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ABSTRACT

STATISTICAL METHODS FOR MODELING THE MOVEMENT AND SPACE-USE OF

CARNIVORES

Recent advancements in the ability to monitor animal locations through time has led

to a rapidly expanding field focused on statistical models for animal movement. However,

many of the existing methods are computationally time-consuming to fit, restricting their

application to a few individuals, and inaccessible to wildlife management practitioners. In

addition, existing movement models were developed for contemporary animal location data.

Many previously collected telemetry data sets may provide important information on animal

movement, but there may be additional challenges that are not present in data collected

explicitly for movement modeling. For example, telemetry data collected for survival studies

may have large temporal gaps, and long-term studies may have used multiple data collection

methods, resulting in data points with different error structures. My goal is to develop and

expand on methods for modeling individual- and population-level animal movement in a

flexible and computationally accessible framework.

In Chapter 1, I discuss the role of carnivores in natural resource management and the

habitat associations and movement ecology of two carnivores native to Colorado, Canada

lynx and cougars. I describe the existing data sets, collected by Colorado Parks and Wildlife,

that are available for analyzing Canada lynx and cougar movement ecology. I also discuss

contemporary statistical methods for analyzing animal telemetry data. Finally, I conclude

with my research objectives.

Chapter 2 presents a new framework for modeling the unobserved paths of telemetered

individuals while accounting for measurement error. Many available telemetry data sets were
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not collected for the purposes of movement modeling, making the use of existing methods

challenging due to large temporal gaps and varying monitoring protocols. In contrast to

the more traditional mechanistic movement models that appear in the literature, I propose a

phenomenological functional model for animal movement. The movement process is approxi-

mated with basis functions (e.g., splines), which are an extremely flexible statistical tool that

allows for complex, non-linear movement patterns at different temporal scales. In addition,

the observed data contains complicated error structures that vary across telemetry type. I

then apply this model to a case-study of two Canada lynx that were reintroduced to Col-

orado and show that inference about spatio-temporal movement behaviors can be obtained

from the unobserved paths.

For Chapter 3, I apply a population-level version of the functional movement model,

developed in Chapter 1, to 153 Canada lynx that were released in Colorado as part of a state

reintroduction program. Twelve offspring of the reintroduced individuals were also included

in the analysis. I perform a post hoc analysis of movement paths using spatial visualizations

and linear mixed models, allowing the different movement behaviors to vary as a function

of season, sex, reproductive status, and reintroduction timeline. This chapter represents one

of the most comprehensive analyses of Canada lynx movement in the continental United

States.

In Chapter 4, I discuss the fine-scale movement of cougars in the Colorado Front Range

using a continuous-time discrete-space (CTDS) framework. The CTDS framework is com-

putationally fast, flexible, and easily implemented in standard statistical programs. This

chapter focuses on a population-level extension of the CTDS framework that can be used to

model the population- and individual-level effect of landscape variables on movement rates

and directionality. I use this model to determine potential drivers of cougar movement in
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the Colorado Front Range, a rapidly urbanizing area in the foothills of the Rocky Moun-

tains. This work also uses the functional model I developed in Chapter 1, but with an error

structure more appropriate for small-error GPS data.

I conclude with a summary of findings, overarching themes, and potential future research

directions in Chapter 5.
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CHAPTER 1

Introduction

As top predators, carnivores exert a disproportionate influence on ecosystem structure

and function (Treves & Karanth, 2003), despite being naturally rare (Ripple et al., 2014). In

addition, carnivores are particularly sensitive to habitat fragmentation and urbanization due

to their large home ranges and low densities (Noss et al., 1996). Their sensitivity and area

requirements often make them conservation priorities, because conserving land for carnivores

will inevitably encompass habitat for smaller species (Noss et al., 1996). Recent technolog-

ical advancements allow researchers to gain unprecedented insight into how carnivores are

interacting with the landscape. In this chapter, I discuss the habitat associations, move-

ment ecology, and available data for two carnivores native to Colorado: Canada lynx (Lynx

canadensis) and cougars (Puma concolor). I also present details on the standard methods

that are currently used to infer movement from telemetry data.

1.1. Canada Lynx

1.1.1. Distribution

Canada lynx are a North American habitat specialist, and their distribution is closely

tied to the presence of boreal forest and snowshoe hares (Lepus americanus), which consti-

tute the majority of their diet (as reviewed in Mowat et al., 2000). The majority of research

on Canada lynx has focused on populations in the Alaskan and Canadian taiga (Ruggiero

& McKelvey, 2000). However, their range also extends south into the subalpine and bore-

al/hardwood forest ecotones of the contiguous states (McKelvey et al., 2000a); lynx in these

areas are typically referred to as “southern” lynx populations. Using multiple sources of

1



data from the 1800s to 1999, McKelvey et al. (2000b) found lynx were historically present in

24 states, primarily occurring in cool, coniferous high elevation forests in the Western U.S.

In the Western U.S., 70% of occurrences were within elevations between 1,500-2,000 m and

the distribution of occurrence shifts to higher elevations as one moves southward from Idaho

and Montana (McKelvey et al., 2000b). Observations also occurred disproportionate to avail-

ability in Rocky Mountain conifer forest, including areas consisting of Douglas-fir/western

spruce fir and fir/hemlock (McKelvey et al., 2000b).

Lynx habitat in the U.S. has been described as consisting of peninsular extensions of the

northern boreal forest (McKelvey et al., 2000b). McKelvey et al. (2000b) suggested that the

dispersal rates between the Canadian lynx population and the populations in the contiguous

U.S. are small and highly variable. It has been hypothesized that lynx on the southern edge

of their range are a product of dispersing individuals from a population that has reached a

recent high (Mech, 1973). Using historical presence data for the contiguous U.S., McKelvey

et al. (2000b) found only 2% of lynx locations were >10 km from conifer forest; they viewed

these as likely dispersal events and noted that long-distance dispersal, >100 km from conifer

forest, was much rarer (0.01% of all locations, but 5% of dispersal locations). Dispersals are

mostly described by long-distance movements that ended when the individual died (Aubry

et al., 2000).

1.1.2. Habitat Associations

In the contiguous U.S., much of the suitable lynx habitat likely contains few individuals.

The available boreal forests have hare densities close to the lower limits required for lynx

reproduction and varies with forest type and stand age (McKelvey et al., 2000c). For a

stable population, fluctuations in habitat quality lead to fluctuating sources and sinks; this
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combined with the cyclic nature of lynx populations may cause unique patterns in local

extinction and colonization in southern populations (McKelvey et al., 2000c). On average,

home range size in the U.S. corresponds to home ranges in the taiga when hares are scarce,

with males having an annual home range of 151 km2 and females having a home range of 72

km2 (as reviewed in Aubry et al. 2000). Home range sizes tend to increase with decreasing

lynx density (Mowat et al., 2000). Lynx and snowshoe hare populations in the Western U.S.

are more prone to metapopulation dynamics compared to the populations in the northern

taiga, due to the fragmented landscape and the distribution of optimal habitat (Buskirk

et al., 2000b).

1.1.3. Dispersal and Movement Ecology

Exploratory movements (i.e., movements outside of a home range) have been documented

during the summer for both male and female lynx, although dispersing individuals differed in

age, time spent away from home range, and number of documented exploratory movements

in Canada lynx (Squires & Laurion, 2000) and Eurasian lynx (Zimmermann et al., 2005).

Exploratory movements have not been documented in northern Canada or Alaska, which

contains more homogeneous boreal habitat. Exploratory movements may be a response to

high landscape heterogeneity, because the probability of successful dispersal would increase

with increasing knowledge of the heterogeneous landscape (Aubry et al., 2000). In addition,

lynx have been known to travel through suitable habitat without establishing a home range;

low prey density is the hypothesized cause of this behavior (Mech, 1973).

Long-range movements are more common during periods when snowshoe hare popula-

tions are declining (McKelvey et al., 2000c). Lynx are highly dependent on snowshoe hares

as a primary food source; in northwestern Montana, 96% of lynx prey biomass consisted
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of snowshoe hares, and alternative prey (e.g., red squirrels [Tamiasciurus hudsonicus ]) con-

tributed little biomass despite low hare densities (Squires & Laurion, 2000). However, the

degree of dependence on hares is highly variable, decreasing to as little as 35% of the diet in

some regions (as reviewed in Ruggiero et al. 1994). In Colorado, red squirrels comprised up

to 20% of lynx prey items in some years, potentially as a result of periods of low snowshoe

hare density or high red squirrel abundance (Ivan & Shenk, 2016). Less prey specialization

in more southern and western lynx populations can lead to a decoupling in the relationship

between lynx and hare densities (Roth et al., 2007).

In Canada, juveniles disperse in spring at age of independence, whereas mid-winter dis-

persal is indicative of nutritional duress (Mowat et al., 2000). Little is known about natal

dispersal of Canada lynx, and dispersal timing and behavior varies considerably (Mowat

et al., 2000, as reviewed in). At low hare densities (0.5 hares/ha) in the southwestern Yukon,

some marked lynx became nomadic, with three females covering a minimum area of 60-255

km2 over 2-4 months (Ward & Krebs, 1985). Straight line travel distance also increased from

2.2-2.7 km/day when there were 1.0 hares/ha to 5.5 km/day at 0.2 hares/ha (Ward & Krebs,

1985). Emigration out of study areas in Alaska and the Northwest Territories varied from

0-32%, with the majority of emigration occurring at the peak and decline of the hare cycle

(O’Donoghue et al., 1997). In the Yukon Territory, Canada, the lowest rate of emigration oc-

curred in September-October (1%) and was highest in March-June (51%) (Slough & Mowat,

1996) with seasonality being stronger for females (Ferreras et al. 2004). Forty-six percent of

emigrants were between 1 and 5 years, 40.5% were yearlings, and 13.5% were kits (Slough

& Mowat, 1996). No weight loss was observed in male lynx following their long-distance

movements in Minnesota (Burdett et al., 2007), although long-distance movements are often

considered a response to low hare abundance (Ward & Krebs, 1985).
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1.1.4. Colorado Reintroduction

Due to the isolation of boreal habitat in Colorado relative to the nearest established

populations of lynx, Colorado Division of Wildlife (now Colorado Parks and Wildlife; CPW)

initiated a reintroduction effort in 1997 (Seidel et al., 1998). Between 1999 and 2006, 218

wild-caught lynx were released in the San Juan Mountains within 40 km of the Rio Grande

Reservoir; 30 individuals originated from Alaska, 48 from the Yukon Territory, 91 from

British Columbia, 4 from Manitoba, and 45 from Quebec (Devineau et al., 2010).

1.1.5. Available Data

Individuals were released after being held at a rehabilitation center and equipped with

either VHF devices (TelonicsTM , Mesa, AZ, USA) or satellite/VHF collars (SirtrackTM ,

Havelock North, New Zealand) with locations obtained using the Argos System operated by

CLS Argos (http://www.argos-system.org, Devineau et al., 2010). A total of 26 Colorado

born lynx were also telemetered. Irregular location data were obtained from 1999-2011 due

to one or both of the transmitter components failing, logistical constraints, or movement out

of the study area. Post-release monitoring was conducted over a 20,684 km2 area including

the reintroduction area and surrounding high-elevation sites (>2,591 m; Devineau et al.

2010). During denning season (15 May-June 30) two flights per week were conducted to

locate VHF-collared individuals throughout Colorado, Wyoming, and New Mexico; flights

were performed weekly outside of denning season. VHF locations were also collected outside

of the study area when the opportunity was available (Devineau et al., 2010). Satellite collars

activated once/week and were active for 12 hours/week. Individuals with failed transmitters

were recaptured and re-collared if possible; when a mortality signal was detected, ground

crews would locate and retrieve the carcass, usually within 3 weeks (Devineau et al., 2010).
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1.2. Cougars

1.2.1. Distribution

The cougar (Felis concolor), also referred to as the “mountain lion” or “puma,” once had

the largest geographic range of any native terrestrial mammal in the Western Hemisphere

(Nowak, 2005). However, between European settlement and the early 1900s, the geographic

distribution of cougars in North America had been reduced to one-quarter of the historical

range (Logan & Sweanor, 2001). Most established cougar populations occur in the Western

U.S. across a range of landscapes and elevations (Nowak, 2005).

1.2.2. Habitat Associations

On average, reported home range sizes are 48.6 km2 (Gittleman & Harvey, 1982). How-

ever, there is significant variation among estimates due to local environmental conditions,

intrinsic factors, and estimator choice (Anderson et al., 1992). For example, Grigione et al.

(2002) found that variation in home-range size can be attributed to intrinsic factors, such

as sex and body mass, as well as extrinsic factors, such as relative deer abundance and sea-

son. In Utah, vacant home ranges of deceased resident females were filled by at least one

of their independent female offspring or female offspring of adjacent resident females (Laing

& Lindzey, 1993). Rarely did an immigrating female establish a home range in the vacated

range, whereas vacated ranges by males were filled by immigrating males (Laing & Lindzey,

1993). This pattern of replacement results in clusters of related females and unrelated males.

Prey availability is a driving factor in cougar habitat selection. For example, cougars

in western Washington used areas where suspected prey availability was high, such as low-

elevation, early successional forests, and areas near water (Kertson et al., 2011). Blecha

(2015) also observed cougars foraging in areas with high mule deer utilization. In addition,
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despite cougars demonstrating avoidance of high housing densities while foraging, hunting

success was positively related to housing density (Blecha, 2015). Significant individual vari-

ation in resource selection has been observed, which may reflect the spatial distribution of

prey items or the behavioral flexibility of a generalist predator (Kertson et al., 2011; Wilmers

et al., 2013).

Cougars prefer riparian habitat for both their home-range and locations within their

home-range (Dickson & Beier, 2002; Nicholson et al., 2014). Whereas males demonstrate

strong selection for riparian areas during feeding events, females avoid riparian areas (Benson

et al., 2016). Riparian areas contain abundant prey items and easily traversable terrain, but

interactions with aggressive males may increase (Benson et al., 2016). In addition, Wilmers

et al. (2013) found that cougars were less likely to use areas near development when close to

water sources, likely due to increased human activity near water.

Cougars tend to avoid human-dominated landscapes (Dickson & Beier, 2002; Nichol-

son et al., 2014), but also avoid some natural landscapes, such as grasslands (Dickson &

Beier, 2002; Wilmers et al., 2013). Within developed areas, cougars use areas with the most

abundant native land cover, greatest prey use, and the least amount of anthropogenic dis-

turbance (Kertson et al., 2011). Wilmers et al. (2013) found that female cougars avoid areas

of high housing density less than males and exhibited greater individual variation. Location

of predation events relative to developed areas also varied by sex in the greater Los Angeles

metropolitan area, with females selecting mule deer feeding sites closer to developed areas

(but not in them) than males (Benson et al., 2016). Females may show less avoidance of

human disturbance due to increased food limitation or the presence of offspring (Wilmers

et al., 2013).
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Benson et al. (2016) observed a functional response to development, with feeding sites

occurring closer to developed areas as the amount of development decreased within an in-

dividual’s home range. Knopff et al. (2014) also observed a functional response to an-

thropogenic landscape features, with selection of some features increasing as availability

increased. However, other studies found no functional response of habitat selection to an-

thropogenic disturbance (Burdett et al., 2010; Kertson et al., 2011; Wilmers et al., 2013).

Blecha (2015) found that while cougars avoided foraging in areas of high housing density,

most of the inter-individual variation in foraging site selection was attributed to housing

density in the surrounding area. Individuals may also show temporal variability in their re-

sponse to development, such as avoiding areas of anthropogenic activity less at night, while

avoiding contiguous forest habitat less during the day; this pattern has been observed to be

stronger for cougars in rural, rather than wilderness, areas (Knopff et al., 2014).

1.2.3. Dispersal and Movement Ecology

Logan & Sweanor (2001) define dispersal as beginning when a subadult makes its first

movement outside of its natal range and did not return; the age of dispersal in Utah occurred

between 16 and 19 months (Hemker et al., 1984). After individuals become breeding adults,

they typically do not emigrate from their home-range (Logan & Sweanor, 2001). In a study

in the San Andres Mountains, New Mexico, 63% of progeny dispersed from their natal home

range; based on the 27 progeny that dispersed, males dispersed 8.1 times the distance of

females (Logan & Sweanor, 2001). In a study in southern Utah, 12 of 32 cubs were observed

dispersing out of the study area and those that could be relocated were found 6-44 km from

their natal home range (Hemker et al., 1984).
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One of the farthest documented dispersals of a cougar was of a VHF-collared sub-adult

male in the Black Hills of South Dakota; the straight line distance from the cougar’s last

known location, which was 92.4 km from the capture site, to the mortality site was 1,067

km, traveled over the course of 266 days (Thompson & Jenks, 2005). In addition, a female

from the Oquirrh Mountains, Utah, was harvested 357 km due east of her capture site;

however, using available GPS locations, it traveled an actual distance closer to 1,341 km

(Stoner et al., 2008). Dispersing individuals have been shown to orient their movement

parallel to mountain ridges and cross valleys at their narrowest point (Stoner et al., 2008).

Movements across unsuitable habitat are typically short and unidirectional (Sweanor et al.,

2000), and are more likely to be made by males (Sweanor et al., 2000). Although individuals

do cross highways (Sweanor et al., 2000; Logan & Sweanor, 2001; Stoner et al., 2008), highway

expansion is shown to decrease connectivity (Sweanor et al., 2000).

Traveling and hunting cougars in southern California move slowly through riparian veg-

etation and fastest through grassland and areas heavily utilized by humans (Dickson et al.,

2005). They also use paths that are less rugged than the surrounding area, including dirt

roads, but avoid two lane paved roads (Dickson et al., 2005). Canyon bottoms likely corre-

late with an abundance of prey items, and cougars may be minimizing energy expenses by

utilizing less steep slopes (Dickson & Beier, 2007). Cougars that are monitored over both

nocturnal and diel time periods are observed using a wider range of habitats than would be

inferred from an analysis of daytime locations (Dickson et al., 2005). Kertson et al. (2011)

found that nocturnal movement rates are higher than diurnal and crepuscular movement

rates, but there was not statistical support for movement rates differing between wildland

and residential areas.
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True transient cougars are likely rare, but possibly occur when the population is isolated

or diffuse, the food source is patchy and migratory, or the individuals are unable to compete

(Logan & Sweanor, 2001). Many transients may actually be non-residents making a foray or

undergoing a home range shift (Logan & Sweanor, 2001). For example, a female subadult in

the Santa Ana Mountains covered 342 km in 4 months without establishing a home range,

eventually returning to her natal home range (Beier, 1995). The majority of documented

dispersers in the Santa Ana Mountains explored habitat peninsulas, extensions of wildland

habitat into urban areas, despite no monitored adult performing similar explorations (Beier,

1995). Likewise, females in the San Andres Mountains made exploratory movements up to

66 km from their natal home range only to return and settle nearby after a short period

(Logan & Sweanor, 2001). Duration of transient behavior by males may be variable, with

some individuals settling immediately and others using multiple temporary home ranges

(Beier, 1995; Logan & Sweanor, 2001).

1.2.4. Available Data

Colorado Parks and Wildlife (CPW) trapped cougars from 2006-2016, fitting them with

global positioning system (GPS) collars, and releasing them along the Front Range of Col-

orado. CPW used three different GPS collar manufacturers over the duration of the study

(Lotek Wireless Inc., Newmarket, Ontario, Canada; Northstar Science and Techology LLC,

King George, VA, USA; Vectronics GmbH, Berlin, Germany), and collars were programmed

to record fixes every three hours.
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1.3. Methods for Modeling Animal Movement

The true movement process of an individual is never observed, because there is no avail-

able method for monitoring animal movement continuously and without error. While con-

temporary methods, such as very-high frequency (VHF) or satellite telemetry devices, are

more adept at detecting both long-distance (Koenig et al., 1996; Trakhtenbrot et al., 2005)

and fine-scale (Hebblewhite & Haydon, 2010) movement than traditional capture-recapture

methods, the data are still imperfect and intermittent observations of the true process. VHF

data are limited by the frequency and timing at which telemetered individuals are located

using a hand-held receiver, but battery life is relatively long for these devices. Aerial lo-

cation accuracy associated with VHF data may be affected by antenna accuracy, altitude,

and observer skill (Mech, 1983). Furthermore, ground triangulation accuracy may be im-

pacted by terrain, vegetation, power lines, weather, equipment, and observer skill (White &

Garrott, 1990). In contrast, the intended fix rate for a satellite telemetry device is typically

preprogrammed and is often regularly spaced in time, although fix rates can be influenced

by canopy cover, terrain, climatic conditions, and behavior (e.g., Di Orio et al., 2003; Heard

et al., 2008; DeCesare et al., 2005; Mattisson et al., 2010). The preceding factors, in addition

to the telemetry device engineering (e.g., GPS or Argos System), can also influence accuracy

of the observed locations, which can include anisotropic error structures (e.g., Vincent et al.,

2002; Heard et al., 2008; Costa et al., 2010; Patterson et al., 2010; Douglas et al., 2012).

Battery life depends on the amount of time the device attempts to acquire satellites, with

more time spent searching corresponding to shorter battery life; however, decreasing search

time decreases the fix rate and the precision of the estimated location (Hansen & Riggs,

2008). Both VHF and satellite components can be programmed into the same device or
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individuals can be outfitted with two separate devices, leading to some data sets consisting

of both data types.

Statistical models for animal movement have to account for motion in both space and

time. Various methods have been proposed for dealing with movement in multiple dimen-

sions, however, most methods can be placed into one of three categories: point process

models, discrete-time models, and continuous-time models (Hooten et al., 2017). The dis-

crete and continuous-time models can be further delineated by whether they deal with space

in a discrete or continuous framework (McClintock et al., 2014a). The choice of modeling

framework can have implications for implementation and inference, and many variations

of these models have been investigated in the literature; I focus on the more commonly

referenced examples within each category.

Measurement error can be incorporated into any of the following modeling frameworks.

While the term “hierarchical model” is now ubiquitous in ecology (Royle & Dorazio, 2008;

Bolker et al., 2009), it should be noted that hierarchical movement models are occasionally

referred to as state-space models. Regardless of terminology, hierarchical models consist of

two components: a model for the true, underlying process, and a model for the observed

data conditioned on the true process. When measurement error is ignored, the observed

data are assumed to be generated by the true, underlying process.

1.3.1. Point Process Models

Spatial point process models are typically used to estimate space-use and resource se-

lection, as opposed to the movement process. However, space-use and resource selection

result from the movement process (Hooten et al., 2017). In a spatial point process model,

the locations of the points in space are considered to be random variables. Space-use is
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frequently quantified using a kernel density estimator, which can provide the probability

density function at any location in space given the true locations of the individual (Hooten

et al., 2017). Resource selection is concerned with the underlying decisions that give rise

to the space-use of an individual and is modeled using a resource selection function (Manly

et al., 2007). In practice, resource selection is defined as use that is disproportionate to avail-

ability (Manly et al., 2007), such that the point process arises from a weighted distribution

with two components: a selection function and an availability function.

The selection function quantifies the individual’s response to landscape variables, while

the availability function accounts for the landscape that is available to an individual at a

given time. Typically, the availability function is assumed to be uniform over the sample

space (Aarts et al., 2008), meaning that the individual can occur with equal probability

anywhere within the support of the sample space. The support can be arbitrary, however it

is usually chosen according to some biological understanding of the study species (Johnson,

1980; Manly et al., 2007), which may be informed by the kernel density estimate for space-use

(Hooten et al., 2017). When the availability function is considered to be uniform, the true

locations arise from the selection function alone. The weighted distribution itself is analyt-

ically intractable, and resource selection functions are typically fit by taking a background

sample of locations that approximate the unused available habitat. Traditional methods

such as logistic and Poisson regression can then be used to estimate the selection coefficients

(Hooten et al., 2017).

More recent extensions to the point process model, termed spatio-temporal point process

models, relax the assumption of uniform availability, which allows the density of the avail-

ability function to vary with the previous location and the elapsed time between observed

locations (e.g., Christ et al., 2008; Johnson et al., 2013; Brost et al., 2015). These methods
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account for the inherent autocorrelation that is present in telemetry data (Fieberg et al.,

2010). Step-selection functions are an approximation to spatio-temporal point process mod-

els (e.g., Fortin et al., 2005; Roever et al., 2010; Avgar et al., 2016). While accounting for

time-varying availability is important in modeling the decision making process of an individ-

ual, only one of these methods (Brost et al., 2015) also accounts for uncertainty in the true

location of an individual.

1.3.2. Discrete-Time Models

When the movement process itself is of interest, one may want to explicitly model the

movement of an individual. In a discrete-time model, the modeled process occurs at regularly

spaced intervals. The most simplistic discrete-time model is a random walk, where the

true location at the next time step is an autoregressive process of order one. However,

animal movement is rarely adequately described by such a model; instead, many discrete-

time movement models are, at their foundation, a correlated random walk.

In contrast to a simple random walk, a correlated random walk accounts for the tendency

of an individual to continue moving in the direction it had been moving, which can result

in a smoother, more realistic movement path (Hooten et al., 2017). Correlated random

walks can be used to model a number of parameters that give rise to the observed movement

path; for example, Forester et al. (2009) modeled step lengths, Morales et al. (2005) modeled

step lengths and turning angles independently, McClintock et al. (2012) and Langrock et al.

(2012) modeled step length and bearing independently, and Jonsen et al. (2005) modeled the

velocity (turning angle and speed). In the latter case, modeling velocity induces correlation

between the turning angle and speed. Correlated random walks can also include points of

attraction (e.g., Langrock et al., 2012; McClintock et al., 2012) and multiple behavioral states
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(e.g., Jonsen et al., 2005; Morales et al., 2005; Forester et al., 2007; Langrock et al., 2012;

McClintock et al., 2012, 2013). These models are known as state-switching or change-point

models, and the number of change-points is usually difficult to estimate and must be specified

a priori (Jonsen et al., 2005, 2007; Gurarie et al., 2009; Hanks et al., 2011). Except for the

early movement models that relied on tag-recovery or mark-recapture data, discrete-time

models tend to be continuous in space.

Discrete-time models are attractive because the methods used in time-series analysis can

be applied to telemetry observations (Hooten et al., 2017) and it is easier to conceptualize

and implement models in discrete-time, as opposed to continuous-time (McClintock et al.,

2014a). However, the movement process in discrete-time occurs at regular intervals, while

the data themselves often occur irregularly in time (the time difference between observations

is not consistent). Therefore, the data have to be aligned with the desired scale of inference,

which requires a process known as imputation (McClintock et al., 2012) and can be time-

intensive.

1.3.3. Continuous-Time Models

Despite the advantages of discrete-time models, animals move in continuous-time. There-

fore, a more realistic representation of animal movement would be formulated in continuous-

time, such that inference can be obtained for any point in time (Hooten & Johnson, In

Press). The continuous-time equivalent to a random walk is known as Brownian motion,

and the correlated random walk equivalent is the Ornstein-Uhlenbeck process (McClintock

et al., 2014a). The Ornstein-Uhlenbeck stochastic process contains a Brownian motion com-

ponent, but adds an additional drift component to allow for attraction to a central point
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in the parameter space (Hooten et al., 2017). The Ornstein-Uhlenbeck process was tradi-

tionally used to model autocorrelation when calculating space-use (e.g., Dunn & Gipson,

1977; Blackwell, 1997), but like the discrete-time models, it can also be used to model step

length and turning angle (e.g., Gurarie et al., 2009), velocity (e.g., Johnson et al., 2008a),

attraction (e.g., Johnson et al., 2008a), and multiple behavioral states (e.g., Gurarie et al.,

2009). However, the modeling of multiple behavioral states in a continuous-time framework

is not as well developed (but see Gurarie et al., 2009) as it is in the discrete-time framework

(McClintock et al., 2014a) and is performed using post hoc clustering methods (e.g., Hooten

et al., 2010; Hanks et al., 2011).

While the aforementioned models are all continuous in space, it is not uncommon to dis-

cretize over the spatial support of the process in a continuous-time framework. Formulating

the model in discrete-space is often used when the ultimate goal is continuous-time inference

on resource selection. Spatial covariates are usually discrete in space, therefore it can be

useful in terms of inference and computation time to match the support of the process to

the spatial covariates, which are discrete in space (e.g., Hooten et al., 2010; Hanks et al.,

2011, 2015).

