TAT
 C6
 CER 56-27

cony 2 -

Eadineering Sciencoc

APR 2176
Branich Library

D 8

R. R. Gicyes

Preparsd for Bayid Taylor Model Basin
under
Contract Mons 1610(02)

Techaical Report io. 1

Coloraco A \& M Colsege
Depertwent of Civil megincering [ort Cosinso Coloandic

Decenber 1956

fhSTRACT

```
1. LA, おa fotential fumction for waves linanating fion : When Sule sarations were daveloped that permit
```



``` Hote Luan having several finite lengit displacement type
```



``` abc \&incirized wiave therry is utilized theonghout. A dis cuctc hove amplitucie and Ereguracy is assumed for each generates. but mo two gererators necessarily put out the same wiane。
```

The theory, ertended to several firiate length gemer ators esch consjclered as a sonnce of a periodic function, will be presented in frentererntis now nmor preparation. Calctilations for circular basins will also be reported.

 entuticns was acutb fricis could be used as a basis fos constructing the wore
 zates to the taran of weren diyergirg from an isolated point source in water cE any depth won the Gisturbance at the source is of a simple harmonic fype. The cace of a wase eanerafor of 1 ength L was then obtained by suming the effecis procucci by aimple solutions of uniform strength and distributed uniforwis aloag the length of the wave generator. The amplitude of the wave teain prodreen z zelated to the displacement produced by the wave generator. The colucion thus obtained represents the behavior of an isolated generator from inich waves are free to progeess in any direction.

A differeat case is presented, hewever, by a wave generator operating in an experimental wave basin since the walls of the basin interfere with the proeress of the waves in certain dierecitions. It is proposed to account for these boundaries by using the method of images. In this way the effect of operating the wave generator adjacent to a wall, in a corner, within a rectangulas sixip or within a rectangular basin can be found. In all these cases the same set of simple formulas can be used.

Uni css
$x . y$ coordinates. sec big 2posit क.ve upward
R anger between a lime passing through two sources and a radial Fin c imam from ont of the ar. a in ne de am outward from the center of the wave generator.
β phase angie separation
Y the height of the surface of a wave above the undisturbed level L
17 a distance from the center of a linear wave generator, as show L in Fig 。 2Th the wave length. The distance between successive crests(3) velocity potential
$\sigma=\frac{2 \pi}{T}$ T^{-8}

Consider the velocity potential.

$$
\begin{equation*}
\theta=\frac{A g}{\sigma}\left[J_{0}(r r) \sin \sigma t-Y_{0}(r r) \cos \sigma t\right] \cosh n(z+h) . \tag{1}
\end{equation*}
$$

This expression satisfies Laplace's equation (Ref. 7. p 76)

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{2}
\end{equation*}
$$

To be acceptable for the purpose desired it must also satisfy the conditions (Ref。7。 pp 73 and 74.)

$$
\begin{align*}
& \frac{\partial \phi}{\partial z}=0 \quad \text { when } z=-h \\
& \xi=\frac{1}{g} \frac{\partial \phi}{\partial t} \quad \text { on the free surface } \tag{3}\\
& \frac{\partial h}{\partial t}=-\frac{\partial \phi}{\partial z} \quad \text { on the free surface }
\end{align*}
$$

From (1) by differentiation:

$$
\frac{\partial \phi}{\partial z}-\frac{A g}{\sigma}\left[J_{0}(n r) \sin \sigma t-Y_{0}(n r) \cos \sigma t\right]_{n} \sinh n(2+h)_{(4)}
$$

Since $\frac{\partial \phi}{\partial Z}$ is the vertical component of velocity and this expression becomes zero at the bottom, when z oh, the first condition is satisfied.

