

DISSERTATION

A TABU SEARCH EVALUTIONARY ALGORITHM FOR MULTIOBJECTIVE

OPTIMIZATION: APPLICATION TO A BI-CRITERION AIRCRAFT STRUCTURAL

RELIABILITY PROBLEM

Submitted by

Kim Chenming. Long

Department of Mechanical Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2015

Doctoral Committee:

Advisor: William S. Duff

Co-advisor: John W. Labadie

 Mitchell Stansloski

Edwin K.P. Chong

Walajabad S. Sampath

Copyright by Kim Chenming Long 2015

All Rights Reserved

ii

ABSTRACT

A TABU SEARCH EVALUTIONARY ALGORITHM FOR MULTIOBJECTIVE

OPTIMIZATION: APPLICATION TO A BI-CRITERION AIRCRAFT STRUCTURAL

RELIABILITY PROBLEM

 Real-world engineering optimization problems often require the consideration of

multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in

a high-dimensional decision space. Further challenges occur for combinatorial multiobjective

problems in which the decision variables are not continuous. Traditional multiobjective

optimization methods of operations research, such as weighting and epsilon constraint methods,

are ill-suited to solving these complex, multiobjective problems. This has given rise to the

application of a wide range of metaheuristic optimization algorithms, such as evolutionary,

particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization.

Several multiobjective evolutionary algorithms have been developed, including the strength

Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm

(NSGA), for determining the Pareto-optimal set of non-dominated solutions.

 Although numerous researchers have developed a wide range of multiobjective

optimization algorithms, there is a continuing need to construct computationally efficient

algorithms with an improved ability to converge to globally non-dominated solutions along the

Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems.

This is particularly important when the multiple objective functions and constraints of the real-

world system cannot be expressed in explicit mathematical representations. This research

presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization

iii

problems, which combines the metaheuristic tabu search algorithm with the evolutionary

algorithm (TSEA), as embodied in genetic algorithms.

 TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost)

optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging

fatigue life. A comparison for this application of the proposed algorithm, TSEA, with several

state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these

algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to

the Pareto-optimal front) after the algorithms are executed for the same number of generations.

This research also demonstrates that TSEA competes with and, in some situations, outperforms

state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when

applied to classic bicriteria test problems in the technical literature and other complex, sizable

real-world applications. The successful implementation of TSEA contributes to the safety of

aeronautical structures by providing a systematic way to guide aircraft structural retrofitting

efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization

problems in engineering and other fields.

iv

ACKNOWLEDGEMENTS

 It has been long but a fruitful journey that is full of hard work, enlightens, and growing. First

of all, I would like to thank my advisor William Duff for his guidance, understanding, patience

and support over the years. Secondly, I would like to thank my co-advisor John Labadie for the

valuable discussions and guidance on the paper: “Multiobjective Fatigue Life Optimization

using Tabu Genetic Algorithms”, which is published in the International Journal of Structural

Integrity, as well as on this dissertation.

v

DEDICATION

 This dissertation is dedicated to my husband David Long for his continuous support over the

years.

vi

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHAPTER 1: INTRODUCTION ... 1