The movement model that is most widely used is probably the continuous-time correlated

random walk (CTCRW) model as implemented by Johnson et al. (2008a). The CTCRW

model is a continuous-time version of the discrete-time correlated random walk model of

Jonsen et al. (2005). While it is a useful and reasonable model for animal movement, the

primary reason for the widespread adoption of the CTCRW framework is the availability of

the corresponding R package crawl, which has made implementing a continuous-time model

significantly easier for non-statisticians (Johnson, 2016).
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1.4. Objectives

As I have illustrated, the field of movement modeling is rapidly evolving. However,

many of the aforementioned models are computationally time-consuming and challenging to

fit, particularly for data that were not collected explicitly for movement modeling. Most

movement model applications focus on a few individuals and are not intended to provide

biological inference across a suite of individuals (Hooten et al., 2016). My goal was to develop

flexible, efficient, and easy to implement movement models for telemetry data sets that can

be used for individual- and population-level inference on movement behavior. I used these

models, with existing data, to learn about the movement and space-use of two carnivore

species native to Colorado: Canada lynx and cougars.
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CHAPTER 2

A functional model for characterizing long

distance movement behavior1

2.1. Summary

Advancements in wildlife telemetry techniques have made it possible to collect large

data sets of highly accurate animal locations at a fine temporal resolution. These data

sets have prompted the development of a number of statistical methodologies for modeling

animal movement. Telemetry data sets are often collected for purposes other than fine-scale

movement analysis. These data sets may differ substantially from those that are collected

with technologies suitable for fine-scale movement modeling, and may consist of locations

that are irregular in time, are temporally coarse, or have large measurement error. These

data sets are time consuming and costly to collect but may still provide valuable information

about movement behavior. I developed a Bayesian movement model that accounts for error

from multiple data sources as well as movement behavior at different temporal scales. The

Bayesian framework allows us to calculate derived quantities that describe temporally varying

movement behavior, such as residence time, speed, and persistence in direction. The model

is flexible, easy to implement, and computationally efficient. I apply this model to data from

Colorado Canada lynx (Lynx canadensis) and use derived quantities to identify changes in

movement behavior.

1The material in Chapter 2 is based on the following publication: Buderman, F.E., M.B. Hooten, J.S. Ivan,
and T.M. Shenk. 2016. A functional model for characterizing long distance movement behavior. Methods
in Ecology and Evolution 7(3):264-273.
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2.2. Introduction

Data sets consisting of animal locations are often collected for purposes other than move-

ment analysis (e.g., survival analysis, demographic studies; White & Shenk 2001; Winterstein

et al. 2001) or with technology that prohibits long-term fine-scale movement modeling (Ya-

suda & Arai, 2005). For example, radio-telemetry may be used to estimate survival (Cowen

& Schwarz, 2005), but the locations may not be used in the analysis (e.g., Hightower et al.,

2001; Buderman et al., 2014). These data sets are costly and time consuming to collect, but

often contain a wealth of unused spatial information. The ability to spatially characterize

movement behaviors using datasets that are insufficient for fine-scale movement modeling

may help management and conservation agencies identify critical areas for wildlife move-

ment (Berger, 2004). In addition, with appropriate temporal data, researchers can also

better understand mechanisms that regulate movement behavior (Hays et al., 2014; Scott

et al., 2014).

Runge et al. (2014) divide long-distance movements into four categories: irruption (dis-

persal), migration, nomadism, and intergenerational relays (which I do not address). Such

movement behavior can vary among individuals and over an individual’s lifetime, though

some species may be more inclined to exhibit one kind of long-distance movement behavior

(LDMB) over another (Jonzén et al., 2011; Mueller et al., 2011; Singh et al., 2012). For

most organisms, the causes and costs of dispersal will vary by individual and in space and

time (Bowler & Benton, 2005), resulting in a continuum of movement behaviors (Jonzén

et al., 2011). LDMB may contribute substantially to population dynamics because it is the

main determinant of population spread and colonization rates (Greenwood & Harvey, 1982;

19



Shigesada & Kawasaki, 2002). Thus, LDMB is an important life history trait for many pro-

cesses such as species invasions, range shifts and local extinctions, reintroduction programs,

metapopulation dynamics, connectivity, and gene flow (Trakhtenbrot et al., 2005).

The spatial location of these behaviors could inform conservation efforts for species capa-

ble of long-distance movements, as some behaviors may be more important than others for

population persistence (Runge et al., 2014). In addition, comparing contemporary movement

data with properly analyzed historical data may identify changes in movement behavior re-

sulting from natural and anthropogenic disturbances. Changes in migratory behavior could

have wide-ranging consequences in cases where the species contributes significantly to the

biological assemblage (Robinson et al., 2009). Species are usually limited in their range by

dispersal ability, foraging ecology, or available habitat (Wood & Pullin, 2002; Hays & Scott,

2013), and as habitat fragmentation and climate variability increase, the ability of species

to traverse long distance will become critical (Bowler & Benton, 2005). Species that have

the capability for long-distance movement may be able to track habitat as environmental

conditions change. However, individuals usually depend on a network of suitable habitats for

different behaviors (e.g., breeding or migration; Robinson et al., 2009). Long-term survival

of the species can be reduced when the distance between patches exceeds dispersal ability

(Trakhtenbrot et al., 2005), or when suitable habitat is not available for all of the behaviors

that occur during an annual cycle (Robinson et al., 2009).

Although dispersal, migration, and nomadism are all LDMBs, they may differ in charac-

teristics that can be quantitatively measured, such as residence time, speed, and persistence

in direction (described using the turning angle). For example, areas where individuals are

foraging or maintaining a home range may be identified by longer residence times or slower

speeds (Schofield et al., 2013) and undirected motion (Morales et al., 2004). In contrast,
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movement may be faster (Dickson et al., 2005) and more directed (Haddad, 1999) within

corridors. Nomadic individuals may exhibit similar speeds as migrators and dispersers, but

they would appear to be perpetually dispersing, with no consistent activity center and a

turning angle independent of previous movements (Lidicker Jr & Stenseth, 1992). Dispersal

and migration may have similar speed and directional characteristics, but migration is a

seasonally repeated movement between the same areas (Berger, 2004) by individuals within

a population (Sawyer et al., 2005), whereas dispersal is a one-way movement (Lidicker Jr &

Stenseth, 1992).

Movement behavior is typically monitored using very-high frequency (VHF) or satellite

telemetry devices. These monitoring devices are more effective at detecting LDMB than

plot-based studies, which may underestimate long-distance movement (Koenig et al., 1996).

The frequency of VHF data is determined by how often an individual can be located and

are spatially restricted to the actively searched area. Aerial location accuracy associated

with VHF data may be affected by antenna type, altitude, and observer skill, while ground

triangulation accuracy may be additionally impacted by terrain, vegetation, power lines, and

weather (Mech, 1983). In contrast, the intended fix rate for a satellite telemetry device is

preprogrammed and often regularly spaced in time. Fix success rates and accuracy can be

influenced by animal behavior, such as diving behavior, canopy cover, terrain, and climatic

conditions (e.g., Di Orio et al., 2003; Heard et al., 2008; Mattisson et al., 2010; Dujon et al.,

2014). The device’s satellite system (GPS or Argos Satellite maintained by Service Argos)

can also influence accuracy of the location observations (Vincent et al., 2002; Heard et al.,

2008; Costa et al., 2010; Patterson et al., 2010; Dujon et al., 2014). In addition, fix success

rate, battery life, and accuracy may all depend on transmitter manufacturer and model.

Both VHF and satellite components can be placed into the same device or individuals can
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be outfitted with two separate devices, resulting in data sets consisting of multiple data

types.

Movement modeling often seeks to spatially characterize an individual’s location as a

function of time; however, this function may be highly complex and non-stationary. In ad-

dition, measurement error varies among monitoring methods and can be large enough to

overwhelm small-scale movement patterns (Kuhn et al., 2009; Breed et al., 2011). Coupled

with temporal irregularity and missing data, these attributes may prohibit the use of con-

temporary movement models. I have found that many available methods do not readily

accommodate multiple sources of data and must impute missing data to obtain locations at

regular intervals (e.g., Hooten et al., 2010; Hanks et al., 2011; Johnson et al., 2011; Hanks

et al., 2015). For example, the continuous-time correlated random walk model presented by

Johnson et al. (2008a) only accounts for elliptical error distributions. Breed et al. (2012)

incorporated an augmented particle smoother into a CRW process model to allow for time-

varying parameters, however their method does not account for multiple data sources and

its effectiveness was only demonstrated on highly accurate GPS data at a fine temporal

scale (10-30 locations/day). Winship et al. (2012) incorporated multiple data sources (Ar-

gos, GPS, and geolocation data) into a state-space model, but the method performed poorly

when there were data gaps, relied heavily on the estimates of Argos precision presented in

Jonsen et al. (2005), and treated the GPS data as equivalent to the best Argos location class.

Change-point models require specifying or estimating the number of change-points, and the

change-points are discrete in time (Jonsen et al., 2005, 2007; Gurarie et al., 2009; Hanks

et al., 2011); modeling smooth transitions in the change-point framework is more difficult.

Given that one individual may exhibit many different LDMBs, I seek a model that is flexible

enough to detect different types and degrees of movement behavior, without specifying or
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estimating the number of change points. Brownian bridge movement models, a method com-

monly used with high-resolution telemetry data, have been shown to work well only when

the measurement error is negligible (Pozdnyakov et al., 2013) making them unsuitable for

data sets obtained with VHF or Argos technology, which can be subject to substantial error.

Recent applications of wavelet analyses also do not account for location error or uncertainty

in the change-point identification and are not feasible with sparse and irregular data sets

(Lavielle, 1999; Sur et al., 2014).

Basis functions are a useful set of tools for approximating continuous functions, such

as movement paths, when ordinary polynomials are inadequate to describe the behavior of

the function (Rice, 1969). Commonly used basis functions include wavelets, Fourier series,

and splines. Approximating a function with splines is computationally easy because the

function is just a weighted sum of simpler functions (Wold, 1974), and such tools have been

incorporated into standard statistical software. Wold (1974) recognized that splines may

be most useful in low information settings where the ultimate goal is to compare individual

estimates of a few characteristic parameters that describe the curve. Basis functions have

been used extensively in fields such as physics (e.g., Sapirstein & Johnson, 1996), medicine

(e.g., Gray, 1992) and medical imaging (e.g., Carr et al., 1997), and climate science (e.g.,

Sáenz-Romero et al., 2010). However, basis functions and associated statistical methods are

less commonly used in ecology. Most applications focus on modeling species distributions

(e.g., Leathwick et al., 2005; Lawler et al., 2006) and population dynamics (e.g., Bjørnstad

et al., 1999), though splines have broad applicability in generalized additive models (Hastie &

Tibshirani, 1990; Wood & Augustin, 2002). For example, Hanks et al. (2015) used B-splines

to model spatial transition rates as a function of location and direction-based covariates

and time-varying coefficients. In addition, recent efforts have used B-splines to estimate
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density functions associated with movement-related behavioral states (Langrock et al., 2014).

Tremblay et al. (2006) used Bezier, hermite, and cubic splines as strict interpolators of

irregular telemetry data from ocean-obligate species; however, they assumed the filtered

Argos locations were the true locations. There is also precedent in the statistical literature

for the equivalence between stochastic movement processes, such as the Wiener process, and

smoothing polynomial splines (Wahba, 1978; Wecker & Ansley, 1983).

I describe a functional approach to movement modeling using basis functions within a

Bayesian model that accounts for multiple data types and their associated error, recognizing

that the observed locations are not the true location. The basis functions allow us to ac-

count for temporal variation in the continuous underlying movement path without specifying

movement mechanisms. I then use derived quantities, such as residence time, speed, and

persistence in direction, to characterize movement behavior. In addition, the model is multi-

scale, allowing for movement behavior at multiple biologically relevant temporal scales. I use

this model to describe how reintroduced Canada lynx (Lynx canadensis) moved throughout

Colorado. The two data collection methods, along with their measurement error and the

sampling irregularity, make this an ideal data set to demonstrate the utility of my model.

2.3. Methods

Conventional functional data analysis (FDA) assumes that there is a continuous under-

lying process, but the observations are temporally discrete, may be subject to error, and are

temporally irregular (Ramsay & Dalzell, 1991; Ramsay & Silverman, 2002, 2005). Unlike

traditional time series analysis, FDA does not assume stationarity or regularity of time in-

tervals (Levitin et al., 2007). The continuous function of interest is approximated using basis

functions, which are a set of patterns that capture the main shape of the curve (Ramsay &
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Silverman, 2005; Ferraty & Vieu, 2006; Hastie et al., 2009). In my case, different sets of basis

functions account for complexity in the process at different temporal scales, allowing us to

detect both large and small-scale movement. In addition, FDA is useful when the objectives

of an analysis are to estimate the derivatives of a function (Ramsay & Dalzell, 1991; Levitin

et al., 2007). In my framework, functions of temporal derivatives, such as residence time,

speed, and persistence in direction, are derived quantities that can characterize the move-

ment path. The Bayesian framework allows for inference concerning these derived quantities

and their associated uncertainty while incorporating multiple data sources; for my purposes,

I incorporated VHF and Argos data into a single model.

2.3.1. Data Model

I consider each observed (centered and scaled) location, sj(t) for a time t ∈ T associated

with data type j (j = 1, ..., 6 are Argos error classes and j = 7 denotes VHF), to arise from

a multivariate normal mixture model with mean, z(t), representing the true location at time

t, and a covariance matrix Σj such that

(1) sj(t) ∼


N(z(t),Σj), if wj(t) = 1

N(z(t), Σ̃j), if wj(t) = 0.

The covariance matrix, Σj ≡ σ2
jRj, represents the error variance associated with each data

type where the correlation matrix is

(2) R ≡

 1
√
cρ

√
cρ c

 ,
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for j = 1, ..., 6, and R ≡ I for j = 7. The prior distribution for the measurement error

variance, σ2
j , was modeled as an inverse gamma, IG(q, r), where q is the shape parameter

and r is the rate parameter. Argos error for all error classes has been shown to be larger than

reported by Argos and greater in the longitudinal direction (Costa et al., 2010; Hoenner et al.,

2012; Boyd & Brightsmith, 2013); therefore I use the parameter c, where c ∼ Beta(αc, βc),

to scale the error variance to be less in latitude than longitude. The ρ parameter scales the

degree of covariance between latitude and longitude and is modeled as Beta(αρ, βρ).

The indicator wj(t) determines which mixture component gives rise to the observed

location and is modeled as Bern(0.5). The covariance matrix of the rotated distribution, Σ̃j,

is calculated as HjΣjH
′
j where Hj is a transformation matrix equal to

(3) H ≡

1 0

0 −1


for j = 1,...,6, and H ≡ I (the identity matrix) for j = 7. The mixture model accounts

for the fact that Argos error locations do not follow a symmetric distribution around the

true location, but are more likely to be found in an x-pattern, due to the polar orbit of the

satellites (Costa et al., 2010; Douglas et al., 2012). In preliminary analyses not presented

here, the multivariate normal mixture model fit the data better than a multivariate normal

non-mixture model. Argos locations are commonly modeled with a t-distribution to account

for extreme outliers (following Jonsen et al. 2005), however the mixture model allows us to

model anisotropic outliers. Though the aforementioned studies have modeled or estimated

Argos error, the information is not directly applicable in the form of priors because the

mixture model is a novel method for modeling Argos error and there is significant variability

in reported estimates of Argos error (Costa et al., 2010). Beginning in 2011, the Argos system
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implemented a new algorithm that provides an error ellipse, as opposed to a radius, for each

location (Lopez et al., 2014). Recent work by McClintock et al. (2014b) used the ellipse

parameters provided by the Argos system and a bivariate normal distribution to model the

data.

2.3.2. Process Model

In the FDA paradigm, a continuous process for a set of times t (t ∈ T ) is written as an

expansion of M basis functions of order k:

(4) z(t) =
M∑
m=1

cmφm,k(t),

where z(t) is the curve of interest, cm is a coefficient that determines the weight of each basis

function in the construction of the curve, and φm(t) is a particular basis function (Levitin

et al., 2007). The type of pattern present in the data dictates the best choice of basis

function; for example, splines are often used for non-periodic data, Fourier series for periodic

data, and wavelet bases for data with sharp localized patterns. I employed the B-spline

basis, which is commonly used in semi-parametric regression because it has local support

and stable numerical properties when the number of knots (the points at which the basis

functions connect) is large (Ruppert et al., 2003; Keele, 2008). However, the model I present

is general enough to accommodate any type of basis functions. B-spline basis functions are

defined recursively according to the Cox-de Boor formula (see De Boor 1978). Let xm,k

denote the mth B-spline basis function of order k (cubic B-splines are 4th order and 3rd

degree) for the knot sequence τ , where k ≤ K. Then for m = 1, ..., N + 2K − k,

(5) xm,k(t) =
t− τm

τm+k−1 − tm
Bm,k−1(t) +

τm+k − t
τm+k − τm+1

Bm+1,k−1(t),
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where N is the number of interior knots (Hastie et al., 2009).

In the spatial statistics and signal processing framework, a continuous stochastic process

is often written as a convolution, or a moving average, of a smoothing kernel function,

k(τ − t), and a latent process (e.g., white noise), η(τ):

(6) z(t) =

∫
T
k(τ − t)η(τ)dτ,

for τ ∈ T (Higdon, 2002; Lee et al., 2002; Calder, 2007). When discretized, (6) takes on

a general formulation (4) (Higdon, 2002; Lee et al., 2002; Calder, 2007). Non-stationary

processes can be modeled by allowing the kernel to be a function of time (or space) and not

just distance (Higdon et al., 1999; Higdon, 2002; Cressie & Wikle, 2011). In the context

of animal movement, one can consider the smoothing kernel as some function that imposes

temporal dependence on the observed locations (the latent process) to create a continuous

and smooth movement path.

In my case, the location of an individual at time t in each direction, z(t), is a function

of an individual’s geographic mean in that direction, β0, and the summation of M cubic

B-splines evaluated at time t, xm,4(t), and the regularized, direction-specific coefficient, βm,

for that B-spline. The location in longitude and latitude is

zlon(t) = β0lon +
M∑
m=1

xm,4(t)βmlon ,(7)

zlat(t) = β0lat +
M∑
m=1

xm,4(t)βmlat .(8)

Using matrix notation, I can write (7) and (8) jointly as

(9) z(t) = β0 + X(t)β,
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where z(t) is a vector describing the location in space at time t. The matrix X(t), is a

2-by-2M matrix where x(t)′ is a row vector containing all of the B-splines evaluated at time

t, such that

(10) X(t) ≡

x(t)′ 0′

0′ x(t)′

 .

As such, it can be multiplied by a single 2M -by-1 vector of regularized coefficients

(11) β ≡

βlon

βlat

 .

The regularized coefficients for higher order splines are not generally interpreted (Weisberg,

2014), but can be thought of as the contribution, or the directional forcing, of that basis

function to the process at that time. The intercept, β0, can be interpreted as the geographic

center of mass for each individual, for which I specified a relatively uninformative dimensional

normal prior (Appendix A.1). I specified a normal prior with mean 0 and covariance matrix

Σβ for the coefficients such that

(12) β ∼ N(0,Σβ).

I selected three sets of B-splines and varied the number of knots to align with temporal

scales I believe are biologically important for lynx movement: year, season (3 months), and

month. Including multiple sets of basis functions allows the continuous function to capture

behavior at different temporal scales without losing predictive capability when there is an

absence of fine-scale temporal data. However, the required number of knots results in a large

design matrix of coefficients that is difficult to visualize; for example, there were 36 and 41
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basis functions for the two Canada lynx presented in the case study. The number of basis

functions will increase as the length of the time series increases. I used the covariance matrix

(13) Σβ ≡

σ2
βlon

I 0

0 σ2
βlat

I


as a regulator in the ridge regression framework to shrink the coefficients β. The variance

terms, σ2
βlon

and σ2
βlat

, control the smoothing in each dimension; a very small variance leads

to underfitting, whereas a large variance can lead to overfitting (Eilers & Marx, 1996). I

selected the variance components by calculating the Deviance Information Criterion (DIC;

Spiegelhalter et al., 2002) over 10,000 MCMC iterations and optimizing the DIC over 400

pairs of variance components (Appendix A.2). In simulation, I found that DIC and K-

fold cross-validation methods performed similarly. The details of regularization and ridge

regression are beyond the scope of this paper, and are explored in more detail in Hastie et al.

(2009) and Hooten & Hobbs (2015).

The model described above yields the posterior distribution

[β0,β,σ
2, ρ, c,w|S] ∝

J∏
j=1

∏
t∈T

[sj(t)|β0,β, σ
2
j , ρ, c, wj(t)][β0][β][σ2][ρ][c][w],(14)

where σ2 ≡ [σ2
j , ..., σ

2
J ], w is a vector of the indicators wj(t), and S is a matrix of observed

locations. This is the form of a typical “integrated” model where multiple data sources

provide information about the same underlying processes. Similar multi-data source models

have become popular in demographic studies (e.g., Burnham, 1993; Barker, 1997; Nasution

et al., 2001; Schaub & Abadi, 2011), but have not been as common in movement studies (but

see Winship et al., 2012). If inference for multiple individuals is desired, the data model can

be shared among individuals while the process model parameters (β0, β) and regulator (Σβ)
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can be allowed to vary by individual. This model can be extended to account for additional

stochasticity using a first-order Gaussian process, such that z(t) ∼ N(β0 + X(t)β, σ2
µR),

where σ2
µR accounts for process error separately. Such Gaussian processes are commonly used

as statistical emulators of complicated non-linear mechanistic models (O’Hagan & Kingman,

1978; Hooten et al., 2011).

See Appendix A.1 for prior specifications. The model was fit using Markov Chain Monte

Carlo (MCMC) and a Gibbs sampler was constructed to sample from the posterior using

the full-conditional distributions for all parameters except ρ and c, because they were not

conjugate. Metropolis-Hastings was used to sample ρ and c. See Appendix A.3 for R code

(R Core Team, 2013).

2.3.3. Characterizing Movement

I am interested in quantities derived from z(t) that can be used as movement descriptors.

I describe three relevant derived quantities; however, my framework can be extended to other

systems and conservation questions by modifying these quantities. These derived quantities

represent the physical outcome in the movement path from various movement behaviors.

The Bayesian framework allows us to obtain inference for derived quantities through Monte

Carlo integration. These quantities can be visualized both temporally and spatially. All

quantities are calculated in the MCMC algorithm using techniques described in Appendix

A.4 and A.5.

To describe the quantities of interest spatially, I define a grid of equally sized regions,

Al for l = 1, ..., L, that comprise the area for which I desire inference. This method is

similar to that used by Johnson et al. (2011) to describe diving behavior of northern fur

seals (Callorhinus ursinus). The first derived quantity I describe is residence time, rl, and
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is calculated on each MCMC iteration as a per area frequency of locations in region Al:

(15) rl = lim
∆t→0

∑
t∈T

∆tI{z(t)∈Al},

where the indicator I identifies whether location z(t) was in region Al.

The second derived quantity of interest is speed. To calculate the average speed per unit

of area, I first need the velocity between the location at time z(t) and the location at time

z(t−∆t). When ∆t is sufficiently small, the first derivative of z(t) with respect to t can be

approximated by

(16)
dz(t)

dt
≈ δ(t),

where

(17) δ(t) =
z(t)− z(t−∆t)

∆t
.

In practice, ∆t is constant for the entire time series, and velocity is related to speed ν(t)

such that

(18) ν(t) =
√
δ(t)′δ(t).

The average speed in Al, given a positive residence time, is

(19) ν̄l =
lim∆t→0

∑
t∈T ∆tν(t)I{z(t)∈Al}

rl
.
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A large average speed describes areas where the individual was moving quickly and spending

little time. Therefore, large average speeds (19) identify areas that individuals may use to

travel.

Persistence in direction is the third metric of interest and may be useful for describing

directed, as opposed to nomadic, movement. I can describe persistence in direction by

deriving the turning angle, θ, using the velocity calculated in (17),

(20) θ(t) =

∣∣∣∣∣arccos

(
δ(t+ 1)δ(t)√

δ(t)δ(t)
√
δ(t+ 1)δ(t+ 1)

)∣∣∣∣∣ .
Given that residence time is positive, the average turning angle, θ(t), in region Al is

(21) θ̄l =
lim∆t→0

∑
t∈T ∆tθ(t)I{z(t)∈Al}

rl
.

Alternatively, I can describe these quantities temporally, negating the need for a spatially

defined grid. This decreases computation time and allows the quantities to be visualized

temporally and spatially. Speed and persistence in direction can be calculated as they were

in (18) and (20) and residence time can be calculated as the inverse of speed:

(22) r(t) =
1

ν(t)
.

2.3.4. Case Study: Canada Lynx Reintroduction in Colorado

Colorado Division of Wildlife (now Colorado Parks and Wildlife) initiated a reintroduc-

tion program for Canada lynx (Lynx canadensis) in 1997. Between 1999 and 2006, 218 wild-

caught lynx from Alaska, Yukon Territory, British Columbia, Manitoba, and Quebec were

released in the San Juan Mountains within 40 km of the Rio Grande Reservoir (Devineau

et al., 2010). Individuals were fitted with either VHF collars (TelonicsTM , Mesa, AZ, USA)
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that were active for 12 hours per day or satellite/VHF collars (SirtrackTM , Havelock North,

New Zealand) that were active for 12 hours per week with locations obtained using the Argos

system (Devineau et al., 2010). Weekly airplane flights were conducted over a 20,684 km2

area, which included the reintroduction area and surrounding high-elevation sites (>2,591

m; Devineau et al. 2010); attempts were made to locate each VHF-collared individual in the

study area once every 2 weeks. Additional flights outside of the study area were conducted

when feasible and during denning season (Devineau et al., 2010). Accuracy of VHF loca-

tions were self-reported as 50-500 m (Devineau et al., 2010). Irregular location data were

obtained from 1999-2011 due to one or both of the transmitter components failing, logistical

constraints, or movement out of the study area precluding VHF data collection. Therefore,

data for each individual varies in the length of the time series, the temporal regularity of

locations, and the number of locations from each data type and error class. I have analyzed

the telemetry data from two Canada lynx (Appendix A.6).

I obtained 10,000 MCMC iterations, with a burn-in period of 1,000 iterations. Additional

results from fitting the model to simulated data are available in Appendix A.7.

2.4. Results

To visualize the fit of the model to the data, I calculated standard posterior quantities,

such as means and 95% credible intervals for the marginal location in each direction (Figure

2.1a, 2.1b). Increasing uncertainty is evident during long periods of missing data (Figure

2.1a, 2.1b). The derived quantities were scaled relative to the maximum value for that

quantity over the individual’s lifetime and plotted both spatially, on a map of Colorado

(Figure 2.1c, 2.1d, 2.2), and temporally (Figure 2.2). These relative values are useful for

visualizing the degree of each behavior at a given time point, despite the quantities having
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different units; the degree of shading represents the strength of that behavior, with the size

corresponding to the spatial uncertainty (Figure 2.1c, 2.1d, 2.2). The optimal variance terms

for the regulator matrix (13) and mean and 95% credible intervals for the covariance matrix

(23) are presented in Appendix A.6.

Both individuals had multiple periods of fast speeds, large turning angles, and high

residence times (Figure 2.1c, 2.1d, 2.2). For these individuals, high residence time often

indicated a corresponding large turning angle, however these behavioral quantities were not

always concurrent (Figure 2.2). For example, individual BC03M04 displayed periods early in

the time series where the turning angle was the strongest quantity, while speed and residence

time were fairly low, suggesting a searching or nomadic behavior (Figure 2.2a). Both time

series culminated with the individuals residing in two specific counties (Clear Creek and

Summit), which includes an area that is considered important lynx habitat (Loveland Pass;

Colorado Parks and Wildlife, personal communication). These results also indicate that lynx

are capable of consistent long-term movement across large distances without establishing an

area of high residence time. For example, within a period of two months, individual BC03F03

traveled approximately 480 km (posterior mean), from the southern portion of Colorado

(Mineral County) to southern Wyoming (Medicine Bow National Forest, specifically the

area located within Carbon and Albany counties; Figure 2.2b).

2.5. Discussion

The process model I propose falls within the same class of models as statistical emulators,

functional data models, and process convolutions, and I showed that it can be written in

much the same way. The model presented could be written as a hierarchical model, by

allowing the latent process to be stochastic. However, it is well-known that hierarchical
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models with two sources of unstructured error and lacking replication will have identifiability

issues (Hobbs & Hooten, 2015). Given a situation where there are strong constraints on the

movement process, it may be possible to separate data and process error. For example,

Brost et al. (2015) were able to separately estimate data and process error in a resource

selection framework by constraining the spatial domain of the process. However, their study

focused on a marine mammal and therefore the process can be constrained to the marine

environment (Brost et al., 2015). Constraining movement in a terrestrial environment may

be possible but is less intuitive and will impose strong assumptions.