The second condition yields

$$
\begin{equation*}
B=A\left[J_{0}(n r) \cos \sigma t+y_{0}(n r) \sin \sigma t\right] \cosh n h \tag{5}
\end{equation*}
$$

To satisfy the third condition with
$\frac{\partial b}{\partial t}-A \sigma\left[-J_{0}(n r) \sin \sigma t+Y_{0}(n r) \cos \sigma t\right] \operatorname{Cosh} n H_{\circ}(0)$
and
$-\frac{\partial \phi}{\partial z}=-\frac{A g}{\sigma}\left[I_{0}(n r) \sin \sigma t-Y_{0}(n r) \cos \sigma t\right] n \sinh n h \cdot(7)$
It is required that
Av Cosh nh $=\frac{A g}{\sigma} n \operatorname{Sinh} n h$
By rearrangement and multiplication of both sides of the expression by the factor h this relation can be put into the form

$$
\begin{equation*}
\frac{h \sigma^{2}}{9}=n h \tanh n h \tag{8}
\end{equation*}
$$

This is the basic relation connecting the values of σ and n 。 These two quantities are associated with the period of the wave, its wave length and its speed of propagatic n, or celerity, as will be seen later. If the period is to be specified by selecting a value for σ the corresponding value of n can be determined immediately through the use of Fig. 1.

At a distance from the source sufficient to make the quantity nr large compared to unity, the Bessel functions Jo(nr) and $Y_{0}(n r)$ take the approximate forms (Ref。6, p 202)

$$
\begin{align*}
J_{0}(n r) & =\sqrt{\frac{2}{\pi n r}} \cos \left(n r-\frac{\pi}{4}\right) \\
Y_{Q}(n r) & =\sqrt{\frac{2}{\pi n r}} \sin \left(n r-\frac{\pi}{4}\right)
\end{align*}
$$

Under these conditions a wave length can be specified since

$$
n=\frac{2 \pi}{n}
$$

$$
\sigma=\frac{2 \pi}{T}, \text { or } \quad T=\frac{2 \pi}{\sigma}
$$

Eq. (9) can be used to establish some additional important relationships. Under the condition stated above, Ba. (5) for the wave height takes the form

$$
B \cong A \frac{2}{\sqrt{\pi n r}}\left[\cos \left(n r-\frac{\pi}{4}\right) \cos \sigma t+\sin \left(n r-\frac{\pi}{4}\right) \sin \sigma t\right] ._{\text {If nr }>1 .} \cosh n h
$$

and then can be written

$$
\begin{equation*}
B=A \frac{2}{\sqrt{\pi n r}}\left[\cos \left(n r_{-} \sigma t-\frac{\pi}{4}\right)\right] \operatorname{Cosh} n h \tag{11}
\end{equation*}
$$

If attention is fired on a certain part of the wave, this form of the expression shows that r must increase with time if the same phase position is to be maintained. This follows from the requirement that if $\cos (n r \operatorname{or} \boldsymbol{\sigma}$ o $\frac{\pi}{4}$) is to have a fixed valise 。 the quantity (nr - Ot- $\frac{\pi}{4}$) must likewise have a fixed value. To meet these requirements set

$$
\left(n r: 0<-\frac{1}{4}\right)=K
$$

Where the value of the constant \& is chosen to give the quantity $\cos \left(n z-\sigma t=\frac{\text { 可 }}{}\right.$) the desired value Then it follows that this phase position will travel outward at a rate determined from the relation:

$$
n r=\sigma t+k+\frac{\pi}{4}
$$

Suppose, for example, one chooses to watch the crest. This will require that the cosine term will have a maximum value and this imposes the relation

$$
n r-\sigma t-\frac{\pi}{4}=m 2 \pi
$$

where m is some whale number. By differentiation of this expression the relation is obtaineds

$$
\frac{d s}{d t}=\frac{0}{n}
$$

which can be interpreted as the rate at which the crest progresses. This is the wave velocity C. This relation can be combined with expressions (8) and (10) to obtain a formula for the wave propagation velocity:

$$
\begin{equation*}
c^{2}=\frac{9 \pi}{2 \pi} \text { tanto } \frac{2 \pi h}{\lambda} \tag{12}
\end{equation*}
$$

Although these relations are approximates, a scrutiny of the roots of the Jo and Yo Bessel functions will indicate that they should hold closely enough for most engineering purposes beyond two wavelengths distance from the source.

