) ,  then for a (^-correlated process, X{ k )  is correlated to every Xhj (k ) ,  for 

h = 1 ,q bu t uncorrelated with any Xk,j for h >  q. We further assume the 

correlation is constant with every reach th a t exists a t lag h, bu t changes with h. 

We restrict ourselves to binary trees.

Proposit ion  4-5.1 Suppose { X (k)} is a zero mean stationary process on a network 

such j ( h )  = Cov(X(k) ,Xh, j (k) )  =  0 for  h > q but 7 (q) ^  0. Then there exists a 

white noise sequence {Z(k ) }  such that

so that {X(fc)} is an MA(q)  process.

P ro o f  The proof parallels th a t of the moving average representation for a q- 

correlated time series in Brockwell and Davis (1991, p. 90). Results of the Projec­

tion Theorem (Brockwell and Davis, 1991, p. 51) are applied to the tree structure 

of a stream  network. If Ad is a closed subspace of the Hilbert space 7i , then for each 

x  £ Tt there is a unique x  €  M  such th a t x  — x  € M, -1, the orthogonal complement 

of M..  The required mapping is V m x  =  x - The subspaces considered here are closed 

spans of random  variables from the Hilbert space L2 (fi, P,  P ).

Let X {k) =  A’(/t]\{X(fc)} where X (k] =  X( k )  U Then for

each reach k, define the subspaces M(k)  =  sp{X(k)} and M(k\ = sp{X(k]}, and let

from which Z(k)  6  yet Z(k)  G a direct result of the Projection

Theorem. Thus if k! is upstream  of k, then Z(k' )  e  M ( k'] C M ( k) and hence 

E  (Z(k ' )Z(k) )  — 0. To show th a t Z{k)  is stationary, a convergence result of projec­

tion mappings is needed. Specifically, for X n<(k) =  { X itj ( k ) } i=1 ...nj =i...2P

Z(k)  =  X { k ) - V M m X{k )

'Pm*n,w}XW ™ vM{k)x(k)
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as n  —> oo. To show this, define the normalized value of X ( k )  to be

X{ k )  -  V M{k)X ( k )
m  =

X ( k ) - V M w X ( k )

so th a t I (k)  are linear combinations of elements in X(k] implying th a t ~sp{X(k\) — 

sp{I(k\} for I ( fc] =  I (k)  U { /ij  (A:)}i=i...oo,i=i...2i ■ Since Hp{2(k)} is a separable Hilbert 

space, the desired result follows from Brockwell and Davis (1991, Section 2.4).

By stationarity  of X ( k )  and the continuity of the L2 norm,

||Z (*0|| =  x ( k ) - v Mwx(k) 
x(k)-rw{Inm}x(k)
X ( u \ )  — 'Psp{inAui)} X  (u\)

X(U!)  -  V M{,n)X{u])

= 1 1 ^ ) 1 1

Defining ||Z(/c) | | 2 =  a 2, it is clear th a t Z(k)  ~  WN(0, <r2). To continue, we seek to 

obtain a decomposition of M(k)  into orthogonal subspaces. We see th a t

M(k) = sp{X(ui], X(u2]}

= i),Z(u2)}

— lim
n —>oo

=  lim71—>00

=  sp{UX{k/), \ k - k ' \  = q + l , Z itj(k) , i  = 1 . . .q,j  =  1...21}

Since X ( k )  is q-correlated, it follows th a t X{ k )  T  sp{UX ^ ) ,  \k — k'\ — g +  1}. 

Noting th a t M ( k )  is itself a Hilbert space which contains P M (k)X ( k )  and th a t 

s p{Zi j ( k ) , i  =  1 . . .q,j  — 1...2*} C M.(k) then using properties of projection map­

pings and orthonormal spaces,

T ^ M ^ X i k )  =  V Wp{uX(k,), \k-k' \=q+l} 'PM(k)X ( k )  +  Vsp{Zi,:i(k),i=l . . .q}'PMw X ( k )

=  0 +  'Pjp{Zij {k) , i=l . . .q }X (k)
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i = i  j = i  '  a  j  a

_  -S' (X ( k ) Z j j ( k )) y-^ ^

»=i a  i=i

since we assume th a t E  (X ( k ) Z i j ( k )) is constant for all j  a t a fixed lag i and is 

independent of k  by stationarity. If we define

Oi _  E  (X{k)Zi j ( k ) )
2* a 2

then we have

Z(k)  = X ( k ) - V M(k}X ( k )
q 2i

i=  1 j = l

from which the Moving Average representation is immediate.

4.6  S im ulation  R esu lts

The AR(2) as well as the ARMA(1,1) with special cases AR(1) and MA(1) are 

considered on two different tree structures. The first is a full binary tree with 8 

levels, which consists of 255 observations. Since there only exists 8  levels in this 

binary tree, the largest lag possible is 7. The second tree is th a t defined by a 

subset of Upper and Lower Rock Creek in Montgomery County, M aryland, as seen 

in Figure 4.2. This network structure consists of two running second order segments 

th a t merge to  create a th ird  order segment. Each of these higher order segments 

consists of several inputs of first order reaches. There are 39 reaches in total, with 

lags 0 through 15 present, where there are very few occurrences of these higher lags.

Realizations were generated for each of these lower order ARMA models with 

several different param eter values. For all models, we defined the true variance of the
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R ock C reek

Figure 4.2: Portion of Upper and Lower Rock Creek, Montogmery County, M ary­
land, consisting of 21 first order reaches, 10 second order reaches, and 9 th ird  order 
reaches. There are 2 second order segments merging to  form 1 th ird  order segment.

white noise process to be a2 — 1. Values for the autoregressive param eter are (f> € 

{—1 .2 , —0 .6 , 0 .6 , 1 .2 } whereas those considered for the moving average param eter 

are 0 € {—1.1,—0.4, 0.4,1.1}. Note th a t different values for </> and 0 are required 

since the stationary ARMA(p, q) models assume polynomials with no common zeros.

Realizations for the AR(2) were obtained with model param eters chosen from 

the causal region (defined in Figure 4.1) th a t represent several different forms of 

dependence.
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4.6.1 D a ta  G eneration

4.6 .1 .1  A R M A (1 ,1 )

For each reach k, values for Y (k ) and Z(k)  are obtained and made available for 

the immediate downstream recursion. For the first order reaches, we see th a t

t-2 ( l  , (j2
^  / 2) )Y( k )

Z(k) N  0,
a

a a

from which i.i.d draws generate the simulated [Y(k),  Z(k)\ .  At each higher order 

reach, white noise was drawn from N ( 0 , a 2), which was then used with the down­

stream  recursive relationship to obtain Y(k) .

4 .6 .1 .2  A R (2 )

The covariance 7 (h) ,h  =  0,1 was determined for specified (^ 1, ^ 2) in the re­

gion defined in Figure 4.1 using (4.18) and (4.19). Then for each first order reach, 

independent draws were obtained from

' Y{u  1) ' / 7(0) 0 <£1/ 2 7 (1 ) 0 \
Y ( u2)

~  N 0 ,
0 7 (0 ) <£1/ 2 7 (1 ) 0

Y(k) ^ 1/ 2 7 (1) 7 (0 ) u 2

m \ 0 0 u 2 a2 )
where the values for the imaginary parents are needed for the recursive relationship 

with the reaches immediately downstream of first order k. Values Y( k )  were easily 

obtained for all higher order reaches through random draws of independent noise 

and the recursive relationship as defined by the model.

4.6 .2  K alm an R ecursions

4 .6 .2 .1  A R M A (1 ,1 )

The state-space form for the ARMA(1,1) follows from §4.4. Here we de­

fine X(£;)t =  [ X( u \ )  X (u 2) X ( k )  ] T. A state-space representation for the 

ARM A (1,1) is defined by

Y( k )  = [ 6/2 e/2  1 ] X(Jfc)
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X ( k )  -
'  0 0 1 '  0 0 0 0

0 0 0 X (u j) + 0 0 1 X (li2) + 0

0 0 0 / 2 0 0 0 / 2  _ . Z ( k ) .

where

Q(k)
0 0 0 
0 0 0 
0 0 CT2

for all k.

Because of stationarity, initial conditions for the state  at each first order reach 

are easily identified. The initial predictions and corresponding variances are defined 

by the model assumptions where X ( k )  has mean zero with Var[X(A;)] =  1_^2/2- W 

we assume th a t each first order reach has two imaginary upstream  parents, we have

X p(k) 0 QP — —2Z 
u ) “ fc l - 0 2/2

1 0 0/2
0 1 0/2

0/2 0/2 1

which are used to initialize the filter. The innovation variance A k is derived to  be

A k = 1 + 4)9 +
1 -  0 2/ 2  V- ' ' 2

4 .6 .2 .2  A R (2 )

The state-space form of an AR(2) is defined by setting

Gk =  [ 0 0 1 ]

with

0 0 1 0 0 0

II3 0 0 0 0 0 1

_ 0 2 / 4 0 2 / 4 1 1 ■e
-

to 0 2 / 4 1

and

Q(k)
0  0 

0  0

0

0
0 0 a 2
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As with the ARMA(1,1), W(k)  is defined to  be zero for all k. Initial conditions 

for the states at first order reaches are defined by the unconditional distribution of 

X ( k ) ,  which is the same for all first order k  by flow-connectedness and stationarity. 

For a specified 02) in the region defined in Figure 4.1, the covariance structure 

is obtained through either of the m ethods discussed in §4.3. W ith th a t, we have

assuming each first order reach has two imaginary upstream  parents simply for 

convenience. The innovation variance A^ follows immediately from

since W(/c) =  0 for all k.

4 .6 .3  G aussian  L ikelihood

The likelihood in term s of the innovations is easily obtained through execution 

of the Kalman recursions. Since neither the prediction nor innovation variances 

depend on the data, we can see tha t

where fTkp and A*k can both be obtained from the usual recursions with a 1 =  1 . 

Furthermore, the innovations v(k)  do not depend on a 2. W ith this, we see tha t 

apart from a constant, -2  times the log of the likelihood is

which can be used to  obtain the closed from expression for the maximum likelihood 

estimator

XP(fc) =  0 , =
7(0) 0 7(1)01

0  7 (0 ) 7 ( l ) 0 i
7 (1 )0 i/2  7 (1 )0 i/2  7(0)

0 7(1)0 i /2
7(0) 7 (1)0i /2

Afc =  Gkn pkGTk

2 = 1 jESi fc = 1
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where N  is the to tal number of reaches. W ith substitution, we have a concentrated 

likelihood

m s n%j

lc{Y , </>, e) = N  log <72 +  £  ] T  E  log I A *I +  N
i = l  jE S i  k= 1

which is now a function in fewer parameters.

4 .6 .4  P aram eter E stim ates

A network analogue of Yule-Walker type estim ators can be obtained by using 

(4.18) and (4.19). For a strictly AR(p) model, we obtain the Yule-Walker equations

=  lp (4.24)

and

u 2 =  7 (0 ) -  </>T7 p (4.25)

v
for row i, column j ,  and -yp —

i j = l

(7 (1 ) , , . . , 7 (p)). Note th a t is similar in form to th a t in time series, with the 

difference being specific weights for each element because of the upstream  averag­

ing.