In addition, one of the benefits of using a functional data approach is its flexibility, in

contrast to more constrained mechanistic models. The simplicity of the process model results

in greater computational efficiency than other available methods for movement modeling.

For example, my model can be fit on the order of minutes for each individual, compared

to other models that require on the order of days (e.g., Hooten et al., 2010; McClintock

et al., 2014a). Although small-scale movement patterns may be difficult to detect given the

coarse temporal resolution and the large amount of measurement error associated with Argos

locations, large-scale movement patterns are easily discernible and informative. However,

researchers analyzing data at a finer temporal scale could discern small-scale movement with

properly scaled basis functions (e.g., daily or weekly).

The model can be used to estimate an animal’s movement path alone, but is especially

useful for learning about movement behaviors that describe how individuals are utilizing the

landscape. For example, persistence in direction may be used to infer when and where an

individual is migrating or dispersing, whereas variation in direction may indicate habitat

suitable for a home range (Haddad, 1999; Morales et al., 2004). In the data I analyzed, the

movement descriptors corresponded with anecdotal evidence of lynx movement behavior.
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Many existing methods for analyzing location data explicitly model the quantities that give

rise to the movement path (e.g., speed, turning angle, residence time, velocity), such that the

quantities must be estimated while fitting the model (mechanistic models; e.g., Morales et al.,

2004; Jonsen et al., 2005; Johnson et al., 2008a; Breed et al., 2012; McClintock et al., 2012;

Winship et al., 2012). In contrast, I use the equivariance property of MCMC to calculate

derived quantities as well as the proper uncertainty associated with each behavior (Hobbs

& Hooten, 2015). Alternative ad hoc methods could be used, such as calculating derived

quantities based on the mean predicted path, but to ensure the validity of those quanti-

ties as estimators with proper uncertainty, a procedure like the one I describe is necessary.

Quantities of interest beyond those presented can be derived, such as bearing or tortuosity,

or summarized with respect to temporal and spatial features. However, my model would

need to be adjusted to accommodate other sources of measurement error (e.g., GPS data).

The model that I developed may be particularly well-suited for analyzing data sets that

have not been collected explicitly for movement analysis. These data sets may contain mul-

tiple data types, have large amounts of error, and have been collected at a coarse temporal

resolution. As such, they may not be conducive for fine-scale mechanistic movement mod-

eling. I used a data set that embodied these characteristics, the telemetry data from the

Canada lynx reintroduction to Colorado, to demonstrate that the FDA approach can be

used to estimate movement paths and associated movement descriptors. The biological in-

ference from the derived movement descriptors can also be extended beyond what I show

here. For example, my framework could be extended to incorporate spatial and temporal

covariates into the process model, similar to the approach described by Hanks et al. (2015).

In addition, the spatial distribution of the movement descriptors can be used to summa-

rize movement behavior across linear landscape features such as roads. Likewise, movement
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behavior through non-linear landscape features, such as National Parks, can be described

with the average posterior mean of a movement descriptor within a spatial boundary. My

model can also be generalized for use with multiple individuals. In this case, the derived

quantities can be aggregated to describe population-level movement. This type of population

movement model allows the Argos and VHF covariance matrices to borrow strength across

individuals, potentially improving parameter estimates. Such extensions are the subject of

ongoing research.
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2.7. Tables and Figures
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Figure 2.1. Mean and 95% credible intervals of the marginal locations for two Canada lynx
(BC03M04 (a) and BC03F03 (b)), with the observed locations. The posterior mean of each
movement descriptor, shown with the counties of Colorado, for individuals BC03M04 (c) and
BC03F03 (d) . The size of the point corresponds to spatial uncertainty and the transparency
indicates the strength of the behavior at that location; for visualization purposes any value
below 25% of the maximum value for that behavior is not shown. Coordinates correspond
to Universal Transverse Mercator zone 13N.
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Figure 2.2. Mean relative movement descriptors through time and space for two Canada
lynx reintroduced to Colorado (BC03M04 (a) and BC03F03 (b)). Coordinates correspond
to Universal Transverse Mercator zone 13N.
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CHAPTER 3

Large-scale movement behavior in a reintroduced

predator population1

3.1. Summary

Understanding movement behavior and identifying areas of landscape connectivity is

critical for the conservation of many species. However, collecting fine-scale movement data

can be prohibitively time consuming and costly, especially for rare or endangered species,

whereas existing data sets may provide the best available information on animal movement.

Contemporary movement models may not be an option for modeling existing data due to low

temporal resolution and large or unusual error structures, but inference can still be obtained

using a functional movement modeling approach. I use a functional movement model to

perform a population-level analysis of telemetry data collected during the reintroduction

of Canada lynx to Colorado. Little is known about southern lynx populations compared

to those in Canada and Alaska, and inference is often limited to a few individuals due

to their low densities. Our analysis of a population of Canada lynx fills significant gaps

in the knowledge of Canada lynx behavior at the southern edge of its historical range. I

analyzed functions of individual-level movement paths, such as speed, residence time, and

tortuosity, and identified a region of connectivity that extended north from the San Juan

Mountains, along the continental divide, and terminated in Wyoming at the northern edge

of the Southern Rocky Mountains. Individuals were able to traverse large distances across

non-boreal habitat, including exploratory movements to the Greater Yellowstone area and

1The material in Chapter 3 is based on the following publication: Buderman, F.E., M.B. Hooten, J.S.
Ivan, and T.M. Shenk. In Revision. Large-scale movement behavior in a reintroduced predator population.
Ecography
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beyond. I found evidence for an effect of seasonality and breeding status on many of the

movement quantities and documented a potential reintroduction effect. Our findings provide

the first analysis of Canada lynx movement in Colorado and substantially augment the

information available for conservation and management decisions. The functional movement

framework can be extended to other species and demonstrates that information on movement

behavior can be obtained using existing data sets.

3.2. Introduction

Functional connectivity, the degree to which the landscape facilitates or impedes move-

ment among resource patches (Taylor et al., 1993), is of critical importance for a number

of ecological processes, such as gene flow (Coulon et al., 2004; Keyghobadi et al., 2005),

metapopulation dynamics (Hanski, 1999), migration (Sawyer et al., 2005), and range expan-

sion (Safranyik et al., 2010). Given the importance of connectivity for wildlife population

persistence, its preservation and restoration have become conservation priorities. Many

methods exist for identifying areas of high connectivity, but few of these methods are ca-

pable of quantifying realized functional connectivity of the landscape (Calabrese & Fagan,

2004). Whereas structural connectivity focuses on the spatial arrangement of the landscape

in isolation of animal behavior, functional connectivity incorporates the behavior of the in-

dividual (Crooks & Sanjayan, 2006), either through knowledge about their physiology and

dispersal capabilities (structural functional connectivity) or by observing individuals mov-

ing through a landscape (realized functional connectivity; Calabrese & Fagan 2004). The

movement path of an individual arises from sequential decisions regarding their needs and

perceptions of the surrounding habitat, and it is these decisions that ultimately give rise to

the functional connectivity of the landscape (Tracey, 2006).
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Despite the priority on maintaining and increasing connectivity, few methods for eval-

uating connectivity explicitly incorporate animal movement (but see Tracey, 2006; Tracey

et al., 2013). Realized functional connectivity can be difficult and labor intensive to mea-

sure because it requires long-term monitoring of individual movements (Ferrari et al., 2007).

However, the locations of individuals are often collected in conjunction with other monitoring

data; existing data sets may contain a wealth of spatial information but were not explic-

itly collected to monitor movement across the landscape. Utilizing existing data on animal

movement, despite its potential deficiencies, may provide the best available information for

landscape-level management decisions intended to improve connectivity.

Connectivity planning, particularly the delineation and maintenance of corridors, is of-

ten associated with high costs and risks (Morrison & Reynolds, 2006). In an ideal scenario,

connectivity planning would allow for data collection to explicitly identify optimal man-

agement decisions, such as corridor placement. Logistically, however, there are often time

or budget constraints that preclude collecting data explicitly for the decision under con-

sideration (Clevenger et al., 2002). In addition, basic species-specific information, such as

habitat requirements, movement abilities, movement behaviors (e.g., seasonality, age, and

sex differences in movement), and facilitators or impediments to movement, is critical for

informing management decisions, but is often lacking during the decision making process

(Bennett, 1999). Given the costly and political nature of connectivity planning, existing

data sets on animal movement may provide the best available information at a time when

a decision needs to be made, particularly for rare or endangered species at low densities.

However, novel methods may be necessary to deal with unique factors of existing data, such

as irregular time intervals, missing data, and multiple data types.

43



I extended the approach presented by Buderman et al. (2016) to simultaneously model the

movement paths of a population of individual animals using data that were not collected with

the intention of modeling animal movement, but that contain valuable spatial information.

The functional movement modeling approach is flexible and can be modified to account for

other types of measurement error beyond the combination of Argos (a polar-orbiting satellite

system) and radio-telemetry data presented here. I used the modeled movement paths

to identify temporal and demographic patterns in movement behavior across a threatened

population of reintroduced Canada lynx (Lynx canadensis). Spatial patterns in movement

behavior were used to identify areas that suggest high landscape connectivity. I obtained

inference for movement behavior using derived quantities that can be modified to fit the

species and system in question and are not constrained to those presented here.

3.2.1. Reintroduced Canada Lynx in Colorado

Canada lynx were designated as an endangered species in Colorado in 1973, although

the last verified Canada lynx record occurred in 1974 (Halfpenny et al., unpublished manu-

script). The boreal habitat in Colorado is isolated from similar habitat in Montana (Findley

& Anderson, 1956), making a natural recolonization from source populations unlikely. There-

fore, Colorado Division of Wildlife (CDOW; now Colorado Parks and Wildlife) initiated a

reintroduction program for Canada lynx in 1997 (Seidel et al., 1998). Between 1999 and

2006, 218 wild-caught lynx from Alaska and Canada were fitted with radio-telemetry/Argos

collars and released in the San Juan Mountains (Devineau et al., 2010).

The southern Rocky Mountains consist of “boreal islands” separated by large areas of

non-boreal vegetation, in contrast to the relatively homogeneous boreal zone in Canada

(McKelvey et al., 2000a). Snowshoe hares (Lepus americanus), the primary prey source for

44



lynx, have been observed in Colorado at densities equivalent to those during the low phase

of population cycles in the northern boreal forests of Canada (Hodges, 2000; Ivan et al.,

2014), potentially due to the patchy and heterogeneous nature of spruce-fir habitat in the

mountainous regions of Colorado (Wolff, 1980). The natural patchiness of optimal habitat

may cause lynx in southern boreal forests to travel farther and more frequently to access an

adequate amount of habitat (Aubry et al., 2000). Evidence also exists for large exploratory

movements of lynx in southern boreal forests, a behavior that has not been observed in

northern populations (Aubry et al., 2000).

Much of the published literature on Canada lynx focuses on northern populations, and

Buskirk et al. (2000a) caution against extrapolating this information to southern boreal pop-

ulations, as climate, topography, and vegetation differ significantly over the broad geographic

range. The available information on lynx dispersal and long distance movement in southern

boreal forests is typically unpublished, consists of small sample sizes, or has incomplete spa-

tial coverage. The reintroduction effort in Colorado has produced an extensive data set of

spatial and demographic information for Canada lynx in southern boreal forests, a data set

that is nearly impossible to replicate today.

Given that Canada lynx are endangered in the state of Colorado and Federally threatened

(United States Fish and Wildlife Service, 2014), information on their movement behavior can

be of critical importance for management decisions. For example, the U.S. Forest Service

and U.S. Fish and Wildlife Service have a Conservation Agreement that necessitated the

identification of linkage areas for lynx that facilitate movement between and among parcels

of lynx habitat (Claar et al., 2003). However, the linkage areas in Colorado have not been

modified since 2002, shortly after the reintroduction program was initiated. Information

from the reintroduced population, over the course of ten years, can be used to modify linkage
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area delineation. In addition to identifying temporal, spatial, and demographic patterns in

movement behavior, I also explored the effect of the reintroduction on individual behavior.

3.3. Materials and Methods

Reintroduced individuals were released in the spring and fitted with either radio-telemetry

radio collars (hereafter referred to as VHF collars; TelonicsTM , Mesa, AZ, USA) or VHF/Ar-

gos collars (SirtrackTM , Havelock North, New Zealand). Satellite transmitters were active for

12 consecutive hours per week, during which time several locations over those 12 hours could

be obtained using the Argos System (Devineau et al., 2010). Weekly airplane flights were

conducted over a 20,684 km2 area, which included the reintroduction area and surrounding

high-elevation sites (>2,591 m; Devineau et al. 2010); attempts were made to obtain a VHF

location from each radio-collared individual in the study area once every 2 weeks. Additional

flights outside of the study area were conducted when feasible and during the denning sea-

son (May-June; Devineau et al. 2010). Irregular location data were obtained from 1999-2011

due to one or both of the transmitter components failing, logistical constraints, or movement

out of the study area that precluded consistent VHF data collection. Each winter, efforts

were made to recapture reintroduced individuals and capture Colorado-born individuals to

maintain an adequate sample of working telemetry devices throughout the study period.

There were sufficient data for modeling the movements of 153 of the 218 reintroduced

Canada lynx, in addition to 12 Colorado-born lynx that were collared as adults (N=165,

Appendix B.1). For certain individuals, time periods with missing data were large enough

to cause computational stability issues; thus, based on preliminary analyses, I identified those

cases and split the data into separate time series. The 216 resulting time series spanned 59-

3,947 days (mean=756) and contained 26-1,257 data points (mean=202; Appendix B.1).
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Argos class Z locations, which are conventionally deemed invalid, were removed from the

data prior to analysis. Reproductive status of females was determined during denning season

(May-June) through intense telemetry and den searches to locate females with dependent

kittens each year; the breeding season was defined as February-April, summer as May-

September, and winter as October-January.

3.3.1. Movement Model

Our lynx data contains multiple data sources, large measurement error, temporal irregu-

larities, and a coarse temporal resolution. These characteristics result in a data set that may

not be amenable to analysis with contemporary mechanistic movement models (e.g., Jonsen

et al., 2005; Johnson et al., 2008a; McClintock et al., 2012). To overcome these challenges,

I extended a Bayesian model developed by Buderman et al. (2016) for telemetry data that

were collected at coarse spatial and temporal resolutions.

As an alternative to a mechanistic movement model, the process model developed by

Buderman et al. (2016) approximates the underlying non-linear and complex movement be-

havior with linear combinations of basis functions. A basis function is a continuous function

that can either transform an existing covariate in space or time, or act as a covariate itself; in

ecology, basis functions are often used in generalized additive models (Wood & Pullin, 2002),

but are also used to model autocorrelated data (Hefley et al., 2017). In a movement context,

multiple sets of basis functions operate as covariates that push or pull the movement process

away from the geographic mean to create a representation of the underlying true path. The

multiple sets of basis functions allow the movement behavior to change according to different

temporal scales and allows for time-varying heterogeneity in movement without specifying or

estimating the number of behavioral change-points or states (e.g., Jonsen et al., 2005, 2007;
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Gurarie et al., 2009; Hanks et al., 2011). The data component of the model presented by

Buderman et al. (2016) uses multiple data sources to contribute to learning about the same

underlying process, allowing us to use both VHF and Argos data, in contrast to other move-

ment models that have been developed for use with a single error structure (e.g., Johnson

et al., 2008a; Breed et al., 2012; McClintock et al., 2014b). Additionally, the model allows

for data at irregular time intervals, alleviating the conventional need to impute missing data

(e.g., Hooten et al., 2010; Hanks et al., 2011; Johnson et al., 2011; Hanks et al., 2015).

These characteristics result in a flexible, phenomenological model for animal movement that

correctly accounts for multiple data sources and allows for temporally irregular and sparse

data.

I generalized the model developed by Buderman et al. (2016) to allow for statistically

rigorous population-level inference by simultaneously modeling the independent movement

processes for multiple individuals (153 reintroduced and 12 Colorado-born lynx) using a

shared data model component; this is in contrast to Buderman et al. (2016), where the two

individuals were modeled completely independently from one another. The process model

variance components were tuned at an individual level using predictive scoring over a two-

step grid search of the parameter space. I fit the population-level model using a Markov

Chain Monte Carlo (MCMC) algorithm written in R (R Core Team, 2013), and posterior

inference was based on 9,000 MCMC iterations. Appendix B.2 contains additional details

for the model specification, estimated measurement error, and posterior mean trajectories of

individuals.
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3.3.2. Characterizing Movement

In what follows, I use the word “locations” to refer to modeled locations (the daily loca-

tions derived from the functional modeling framework). As the foundation for characterizing

lynx movement behavior, I used the three quantities proposed by Buderman et al. (2016):

residence time, speed, and tortuosity. Residence time was defined as the amount of time

spent in a grid cell (the number of daily locations observed), and relative speed was calcu-

lated as the distance between sequential locations (because the modeled locations are regular

in time, the distance is proportional to daily speed). I defined tortuosity as the degree to

which individual’s orientation at time t deviates from time t−∆t, where large values indicate

larger directional changes from one time to the next (I modeled locations daily, such that

t−∆t is equal to one day). Spatial and temporal derivations of each quantity are presented

in Appendix B.3, as well as a guide to which analyses correspond to each quantity. The

Bayesian framework allowed us to obtain posterior inference for derived quantities using

Monte Carlo integration (e.g., Hobbs & Hooten, 2015). Because the underlying movement

process is modeled in continuous space and time, the derived quantities can be summarized

spatially or temporally at any desired resolution. I calculated the temporal versions of speed

and tortuosity at a daily resolution and used the posterior means as response variables in

subsequent analyses.

An additional quantity was calculated by scaling speed and residence time by their max-

imum values and then dividing each by the sum of the two scaled quantities, such that

the quantities can be viewed as the contribution to total behavior at that time. I describe

three discretized behavioral modes based on the posterior means of these relative quantities:

movement bouts, settlement locations, and exploratory movements. A movement bout was

any time an individual’s relative speed exceeded 50% of the contribution to total behavior
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(residence behavior is the complement). Settlement areas were identified as those locations

where an individual’s relative speed was equal to or less than 50% of the contribution to total

behavior for more than 30 consecutive days, with initial settlement being the first location

that resulted in a settlement (i.e., an initial home range). Exploratory movements were those

locations that occurred between settlement locations following initial settlement.

I used linear mixed models with an individual random intercept for any analysis with mul-

tiple measurements per individual (R package lme4; Bates et al. 2014). Individuals that were

split into separate time series for fitting the movement model were considered as the same

individual in subsequent analysis. In all cases, the response variable was log-transformed

and the mean and 95% Wald confidence interval for the fixed effects were presented on the

real scale (due to the transformation, this results in geometric, not arithmetic, means). For

analyses with a single response variable per individual I present the sample arithmetic mean

and range across individuals. Likelihood ratio tests were used for model comparison.

3.3.2.1. Movement Summary Statistics. Daily speed, daily tortuosity, and duration of

completed movement bouts were modeled as a function of sex, season, and reproductive

status (for females). Patterns in movement initiation dates were determined by calculating

the proportion of individuals that performed movement bouts compared to the number that

could have performed a movement bout at that time. Finally, total distance moved from

first to last location for each individual was calculated as the sum of the daily posterior mean

speeds.

3.3.2.2. Reintroduction and Exploratory Movement. Of the 153 reintroduced individuals

with sufficient data, 18 had large gaps between the reintroduction date and first modeled

location, three had subsequent missing data before initial settlement, and four settled within

a day of their release. These individuals were removed from the analysis of movement
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from reintroduction to initial settlement, resulting in 128 individuals. To determine the

immediate post-reintroduction behavior of lynx, given that they did not settle immediately

after release, I calculated time from reintroduction to initial settlement, total distance moved

from reintroduction to initial settlement, and straight-line distance from reintroduction to

initial settlement as response variables in linear mixed models.

Temporal duration and distance of exploratory movements for reintroduced individuals

following initial settlement were modeled as functions of sex. An additional 36 of the 128

individuals only completed an initial settlement and three had missing values during their

only exploratory movement, leaving 89 individuals who performed a total of 196 exploratory

movements (excluding those with missing data).

To investigate the effect of reintroduction on movement behavior, I compared annual

6-month periods that corresponded to the same date range as the first 6-months after an

individual’s release (e.g., January 1, 1999 to June 1, 1999 vs. January 1, 2000 to June 1, 2000,

etc.). I analyzed a subset of individuals with multiple years of data and compared speed and

tortuosity across years. I modeled data up to 7 years following release because few individuals

remained telemetered longer than that. To account for the increasing population size as the

reintroduction progressed, I modeled daily speed and tortuosity during the first 6-month

period following an individual’s release as a function of the year since the reintroduction was

initiated (1999).

To quantify the return rate to a previous settlement location, I modified the clusGap

function (R package cluster; Maechler et al. 2013) to use the Haversine formula for great-

circle distance (R package cluster; Hijmans 2015) and calculated the optimal number of

geographic clusters among settlement locations. Of 165 individuals (153 reintroduced in-

dividuals plus 12 Colorado-born individuals), nine individuals were never observed settling
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in a location for more than 30 days and 40 only settled once (including two Colorado-born

lynx). A remaining 40 individuals had inconclusive clustering results, which were indicated

by the algorithm separating a single residence period into multiple geographic clusters (likely

caused by slow unidirectional movement). Inference for return rates was obtained for the

remaining 77 individuals that were observed settling more than once.

3.3.2.3. Correlations Between Vegetation and Movement. I used LANDFIRE (2008) data

to assess correlations between habitat characteristics and movement bouts (indicating con-

nectivity) and non-movement locations. Because of the large extent of the study area, I

reclassified the 120 relevant LANDFIRE classes into 16 categories: agriculture, urban/de-

veloped, riparian willow, riparian non-willow (e.g., cottonwood, poplar, sedge, exotic), grass-

land/rangeland, water, barren (rock/snow/ice/talus), alpine/subalpine tundra/meadow, mon-

tane shrubland (e.g., Gambel oak, mesic mountain shrub, serviceberry, snowberry), xeric

shrubland (e.g., sagebrush, saltbrush, greasewood) , spruce-fir, mixed spruce-fir (e.g., spruce

with Douglas fir, lodgepole, or aspen), pinyon-juniper, aspen, lodgepole pine, and montane

mixed forest. I then extracted the raster values for times when individuals were and were

not performing a movement bout.

3.3.2.4. Connectivity and Residence Area Identification. To identify areas of connectivity,

I divided the western United States into equally sized grid cells (0.15 degree2) with boundaries

determined by the minimum and maximum location values. The grid cell representation of

the spatial surface facilitates computation, with smaller grid cells more closely approximating

a continuous surface. To obtain population-level spatial quantities, I calculated the sum

across individuals of the per grid cell posterior mean, such that the quantity represents the

total mean behavior for any of the 165 individuals that entered that grid cell from 1999-2011.

For example, cells with large values for speed indicated areas where lynx moved quickly (i.e.,
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what I assume represent long distance movement behavior and thus indicates connectivity),

or areas where many slow moving lynx aggregated (see Appendix B.4 for population averaged

quantities). Assessing speed and residence time together can highlight those areas used for

high-speed movements. Connectivity areas were indicated by areas of high speed and low

residence time behavior, whereas residence areas were identified by large values for residence

time.

3.4. Results

3.4.1. Movement Summary Statistics

Using a random effect for individual, I did not observe a statistically significant effect of

sex on daily speed (χ2(1)=2.28, p=0.12): average daily speed was 0.93 km/day (CI=0.85-

1.03). However, a season effect was statistically significantly (χ2(2)=13,778, p<0.0001),

and a season by sex interaction improved the model over just a season effect (χ2(3)=463,

p<0.0001; Figure 3.1a). Using the season-by-sex interaction model, I found that both fe-

males and males exhibited greater daily speeds during the summer months (Figure 3.1a).

On average, males moved slightly faster than females, but this difference was greatest during

the summer months (Figure 3.1a). An interaction between season and female reproductive

status was significant (χ2(3)=6,476, p<0.0001; Figure 3.1b), with non-reproductive lynx

consistently moving faster than reproductive lynx. Speeds during the winter months were

similar, regardless of reproductive status, but non-reproductive individuals moved signifi-

cantly faster during the breeding and summer months (when the difference between groups

was greatest; Figure 3.1b).
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Using a random effect for individual, I found that sex did not have a statistically sig-

nificant effect on daily tortuosity (χ2(1)=1.15, p=0.28): average daily tortuosity was 2.9

degrees/day (CI=2.81-2.99). I found that adding season as a fixed effect significantly im-

proved the model (χ2(2)=1,739, p<0.0001), while an additional interaction between season

and sex did not (χ2(3)=4.21, p=0.24). Average daily tortuosity, using the model with a

season-by-sex interaction, showed that values for tortuosity were lowest in the summer for

both sexes (Figure 3.2a). Female movement paths varied in tortuosity by reproductive status

and season, with reproductive individuals having more tortuous movements, particularly in

the summer (χ2(3)=477, p<0.0001; Figure 3.2b).

Accounting for sex marginally improved the model for duration of movement bouts

(χ2(1)=3.73, p=0.05). On average, the duration of movement bouts was 25 days for fe-

males (CI=23-27) and 28 days for males (CI=26-30). One female and one male spent over

200 days in a continuous movement bout. I did find a seasonal effect on the duration of

movement (χ2(3)=736, p<0.0001), but a model with a season by sex interaction did not

perform better than a model with just a season effect (χ2(3)=4.46, p=0.22). The average

duration of a male movement bout lasted slightly longer than a female’s, but the difference

was greatest during the breeding season and summer (Figure 3.3a). I found evidence for

an interaction between season and reproductive status on duration of movement bouts for

females (χ2(3)=8.73, p=0.03; Figure 3.3b). During breeding season, reproductive females

made shorter movement bouts than non-reproductive females (Figure 3.3b).

Aggregating across years for each sex, I found a slight difference in the proportion of males

and females performing movement bouts, particularly in April, May, and June (Figure 3.5).

From reintroduction to last location (either mortality or collar failure, excluding the distance
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potentially moved between non-modeled time periods), females moved, on average, a total

distance of 1,322 km (range=139-4,116) and males moved 1,367 km (range=136-5,841).

3.4.2. Reintroduction and Exploratory Behavior

On average, given that they did not settle within one day of release, females and males

spent over 5 months moving before establishing an initial settlement area (females: mean=157

days, range=4-571; males: mean=179 days, range=3-624). Mean total distance traveled

from the reintroduction site to first settlement was 449 km for females (range=4-2,805)

and 519 km for males (range=4-1,414). Standardizing by the number of days available to

move, females and males moved, on average, 2.8 km/day (females: range=0.4-6.4; males:

range=0.5-6.6). The reintroduction site and the initial settlement site were 96 km apart for

females (range=2-766) and 126 km apart for males (range=6-643).

On average, given that an individual settled more than once, each individual performed

2.2 exploratory movements. Sex was not a significant predictor for the duration of ex-

ploratory movements (χ2(1)=1.96, p=0.16), which was, on average, 72 days (CI=62-85).

Sex was also not a significant predictor for the total distance moved during exploratory

movements (χ2(1)=1.63, p=0.2), which was, on average, 107 km (CI=82-139). Of the 196

exploratory movements, 44% were in the summer, 35% were in the breeding season, and 21%

were in winter.

Daily speed decreased steadily over the first four years following an individual’s release

but then increased (Figure 3.5a). I also saw increasing values for daily tortuosity, which

indicates that an individual is covering less ground from one day to the next (constrained

movement within an area; Figure 3.5b). Accounting for the year since the reintroduction

was initiated significantly improved the model for daily speed and tortuosity during the first
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6 months following an individual’s release (χ2(6)=107, p<0.0001 and χ2(6)=354, p<0.0001,

respectively). Although the 95% confidence intervals overlap, there is a suggestion that speed

was higher (Figure 3.6a) and tortuosity lower (Figure 3.6b) as time since the reintroduction

increased.

Of the 77 individuals that settled more than once, 26 never settled in the same location

more than once. The remaining individuals used the same location for a settlement area

2-10 times, and those reused settlement areas often constituted a large percentage of their

total settlements (Table 3.1). In addition, one individual used two separate settlement areas

more than once.

3.4.3. Correlations Between Vegetation and Movement

Approximately 56% of non-movement bout locations occurred in spruce/fir habitat, with

an additional 12% and 10% occurring in aspen and alpine/subalpine habitat, respectively.