1.1 MOTIVATION FOR THE RESEARCH .. 1

1.2 MULTIOBJECTIVE OPTIMIZATION BASICS .. 2

1.3 TRADITIONAL APPROACHES ... 3

1.3.1 WEIGHTING METHOD... 4

1.3.2 EPSILON CONSTRAINT METHOD .. 4

1.3.3 COMPROMISE PROGRAMMING .. 5

1.4 NONTRADITIONAL APPROACHES .. 7

1.4.1 EVOLUTIONARY APPROACH ... 7

1.4.2 META-HEURISTIC ALGORITHMS ... 11

1.5 CHAPTER BREAKDOWN .. 12

1.6 PUBLICATIONS .. 13

CHAPTER 2: MULTIOBJECTIVE OPTIMIZATION ALGORITHMS 14

2.1 OVERVIEW OF MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS 14

vii

2.1.1 SPEA AND SPEA2 ALGORITHMS .. 15

2.1.2 NSGA AND NSGA II ALGORITHMS ... 22

2.1.2 CONSTRAINT HANDLING BY NSGA II ... 28

2.1.3 NPGA Algorithm... 30

2.2 SHORT SURVEY OF META-HEURISTIC ALGORITHMS IN MULTIOBJECTIVE

OPTIMIZATION .. 32

2.2.1 TABU SEARCH .. 35

2.2.2 SIMULATED ANNEALING .. 36

CHAPTER 3: AIRCRAFT STRUCTURAL RELIABILITY AND MOEA APPLICATIONS .. 37

3.1 AIRCRAT STRUCTURAL RELIABILITY .. 37

3.2 MOEA REAL-WORLD APPLICATIONS .. 40

CHAPTER 4: TABU SEARCH EVOLUTIONARY ALGORITHM (TSEA) 44

4.1 MATHEMATICAL MODEL ... 44

4.2 FITNESS ASSIGNMENT AND FITNESS SHARING ... 45

4.3 TABU DISTANCE TO REINE FITNESS ... 46

4.4 TABU SEARCH TO GUIDE EVOLUTIONARY SEARCH ALGORITHMS 47

4.5 CONSTRAINT HANDLING ... 49

CHAPTER 5: APPLICATION OF TSEA IN AIRCRAFT TAIL STRUCTURE RELIABILITY

OPTIMIZATION .. 50

5.1 NEED FOR CONTINUED RESEARCH ... 51

viii

5.2 PURPOSE OF THIS REAL-WORLD APPLICATION ... 52

5.3 RELIABILITY AND COST MODELS .. 54

5.4 DSS SYSTEM DEFINITION ... 66

5.5 TSEA IMPLEMENTATION DSS .. 70

5.6 RESULTS COMPARISON WITH THE STATE OF THE ART 73

5.7 RANK PARETO RESULTS BY COMPROMISE PROGRAMMING 80

CHAPTER 6: COMPARISON OF THE TSEA WITH THE STATE OF THE ART ON

TESTING PROBLEMS .. 83

6.1 TESTING PROBLEM 1 STATEMENT... 83

6.1.1 ENVIRONMENT SETTINGS FOR TESTING PROBLEM 1 .. 84

6.1.2 BENCHMARK TEST PROBLEM #1 RESULTS COMPARISON 85

6.2 TESTING PROBLEM 2 STATEMENT... 87

6.2.1 ENVIRONMENT SETTINGS FOR TESTING PROBLEM 2 .. 87

6.2.2 BENCHMARK TEST PROBLEM #2 RESULTS COMPARISON 88

CHAPTER 7: COMPARISON OF TSEA WITH STATE OF THE ART ALGORITHMS FOR A

SUPPLY CHAIN MANAGEMENT PROBLEM .. 91

7.1 MATHEMATICAL MODEL ... 91

7.2 TSEA COMAPRE TO STATE OF THE ART ... 95

CHAPTER 8: SUMMARY AND CONCLUSIONS .. 99

8.1 SUMMARY .. 99

ix

8.2 CONCLUSIONS ... 99

8.3 FUTURE RESEARCH DIRECTIONS ... 100

BIBLIOGRAPHY ... 102

x

LIST OF TABLES

Table 2.1 Sample Distances between 12 Individuals.. 21

Table 5.1 Stall Buffet Mission Summary ... 58

Table 5.2 Damage Rates at Fatigue-Critical Locations .. 62

Table 5.3 Maximum Stresses Comparison ... 63

Table 5.4 Fatigue Damage Rate with Doublers .. 64

Table 5.5 Fatigue Damage Rate with Stiffeners ... 66

Table 5.6 Flight and Sortie Types ... 67

Table 5.7 Non-dominated Solutions ... 74

Table 5.8 Aircraft Tail Structure Optimization Computing Results ... 80

Table 5.9 CP Ranking of Top Non-dominated Solutions ... 81

Table 6.1 Testing Problem #1 Optimization Computing Results ... 87

Table 6.2 Testing Problem #2 Optimization Computing Results ... 90

Table 7.1 Basic Data of the Numerical Example .. 94

Table 7.2 Transportation Costs between Retailers ... 95

Table 7.3 Supplier Chain Management Boundary Limitations .. 95

Table 7.4 Supplier Chain Management Optimization Computing Results................................... 98