If we replace the covariances 7  (h), h — 0, . . . ,p with their corresponding sample 

covariances 7 (h), we obtain the estimates

= f ; 1̂  (4.26)

and

a2 = 7 (0 ) -  4>t %  (4.27)

where r p and %  are defined as was for (4.24) and (4.25). Unlike the case in time

series, the estim ate defined by (4.26) does not guarantee th a t l - f a z  — -- ■ — 4>pzp ^  0

for z < a/2 1 (Brockwell and Davis, 1991, p .240).

where Fp is the m atrix 23
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Using (4.18) and (4.19), the Yule-Walker equations can be generalized for cases 

when q >  0. If we express ipj-i in term s of elements in <f> and 9 through the 

expansion ip(z) = Q(z)/<j)(z), a system of equations is easily obtained. However, 

as we will see with the MA(1), these equations can be non-linear in the unknown 

model param eters.

Maximum likelihood was another tool which was used to obtain estimates of 

model param eters. We have shown a closed form expression for cr2, and numerical 

optimization routines can be used to  obtain estimates for the remaining </> and 6 

param eters. Moreover, estimators th a t are solutions to  the Yule-Walker equations 

can be used as preliminary estimates required for these numerical techniques. O ther 

estimators from Burg’s algorithm, the Innovations Algorithm, and Hannan-Rissanen 

Algorithm may be adapted to  tree structures, bu t these were not considered here.

In order to obtain estim ators which result in a causal/invertible ARM A pro­

cess, optim ization needs to consider the necessary param eter constraints. W hen 

applicable, a transform ation was used in an effort to  minimize numerical difficulties 

because of these boundary conditions. The optim ization in the following exercise 

was chosen to be an unconstrained minimization over £new through the transform

for e  (—a, a) as suggested by Durbin and Koopman (2001, p .142). Using this 

transform ation, iterative estimates were less sensitive to  the boundary conditions. 

For models such th a t a simple transform ation was not available such as the AR(2), 

other techniques were considered.

The optim ization routine used for maximization requires initial starting values. 

To assure th a t the estim ate is truly one th a t maximizes the likelihood, four starting 

points within a causal/invertible region were also used to  initialize the routine. From 

the different starting  points for which the optimizations converged, we selected those 

which resulted in the highest likelihood.

,new
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4.6 .5  F irst O rder A utoregressive: A R (1)

Realizations for 0 e  {—1-2, —0.6,0.6,1.2} were generated, where a 2 =  1. The 

state vectors for the AR(1) can be 1-dimensional for simplicity. In this case, Y ( k ) =  

X ( k )  and the Kalman Filter is initialized with

x n k )  = o K  =

for any first order reach k. Clearly, =  &Pk for these first order reaches. Since 

the prediction variances do not depend on the data, we see th a t Afc =  = a 2 for

any downstream reach with observed data. This allows even further simplification 

of the log-likelihood, seen by

/(Y ,ct2 ,0 ) <x - ^ l o g o-2 - ~ ^ 2 ( Y { k ) - ^ ( Y ( Ul) + Y ( u 2) ))
ken '  '

+ y  log(l -  02/2) -  2^2 E  Y ^ 1 -  ^ / 2 )
k e f

where rq is the number of first order reaches. In this function, the variance a2 is 

easily concentrated out, and the log(l — 4>2/2)  term s control its behavior near the 

boundaries of |0 | =  \[2.

For each realization, maximum likelihood estimates for 0 and a 2 were obtained 

from which estimates for 7 (h) and p(h)  are calculated. Using the Yule-Walker 

equation (4.26), a m ethod of moments estim ator was generated by

i = m
7 (0 )

where 7 (h) was obtained from the sample ACVF using (4.20). From this we obtain 

the Yule-Walker estim ate by

1 _ [ 4 >  M  <  >/2
^  ~  \  sign(0 ) 7 2  |0 | > ^ 2
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where we set the estim ate to be the boundary if the moment estim ate represented 

a non-causal process. The four starting  points in the numerical optim ization corre­

sponded to  (f> 6  {—1, —.3, .3,1}.

The resulting ACF from averaging the sample ACF over the simulated real­

izations can be seen in Figure 4.3. Param eter estimates from the 100 realizations 

were also averaged. It is easy to  see from Figure 4.3 th a t the correlation decays 

exponentially. Furthermore, we see th a t the sample ACF tends to  under-estimate 

the tru th , especially with the Rock Creek structure where there are relatively few 

occurrences of each lag available for estimation.

For models where \<f>\ =  1.2, the optimization often resulted in estimates close 

to  the boundaries of ±s/2,  clearly indicated by the skewness seen in Figure 4.4. 

W hen this occurred, the estim ate for a2 tended to  be larger, and consequently th a t 

for 7 (0 ) was greatly inflated. Results for the Maximum Likelihood estimators are 

found in Tables 4.1 and 4.2, whereas those for Yule-Walker estimators are in Tables

4.3 and 4.4.

In Tables 4.1 and 4.2, we see th a t mean square errors associated with each 

estim ate are much smaller for the binary tree. This is expected since the number of 

reaches is more than  six times th a t on Rock Creek. There is also much less variation 

in the estimates obtained via maximum likelihood.

We also see from Tables 4.3 and 4.4 th a t unlike the case in tim e series, the 

moment estim ators resulting from the Yule-Walker equations are not guaranteed 

to  represent a causal model. Moreover, the associated variance estim ate is not 

guaranteed to  be non-negative. This situation seems to be more prominent on the 

Rock Creek structure. We also note a larger bias for a 2 when the true 4> is near the 

boundary. Exploratory plots indicate th a t the downward biased <fi (ie, biased towards 

zero) results in positively biased estimate of the white noise variance. Because of 

this inverse relation between estimators, the realizations for which \(f>\ > s/2 resulted 

in a negative variance estimate.
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Figure 4.3: True, estim ated (MLE), and empirical ACF for AR(1) processes on dif­
ferent tree structures. The MLE and empirical ACF displayed result from averaging 
the corresponding function over the 10 0  simulated realizations.
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Table 4.1: Maximum Likelihood Estim ates from 100 simulated realizations of each
AR(1) process on a Binary Tree

4 m Bias(0) MSE {4>) a2 E (a2) Bias (cr2) M SE(ct2) NC 1

-1 .2 - 1.2 0 0 .0 0 1 1 0.983 -0.017 0.013 0

-0 .6 -0.59 0 .0 1 0.007 1 0.979 -0 .0 2 1 0.008 0
0 .6 0 .6 0 0 .0 1 1 0.985 -0.015 0.009 0

1 .2 1.196 -0.004 0 .0 0 1 1 1 .011 0 .0 1 1 0.014 0

1 Number of realizations (out of 100) with non-convergent optimization.

ale 4.2: Maximum Likelihood Estim ates from 100 simulated realizations of e;
AR(1) process on Rock Creek

0 E (<f>) Bias(^) MSE (</>) a 2 E (u2) Bias((72) MSE(er2) NC 1

- 1.2 -1.181 0.019 0 .0 1 1 0.947 -0.053 0.097 0

-0 .6 -0.566 0.034 0.075 1 0.927 -0.073 0.053 0

0 .6 0.573 -0.027 0.086 1 0.977 -0.023 0.052 0

1.2 1.173 -0.027 0.013 1 0.994 -0.006 0.09 0

1 Number of realizations (out of 100) with non-convergent optimization.
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Table 4.3: Yule-Walker Estim ates from 100 simulated realizations of each AR(1)
process on a Binary Tree

<f> Bias(^) MSE (<f>) a 2 E (a 2) B ias(a2) MSE(cr2) NC 1

- 1.2 -1.187 0.013 0.013 1 0.99 -0 .0 1 0.175 2

-0 .6 -0.59 0 .0 1 0 .0 1 1 1 0.974 -0.026 0.009 0

0 .6 0.589 -0 .0 1 1 0.015 1 0.983 -0.017 0 .0 1 0

1.2 1.15 -0.05 0.016 1 1.13 0.13 0.208 3

1 Number of realizations (out of 100) with non-causal YW  estimates.

ible 4.4: Yule-Walker Estim ates from 100 simulated realizations of each AR(
process on Rock Creek

E(^) Bias(^) MSE (</>) a 2 E (a 2) Bias(cr2 ) MSE(cr2) NC 1

- 1 .2 -1.08 0 .1 2 0.086 1 1.104 0.104 0.712 15
-0 .6 -0.578 0 .0 2 2 0.088 1 0.9 -0 .1 0.079 0
0 .6 0.476 -0.124 0.116 1 0.983 -0.017 0.063 0
1 .2 0.969 -0.231 0.107 1 1.48 0.48 0.846 5

1 Number of realizations (out of 100) with non-causal YW  estimates.

The tabular results for the Maximum Likelihood and Yule-Walker estimates are 

graphically summarized in Figure 4.4.
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Figure 4.4: Maximum Likelihood (MLE) and Yule-Walker Method-of-Moments 
(YW) param eter estimates for 100 simulated realizations of each AR(1) process on 
different tree structures. Note th a t YW  estimates are defined to  be the boundary 
value when the moment estimates are outside the causal region.
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4.6 .6  F irst O rder M ovin g A verage: M A (1)

Realizations for 9 e  {—1 .1 , —0.4 ,0 .4 ,1 .1 } were generated, where a2 =  1. As 

with the AR(1), a sample ACVF and ACF are calculated using (4.20) and (4.21). 

The resulting ACFs from averaging the sample ACF and MLE ACFs over the 100 

simulated realizations can be seen in Figure 4.5. A m ethod of moments estim ator 

was determined from the relation

7 (0 ) =  a 2 ( 1 + j )

7 (1 )  =  cr2^

which are non-linear in 9. The solution

=  1 -  y/1 -  8p(l)2

2p(l)

results in an invertible process and is real-valued when p <  1 /2 v /2. In the event th a t 

|p (l) | >  l /2 \ /2 ,  the moment estim ate for 9 was defined to  be the closest boundary. 

The numbers of realizations for which this did not occur are summarized in the last 

columns Table 4.7 and 4.8. The moment estim ator for 9 is then defined by

0  =  2p(l) \ P y l >\ ^  2v/2 .
I  s ign (p (l))\/2  |/5(1)| >  ^

Maximum likelihood estimates for 9 and a 2 were also determined, with initial 

values corresponding to  9 € {—1, —.3, .3,1}. The estim ate selected for summariza­

tion was the one th a t resulting in the highest likelihood. Results from Maximum 

Likelihood and Moment estimation for each of these 100 realizations are summarized 

in Tables 4.5, 4.6, 4.7 and 4.8.