Habitat designated as barren contained 10% of non-movement bout locations. All other

habitat was associated with less than 3% of the residence locations. Movement bout locations

also occurred predominately in spruce/fir habitat (40%), aspen (15%), and alpine/subalpine

habitat (9%). Barren habitat contained 8% of movement bout locations. However, a greater

proportion of movement locations occurred in alternative habitat compared to non-movement

locations. For example, 7% of movement locations occurred in xeric shrublands, and 4%

occurred in each of lodgepole pine habitat and montane mixed forest.

3.4.4. Connectivity and Residence Area Identification

Values for residence time were largest in the San Juan Mountains of southwest Colorado,

between the towns of Silverton and Creede (this area encompasses the reintroduction area;

Figure 3.7a). Large values for residence time, compared to the surrounding area, can also
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be seen in the Sawatch Range in the central part of the State, approximately 40 km east

of Aspen (Figure 3.7a). At a population-level, individuals spent little time outside of the

reintroduction area in Colorado (Figure 3.7b).

Within Colorado, population-level speeds were highest in the San Juan Mountains in

southwest Colorado (Figure 3.7c). The overlap with areas of high residence time was likely

because the summation will result in similarly large speeds if a grid cell contained a small

number of fast individuals or a large number of slow individuals. Therefore, areas of high

residence time may also be areas of high speeds (see Appendix B.4 for alternative quantities

that account for the number of individuals using a cell and the posterior mean number of

individuals that were observed in a cell). However, peak speeds in areas with low residence

time (e.g., connectivity areas) occurred northeast of the town of Creede (i.e., east of the area

where residence time peaked) at the base of a population-level path that extended along the

Continental Divide through the Sawatch, Mosquito, and Front Ranges of Colorado before

entering Wyoming (Figure 3.7c). From southern Wyoming, trajectories fork and dissipate

as they move westward toward the Wind River, Wyoming, and Uinta Ranges and northward

toward the Bighorn Mountains (Figure 3.7d). Multiple individuals that left Colorado used

an area in the southern portion of Wyoming with individual paths intersecting at multiple

points along the western border of Wyoming, but, proportionally, only a few individuals

utilized these areas (Figure 3.7d).

The largest values for tortuosity correspond to the same areas as for residence time

(Figure 3.7e). However, large values for population-level tortuosity also extended beyond

the high residence time area (to the northwest and to the northeast along portions of the

path to Wyoming), suggesting a boundary area where individuals spent time exploring but

not settling (Figure 3.7e).
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3.5. Discussion

3.5.1. Overview of Findings

Generally, lynx moved at greater speeds and with lower tortuosity during summer com-

pared to winter. Males moved slightly faster than females in summer, and non-reproductive

females moved faster and in less tortuous paths than reproductive females during the breed-

ing and summer seasons. Proportionally more individuals engaged in movement bouts during

summer compared to other seasons. I found that reintroduced lynx spent an average of 5

months in a movement bout, given that they did not settle within one day of release, be-

fore establishing an initial settlement area (i.e., an initial home range). Locations of initial

settlement areas averaged approximately 100 km from the release site. After initial settle-

ment, more than half of the individuals engaged in at least one exploratory movement that

lasted an average of 72 days, covered an average of 107 km, and occurred mostly during

the breeding and summer seasons. Many individuals returned to the same settlement area

after making an exploratory movement. Areas traversed during movement bouts generally

encompassed larger proportions of alternative habitat (e.g., xeric shrublands, lodgepole pine

forest, montane mixed conifer forest) than those used during non-movement bouts (e.g.,

spruce/fir forest, aspen, alpine or subalpine meadows). Residence behavior occurred mostly

in southwest and central Colorado; however, I observed a population-level corridor of high-

speed movement that extended from the southwest part of Colorado, through the central

mountain ranges, and dissipated in southern Wyoming. While I can compare these find-

ings to what has been seen in other southern lynx populations (e.g., Poole, 1997; Burdett

et al., 2007; Squires et al., 2013), our study is unique in that the inference directly relates to

conditions following a reintroduction.
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3.5.2. Inference for Movement of Reintroduced Canada lynx in Colorado

Squires et al. (2013) found that lynx movement rates in the Northern Rocky Mountains

averaged 6.9 km/day, which is considerably higher than those reported in northern popu-

lations during periods of high hare density but similar to those during cyclic lows. I found

lower daily speeds, however the fine-scale movement information obtained by Squires et al.

(2013) may account for this difference. There are many small-scale movements made by

lynx that our model would fail to detect, because speed was calculated as the difference

between daily locations. Our estimates of tortuosity represent the difference in direction of

movement from one day to the next, therefore, as with speed, these estimates do not include

the many fine-scale directional changes that lynx perform within a 24-hour period. Due to

the resolution of the data, the splines used in this analysis were not intended to detect move-

ment at a fine scale. However, the relative values of these estimates are still informative for

distinguishing between behaviors that occur at relevant time-scales (e.g., days as opposed to

hours). Directed movement paths (low tortuosity), such as those observed in Colorado, are

typical for populations in marginal or patchy habitat, and may indicate that these lower ele-

vation montane zones are facilitating movements between primary habitat blocks (Ruediger

et al., 2000). Fuller & Harrison (2010) found similar results for Canada lynx in northwestern

Maine, where paths were more tortuous in habitat with greater densities of snowshoe hares.

Comparable patterns have also been observed in other species; for example, Davies et al.

(2013) found that koalas demonstrated highly torturous paths within habitat patches, and

more linear paths when moving between patches.

While Poole (1997) considered dispersal in the Northwest Territories to occur when an

individual Canada lynx moved ≥ 5 km from the boundary of a home range, and anything

less to be an exploratory movement, I found that individuals often returned to a settlement
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location after traveling distances larger than 5 km. However, similar to Poole (1997), I did

not find that sex was an important factor in the total distance moved by lynx. I did find

a difference in the duration of movement bouts by season, with both males and females

spending more time in a continuous movement bout in the breeding season and summer

compared to winter. Burdett et al. (2007) also found that some male lynx in Minnesota

exhibited increased movements during the month of March, which was encompassed by our

designated breeding season, while female lynx had the smallest home ranges during the

summer months, when they were more closely associated with the den site. Therefore, I

expected non-reproductive females to exhibit more movement behavior, because they are

not spatially constrained. While the uncertainty in mean duration of a summer movement

bout was large for reproductive females, I did find that non-reproductive females engaged in

longer movement bouts during the breeding season.

In addition, some individuals traveled extremely large distances (e.g., >1,000 km). The

majority of these individuals, particularly those moving east, were unlikely to be reproduc-

tively successful because there are no lynx populations in the central United States. Some

individuals did move through potential lynx habitat in Montana where individuals could

have encountered other lynx. Individuals that moved large distances traveled across signifi-

cant stretches of marginal habitat, however their mortality risk may have been higher than

individuals that did not leave the reintroduction area. For example, 20% of reintroduced

Colorado lynx mortalities were due to vehicle collisions (Devineau et al., 2010), similar to the

19% seen following their reintroduction to the Adirondack Mountains (Aubry et al., 2000).

Our analysis suggests that individuals make longer movements at faster speeds during

the first few years following release; this is is not an uncommon finding for reintroduction

programs. For example, Rosatte & MacInnes (1989) found that exploratory movements and
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home ranges were many times greater for relocated urban raccoons (Procyon lotor) compared

to non-relocated individuals. In addition, individuals that were relocated to a rural area,

as opposed to a town, had a stronger response to the relocation, possibly due to a lack of

familiarity with the surrounding area (Rosatte & MacInnes, 1989). The boreal habitat in

Colorado is known to be more patchy and heterogeneous than boreal habitat in Canada and

Alaska (McKelvey et al., 2000a). These habitat differences may be sufficient to result in

exploratory movements. In a reintroduced population of Eurasian lynx (Lynx lynx ), Vandel

et al. (2006) found that some individuals made exploratory movements during the first three

months of being released, a behavior that gradually declined and ended with the individuals

establishing a home range near or centered on the release site. In contrast, very few lynx

in our study settled at the release site, and many individuals moved a large distance before

initial settlement, often geographically far from the release site. This could be due to the

large number of individuals released at a limited number of release sites.

Time since release has been shown to be an important factor in determining movement

behaviors (e.g., distance between release and settlement sites, tortuosity) across species

(Wear et al., 2005). For example, while 13% of a reintroduced black bear (Ursus americanus)

population returned to their capture site (approximately 160 km away) the non-homing

individuals reduced their mean daily movements during the first month post-reintroduction

(Wear et al., 2005). del Mar Delgado et al. (2009) found that eagle owls (Bubo bubo) in the

wandering phase of dispersal had less tortuous paths than individuals in the stop phase of

dispersal (initiated after an individual finds a temporary settlement area), which, in turn,

had less tortuous paths than territorial individuals; they suspected that changes in tortuosity

are a function of familiarity with the landscape. Lynx exhibited a similar pattern, exhibiting

decreased daily speed and increased tortuosity as they had been present on the landscape
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for longer. The reintroduction effect in our study may also be confounded with individual

age. Anecdotally, older age classes of lynx in Colorado are more likely to become nomadic,

which is corroborated by the increase in daily lynx speeds at 5+ years since being released

(Jake Ivan, CPW, personal observation). In addition, this population was reproductively

successful, therefore the effect of reintroduction on movement was not ubiquitous enough to

hinder the success of the reintroduction.

Squires et al. (2013) assumed that lynx respond similarly to the landscape during a dis-

persal event as they would within their home-range. However, habitat selection depends

on the resources available to the individual (Johnson, 1980) and the costs associated with

a particular habitat (Morris, 1992), which may vary across behaviors. For example Killeen

et al. (2014), found that dispersing elk (Cervus canadensis) did not respond to NDVI (a

measure of landscape productivity), whereas resident elk showed a strong positive relation-

ship to NDVI. Similarly, Morrison et al. (2015) found that selection for open water, roads,

and elevation differed between cougars (Puma concolor) establishing temporary home ranges

and those making exploratory movements. While I found some similarities in the habitat

types used by lynx during movement and non-movement behavior, a greater proportion of

movement bout locations occurred in xeric shrublands, lodgepole pine, and montane mixed

forest compared to non-movement bout locations.

Based on the modeled movement of individuals from 1999-2011, I identified an area of

high connectivity at the population-level in the Front Range. Our results indicate that a

substantial subset of individuals ventured beyond the reintroduction area, predominately to

the north, both before and after initial settlement into a home range. However, the area

of connectivity (indicated by high speed) I identified within Colorado is very wide, due to

uncertainty in the individual movement paths and large amounts of individual variation.
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Therefore, it is unlikely that the concept of a linear corridor connecting habitat patches is

applicable for Canada lynx in Colorado. Cushman et al. (2009) believed that the concept

of a corridor is limiting to the idea of connectivity, and connectivity should be considered

broadly as the ability of an individual to traverse a landscape with variable resistance. Lynx

were also observed using diffuse corridors, similar to those I observed north of Colorado,

through varying habitat quality near the southern limit of their range in Canada, indicating

that this type of behavior may be a function of the patchy landscape (Walpole et al., 2012).

The area of high connectivity I identified along the Front Range from 1999-2011 may

have changed as a function of intraspecific interactions (e.g., long-term settlement in areas

previously used for movement between high quality habitats), although the population den-

sity is likely still low due to the population being at the southern periphery of their range

where boreal forest is naturally patchy (Aubry et al., 2000). Although uncertainty was high,

I found evidence for new individuals making movements of higher speeds and lower turn-

ing angles as the number of years since the reintroduction was initiated increased, which

may be a function of increasing lynx density at the reintroduction sites. Additionally, I did

not explicitly account for temporal changes to the landscape (e.g., weather patterns at the

reintroduction sites, amount of understory vegetation), therefore I cannot assume that the

changes in lynx behavior over time are solely a function of lynx density. However, evidence

for reintroduced lynx and their offspring using specific areas of Colorado can still inform

where conservation efforts should be focused, while acknowledging that no single corridor

will provide connectivity across all individuals.

Some movement analyses explicitly link movement to resource selection, typically us-

ing step-selection functions. However, most step-selection function models do not account

for measurement error (e.g., Fortin et al., 2005; Forester et al., 2009; Avgar et al., 2016).
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While the spatio-temporal point process of Brost et al. (2015) is more general and incorpo-

rates measurement error into a resource selection framework, it is computationally intensive

(Hooten et al., 2017). The continuous-time discrete-space model developed by Hanks et al.

(2015) could be used for analyzing drivers of lynx movement over short temporal spans,

but the memory requirements for fitting the model across multiple years would exceed the

current storage capabilities of most statistical software. In addition, the large amount of

path uncertainty introduced by both the Argos error and the large temporal gaps in the

time-series would inflate the uncertainty associated with inference on movement drivers.

However, linking contemporary lynx movements to spatial covariates would provide natu-

ral resource agencies with additional information that could be incorporated into predictive

models for evaluating impacts of landscape-level management actions and should be the

subject of future research.

I demonstrated that extensions to the modeling framework presented by Buderman et al.

(2016) were able to provide insight into movement of Canada lynx following their reintro-

duction to the Colorado. Using a statistical model for telemetry locations properly accounts

for measurement error, which is present in the raw locations, and allows for continuous-time

inference on how the animal is moving, not just where it was observed. While the Canada

lynx data set uses a generalized form of the data model presented in Buderman et al. (2016),

other data models, such as those for GPS locations, can be used in place of the one presented

here, which is specific to combinations of Argos and VHF data. A version of the functional

movement modeling approach with a simplified data model has been implemented in stan-

dard statistical software (R package ctmcmove; Hanks 2016). In addition, if locations are

collected more frequently in time than the lynx data were, then fine-scale basis functions can

be used to detect smaller changes in movement behavior. I also note that our definitions for
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movement bouts, settlement locations, and exploratory movements can be modified to either

match the definitions used by other studies or to reflect a different quantity of interest.

This data set is one of the largest for a population of Canada lynx in the lower United

States and augments the available information on movement behavior and connectivity of

southern boreal lynx populations. While many of the summary statistics were focused on

increasing our understanding of movement behavior (e.g., timing, duration), the spatial sum-

mary of lynx movement behavior from existing data may be particularly useful for Federal

and State agencies that are required to consider lynx space use in their project planning.

As with many retrospective studies, complete information regarding Canada lynx movement

behavior in Colorado is unavailable. However, inference can still be obtained by using flex-

ible modeling approaches that relax the constraints of fine-scale movement models. While

fine-scale movement data are preferable when developing a new study, a large investment was

made in gathering existing movement data. Despite the potential need for novel methods

to analyze existing data sets, they allow for invaluable inference for movements of rare and

low-density species.
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3.7. Tables and Figures

Table 3.1. Number of Canada lynx that used the same settlement area a given number
of times, along with the range in the percentage of settlements occurring in the same area.
Settlement areas were defined as those locations where an individual’s relative speed was
equal to or less than 50% of the contribution to total behavior for more than 30 consecutive
days. A total of 29 individuals never settled more than once in the same location and one
individual used more than one settlement area more than once (resulting in an additional
“individual” in the table).

Number of Times A Settlement Area Was Reused
2 3 4 5 6 7 8 9 10

Returning Individuals 22 9 7 6 5 1 0 0 1
Percentage of Settlements 40-100 60-100 100 83-100 100 100 NA NA 100
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Figure 3.1. Mean daily speeds, and 95% confidence intervals, for Canada lynx as a function
of season and sex (Figure 3.1a). Mean daily speeds, and 95% confidence intervals, for female
lynx (Figure 3.1b) as a function of season and reproductive status. The breeding season was
defined as February-April, summer as May-September, and winter as October-January.
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Figure 3.2. Mean daily tortuosity, and 95% confidence intervals, for Canada lynx as a
function of sex and season (Figure 3.2a). For consistency, I present the results from the
model with a sex-by-season interaction, although the addition of season did not significantly
improve the model. Tortuosity of females (Figure 3.2b) was a function of both season and
reproductive status. The breeding season was defined as February-April, summer as May-
September, and winter as October-January.
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Figure 3.3. Mean duration, and 95% confidence intervals, of movement bouts made by
Canada lynx as a function of sex and season (Figure 3.3a). For consistency, I present the
results from the model with a sex-by-season interaction, although the addition of season
did not significantly improve the model. I detected an interaction between season and
reproductive status on the duration of movement bouts by female lynx (Figure 3.3b). The
breeding season was defined as February-April, summer as May-September, and winter as
October-January.
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Figure 3.5. Proportion of the Canada lynx that made a movement bout in a given month
across all years of the study (1999-2011). Light gray shading indicates breeding season, and
dark gray indicates summer.
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Figure 3.5. Mean daily speed (Figure 3.5a) and tortuosity (Figure 3.5b) of Canada lynx as
a function of years since their release. The decrease/increase in speed/tortuosity up to year
5 is likely a result of individual’s increasing familiarity with the landscape, while anecdotally
older lynx (those that have survived 5+ years) tend to become nomadic.
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Figure 3.6. Mean daily speed (Figure 3.6a) and tortuosity (Figure 3.6b) of Canada lynx
during their first year in Colorado as a function of years since the reintroduction program
was initiated.

72



● Denver

37

38

39

40

41

−109 −108 −107 −106 −105 −104 −103 −102

Longitude

La
tit

ud
e

(a)

AZ

CO

ID

MT

NM

UT

WY

30

35

40

45

50

−115 −110 −105 −100

Longitude

La
tit

ud
e

(b)

● Denver

37

38

39

40

41

−109 −108 −107 −106 −105 −104 −103 −102

Longitude

La
tit

ud
e

(c)

AZ

CO

ID

MT

NM

UT

WY

30

35

40

45

50

−115 −110 −105 −100

Longitude

La
tit

ud
e

(d)

● Denver

37

38

39

40

41

−109 −108 −107 −106 −105 −104 −103 −102

Longitude

La
tit

ud
e

(e)

AZ

CO

ID

MT

NM

UT

WY

30

35

40

45

50

−115 −110 −105 −100

Longitude

La
tit

ud
e

(f)

Figure 3.7. Population-level spatial quantities of residence time (Figure 3.7a, Figure 3.7b),
speed (Figure 3.7c, Figure 3.7d), and tortuosity (Figure 3.7e, Figure 3.7f). For reference,
county boundaries and major roads are shown for Colorado (Figure 3.7a, Figure 3.7c, Figure
3.7e). Not included are rare movements to eastern states (Nebraska, Kansas, and Iowa).
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CHAPTER 4

Drivers of Cougar Movement in a Wildland-Urban

Interface1

4.1. Summary

Assessing preferential use of the landscape is important for managing wildlife and can be

particularly useful in transitional habitats, such as at the wildland-urban interface. Human-

wildlife interactions increase risk for wildlife, particularly large carnivores, but human-

modified habitat may be sources of increased prey availability. While many species have

suffered from the detrimental impacts of increasing human population growth, some species,

such as cougars (Puma concolor), have been observed using human-modified landscapes. I

characterized preferential habitat selection by a population of cougars inhabiting the Front

Range of Colorado, an area exhibiting rapid population growth and increased recreational

use.

Preferential use is often evaluated using resource selection functions (RSFs), but RSFs

do not account for the habitat available to an individual at a given time and may mask

conflict or avoidance behavior. Contemporary approaches to account for availability based

on movement include spatio-temporal point process models, step-selection functions, and

continuous-time discrete-space (CTDS) models; in contrast to the other methods, the CTDS

model allows for explicit inference on animal movement. I exploited the flexibility of the

CTDS framework to model speed and directionality of movement, individual variation, and

time-varying responses to landscape covariates. I found that there was significant individual-

1The material in Chapter 4 is similar to a manuscript that will be submitted to the Journal of Animal
Ecology: Buderman, F.E., M.B. Hooten, M.W. Alldredge, E.M. Hanks, and J.S. Ivan. In Preparation.
Drivers of Cougar Movement in a Wildland-Urban Interface. Journal of Animal Ecology
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and temporal-variability in cougar response to landscape characteristics. Distance to nearest

kill site and heat loading emerged as important drivers of movement; cougars moved quickly

when far from kill sites and in areas with high heat loading (south-facing slopes). Distance

to nearest kill site was also an important directional driver of movement, with individuals

moving toward areas closer to kill sites. In addition, I found that behavior was a function of

development, with cougars moving faster as distance to kill site increased and with stronger

directional bias toward a kill site in less developed areas.

4.2. Introduction

Quantifying variability in habitat selection by individuals, while simultaneously estimat-

ing population-level patterns, can be important for management and conservation issues

where resources are heterogeneous or cause points of conflict (Kertson et al., 2011). Some

large carnivores, such as cougars (Puma concolor), have undergone recent range expan-

sions into human-modified landscapes (Knopff et al., 2014), but they rarely use the heavily

modified landscapes in urban and suburban areas, instead relying on the rural and exur-

ban areas at the wiland-urban interface (Burdett et al., 2010; Kertson et al., 2011). Along

with increased risk from human interactions (Burdett et al., 2010), human-modified land-

scapes may contain greater numbers of both primary (ungulates, e.g., Torres et al., 2011)

and secondary (domestic animals, e.g., Torres et al., 1996) prey for carnivores compared to

adjacent wild-land areas. Even as early as 1998, the frequency of human-cougar interactions

along portions of the Front Range, a mountain range extending north-south from Casper,

Wyoming to Pueblo, Colorado, had increased due to encroaching residential development,

increasing cougar populations, and increasing prey densities near human populations (Man-

fredo et al., 1998). The Front Range Urban Corridor runs along the eastern edge of the Front
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Range, while the Front Range itself contains a matrix of towns and areas that are managed

for recreational use by county, state, and federal agencies. Due to their desirable qualities,

human populations around protected areas have demonstrated more growth than expected

compared to growth in rural, non-protected areas (Wittemyer et al., 2008), increasing the

potential for human-wildlife conflict (White & Ward, 2011).

Individual-level movement decisions are one of the underlying processes that give rise to

population-level patterns such as species’ distributions or their density and abundance on the

landscape (Wiens et al., 1993). Movement decisions are a function of a number of variables,

including the current location of the individual and the alternative available landscape choices

(Wiens et al., 1993). Therefore, a central theme of animal ecology is the assessment of

an individual’s preference for habitat, given what is available on the landscape (Johnson,

1980). Habitat preference is typically characterized using resource selection functions (RSF),

which are often fit using logistic regression to compare the locations used by an individual

or population to a random sample taken across some area defined as “available” (Manly

et al., 2007). Use that is disproportionate to availability implies that the individual has

a preference for, or aversion to, that habitat (Manly et al., 2007). However, inference on

preference depends on what components are considered available to the animal (Johnson,

1980). For example, an animal may use a resource disproportionately less than is available

in its home range, however it may have chosen its home range because the resource was

abundant (Johnson, 1980).

In addition, availability is constrained by an individual’s range of movement. To account

for this, spatio-temporal point process models simultaneously estimate the resource selection

and time-varying availability kernels, where the kernel is the area an individual is capable

of moving to over a given period of time (Christ et al., 2008; Johnson et al., 2008b; Brost
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et al., 2015). The more commonly used method, a step-selection function, approximates

the availability kernel by fitting a conditional logistic regression using a sample of “avail-

able” steps that an individual could have taken (e.g., Boyce et al., 2003; Fortin et al., 2005;

Forester et al., 2009). Recent methods have attempted to use conditional logistic regression

to separately approximate the movement and time-varying availability kernels, in the vein

of spatio-temporal point process models (Avgar et al., 2016). However, because all of these

methods are formulated in discrete time, inference is made only when data were observed

and not on the unobserved path. In addition, besides the spatio-temporal point process of

Brost et al. (2015), none of these methods account for measurement error.

In contrast to many resource selection studies, one of the primary goals of continuous-time

movement models is to estimate the true path of an individual when it was unobserved (Brost

et al., 2015; Johnson et al., 2008a; Patterson et al., 2008; Buderman et al., 2016; Hooten

et al., 2017). Continuous-time movement models can also incorporate measurement error and

irregular observations in time. However, movement models are typically time consuming and

computational intensive to fit, making it difficult to obtain inference on multiple individuals

(Hooten et al., 2016). If inference on multiple individuals were attainable, then it may

be possible to identify a population-level response to a feature of the landscape that is

consistent across individuals, which would provide a rigorous link between individual choices

and population-level patterns (Wiens et al., 1993). In addition, understanding individual

variability may help identify individuals that associate more strongly with certain features

of the landscape (Aune, 1991).

A recently developed method, continuous-time discrete-space (CTDS) modeling, incor-

porates an explicit movement model to obtain information on travel speeds. Travel speeds
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give indirect inference on resource selection (Dickson et al., 2005) and avoid absolute state-

ments about preference (Johnson, 1980). The CTDS method, developed by Hanks et al.

(2015), is fit in two stages, where the first stage uses a continuous-time movement model

to obtain inference on where the individual was when it was unobserved, while the second

stage allows for evaluation of landscape drivers of animal movement. The second-stage of

the analysis uses a Poisson likelihood with an offset to model transition rates; therefore, any

statistical model that uses a Poisson likelihood can be used in the CTDS framework (Hanks

et al., 2015). The flexibility of the CTDS framework can account for time-varying responses

to landscape drivers by allowing coefficients to vary temporally (Hanks et al., 2015), and

it can also be implemented in a Bayesian hierarchical framework, allowing for inference on

individual- and population-level drivers.

Given the increasing potential for human-wildlife conflict as development permeates rural

and wildland areas along the Front Range and elsewhere in the West, I sought to extend pre-

vious work by explicitly modeling cougar movement to identify key drivers of their behavior,

and in doing so, better understand their use of the wildland-urban landscape in both space

and time. Information on cougar movement and resource selection is surprisingly limited,

especially for movement and selection at a fine temporal scale and over the duration of an

entire day. Most studies have inferred selection and movement patterns for cougars using

approximately one or fewer locations per day; these locations were sometimes obtained only

during daylight (e.g., Beier, 1995; Anderson et al., 1992; Dickson & Beier, 2002), obtained

during night and day but were treated equivalently (e.g., Hemker et al., 1984), or obtained

at unspecified times (e.g., Ruth et al., 1998; Sweanor et al., 2000). Inference on time-varying

behavior has been limited to separate analyses on discretized temporal periods (e.g., Dick-

son et al., 2005; Knopff et al., 2014). Some studies have also focused exclusively on kill
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site and hunting locations (e.g., Blecha, 2015) or non-kill site locations (e.g., Dickson et al.,

2005; Knopff et al., 2014). In contrast to previous studies, I used the CTDS framework to

model individual- and population-level cougar responses to landscape features in continuous

time, which allowed for direct inference on how behavior varies through time, given what is

available.

4.3. Methods

4.3.1. Data Collection

Colorado Parks and Wildlife (CPW) trapped cougars from 2006-2016, fit them with

global positioning system (GPS) collars, and released them along the Front Range of Col-

orado (Figure 4.1). CPW used three different GPS collar manufacturers over the duration

of the study (Lotek Wireless Inc., Newmarket, Ontario, Canada; Northstar Science and

Techology LLC, King George, VA, USA; Vectronics GmbH, Berlin, Germany), and collars

were programmed to achieve fixes every three hours. For this analysis I selected a subset

of 20 adult individuals (M=6, F=14) that were monitored with Vectronics collars during

April 2011 and 21 adult individuals (M=7, F=14) that were monitored during June 2011.

We expected that cougar behavior would vary between April and June, because mule-deer

fawns, a primary prey source for cougars, are born in June (Pojar & Bowden, 2004). Mule

deer constitute a large proportion of cougar diets (Anderson Jr & Lindzey, 2003), and fawns

are at a disproportionately high for predation (Hornocker, 1970). April and June of 2011

had a large number of males and females available for monitoring. Eighteen individuals were

monitored during both April and June, allowing us to perform population-level comparisons

79



between the two months. The area of inference was restricted to the area for which covariates

were available.

4.3.2. Continuous-Time Discrete-Space Framework

I used a Bayesian hierarchical CTDS model to evaluate drivers of cougar movement; this

model is an extension of the model proposed by Hanks et al. (2015) and allows for inference

on movement rates and directional bias, as opposed to resource selection, in continuous time.

The initial step in the CTDS framework is to estimate a continuous movement path from the

observed data points. I used the functional movement model proposed by Buderman et al.

(2016) with fixed measurement error to predict locations every ten minutes for the first two

weeks of each month. A random subset of paths from the posterior predictive distribution

of the movement model were spatially discretized to a latent variable formulation with a cell

size of 100-m2, which was the largest cell size among the available covariates (Appendix C.1).

In the latent variable formulation, each transition corresponds to four data points (the four

neighboring grid cells); the response variable is equal to one if the neighboring grid cell is the

cell that the individual transitioned into and zero otherwise. The latent variable formulation

results in a Poisson likelihood where the offset is the amount of time an individual spent in

that grid cell, and the covariates are landscape variables that correspond to the position of

that cell on the landscape (Hanks et al., 2015). I used the R package ctmcmove to facilitate

creation of the CTDS latent variable data (Hanks, 2016).