In order to produce waves of a specific amplitude it is necessary to know how much volumetric displacement is needed at the source to maintain them. The displacement volume is given by an integral of the type

$$
D_{1}=2 \pi r_{0} \iint_{-h}^{0} u d z d t
$$

where u

This can be evaluated in the form

$$
D_{1}=\frac{2 \pi r_{0} A g}{\sigma^{2}}\left[J_{0}^{\prime}\left(n r_{0}\right) \cos \sigma t_{+} Y_{0}^{\prime}\left(n r_{0}\right) \sin \sigma \theta\right] \sinh n h . .(13)
$$

Since the product (nro)Jo' (nEo) approaches zero as (neo) approaches zero and the product ($n r_{0}$) $Y_{0}{ }^{\circ}$ ($n r_{0}$) approaches ($2 / \pi$) as ($n r_{0}$) approaches zero the value of D_{1} converges toward its value at the origin:

$$
\begin{equation*}
D_{0}=\frac{4 A g}{n \sigma^{2}} \sin \sigma t \text { sinh } n h \tag{14}
\end{equation*}
$$

The maximum value of the displacement D_{m} is reached when $\sin t=1$ 。 Then

$$
\begin{equation*}
D_{m}=\frac{4 A g}{n \sigma^{2}} \text { Sinh } n h \tag{15}
\end{equation*}
$$

The value of A may then be obtained in terms of the maximum displacement as

$$
\begin{equation*}
A=\frac{n \sigma^{2} D_{m}}{49 \operatorname{Sinh} n h} \tag{16}
\end{equation*}
$$

DIFFRACTION PATTERN PRODUCED BY TWO SOURCES
In some cases it is desired to propagate a wave train of limited width and this may be accomplished with some effectiveness by making use of the possibilities of interference. Suppose, for example that two equal。in phase sources are operating at a separation S of one-helf a wave length.

It can be expected that the wave motion in the direction of the line joining the sources would be almost completely mulled because the waves from the two sources would be of almost equal maplitude and would be 180 degrees out of phase. Along a normal to this line, dram from a point midway between the sources, however, the wave motion would be enhanced because the waves from the two sources world be nearly in phase. The wave crests would be nearly circular in form but their height world vary in each quadrant from a maximum to nearly zero. In this way a very definite concentration of the suave motion into a portion of the surface area can be accomplished. It will be of interest to develop the case of the two sources somewhat more fully.

If represents an angle between a radius dram from one of the sources and the line which passes through both of them, a point at radius r from one source will lie at the distance C_{1} from the other source were, by the cosine 1 aw

$$
C_{1}=\sqrt{E^{3}+S^{3}-2 R S \cos \alpha}
$$

If r is large compared to the separation S the square of S may be discarded so that approximately

$$
c_{2}=\sqrt{1-\frac{2 S}{5} \cos \alpha}
$$

$$
\text { If } r \gg S
$$

 unity it will be permissible to expand the radical by the binominal theorem and, again as an approximation, discard all of the terms except the first two. then approximately

$$
\begin{align*}
C_{2}=r \propto S \cos \alpha & \text { If } r\rangle s . \\
\text { Since }\left(r-C_{2}\right)=S \cos \alpha & \text { If } r\rangle S . \tag{17}
\end{align*}
$$

The angular phase separation is

$$
\begin{equation*}
\left.\frac{2 \pi\left(r-C_{1}\right)}{\lambda}-\frac{2 \pi S}{\lambda} \cos \alpha \quad \text { If } r\right\rangle s \tag{18}
\end{equation*}
$$

The amplitude of a resultant wave formed by the superposition of two waves of amplitude A_{0} and separated by the phase angle $\boldsymbol{\beta}$ is again by the cosine law

$$
\begin{equation*}
A \propto=\sqrt{2} A_{0} \sqrt{1+\operatorname{Cos} B} \tag{19}
\end{equation*}
$$

The combination of (18) and (19) yicicis

$$
\begin{equation*}
A A=\sqrt{2} A 0 \sqrt{1 * \cos \left(\frac{2 \pi 5 \cos \alpha}{\lambda}\right)} \quad \text { Iई } \quad \gg S . \tag{20}
\end{equation*}
$$

The following table shows a computation of waye heights folloising a ciscular path with its center at a point midnay betiveen the two sources. The compreation critends through one gradrant. The other three quadrants asesimilar.