From Figure 4.5, it is obvious th a t both the maximum likelihood and sample 

estimates of the autocorrelation are approximately zero after lag 1. It is also noticed 

th a t the true correlation at lag 1 is bounded by 1 / 2 ~  0.35, indicated by the 

horizontal lines above and below zero, a necessity for an invertible MA(1).
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Figure 4.5: True, estim ated (MLE), and empirical ACF for MA(1) processes on dif­
ferent tree structures. The MLE and empirical ACF displayed result from averaging 
the corresponding function over the 100  simulated realizations.
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Table 4.5: Maximum Likelihood Estim ates from 100 simulated realizations of each
MA(1) process on a Binary Tree

e e ( 0 ) Bias(0) MSE(0) a 2 E (a 2) Bias(cr2) MSE (<j 2) NC 1

-1.1 -1.133 -0.033 0.058 1 0.971 -0.029 0 .0 2 0
-0.4 -0.393 0.007 0.015 1 0.987 -0.013 0.007 0

0.4 0.386 -0.014 0.019 1 0.999 -0 .0 0 1 0.006 0

1.1 1.127 0.027 0.054 1 0.971 -0.029 0.027 0

1 Number of realizations (out of 100) with non-convergence in Maximum 
Likelihood estimation.

)le 4.6: Maximum Likelihood Estim ates from 100 simulated realizations of e 
MA(1) process on Rock Creek

6 E(0) Bias(0) MSE(0) cr2 E(<72) Bias(<7 2) M SE(ct2) NC 1

-1.1 -1.063 0.037 0.191 1 0.951 -0.049 0.098 0

-0.4 -0.543 -0.143 0.225 1 0.893 -0.107 0.066 0
0.4 0.464 0.064 0.217 1 0.939 -0.061 0.065 0
1.1  1 .02 -0.08 0 .2 0 1 1 1.015 0.015 0.083 0

1 Number of realizations (out of 100) with non-convergence in Maximum 
Likelihood estimation.
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Table 4.7: M ethod of Moments Estim ates from 100 simulated realizations of each
MA(1) process on a Binary Tree

e m Bias($) MSE(6>) a2 E (a 2) Bias(cr2) MSE(cr2) NI 1

- i t -1.029 0.071 0.109 1 1.081 0.081 0.042 32
-0.4 -0.393 0.007 0.02 1 0.983 -0.017 0.008 0
0.4 0.378 -0.022 0.028 1 0.993 -0.007 0.007 0
1.1 0.983 -0.117 0.115 1 1.091 0.091 0.044 29

1 Number of realizations (out of 100) with lag-1 sample correlation outside 
invertible range.

oT G
O M ethod of Moments Estim ates from 100 simulated realizations of e 

MA(1) process on Rock Creek

e m Bias($) MSE($) a2 E (a2) Bias(u2) M SE(a2) NI 1

- i t -0.937 0.163 0.255 1 1.155 0.155 0.133 45
-0.4 -0.52 -0.12 0.22 1 0.91 -0.09 0.072 13
0.4 0.378 -0.022 0.165 1 0.959 -0.041 0.058 7
1.1 0.756 -0.344 0.357 1 1.225 0.225 0.14 29

1 Number of realizations (out of 100) with lag-1 sample correlation outside 
invertible range.
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In Table 4.5, we see a higher mean square error for 9 closer to boundaries. Upon 

inspection, realizations with 9 close to  the boundary had relatively flat likelihoods, 

alowing for large variation in 9. This phenomenon seems to reverse for the Rock 

Creek structure. W ith only 39 observations used for estimation, it is difficult to 

reason for this, other than  more variation and higher biases associated with smaller 

sample sizes.

We notice in Tables 4.7 and 4.8 a high mean square error and biases for 9 closer 

to  boundaries. Since there are many cases where |/3(1)| >  l /2 \ /2 ,  no real valued 

solution for 9 can be found. Thus, 9 was defined to  be the value of the closest 

boundary. We see this seems more likely to occur when the true 9 is closer to ±  y/2. 

In cases where |p (l) | <  l /2 \ /2 ,  the corresponding cr2 will always be non-negative.
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(a) Binary tree

(b) Rock Creek structure.

Figure 4.6: Maximum Likelihood (MLE) and Method-of-Moments (MOM) param e­
ter estimates for 100 simulated realizations of each MA(1) process on different tree 
structures. Note th a t MOM estimates are defined to be the boundary value when 
the moment estimates for p are outside the causal region.
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4.6 .7  A R M A (1 ,1 )

Realizations for different combinations of [<j>, 9) previously mentioned with 

cr2 =  1 were generated for both tree structures. Optimization was again per­

formed using four different starting points, one from each quadrant of the region 

defined by the intersection of \4>\ < \/2  and \9\ < y/2. Specifically, we chose 

(cj), 9) E {(1, .5), (—1, .5), (1, —.5), (—1, —.5)} as starting points for the optimiza­

tion, and selected the resulting estim ate which resulted in the highest likelihood. 

The resulting ACFs from averaging the sample ACF and MLE ACF over the 100 

simulated realizations are shown in Figures 4.7 and 4.9.

From the plots in Figures 4.7 and 4.9, we can see th a t for some combinations 

of (0 ,9), the autocorrelations drop off rather quickly. This occurs when is close to 

—6, where the polynomials nearly cancel each other out resulting in a process th a t 

closely resembles th a t of white noise. This is easily seen in the plots along the back 

diagonal of Figure 4.7 and Figure 4.9, starting with th a t of (<fi, 0) =  (—1-2,1.1). As 

seen in the first and last column of each figure, 9 generally has minimal influence on 

the ACF for a fixed (f> near the boundary, with the exception being the cases when 

(f) — 0 is closer to zero.

Param eter estimates from maximizing the Gaussian likelihood for the 

ARMA(1,1) models on a binary tree are shown in Table 4.9. Here we see th a t 

the maximum likelihood estim ator of a 2 tends to under-estimate the tru th , albeit 

negligible with the larger number of reaches in the tree considered. We see cases of 

large biases in estim ates of </> and 6 for all cases when 4> is close to  —9, the cases in 

which the resulting process is close to white noise. This large bias directly impacts 

the mean square error, which is unusually high relative to the other ARM A (1,1) 

models considered.

From Figure 4.8, there tends to  be a negative correlation between (f> and 9 , which 

is more prominent along the back diagonal starting in the lower left corner. It these
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cases, we see th a t plots generally follow a <f> ss — 9, which results in estimation 

from a process th a t closely resembles white noise. This is consistent with their 

autocorrelation functions which indicate a very small dependence for all lags.

We also see from Figure 4.8 a generally greater variation in 9, which is believed 

to  be a function of the small influence of 9 on the likelihood resulting in a flat 

objective function in the 9 direction. Although this neighborhood is large, likelihood 

plots revealed th a t the true param eters were generally in this neighborhood. W hen 

the true <p is closer to  ± V 2 ,  we see much more gradient in the likelihood, and 

consequently less variation in <j>.

The autocorrelation functions for the ARM A (1,1) models on Rock Creek gen­

erally follow the same patterns as those on a binary tree, but with noticeable dif­

ferences in the sample ACF. In this network with many fewer reaches, it is obvious 

tha t the sample ACF deviates from the tru th , and is more distinguishable when 

cj) > 0. We also see th a t the sample ACF is often biased toward zero a t lower lags, 

yet not a t higher lags where the effect is expected to  be worse.

We see from Table 4.10 th a t param eter estimates generally have biases larger 

in magnitude and corresponding mean square errors than  those on the binary tree. 

This is believed to  be a function of the sample size rather than  the tree structure, 

although we have neither addressed nor determined any influence of tree structure 

on variation in param eter estimates, as it is left as an area of future research. We 

see the same large biases (and mean square errors) as we did on the binary tree for 

param eter estimates when the true </> is close to —9.

In Figure 4.10, again we see the same general tendencies as in Figure 4.8 for 

the binary tree. The greater variation in param eter estimates in Table 4.10 is clear 

from these plots where the clusters all appear much bigger.
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Figure 4.7: True, estim ated (MLE), and empirical ACF for each ARMA(1,1) process 
on a binary tree. The MLE and empirical ACF displayed result from averaging the 
corresponding function over the 100 simulated realizations.
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Figure 4.8: Scatter Plot of param eter estimates for 100 simulated realizations of 
each ARMA(1,1) process on a Binary Tree. True param eter values are indicated by 
the dotted lines.
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Figure 4.9: True, estim ated (MLE), and empirical ACF for each ARMA(1,1) process 
on Rock Creek. The MLE and empirical ACF displayed result from averaging the 
corresponding function over the 100 simulated realizations.
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Figure 4.10: Scatter Plot of param eter estimates for 100 simulated realizations of 
each ARMA(1,1) process on Rock Creek. True param eter values are indicated by 
the dotted lines.
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4.6 .8  Second O rder A utoregressive: A R (2 )

For the AR(2) models considered, the white noise variance was again a2 = 1. 

Different pairs (0i,</>2) are considered to represent different covariance structures 

over the stream  network, namely, (1,0.25), (—0.75,0.25), and (0 .5 ,—1.5). The first 

two represent causal AR(2) models with real roots, whereas the last represents a 

causal AR(2) with complex roots.

Yule-Walker estimates for 4>\ and <p2 were obtained by substituting 7 (h) from 

the sample ACVF into the relation

01

01

7(l)/2 ‘
-1

7(1)
02 L 7(l)/2 7 (0)/4 _ . 7(2) .

which results from (4.24). The estim ate for a2 was then  computed directly from 

(4.25).

Maximum Likelihood estimates were obtained numerically from starting points 

of (0i, fa) e  {(0.5,0.7), (-0 .5 ,0 .7 ), (1.0, -1 .25 ), ( -1 .0 , -1 .25)} . Additionally, if the 

Yule-Walker estimates fell in the causal region defined in Figure 4.1, they too were 

used as an initial starting  point.

In the previous models, we used appropriate transform ations to  allow for an un­

constrained optim ization th a t guaranteed estimates from a causal/invertible model. 

We have not found any such transform ations for the AR(2) model. To achieve 

causality, the objective function was set to  an arbitrarily large number if the iter­

ative estimates fell outside the causal boundary. This rule kept the routine within 

the causal region. As seen in Tables 4.13 and 4.14, there are cases where Yule- 

Walker estimates are not guaranteed to  be inside the causal region. Results from 

1 00  realizations under the tree models considered are tabled below.

The behavior of the ACF under different models is shown in Figure 4.11, where 

the sample ACF and MLE ACF are averages over the corresponding ACF for each 

of the 100 simulated realizations. The ACF decays with increasing lag. W hen the
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autoregressive polynomial f a z / 2) has complex roots, the ACF resembles a dam pen­

ing sinusoid. W hen the modulus of the roots associated with f a z / 2) are close to \/2 , 

the dampening is slower. This differs from th a t in time series where the dampening 

is slower when r is close to  1. Here, we require th a t r be at least \/2  for the AR(2) 

to  be causal.

For the estimates obtained via maximum likelihood, Table 4.11 shows much 

smaller biases and mean-square errors associated with the binary tree than  from 

Rock Creek, again attribu ted  to the much larger sample size. Consequently, there 

are many more transitions at each lag h th a t are available for param eter estimation. 

We also notice th a t there tends to  be a negative bias associated with all estimates 

from the Rock Creek structure.

The variation within and correlation between fa  and fa  from maximum likeli­

hood can be seen in Figures 4.12 and 4.13. In comparing the maximum likelihood 

estimators with those from the Yule-Walker equations, we see much less variation in 

those obtained via maximizing the Gaussian likelihood. We also see a more obvious 

correlation between fa  and fa  for the models with (true) real roots, correlation th a t 

is more prominent in the estimates from maximum likelihood.

We also note th a t even though the optimization algorithm was restricted to  the 

causal region defined in Figure 4.1, the optim ization converged for every realization 

within each model. W ithout this restriction, the optimization periodically jum ped 

outside of the causal boundaries, a likely consequence of relatively flat likelihoods 

for the models selected.