Using multiple imputed paths accounts for the uncertainty in the true path of the in-

dividual and is a process version of multiple imputation (Hanks et al., 2015; Hooten et al.,

2016; Scharf et al., In Press), a method frequently used for missing data (Rubin, 1987). I

generated 30 imputations for each individual, using 15 imputations for a priori selection of
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regularization terms (which shrinks the effect of unimportant covariates toward zero to pre-

vent over-fitting) and 15 imputations to fit the models for individual- and population-level

inference on transition rates.

4.3.3. Secondary Models for Movement Inference

I assessed cougar response, as measured by movement rates and directional bias, to land-

scape features, including measures of anthropogenic activity. Because cougars and humans

are active at different times throughout the day, I proposed three models for drivers of cougar

movement: a hierarchical generalized linear model (H-GLM) for individual- and population-

level inference on average cougar behavior, a non-hierarchical generalized additive model

(GAM) for individual-level time-varying behavior over a two-week period, and a hierarchical

generalized additive model (H-GAM) to account for individual- and population-level diel

time-varying behavior. Covariates were centered and scaled to the individual, meaning that

the coefficients are relative to the mean and standard deviation of the values that each indi-

vidual encountered during a given two-week period. This is similar to the idea proposed by

Johnson (1980), where preference was determined by comparing some measure of usage and

availability of a landscape feature on an individual basis.

On average, I expected cougars to respond similarly to landscape covariates. Therefore,

I developed a H-GLM for the latent variable formulation of the CTDS framework. In the

CTDS framework, the response variables, zij, are a sequence of zeros and ones, where zij ∼

Poisson(λij), for i = 1, ..., T and j = 1, ..., J , where T is the total number of cell transitions,

and J is the number of individuals. Landscape covariates are incorporated using the log

link function, such that log(λij) = log(τij) + x′ijβj. The residence times are represented

by the constants τij, and the landscape variables by xij. The parameter βj is a vector
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of p individual-level coefficients and is drawn from the population-level distribution βj ∼

N (µβ,Σβ). The covariance matrix, Σβ ≡ diag(σ2
βφ), where the vector φ scales the value

σ2
β to each individual, allows us to sample from one parameter space, as opposed to J

parameter spaces (a σ2
β for each individual). The population-level distribution has a mean

that is modeled with a multivariate normal distribution µβ ∼ N (0, σ2
µI). Both σ2

β and σ2
µ are

used as regularization terms to shrink the coefficients toward zero; this prevents over-fitting

and allows for correlated predictors (Hooten & Hobbs, 2015).

The GAM is formulated as a varying coefficient model (Hastie & Tibshirani, 1993), where

the response to covariates varies over space or time. By expanding the landscape covariates

with a basis function (Hefley et al., 2017), I created a new vector, vij, that is the Kronecker

product of the p length vector of covariates, xij, and the q length vector of the values of the

basis at the time of transition i, w(i). The GAM for movement over a two-week period is

similar to the GLM, except log(λij) = log(τij) + v′ijαj, where αj is a vector of length pq.

Each parameter in αj is the collective effect of the basis function and the corresponding

covariate at the time of transition i. Using the vector w(i), αj can be back-transformed to

obtain the time-varying effect of the covariate. I used cubic splines as the basis for the non-

hierarchical GAM. The model is fit independently for each individual and αj ∼ N (0, σ2
αI),

where σ2
α is selected via a one-dimensional grid search.

The final model is a H-GAM that allows us to account for diel time-varying behavior

that I hypothesize is shared across individuals. The model is the same as above, but with

an additional level that allows for population-level inference. In the hierarchical framework

αj ∼ N (µα,Σα), where Σα ≡ diag(σ2
αφ). However, for diel movement, I used cubic cyclic

splines as the basis (w(i)), because they constrain the start and end points of the varying

coefficients to be equal, which is an important property for time spans that are cyclic in
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nature. As in the GLM, φ reduces the number of parameters I need to select a priori

by scaling the σ2
α term to each individual, and µα ∼ N (0, σ2

µI). Both σ2
α and σ2

µ act as

regularization terms and are selected a priori.

Models were fit using a Markov Chain Monte Carlo (MCMC) algorithm written in R (R

Core Team, 2013). I performed adaptive tuning over an initial 15,000 MCMC iterations. I

used the selected tuning parameters as constants in the subsequent 15,000 iterations that

were used to calculate the out-of-sample information criterion for the a priori regulator grid-

search. The final models were fit using 100,000 MCMC iterations with a burn-in period of

10%.

4.3.4. Landscape Covariates

Each covariate can be included as either a motility or directional driver of movement in the

CTDS model. Motility covariates are based on the value of the grid cell that the individual

is in currently and control the absolute rate of movement. Directional covariates account

for the correlation between a movement and the gradient of a covariate and contribute to

the probability that an individual moves toward a grid cell. The directional drivers were

calculated such that a positive coefficient indicates that individuals move predominantly

in the direction that the covariate decreases, whereas a negative coefficient indicates that

individuals move in the direction that the covariate increases. All rasters were aggregated

to a 100-m2 resolution, which is within the distance that a cougar might typically move over

a ten-minute interval (Dickson et al., 2005).

I hypothesized that a number of landscape covariates may contribute to transition rates

and directional bias of cougars: mule deer utilization (as a proxy for availability), distance to

nearest potential kill site, distance to nearest structure, distance to nearest road, elevation,
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heat insolation load index, and topographic wetness. I also used an autoregressive parameter

to account for an individual’s tendency to move in the direction it was already moving

(directional persistence, Hanks et al., 2015).

Distance to nearest structure (m) was calculated as the Euclidean distance to the nearest

man-made roofed structure (Blecha, 2015). Distance to road was calculated using major

roads data (i.e., a major highway primarily for through traffic usually on a continuous route

and streets whose primary purpose is to serve the internal traffic movement within an area)

obtained from Colorado Department of Transportation. Due to increased human activity

around structures and roads, I expected cougar transition rates to decrease with distance to

nearest roofed structure and distance to nearest road (Dickson & Beier, 2002; Dickson et al.,

2005; Nicholson et al., 2014). However, females were expected to respond less to structures

and roads than males, given that there may be additional factors, such as food limitation

and offspring, that drive them to tolerate human-modified landscapes (Wilmers et al., 2013;

Benson et al., 2016).

We approximated prey availability using two covariates: mule deer utilization and po-

tential kill site. The model averaged prediction for mule deer utilization (Blecha, 2015)

approximates prey availability given a suite of landscape covariates. I hypothesized that

cougars would move slower in areas with high values for mule deer utilization and orient to-

ward areas of high mule deer use during crepuscular and nocturnal movements (Anderson Jr

& Lindzey, 2003; Kertson et al., 2011; Blecha, 2015). Potential kill sites were determined

using a clustering algorithm on the GPS points. Knopff et al. (2009) classified a location as

a potential kill site if two or more GPS locations were found within 200 m of the site within

a six-day period. Hanks et al. (2015) modified the algorithm such that at least one location

had to occur between 9:00 pm and 6:00 am. I further modified the algorithm such that all
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locations had to occur between 7:30 pm and 6:30 am during April and 8:30 pm and 5:30 am

during June, which is the average time of sunset and sunrise for the months of April and

June. I then calculated the distance (m) to nearest potential kill site across the study area.

I expected individuals to move faster as distance to potential kill site increased, because

decreasing distance would indicate that an individual was returning to a cached kill, and

caches are more often located in areas of high vegetation cover (Husseman et al., 2003).

Elevation was estimated using a digital elevation model. Blecha (2015) found that cougars

avoided foraging in higher elevations, but Wilmers et al. (2013) observed cougars selecting

for higher elevations in developed areas. We expect cougars to show high temporal variability

in their directional response to elevation, with cougars moving toward lower elevations when

they are hunting (crepuscular and nocturnal movement) and toward increasing elevations

at other times. I used a raster based on the continuous heat insolation load index (CHILI,

Theobald et al., 2015), modified from McCune & Keon (2002) to measure the accumulation

of solar radiation at that location over the course of a year (MJ/cm2/yr). Heat insolation

will be high on south-facing slopes which are more xeric and open than north-facing slopes

(Veblen & Donnegan, 2005). Cougars have been observed using less rugged terrain for travel

(Dickson et al., 2005), selecting for south-facing slopes containing shrubs (Knopff et al.,

2014), and avoiding foraging on north-facing slopes (Blecha, 2015). Therefore, we expect

that cougars may orient toward areas of high heat insolation, but move quickly through

them. The topographic wetness plus metric (TWI+) predicts soil moisture based on slope,

as originally described by Beven & Kirkby (1979), and aspect, as modified by Theobald

(2007). Because cougars have been observed selecting for and hunting in riparian areas

(Dickson & Beier, 2002; Kertson et al., 2011; Nicholson et al., 2014; Benson et al., 2016),

we expected cougars to move slowly in areas of high topographic wetness and demonstrate
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temporal variability in their directional response (toward areas of increasing topographic

wetness when hunting).

I also analyzed a subset of individuals and the interaction between housing density and

their response to deer utilization and distance to nearest kill site. These are the two variables

that I expected to vary most with housing density due to the potential trade-offs between

increased prey abundance but increased mortality risk (Blecha, 2015). The landscape was

discretized into either developed (<10 acres/unit) or undeveloped areas. Only 15 individuals

(with 11 that were available for both months; F=8, M=3) were used in the secondary

analysis for both April and June because the remaining individuals did not spend any time

in developed areas.

4.4. Results

Distance to potential kill site was the primary driver of both motility and directionality in

the GLM framework for April and June (Figure 4.2). As individuals increased their distance

from a potential kill site, their transition rate increased (Figure 4.2a). In addition, individuals

oriented their movements toward their potential kill site (Figure 4.2b). I did detect a slight

difference between months in the directional response to distance from potential kill sites,

with a more positive response in June. However, this difference was not significantly different

from zero (Figure 4.4).

Individuals also moved faster than average in areas where heat-loading was high in April,

but not in June (Figure 4.5); however, the 95% credible intervals still included zero and the

difference was not significant (Figure 4.4). There was a slight trend for slower movements

with increasing distance from a roofed structure (Figure 4.6). Finally, I detected significantly

more directional persistence in April than in June (Figure 4.7, Figure 4.4).
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I observed significant individual variation, both across and within individuals, for the

two-week periods of both months (GAM). Given that distance to nearest potential kill site

was the primary driver for motility in the time-homogeneous GLM framework, I expected

this parameter to be significantly different from zero in the GAM time-varying framework,

however I observed significant variability within certain individuals across the two weeks

(Figure 4.8). This behavior also varied by month for some individuals (Figure 4.8). I also

observed temporal deviations from zero for covariates that were not significant in the GLM

framework. For example, while the 95% credible intervals often included zero for much of the

two weeks, the response to distance from nearest roofed structure (Figure 4.9) and distance

to nearest road (Figure 4.10) oscillated between positive and negative for some individuals,

with inconsistent individual-level responses between the two months.

Distance to nearest potential kill site was the predominant motility and directionality

driver in the diel time-varying framework (H-GAM; Figures 4.11 and 4.12). However, the

strength of the positive relationship to distance to nearest potential kill site varied over

time, with the strongest response occurring around dawn, decreasing steadily during daylight

hours, and then increasing around dusk (Figure 4.11). Some individuals’ behavior shifted

slightly, either temporally, or in magnitude depending on the month (Figure 4.11). The

strength of the directional bias toward potential kill sites also varied through time, with

the 95% credible intervals for the population mean and the mean response for a subset of

individuals suggesting that individuals tended to move away from their potential kill sites

during daylight hours (Figure 4.12).

While the 95% credible intervals overlapped zero for much of the day, there were modest

temporal responses in both motility and directionality to elevation, distance to nearest road,

and distance to nearest structure (Figure 4.13). At dawn, individuals moved faster at lower
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elevations, while during mid-day and evening individuals moved faster at higher elevations.

In addition, during mid-day, individuals moved toward areas of higher elevations, while dur-

ing other hours they moved toward lower elevations. The population-level pattern was for

a more negative motility response to distance to nearest structure and road during dawn

and dusk (i.e., being closer to roads and structures is correlated to an increase in transition

rates), with less negative or even positive responses during the day (Figure 4.13). While the

directional response to distance to nearest road was negligible, there was a negative direc-

tional response mid-day, meaning that individuals oriented toward areas farther away from

the nearest road (Figure 4.13). The remaining covariates showed little temporal variation at

the population-level or contained large amounts of individual heterogeneity.

I did not see evidence for an interaction between development and deer utilization, which

remained a statistically insignificant driver of cougar movement rates and directionality in

both the H-GLM and H-GAM models. There was a stronger positive effect of distance

to potential kill site on speed (faster as distance to kill site increases) and directional bias

(more direct orientation toward the kill site) in less developed areas, compared to developed

areas (H-GLM; Figure 4.14). In the H-GAM framework, the general pattern for the effect

of potential kill site on speed was the same between the two areas, but there was a stronger

positive effect of kill site in undeveloped areas (Figure 4.15). The effect of distance to kill

site on directionality was less conclusive; in general, with cougars showed a slight tendency

to move away from a kill site in daylight (Figure 4.15), something that was not observed

when I did not address the interaction between kill site and development (Figure 4.12).

Cougars in undeveloped areas had a much more variable temporal response to the direction

of a potential kill site (Figure 4.15), and were likely driving the pattern I saw in the model

without the interaction (Figure 4.12).

88



4.5. Discussion

The varying coefficient modeling framework, implemented in the study as a GAM, can

reveal hidden process dynamics (Fan & Zhang, 2008) and allows for complex non-linear pat-

terns that would be difficult to model in a traditional framework (e.g., Polansky & Robbins,

2013). Conventional generalized linear models can mask time-varying responses to covariates

(e.g., Cheng et al., 2009), because the response variable is essentially averaged over the time

period of interest. Therefore, if the response of an individual switches between positive and

negative (faster or slower movement rates), the estimated response will be approximately

zero.

Studies have found that cougars use a broader range of habitats for nocturnal movements

than for daybed locations (Dickson et al., 2005) and demonstrate temporal variability in their

response to anthropogenic landscape features (Knopff et al., 2014). Therefore, restricting

analysis of locations to a particular temporal subset may not be indicative of all behavior

(Comiskey et al., 2002). I expanded each parameter into the temporal space, however one

could make each covariate a function of another parameter, either a different temporal pre-

dictor (e.g., time since kill) or another parameter in the model (e.g., distance to structure).

The strong response to distance to nearest potential kill site is likely due to returning

visits to the carcass and unmeasured fine-scale covariates related to landscape features that

increase the likelihood of a successful hunting attempt. Blecha (2015) found that hunting

success was greater in areas with higher housing densities and lower topographic positions,

such as drainage areas, despite drainage areas having lower prey availability. I did not

measure hunting success, but I did find that cougars moved to lower elevations at dusk,

when cougars are likely to hunt or return to a carcass. In addition, Benson et al. (2016)

found that male and female cougars selected for different site-level characteristics for their
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mule deer predation sites. The complex interaction between the probability of encountering

and successfully killing prey is likely best captured in my model by the potential kill site

location. I found that individual response to nearest potential kill site was variable within

the two-week period and across individuals; this is likely a function of timing of successful

kills and the size of the prey item, with stronger positive responses being correlated with

larger prey. I also observed individuals having an increasingly strong positive response to

distance to kill site from dusk to dawn, implying that, from dusk to dawn, individuals moved

increasingly faster the farther away they were from a potential kill site.

I found that cougars moved slightly faster in areas with a higher heat insolation load

index. These areas correspond to xeric, south-facing slopes, which, in the montane zone of

the Front Range, mostly consist of open stands of ponderosa pine, compared to the more

dense north-facing slopes (Veblen & Donnegan, 2005). The more open forest floor may

facilitate cougars using south-facing slopes as travel corridors, leading to greater transition

rates. Similarly, Dickson et al. (2005) found that cougars used less rugged terrain than the

surrounding area while traveling, while Knopff et al. (2014) found that cougars selected for

south-facing slopes and areas with shrub habitat. The monthly difference in effect size for the

response to heat loading may be related to seasonal changes in vegetation (shrub cover may

be denser in June, reducing speed) or a product of unobserved weather patterns (e.g., more

snow on north-facing slopes in April could lead to a larger difference in speed). The speed

and directionality of the transitions in response to elevation indicate that individuals are

moving quickly to higher elevations during the day, and then moving quickly toward lower

elevations at other times. Blecha (2015) found that predation events were more successful

at lower elevations, which could explain the temporal pattern I observed.
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The response of cougars to disturbed and developed landscapes varies in the literature,

and is likely a function of the level of disturbance encountered. For example, Kertson

et al. (2011) found no difference in cougar movement rates in wildland and residential areas

throughout the day. However, Knopff et al. (2014) observed that cougars avoid developed

landscapes, while also documenting a temporal shift in usage of those areas, with cougars

avoiding areas near buildings and roads more during the day than at night. On average, I

observed a more negative relationship to distance from structures and roads around dawn

and dusk compared to mid-day and evening (i.e., individuals moved faster when closer to

structures and roads during dawn and dusk than mid-day and evening), which could be

explained by increased human activity level caused by the start and end of the work-day.

In addition, I observed individuals orienting away from areas near roads mid-day. However,

the uncertainty was fairly large for the diel effect of elevation, distance to nearest roofed

structure, and distance to nearest road, particularly at the individual level.

Dickson et al. (2005) found that cougars moved fastest through developed areas, however

I observed that cougar speeds are less sensitive to distance to potential kill site when they

are in developed areas. In other words, cougars moved faster with increasing distance to

nearest potential kill site when in undeveloped areas compared to developed areas. When in

developed areas, cougars may maintain a more consistent travel speed and are responding

more to fine-scale obstructions (e.g., trails, vehicles, light sources) than when their move-

ments are unconstrained by development. Likewise, I saw more directional avoidance (or

a non-response) to kill sites in developed areas, which would be expected if the potential

kill sites are in heavily trafficked areas. Again, possibly due to the absence of movement

constraints in undeveloped areas, cougars showed a less temporally consistent directional

temporal response to a potential kill site.
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I did not see consistent patterns for distance to structures or roads over the two-week

period of observation, either within, or among, individuals, which could be explained by

unmeasured spatial and temporal relationships, such as individual interactions and fine-scale

temporally variable human disturbance (e.g., recreational activities, noise, construction). For

example, Wilmers et al. (2013) found that cougars show stronger avoidance of more consistent

sources of anthropogenic disruption, such as neighborhoods, than intermittent sources, such

as low-traffic roads. However, because these fine-scale variables were not measured, we may

fail to detect a consistent avoidance of structures and roads.

Other studies have detected significant individual variation (Kertson et al., 2011; Wilmers

et al., 2013), and Benson et al. (2016) and Wilmers et al. (2013) found that selection differed

between males and females. I did not see consistent sex-specific responses to covariates,

which could be due to the timing of the observations; for example, females may respond

differently to males when breeding, but similarly at other times. Some of the unexplained

individual variation could be due to the amount of anthropogenic landscape features each

individual was likely to encounter in their movements Benson et al. (2016); Knopff et al.

(2014), as opposed to the amount of development in the available habitat during a given

movement. Benson et al. (2016) hypothesized that the amount of development in many

studies of cougar habitat selection has been too low to cause cougar behavioral changes,

which may also explain the lack of a significant response to the covariates that act as proxies

for anthropogenic use. I did not detect a link between response to development (either roads

or buildings structures) and cougars that were considered nuisance individuals (Colorado

Parks and Wildlife, personal communication). Cougars have demonstrated different second

and third-order selection to roads in previous studies (Dickson & Beier, 2002), therefore,

individuals that become nuisance individuals may select for, or end up in, home ranges near
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human development, but do not select for areas that are closer to development within their

home range (Linnell et al., 1999).

In the CTDS modeling framework, the autocorrelation variable not only accounts for an

individual’s tendency to continue moving in the same direction, but absorbs unexplained

dependence in the transitions. Given that few landscape variables were statistically signifi-

cant, the autocorrelation parameter is capturing both of the aforementioned characteristics.

However, Dickson et al. (2005) found that cougars tend to continue moving in a straight line,

implying that some of the effect size of the autocorrelation term is due to behavior and not

unexplained heterogeneity in the response variable. This supports the hypothesis that the

subset of cougars in this analysis may not have a strong response to the level of landscape

heterogeneity present in the Front Range during the months of May and June.

While I observed a trend in the mean response to certain drivers, and stronger responses

in some individuals than others, many of the hypothesized movement drivers did not have a

consistent statistically significant relationship with movement. However, studies on cougars

in the same geographic area have found strong effects for landscape variables on cougar

resource use (Blecha, 2015). It is important to keep in mind that the CTDS framework is

measuring the effect of landscape variables on speed and directionality, not habitat prefer-

ence. For example, cougars may select for areas with high mule deer use (Blecha, 2015), but

cougars may not alter their speed based on the amount of mule deer usage. I propose that

the lack of statistically significant drivers of movement may have four potential causes. First,

cougars are generalists, therefore, they are expected to demonstrate less habitat selection at

the landscape scale than would a habitat specialist (Katnik & Wielgus, 2005). For example,

Dickson & Beier (2002) also failed to detect significant selection to topographic variables.

Second, despite the cougars occupying heterogeneous urban-wildland habitat, it is possible
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that covariate values in the Front Range are not variable enough to detect a significant re-

sponse in behavior. Third, cougars may be responding to the landscape at a much finer scale

than researchers are currently able to measure at such a large spatial extent. Fourth, it may

be possible that movements measured in other months of the year, or different years, may

have revealed stronger and more consistent responses.

I did learn that cougars exhibit heterogeneity amongst individuals in their responses to

landscape features, but they consistently show a strong motility and directional response

to distance to nearest potential kill site. In addition, some individuals respond relatively

strongly to roads, structures, and elevation at various times of day; a non time-varying GLM

would miss these temporally varying responses. Future studies could compare behavior across

a wider range of seasons when cougars may respond differently to the landscape. In addition,

very few of the observed locations occurred in developed areas; if comparing movement

behavior between developed and undeveloped areas is of primary interest, capturing efforts

should focus on individuals closest to urban areas. The CTDS framework represents an

important step forward in detecting nuanced temporal patterns in animal movement than

was previously possible and is especially useful when behavior is known to vary in time.
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4.7. Tables and Figures

(a) (b) (c)

Figure 4.1. Map of Colorado counties, with the cougar movement study area plotted in
gray (Figure 4.1a). Elevation (m; Figure 4.1b) and land classified as developed (dark gray
is <10 acres/unit; Figure 4.1c)) is shown for the study area and surrounding area.
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Figure 4.2. Posterior means and 95% credible intervals for the individual- and population-
level static effect of distance to nearest potential kill site on rate (Figure 4.2a) and direction-
ality (Figure 4.2b) of cougar movement in the Colorado Front Range for two-week periods
in April and June, 2011.
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Figure 4.4. The mean and 95% credible intervals for the difference between the population-
level posterior effects of landscape covariates on movement rates and directionality of cougar
movement in the Colorado Front Range for two-week periods in April and June, 2011; positive
values indicate a stronger positive response in April.
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Figure 4.5. Posterior means and 95% credible intervals for the individual- and population-
level static effect of heat loading on cougar movement rates in the Colorado Front Range for
two-week periods in April and June, 2011.
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Figure 4.6. Posterior means and 95% credible intervals for the individual- and population-
level static effect of distance to nearest roofed structure on cougar movement rates in the
Colorado Front Range for two-week periods in April and June, 2011.
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Figure 4.7. Posterior means and 95% credible intervals for the individual- and population-
level directional persistence of cougars in the Colorado Front Range for two-week periods in
April and June, 2011.
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Figure 4.8. Posterior means and 95% credible intervals for the individual-level time-
varying effect of distance to nearest potential kill site on cougar movement rates in the
Colorado Front Range over two-week periods in April and June, 2011. A subset of two
females and two males are shown.
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Figure 4.9. Posterior means and 95% credible intervals for the individual-level time-
varying effect of distance to nearest roofed structure on cougar movement rates in the
Colorado Front Range over two-week periods in April and June, 2011. A subset of two
females and two males are shown.
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Figure 4.10. Posterior means and 95% credible intervals for the individual-level time-
varying effect of distance to nearest road on cougar movement rates in the Colorado Front
Range over a two-week periods in April and June, 2011. A subset of two females and two
males are shown.
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Figure 4.11. Posterior means and 95% credible intervals for the individual- and
population-level diel time-varying effect of distance to nearest potential kill site on cougar
movement rates in the Colorado Front Range for two-week periods in April and June, 2011.
The gray box represents 0630 hours to 1930 hours (the approximate period of daylight dur-
ing the study period). A subset of two females and two males are shown, along with the
population-level effect.
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Figure 4.12. Posterior means and 95% credible intervals for the individual- and
population-level diel time-varying effect of distance to nearest potential kill site on direc-
tionality of cougar movement in the Colorado Front Range for two-week periods in April
and June, 2011. The gray box represents 0630 hours to 1930 hours (the approximate period
of daylight during the study period). A subset of two females and two males are shown,
along with the population-level effect.
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Figure 4.13. Posterior means and 95% credible intervals for the population-level diel time-
varying effect of elevation, distance to nearest road, and distance to nearest roofed structure
on rate and directionality of cougar movement in the Colorado Front Range for two-week
periods in April and June, 2011. The gray box represents 0630 hours to 1930 hours (the
approximate period of daylight during the study period).
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Figure 4.15. Posterior means and 95% credible intervals for the population-level diel time-
varying effect of distance to nearest potential kill site on rate and directionality of cougar
movement in the Colorado Front Range for two-week periods in April and June, 2011. The
gray box represents 0630 hours to 1930 hours (the approximate period of daylight during
the study period).
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CHAPTER 5

Conclusion

My research has contributed to advancing the field of movement modeling and increasing

our understanding of how carnivores move across the landscape. For both Canada lynx

and cougars, rigorous movement modeling provided fine-scale temporal or spatial details

on movement behavior that was previously unattainable. I will conclude by discussing the

overarching themes that I explored in my dissertation, future methodological directions, and

the ecological inference we have gained using the methods I developed.

5.1. Overarching Themes

5.1.1. Phenomenological Models for Animal Movement

The discrete- and continuous-time models that I summarized in Chapter 1 are considered

mechanistic movement models. Mechanistic movement models connect the stochastic move-

ments of individual animals to their movement decisions (Patterson et al., 2008). However,

the resolution of the telemetry data must be able to provide inference at the scale of indi-

vidual decision making (McClintock et al., 2014a). In addition, these models may require

assumptions about the number of behavioral states an animal exhibits (e.g., Jonsen et al.,

2005; Morales et al., 2005; Forester et al., 2007; Langrock et al., 2012; McClintock et al.,

2012, 2013).

I developed a phenomenological model using basis functions that can accommodate large

temporal gaps between observations, allows for continuous inference on behavioral states, and

accounts for measurement error. Using basis functions allows for complex non-linear patterns

that would be difficult to model in a traditional framework (e.g., Polansky & Robbins, 2013)
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and can be used in a number of ecological applications (Hefley et al., 2017). A significant

benefit of this model is that it scales with the data. For example, the temporal coarseness of

the Canada lynx data meant that the basis functions that I used were also at a coarse scale.

As in any statistical model, there is a trade-off between fit and prediction; if I had used a

finer-scale set of basis functions, the uncertainty in the location of the individual would be

large in the absence of data. However, with finer-scale temporal data, a finer-scale set of

basis functions can be used and appropriate inference can be obtained.

The phenomenological model is also deceptively simple, because it takes the form of a

regression. While the model may appear complicated, the majority of the complexity is

attributed to the error structure. The model’s simplicity also makes it easy and computa-

tionally efficient to fit. The same model, with a simple isotropic error structure, had been

implemented in the ctmcmove package, which was used in the analysis of cougar movement

(Hanks, 2016).

5.1.2. Multi-data Source Models

Researchers often collect multiple kinds of data on the same population. In some cases,

it may be beneficial to link data types that contribute to the same process; models of

this type are often called “integrated” models. Integrated data modeling is a popular and

active area of research (e.g., Burnham, 1993; Barker, 1997; Nasution et al., 2001; Schaub &

Abadi, 2011; Tempel et al., 2014), because auxiliary data sets can correct for estimator bias

(e.g., Buderman et al., 2014) and can sometimes improve precision of shared estimates (e.g.,

Besbeas et al., 2002).