TABLE 1.

Computation of relative wave amplitwes produced by two, in phase, sources one-hali wave length apart. The anplitude A at the radius r end anglc C is expressed in terms of A. The amplitude produced at the radius E by onc of the sources. The amplitude Ao can best be computed by use of formulas (29) or (31).

∞	$\cos \alpha$	$\frac{2 \pi s}{\lambda} \cos \alpha$	$\cos \left(\frac{2 \pi s \cos \alpha}{\lambda}\right)$	$\frac{A \propto}{A 0}$
0	1,000	3.1416	-1.0000	0.0000
10^{0}	-9848	3.0938	-0,9989	0.0459
20°	-9397	2.9522	-0.9821	0.1892
30°	. 8660	2.7206	-0. 9127	0.4178
40°	. 7660	2.4065	-0.7418	0.7187
50°	. 6428	2.0194	-0.4338	1.0640
60°	. 5000	1.5708	0.0000	0.4142
70°	-3420	1.0784	10. 4763	1.7182
80°	. 1736	0.5454	-0.8549	1.9261
90°	.0000	0.0000	-1.0000	2.0000
Note:	$\frac{2 \pi s}{\lambda}$	$\frac{2 \pi \lambda}{2 \lambda}=\pi$		

HAVE AOTION PROPAGATED FROM A LONG HAVE GENERATOR

It is desired to find the wave pattern produced by a linear wave gene erator of length L, as shown in Fig. 2, if it produces a volume displacement Q_{m} distributed uniformly throughout its length, but sinusoidal in time, with a pericd T 。 To find this pattern the differential displacement Q d d , originating in each elcment of length $\mathrm{d} \eta$, will be treated as the displacement producing a wave propagated from a centero as previously described, and the effect of these differential disturbances will be integrated over the length I. to find the effect of the whole wave generator. The results obtained wisll apply to an isolated generator from which waves can progress freely in all directions. It wili be shown later how these results can be adapted for compistations of the performance of wave generators installed in tanks.

$$
\begin{equation*}
\mathscr{S}=\frac{n \sigma^{2} D_{m}}{4 g}\left[J_{0}(n r) \operatorname{Cos} \sigma t+Y_{0}(n r) \beta n \sigma t\right] \operatorname{Coth} n h \tag{21}
\end{equation*}
$$

Then the increment of wave height at the distance C_{1} from an element of displacement $\frac{Q_{m}}{\mathrm{~L}} \mathrm{da}$, originating at $\mathrm{y}=\mathrm{n}$, as shown in Fig。2, is $d B=\frac{4 \sigma^{2} Q m}{4 g L}\left[J_{0}\left(n C_{1}\right) \cos \sigma t_{+} Y_{0}\left(n C_{1}\right) \sin \sigma t\right] \operatorname{Coth} n d d \eta \ldots$ (22) If R is large compared to $\frac{L}{2}$ then R is large compared to η and to a first approximation, the cosine law

$$
\begin{equation*}
C_{1}{ }^{2}=R^{2}+\eta^{2}-2 R \eta \cos \alpha \tag{23}
\end{equation*}
$$

can be expressed as

$$
\begin{equation*}
C_{1}: \sqrt{R^{2}-2 R \eta \cos c t} . \tag{24}
\end{equation*}
$$

by discarding η^{2} as small compared to R^{2}. Then by using the binomial theorem and discarding all but the first two terms

$$
C_{1}=R\left(1-\eta_{k} \cos \alpha\right)
$$

then

$$
\begin{equation*}
\left(R-c_{i}\right)=\eta \cos \alpha \tag{25}
\end{equation*}
$$