xi

LIST OF FIGURES

Figure 1.1 Absolute value norm .. 6

Figure 1.2 Least squares norm .. 6

Figure 1.3 Min-max norm ... 7

Figure 1.4 Pareto ranking .. 9

Figure 1.5 Rank-based fitness assignments .. 9

Figure 2.1 Relationship between spaces ... 15

Figure 2.2 Crowding distances (not normalized) .. 25

Figure 2.3 NSGA II algorithm .. 27

Figure 2.4 NSGA II new generation selection process ... 27

Figure 4.1 Formation of tabu list .. 45

Figure 4.2 Tabu distance ... 46

Figure 5.1 Aircraft horizontal stabilizer.. 51

Figure 5.2 Typical load, stress or strain time history .. 59

Figure 5.3 Rain flow counting method ... 59

Figure 5.4 Fatigue analysis locations at aircraft horizontal stabilizer .. 60

Figure 5.5 Typical aluminum S-N curves ... 61

Figure 5.6 Typical doublers in bay 28 .. 64

Figure 5.7 Typical stiffeners in bay 27 ... 65

Figure 5.8 Factors on maximum stresses with stiffeners .. 65

Figure 5.9 GUI for aircraft tail structure, Mod DSS ... 68

Figure 5.10 DSS architecture .. 70

Figure 5.11 DSS search engine architecture ... 72

xii

Figure 5.12 Aircraft tail structure reliability non-dominated solutions .. 75

Figure 5.13 DSS results showing the Pareto-optimal front (in blue) .. 75

Figure 5.14 TSEA MATLAB code ... 77

Figure 5.15 SPEA2 MATLAB code ... 78

Figure 5.16 NSGA II MATLAB code .. 79

Figure 5.17 Ranking of non-dominated solutions by CP .. 82

Figure 6.1 Testing problem #1 results comparison ... 85

Figure 7.1 SCM system reliability comparisons ... 96

1

CHAPTER 1: INTRODUCTION

Real-world optimization problems usually face multiple conflicting objectives and large,

complex search spaces. This has led to the emergence and increasing popularity of the field of

evolutionary multiobjective optimization (EMOO). The advantage of EMOO lies in its ability to

devise many solutions in a single step because EMOO operates in terms of generations. There

are challenges associated with it as well; including ensuring that the algorithm converges to the

Pareto front without becoming trapped in local maxima and that it covers the entire Pareto front

with maximum diversities. Ultimately, all EMOO algorithms serve the same purpose: to help the

decision maker (DM) choose the best possible solution in a timely manner. A brief review of the

basic concepts of multiobjective optimization algorithms is presented in the following sections.

1.1 MOTIVATION FOR THE RESEARCH

Before a new type of military aircraft can go in to production, full-scale fatigue tests are

usually conducted to ensure the aircraft has sufficient fatigue life and structural integrity. An

aircraft must sustain the entire test without cracking. If test loading conditions are too severe, an

optimized retrofitting plan is needed to reallocate limited resources to ensure the completion of

the test. Unlike commercial aircraft, which fly regular missions with minimal turbulence for the

sake of public safety and comfort, military aircraft may experience some level of turbulence as a

mission requirement. The turbulent air flow passes over the wing and impinges on the horizontal

stabilizer, causing it to vibrate. The vibration can be a major fatigue driver for the horizontal

stabilizer. It is critical for DMs to have several options that balance the increased reliability by

retrofitting the aircraft at fatigue-critical locations on the horizontal stabilizer, though there are

cost limitations. In recent decades, improvement has been seen in many evolutionary

multiobjective optimization algorithms, such as NSGA II versus NSGA and SPEA2 versus

SPEA. Many new hybrid algorithms have emerged to solve large, complex multiobjective

2

system optimization problems. Nevertheless, there is still a lack of efficient multiobjective

evolutionary algorithms (MOEAs) that are effective in many different large complex

applications. Many real-world multiobjective system optimization problems are nonconvex, and

their objective functions are so complex that they cannot even be explicitly modeled. An

example is the reliability model of options for retrofitting the aircraft horizontal tail structure.

The purpose of this study is to provide an innovative evolutionary algorithm that applies

the concept of metaheuristic tabu search to an evolutionary algorithm, such as the genetic

algorithms, (TSEA). To demonstrate its robustness and efficiency, TSEA is compared with state-

of-the-art MOEA algorithms such as NSGA II and SPEA2 on both testing problems and real-

world applications. Both convex and nonconvex testing problems are included. The input

parameters for the real-world applications from two different industries (supplier chain

management and aircraft structure design optimization) range from combinatory to real

variables. TSEA has shown superior performance on both real-world applications and is well in

line with the state of the art on selected testing problems, as shown in chapters 5, 6, and 7.

