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ABSTRACT 

The concept of "moist available energy," defined by Lorenz is applied to study the potential 
energy available for cumulus convection in a conditionally unstable atmosphere. Lorenz's parcel
moving algorithm to determine the moist available energy is shown to be impractical for this 
problem, and a new algorithm based on mass exchanges is proposed. This new algorithm is 
applied to the GATE data, to determine the time variations of the moist available energy of the 
observed tropical atmosphere. Implications for cumulus parameterization are discussed. 



1. Introduction 

Lorenz (1955) defined the available potential energy (APE) of the atmosphere as the 
difference between the actual total enthalpy and the minimum total enthalpy that could be achieved 
by rearranging the mass under reversible adiabatic processes. 

This definition can be understood by considering the conservation equation for the total 
energy of the atmosphere (including the internal, potential, and kinetic energies). According to 
this equation, the sum of the kinetic energy per unit mass and the enthalpy per unit mass changes in 
time due to redistribution of mass within the atmosphere, and also due to energy sources and sinks 
such as radiation, latent heating, and surface exchanges. Here the enthalpy per unit mass is 
defined as the product of the temperature and the specific heat at constant pressure. Of course, 
when the total energy equation is integrated over the entire atmosphere, the redistribution tenn 
drops out. In the absence of energy sources or sinks, therefore, we find that 

a 
a:t(K+Hj=O, 

where K is the total kinetic energy, and H is the total enthalpy. 
(1.1 ) 

The total enthalpy can be varied by adiabatically redistributing mass over the globe, and 
Lorenz pointed out that there exists a particular mass distribution for which H is minimized. 
According to (1.1), K is maximized for this same state, which Lorenz called the reference state. 
The APE is then defined as the difference between the total enthalpy of the given state and that of 
the reference state. It thus represents the portion of the nonkinetic energy that is available for 
conversicm into kinetic energy under reversible adiabatic processes. 

Lorenz (1978, 1979) extended the concept of APE to the moist atmosphere, by recognizing 
that moist adiabatic processes are, in fact, adiabatic rather than diabatic. From this point of view, 
the latent heat of water vapor is a portion of the enthalpy. He presented both graphical and digital 
algorithms for detennining the MAE. The latter was based on rearranging discrete parcels from 
their configuration in the given state to that in the reference state. He showed that the moist 
available energy (MAE) is never less than the dry available energy (DAE, synonymous with the 
dry APE), although the DAE represents the bulk of the total available energy in the global 
atmosphere. He demonstrated that the MAE increases rapidly as the temperature increases, for 
fixed relative humidity. He was also able to define a specific MAE, i.e. the contribution of a . 
particular parcel to the global MAE . 

The fact that the MAE is an upper bound on the amount of kinetic energy that can be 
generated by any circulation whatsoever is both a strength and a weakness for the concept of 
available energy. It is a strength because the concept is completely general. It is a weakness 
because it is possible that no dynamically realizable circulation can extract all of the available 
energy. 

The concept of available energy is usually applied to statically stable atmospheric states, but 
it is equally applicable to statically unstable systems. When the atmosphere is everywhere statically 
stable in the dry sense, the DAE is entirely due to the existence of temperature gradients along 
isobaric surfaces, i.e., the DAE resides in the horizontal rather than the vertical structure of the 
atmosphere. The reference state can be reached by rearranging the mass of the system so that the 
pressure is unifonn along isentropic surfaces. The vertical ordering of the isentropic surfaces does 
not change during this process. For a dry statically unstable system, on the other hand, the 
reference state can only be reached by vertically reordering the isentropes; the potential temperature 
decreases upward in the given state, but increases upward in the reference state. As an example, 
consider a simple system containing two parcels of equal mass. In the given state, parcels with 

2 



potential temperatures 91 and 92 reside at pressures PI and P2, respectively. We assume that 91 < 92 
and PI < P2' so that the given state is statically unstable. The enthalpy per unit mass of parcel i is cp 

9i (Pi/PO)K, where PO is the reference pressure used in the definition of the potential temperature, 

and K is Poisson's constant. If the parcels are interchanged ("swapped"), so that parcel number 

two goes to pressure PI and vice versa, the change in the total enthalpy per unit mass is cp (91 -

92) [(p2lpO)K - (Pl/PO)K], which is negative. This implies that the total enthalpy is minimized by 
the swap; the final state is the reference state, and the change in enthalpy given above is the 
available potential energy of the system. 

The moist atmospheres used as examples by Lorenz (1978, 1979) were statically stable 
everywhere; for such atmospheres, the MAE resides in the horizontal rather than the vertical 
structure. Lorenz did point out, however, that the existence of conditional instability represents a 
supply of MAE, and complicates the design of algorithms to determine the MAE. 