If one neglects η as being small compared to R and refers phase positions to the phase position at the center of the wave generator, then approximately s

$$
\begin{aligned}
d B \approx & \frac{n \sigma^{2} Q_{m}}{4 g L}\left[J_{0}(n r) \cos \left(\sigma t-\frac{2 \pi \eta \cos \alpha}{\lambda}\right)+\right. \\
& \left.Y_{0}(n r) \sin \left(\sigma t-\frac{2 \pi n \cos \alpha}{\lambda}\right)\right] \operatorname{coth} n^{\prime} h d \eta_{\ldots} \ldots(26)
\end{aligned}
$$

and

$$
B=\frac{n \sigma^{2} Q_{m} \operatorname{Coth} n h}{4 g L} \int_{-\frac{L}{2}}^{+\frac{L}{2}} J_{0}(n R) \operatorname{Cos}\left(\sigma t-\frac{2 \pi n \operatorname{Cos} \alpha}{\lambda}\right) d \eta
$$

$$
+\frac{n \sigma^{2} Q_{m} \operatorname{coth} n h}{4 g L} \int_{-\frac{L}{2}}^{Y_{0}(n R) \sin \left(\sigma t-\frac{2 \pi n \cos \alpha}{n}\right) d \eta_{0 .(27)}}
$$

$$
\begin{aligned}
B=\frac{n \sigma^{2} Q_{m} \operatorname{coth} n h}{49} & \frac{\lambda}{2 \pi L \cos \alpha}\left[J_{0}(n R) \sin (\sigma t-\pi L \cos \alpha\right. \\
& +J_{0}(n R) \sin \left(\sigma t+\frac{\pi L \cos \alpha)}{\lambda}\right) \\
& +Y_{0}(n R) \cos \left(\sigma t-\frac{\pi L \cos \alpha)}{\lambda}\right) \\
& \left.-Y_{0}(n R) \cos \left(\sigma t+\frac{\pi L}{\lambda} \cos \alpha\right)\right]
\end{aligned}
$$

If use is made of Eq. (8) and the well known formulas for the sine and cosine of the sum of two angles, this relation can be put in the form:

$$
S \approx \frac{n^{2} Q_{m}}{4} \frac{\sin \left(\frac{\pi L}{\Lambda} \cos \alpha\right)}{\left(\frac{\pi L}{n} \cos \alpha\right)}\left[J_{0}(n R) \cos \sigma t+Y_{0}(n R) \sin \sigma t\right]_{\ldots(28)}
$$

The maximum amplitude is:

$$
b_{m} \equiv \frac{n^{2} Q_{m}}{4} \frac{\sin \left(\frac{\pi L}{\lambda} \cos \alpha\right)}{\left(\frac{\pi L}{\lambda} \operatorname{Cos} \alpha\right)} \sqrt{\left(J_{0}(n R)\right)^{2}+\left(Y_{0}(n R)\right)^{2}} \ldots(29)
$$

If ($n R$) is large compared to unity:

$$
\begin{equation*}
\sqrt{\left(J_{0}(n R)\right)^{2}+\left(Y_{0}(n R)\right)^{2}} \cong \sqrt{\frac{2}{\pi(n R)}} \tag{30}
\end{equation*}
$$

And approximately

$$
h_{m}=\frac{n^{2} Q_{m}}{4} \frac{\sin \left(\frac{\pi L}{\lambda} \cos \alpha\right)}{\left(\frac{\pi L}{n} \cos \alpha\right)} \sqrt{\frac{2}{\begin{array}{l}
\pi(n R) \\
\text { Valid if } R \gg \frac{L}{2} \\
(n R) \gg 1
\end{array}}}
$$