1.2 MULTIOBJECTIVE OPTIMIZATION BASICS

Engineering system design usually involves conflicting targets. Thus, multiobjective

optimization algorithms are required to achieve a good design. To prolong the reliability of the

engineering system under multiple constraints, a multiobjective optimization algorithm is

feasible because some of the constraints can be treated as objectives. For example, modern

aircraft design must minimize cost and weight and maximize reliability. The mathematical model

for this multiobjective optimization problem can be stated as follows:

Maximize z = [z1(x), z2(x), . . . , zk(x)]

subject to y(x) = [y1(x), y1(x), . . . , ym(x)] ≤ 0

where x = (x1, x1, . . . , xn) X; x is the decision vector and X is the decision space.

3

z = (z1, z1, . . . , zk) Z; z is the objective vector and Z is the objective space.

k is the number of objectives, m is the number of constraints, and n is the number

of decision parameters.

To clearly and effectively continue the discussion of multiobjective optimization, it is

essential to define various terms that will be used extensively in this study.

Def. 1 (dominance relation):

Let ƒ, g Z. g is said to dominate f (denoted as) if

Def. 2 (Pareto set):

Let F be a set of vectors. The Pareto set F* of F is defined as follows:

F* contains all vectors g that are not dominated by any vector ƒ

F* = { g | ƒ : g

Usually, after a search through a large and complex search space, the solution of the

above multiobjective optimization problem is a Pareto set that is either the exact Pareto set or an

approximation of it. A certain type of ranking methodology is applied to present the DM with the

best solution. The DM can also interface with the search algorithm to guide the search

constantly. In the application section of this dissertation, this interaction between DM and the

behind-the-scenes search engine will be illustrated.

1.3 TRADITIONAL APPROACHES

This section introduces several multiobjective optimization methods and a ranking

method that can help the DM reach a final decision.

4

1.3.1 WEIGHTING METHOD

 The primary idea of the weighting method (also called the weighted sum method) is to

choose the weighting coefficients wi corresponding to objective functions ƒi(x), i =1, k.

Therefore, the multicriteria optimization problem is transformed to a single-objective one. Many

authors have developed systematic approaches to selecting weights. The traditional weighting

method combines multiple objectives into a single objective as follows:

Maximize + + . . . +

subject to g(x) ≤ 0

 One of difficulties with the weighting method is that varying the weights consistently and

continuously may not necessarily result in an accurate, complete representation of the Pareto

optimal set. Without loss of generality, weights are normalized to satisfy the following equation:

∑

A set of Pareto-optimal solutions can be obtained through choosing different

combinations of weights. The disadvantage of this method is that it cannot reach the complete

Pareto set if the objective space is nonconvex.

1.3.2 EPSILON CONSTRAINT METHOD

 The epsilon-constraint method overcomes some of the convexity problems of the

weighted sum technique. The idea of this method is selecting one objective as ultimate and

turning all other objectives into constraints.

 Max

Subject to:

 ≥ i = 2, . . . , k

 g(x) ≤ 0

5

 Here, all objectives are maximized. The lower bounds i are used as variables to find multiple

Pareto-optimal solutions. Because the objective functions are no longer limited to linear

functions, this method is not limited in its weighting method to convex trade-off surfaces. This

approach enables the identification of a number of non-dominated solutions on a nonconvex

boundary that are not obtainable using the weighted sum technique. A problem with this method,

however, lies in finding a suitable selection of i to ensure a feasible solution. A further

disadvantage of this approach is that the use of hard constraints is rarely adequate for expressing

true design objectives. The optimization proceeds with reference to these priorities and allowable

bounds of acceptance. The difficulty here is in expressing such information at early stages of the

optimization cycle.

1.3.3 COMPROMISE PROGRAMMING

This ranking method produces compromise solutions by measuring the distances to

various “ideal” critical levels. The most popular ways to rank closeness are L
1
, L

2
, and L

∞
.

L
1
: L

1
(j) =

 Subject to: x < X (constraints on decision variables)

In which L
1
 corresponds to the absolute value norm.

 Figure 1.1 illustrates what the equivalue contours of the L
1
 norm would look like, with the ideal

solution assumed to be infeasible, as shown. For the L
2
 norm, the problem is formulated as:

 L
2
: L

2
(j) =min

which corresponds to the L
2
 norm.

6

Figure 1.1 Absolute value norm

 Figure 1.2 illustrate the equi-valued contours of the L
2
 norm, and a different solution is

obtained with the L
2
 norm, in this case, point 2.

-

Figure 1.2 Least squares norm

L
∞
: L

∞
(j) =

This value corresponds to the min-max norm, as shown in figure 1.3.