Although not shown in the plot, we periodically observed unusual YW  estimates 

such as fa  «  —35 with corresponding fa  «  51 when the true values were fa  = 1.0 

and fa  — 0.25. These large anomalies contribute to  the large biases and mean square 

error. Although there are many more occurrences of these anomalies in the model 

with complex roots where fa =  0.5 and fa  — —1.5, these estimates tended to be
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Table 4.11: Maximum Likelihood Estim ates from 100 simulated realizations of each AR(2) process on a Binary Tree

</> 1 E(<M B ia s ^ i) M S E (^ ) 4>2 E (& ) Bias(</>2) MSE (4>2 ) <x2 E (a2) Bias(cr2) MSE(cr2) NC 1

1 0.993 -0.007 0.017 0.25 0.255 0.005 0.05 1 0.985 -0.015 0.017 0
-0.75 -0.748 0.002 0.014 0.25 0.264 0.014 0.05 1 0.967 -0.033 0.012 0
0.5 0.512 0.012 0.01 -1.5 -1.504 -0.004 0.009 1 0.969 -0.031 0.023 0

1 Number of realizations (out of 100) with non-convergence in Maximum Likelihood estimation.

Table 4.12: Maximum Likelihood Estimates from 100 simulated realizations of each AR(2) process on Rock Creek

4i E(<M Bias(^i) M S E ^O 4>2 E(& ) Bias(</>2) MSE(<fe) cr2 E(<r2) Bias(<72) MSE(cr2) NC 1

l 0.985 -0.015 0.1 0.25 0.216 -0.034 0.311 1 0.869 -0.131 0.126 0
-0.75 -0.767 -0.017 0.128 0.25 0.202 -0.048 0.431 1 0.781 -0.219 0.13 0
0.5 0.48 -0.02 0.144 -1.5 -1.546 -0.046 0.249 1 0.71 -0.29 0.405 0

1 Number of realizations (out of 100) with non-convergence in Maximum Likelihood estimation.
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Table 4.13: Yule-Walker Estim ates from 100 sim ulated realizations of each AR(2) process on a Binary Tree

01 E (0i) Bias(0i) M S E (^ ) 02 E (02) Bias(02) M SE(02) a 2 a 'q
', to Bias(cr2) MSE(<r2) NC 1

1 0.894 -0.106 0.411 0.25 0.287 0.037 0.97 1 1.076 0.076 0.27 1
-0.75 -0.712 0.038 0.026 0.25 0.256 0.006 0.087 1 0.99 -0.01 0.022 0
0.5 0.603 0.103 0.038 -1.5 -1.533 -0.033 0.089 1 0.868 -0.132 0.277 6

1 Number of realizations (out of 100) with non-causal YW  estimates.

Table 4.14: Yule-Walker Estimates from 100 sim ulated realizations of each AR(2) process on Rock Creek

0i E (0X) Bias(0i) M S E (^ ) 02 E (02) B ias(02) M SE(02) a 2 E (a 2) Bias(cr2) MSE(<72) NC 1

1 0.657 -0.343 13.782 0.25 0.232 -0.018 27.774 1 1.645 0.645 19.18 6
-0.75 -0.955 -0.205 6.413 0.25 -0.1 -0.35 12.98 1 0.501 -0.499 3.348 9
0.5 0.548 0.048 0.208 -1.5 -1.567 -0.067 0.426 1 0.566 -0.434 1.621 25

1 Number of realizations (out of 100) with non-causal YW  estimates.
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fairly close to the causal boundary, whereas those for the other models tended to 

be much more extreme, thus having a greater impact on the estimates of bias and 

mean square error.
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(b) Rock Creek structure.

Figure 4.11: True, estim ated (MLE), and empirical ACF for each AR(2) process 
on different tree structures. The MLE and empirical ACF displayed result from 
averaging the corresponding function over the 100 simulated realizations.
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( 1 , 0.25 )

(a) Maximum Likelihood

(b) Yule-Walker

Figure 4.12: Scatter plots of f°r 100 simulated realizations of each AR(2)
process on a binary tree.
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Figure 4.13: Scatter plots of for 100 simulated realizations of each AR(2)
process on Rock Creek.
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4.6 .9  M od el F it to  R ock  C reek D ata

D ata for numerous study variables are available for river networks in Mont­

gomery County, M aryland, from the sta te ’s Departm ent of Environmental Protec­

tion. This agency oversees biological monitoring stations throughout the county and 

in some instances other counties where streams enter into Montgomery County. In 

general, the stations are randomly located within each of the watersheds. W ithout 

the use of Geographic Information Software, often referred to  as GIS, there is no 

good estim ate of how much distance water m ust travel between monitoring stations. 

We ignore this specific information for now, although future research may involve 

the use of such information to appropriately weight specific observations based on 

some sort of distance measure.

The da ta  of interest here are fish habita t information at each of the stations. 

Variables such as instream cover, channel attributes, and suspended sediment are 

available for monitoring stations throughout the county a t a variety of tim e points. 

For simplicity, we selected only a small drainage to work with, th a t of Upper and 

Lower Rock Creek. Many reaches have multiple monitoring stations th a t may have 

collected d a ta  during summer and winter months since the mid 1990s. The geometry 

of this specific watershed and distribution of observation stations can be seen in 

Figure 4.14. There are 39 reaches total, however, only 35 have at least 1 monitoring 

station.

We consider instream  cover score in this example, which is a measure of the 

percent of covered areas under water in which fish can hide, and ranges from 0 to 

20. Although these are discrete scores, we trea t these values as if they were contin­

uous for this analysis. Multiple observations per reach are considered conditionally 

independent given the state  of the reach even though they may be from different 

monitoring stations or different tim e points. We fit four models to this data: AR(1),
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Rock Creek

Figure 4.14: Geometric structure and distribution of monitoring stations for Upper 
and Lower Rock Creek.
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MA(1), ARMA(1,1), and AR(2), each with added noise to account for the multi­

ple observations per reach. Thus, the observation equation for the ARMA models 

is redefined such th a t W(A;) is no longer deterministically zero. The observation 

equation is now defined by (2.1) with

W ( k )  ~  N  {0 ,a 2wInkXnk) .

where Uk is the number of observations for reach k.

We obtain a sample ACF through a sampling approach. Here we randomly 

select one observation per reach to obtain a single univariate realization over the 

network, and calculate a sample ACF for this realization. We repeat this process 

100 times, with the average at each lag then taken to  be the sample ACF at th a t 

lag for the process on the network.

Using a variation of standard perm utation tests (Mielke and Berry, 2001), we 

empirically compute bounds a t each lag as if the data  were white noise. To do 

so, we perm ute the da ta  for the entire network to  assign new values to  each reach 

eliminating any structure to the data. A sample ACF via the sampling approach 

previously described was then calculated. This process was repeated 250 times 

resulting in a sample of possible autocorrelations a t each lag for unstructured data. 

We define the bounds for a white noise process to  be the 2.5th and 97.5th percentiles 

a t each lag.

We see from Figure 4.15 th a t there seems to be a small amount positive autocor­

relation at the first two lags, which is believed to under estimate the tru th  because 

of the downward bias seen in the sample ACFs in the simulation study, particularly 

on the Rock Creek structure. We fit four models to  this da ta  via Maximum Like­

lihood, and generate an estim ated autocorrelation function based on the model fit. 

For assurance th a t the estimates truely maximize the likelihood, the function was 

first evaluated at a grid of possible param eter values. We then chose the twenty grid
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Figure 4.15: Sample Autocorrelation Function for mean corrected instream  cover 
values on Rock Creek with empirical white noise bounds.

points th a t resulted in the highest likelihood to  be used as starting  values for the 

optimization. From those optimizations, the estimates were those with the largest 

likelihood such th a t the optimization converged.

The autocorrelation function of each fitted model was adjusted accordingly due 

to the measurement variation. In doing so, we have an estimated autocorrelation 

which is representative of the observations rather than  a function strictly for the 

underlying process. These fitted autocorrelation functions are seen in Figure 4.16. 

In Figure 4.16, we see similar discrepancies between the MLE and empirical ACF 

to those identified in the simulation studies.

Another diagnostic utilized for model selection resulted from a form of a para­

metric bootstrap  (Lange, 1998). One hundred realizations under the fitted model
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Table 4.15: MA(1) fit to instream  cover on Rock Creek

Param eter Estim ate Bootstrap Standard Error Bootstrap Interval

a\ 59.61 21.32 (40.59, 116.99)
7.86 0.92 (6.35, 9.86)

e 1.41 0.34 (0.44, 1.41)

were generated over the stream  network, and a sample ACF for each was deter­

mined. From this, we determine if the observed sample ACF is representative of a 

sample ACF for d a ta  generated by the fitted model. We see a set of possible sample 

ACFs for each model fit in Figure 4.16. Of the models considered, the MLE ACF is 

more consistent with sample ACFs of an MA(1) process than with a process with 

non-zero autoregressive parameters.

We obtain estim ated standard errors and confidence interval approximations 

via the same param etric bootstrap  in the above diagnostic. For each realization 

generated by the param etric model fit, new param eter estimates were obtained. 

The bootstrap  standard error reported in Table 4.15 is the standard deviation of 

the param eter estimates obtained from the 100 bootstrap realizations. The interval 

estim ate is obtained from the 2.5th and 97.5th percentiles providing bounds for the 

middle 95% of the bootstrap  estimates. We see from Table 4.15 th a t our estim ate 

of 6 is not far from \/2 , and seems significantly different from zero. This may be 

an indication of some trend th a t has yet to  be removed, as is sometimes the case 

in tim e series. We do find in exploration of the data  a decreasing trend in instream 

cover with progression downstream.

An MA(2) was fit to  the original instream  cover values. Although the properties 

of a formal likelihood ratio test have yet to be determined, the ratio of likelihoods 

indicates minimal gain from modeling the more complicated MA(2). Rather than  

focusing on a more complicated model, we attem pted to remove the spatial depen­

dence by regressing instream cover on landscape and other appropriate covariates.
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Table 4.16: MA(1) fit to  residuals on Rock Creek

Param eter Estim ate Bootstrap Standard Error Bootstrap Interval
0.53 0.47 (0.05, 2.07)

a i 7.86 0.89 (6.35, 9.64)
8 -1.08 1.05 (-1.41, 1.41)

Available information such as month, year, and elevation are specific to  monitoring 

station, while land use and gradient associated with stream  bed are reach specific. 

O ther information such as percent of local basin th a t is forested or cultivated was 

also available.

A linear model was fit using these covariates, where we then  looked for auto­

correlation in the residuals from this regression model. We see the residuals seem 

to  be representative of white noise from Figure 4.17.

We fit the MA(1) the these residuals, and obtained an interval estim ate as well 

as standard errors via the param etric bootstrap. Results are found in Table 4.16. 

The estim ate of 8 indicates negative dependence, yet our bootstrap interval indicates 

th a t this estim ate is not significantly different from zero. We also see this in Figure 

4.18.

Thus, we see th a t the residuals do resemble a white noise process, and th a t the 

autocorrelation in instream cover was removed given appropriate landscape charac­

teristics.