Consider an idealized atmosphere which is horizontally uniform but conditionally unstable. 
Since the dry static stability is positive, the DAE is zero, but the MAE is positive. A portion of the 
air in the reference state must be saturated when the given state is conditionally unstable. The 
purpose of this paper is to investigate how the MAE for a conditionally unstable sounding 
compares with the "positive area on the tephigram" and other conventional measures of the 
potential energy available for cumulus convection. 

2. A preliminary look at GATE soundings 

We have computed the MAE of GATE soundings, using the moist thermodynamic 
formulae given by Lorenz (1979). We divided each sounding in to N parcels; initially we used 
various values of N in the range 9 to 37. We tested several algorithms for finding the reference 
state for which H is minimized. One of the algorithms is a "swapper", which checks the changes 
in H that are produced by swapping pairs of parcels, and makes swaps that reduce H until it cannot 
be reduced further by additional swaps. The second is a "lift-shift" algorithm, which mimics 
cumulus convection by lifting parcels from low levels to high levels, while shifting all the 
intervening parcels down by one level. If the resulting sounding has a lower H, it is adopted as a 
step towards the reference sounding, and further lift-shift possibilities are checked. When no 
possible lift-shift reduces H, the algorithm terminates. In some cases, both swapper and lift-shift 
can fail to find the true reference state. For this reason, we also tested a "brute force" method, 
which checks all possible permutations of the parcels and selects the permutation for which H is 
minimized. This approach is feasible only when the number of parcels under consideration is less 
than about 10. 

To our initial surprise, the various GATE soundings tested were found to have zero MAE, 
i.e. the given states were the same as the reference states. An example sounding, for August 30 at 
1800 GMT, is given in Fig. 1. It is clear that conditional instability exists, so that MAE must be 
present. At first, a programming error was suspected. 

By artificially increasing the specific humidity of the sounding in Fig. 1 to 101 % of 
saturation at every level, and thus increasing the MAE drastically beyond that present in the 
unmodified sounding, we succeeded in detecting MAE with the lift-shift algorithm. 

After further investigation, we determined that the reason that the unmodified GATE 
soundings were found to have no MAE is straightforward: the parcels that were being moved 
around, which ranged in size from about 30 mb to about 100 mb, were too massive. The problem 
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with such massive parcels can be understood through the following argument. In real convective 
situations, the cumulus mass flux is typically on the order of 100 mb per day (e.g. Yanai et ai., 
1973). This means that 100 mb of boundary-layer mass is carried upward in cumulus towers in a 
day, while the free-atmospheric environment sinks by a corresponding amount. Experiments with 
numerical cloud models show that the conditional instability present in real soundings can be 
released by convection in an hour or so, however (e. g., Soong and Tao, 1980; Dudhia and 
Moncrieff, 1987; Krueger, 1988). This means that, in the absence of a forcing mechanism to 
maintain the instability, only about 4 mb (1/24 of 100 mb) of mass can rise to the tropopause 
before the MAE is exhausted. 

By trial and error we have determined that, for the sounding shown in Fig. 1, the minimum 
number of parcels needed to detect MAE with the lift-shift algorithm is 96, corresponding to' a 
parcel mass of about 10 mb. Several hundred parcels would be needed to obtain an accurate result. 

3. A practical algorithm 

It is obviously impractical to divide each sounding into several hundred parcels; an 
alternative approach is as follows. We divide the given sour:tding into N layers, where N is a 
manageable number of order 10. Let the mass of layer i be denoted by mi. Imagine that a system 
of "pipes" is set up, connecting each layer of the sounding with every other layer. Each pipe 
allows mass to be transferred adiabatically and reversibly in a single direction. Let the amount of 
mass transferred/rom layer i to layer j be Mij- We will use a prime to denote a variable in the 
reference state. For an intensive variable A that is conserved under adiabatic reversible processes, 
we can write . 

N 1\ N ~ 
m'. A ~ = m. A. + :r. M .. A . - :r. M .. A .• 

/ / / / j = 1 } / } j = 1 /} / 

(3.1) 
where ~ denotes a "source" value of A that must be specified. The source value of A represents a 
typical value of A in the layer from which mass is removed. When mass flows from layer j to 
layer i, the source value should be characteristic of layer j, and vice versa. This is the reason for 
stipulating that 

Three possible choices of ~ are considered in this paper: 

(3.2a) 

(3.2b) 

(3.2c) 

we shall refer to these as the "forward," "backward," and "trapezoidal" schemes, respectively. 
The trapezoidal scheme has the advantage that it is reversible, which is in accord with our wish to 
consider reversible adiabatic processes. 
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Putting A =1 in (3.1) gives a mass conservation equation: 

N 
m'. = m. + L (M .. - M .. ). 