7

Figure 1.3 Min-max norm

1.4 NONTRADITIONAL APPROACHES

In contrast to the traditional approaches presented in the above section, there are two

main branches of nontraditional approaches: evolutionary and heuristic.

1.4.1 EVOLUTIONARY APPROACH

The evolutionary algorithm (EA) represents a collection of optimization algorithms that

simulate the process of natural evolution. The advantage of EAs lies in the fact that they operate

on a set of candidate solutions, called generations. Multiobjective evolutionary algorithms

(MOEAs) search for Pareto-optimal solutions using the processes of selection and variation,

which are performed on each generation. In EAs, natural selection is simulated by a stochastic

selection process. Each solution is given a chance to reproduce based on its “fitness.” The

variation process imitates the natural capability to create new generations by means of crossover

and mutation. Here, “crossovers” are operated on portions of chromosomes through the process

of switching over. Mutations are accomplished by flipping a single, randomly selected gene

within a chromosome.

 MOEAs date back to 1985, when Shaffer (1985) proposed an extension of the simple

genetic algorithm (SGA) to accommodate vector-valued fitness measures, thus creating the

8

vector-evaluated genetic algorithm (VEGA). VEGA was based on subpopulations developed for

each objective function. A new population was generated by selecting individuals from each

subpopulation according to their fitness values. In particular, the selection step of the algorithm

was modified. At each generation, several subpopulations were created through the process of

proportional selection, according to each objective function. Thus, for a problem with p

objectives, p subpopulations of size N/p would be generated (assuming a population size of N).

To avoid the necessity of combining objective functions in any way, Fonseca and

Fleming (1993) described a rank-based fitness assignment method for multiple-objective genetic

algorithms (MOGAs). Fonseca and Fleming thought that the external DM should be actively

involved with the MOGA, and that the interaction between the two would lead to the

determination of a satisfactory solution for the problem at hand. This study additionally

demonstrates the best way to sample regions of the trade-off surface uniformly. Fonseca and

Fleming (1993) proposed a Pareto-based ranking procedure assuming all objectives were

minimizing objectives and individuals ranked according to the number of decision variables they

dominate. Consider an individual x at t generation, which is currently dominated by p

individuals. Its rank is shown in figure 1.4 and defined by Rank(x, t) = 1 + p.

The population is sorted according to its rankings, and a raw fitness value is assigned to

each individual, as shown in figure 1.5 as dashed lines. The fitness of an individual is linearly

interpolated between the best (rank 1) and the worst. As shown in figure 1.5, the final fitness

value of each individual is averaged, as shown via the solid lines, and shared among individuals

with the same ranking.

9

Figure 1.4 Pareto ranking

Figure 1.5 Rank-based fitness assignments

Horn (1993) proposed another niche Pareto genetic algorithm (NPGA) and introduced the

concepts of partial order optimization, equivalence class sharing, and nested sharing. The

following sections will examine the popular NPGA in greater detail.

After a decade of pioneering work in the area of MOGAs, Deb (1999) began to explore

the difficulties involved in such algorithms and to construct testing problems for researchers in

this area. Deb summarized the difficulties inherent in converging to the Pareto-optimal front as

being multimodality, deception, isolated optimum, and collateral noise.

10

To overcome those difficulties, Zitzler (2000) compared six multiobjective evolutionary

algorithms and devised several empirical outcomes, which were performed on six testing

problems. Zitzler ranked these algorithms as follows:

1. SPEA (strength Pareto evolutionary algorithm) (Zitzler and Thiele,1999)

2. NSGA (non-dominated sorting genetic algorithm) (Srinivas and Deb,1995)

3. VEGA (vector-evaluated genetic algorithm)(Schaffer’s,1984)

4. HLGA (EA proposed by Hajela and Lin (1992), based on aggregation selection

and fitness sharing, where an individual is assessed by summing up the weighted

objective values)

5. NPGA (niched Pareto genetic algorithm)(Horn1993)

6. FFGA (Fonseca and Fleming’s multiobjective genetic algorithm) proposed by

Fonseca and Fleming (1993)

 Zitzler’s (2000) six testing problems have become popular benchmark testing problems

for many researchers in the field of MOEAs. Detailed definitions of those testing problems are

given in chapter 6.

Regarding the implementations of those six algorithms, one chromosome was used by

Zitzler to encode the m parameters for the corresponding test problem. All approaches except

FFGA were realized using binary tournament selection with replacement to avoid effects caused

by different selection schemes. Because FFGA requires a generational selection mechanism,

stochastic universal sampling was used in the FFGA algorithm. Tan (2001) also performed

MOEA performance assessments and comparisons. The overall simulation results showed that

none of the methods was superior, considering all aspects of the performance measures.