By example, we have shown the ability to fit several simple ARMA models to 

actual da ta  collected on Rock Creek. We have obtained estimates of model param ­

eters and autocorrelation functions. Although we have not been able to  address the 

adequecy of the MA(1) model fit to instream cover, we have shown th a t the autocor­

relation can possibly be removed given the appropriate landscape covariates. Tools 

to assess model adequecy and model selection are left as an open area of research.
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Figure 4.16: F itted  Autocorrelation Functions (MLE) for mean corrected instream 
cover values on Rock Creek identified by red circles. Grey lines indicate sample 
ACFs of param etric bootstrap  realizations whereas the solid black line is the sample 
ACF of the observed data. Empirical white noise bounds are indicated by black 
small black circles.
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Figure 4.17: Sample Autocorrelation Function for the residuals from a linear model 
fit to instream  cover on Rock Creek with empirical white noise bounds.
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Figure 4.18: Param etric Bootstrap results for an MA(1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

N O N-STATIO NA RY MODELS

In contrast with the ARMA models introduced in the previous chapter, mod­

els such th a t first and second moments can depend on reach location are said to 

be nonstationary. Such models are easily formulated when model param eters de­

pend on location. Models can also be defined explicitly in terms of components of 

interest such as trend or seasonality, which although they are unobservable, have 

direct interpretation. These models are referred to as structural models in a time 

series context (see Harvey, 1989, p .44). The components of these models are not 

seen as deterministic, rather each is driven by random disturbances resulting in a 

nonstationary model. The stochastic setting allows for a series to  respond to  general 

changes in behavior, especially when explanatory information can not be directly 

measured.

From the class of possible structural time series models, we consider only 

stochastic trend models on a stream  network, although addition of other stochastic 

components is feasible. We develop a network analogue of Random Walk with noise 

and Local Linear Trend models. We define a discrete smoothing spline on a stream  

network using a special case of these stochastic trend models, and apply it to  da ta  

on Rock Creek where the initial conditions are estim ated via a concentrated likeli­

hood. The smoothing spline is then obtained via the Kalman recursions developed 

in Chapter 2.

Although more general nonstationary models can allow for much flexibility, 

param eter estimates for even simple models can be difficult to  obtain and may be
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unreliable as was seen in §3.5. In this example we dem onstrated th a t estimation 

even with a relatively simple model can be problematic when the network is small 

such th a t it has few transitions from reach to  reach and missing d a ta  are present. 

We do not pursue these nonstationary models any further in this dissertation.

We begin this chapter with the introduction of stochastic trend models with an 

application on a stream  network.

5.1 S toch astic  Trend M odels

The stochastic trend models considered are the network analogues of a Random 

Walk plus Noise (RW +N) and Local Linear Trend (LLT). In these cases, the vari­

ances increase with progression downstream. In either case, a difference operation 

can be performed to  obtain a stationary series over a network. However, because of 

the branching structure, the number of observations in the resulting tree structure 

may be dram atically reduced by differencing. Differencing is further complicated by 

missing values. We therefore avoid differencing, and instead use the Kalman Filter 

to  construct a likelihood to be used as a criterion function for purposes of estimation 

and prediction.

We initially consider the RW +N, and later show it as a special case of the LLT. 

The Exact Kalman recursions developed in §2.5.2 are applied to  the RW +N, as the 

tree structures considered will allow for this simple model.

5.1.1 R an dom  W alk plus N o ise

The Random Walk plus Noise (RW +N), or local level model, over the stream  

network is defined by

Y( k )  =  X{ k )  + W{k)

X ( k )  = ^ ( X ( Ul) + X ( u 2)) + V(k)

(5.1)

(5.2)
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where W( k )  ~  N(0,cr%) and V(k) ~  N(0,cr2) are uncorrelated white noise. We 

further assume th a t X (k), for each first order k, is a random draw from N ( 0 ,r 2). 

Then using the recursive relationship in X (k), we see th a t

Var (X(k)) =  ^V ar(X (Ul)) +  ^Var (X (u2)) +  Var (V(k))

=  1 | i v a r ( X 21(A:)) +  ^V ar(X 22(k) +  Var(Vu (k ))J

+ \  j ^ Var(-^23(&)) +  ^V ar(X 24(/c) +  Vax(Vi2(fc)) j  

+Var (V(k))

e  © '  + ^ G )k'enlk] v 7 k'erk v 7

where 7Y(fc] denotes the set of all higher order reaches tha t are upstream  of k, in­

cluding reach k, and denotes the set of first order reaches th a t are upstream  of k. 

From this we see th a t the variation depends on the number of traces back upstream  

over higher order reaches as well as the number of upstream  first order reaches. The 

covariance is seen to  be

I )  Var(X(A/)) (5.4)

for k'  upstream  of k. The covariance is intuitive since the path  from X( k ' )  to 

X ( k )  contains X( k ' )  and independent error terms. Here we see th a t if U\ has 

more upstream  generations than  112, then X ( k )  will be more correlated with X (u{). 

Furthermore, if \k — k'\ is large, then k' is an ancestor from many generations prior 

to  k , and the correlation decreases.

Under the model assumed for first order reaches, the correlation in X ( k ) is 

primarily based on number of generations between k  and k 1, where the influence of 

o \ and r 2 depends on the geometric structure.
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R e m a rk  5.1.1 If we modeled X ( k )  using sums over parents rather than  averages, 

it is easy to  show th a t

for k! upstream  of k. Clearly, the variance rapidly increases, and the correlation is 

a function of the model variances as well as the number of upstream  reaches. The 

difference operator is easily adapted to  accommodate such models.

R e m a rk  5 .1 .2  A random walk defined by (5.2) is nonstationary by assumptions 

regarding first order states. If the variance of a first order state X ( k )  is defined to 

be 2cr2, then X ( k )  in (5.2) is a stationary AR(1) process with <f> — 1.

5 .1 .1 .1  F i r s t  D iffe rences

First differences of Y( k )  in this local level model result in

Using Proposition 4.5.1, V Y ( k )  is an MA(1) process with param eters found by first 

solving a quadratic in 6 defined by

Var(X(fc)) =  nicr2 +  n 2r 2 (5.5)

where n\  is the size of H(k] and n2 is the size of Tk- Furthermore,

Cov{X{k) ,X{k ' ) )  = Var (X(k' ) ) (5.6)

Vy(Jfc) =  (1 - B ) Y ( k )  

= Y ( k ) - l- ( Y n (k) + Y l2{k)) 

=  W( k )  -  i  ( Wn (k) + W 12(k)) + X{ k )  -  ^ ( X n (k) + X 12(k)) 

-  W ( k ) - ^ ( W n ( k )  + W 12(k)) + V(k)

which is a 1-correlated process with covariance defined as

0/2 _  - a H  2
1 +  0V2 <7* +  ( 3 /2 ) ^  •
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This quadratic has two solutions, 6X and 92, where it is easily shown th a t 9\92 =  2. 

However, the solution

j4
 ̂   w

2al

leads to  an invertible MA(1). To see this, we find th a t

( -1 )  ((2<4 +  30  +
\ e 2 \ =

2 (7.2

>
~  2<4 
> \/2

and since 9X92 — 2, it m ust be th a t

» '  ■  B i
< y/2.

5 .1 .1 .2  E xact K alm an F ilter  and Sm ooth er

Assuming no missing data, the exact Kalman recursions can be easily applied to

any tree structure with no missing data  under the Random Walk plus Noise model.

Each basin is defined by a singe first order reach. Although the initial prediction

variance is diffuse, as long as da ta  are observed, the filtering variance is zero. Hence,

the prediction variances associated with all downstream recursions are finite.

For any first order reach, define Q,k = n and A*, =  k +  <4 so th a t

^  = 1 ^  =  1
W tk =  0 A*,, =  <4

which can be used with

XP{kY0) =  0 VP(fc)<°> =  Y(k)
X p( k ) ^  =  0 v P( k ) ^  =  0

to  begin using the recursions defined in §2.5.2. The first filtering step yields

x f ( k ) w  = Y(k) n i tk =  o n itk = 4
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when Y (k ) is observed. Since we start the recursions furthest upstream  where two 

first order reaches merge, using (2.34), (2.35), and (2.35), we see

for the first downstream prediction. If we have observations on every reach, we 

see th a t the prediction variance of any higher order reach is always finite. The 

usual Kalman recursions can then be applied after all first order reaches are filtered, 

starting at the second order reach furthest upstream.

The smoother is expressed using the alternative backwards recursions defined 

in §2.4.3, where care must be taken in choosing the appropriate backwards recursion 

in r(ui). To smooth a first order reach ut , we note th a t

Y ( U l ) + Y ( u  2)

r ^ ( k )  — r(k) = N k

from the usual formulation. Furthermore, we see th a t

from which we find

r (0)(nj) =  0 r {l\ u i )  = y ( u i ) +  ^ f r (k) .

By (2.36), we have the obtain the smoothed value for the first order it*

X s{ui) =  y(ui) + Y r (k )-

For the smoothed variance, we have

which can be substituted into (2.37) to obtain
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W hen smoothing upstream , it is possible th a t r(tij) for one parent may be 

directly calculated from the usual expression r(iq) =  A “ 1v(u i) +  L j u.r(k) since 

all terms may be independent of k , whereas smoothing the other parent may require 

the modified recursion where and r ^ \ u i )  are required to  compute X s{ui).

This is predom inantly the case in Rock Creek since so many first order reaches 

merge with one of higher order.

5 .1 .2  L oca l L in e a r  T re n d

A process similar to the Random Walk plus Noise but with more correlation 

structure can be defined by adding a local slope component to (5.2) th a t is itself a 

random walk. The consequence of adding this term  is stronger correlation between 

successive measurements. In the LLT models considered, independence within and 

between all error terms is assumed. The univariate case of a Local Linear Trend 

model on a stream  network is defined by

all three error term s are m utually independent for all k, and th a t for any first order 

k,

which implies th a t Cov ( X ( j ) , M ( k ) )  — 0 for all k  and any first order j .  For this 

model, we can define the state  vector to be X(fc) — [X(k) ,M(k) ]T which leads to 

the state-space representation

Y( k )  = X{ k )  + W{k)

X{ k )  =  ^ { X ( Ul) + X ( u 2)) + M( k )  + V(k)  

M(k)  =  l- { M { Ul) + M { u 2)) + U{t)

for W(k)  ~  ,/V(0, ct)),), V(k)  ~  X(0,  a%), and U(k)  ~  N(Q, a^). We also assume th a t

Y( k )  =  [ 1 0 ]  X( k )  +  W(k)
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X(fc) =
1 /2  1/2  

0 1/2 X K )  +
1/2  1/2  
0 1/2

X(rt2) +
U{k)  +  V(fc)

where {R(k)}  =  {o^} and Q(fc) = ol  +  ^  o',2. for all higher order k. The
K  au

variances and covariances in this non-stationary model rapidly accumulate with 

progression through the network as more error term s are added with each confluence 

of reaches.

Some preliminary definitions and derivations can aid in formulating a variance 

for X( k ) .  Since M ( k )  is simply a random walk, (5.3) and (5.4) apply directly to 

M(k) .  Considering second moments, we see th a t

Co v ( X( k ) , M( k ) )  =  Co v{\x{ux) + \x{u2) + M{k)  + V{k ) , M{k ) )
Z z

= ±Co v ( X( Ul), M ( k )) +  ±Cov ( X( u2), M ( k ))

+Var(Af(fc)) +  Cav(V(k) ,  M ( k ))

k'en(k]

\k—k'\

-  E

=  a.

k'en( k] 

2

|fe—k ' \

Var (Af(Jfc'))

 ̂\ \k—kf\ /  i  \  \k;—k"

E j E
fe'eW( k] k"eH{kij

/ - , \ | f c - f c ' |  / 1 \  |fc'—fc"1

^  E E
k ' en (k] v v 7

for k'  upstream  of k.