The ratio $\frac{\sin \left(\frac{\pi L}{\pi} \cos \alpha\right)}{\left(\frac{\pi L}{\pi} \cos \alpha\right)}$ can be read from Figo 3.
When faves from several generators are to be added it will be advance tagcous to keep the sine and cosine terms separate because this will permit a simpler evaluation of resultant amplitudes and phase positions than would be possible otherwise. The approximate form required for this purpose is:

$$
\begin{array}{r}
h \approx \frac{n^{2} Q_{m}}{4} \frac{\sin \left(\frac{\pi L}{n} \cos \alpha\right)}{\left(\frac{\pi L}{\lambda} \cos \alpha\right)} \sqrt{\frac{2}{\pi(n R)}}\left[\cos \left(n R-\frac{\pi}{4}\right) \cos \sigma t\right. \\
\left.+\sin \left(n R-\frac{\pi}{4}\right) \operatorname{Sin} \sigma t\right] \tag{32}\\
\quad \text { Valid if } R \gg \frac{L}{2} \\
(\pi R) \gg 1 .
\end{array}
$$

If it is suspected that R is not sufficiently large to make this formula yield as close an approximation as desired a test can be made by dividing the wave generator into two parts, computing for each part separately and superimposing the results. If the computation made in this way does not agree well with the result obtained by computing for the wave generator as a whole it indicates that the ration of R to $\frac{1}{2}$ is not large enough in the computation based upon the whole length. In such cases the computation based upon the halves gives the preferred results. The accuracy of the computations could be improved still further by dividing the wave generator into four or more parts and summing the results obtained from computations based upon each part separately, but it is believed that a need for such computations will arise only rarely, if at all, in practice.

LINE SOURCE GENERATORS IN A RECTANGULAR BASIN

The case of a wave generator operating near a wall, as shown in Fig. 4. can be obtained from the solution for the isolated case if a second wave generator, having the characteristics of the first, is located where the image of the first generator would be formed if the wall were a mirror.

Fig. 4. Wave generator near a wall.

The boundary condition at the wall requires that there be no normal component of velocity at its surface. Two identical wave generators muld produce this condition along the line midway between them if they operated in a water surface area of unlimited extent. Two solutions for the isolated casc, used in this way, will thercfore reproduce the boundary condition imposed by the wall.

Pig. 5. Wave generator in a corner.

The case of a wave generator in a corner may be reproduced by the arrangenent of images shown in Fig. 5. This will insure that there will be no normal component of velocity at either wall.

The case of a wave generator in a rectangular strip is a little more complicated. The condition is shown in Fig. 6. Here the first images in wall (1) will result in the proper boundary conditions being met along wall (1) but will not do for wall (2). If the real generator, its image in the end, and the two first images in wall (1) are now imaged in wall (2), the required conditions along wall (2) will be met, but at the expense of a slight interference with the boundary condition at wall (1).

Fig。 6. Wave generator in a rectangular strip.

To remedy this one can introduce the second images in wall (1). These will completely restore the boundary conditions at wall (1) but in turn. upset them slightly at wall (2). Continnation of this process leads to an infinte series of terms. The series is generally, however, rapidly convergent.

If the strip of fig。 6 had an upper end to convert it into a rectanguelar tank the real wave generator and its images as described could be imaged in the far end to meet the boundary conditions at the far end. Successive imagings in the two ends would then permit satisfaction of the boundary conditions at the ends without upsetting the boundary conditions at the walls. This process leads to a doubly infinite series of which, generally, only a few terms are needed to obtain a close approximation.

These descriptions have assumed that there is no absorption of energy at the wall. If energy absorbers are arranged along a wall it is believed permissible to consider that wall absent. To the approximation contemplated herein, it is permissible to compute the wave motion by superposing the effects of the real wave generator and its images. For this purpose Eqs. (28) and (3) should be used to obtain the sine and cosine amplitide separately. When all of these have been obtained the marimum mplitude can be computed by taking the square root of the sums of the sine and cosine amplitudes squared.