11

1.4.2 META-HEURISTIC ALGORITHMS

Many comparative studies have been performed to identify the best solution technique in

the area of metaheuristic methods applied to system optimization problems. By examining four

approaches of solving large-scale problems related to maximum expected coverage location,

Aytug (2002) found that the genetic algorithm (GA) approach generated high-quality solutions in

predictable periods of time. Dorn et al. (1996) examined four heuristic methods for the schedule

optimization problem: iterative deepening, random search, tabu search (TS), and genetic

algorithms. Iterative deepening is a combination of depth-first backtracking search and breadth-

first search. It has the advantages of requiring only linear space and guaranteeing discovery of

the shortest path to an improvement.

Moreover, Dorn et al. developed a methodology to gradually satisfy given controversial

constraints, which allowed them to reach the results in a timely manner. They applied these

techniques on data from a steel-making plant in Linz, Upper Austria. Their application was

constrained by a greater variety of antagonistic criteria that were partly contradictory. The

constraints included compatibility and due date. The work was developed through the attempted

building of reusable scheduling software. The results showed that, for a given application,

iterative deepening and tabu search performed better than random search and genetic algorithms.

This conclusion was based on an experimental comparison of four iterative improvement

techniques for schedule optimization: iterative deepening, random search, tabu search, and

genetic algorithms. They compared the performance of these techniques by using the same

evaluation function, knowledge representation, and data. The evaluation was conducted by

gradually satisfying explicitly represented domain constraints and optimization functions. They

weighted and aggregated satisfactions of individual constraints for the whole schedule.

12

Youssef (2001) examined three general iterative algorithms for combinatorial

optimization problems: evolutionary algorithms, simulated annealing (SA), and tabu search.

Youssef summarized the following similarities among the three optimization heuristics:

 They are approximation algorithms and do not guarantee the finding of an optimal

solution.

 They are blind and do not know when to stop.

 They have a hill-climbing property, such that they accept uphill moves occasionally.

 They are general and can be easily applied to any combinatorial optimization

problem, under certain conditions; they asymptotically converge to an optimal

solution.

 Aytug’s (2002) comparative study on facility location allocation optimization problems,

focused on GAs with nonlinear objective functions. He coded two types of GAs, GALS and

GAs, compared and the results with those from Daskin’s heuristic method. Arostegui (2006)

compared the relative performance of TS, SA, and GA on various types of facility location

problems (FLP). In this comparison, three FLP variations were examined: capacitated FLP,

multi-period FLP, and multi-commodity FLP.

1.5 CHAPTER BREAKDOWN

Following this chapter’s review of the existing literature on traditional and nontraditional

approaches to multiobjective optimization, the rest of this dissertation provides a detailed study

of multiobjective system reliability optimization, ranging from algorithm development

(comparing it with the state of the art) to industry applications of those algorithms. Chapter 2

briefly reviews multiobjective optimization algorithms. The aircraft structural reliability issues

are introduced in chapter 3 to lay the foundation for the creation of the new algorithm TSEA,

13

which is introduced in chapter 4 and applied to the aircraft structural reliability and cost model in

chapter 5. Embedded in a decision support system, TSEA can provide the DM with Pareto-

optimal aircraft tail structure retrofitting solutions to maximize reliability and minimize the

retrofitting cost. Chapter 6 presents comparisons of TSEA with the state of the art on benchmark

testing problems. A supplier chain management application is analyzed using TSEA, and the

results are compared with those from state-of-the-art MOEA algorithms (NSGA II and SPEA2)

in chapter 7. To demonstrate how TSEA can be used to provide Pareto-optimal solutions to

DMs, this new algorithm is also embedded in a decision support system (DSS) developed to

provide aircraft tail structure retrofitting options to maximize the structure’s reliability and

minimize its cost. Chapter 8 delivers the conclusions and future research directions.

1.6 PUBLICATIONS

K. C. Long, W. S. Duff, J. W. Labadie, M. J. Stansloski, W. S. Sampath, and E. K. P.

Chong, “Multiobjective Fatigue Life Optimization Using Tabu Genetic Algorithms,” accepted

by the International Journal of Structural Integrity.