Then using the recursive relationship in X( k ) ,  it is seen tha t

Var (X(k) )  — ^Var(X (ux)) +  ^V&r(X(u2)) +  Var(M(/c)) +  Var(V(/c)) 

+2Cov ( ^ X ( Ul) , M( k ) )  + 2Cov( ^ X ( u2), M{k))

-  ^Var (X (u i)) +  ^V ar(X (u2)) +  Var(M(fc)) +  Yax(V(k))  

+ ^ C o v (X (u i) , M(u\ ) )  +  ic o v ( X ( u 2) ,M (u 2))

(5.7)
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/ i  \  \k'-k\ \ \k'-k\
= E  l  V a r T O + J  7  Var (X(fc')).4 7  v v "  ^  \ 4  .

k'€H(k] k'&Tk
/ i  \  W - k \  \  \ k ' -k \

+  E U )  V ax(M (fc'))+ £  7 - Co v ( M( k ' ) , X ( k ' ) )
k'SH(k] k'eH(k)

/ i  \  / i  \  |fe'—fe|
=  ^ E ( )  +  t -2 E  ( i )

fc'ew(fcj v 7 k*erk v 7
/  1 \  l« -«l

+ E 4  Var (M(k' ))
k'en(k] ^ J

+ 5  E ( i ) ' 4 *' ' C m ( M ( k ' ) , X ( k ' ) )  (5.8)
|fc'—fc| —1

. ( 1)fc'eW(fc)

where (5.3) and (5.7) can be used to  obtain the final expression for the variance. 

The covariance between X (k ) and any upstream  X (k ') is derived to  be

'1 \  W ~ k \  / i  \  W * — fc|i \  „  ^  / n

k " e I ( k ' , k \

Var (A’(fc'))

i )  Var(A(£;')) +  ] T  Q )  Co v(X(k ' ) ,  M(k") )

2^
/i\ | fc"-fc|  /T\ \k"-k' \

+ E (2) (2) Cov( X( k ‘), M(k ' ) )
k " £ Z ( k ' , k ]

1 \  \k'-k\
- j  X a , v ( X ( k ' ) )

\k'-k\

where A;" G T(fc',fc] is the set of all intermediary reaches between k  and k', including 

k but excluding k!.

R e m a rk  5 .1 .3  As with the RW +N, second moments can be derived for models 

based on sums rather than  averages. The second moments for M( k )  were established 

in Remark 5.1.1. Using the recursive relationships in the model,

Cov ( X ( k ) , M ( k ) )  = Cov(X(ui )  +  X ( u 2) +  M( k )  + V(k) ,  M(k) )
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-  ^ 2  Cov(M(k' ) ,  M(k) )
k'€H(k]

= Var(M(fc'))
k'en{k]

=  n hk'a t. +  n 2,k'Tl
k ' e H (k)

where n and n 2tk‘ are the sizes of Ti(k>) and J7̂ .  The second moments of X ( k )  

are defined by

Vav(X(k))  = V ar(X (ui)) +  Var ( X ( u 2)) +  Var (M{k))  +  Var (V{k))  

+ 2C ov(X (m ), M(k) )  +  2Cov(X(u2), M{k))

=  V ar(X (ui)) +  V ar(X (u2)) +  Var (M{k))  + Vax(V(k))  

+ 2C ov(X (u1), M ( u 2)) +  2Cov ( X ( u 2), M ( u 2))

=  £ 4 +  £ > ;
k ' ^ T k k ’e H ( k ]

+  Var(M(A;')) +  2 Cov(X(k ' ) ,M(k ' ) )
k'<EH(k] k'eH{k)

with covariances

Cov{X{k) ,X{k ' ) )  =  Var(X(fc')) +  |A:-A:, |Cov(X(/t,),M(A;/))

where — A/| is the number of confluences between k and k1.

5.1 .2 .1  O ther variations

O ther variations of a LLT model may involve combinations of the sums and 

averages previously discussed. Second moments can be derived to  compare the 

behavior between a variety of local linear trend models, as one may be better suited 

for a particular process under study. We do not pursue thise variations further in 

this dissertation.
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5 .1 .2 .2  S econd  d iffe ren ces  in  LLT

Using the difference operator defined in §2.3.1, we see tha t

X 2Y( k )  = Y ( k ) - ^ ( Y n (k) + YX2{ k ) ) + l- ( Y 21{k) + Y22{k) + Y23(k) + Y24{k))

=  W( k )  -  (W n {k) + W u (k)) +  i  (W21(k) +  W 22{k) +  W 23(k) +  W 24(k)) 

+ X ( k )  -  |  ( X n (k) + X 12(k)) +  i  ( X 21(k) +  X 22(k) + X 23{k) +  X 24(k)) 

= W ( k )  -  ( Wu {k) + W n {k)) + j  (W 21{k) +  W 22(k) + W 23{k) +  W 24(k)) 

+V( k )  -  i  (Kn(fc) +  Vi2{k)) + M(k )  -  ^  ( B n (k) +  B l2{k))

= W( k )  -  (W u (k) +  W n {k)) + ~ (W 21(k ) +  W22(fc) +  W 23(k) + W 24(k)) 

+V( k )  -  i  (Vn (k) +  U12(fc)) +  tf(fc)

where the lag subscripts clearly indicate dependence up to and including lag two. 

The differenced process is then 2-correlated, with second moments defined by

7(0) =  cr2u + ^ l  + ^ 2w 

7(1) =

7(2) =

so th a t results from §4.5 can be used to  show the existence of an MA(2) represen­

tation for a white noise sequence {Z*(k) j  with variance a2 such th a t

V 2Y( k )  — 0(B)Z*(k) ,

with 9(B)  a second order polynomial in term s of the backshift operator B.  A twice 

differenced X ( k )  results in

V 2X{k )  = X ( k ) - ~ ( X n (k) + X 12(k)) + ^ ( X 21(k) + X 22(k) + X 23(k) + X 24(k))

= X ( k ) - ^ ( X n (k) + X l2(k))

~~2 ( ^ i i (^ )  +  -^12M ) — 2 ( ^ 21(^) "1“ ^22(k) + X 23(k) + X 24(k))

= M( k )  + V(k)  -  ± ( Mu (k) + Vn (k) + M 12(k) + V12(k))
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Figure 5.1: Running second order segment similar to  Rock Creek.

=  V { k ) - l- ( V u {k) + Vl2{k)) + U(k)

which can be seen to  be a 1-correlated process with variances and covariances defined 

by

7(0) =  ^crl + a l  

7 (1) =

with 7 (h) — 0  for all h >  2 .

5 .1 .2 .3  E xact Sm ooth er

As discussed in Chapter 2, the use of diffuse priors and the exact Kalman 

Smoother is specific to  the geometric structure of the stream  network as well as the 

underlying stochastic trend model of interest. We consider a special case of the LLT 

model where V(k)  = 0 for all k to  show th a t the structure of Rock Creek will not 

allow the use of the diffuse prior since first order reaches continually enter throughout 

the network. We use Figure 5.1 as an example as it illustrates the consequences of 

diffuse initialization over a tree structure when the underlying model does not allow 

for it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



143

By a direct extension of the random  walk, the diffuse prior on first order k 

under the LLT model leads to

ttp , =00 ,k
'  1 0 ■

=
'  0 0 "

0 1 * , f c 0 0

and

^oo.k — 1

from which we obtain

X p(k)W = 0 
X p{ k ) ^  =  0

through the recursions defined in §2.5.2. The first filtering step yields

x f { k Y 0) = Y( k )
0 , = oo./c

0 0 
0 1 =

a l  0 
0 0

when Y( k )  is observed. To begin the recursions, apply this to  reaches 1 and 2 in 

Figure 5.1 to obtain a prediction for reach 3 as well as its variance conditioned on 

these two observations. This results in

XP(3)(°)
V ( l ) + V ( 2 )

2
0

and

oo,k
1/2  1/2  
1/2  1/2 « ! ! , *  =

vP(3)(o) =  Y (k)

1/ 2  o*+o* ol

Furthermore, we have

A,0 0 ,3 1/2 A*i3 — cr^/2 +  crl

where we see the innovations variance is still infinite as k 

zero. Straightforward calculations will show th a t

0 0 
0 0

oo since A™ 3 is non
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to be used in the variance of the next downstream prediction. However, we see 

th a t the filtered variance for reach 4 is the same th a t for reaches 1 and 2, and th a t 

^ 00,4 0 ; where it is easy to  see through the recursions th a t the diffuseness is

reintroduced into the prediction variance associated with reach 5. The consequence 

is th a t now 5 ^  0  and the innovations variance once again tends to  infinity. 

Although it can be shown th a t 0 ^ ,5  the zero m atrix, diffuseness will always be 

introduced when a first order reach enters the network, a situation prevalent in the 

Rock Creek tree structure.

W ith the infinite prediction and innovation variances, the likelihood is greatly 

influenced as the innovation term s will tend to  zero as k —► oo whereas the deter­

minant term s will become infinite. Hence, it is clear th a t we can not apply a diffuse 

prior with the LLT model on Rock Creek.

5.1.3 D iscrete  S m ooth in g  Spline

Suppose we had a univariate series through the stream  network, and wished 

to  approximate the series with a smooth function fj,(k). A standard approach 

(Durbin and Koopman, 2001) would be to  determine fi(k) th a t minimizes the crite­

rion function

n n

-  ^ ( k ) ) 2 + (v 2 m *o)2 (5-9)
k= 1 k ~ l

with respect to n(k) ,  where A > 0 and V 2/u(£;) is twice differenced /J,{k). The 

minimization involves a trade-off between goodness of fit to  the data  and smoothness 

of the fit, where the degree of smoothness is determined by A. The solution to this 

minimization is a smoothing spline, or a penalized least squares estimator. For large 

A, more emphasis is placed on the V 2fi{k) term s in the minimization which results 

in a smoother spline fit. For small A, more weight is placed on the squared residuals, 

and will be close to y(k)  resulting in a better fit bu t less smooth fj,(k).
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For a traditional spline smoother in discrete time, the smoothness param eter A 

can be determined either through cross validation techniques or through a function 

of variance components in a local linear trend model. Since the local linear trend is 

a state-space model, the Kalman Smoother can be used to obtain both the spline 

estimates as well as confidence bounds a t each point.

The existence of a spline smoother on a stream  network can be seen through 

the special case of the local linear trend model defined in §5.1.2 but with V(k)  =  0. 

In this model there are two variance components: variation due to measurement 

error and th a t due to  fluctuation of the underlying process, specifically the slope.

Suppose we wish to  smooth the Y ( k )  series by estimating X ( k )  by X ( k )  =  

E  ( X(k ) \ Y ) .  Under the Gaussian error structure, X s(k) =  E { X { k ) |Y ) is readily 

obtained via the Kalman recursions once initialization requirements are specified, 

where we will see th a t the degree of smoothness is controlled by set values of 

and cr .̂ Alternatively, these smoothed estimates can be found through calculus via 

maximization of the posterior density p (X |Y ). Since X{ k )  and Y ( k )  are Gaussian, 

this posterior mode is also the posterior mean, which is also the conditional mean.

The joint density of (X, Y ) is p(X , Y ) =  p (Y |X )p(X ). The density p (Y |X ) is 

straightforward since Y(fc)|X are independent N ( X ( k ) , a l >). However, writing out 

p(X ) requires some assumptions pertaining to  the first order reaches. In order to 

establish second differences, state  and slope term s of imaginary upstream  reaches are 

assumed to be known. We can then write the density of X  as a product of conditional 

densities p ( X ( k ) \ X ( k ' ) , k! € K(k)) where the conditioning is on upstream  X(k ' ) .  We 

s tart with the first order reaches and progress downstream with flow.