Multiple types of telemetry data are not often considered separate data sources, because

they both provide information about where the individual is on the landscape. However,
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when the telemetry device produces locations with differing amounts of uncertainty, it may be

important to model these locations as arising from different data processes, but contributing

to the same true process of interest. The data type containing more information, or less

uncertainty, helps to minimize the uncertainty in the true process (as reviewed in Schaub &

Abadi, 2011).

5.1.3. Population-Level Inference

Movement models can be time-consuming to fit due to the number of estimated parame-

ters and the amount of data necessary to gain inference on animal movement (Hooten et al.,

2017). Discrete-time models can add additional computation time due to the data imputa-

tion process that is necessary to obtain temporally regular observations (McClintock et al.,

2014a). It is often computationally infeasible to fit the model to more than a few individuals.

However, the speed at which the functional movement model is fit makes it relatively easy

to perform population-level analyses, which is often the ultimate goal in applied wildlife

management research (Hooten et al., 2016).

5.2. Future Methodological Directions

The primary drawback to using a phenomenological model for animal movement is the

disconnect between movement and the landscape. At this time, it is not obvious how to

incorporate landscape variables into the continuous-time movement process directly, though

it can be done in the discrete-time spatial point-process framework (Johnson et al., 2013;

Brost et al., 2015). Incorporating landscape variables could improve location estimation,

particularly for specialists that are dependent on specific landscape features. At the current

stage of development, linking movement to the landscape is done through secondary analyses
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(Hooten et al., 2017). However, spatial and temporal covariates could be incorporated by

letting a potential function contribute to the true location of an individual in space (Hooten

et al., 2017). Potential functions have previously been implemented as the drift component

in a stochastic differential equation for velocity (e.g., Brillinger et al., 2001; Brillinger, 2010).

Many of the landscape variables that we treat as static are also varying in time, either

over long periods, like land use, or short periods, like kill sites. Incorporating time-varying

covariates adds an additional layer of complexity, however time-varying covariates could

strengthen inference on the effect of the landscape. For example, the algorithm used to fit

the model could reference a temporally indexed covariate for subsets of the data. A series of

covariates that correspond to different time-periods would be more representative of what

the individual was responding to at a given time.

5.3. Ecological Inference

There have been many studies on Canada lynx populations in Alaska and Canada, where

they are an abundant fur-bearer. However, due to their low densities in the continental U.S.,

few extensive studies have been performed on the “southern” lynx populations (Buskirk et al.,

2000a). Many of the preexisting studies have been plagued by small sample sizes and minimal

temporal coverage. Due to the number of individuals and the span of temporal coverage, my

study of lynx movement behavior is a significant contribution to the available information

on Canada lynx movement at the southern extent of their historical range. In addition,

this study is unique in its focus on a reintroduced population; we found that daily speed

and turning angle does vary as a function of the year since an individual was reintroduced,

potentially resulting in long-term behavioral effects. Similar methodology, as presented in

Chapters 2 and 3, could be used to model reintroduced Iberian lynx (Lynx pardinus) and
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Eurasian lynx (Lynx lynx ). Many recent studies have used technology that obtains high-

frequency data (e.g., Blazquez-Cabrera et al., 2016; Gastón et al., 2016); however, older

data sets (e.g., Vandel et al., 2006) may provide useful information on historical movement

behavior.

In contrast, habits of cougars are well-studied due to their relative abundance and their

general habitat requirements, which are in contrast to the specialized requirements of Canada

lynx. Large carnivores are often used as indicators of habitat integrity because of their large

home-ranges (Noss et al., 1996). However, I found that cougars are not particularly sensitive

to anthropogenic disturbances on the landscape. The insensitivity to the level of human

disturbance present in the Colorado Front Range may make them poor ecological proxies for

non-generalist species. However, the strong effect of potential kill site locations may indicate

that cougars are sensitive to fine-scale landscape features that increase the probability of

them locating and successfully killing a prey item (Blecha, 2015). These fine-scale landscape

features are currently impossible to observe at large spatial scales, but could provide more

informative inference on movement dynamics for cougars and other perceived generalists.

Technological advancements in wildlife monitoring allow researchers to collect incredible

amounts of information on individual animal movements with relative ease (Hebblewhite &

Haydon, 2010). The study of animal movement can offer insights into evolutionary adapta-

tions (Fahrig, 2007), demographic impacts of habitat fragmentation (Shepard et al., 2008),

and population dynamics, such as survival, emigration, and immigration (Morales et al.,

2010). Developing efficient and easy to implement movement models can help biologists

connect the wealth of spatial data to the dynamics that are most often used for population

management and conservation.
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APPENDIX A

Supplemental Material for Chapter 2

A.1. Prior Specifications

wj(t) ∼ Bern(0.5) for j = 1, ..., J and t ∈ T

σ2
j ∼ IG(0.0001, 1000) for j = 1, ..., J

ρ ∼ Beta(13.31, 4.44)

E[ρ] = 0.75

VAR[ρ] = 0.01

c ∼ Beta(7.2, 0.8)

E[c] = 0.90

VAR[c] = 0.01

β0 ∼ N (0,100(I))

β ∼ N

0,

σ2
βlon

I 0

0 σ2
βlat

I




Priors for ρ and c were selected to approximate the shape of the Argos error structure

reported by Costa et al. (2010) and Brost et al. (2015). Alternatively, one could use

Beta(1, 1) as a flat prior for both parameters. Posterior inference for the Canada lynx data

was not very sensitive to the choice of priors for ρ and c.
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A.2. Deviance Information Criterion Calculation

DIC = D̂ + 2pD

pD = D̄ − D̂

Deviance computed at the posterior mean of the parameters:

D̂ = −2log[S|β̂0, β̂, σ̂
2, ρ̂, ĉ, ŵ]

Posterior mean deviance:

D̄ = E(−2log[S|β0,β,σ
2, ρ, c,w]|S)
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A.3. MCMC Algorithm

MCMC algorithm for fitting the spline-based movement model and calculating derived

behavioral quantities.

fda.movement <- function(S.0,S.1,S.2,S.3,S.A,S.B,S.V,X.0,X.1,X
.2,X.3,X.A,X.B,X.V,X.pred ,s2.beta ,n.mcmc ,pred=TRUE){

# longitude is always [,1], latitude [,2]
# S.0, S.1, S.2, S.3, S.A, S.B, S.V: scaled locations for each

data type
# X.0, X.1, X.2, X.3, X.A, X.B, X.V: the B-splines evaluated at

times corresponding to the locations for each data tume
# X.pred: B-splines evaluated at prediction times
# s2.beta: variance terms for regularization matrix
# pred: if TRUE , derived quantities are calculated
# Note: this code calculates the temporal versions of the

derived quantities , not the spatial (grid cell) versions
# Note: if plotting on the original landscape is desired , MU

should be back -transformed before calculating derived
quantities

####
#### Libraries and Subroutines
####
library(mvtnorm)
####
#### Setup Variables
####
n.burn=round (.1*n.mcmc)
T=dim(X.pred)[1]
p=dim(X.pred)[2]
T.0<-ifelse (is.null(nrow(S.0)), 1, nrow(S.0) [1])
T.1<-ifelse (is.null(nrow(S.1)), 1, nrow(S.1) [1])
T.2<-ifelse (is.null(nrow(S.2)), 1, nrow(S.2) [1])
T.3<-ifelse (is.null(nrow(S.3)), 1, nrow(S.3) [1])
T.A<-ifelse (is.null(nrow(S.A)), 1, nrow(S.A)[1])
T.B<-ifelse (is.null(nrow(S.B)), 1, nrow(S.B)[1])
T.V<-ifelse (is.null(nrow(S.V)), 1, nrow(S.V)[1])
s.0=c(S.0)
s.1=c(S.1)
s.2=c(S.2)
s.3=c(S.3)
s.A=c(S.A)
s.B=c(S.B)
s.V=c(S.V)
data.all <-cbind(rbind(S.0,S.1,S.2,S.3,S.A,S.B,S.V),rep(1:7,c(T

.0,T.1,T.2,T.3,T.A,T.B,T.V)),rep(1:sum(T.0,T.1,T.2,T.3,T.A,T

.B,T.V)))
if (length(S.0>0)) {X.big.0<-diag (2)%x%matrix(X.0,nrow=length(S

.0)/2)} else {X.big.0<-diag (2)%x%X.0}
if (length(S.1>0)) {X.big.1<-diag (2)%x%matrix(X.1,nrow=length(S

.1)/2)} else {X.big.1<-diag (2)%x%X.1}
if (length(S.2>0)) {X.big.2<-diag (2)%x%matrix(X.2,nrow=length(S

.2)/2)} else {X.big.2<-diag (2)%x%X.2}
if (length(S.3>0)) {X.big.3<-diag (2)%x%matrix(X.3,nrow=length(S

.3)/2)} else {X.big.3<-diag (2)%x%X.3}
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if (length(S.A>0)) {X.big.A<-diag (2)%x%matrix(X.A,nrow=length(S
.A)/2)} else {X.big.A<-diag (2)%x%X.A}

if (length(S.B>0)) {X.big.B<-diag (2)%x%matrix(X.B,nrow=length(S
.B)/2)} else {X.big.B<-diag (2)%x%X.B}

if (length(S.V>0)) {X.big.V<-diag (2)%x%matrix(X.V,nrow=length(S
.V)/2)} else {X.big.V<-diag (2)%x%X.V}

X.big.full=diag (2)%x%X.pred
####
#### Storage
####
beta.save=matrix (0,2*p,n.mcmc)
beta .0. save=matrix(0,2,n.mcmc)
w.save=matrix(0,sum(T.0,T.1,T.2,T.3,T.A,T.B,T.V),n.mcmc)
s2.0. save=rep(0,n.mcmc)
s2.1. save=rep(0,n.mcmc)
s2.2. save=rep(0,n.mcmc)
s2.3. save=rep(0,n.mcmc)
s2.A.save=rep(0,n.mcmc)
s2.B.save=rep(0,n.mcmc)
s2.V.save=rep(0,n.mcmc)
MU=matrix(0,T,2)
MU.save=array(0,c(T,2,n.mcmc))
rho.save=rep(0,n.mcmc)
c.save=rep(0,n.mcmc)
####
#### Derived Quantities
####
MU.us=matrix(0,T,2)
MU.save.us=array(0,c(T,2,n.mcmc))
speed.save=matrix(0,T-1,n.mcmc)
res.save=matrix(0,T-1,n.mcmc)
theta.save=matrix(0,T-2,n.mcmc)
####
#### Priors and Starting Values
####
#### Priors for beta_0
mu.0=rep(0,2)
Sig .0=100*diag (2)
Sig .0.inv=solve(Sig.0)
#### Prior for beta
Sig.beta.inv=diag(1/c(rep(s2.beta[1],p),rep(s2.beta[2],p)))
#### Priors for s2.j
r.0=1000
q.0=.0001
r.1=1000
q.1=.0001
r.2=1000
q.2=.0001
r.3=1000
q.3=.0001
r.A=1000
q.A=.0001
r.B=1000
q.B=.0001
r.V=1000
q.V=.0001
#### Priors for rho and c
betamoments <-function(mu ,sigma){
alpha <-mu*((mu*(1-mu))/sigma ^2-1)
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beta <-(1-mu)*((mu*(1-mu))/sigma ^2-1)
list(alpha=alpha ,beta=beta)

}
rho.alpha <-betamoments(mu=0.75 , sigma =0.1)$alpha
rho.beta <-betamoments(mu=0.75 , sigma =0.1)$beta
c.alpha <-betamoments(mu=0.9, sigma =0.1)$alpha
c.beta <-betamoments(mu=0.9, sigma =0.1)$beta
rho.tune =0.1
c.tune =0.1
#### Priors for w
p.ARGOS <-0.5
p.VHF <-1
#### Starting Value for beta and beta_0
beta .0= apply(rbind(S.0,S.1,S.2,S.3,S.A,S.B,S.V),2,mean)
beta=rep(0,2*p)
#### Starting Value for s2.j
if (length(s.0) >0) {s2.0<-1} else {s2.0<-0}
if (length(s.1) >0) {s2.1<-1} else {s2.1<-0}
if (length(s.2) >0) {s2.2<-1} else {s2.2<-0}
if (length(s.3) >0) {s2.3<-1} else {s2.3<-0}
if (length(s.A) >0) {s2.A<-1} else {s2.A<-0}
if (length(s.B) >0) {s2.B<-1} else {s2.B<-0}
if (length(s.V) >0) {s2.V<-1} else {s2.V<-0}
#### Starting Value for rho and c
rho <-0.5
rho.acc <-0
c<-0.5
c.acc <-0
#### k Matrix and Covariance Matrix for VHF
K.argos=matrix(c(1,0,0,-1) ,2,2,byrow=T)
t.K.argos=t(K.argos)
K.vhf=matrix(c(1,0,0,1) ,2,2,byrow=T)
t.K.vhf=t(K.vhf)
R.vhf=matrix(c(1,0,0,1) ,2,2,byrow=T)
R.vhf.inv=solve(R.vhf)
R.vhf.star=matrix(c(1,0,0,1) ,2,2,byrow=T)
#### Lists for Sigma
Sigma <-list()
Sigma.tilda <-list()
Sigma.inv <-list()
Sigma.tilda.inv <-list()
####
#### Begin MCMC Loop
####
for(k in 1:n.mcmc){
if(k%% 100==0) cat(k," ")
####
#### Calculate Sigma_j and associated matrices
####
R.argos=matrix(c(1,sqrt(c)*rho ,sqrt(c)*rho ,c) ,2,2,byrow=T)
R.argos.inv=solve(R.argos)
if (length(S.0) >0) {Sigma [[1]] <-matrix(s2.0*R.argos ,2,2,byrow=

T)} else {Sigma [[1]] <-matrix(rep(0,4) ,2,2)}
if (length(S.1) >0) {Sigma [[2]] <-matrix(s2.1*R.argos ,2,2,byrow=

T)} else {Sigma [[2]] <-matrix(rep(0,4) ,2,2)}
if (length(S.2) >0) {Sigma [[3]] <-matrix(s2.2*R.argos ,2,2,byrow=

T)} else {Sigma [[3]] <-matrix(rep(0,4) ,2,2)}
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if (length(S.3) >0) {Sigma [[4]] <-matrix(s2.3*R.argos ,2,2,byrow=
T)} else {Sigma [[4]] <-matrix(rep(0,4) ,2,2)}

if (length(S.A) >0) {Sigma [[5]] <-matrix(s2.A*R.argos ,2,2,byrow=
T)} else {Sigma [[5]] <-matrix(rep(0,4) ,2,2)}

if (length(S.B) >0) {Sigma [[6]] <-matrix(s2.B*R.argos ,2,2,byrow=
T)} else {Sigma [[6]] <-matrix(rep(0,4) ,2,2)}

if (length(S.V) >0) {Sigma [[7]] <-matrix(s2.V*R.vhf ,2,2,byrow=T)
} else {Sigma [[7]] <-matrix(rep(0,4) ,2,2)}

Sigma.tilda [[1]] <-K.argos%*%Sigma [[1]]%*%t.K.argos
Sigma.tilda [[2]] <-K.argos%*%Sigma [[2]]%*%t.K.argos
Sigma.tilda [[3]] <-K.argos%*%Sigma [[3]]%*%t.K.argos
Sigma.tilda [[4]] <-K.argos%*%Sigma [[4]]%*%t.K.argos
Sigma.tilda [[5]] <-K.argos%*%Sigma [[5]]%*%t.K.argos
Sigma.tilda [[6]] <-K.argos%*%Sigma [[6]]%*%t.K.argos
Sigma.tilda [[7]] <-K.vhf%*%Sigma [[7]]%*%t.K.vhf
X.0.x.beta <-matrix(c(X.big.0%*%beta),ncol =2)
X.1.x.beta <-matrix(c(X.big.1%*%beta),ncol =2)
X.2.x.beta <-matrix(c(X.big.2%*%beta),ncol =2)
X.3.x.beta <-matrix(c(X.big.3%*%beta),ncol =2)
X.A.x.beta <-matrix(c(X.big.A%*%beta),ncol =2)
X.B.x.beta <-matrix(c(X.big.B%*%beta),ncol =2)
X.V.x.beta <-matrix(c(X.big.V%*%beta),ncol =2)
X.x.beta.all <-cbind(rbind(X.0.x.beta ,X.1.x.beta ,X.2.x.beta ,X

.3.x.beta ,X.A.x.beta ,X.B.x.beta ,X.V.x.beta),rep(1:7,c(T.0,T

.1,T.2,T.3,T.A,T.B,T.V)))
beta .0.all <-cbind(rep(beta .0[1], nrow(X.x.beta.all)),rep(beta

.0[2], nrow(X.x.beta.all)))
tmp.mean <-NULL
tmp.diff <-NULL
tmp.mean <-cbind(beta .0. all+X.x.beta.all[,1:2],X.x.beta.all

[,3],data.all[,4])
tmp.diff <-cbind(data.all[,1:2]-tmp.mean[,1:2],X.x.beta.all

[,3],data.all[,4])
rownames(tmp.mean)<-data.all[,4]
rownames(tmp.diff)<-data.all[,4]
tmp.diff.subset <-tmp.diff [,1:2]
####
#### Sample w
####
p.tmp.ARGOS <-NULL
for (n in unique(tmp.diff [,3][tmp.diff[,3]!=7])){
p.tmp.ARGOS <-rbind(p.tmp.ARGOS ,cbind(p.ARGOS*dmvnorm(tmp.diff

.subset[tmp.diff [ ,3]==n,],c(0,0),Sigma [[n]])/(p.ARGOS*
dmvnorm(tmp.diff.subset[tmp.diff [,3]==n,],c(0,0),Sigma[[n
]])+

(1-p.ARGOS)*dmvnorm(tmp.diff.subset[tmp.diff [ ,3]==n,],c(0,0)
,Sigma.tilda [[n]])),as.numeric(rownames(tmp.diff[tmp.diff
[,3]==n,,drop=FALSE ]))))

}
w.ARGOS <-if (is.null(p.tmp.ARGOS)) {NULL} else {cbind(rbinom(

nrow(p.tmp.ARGOS),1,p.tmp.ARGOS [,1]),p.tmp.ARGOS [,2])}
p.tmp.VHF <-cbind(rep(1,nrow(tmp.diff[tmp.diff [ ,3]==7 ,])))
w.VHF <-cbind(rbinom(nrow(p.tmp.VHF),1,p.tmp.VHF[,1]),tmp.diff[

tmp.diff [ ,3]==7 ,4])
w<-rbind(w.ARGOS ,w.VHF)
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w<-cbind(w,tmp.diff[tmp.diff [,4]==w[,2],3])
w.save[,k]<-w[,1]
w.0<-sum(w[w[ ,3]==1 ,1])
w.1<-sum(w[w[ ,3]==2 ,1])
w.2<-sum(w[w[ ,3]==3 ,1])
w.3<-sum(w[w[ ,3]==4 ,1])
w.A<-sum(w[w[ ,3]==5 ,1])
w.B<-sum(w[w[ ,3]==6 ,1])
w.V<-sum(w[w[ ,3]==7 ,1])
### Factor out k, 2nd column becomes negative
tmp.diff.neg <-tmp.diff
tmp.diff.neg[w[ ,1]==0 ,2] <--tmp.diff[w[ ,1]==0 ,2]
tmp.s.0. inner <-sum(rowSums(tmp.diff.neg[tmp.mean [ ,3]==1 ,1:2]%*

%R.argos.inv*tmp.diff.neg[tmp.mean [ ,3]==1 ,1:2]))
tmp.s.1. inner <-sum(rowSums(tmp.diff.neg[tmp.mean [ ,3]==2 ,1:2]%*

%R.argos.inv*tmp.diff.neg[tmp.mean [ ,3]==2 ,1:2]))
tmp.s.2. inner <-sum(rowSums(tmp.diff.neg[tmp.mean [ ,3]==3 ,1:2]%*

%R.argos.inv*tmp.diff.neg[tmp.mean [ ,3]==3 ,1:2]))
tmp.s.3. inner <-sum(rowSums(tmp.diff.neg[tmp.mean [ ,3]==4 ,1:2]%*

%R.argos.inv*tmp.diff.neg[tmp.mean [ ,3]==4 ,1:2]))
tmp.s.A.inner <-sum(rowSums(tmp.diff.neg[tmp.mean [ ,3]==5 ,1:2]%*

%R.argos.inv*tmp.diff.neg[tmp.mean [ ,3]==5 ,1:2]))
tmp.s.B.inner <-sum(rowSums(tmp.diff.neg[tmp.mean [ ,3]==6 ,1:2]%*

%R.argos.inv*tmp.diff.neg[tmp.mean [ ,3]==6 ,1:2]))
tmp.s.V.inner <-sum(rowSums(tmp.diff.neg[tmp.mean [ ,3]==7 ,1:2]%*

%R.vhf.inv*tmp.diff.neg[tmp.mean [ ,3]==7 ,1:2]))
#### Sample s2.0
tmp.r=(1/r.0+.5*tmp.s.0. inner)^(-1)
tmp.q=T.0+q.0
s2.0=1/rgamma(1,tmp.q,,tmp.r)
if (length(s.0) ==0) {s2.0<-0}
#### Sample s2.1
tmp.r=(1/r.1+.5*tmp.s.1. inner)^(-1)
tmp.q=T.1+q.1
s2.1=1/rgamma(1,tmp.q,,tmp.r)
if (length(s.1) ==0) {s2.1<-0}
#### Sample s2.2
tmp.r=(1/r.2+.5*tmp.s.2. inner)^(-1)
tmp.q=T.2+q.2
s2.2=1/rgamma(1,tmp.q,,tmp.r)
if (length(s.2) ==0) {s2.2<-0}
#### Sample s2.3
tmp.r=(1/r.3+.5*tmp.s.3. inner)^(-1)
tmp.q=T.3+q.3
s2.3=1/rgamma(1,tmp.q,,tmp.r)
if (length(s.3) ==0) {s2.3<-0}
#### Sample s2.A
tmp.r=(1/r.A+.5*tmp.s.A.inner)^(-1)
tmp.q=T.A+q.A
s2.A=1/rgamma(1,tmp.q,,tmp.r)
if (length(s.A)==0) {s2.A<-0}
#### Sample s2.B
tmp.r=(1/r.B+.5*tmp.s.B.inner)^(-1)
tmp.q=T.B+q.B
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s2.B=1/rgamma(1,tmp.q,,tmp.r)
if (length(s.B)==0) {s2.B<-0}
#### Sample s2.V
tmp.r=(1/r.V+.5*tmp.s.V.inner)^(-1)
tmp.q=T.V+q.V
s2.V=1/rgamma(1,tmp.q,,tmp.r)
if (length(s.V)==0) {s2.V<-0}
#### Save Samples
s2.0. save[k]=s2.0
s2.1. save[k]=s2.1
s2.2. save[k]=s2.2
s2.3. save[k]=s2.3
s2.A.save[k]=s2.A
s2.B.save[k]=s2.B
s2.V.save[k]=s2.V
#### Recalculate sigmas
Sigma [[1]] <-matrix(s2.0*R.argos ,2,2,byrow=T)
Sigma [[2]] <-matrix(s2.1*R.argos ,2,2,byrow=T)
Sigma [[3]] <-matrix(s2.2*R.argos ,2,2,byrow=T)
Sigma [[4]] <-matrix(s2.3*R.argos ,2,2,byrow=T)
Sigma [[5]] <-matrix(s2.A*R.argos ,2,2,byrow=T)
Sigma [[6]] <-matrix(s2.B*R.argos ,2,2,byrow=T)
Sigma [[7]] <-matrix(s2.V*R.vhf ,2,2,byrow=T)
Sigma.tilda [[1]] <-K.argos%*%Sigma [[1]]%*%t.K.argos
Sigma.tilda [[2]] <-K.argos%*%Sigma [[2]]%*%t.K.argos
Sigma.tilda [[3]] <-K.argos%*%Sigma [[3]]%*%t.K.argos
Sigma.tilda [[4]] <-K.argos%*%Sigma [[4]]%*%t.K.argos
Sigma.tilda [[5]] <-K.argos%*%Sigma [[5]]%*%t.K.argos
Sigma.tilda [[6]] <-K.argos%*%Sigma [[6]]%*%t.K.argos
Sigma.tilda [[7]] <-K.vhf%*%Sigma [[7]]%*%t.K.vhf
####
#### Sample rho
####
#### Propose rho.star
rho.star=rnorm(1,rho ,rho.tune)
#### Calculate mh ratio
if (rho.star >=0 & rho.star <=1){
R.argos.star=matrix(c(1,sqrt(c)*rho.star ,sqrt(c)*rho.star ,c)

,2,2,byrow=T)
Sigma.star <-list()
Sigma.tilda.star <-list()
Sigma.star [[1]]= s2.0*R.argos.star
Sigma.star [[2]]= s2.1*R.argos.star
Sigma.star [[3]]= s2.2*R.argos.star
Sigma.star [[4]]= s2.3*R.argos.star
Sigma.star [[5]]= s2.A*R.argos.star
Sigma.star [[6]]= s2.B*R.argos.star
Sigma.star [[7]]= s2.V*R.vhf.star
Sigma.tilda.star [[1]]=K.argos%*%Sigma.star [[1]]%*%t.K.argos
Sigma.tilda.star [[2]]=K.argos%*%Sigma.star [[2]]%*%t.K.argos
Sigma.tilda.star [[3]]=K.argos%*%Sigma.star [[3]]%*%t.K.argos
Sigma.tilda.star [[4]]=K.argos%*%Sigma.star [[4]]%*%t.K.argos
Sigma.tilda.star [[5]]=K.argos%*%Sigma.star [[5]]%*%t.K.argos
Sigma.tilda.star [[6]]=K.argos%*%Sigma.star [[6]]%*%t.K.argos
Sigma.tilda.star [[7]]=K.vhf%*%Sigma.star [[7]]%*%t.K.vhf
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mh1 <-dbeta(rho.star ,rho.alpha ,rho.beta ,log=TRUE)
mh2 <-dbeta(rho ,rho.alpha ,rho.beta ,log=TRUE)
for (n in unique(w[,3][w[,3]!=7])){
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==1 ,1:2])!=0 & length(

tmp.diff[w[,3]==n & w[ ,1]==0 ,1:2])!=0){
mh1.tmp <-(sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==1 ,1:2] ,c

(0,0),Sigma.star[[n]],log=TRUE))+sum(dmvnorm(tmp.diff[w
[,3]==n & w[ ,1]==0 ,1:2] ,c(0,0),Sigma.tilda.star[[n]],log
=TRUE)))

}
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==0 ,1:2]) ==0){
mh1.tmp <-sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==1 ,1:2] ,c

(0,0),Sigma.star[[n]],log=TRUE))
}
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==1 ,1:2]) ==0){
mh1.tmp <-sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==0 ,1:2] ,c

(0,0),Sigma.tilda.star[[n]],log=TRUE))
}
mh1 <-mh1+mh1.tmp
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==1 ,1:2])!=0 & length(

tmp.diff[w[,3]==n & w[ ,1]==0 ,1:2])!=0){
mh2.tmp <-(sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==1 ,1:2] ,c

(0,0),Sigma[[n]],log=TRUE))+sum(dmvnorm(tmp.diff[w[,3]==
n & w[ ,1]==0 ,1:2] ,c(0,0),Sigma.tilda[[n]],log=TRUE)))

}
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==0 ,1:2]) ==0){
mh2.tmp <-sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==1 ,1:2] ,c

(0,0),Sigma[[n]],log=TRUE))
}
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==1 ,1:2]) ==0){
mh2.tmp <-sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==0 ,1:2] ,c

(0,0),Sigma.tilda[[n]],log=TRUE))
}
mh2 <-mh2+mh2.tmp

}
mhratio=exp(mh1 -mh2)
if(mhratio > runif (1)){
rho=rho.star
rho.acc=rho.acc+1
#### Recalculate sigmas
R.argos=matrix(c(1,sqrt(c)*rho ,sqrt(c)*rho ,c) ,2,2,byrow=T)
Sigma [[1]] <-matrix(s2.0*R.argos ,2,2,byrow=T)
Sigma [[2]] <-matrix(s2.1*R.argos ,2,2,byrow=T)
Sigma [[3]] <-matrix(s2.2*R.argos ,2,2,byrow=T)
Sigma [[4]] <-matrix(s2.3*R.argos ,2,2,byrow=T)
Sigma [[5]] <-matrix(s2.A*R.argos ,2,2,byrow=T)
Sigma [[6]] <-matrix(s2.B*R.argos ,2,2,byrow=T)
Sigma [[7]] <-matrix(s2.V*R.vhf ,2,2,byrow=T)
Sigma.tilda [[1]] <-K.argos%*%Sigma [[1]]%*%t.K.argos
Sigma.tilda [[2]] <-K.argos%*%Sigma [[2]]%*%t.K.argos
Sigma.tilda [[3]] <-K.argos%*%Sigma [[3]]%*%t.K.argos
Sigma.tilda [[4]] <-K.argos%*%Sigma [[4]]%*%t.K.argos
Sigma.tilda [[5]] <-K.argos%*%Sigma [[5]]%*%t.K.argos
Sigma.tilda [[6]] <-K.argos%*%Sigma [[6]]%*%t.K.argos
Sigma.tilda [[7]] <-K.vhf%*%Sigma [[7]]%*%t.K.vhf