14

CHAPTER 2: MULTIOBJECTIVE OPTIMIZATION ALGORITHMS

2.1 OVERVIEW OF MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

The previous section provided a general overview of evolutionary algorithms. This

section will focus on multiobjective evolutionary algorithms. An overview is presented to lay the

foundation for their applications in chapters 5 through 7. Schaffer (1984, 1985) presented an

MOEA called the vector-evaluated genetic algorithm (VEGA), which selects the optimized

outcome by switching objectives. Here, selections are undertaken for each of the k objectives

separately, filling equally sized portions of the mating pool. Then the mating pool is shuffled

before the crossovers and mutations are performed as usual. Despite having some known serious

drawbacks (Fonseca and Fleming 1995b), this algorithm has been a strong point of reference up

until now.

Hajela and Lin (1992) advocated another approach that belongs to category aggregation

selection with parameter variation and is based on the weighting method. The weights are

encoded in each individual’s vector. Hence, each individual is evaluated in relation to a

potentially different weight combination. This method is inherently biased toward the convex

portion of the trade-off front. But due to its simplicity, weighted-sum aggregation is still fairly

widespread.

Fonseca and Fleming (1993) proposed a Pareto-based ranking procedure in which

individuals are ranked according to the number of dominating decision variables. The population

is sorted according to these rankings, and a raw fitness value is assigned to each individual. The

final fitness value of each individual is averaged and then shared among those individuals with

the same rankings.

The next three algorithms (SPEA, NPGA, and NSGA) are relatively recent and more

popular than other evolutionary multi-objective optimization algorithms, and for those reasons

15

were chosen for more detailed examinations in the following sections. The new algorithm

proposed in this dissertation will be compared to these algorithms to demonstrate its superiority.

Figure 2.1 shows the relationships among individual space, decision space, and objective space.

Individuals are associated with the objective vector Y through the decision vector X. Each

individual is mapped to the decision variables by the function m(i), and decision variables are

linked with objectives by the function f(X).

Figure 2.1 Relationship between spaces

2.1.1 SPEA AND SPEA2 ALGORITHMS

Zitzler (1999) proposed the evolutionary algorithm for multiobjective optimization, the

strength Pareto evolutionary algorithm (SPEA). This algorithm includes an external set of non-

dominated fronts, and the fitness of a population member was determined only from the

individuals stored in the external set. All of those individuals participated in the selection for the

next generation. A new Pareto-based niching method was used to preserve diversity in the

population. If the size of the updated archive exceeded a predefined limit, more archive members

were deleted through a clustering technique, which preserved the characteristics of the non-

16

dominated front. Afterward, fitness values were assigned to members of both the archive and the

population:

 Each individual i in the archive was assigned a strength value S(i), which represented

its fitness value F(i). S(i) was the number of population members j that were

dominated by i with respect to the objective values, divided by the population size

plus one.

 The fitness F(j) of an individual j in the population was calculated by summing the

strength values S(i) of all archive members i that dominate j, and then adding one at

the end.

The mating selection was accomplished by means of binary tournaments. The fitness was

minimized. Each individual in the archive had a higher chance of being selected than any

population member. Finally, following crossovers and mutations, the old population was

replaced by the resulting offspring population.

The details of the SPEA are shown below:

SPEA

Input: N --- population size

N′ --- maximum size of external set

T --- maximum number of generations

 Pt --- generation t

 --- external set t

Pc --- crossover probability

Pm --- mutation rate

Output: A --- non-dominated set

17

Step 1: Initiation:

Generate an initial population Po with probability of 1 (i.e., pick N data points between a

and b randomly, which amount to the population size N), create the external set = Ø, and set t

= 0.

Step 2: Update of external set:

Set the temporary external set P′ = Pt.

Copy individuals whose decision vectors are non-dominated regarding m(Pt) to P′:

P′ = P′ + {i| i Pt m(i) p(m(Pt))}

As long as there exists a pair (i, j) with i, j P′ and m(i) m(j), then P′ = P′ – {j}.

Reduce the number of externally stored individuals by means of clustering.

Call the clustering algorithm with parameters P′ and and assign the resulting reduced

set to t+1.

Step 3: Fitness assignment:

Calculate the fitness values of the individuals in Pt and t by the following steps:

Each individual i t is assigned a real value S(i) [0,1], called its strength; S(i) is proportional

to the number of population members j Pt for which m(i) ≥ m(j):

The fitness of i is equal to its strength: F(i) = S(i).