Under this special case of the local linear trend model, these conditional densi­

ties are

p(X(k ) \X(k ' ) ,  k' 6 U{k)) ~  N  Q  ( X ( Ul) +  X ( u 2)) + ± ( M( Ul) +  M ( u2)) , <r^5.10)
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where the slope term s M(ui) are known since X(ui) and both of its parents are used 

in the conditioning. From this we see th a t the conditional means depend on the 

grandparents through the slope terms. It is clear from (5.10) th a t the likelihood can 

be fully expressed if X(ui) and MUi, for i =  1,2 are assumed known for any first 

order reach.

Alternatively, we can use the backshift operator on X (k) to see th a t

X2X(k) =  ( 1 - 2  B + B2)X(k)
= X(k) -  2 ( i )  (Xn(k) + Xl2{k)) +  i  (X21(k) +  . . .  +  X24(k))
= M{k)-l-Xn(k) + \{X2l(k) + X22(k))

~\x12(k) + \(X23(k) + X24(k))
= M(k) — ~{Xn(k) -  ~(X2i(k) +  X22(k)) -  -(X\2(k)

— ̂ {X̂ k) + X24 (k))
-  M(k) - ~M(Ul) - l-M(u2)
= U(k)

thus yielding a sequence of independent Normal random variables. From this we 

find th a t the density of the twice differenced X (k) is equivalent to expression of the 

independent conditional densities, conditioned on upstream  reaches.

The posterior distribution is defined by p (X |Y ) =  p(X , Y )/p (Y ). Since

l°g p (X |Y ) =  logp(X , Y ) — logp(Y )

it is clear th a t maximizing logp(X |Y ) with respect to  X  is equivalent to  maximizing 

logp (X ,Y ) with respect to  X  since p(Y ) is independent of X. For the model 

considered here, maximizing logp (Y ,X ) is equivalent to  maximizing

i  i > 2 x « > 2 -
w  * := i u  * := i

with respect to  each X(k).
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W hen A =  o^/er^, this is equivalent to minimizing (5.9). The solution to  the 

normal equations from logp(X , Y ) with respect to X  is the mode of p (X |Y ), which 

is X  =  A(X | Y ) under normality assumptions. Thus, the Maximum Likelihood 

estim ator of X  is the same as th a t from the Kalman Smoother. Since the estim ator 

for X  from the Kalman Smoother is also a penalized least squares estimator, we 

obtain a spline smoother in discrete space through the special case of a Local Linear 

Trend.

E x a m p le  5.1.1 Montgomery County, MD

We now return  to the d a ta  from Montgomery County, M aryland. The d a ta  of 

interest here are water chemistry collected at each of the stations. Variables such 

as dissolved oxygen, PH, air tem perature, and water tem perature are available for 

monitoring stations throughout the county at a variety of time points. For simplicity, 

we selected only a small drainage to  work with, th a t of Upper and Lower Rock 

Creek. Many reaches have multiple monitoring stations th a t may have collected 

data  during summer and winter months since the mid 1990s. The geometry of this 

specific watershed and distribution of observation stations can be seen in Figure 

4.14. There are 39 reaches total.

We specifically model dissolved oxygen content, as the levels of dissolved oxygen 

and consequently th a t of dissolved carbon dioxide indicate metabolism of organisms 

(Angelier, 2003, p .97). There are many ways in which oxygen is introduced as well 

as depleted from water causing concentrations to be highly variable. In polluted 

waters with high organic m atter content such as litter and decomposing leaves, 

aerobic bacteria consume large amounts of dissolved oxygen (Allan, 1995, p .24), 

reducing its availability for other processes in which it is a necessity.

Much of the dissolved oxygen in water comes from the atmosphere. The solubil­

ity of oxygen is primarily a function of tem perature and partial pressure of oxygen 

in its gaseous state  (Allan, 1995, p .24). The influence of tem perature is obvious by
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its seasonal and daily changes in its levels. Typical levels range from 16.64 mg/1 

at 0°C to 7.54 mg/1 at 30°C (Angelier, 2003, p .97). Gases dissolve better in cold 

water. The warmer the water tem perature, the lower the dissolved oxygen content.

The amount of oxygen dissolved is also a function of the water surface interface, 

with turbulence favoring gas exchange. Low water flow decreases dissolved oxygen 

by decreasing the amount of air/w ater mixing th a t occurs in rapids and waterfalls.

Photosynthesis and respiration are the two im portant biological processes th a t 

alter the levels of dissolved oxygen. Algae and rooted aquatic plants deliver oxygen 

to water through photosynthesis. Conversely, fish, invertebrates, plants, and aerobic 

bacteria all require oxygen for respiration, thus leading to  a reduction in dissolved 

oxygen. Moreover, the presence of pollution increases the demands from respiration 

further depleting the water of oxygen (Allan, 1995, p .24).

Our interest is in modeling dissolved oxygen as a smooth function throughout 

the stream  network. In efforts to reduce some of the natural variation, only data  

for summer months was used. A non-parametric smoothing spline is attractive in 

th a t a smooth function can be obtained without having to assume some param etric 

model for the large number of covariates th a t influence dissolved oxygen levels. The 

spline is especially appealing here since many of the influential covariates such as 

water and air tem perature may not be available a t every reach.

The spline function allows a researcher to assess the behavior of dissolved oxy­

gen throughout the network, and reaches in which problematic levels can be easily 

identified. The goal is to  obtain two separate smooth functions for each the main 

channels above the confluence of the two second order segments shown in Figures 

4.14 and 5.2. Using a LLT model, we obtain a smoothing spline to  accomplish this 

goal.

A closed form expression exists for maximum likelihood estim ators for the mean 

of the distribution of initial states. The two variance components associated with
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Table 5.1: Maximum Likelihood Estim ates for Rock Creek

T0 = 7.48 bo— -2.29 4.24
0.08 *2== 9.84 &t= 3.23

A= 1.312

the initial states as well as the two variance components of the model are estim ated 

using numerical optimization. Param eter estimates are shown in Table 5.1. The 

resulting spline is found in Figure 5.2 where we also see in this figure th a t the 

squares indicate a sequence of points down one main channel whereas the circles 

represent the points from the other. Note th a t there is only one sequence of points 

the th ird  order segment.

W ith 18 first order reaches having data, the estim ated mean of the initial s ta rt­

ing point, xq, is reasonable, and close to  a simple mean of the observations associated 

with the first order reaches. The initial slope term  is of less interest than  its esti­

m ated variance. We see a fairly large variance associated with these initial slopes, 

which in tu rn  allows the smoothed estimates to be close to  the observed data, con­

sistent with an undersmoothed function.

The degree of smoothness was chosen via MLE for the model variance compo­

nents. Variation due to multiple observations on each reach is apparent in Figure 

5.2. W ith summer averages (over years), the resulting variance estim ate for is 

close to  zero, and the spline appears to  be undersmoothed.
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Rock Creek

(a) Identification of channels on Rock Creek

O

O )

00

< o

0 105 15

(b) Spline

Figure 5.2: Dissolved oxygen versus lag for Upper and Lower Rock Creek. As seen in 
the reference plot, the squares represent da ta  along one main channel while circles 
represent da ta  from a second channel th a t merges with the first. Solid line is a 
smoothing spline fit to  the da ta  along the first main channel whereas the dashed 
line is the spline fit to the data  from the second channel. Smoothing param eter 
determined by M LE’s of variance components in LLT model 5.1.2 but with V(k)  — 0.
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Chapter 6

C O N C L U SIO N S A N D  F U T U R E  W O R K

In this dissertation, we have adapted a number of modeling techniques from 

time series to fit the tree-like structure of a stream  network, primarily through de­

velopment of a state-space representation and the Kalman Recursions. Dependence 

on a stream  network is modeled as a function of flow rather than  time.

We have defined a number of both stationary and nonstationary models for a 

stream  network, and determined a state-space form for each. W ith the state-space 

form, we have defined the Kalman recursions for a tree structure. Although these 

recursions were developed in a Gaussian context, the best linear prediction properties 

of the Kalman Filter and Smoother still hold even in the non-Gaussian case, where 

predictions are based on projections rather than  conditional expectations.

Two variations of a Kalman Filter and Smoother have been derived for the 

stream  network. For cases when initial conditions are unknown, we have been able 

to  estim ate these conditions through numerical optim ization with appropriate model 

assumptions for first order reaches. Diffuse initialization was also considered, where 

we have shown its limited application because of the nature of a stream  network. 

Unlike the case of a tim e series which has a single starting point, our estimation 

of initial conditions seems to be a reasonable approach on a stream  network, since 

there are many starting  points and our model assumptions for first order reaches 

allow for it.

The Kalman Filter applied to the stream  network also allows for determ ination 

of an exact likelihood, even when missing d a ta  are present. This Gaussian likelihood
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can then be used to obtain Maximum Likelihood Estim ators for model parameters. 

A concentrated likelihood may also be obtained in some cases, and numerical tech­

niques for optim ization can be used to  achieve estimates for remaining unknown 

quantities. Estim ates can then be used in conjunction with the Kalman Smoother 

to  obtain final predicted values for the state  of interest.

We have also applied an EM algorithm as an approximation when the likeli­

hood is complicated by missing data. Simulation has shown th a t in the example 

considered, estimates from this EM algorithm converged to those obtained through 

the exact likelihood. A simplified, or adjusted, EM algorithm can also be used as an 

approximation, although simulation has shown this to increase the m agnitude of the 

bias and consequently the mean squared error in param eter estimation. Nonethe­

less, we have applied these commonly used techniques for param eter estimation on 

a stream  network with the use of the Kalman recursions developed in Chapter 2.

The class of ARMA(p, q) models have been defined for the stream  network, 

and concepts of causality and invertibility developed in terms of mean square con­

vergence. We found th a t these concepts are well defined through functions of the 

autoregressive and moving average polynomials for the ARMA(p, q) model. The 

polynomial roots of these “scaled” polynomials can also be used to  formulate au- 

tocovariance functions for the model of interest. We are also able to  calculate a 

sample autocorrelation function for univariate data, where a sampling approach to 

construction of this function can be used when multiple observations exist.

In general, simulations have shown th a t processes on a stream  network behave 

similar to those in tim e series. A variety of forms of dependence have been shown 

with the ARMA models considered. We have found th a t a non-zero autoregressive 

param eter tends to have more influence on the shape of the ACF than  the moving 

average param eter. Some of the models even describe alternating signs of depen­

dence. While the physical existence of such correlation for a stream  network may
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seem unrealistic, applicability of these models extends to  many other tree structures 

where processes can evolve from many root nodes to  one single term inal node.

We have used the sample ACVF to construct m ethod of moment estimators, 

which can then be used as initial values in numerical optimization in m ethods for 

likelihood based estim ators of model param eters. We have shown th a t the m ethod 

of moments estimators do not guarantee the non-negative definite constraints for 

covariances, and the Yule-Walker equations do not assure sample estimates of a 

causal process as seen with the AR(1). Likewise, the sample lag-1 autocorrelation 

for an MA(1) is often well outside the boundary of 1 /2 \/2  defined by invertibility. 

This is often the case when the data  are representative of a process with param eters 

near the invertible boundaries. Causality and invertibility can be guaranteed in 

some cases with Maximum Likelihood Estim ators through transform ations of model 

parameters.