}
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}
rho.save[k]<-rho
####
#### Sample c
####
#### Propose c.star
c.star=rnorm(1,c,c.tune)
if (c.star >=0 & c.star <=1){
R.argos.star=matrix(c(1,sqrt(c.star)*rho ,sqrt(c.star)*rho ,c.

star) ,2,2,byrow=T)
Sigma.star <-list()
Sigma.tilda.star <-list()
Sigma.star [[1]]= s2.0*R.argos.star
Sigma.star [[2]]= s2.1*R.argos.star
Sigma.star [[3]]= s2.2*R.argos.star
Sigma.star [[4]]= s2.3*R.argos.star
Sigma.star [[5]]= s2.A*R.argos.star
Sigma.star [[6]]= s2.B*R.argos.star
Sigma.star [[7]]= s2.V*R.vhf.star
Sigma.tilda.star [[1]]=K.argos%*%Sigma.star [[1]]%*%t.K.argos
Sigma.tilda.star [[2]]=K.argos%*%Sigma.star [[2]]%*%t.K.argos
Sigma.tilda.star [[3]]=K.argos%*%Sigma.star [[3]]%*%t.K.argos
Sigma.tilda.star [[4]]=K.argos%*%Sigma.star [[4]]%*%t.K.argos
Sigma.tilda.star [[5]]=K.argos%*%Sigma.star [[5]]%*%t.K.argos
Sigma.tilda.star [[6]]=K.argos%*%Sigma.star [[6]]%*%t.K.argos
Sigma.tilda.star [[7]]=K.vhf%*%Sigma.star [[7]]%*%t.K.vhf
mh1 <-dbeta(c.star ,c.alpha ,c.beta ,log=TRUE)
mh2 <-dbeta(c,c.alpha ,c.beta ,log=TRUE)
for (n in unique(w[,3][w[,3]!=7])){
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==1 ,1:2])!=0 & length(

tmp.diff[w[,3]==n & w[ ,1]==0 ,1:2])!=0){
mh1.tmp <-(sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==1 ,1:2] ,c

(0,0),Sigma.star[[n]],log=TRUE))+sum(dmvnorm(tmp.diff[w
[,3]==n & w[ ,1]==0 ,1:2] ,c(0,0),Sigma.tilda.star[[n]],log
=TRUE)))

}
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==0 ,1:2]) ==0){
mh1.tmp <-sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==1 ,1:2] ,c

(0,0),Sigma.star[[n]],log=TRUE))
}
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==1 ,1:2]) ==0){
mh1.tmp <-sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==0 ,1:2] ,c

(0,0),Sigma.tilda.star[[n]],log=TRUE))
}
mh1 <-mh1+mh1.tmp
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==1 ,1:2])!=0 & length(

tmp.diff[w[,3]==n & w[ ,1]==0 ,1:2])!=0){
mh2.tmp <-(sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==1 ,1:2] ,c

(0,0),Sigma[[n]],log=TRUE))+sum(dmvnorm(tmp.diff[w[,3]==
n & w[ ,1]==0 ,1:2] ,c(0,0),Sigma.tilda[[n]],log=TRUE)))

}
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==0 ,1:2]) ==0){
mh2.tmp <-sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==1 ,1:2] ,c

(0,0),Sigma[[n]],log=TRUE))
}
if (length(tmp.diff[w[ ,3]==n & w[ ,1]==1 ,1:2]) ==0){
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mh2.tmp <-sum(dmvnorm(tmp.diff[w[,3]==n & w[ ,1]==0 ,1:2] ,c
(0,0),Sigma.tilda[[n]],log=TRUE))

}
mh2 <-mh2+mh2.tmp

}
mhratio=exp(mh1 -mh2)
if(mhratio > runif (1)){
c=c.star
c.acc=c.acc+1
#### Recalculate sigmas
R.argos=matrix(c(1,sqrt(c)*rho ,sqrt(c)*rho ,c) ,2,2,byrow=T)
Sigma [[1]] <-matrix(s2.0*R.argos ,2,2,byrow=T)
Sigma [[2]] <-matrix(s2.1*R.argos ,2,2,byrow=T)
Sigma [[3]] <-matrix(s2.2*R.argos ,2,2,byrow=T)
Sigma [[4]] <-matrix(s2.3*R.argos ,2,2,byrow=T)
Sigma [[5]] <-matrix(s2.A*R.argos ,2,2,byrow=T)
Sigma [[6]] <-matrix(s2.B*R.argos ,2,2,byrow=T)
Sigma [[7]] <-matrix(s2.V*R.vhf ,2,2,byrow=T)
Sigma.tilda [[1]] <-K.argos%*%Sigma [[1]]%*%t.K.argos
Sigma.tilda [[2]] <-K.argos%*%Sigma [[2]]%*%t.K.argos
Sigma.tilda [[3]] <-K.argos%*%Sigma [[3]]%*%t.K.argos
Sigma.tilda [[4]] <-K.argos%*%Sigma [[4]]%*%t.K.argos
Sigma.tilda [[5]] <-K.argos%*%Sigma [[5]]%*%t.K.argos
Sigma.tilda [[6]] <-K.argos%*%Sigma [[6]]%*%t.K.argos
Sigma.tilda [[7]] <-K.vhf%*%Sigma [[7]]%*%t.K.vhf

}
}
c.save[k]<-c
####
#### Calculate Sigma inverse
####
if (length(S.0) >0) {Sigma.inv [[1]] <-solve(Sigma [[1]]); Sigma.

tilda.inv [[1]] <-K.argos%*%Sigma.inv [[1]]%*%t.K.argos} else
{Sigma.inv [[1]] <-matrix(rep(0,4) ,2,2); Sigma.tilda.inv [[1]]
<-matrix(rep(0,4) ,2,2)}

if (length(S.1) >0) {Sigma.inv [[2]] <-solve(Sigma [[2]]); Sigma.
tilda.inv [[2]] <-K.argos%*%Sigma.inv [[2]]%*%t.K.argos} else
{Sigma.inv [[2]] <-matrix(rep(0,4) ,2,2); Sigma.tilda.inv [[2]]
<-matrix(rep(0,4) ,2,2)}

if (length(S.2) >0) {Sigma.inv [[3]] <-solve(Sigma [[3]]); Sigma.
tilda.inv [[3]] <-K.argos%*%Sigma.inv [[3]]%*%t.K.argos} else
{Sigma.inv [[3]] <-matrix(rep(0,4) ,2,2); Sigma.tilda.inv [[3]]
<-matrix(rep(0,4) ,2,2)}

if (length(S.3) >0) {Sigma.inv [[4]] <-solve(Sigma [[4]]); Sigma.
tilda.inv [[4]] <-K.argos%*%Sigma.inv [[4]]%*%t.K.argos} else
{Sigma.inv [[4]] <-matrix(rep(0,4) ,2,2); Sigma.tilda.inv [[4]]
<-matrix(rep(0,4) ,2,2)}

if (length(S.A) >0) {Sigma.inv [[5]] <-solve(Sigma [[5]]); Sigma.
tilda.inv [[5]] <-K.argos%*%Sigma.inv [[5]]%*%t.K.argos} else
{Sigma.inv [[5]] <-matrix(rep(0,4) ,2,2); Sigma.tilda.inv [[5]]
<-matrix(rep(0,4) ,2,2)}

if (length(S.B) >0) {Sigma.inv [[6]] <-solve(Sigma [[6]]); Sigma.
tilda.inv [[6]] <-K.argos%*%Sigma.inv [[6]]%*%t.K.argos} else
{Sigma.inv [[6]] <-matrix(rep(0,4) ,2,2); Sigma.tilda.inv [[6]]
<-matrix(rep(0,4) ,2,2)}
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if (length(S.V) >0) {Sigma.inv [[7]] <-solve(Sigma [[7]]); Sigma.
tilda.inv [[7]] <-K.vhf%*%Sigma.inv [[7]]%*%t.K.vhf} else {
Sigma.inv [[7]] <-matrix(rep(0,4) ,2,2); Sigma.tilda.inv [[7]]
<-matrix(rep(0,4) ,2,2)}

####
#### Sample beta
####
Sigma .0. big <-matrix(rep(0,T.0),nrow=2*T.0,ncol=2*T.0)
Sigma .1. big <-matrix(rep(0,T.1),nrow=2*T.1,ncol=2*T.1)
Sigma .2. big <-matrix(rep(0,T.2),nrow=2*T.2,ncol=2*T.2)
Sigma .3. big <-matrix(rep(0,T.3),nrow=2*T.3,ncol=2*T.3)
Sigma.A.big <-matrix(rep(0,T.A),nrow=2*T.A,ncol=2*T.A)
Sigma.B.big <-matrix(rep(0,T.B),nrow=2*T.B,ncol=2*T.B)
Sigma.V.big <-matrix(rep(0,T.V),nrow=2*T.V,ncol=2*T.V)
Sigma.big <-list(Sigma .0.big ,Sigma .1.big ,Sigma .2.big ,Sigma .3.

big ,Sigma.A.big ,Sigma.B.big ,Sigma.V.big)
S.times <-list(T.0,T.1,T.2,T.3,T.A,T.B,T.V)
for (n in 1:7){
tmp.w<-w[w[,3]==n,,drop=FALSE]
diag.1<-rep(Sigma.inv[[n]][1,1],S.times[n])
diag.2<-rep(Sigma.inv[[n]][2,2],S.times[n])
offdiag <-rep(0,S.times[n])
offdiag[tmp.w[ ,1]==1] <-Sigma.inv[[n]][2 ,1]
offdiag[tmp.w[ ,1]==0] <-Sigma.tilda.inv[[n]][2 ,1]
delta <-row(Sigma.big[[n]])-col(Sigma.big[[n]])
diag(Sigma.big[[n]]) <-c(diag.1,diag .2)
Sigma.big[[n]][abs(delta)==S.times[n]]<-offdiag

}
#### Cholesky decomposition
b.tmp <-t(X.big.0)%*%Sigma.big [[1]]%*%(c(S.0)-kronecker(c(beta

.0),rep(1,T.0)))+
t(X.big.1)%*%Sigma.big [[2]]%*%(c(S.1)-kronecker(c(beta .0),rep

(1,T.1)))+
t(X.big.2)%*%Sigma.big [[3]]%*%(c(S.2)-kronecker(c(beta .0),rep

(1,T.2)))+
t(X.big.3)%*%Sigma.big [[4]]%*%(c(S.3)-kronecker(c(beta .0),rep

(1,T.3)))+
t(X.big.A)%*%Sigma.big [[5]]%*%(c(S.A)-kronecker(c(beta .0),rep

(1,T.A)))+
t(X.big.B)%*%Sigma.big [[6]]%*%(c(S.B)-kronecker(c(beta .0),rep

(1,T.B)))+
t(X.big.V)%*%Sigma.big [[7]]%*%(c(S.V)-kronecker(c(beta .0),rep

(1,T.V)))
A.tmp.chol <-chol(t(X.big.0)%*%Sigma.big [[1]]%*%X.big .0+
t(X.big.1)%*%Sigma.big [[2]]%*%X.big.1+t(X.big.2)%*%Sigma.big

[[3]]%*%X.big.2+
t(X.big.3)%*%Sigma.big [[4]]%*%X.big.3+t(X.big.A)%*%Sigma.big

[[5]]%*%X.big.A+
t(X.big.B)%*%Sigma.big [[6]]%*%X.big.B+t(X.big.V)%*%Sigma.big

[[7]]%*%X.big.V+Sig.beta.inv)
beta <-backsolve(A.tmp.chol ,backsolve(A.tmp.chol ,b.tmp ,

transpose=TRUE)+rnorm(2*p))
#### Save samples
beta.save[,k]=beta
####
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#### Sample beta.0
####
sum .0.tmp <-colSums(matrix(c(Sigma.big [[1]]%*%(c(S.0)-X.big.0%*

%beta)),nrow=T.0,ncol =2))
sum .1.tmp <-colSums(matrix(c(Sigma.big [[2]]%*%(c(S.1)-X.big.1%*

%beta)),nrow=T.1,ncol =2))
sum .2.tmp <-colSums(matrix(c(Sigma.big [[3]]%*%(c(S.2)-X.big.2%*

%beta)),nrow=T.2,ncol =2))
sum .3.tmp <-colSums(matrix(c(Sigma.big [[4]]%*%(c(S.3)-X.big.3%*

%beta)),nrow=T.3,ncol =2))
sum.A.tmp <-colSums(matrix(c(Sigma.big [[5]]%*%(c(S.A)-X.big.A%*

%beta)),nrow=T.A,ncol =2))
sum.B.tmp <-colSums(matrix(c(Sigma.big [[6]]%*%(c(S.B)-X.big.B%*

%beta)),nrow=T.B,ncol =2))
sum.V.tmp <-colSums(matrix(c(Sigma.big [[7]]%*%(c(S.V)-X.big.V%*

%beta)),nrow=T.V,ncol =2))
mult .0.tmp <-w.0*Sigma .0. inv+(T.0-w.0)*Sigma.tilda .0.inv
mult .1.tmp <-w.1*Sigma .1. inv+(T.1-w.1)*Sigma.tilda .1.inv
mult .2.tmp <-w.2*Sigma .2. inv+(T.2-w.2)*Sigma.tilda .2.inv
mult .3.tmp <-w.3*Sigma .3. inv+(T.3-w.3)*Sigma.tilda .3.inv
mult.A.tmp <-w.A*Sigma.A.inv+(T.A-w.A)*Sigma.tilda.A.inv
mult.V.tmp <-w.V*Sigma.B.inv+(T.B-w.B)*Sigma.tilda.B.inv
mult.V.tmp <-w.V*Sigma.V.inv+(T.V-w.V)*Sigma.tilda.V.inv
#### Cholesky decomposition
b.tmp <-sum .0.tmp+sum .1. tmp+sum .2. tmp+sum.3. tmp+sum.A.tmp+sum.V

.tmp+Sig.0. inv%*%mu.0
A.tmp.chol <-chol(mult .0.tmp+mult .1.tmp+mult .2.tmp+mult .3.tmp+

mult.A.tmp+mult.V.tmp+Sig.0.inv)
beta .0=t(backsolve(A.tmp.chol ,backsolve(A.tmp.chol ,b.tmp ,

transpose=TRUE)+rnorm (2)))
beta .0. save[,k]=beta.0
####
#### Save Derived Quantities
####
MU=t(matrix(beta.0,2,T))+matrix(X.big.full%*%beta ,T,2)
MU.save[,,k]=MU
if (pred){
if(k > n.burn){
MU.diff=apply(MU ,2,diff)
speed=sqrt(diag(MU.diff%*%t(MU.diff)))
theta=rep(NA ,T-2)
for(t in 1:(T-2)){
theta[t]=abs(acos(pmin((MU.diff[t+1,]%*%MU.diff[t,])/(sqrt(

MU.diff[t,]%*%MU.diff[t,])*sqrt(MU.diff[t+1,]%*%MU.diff[
t+1,])) ,1)))

}
speed.save[,k]= speed
res.save[,k]=1/speed
theta.save[,k]= theta

}
}

}
cat("\n")
list(s2.beta=s2.beta ,beta .0. save=beta .0.save ,beta.save=beta.

save ,c.save=c.save ,rho.save=rho.save ,
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s2.0. save=s2.0.save ,s2.1. save=s2.1.save ,s2.2. save=s2.2.save ,s2
.3. save=s2.3.save ,s2.A.save=s2.A.save ,s2.B.save=s2.B.save ,s2
.V.save=s2.V.save ,

MU.save=MU.save ,speed.save=speed.save ,res.save=res.save ,theta.
save=theta.save ,n.mcmc=n.mcmc ,n.burn=n.burn)

}
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A.4. Spatial Quantities

To describe movement behavior, I derived quantities from the movement path. These

quantities can be described across a spatial extent of interest. Using the equivariance prop-

erty of MCMC, I can calculate the posterior mean of these quantities for a cell within a grid,

Al for l = 1, ..., L, which spans the area for which I desire inference.

A.4.1. Average Residence Time

Posterior mean:

E(rl|S) =

∫
· · ·
∫
rl[β0,β,σ

2, ρ, c,w|S]dβ0dβdσ
2dρdcdw

MCMC approximation:

E(rl|S) ≈
K∑
k=1

r
(k)
l

K

A.4.2. Average Speed

Posterior mean:

E(ν̄l|S) =

∫
· · ·
∫
ν̄l[β0,β,σ

2, ρ, c,w|S]dβ0dβidσ
2dρdcdw

MCMC approximation:

E(ν̄l|S) ≈
K∑
k=1

ν̄
(k)
l

K

A.4.3. Average Persistence in Direction

Posterior mean:

E(θ̄l|S) =

∫
· · ·
∫
θ̄l[β0,β,σ

2, ρ, c,w|S]dβ0dβdσ
2dρdcdw
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MCMC approximation:

E(θ̄l|S) ≈
K∑
k=1

θ̄
(k)
l

K
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A.5. Temporal Quantities

To describe movement behavior, I derived temporal quantities from the continuous-time

movement path. To obtain the posterior mean of a quantity for a given t ∈ T I can use the

equivariance property of MCMC.

A.5.1. Average Residence Time

Posterior mean:

E(r(t)|S) =

∫
· · ·
∫
r(t)[β0,β,σ

2, ρ, c,w|S]dβ0dβdσ
2dρdcdw

MCMC approximation:

E(r(t)|S) ≈
K∑
k=1

r(t)(k)

K

A.5.2. Average Speed

Posterior mean:

E(ν(t)|S) =

∫
· · ·
∫
ν(t)[β0,β,σ

2, ρ, c,w|S]dβ0dβdσ
2dρdcdw

MCMC approximation:

E(ν(t)|S) ≈
K∑
k=1

ν(t)(k)

K

A.5.3. Average Persistence in Direction

Posterior mean:

E(θ(t)|S) =

∫
· · ·
∫
θ(t)[β0,βσ

2, ρ, c,w|S]dβ0dβdσ
2dρdcdw
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MCMC approximation:

E(θ(t)|S) ≈
K∑
k=1

θ(t)(k)

K
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A.6. Case Study Tables

Table A.6.1. Release and mortality dates for two Canada lynx, originally from a popu-
lation in British Columbia, Canada, and released in the San Juan mountains, Colorado, in
2003. Contact was lost with BC03M04 in 2005, whereas BC03F03 died in 2005.

ID Release Date (y/m/d) End Date (y/m/d) Span (days)
BC03M04 2003/04/11 2005/03/03 687
BC03F03 2003/04/03 2005/05/10 768

Table A.6.2. Number of locations in each Argos error class and number of VHF locations
for two Canada lynx, originally from a population in British Columbia, Canada, and released
in the San Juan mountains, Colorado, in 2003. The Argos provided estimate of error increases
from less than 250 m for class 3 to more than 1,500 m for class 0; no estimated error is
provided for classes A and B (Collecte Localisation Satellites, 2014).

ID Class 3 Class 2 Class 1 Class 0 Class A Class B VHF Total
BC03M04 22 19 24 3 80 0 26 174
BC03F03 10 21 65 16 112 0 42 266

Table A.6.3. Optimal variance terms for the regulator matrix and posterior means and
95% credible intervals for the covariance terms c and ρ for Canada lynx BC03M04 and
BC03F03.

ID σ2
βlon

σ2
βlat

c ρ
BC03M04 0.0225 0.0119 0.94 (0.804-0.9991) 0.7714 (0.6453-0.8702)
BC03F03 0.0225 0.0205 0.768 (0.6061-0.9577) 0.7618 (0.6526-0.8412)

Table A.6.4. Posterior means and 95% credible intervals for the measurement error stan-
dard error (m) for each data type for Canada lynx BC03M04 and BC03F03.

Parameter BC03M04 (m) BC03F03 (m)
σ3 12,703 (9,436-16,943) 13,403 (8,815-19,875)
σ2 15,981 (12,061-21,395) 18,306 (14,242-23,585)
σ1 24,091 (18,434-31,810) 21,1169 (18,004-25,070)
σ0 37,927 (17,504-80,746) 22,142 (16,123-30,074)
σA 19,150 (16,626-22,326) 20,077 (17,543-23,088)
σB NA NA
σV HF 13,389 (10,568-17,056)) 12,298 (10,195-14,878)
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A.7. Simulations

Data were generated to mimic data patterns that may appear as a result of movement

behaviors and to determine if the model could detect changes in movement quantities.
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Figure A.7.1. Mean and 95% credible intervals of the marginal location for three simu-
lated individuals (a), (b), (c). The posterior mean of each movement descriptor, relative
to the maximum value for that behavior where the size of the point corresponds to spatial
uncertainty and the transparency indicates the strength of the behavior at that location;
for visualization purposes any value below 25% of the maximum value for that behavior is
not shown (d), (e), (f). Posterior means for relative movement descriptors through time and
space (g), (h), (i).
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APPENDIX B

Supplemental Material for Chapter 3

B.1. Data Summary

Table B.1.1. Information related to the original population, sex, and release year of the
Canada lynx used in the analysis. Original populations other than those designated as
“Colorado” were reintroduced individuals, whereas “Colorado” individuals were those en-
countered during the course of the study that were not reintroduced.

Release/Marking Year
Population Sex 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Alaska Male 1 1 0 0 0 0 0 0 0 0 0
Alaska Female 6 3 0 0 0 0 0 0 0 0 0
British Columbia Male 3 6 0 0 9 10 7 4 0 0 0
British Columbia Female 1 8 0 0 9 6 3 4 0 0 0
Colorado Male 0 0 0 0 0 3 2 0 1 0 0
Colorado Female 0 0 0 0 0 4 0 0 1 0 1
Manitoba Male 0 0 0 0 1 0 0 0 0 0 0
Manitoba Female 0 0 0 0 0 0 3 0 0 0 0
Quebec Male 0 0 0 0 3 6 6 0 0 0 0
Quebec Female 0 0 0 0 6 8 7 0 0 0 0
Yukon Male 1 6 0 0 0 0 3 3 0 0 0
Yukon Female 2 13 0 0 0 0 2 2 0 0 0
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Table B.1.2. Details regarding each time series for the Canada lynx used in the movement
analysis. I include the number of data points for each data type, date range (presented
as month/day/year), and span (days) for each time series. After the functional movement
model was fit, time series within an individual were analyzed as a single time series.

Argos Error Class

ID Series 3 2 1 0 A B VHF Total Start End Span

AK00F02 1 0 0 0 0 0 0 29 29 06/12/2001 07/17/2002 401

2 0 0 0 0 0 0 35 35 11/07/2002 08/19/2003 286

3 20 39 76 43 1220 86 386 04/20/2004 09/29/2007 1258

AK00F03 1 0 0 2 6 5 0 68 81 05/03/2000 05/16/2003 1109

AK00F05 1 5 11 21 14 50 0 51 152 03/02/2005 11/01/2006 610

2 32 50 42 22 84 18 43 291 03/06/2007 03/02/2009 728

AK00M011 6 9 27 9 30 0 15 96 05/03/2000 05/22/2001 385

AK99F02 1 0 0 0 0 0 0 35 35 05/07/1999 04/18/2000 348

2 0 0 0 0 0 0 60 60 07/06/2001 07/30/2003 755

AK99F03 1 0 0 0 0 0 0 33 33 10/04/1999 06/19/2000 260

AK99F05 1 13 14 14 3 49 0 92 185 07/19/2000 10/17/2003 1186

2 19 24 28 12 44 0 12 139 04/10/2005 12/26/2005 261

AK99F15 1 0 0 0 0 0 0 26 26 05/14/1999 11/17/1999 188

AK99F25 1 0 0 0 0 0 0 45 45 05/07/1999 08/02/2000 454

AK99FX 1 0 0 0 0 0 0 136 136 05/07/1999 01/14/2003 1349

AK99M011 0 0 0 0 0 0 75 75 05/14/1999 03/12/2002 1034

BC00F05 1 14 8 18 10 36 0 23 109 04/02/2000 08/03/2001 489

BC00F06 1 3 5 8 18 23 0 19 76 04/02/2000 05/22/2001 416

BC00F07 1 11 9 16 7 32 0 13 88 04/02/2000 02/09/2001 314
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BC00F08 1 12 7 14 7 38 0 22 100 04/02/2000 06/28/2001 453

2 0 0 0 0 0 0 121 121 10/18/2001 08/19/2004 1037

3 0 0 0 0 0 0 26 26 05/12/2005 11/17/2005 190

BC00F10 1 8 10 14 5 20 0 8 65 04/02/2000 09/17/2000 169

BC00F14 1 28 42 61 22 1190 65 337 04/02/2000 02/05/2004 1405

BC00F18 1 10 10 21 11 46 0 8 106 04/02/2000 01/17/2001 291

2 5 7 18 11 61 0 167 269 09/26/2001 07/12/2005 1386

3 10 7 12 9 22 0 24 84 01/03/2007 08/07/2007 217

BC00F19 1 12 21 19 4 28 0 141 225 04/02/2000 03/25/2004 1454

BC00M021 5 10 11 5 31 0 5 67 04/02/2000 10/15/2000 197

2 4 2 4 1 25 0 39 75 03/16/2005 03/20/2007 735

BC00M041 3 10 15 19 24 0 2 73 04/02/2000 09/18/2000 170

2 0 0 0 0 0 0 46 46 06/19/2001 04/11/2003 662

3 14 23 45 27 78 0 39 226 01/16/2004 07/13/2006 910

BC00M091 13 19 21 8 95 0 122 278 04/02/2000 04/03/2006 2193

BC00M111 14 12 19 11 53 0 120 229 04/02/2000 07/28/2005 1944

2 2 10 10 6 29 0 9 66 04/03/2006 10/21/2006 202

BC00M151 13 17 9 3 45 0 20 107 04/02/2000 03/08/2001 341

2 0 0 0 0 0 0 27 27 04/25/2001 02/15/2002 297

BC00M161 4 14 24 11 25 0 7 85 04/02/2000 12/27/2000 270

2 3 3 14 7 18 0 32 77 09/30/2004 07/12/2005 286

BC03F01 1 58 80 82 78 1670 143 608 04/11/2003 11/24/2007 1689

BC03F02 1 25 36 73 41 1390 164 478 04/11/2003 01/31/2008 1757
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BC03F03 1 10 21 65 16 1120 42 266 04/03/2003 05/10/2005 769

BC03F05 1 2 2 7 2 18 0 3 34 04/23/2003 09/17/2003 148

BC03F06 1 9 15 25 15 78 0 6 148 04/16/2003 07/22/2005 829

BC03F07 1 4 3 6 15 17 0 5 50 04/16/2003 09/19/2003 157

BC03F08 1 9 11 24 19 75 0 35 173 04/23/2003 07/06/2005 806

2 2 2 0 1 5 0 69 79 01/23/2006 11/23/2007 670

BC03F09 1 15 15 32 13 79 0 76 230 04/23/2003 06/06/2006 1141

BC03F10 1 13 32 47 23 1260 165 406 04/23/2003 10/30/2007 1652

BC03M011 10 16 32 13 60 0 22 153 04/11/2003 01/15/2005 646

BC03M021 13 27 28 19 1110 76 274 04/16/2003 04/20/2007 1466

BC03M031 1 7 9 8 21 0 4 50 04/23/2003 10/14/2003 175

BC03M041 22 19 24 3 80 0 26 174 04/16/2003 03/03/2005 688

BC03M061 4 28 35 23 90 0 37 217 04/23/2003 07/15/2005 815

2 29 42 36 5 81 0 44 237 09/21/2005 01/31/2008 863

BC03M071 16 36 55 29 92 0 44 272 04/11/2003 06/30/2005 812

BC03M081 4 7 11 2 16 0 5 45 04/03/2003 08/05/2003 125

2 42 46 54 30 65 0 18 255 01/06/2004 03/23/2005 443

BC03M091 19 31 74 52 1020 6 284 04/11/2003 01/03/2005 634

BC03M101 18 21 23 13 86 0 31 192 04/11/2003 05/15/2005 766

2 24 39 44 14 89 0 12 222 04/17/2006 11/08/2007 571

3 1 6 13 5 14 27 6 72 02/19/2008 09/27/2008 222

BC04F01 1 21 21 51 46 99 0 160 398 04/17/2004 06/18/2009 1889

BC04F02 1 9 16 55 26 60 0 24 190 04/19/2004 09/23/2005 523
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BC04F03 1 83 160300132294147141 1257 04/19/2004 03/15/2011 2522