RBMARKS

The developments described herein imply that the wave height is very small compared to the wave length. This limitation is present in nearly
al treatments of surface waves beceuse of the mathematical difficulties wich beset attempes to treat waves of finite height. Investigators of esceptional ability, among them Stokes, Rayleigh, Gerstner, Rankine, leyiCivita and Michell, have been abie to extend the analyses of wave motion to some cases in wich the wave height is some finite part of the wave length. The results of many of these investigations are sumarized in paragraphs 250 and 251 of Lamb's Hydrodynamics, Ref. 3.

It is found that the celerity of wave propagation increases somewhat with wave height and that, for irrotational surface waves, the crests grow sharper and the troughs flatter as the wave height increases. The investigaticns of Stokes and kichell indicate that such waves can attain an extreme height of 0.142 where the crests become sharp and include an angle of 120°. For this extreme form the wave velocity is 1.2 that for waves of infinitesimal height. Gerstner's rotational waves can, apparently, have sharper crests than the irrotational waves.

Because of the mathematical difficulties mentioned, the contributions which analytical developments c an make to wave experimentation work may be experted to be of the nature of first approximations, and this statement is especially true if the formulas to be used are simple enough to keep the computations from becoming burdensome. Some final adjustments of the wave generators on an experimental basis may therefore be needed to compensate for the shortcomings of the computed wave patterns.

ACKNOKLIRDGMENT

These developments have had the benefit of a review by Mr。Lucien Duckstein, graduate student at Colorado A \& M College.

1）Diffraction of Sea Waves by Breakwaters，by w．G．Penney and A．T．Price． Dizectorate of Miscellaneous Weapons Development History No． 26 －－ Artificial Harbors，Sec．3D，1984．（Not available to this usiter but referred to in some of the references quoted．）

2）Partial Dieferential Rquations of Mathematical Physics，by H．Bateran， Dover 1944．（Chapter XI on＂Diffraction Problems＂contains a treat－ ment of the methods used in optics．）

3）Hycrodynsmics，by Lamb，Dover Publications，New York，1945．（Chapter VIII treats tidal waves，and Chapter IX treats surface wave motion．）

4）Diffraction of Nater Waves by Breaimaters，by J．A。Putam and R。S． Arthur．Transactions of the American Geophysical Union，Vol．29，No． 40 August 1948．（Treats diffraction of waves by a semioinfinite breatwater．A comparison of computed and laboratory data is included．）
s）Diffraction of Water Waves Passing Through a Breakwater Gap，by Frank L．． Blue，Jr．and J．W．Johnson．Transactions of the Americal Geophysical Union，Vol．30，No．5，October 1949．（Applies wave interference con－ cepts as employed in light diffraction to evaluate the diffraction pattern of waves passing through a gap in a breakwater．Comparisons are made between theoretical and experimental diffraction coefficients for deep and shallow water cases．）

6）Britisi Association Mathematical Tables VI．。Bessel Functions Part 1． Cambridge University Press。 1950.

7）Waves，by C．A．Coulson，Sixth Bdition，1952，Oliver and Boyd Ltd．。 London．（Chapter V treats waves in liquids．）

8）Gravity Waves．Chapter 14 。 Diffaction of Water Waves by Breakwaters． This chapter is ty John H．Carr and Marshall E。Stelarieds．The com－ pilation on Gravity Waves is published as National Bureau of Standards Circular 521，issued November 28，1952．For sale by Superintendent of Documents，Washington，D．C．（Treats diffraction of waves passing through a gap in a breakwater by use of elliptic cylinder coordinates and Mathieu functions．This development they credit largely to Morse and associates and refer to it as the MorseoRubenstein Theory．They compare the resulis of this theory with the PennegoPrice development and compare both with the results of experiments．The Penneyoprice development is stated to be reasonably accurate only for gaps of over two wave lengths width．The Morse－Rubenstein method appears to work best for narrow gaps．Advantages to be gained by working with both methods are described．）

9）Theory of Bessel Funct̂ions，hatson，Cambridge University Press，Second Edition，1952．