I I j = 1 ) I I) 

(3.3) 
We allow only "eddy" mass exchange, so that 

(3.4) 

N 

.L, (Mjj - Mjj ) = O. 
J= 

(3.5) 

Of course, the diagonal elements Mjj can be set to zero. Using (3.3-3.5), we can simplify (3.1) to 

( 

N, ), N, ' N 
m.+ L"2M .. (A.-A.)- L"2M .. (A.-A.)= LM .. (A.-A.). 

I j =, ) ,I I I j =, J ,I ) ) j =, ) ,I ) I 

(3.6) 

These equations can be used to evaluate the MAE of conditionally unstable soundings. If a 
set of Mij'S is specified, we can apply (3.6) to determine the changes in the entropy and total 
mixing ratio of the air. The total enthalpy of the new state can then be evaluated and compared 
with that of the given state. We seek the matrix Mij such that the total enthalpy of the final state is 
minimized, subject to the constraint (3.5). Of course, we must also restrict ourselves to non
negative M's. 

With this method, as with Lorenz's parcel-moving method, a conditionally unstable given 
state corresponds to a reference state in which some portion of the air is saturated. As a result, the 
amount of mass lifted from lower levels to upper levels may have to attain a finite minimum value 
before any decrease in the total enthalpy occurs. It should also be noted that (3.6) can only be used 
to determine the average entropy and total mixing ratio of the adjusted state; the adjusted enthalpy 
has to be based on these average values. 

As an example, consider the simple case N=2. Then (3.5) implies that 

(3.7) 
After some manipulation, we find from (3.6) that 

m M( A - A ) 
A'-A = 2 2 1 

1 1 1 ' 
m,m2 +"2 M(m,+m 2 ) 

(3.8) 

(3.9) 
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For M ~oo, and if m, = m2, (3.8-9) imply that the parcels exchange places: parcel number 1 takes 
property A2, and vice versa. The trapezoidal scheme thus gives us a parcel swapper in the limit of 
large M. This is an attractive property of the scheme. 

We have applied these equations to the idealized two-level "sounding"given in Table 1. In 
the table, p is pressure, T is temperature, q is mixing ratio, 9 is the potential temperature, ge is 

equivalent potential temperature, and 9es is saturation equivalent potential temperature. The two 
layers are assumed to be of equal thickness, with surface pressure 1000 mb and top pressure 100 
mb. Both levels are nearly saturated. The relative humidity at 775 mb is so high that even slight 

lifting is sufficient to produce condensation. Since the ge of the lower layer exceeds the ges of the 
upper layer, the sounding is conditionally unstable. Following Lorenz (1979), we assume that 
entropy and total mixing ratio are conserved. We tried various values of M1m2., increasing from 
zero by steps of 0.01. The results are shown in Fig. 2. The upper level becomes saturated with 
even a one percent injection of air from the lower level. A minimum of the total enthalpy occurs 
for Mlm2 = 0.11; this corresponds to the reference state. The MAE per unit mass is 13.1 J kg-I. 

In the limit Mlm2 ~ 00, the change in H approaches 1397 J kg-I. Clearly, for this particular case 

the behavior of the algorithm as M ~ 00 is irrelevant. 

4. Penetrators 

For N > 2, we need a way to ensure that (3.5) is automatically satisfied. This we can do 
by introducing "penetrators." A penetrator Pi.i consists of a mass flux that penetrates from layer i 
to layer j, with a compensating, nonpenetrative, level-by-level return flow. Each penetrator 
satisfies (3.5), so any superposition of penetrators also satisfies (3.5). By analogy with (3.1), the 
change in Ai due to an ensemble of penetrators is given by 

N A A 

m'. A'. - m. A. = L P. . ( A . - A. ) 
I I I I j = 1 ,.1 , I 

N A A A 

- L PI . A. + L P . . A. 1 + L P . . A. 1 
j=1 ., I j<i 1./ 1- j>i I., 1+ 

A A A A 

+ L L P. / A. 1- A .)+ L LP.,( A. 1-A.). 
j<iJ>i ,. 1- I j>il<i ,. 1+ I 

(4.1) 

On the right-hand-side of (4.1), the terms on the first line represent the effects of "incoming" 
penetrators that terminate at level i, those on the second line represent the effects of "outgoing" 
penetrators that originate at level i, and the terms on the third line represent the effects of 

penetrators that are "just passing through" level i. Putting A == 1, and using 

for all i, we find that 

P . . = 0 
1.1 

m'-m =0 
i i 

(4.2) 