We have found the sample ACF to be a useful diagnostic in model selection. 

Realizations can be generated and corresponding sample ACFs calculated and com­

pared with the observed ACF as an ad-hoc m ethod to  assess if the observed data  

are representative of a process defined by the model fit.

We have taken fish habita t da ta  on Rock Creek and fit the AR(1), MA(1), 

ARM A(1,1) and AR(2) models to  a measure of instream  cover. Empirical white 

noise bounds in conjunction with model fit ACF identify the MA(1) or MA(2) as 

possible models. This is supported by a param etric bootstrap  which indicated a 

significant Moving Average param eter for the MA(1). The instream  cover was then 

fit to a linear model using reach specific covariates such as land use, elevation, gra­

dient, and cover type. Non-significance of the MA(1) param eter indicated th a t the 

spatial autocorrelation in instream cover was removed by regressing on appropri­

ate covariates. This analysis showed th a t possible autocorrelation can sometimes 

easily be removed. Formal tests for Goodness-of-fit and model selection were not 

performed, although they are left as an open area of research.
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We have defined a class of stochastic trend models for a stream  network. Similar 

to th a t of tim e series, these models can be used to describe a process in terms of a 

trend component, an advantage when appropriate covariates may not be obtainable. 

A differencing operator can be applied to  these trend models to  achieve stationarity, 

bu t the resulting tree structure and number of observations used are greatly reduced. 

Moreover, these models can be redefined such th a t the state is defined in term s of 

sums or weighted averages, rather than  simple averages of upstream  parents.

W ith a special case of the Local Linear Trend model described in Chapter 5, 

we are able to define a smoothing spline on a stream  network. We have shown th a t 

in the Gaussian case, the predictions resulting from the Kalman Smoother are also 

penalized least squares predictions, thus generating a spline on the network. The 

smoothing param eter can be estim ated through maximum likelihood estim ators of 

the variance param eters, and the resulting spline obtained by executing the Kalman 

recursions as a function of the estim ated variance components.

We have dem onstrated the applicability of the smoothing spline with data  from 

Rock Creek. It is well known th a t dissolved oxygen is influenced by many covariates 

such as turbidity, depth, and water tem perature. Yet it is clear th a t covariates such 

as these are not realistically obtainable, making the smoothing spline an attractive 

tool to describe not only trends, bu t potentially problematic areas in the network 

with unusual levels of dissolved oxygen.

We believe we have only begun to  develop modeling tools for tree structures such 

as a stream  network through state-space models. Many of the ideas for modeling and 

forecasting from time series have network analogues, thus application on a stream  

network. The use of da ta  on a small section of Rock Creek has not only dem onstrated 

applicability, bu t also has brought to attention a number of practical areas th a t 

deserve more attention such as limits due to  network geometry and missing values. 

W ith tha t, there is no shortage of ways to  enhance and expand upon the tools 

developed in this dissertation.
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6.1 F uture W ork

The extension of the state-space models in time series is an intuitive approach 

to  modeling and forecasting on a stream  network. Although we have touched upon 

defining a large class of stationary models as well as some stochastic trend models, 

there are many areas th a t warrant consideration of future research. We have taken 

the approach of modeling a discrete process, which we see as a building block for 

other models.

Throughout this dissertation, we assumed th a t the state  remains constant 

across the entire reach. A logical step forward seems to  investigate the possibil­

ity of allowing the state  to change within a reach using information such as distance 

from a confluence or distance between monitoring stations.

We have developed method-of-moment estimators as well as those of Maximum 

Likelihood for the models considered. Although we have achieved these estimates 

under specified constraints, reliability of these estimates remains as an open area 

of study. We have been able to  determine approximate mean square errors through 

simulation, bu t rely on a param etric bootstrap  for such estimates when modeling 

d ata  for Rock Creek. Extension of a non-parametric bootstrap utilized in time 

series seems impractical for the tree structures here. Investigation of the asymptotic 

properties of these Maximum Likelihood estimators should also be considered.

Although techniques for param eter estimation are developed, there is an im­

m ediate need for diagnostic tools for d a ta  exploration and model validation. We 

generate da ta  under the fitted model and compare to  th a t observed as one tech­

nique. O ther m ethods to  assess dependence and stationarity  deserve attention.

There are many other types of dependence commonly used in spatial statis­

tics, such as the M atern class (Stein, 1999, p .31) and other, more complex spatial- 

tem poral covariance structures. It only seems reasonable to consider network ana­

logues of these models.
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We have developed the recursions in the Gaussian context, although we believe 

this is not a restriction. The recursions can similarly be interpreted as projections 

to  achieve optimal linear predictors. There may be cases where a linear model may 

be inappropriate, or inadequately describe the behavior of the data.

Although the main focus of this dissertation has been model development and 

application to stream  networks, there are many other areas in which a process 

can s ta rt a t many initial nodes and proceed to  merge until a single final node is 

reached. Examples range from root systems in plants and the cardiovascular system 

in animals, to  genetic tra its  th a t are common from generation to  generation. We 

believe th a t our modeling techniques developed here have direct application in other 

areas.

In conclusion, we believed we have only touched upon the development of mod­

els for stream  networks analogous to those commonly used in tim e series. There 

are simply many more areas th a t have yet to  be addressed. We believe we have 

established a base which can be used to  extend the concepts developed and serve as 

a starting point for many remaining areas, and hope to pursue these in the future.
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A P P E N D IX  I: N o ta tio n

The following table summarizes much of the notation used throughout this 
dissertation, and is intended for ease in reference.

U{k) Set of reaches upstream  of k
U(k] Reach k  and the set of reaches upstream  of k
£>(*0 Set of reaches downstream of k
V [k)
Si

Reach k  and the set of reaches downstream of k
Set of all i th order segments

■£(k',k] Set of (intermediary) reaches between k'  and k,  excluding 
reach k '  but including reach k
Set of first order reaches upstream  of k

T Set of first order reaches
n (k] Reach k  and all higher order reaches th a t are upstream  

of k
H Set of Higher order reaches
s :i Set of reaches in the j th basin

Vector associated with j th reach at lag i from reach k

x w X(/c) U {XjJ'(/c)}i=1...00)j =i...2>
n ij Number of reaches in i th order segment j
| k  — k !\ Number of confluences between k  and k ' . Also referred 

to as lag.
\ \ k - k ’\\ Distance between locations k  and k'
m s Highest Strahler order of all reaches in the network
(■r Associated with initial prediction
(■y Associated with filtering

(■)• Associated with smoothing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B ib liography

Allan, J. D. (1995). Stream Ecology: Structure and function of running waters. 

Chapm an & Hall.

Angelier, E. (2003). Ecology of Streams and Rivers. Science Publishers, Inc.

Basseville, M., Benveniste, A., Chou, K., Golden, S., Nikoukhah, R., and Willsky, 

A. (1992). Modeling and estimation of multiresolution stochastic processes. IEEE  

Transactions on Information Theory, 38:766-784.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. 

Springer-Verlad New York Inc.

Brockwell, P. J. and Davis, R. A. (1996). Introduction to Time Series and Forecast­

ing. Springer-Verlad New York Inc.

Chou, K. C., Willsky, A. S., and Nikoukhah, R. (1994). Multiscale systems, Kalman 

filters, and Riccati equations. IEEE  Transactions on Automatic Control, 39:479- 

492.

Cressie, N. (1993). Statistics fo r Spatial Data. John Wiley and Sons, New York.

Cressie, N., Frey, J., Harch, B., and Smith, M. (2006). Spatial prediction on a 

river network. Journal o f Agricultural, Biological, and Environmental Statistics, 

11:127-150.

De Jong, P. (1988). The likelihood for a state  space model. Biometrika, 75:165-169.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



159

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from 

incomplete da ta  via the EM algorithm. Journal of the Royal Statistical Society. 

Seried B  (Methodological), 39:1-39.

Dent, C. and Grimm, N. (1999). Spatial heterogeneity of stream  water nutrient 

concentrations over successive time. Ecology, 80:2283-2298.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State-Space Methods. 

Oxford University Press.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman 

Filter. Cambridge University Press.

Hocking, R. R. (1996). Methods and Application o f Linear Models. John Wiley & 

Sons, Inc.

Horton, R. E. (1945). Erosional development of streams and their drainage basins; 

hydrophysical approach to quantitative morphology. Bull. Geological Soc. A m er­

ica, 56:275-370.

Huang, H. and Cressie, N. (2001). Multiscale graphical modeling in space: Applica,- 

tion to  command and control. Spatial Statistics: Methodological Aspects and Some 

Applications, Springer Lecture Notes in Statistics, 159. M. Moore, ed. Springer- 

Verlag, New York.

Huang, H., Cressie, N., and Gabrosek, J. (2002). Fast, resolution-consistent spatial 

prediction of global processes from satellite data. Journal o f Computational and 

Graphical Statistics, 11:63-88.

Huang, H. C. (1997). Spatial modeling using graphical Markov models and wavelets. 

PhD thesis, Iowa State University.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



160

Johannesson, G. and Cressie, N. (2004). Finding large scale spatial trends in massive, 

global, environmental datasets. Environmetrics, 15:1-44.

Johannesson, G., Cressie, N., and Huang, H. (2007). Dynamic multi-resolution 

spatial models. Environmental and Ecological Statistics, 14:5-25.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. 

Transactions o f the ASM E-Journal of Basic Engineering, 82(Series D):35-45.

Koopman, S. J. (1997). Exact initial Kalman filtering and smoothing for nonstation- 

ary tim e series. Journal o f the American Statistical Association, 92:1630-1638.

Koopman, S. J. and Durbin, J. (2003). Filtering and smoothing of sta te  vector for 

diffuse state-space models. Journal o f Time Series Analysis, 24:85-98.

Lange, K. (1998). Numerical Analysis for Statisticians. Springer-Verlag, New York.

Mielke, P. and Berry, K. (2001). Permutation Methods : A Distance Function 

Approach. Springer, New York.

Monestiez, P., Bailly, J., Lagacherie, P., and Voltz, M. (2005). Geostatistical mod­

elling of spatial processes on directed trees: Application to fluvisol extent. Geo­

derma, 128:179-191.

Peterson, E., Merton, A., Theobald, D., and Urquhart, N. (2006). Patterns of 

spatial autocorrelation in stream  water chemistry. Environmental Monitoring 

and Assessment, 121:571-596.

Peterson, E. and Urquhart, N. (2006). Predicting water quality impaired stream  

segments using landscape-scale da ta  and a regional geostatistical model: A case 

study in maryland. Environmental Monitoring and Assessment, 121:615-638.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



161

Stein, M. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer- 

Verlag, New York.

Strahler, A. N. (1957). Q uantitative analysis of watershed geomorphology. Trans­

actions of the American Geophysical Union, 38:913-920.

Tzeng, S., Huang, H., Cressie, N., and Gabrosek, J. (2005). A fast, optim al spatial- 

prediction m ethod for massive datasets. Journal o f American Statistical Associ­

ation, 100(472): 1343-1357.

Ver Hoef, J. M., Peterson, E. E., and Theobald, D. M. (2006). Some new spatial 

statistical models for stream  networks. Environmental and Ecological Statistics , 

14.

Verghese, G. and Kailath, T. (1979). A further note on backwards Markovian 

models. IE E E  Transactions on Information Theory, 25:121-124.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