BC04F04 1 90 13518768 294267164 1205 04/19/2004 04/13/2011 2551

BC04F05 1 7 11 16 14 35 0 30 113 04/17/2004 10/26/2005 558

BC04F08 1 3 10 16 13 25 0 7 74 04/19/2004 01/11/2005 268

BC04M011 4 6 14 26 41 0 11 102 04/26/2004 03/22/2005 331

2 2 3 4 0 11 0 20 40 06/27/2005 02/06/2007 590

3 18619625391 25124532 1254 07/19/2007 04/09/2011 1361

BC04M021 0 8 14 36 65 0 95 218 04/18/2004 03/16/2009 1794

BC04M031 4 11 37 63 79 0 34 228 04/26/2004 04/17/2006 722

BC04M051 5 8 19 19 39 0 16 106 04/26/2004 03/05/2005 314

BC04M061 10 16 19 18 55 0 14 132 04/26/2004 07/11/2006 807

BC04M081 7 13 24 19 35 0 2 100 04/05/2004 02/28/2006 695

2 8 8 27 17 49 0 5 114 02/15/2007 01/04/2008 324

BC04M091 31 30 30 8 82 0 23 204 04/17/2004 04/10/2006 724

2 80 14522010019321720 975 03/11/2008 02/16/2011 1073

BC04M101 9 12 33 32 77 0 28 191 04/18/2004 08/08/2006 843

2 47 46 48 8 77 79 21 326 02/19/2008 10/15/2009 605

BC04M111 17 21 17 5 49 0 22 131 04/17/2004 04/10/2006 724

2 5 11 26 25 42 18 40 167 11/17/2006 05/18/2009 914

BC04M131 28 26 39 22 58 0 16 189 04/19/2004 11/04/2005 565

BC05F01 1 13 17 29 9 57 0 98 223 04/19/2005 07/10/2008 1179

BC05F02 1 4 12 16 10 47 0 64 153 04/01/2005 07/10/2008 1197

BC05F04 1 12 27 40 8 75 0 40 202 04/09/2005 07/09/2007 822
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BC05M011 5 14 26 12 74 0 22 153 04/19/2005 04/04/2007 716

BC05M021 17 20 29 15 56 0 20 157 04/11/2005 02/06/2007 667

BC05M031 10 23 50 38 65 0 4 190 04/01/2005 03/20/2007 719

BC05M041 10 26 44 13 78 0 11 182 04/01/2005 04/03/2007 733

BC05M051 8 15 19 8 65 0 6 121 04/05/2005 06/03/2006 425

BC05M071 8 11 32 40 73 0 23 187 04/11/2005 03/20/2007 709

BC05M091 12 13 24 15 61 0 14 139 04/05/2005 04/03/2007 729

BC06F05 1 14 19 28 8 31 0 2 102 04/01/2006 10/28/2006 211

BC06F06 1 6 17 27 41 46 0 4 141 04/01/2006 11/27/2006 241

BC06F07 1 10 21 31 43 41 0 1 147 04/01/2006 01/07/2007 282

BC06F09 1 2 8 24 22 30 0 8 94 04/03/2006 11/12/2006 224

2 29 74 75 17 90 79 28 392 01/19/2009 08/10/2010 569

BC06M111 23 32 55 32 98 0 13 253 04/01/2006 12/17/2007 626

BC06M121 7 7 19 17 36 0 1 87 04/03/2006 01/08/2007 281

BC06M131 10 22 61 72 96 0 1 262 04/03/2006 09/29/2007 545

BC06M141 13 19 25 22 53 0 7 139 04/03/2006 04/15/2007 378

BC99F15 1 0 0 0 0 0 0 93 93 03/12/1999 02/22/2001 714

BC99M031 0 0 0 0 0 0 56 56 03/12/1999 05/15/2000 431

2 21 26 41 30 1030 153 374 01/24/2001 03/27/2006 1889

BC99M041 0 0 0 0 0 0 63 63 03/12/1999 08/10/2000 518

BC99M101 0 0 0 0 0 0 55 55 03/19/1999 06/19/2000 459

CO04F07 1 0 0 0 0 0 0 56 56 04/12/2005 10/31/2006 568

CO04F15 1 3 3 16 7 39 0 72 140 01/20/2005 11/17/2006 667
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2 9 20 44 35 50 43 45 246 01/20/2008 06/04/2009 502

CO04F18 1 10 12 23 18 83 0 75 221 04/29/2005 11/24/2007 940

2 63 13796 38 14218022 678 11/18/2008 04/09/2011 873

CO04F19 1 48 48 73 42 1160 161 488 01/20/2005 06/29/2009 1622

CO04M101 23 51 10324 72 94 7 374 04/20/2009 08/10/2010 478

CO04M121 20 32 77 42 13111 37 350 04/29/2005 05/14/2009 1477

CO04M161 6 24 15 10 37 0 16 108 03/15/2005 06/27/2006 470

CO05M031 7 18 32 9 60 0 45 171 02/23/2006 04/02/2008 770

2 3 7 13 15 30 45 16 129 06/30/2008 09/21/2009 449

CO05M081 57 77 72 48 1021098 473 02/22/2009 08/20/2010 545

CO07AF011 10015219164 22924475 1055 03/06/2007 04/08/2011 1495

CO07AM011 2 1 10 10 11 0 12 46 02/06/2007 11/24/2007 292

CO09AF011 34 64 62 26 71 87 19 363 04/06/2009 07/10/2010 461

MB03M011 30 23 36 16 1040 33 242 04/16/2003 06/30/2005 807

MB05F01 1 13 29 71 51 91 0 10 265 05/07/2005 11/21/2006 564

2 24 37 75 27 74 11118 366 01/19/2009 07/22/2010 550

MB05F02 1 20 24 35 20 78 0 10 187 07/14/2005 02/06/2007 573

MB05F03 1 8 17 36 29 60 0 11 161 04/27/2005 10/24/2006 546

QU03F01 1 13 24 41 26 99 0 50 253 04/23/2003 07/15/2005 815

2 0 0 0 0 0 0 34 34 05/11/2007 07/29/2008 446

QU03F03 1 23 51 52 32 90 0 29 277 04/03/2003 12/04/2004 612

QU03F04 1 16 28 53 19 85 0 99 300 04/11/2003 02/06/2007 1398

2 0 0 0 0 0 0 42 42 05/09/2007 06/30/2008 419
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QU03F05 1 21 39 61 26 86 0 186 419 04/11/2003 07/24/2008 1932

QU03F06 1 5 9 30 13 67 0 114 238 04/16/2003 08/16/2007 1584

QU03F07 1 14 46 68 55 1130 46 342 04/11/2003 09/11/2005 885

QU03M011 11 13 49 32 86 0 23 214 04/03/2003 08/11/2005 862

QU03M021 5 4 2 3 20 0 1 35 04/11/2003 08/31/2003 143

2 8 12 17 7 51 0 36 131 03/27/2005 04/20/2007 755

3 11 44 10410219232636 815 07/19/2007 04/13/2011 1365

QU03M051 1 5 11 8 33 0 10 68 04/11/2003 11/10/2003 214

QU04F01 1 6 18 46 33 56 0 2 161 04/05/2004 04/16/2006 742

QU04F02 1 10 16 26 16 55 0 4 127 04/03/2004 04/11/2005 374

2 24 46 94 50 78 0 3 295 05/07/2005 10/31/2006 543

QU04F03 1 1 3 1 0 7 0 26 38 04/03/2004 07/04/2005 458

2 1 2 2 0 9 0 33 47 09/30/2005 06/29/2007 638

3 0 0 0 0 0 0 29 29 10/01/2007 06/25/2009 634

QU04F06 1 4 7 13 11 31 0 54 120 04/05/2004 04/10/2006 736

QU04F07 1 8 8 9 4 21 0 2 52 04/05/2004 09/19/2004 168

QU04F08 1 14 22 59 41 73 0 30 239 04/17/2004 09/25/2005 527

2 38 62 91 30 12251 64 458 01/09/2007 06/29/2009 903

QU04F09 1 12 24 20 5 64 0 33 158 04/18/2004 10/12/2006 908

QU04F10 1 7 8 20 13 52 0 7 107 09/26/2004 03/12/2006 533

2 0 0 0 0 0 0 52 52 11/17/2006 05/28/2009 924

QU04M011 7 19 18 12 42 0 15 113 04/05/2004 05/22/2005 413

QU04M021 9 11 19 14 51 0 17 121 04/03/2004 04/03/2006 731
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QU04M031 28 18 26 7 73 0 39 191 04/03/2004 03/15/2006 712

QU04M041 50 62 88 29 1260 16 371 04/05/2004 12/05/2006 975

2 5 7 9 7 11 0 5 44 01/20/2007 03/19/2007 59

QU04M051 4 6 30 41 59 0 10 150 04/03/2004 01/15/2006 653

QU04M071 7 6 10 1 15 0 2 41 04/05/2004 09/13/2004 162

QU05F01 1 1 10 5 1 17 0 17 51 04/24/2006 02/21/2007 304

QU05F03 1 10 13 29 10 40 0 6 108 04/01/2005 02/07/2007 678

QU05F04 1 23 57 48 27 1060 2 263 04/01/2005 01/30/2007 670

QU05F05 1 23 43 81 66 1429 69 433 04/03/2005 06/25/2009 1545

QU05F06 1 7 11 37 11 56 0 34 156 04/05/2005 11/08/2007 948

QU05F07 1 13 24 39 18 86 0 52 232 04/09/2005 12/05/2007 971

QU05F08 1 25 41 57 20 89 0 2 234 04/09/2005 02/13/2007 676

QU05M021 2 2 7 5 16 0 5 37 10/10/2005 08/14/2006 309

2 77 14415834 1521738 746 03/29/2009 04/10/2011 743

QU05M031 12 20 22 13 28 0 1 96 04/01/2005 09/26/2005 179

QU05M051 8 23 30 9 80 0 11 161 04/03/2005 01/09/2007 647

QU05M061 2 3 17 17 37 0 13 89 04/05/2005 10/17/2006 561

QU05M081 13 24 24 16 32 0 2 111 04/09/2005 11/25/2005 231

2 9 8 9 7 22 0 1 56 04/18/2006 09/30/2006 166

QU05M091 12 8 36 32 76 0 24 188 04/09/2005 03/20/2007 711

YK00F01 1 12 27 36 30 86 0 169 360 04/02/2000 08/17/2006 2329

YK00F02 1 11 7 35 23 39 0 59 174 04/02/2000 08/02/2002 853

2 0 0 0 0 0 0 33 33 09/23/2003 06/24/2004 276
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YK00F03 1 3 3 10 1 8 0 3 28 04/02/2000 06/19/2000 79

YK00F04 1 6 15 22 21 39 0 11 114 04/02/2000 04/02/2001 366

YK00F05 1 4 8 38 34 48 0 105 237 04/02/2000 01/13/2004 1382

YK00F07 1 19 25 58 38 1010 210 451 04/02/2000 12/12/2006 2446

2 10 20 21 2 26 0 2 81 01/20/2007 07/30/2007 192

YK00F08 1 16 21 32 13 36 0 4 122 04/02/2000 12/21/2000 264

YK00F09 1 7 12 7 9 26 0 7 68 04/02/2000 01/11/2001 285

YK00F10 1 11 30 35 39 94 0 236 445 04/02/2000 06/29/2006 2280

YK00F11 1 2 0 0 0 1 0 97 100 04/17/2000 05/14/2004 1489

2 13 30 35 14 61 0 41 194 01/18/2005 11/15/2006 667

YK00F14 1 0 0 0 0 0 0 91 91 05/22/2000 08/02/2002 803

YK00F15 1 39 10611365 239206304 1072 04/17/2000 02/06/2011 3948

YK00F16 1 24 27 36 16 94 0 117 314 04/17/2000 10/05/2003 1267

YK00M011 2 6 12 5 23 0 19 67 04/02/2000 06/20/2001 445

2 0 0 0 0 0 0 120 120 10/17/2001 06/30/2005 1353

YK00M021 3 11 23 9 27 0 19 92 04/02/2000 06/06/2001 431

2 5 10 9 5 30 0 111 170 09/27/2001 12/21/2004 1182

YK00M031 21 17 9 8 48 0 13 116 04/02/2000 04/26/2001 390

YK00M041 7 14 20 9 49 0 18 117 04/02/2000 06/20/2001 445

YK00M061 11 15 24 15 32 0 42 139 04/02/2000 05/07/2002 766

YK00M071 0 0 0 0 0 0 128 128 08/24/2000 07/07/2005 1779

YK05F02 1 6 12 17 10 46 0 73 164 04/21/2005 03/11/2008 1056

2 0 0 0 0 0 0 37 37 05/12/2008 06/29/2009 414
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YK05F03 1 17 26 58 28 83 0 21 233 04/21/2005 07/31/2007 832

YK05M011 1 12 30 47 65 0 2 157 04/11/2005 11/07/2006 576

YK05M021 8 37 45 24 73 0 7 194 04/19/2005 01/02/2007 624

2 12 28 25 12 35 0 3 115 02/02/2007 08/06/2007 186

YK05M031 6 1 12 17 28 0 1 65 04/27/2005 11/08/2005 196

YK06F01 1 18 34 16 8 30 0 1 107 04/12/2006 10/08/2006 180

YK06F02 1 9 12 22 19 30 0 7 99 04/19/2006 02/11/2007 299

YK06M011 12 20 20 8 24 0 2 86 04/12/2006 12/03/2006 236

YK06M021 17 19 52 34 66 0 3 191 04/19/2006 12/17/2007 608

YK06M031 20 27 55 30 72 0 42 246 04/19/2006 06/15/2009 1154

YK99F01 1 10 12 25 8 77 0 243 375 07/23/1999 06/14/2005 2154

YK99F05 1 0 0 0 0 0 0 97 97 05/10/1999 10/12/2001 887

YK99M031 0 0 0 0 0 0 74 74 05/13/1999 06/28/2001 778
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Figure B.1.1. Argos and VHF locations from 1999-2011 for 165 Canada lynx that were
reintroduced to Colorado. These locations were used to fit a functional movement model.
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B.2. Model Details

I developed a model that is similar to the functional model presented by Buderman et al.

(2016), however the data model is shared among individuals (I am using “individual” to refer

to a time series) and all individuals are modeled simultaneously. The observed locations,

sij(t), for individual i at a time t ∈ T associated with data type j (j = 1, ..., 6 are Argos

error classes and j = 7 denotes VHF), arise from a multivariate normal mixture with mean,

zi(t), representing the true location at time t. The covariance matrix represents the error

variance associated with each location and is either Σj or Σ̃j (where Σ̃j is Σj rotated about

the y-axis). An indicator, wij(t), determines which mixture component gives rise to the

location. The covariance matrix, Σj ≡ σ2
jRj, where σ2

j is the variance associated with a

particular data type, allows us to model elliptical errors through the scale matrix, Rj:

(23) Rj ≡

 1
√
cρ

√
cρ c

 ,

for j = 1, ..., 6. Argos error for all error classes has been shown to be greater in the lon-

gitudinal direction (Costa et al., 2010; Hoenner et al., 2012; Boyd & Brightsmith, 2013),

therefore I use the parameter c to scale the error variance in latitude to be less than it is in

longitude. The ρ parameter scales the degree of covariance between longitude and latitude.

For j = 7, Rj ≡ I. The parameters in the data model are shared among individuals, unlike

in Buderman et al. (2016).

As in Buderman et al. (2016), the location of an individual at time t, zi(t), is a function

of an individual’s geographic mean, β0i
, basis functions evaluated at time t, X(t), and a

vector of coefficients, βi. I selected three sets of B-splines to serve as our basis functions and

varied the number of knots, or breakpoints, to align with biologically important temporal
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scales: annually, seasonally (3 months), and monthly. The covariance matrix Σβi acts as a

regulator to shrink the coefficients βi toward zero (Hooten & Hobbs, 2015). The variance

terms σ2
βilon

and σ2
βilat

vary by individual and control the smoothing in each dimension. The

underlying process is continuous, but for computational purposes I discretized at the daily

scale.

For J data sources, the model described above yields the posterior distribution:

[{β0i
,βi,wi, ∀i},σ2, ρ, c|{Si,∀i}] ∝

n∏
i=1

J∏
j=1

∏
t∈T

[sij(t)|β0i
,βi, wij(t), σ

2
j , ρ, c][β0i

][βi][wi][σ
2][ρ][c],

(24)

where wi is a vector of indicator variables (corresponding to the data for individual i),

σ2 ≡ (σ2
j , ..., σ

2
J)
′
, and Si is a matrix of observed locations for each individual. The model

was fit in R using Markov Chain Monte Carlo (MCMC). As a within sample regulator, σ2
βilon

and σ2
βilat

were tuned using predictive scoring over a two-step grid search of the parameter

space.

The full model, divided into the data, process, and prior components, can be written as

follows:

Data Model

sij(t) ∼


N(zi(t),Σj), if wij(t) = 1

N(zi(t), Σ̃j), if wij(t) = 0

Σj ≡ σ2
jRj

Σ̃j ≡ HjΣjH
′
j

σ2
j ∼ IG(q, r)
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H ≡

1 0

0 −1

 for j=1,...,6

H ≡ I for j=7

R ≡

 1
√
cρ

√
cρ c

 for j=1,...,6

R ≡ I for j=7

c ∼ Beta(αc, βc)

ρ ∼ Beta(αρ, βρ)

wij(t) ∼ Bern(0.5)

Process Model

zi(t) = β0i
+ X(t)βi

β0i
∼ N(µ0i

, σ2
0i

I)

βi ∼ N(0,Σβi)

Σβi =

σ2
βilon

I 0

0 σ2
βilat

I
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Priors

wij(t) ∼ Bern(0.5) for i = 1, ...N, j = 1, ..., J and t ∈ T

σ2
j ∼ IG(0.0001, 1000) for j = 1, ..., J

ρ ∼ Beta(13.31, 4.44)

E(ρ) = 0.75

Var(ρ) = 0.01

c ∼ Beta(7.2, 0.8)

E(c) = 0.90

Var(c) = 0.01

β0i
∼ N (0,100(I))

βi ∼ N

0,

σ2
βilon

I 0

0 σ2
βilat

I
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Table B.2.1. The covariance matrix in the data model allows us to model the non-elliptical
Argos error as well as the elliptical VHF error. Note that these are the posterior mean and
95% credible intervals on the longitude scale and are not in meters.

Parameter Posterior Mean (95% CI)
σ3 0.516 (0.509-0.523)
σ2 0.585 (0.578-0.590)
σ1 0.590 (0.585-0.596)
σ0 0.684 (0.677-0.692)
σA 0.612 (0.608-0.617)
σB 0.862 (0.0.851-0.873)
σV 0.358 (0.363-0.368)
c 0.241 (0.235-0.245)
ρ 0.752 (0.738-0.764)
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Figure B.2.1. Posterior mean trajectories for the 165 Canada lynx used in the movement
analysis. Points are based on a daily interpolation and transparency reflects the concentra-
tion of points.
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B.3. Spatial and Temporal Quantities

To describe the quantities spatially, I defined a grid of equally sized regions, Al for

l = 1, ..., L, which comprised the area for which I desired inference. This method is similar

to the one used by Johnson et al. (2011) to describe diving behavior of northern fur seals

(Callorhinus ursinus). Alternatively, I can describe these metrics temporally, which implies

they do not need to be averaged within a region. Calculating the temporal versions of

the quantities decreases computation time, negates the need for a spatially defined grid, and

allows for continuous-time inference. Spatial versions of residence time, speed, and tortuosity

were used for the sections on connectivity and residence area identification, whereas the

temporal versions of speed and tortuosity (or derivations of) were used for the sections on

movement summary statistics, reintroduction and exploratory movement, and correlations

between vegetation and movement. The temporal version of residence time was not used,

because it is the inverse of the temporal version of speed (the spatial versions are not related

as such, which us why both spatial residence time and speed are presented).

B.3.1. Residence Time: Spatial

Metric calculation:

ril = lim
∆t→0

∑
t∈T

∆tI{zi(t)∈Al}

Posterior mean:

E(ril|Si) =

∫
· · ·
∫
ril[β0i

,βi,σ
2, ρ, c,wi|Si]dβ0i

dβidσ
2dρdcdwi

MCMC approximation:

E(ril|Si) ≈
K∑
k=1

r
(k)
il

K

181



B.3.2. Residence Time: Temporal

Metric calculation:

ri(t) =
1

νi(t)

Posterior mean:

E(ri(t)|Si) =

∫
· · ·
∫
ri(t)[β0i

,βi,σ
2, ρ, c,wi|Si]dβ0i

dβidσ
2dρdcdwi

MCMC approximation:

E(ri(t)|Si) ≈
K∑
k=1

ri(t)
(k)

K

B.3.3. Average Speed: Spatial

Metric calculation: When ∆t is sufficiently small, the first derivative of z(t) with respect to

t (the instantaneous velocity) can be approximated by the average velocity δi(t) where

dzi(t)

dt
≈ δi(t),

and

δi(t) =
zi(t)− z(t−∆t)

∆t
.

In practice, ∆ti was constant for the entire time series. To account for the curvature of the

earth I used the Haversine formula (R package cluster; Hijmans 2015) to approximate the

daily distance moved (which is equivalent to speed):

νi(t) = 2r arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))
,
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where r=6,378,137 m and φ1 and φ2 are zi(t)lat and zi(t−∆t)lat and λ1 and λ2 are zi(t)lon

and zi(t−∆t)lon. The spatial representation is then

ν̄il =
lim∆t→0

∑
t∈T ∆tνi(t)I{zi(t)∈Al}

ril
.

Posterior mean:

E(ν̄il|Si) =

∫
· · ·
∫
ν̄il[β0i

,βi,σ
2, ρ, c,wi|Si]dβ0i

dβidσ
2dρdcdwi

MCMC approximation:

E(ν̄il|S) ≈
K∑
k=1

ν̄
(k)
il

K

B.3.4. Average Speed: Temporal

Metric calculation: When ∆t is sufficiently small, the first derivative of z(t) with respect to

t (the instantaneous velocity) can be approximated by the average velocity δi(t) where

dzi(t)

dt
≈ δi(t),

and

δi(t) =
zi(t)− z(t−∆t)

∆t
.

In practice, ∆ti was constant for the entire time series. To account for the curvature of the

earth I used the Haversine formula (R package cluster; Hijmans 2015) to approximate the

daily distance moved (which is equivalent to speed):

νi(t) = 2r arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))
,
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where r=6,378,137 m and φ1 and φ2 are zi(t)lat and zi(t−∆t)lat and λ1 and λ2 are zi(t)lon

and zi(t−∆t)lon.

Posterior mean:

E(νi(t)|Si) =

∫
· · ·
∫
νi(t)[β0i

,βi,σ
2, ρ, c,wi|Si]dβ0i

dβidσ
2dρdcdwi

MCMC approximation:

E(νi(t)|Si) ≈
K∑
k=1

νi(t)
(k)

K

B.3.5. Average Tortuosity: Spatial

Metric calculation: I first calculated the initial bearing, which takes an individual from the

starting location to the ending location if followed in a straight line along a great-circle arc:

Bi(t)rad = atan2 (sin(λ2 − λ1) cos(φ2), cos(φ1) sin(φ2)− sin(φ1) cos(φ2) cos(λ2 − λ1)) ,

where φ1 and φ2 are zi(t)lat and zi(t − ∆t)lat and λ1 and λ2 are zi(t)lon and zi(t − ∆t)lon.

I then converted radians to degrees: Bi(t)deg = Bi(t)rad
(

180
π

)
and calculated the absolute

difference between subsequent bearings, to obtain a measure of tortuosity (I used the absolute

difference because I am more interested in deviation from a given direction rather than actual

direction):

θi(t) = |(Bi(t)deg −Bi(t−∆t)deg| .

Finally, I subtracted all values greater than 180 from 360, to obtain our final quantity for

θi(t). Spatially:

θ̄il =
lim∆t→0

∑
t∈T ∆tθi(t)I{zi(t)∈Al}

ril
.
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Posterior mean:

E(θ̄il|Si) =

∫
· · ·
∫
θ̄il[β0i

,βi,σ
2, ρ, c,wi|Si]dβ0i

dβidσ
2dρdcdwi

MCMC approximation:

E(θ̄il|Si) ≈
K∑
k=1

θ̄
(k)
il

K

B.3.6. Average Tortuosity: Temporal

Metric calculation: I first calculated the initial bearing, which will take an individual from

the starting location to the ending location if followed in a straight line along a great-circle

arc:

Bi(t)rad = atan2 (sin(λ2 − λ1) cos(φ2), cos(φ1) sin(φ2)− sin(φ1) cos(φ2) cos(λ2 − λ1)) ,

where φ1 and φ2 are zi(t)lat and zi(t − ∆t)lat and λ1 and λ2 are zi(t)lon and zi(t − ∆t)lon.

I then converted radians to degrees: Bi(t)deg = Bi(t)rad
(

180
π

)
and calculated the absolute

difference between subsequent bearings, to obtain a measure of tortuosity (I used the absolute

difference because I am more interested in deviation from a given direction rather than actual

direction):

θi(t) = |(Bi(t)deg −Bi(t−∆t)deg| .

Finally, due to how the bearing is calculated, I subtracted all values greater than 180 from

360, to obtain our final quantity for θi(t).

Posterior mean:

E(θi(t)|Si) =

∫
· · ·
∫
θi(t)[β0i

,βiσ
2, ρ, c,wi|Si]dβ0i

dβidσ
2dρdcdwi
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MCMC approximation:

E(θi(t)|S) ≈
K∑
k=1

θi(t)
(k)

K
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B.4. Spatial Quantities Standardized By Available Individuals
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Figure B.4.1. Population-level spatial quantities of residence time (B.4.1a), speed
(B.4.1b), and tortuosity (B.4.1c) that have been scaled by the number of individuals us-
ing that grid cell. Posterior mean number of individuals observed in a grid cell over the
observation period is also shown (B.4.1d). Not included are rare movements to eastern
states (Nebraska, Kansas, and Iowa).
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APPENDIX C

Supplemental Material for Chapter 4

C.1. Details on Continuous-Time Discrete-Space Model

A posterior predictive continuous path from the movement model is spatially discretized

to the resolution of the rasters of interest and decomposed into two elements: c, a state

sequence consisting of the sequential grid cells (of N possible grid cells) visited by the

individual, and τ , a vector of residence times that describe how long the individual spent

in each grid cell. We then describe the path in terms of the transition rates α where αij

is a parameter controlling movement from cell i to cell j that can be a function of spatial

covariates:

(25) αij = ex
′
ijβ

If we designate t as the tth observation in the state-sequence (t ∈ T ), then the residence

time τt is exponentially distributed with a rate equal to the sum of all αij (the total transition

rate):

(26) [τt|β] =

(
N∑
j=1

αij

)
e−τk

∑N
j=1 αij .

We assume that it is impossible to move directly to non-neighboring cells, and therefore

αij = 0 for all j except for the cells adjacent to cell i.
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When an individual transitions to a neighboring cell, the probability of transitioning to

cell ct+1 = l is

(27) [ct+1 = l|ct = i] =
αil∑N
j=1 αij

.

Assuming independence, the joint likelihood is the product of the transition probabilities

and the residence times in the state sequence c is:

[τt, ct+1 = l|ct = i,β] =
αil∑N
j=1 αij

(
N∑
j=1

αij

)
e−τt

∑N
j=1 αij(28)

= αile
−τt

∑N
j=1 αij(29)

Using a latent variable representation, where

(30) zij =


1, if j = ct+1

0, if j 6= ct+1

and

(31) [zij, τt|β] ∝ α
zij
ij e
−τtαij ,

then the product of [zctk, τt|β] over all N is proportional to the likelihood of the observed

transition:

(32) [zij, τt|β] ∝
T∑
t=1

N∑
j=1

α
zije
−τtαij

ij .

The above process is parameterized with a single realization from the movement model,

however, we have failed to account for the uncertainty in the animal’s path. To avoid
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computational storage limitations, we use multiple imputation to account for the uncertainty

in the path and make approximate posterior predictive inference on transition rates.
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