(4.3) 

is automatically satisfied, as intended. After some algebraic manipulation, (4.1) can be rewritten as 
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A A 

m. ( A'. - A . ) = L P.. ( A . - A. ) 
I I I 1..1 1 1 ,I 1 I 1 -I > 

A A 

+ ( A. 1 - A. )(0 . . 1 + L PI . + L 
1- 1 1,1- j<i-1 ,I j<1 

L P. I) 
1 >i 1, 

A A 

+. (A - A )(0 + L P + L 
1+1 I 1.1+1 j>1 +1 I.j j>1 

L P ), 
I <i j ,I 

(4.4) 
where 

o. . ,;;; P. . 1 + P. 1 .' 
1,1- 1,1- , - ,1 

(4.5) 

Notice that Pi,i-! and Pi.i+! do not appear explicitly in (4.4), although they do appear implicitly 
through Q,i-! and Q,i+!' The interpretation is straightforward. A penetrator that joins two 
neighboring layers doesn't really penetrate at all. As a result, the injection of air from i to i+ 1 with 
the accompanying return flow from i+ 1 to i has exactly the same effect as injection from i+ 1 to i 
with a return flow from i to i+1. This means that Pi+l,i and Pi,i+l are redundant; they do the 
same thing. That is why only their sum, ~+h appears in (4_4)_ 

Our goal is to find the values of the P's and Q's such that the total enthlapy of the adjusted 
state is minimized. We must require that the P's and Q's are non-negative, since their source 
regions have to be specified. For an N-Iayer sounding, we can define N2 different values of P. 
Not all of these are meaningful, however. As indicated in (4.2), the diagonal elements of the P 
matrix can be set to zero, since they have no effect on the sounding. In addition, the redundancy 
of the neighboring-layer P's, discussed above, allows us to replace 2(N-l) of the P's by (N - 1) 
Q's, effectively reducing the number of unknowns by N - 1. The actual number of unknowns is 
then N2 - N - (N - 1) = (N - 1)2. In general, there are (N - 1) Q's and (N - 2)(N - 1) P's. Table 2 
shows how the numbers of the various unknowns change as N changes. We can anticipate that, in 
most cases of practical interest, many of these unknowns will turn out to be zero. Unfortunately, 
there is know obvious way be sure in advance which ones these will be. 

s. Discussion 

The next question is, how can we determine the P's and Q's for the case of arbitrary N? 
For the case N = 2, discussed in Section 3 above, we searched a one-dimensional space by brute 
force to find the value of the single unknown, which we now recognize as a Q. A glance at Table 
2 shows that this approach quickly becomes impractical for arbitrary N. 

As an alternative, we could use a numerical method to determine the partial derivative H 
with respect to each of the P's and Q's. The results could be arranged as a matrix. We could then 
try a linearization approximation, in which this matrix is used to find the values of the P's and Q's 
that minimize H. 

Unfortunately, this approach fails, for two reasons. First, it cannot guarantee that the P's 
and Q's are non-negative. Second, as is clear from Fig. 2, H varies nonlinearly with the P's and 
Q's. This nonlinearity arises from the nonlinear dependence of the enthalpy of saturated air on the 
entropy and total mixing ratio. It is critical for the existence of a minimum value of H for finite 
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positive values of the P's and Q's. To see this, consider the dry statically unstable case with N = 
2, as discussed in the Introduction. If we use the trapezoidal algorithm, we find that there is no 
minimum ofH for finite Q. Instead, H decreases monotonically as Q increases, and is minimized 
when Q ~ 00, i.e. when the parcels are swapped. 

The nonlinearity also rules out the use of linear programming methods, which, if they were 
applicable, could ensure non-negativity of the P's and Q's. It appears that we must employ 
nonlinear programming, which is relatively unknown territory with few strong theorems. 

6. Plans for future work 

We plan to explore these matters further by developing an algorithm for the case of 
arbitrary N, and applying it to real data, beginning with the GATE data. The following questions 
will be addressed: 

1. How do the reference state and the MAE vary with time? 

2. How do time changes in the reference state compare to time changes in the given 
soundings themselves? 

3. What time-changes of the MAE and the reference state would occur if the observed large
scale circulations acted alone, without compensating cumulus effects? How do these 
hypothetical changes in the MAE compare to those that actually occur? 

4. For each observation time, what mass exchanges would be required to reach the reference 
state? 

5. Is there a way to allow the reference state to be horizontally inhomogeneous? 

6. How do the results change if the "pipes" that carry the mass between layers are endowed 
with various properties? For example, we might choose to give up the assumption of 
adiabatic reversible mass transfer, and allow water condensed inside pipes to precipitate 
out. 

7. Besides the absolute minimum of H that denotes the reference state, do local minima ever 
occur in the mass-exchange space? . 
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