The fitness of an individual j Pt is calculated by summing the strengths of all externally

stored individuals i t whose decision vectors weakly dominate m(j). Zitzler added one to the

total to guarantee that members of t have better fitness than members of Pt (the smaller the

fitness, the better):

F(j) = 1 + where F(j)

18

Step 4: Selection:

Set P′ = Ø. For i = 1, . . . , N, do:

Select two individuals i, j at random.

If F(i) < F(j), then P′ = P′ + {i}; otherwise, P′ = P′ + {j}.

Step 5: Crossover:

Set P′′ = Ø for i = 1, . . . , N/2, do:

Randomly choose two individuals i, j P′ and remove them from P′.

Randomly select a cut point and cross over at the selected cut to create children k, l I.

Add k, l to P′′ with probability pc.

Step 6 Mutation:

Set P′′′ = Ø for each individual i P′′, then do:

Mutate i with mutation probability pm.

Set P′′′ = P′′′ + {i}.

Step 7 Termination:

Set Pt+1 = P′′′ and t = t+1. If t ≥ T or another stopping criterion is satisfied, then set O =

p(m(t)); otherwise, go to step 2.

Constraints handling:

 Zitzler(1999) implemented a greedy repair method that produced the best outcome among all

algorithms applied to the multiobjective 0/1 knapsack problem. The repair was based upon a

predefined scheme. Because many coding lead to infeasible solutions, the mapping function m(i)

defined a simple repair method that decodes an individual i according to the following scheme:

set x = i; then remove step by step items from x as long as any capacity constraints was violated.

19

The order in which the items were deleted was determined by the maximum profit/weight ratio

per item: for item j the maximum profit/weight ratio qj was determined by:

 The items were considered in increasing order of the qj , those items achieving the lowest

profit per weight unit were removed first. The mechanism intends to fulfill the capacity

constraints while diminishing the overall profit as little as possible.

One drawback of the SPEA is that, when many individuals have the same fitness, the

algorithm becomes inefficient. Noticing this possible deficiency, Zitzler (2001) improved the

SPEA by providing the following elements:

 An improved fitness assignment scheme

 A nearest-neighbor density estimation technique

 New archive truncation methods that guarantee the preservation of boundary

solutions

Unlike SPEA, the newly improved algorithm SPEA2 uses a fine-grained fitness

assignment strategy that incorporates density information. Furthermore, the archive size is fixed.

When the number of non-dominated individuals is less than the predefined archive size, the

archive is filled by dominated individuals; with SPEA, however, archive size may vary over

time. Moreover, the clustering technique, which is invoked when the non-dominated front

exceeds the archive limit, is replaced by an alternative truncation method, which has similar

features but does not lose boundary points. Another difference between SPEA and SPEA2 is that

the latter only has members of the archive participate in the mating selection process.

In SPEA2, to avoid the situation in which individuals dominated by the same archive

members have identical fitness values, both the dominating and dominated solutions are taken

20

into account for each individual. Each individual i in archive and population Pt is assigned a

strength value S(i), which represents the number of solutions it dominates:

S(i) = |{j | j + ʌ }|

where |.| denotes the cardinality of a set, + stands for a multi-set union, and the symbol

 corresponds to the Pareto dominance relationship. The raw fitness R(i) of an individual i is

calculated as follows:

 Here, raw fitness is determined by the strength of the dominators in both the archive and the

population, whereas in SPEA only archive members are considered in this content. Fitness is

minimized here. Although the raw fitness assignment provides a niching mechanism based on

the concept of Pareto dominance, it may fail when most individuals fail to dominate one another.

Additional density information is incorporated to allow for discrimination among individuals

with the same raw fitness values. This is accomplished by introducing a density parameter called

the kth nearest-neighbor method (Silverman 1986), in which the density at any point is a function

of the distance to the kth nearest data point.

Suggested by Silverman, the parameter k is chosen as such:

For each individual i, the distances in objective space to all individuals j in archive and

population are calculated and stored in a matrix. After sorting the matrix in increasing order, the

kth element gives the distance sought, denoted as
 . The density D(i) corresponding to i is

defined by

21

Two is added to the denominator to ensure that its value is greater than 0 and that D(i) <

1. Finally, D(i) is added to the raw fitness value R(i) of an individual i, which yields its fitness

F(i):

F(i) = R(i) + D(i)

All non-dominated individuals (i.e., those have fitness lower than 1), from archive and

population are added to the archive of the next generation:

In SPEA2, this archive update operation (step 3 in the SPEA algorithm) differs in two

areas. First, the number of individuals contained in the archive is constant over time. When the

number of individuals selected to fill the archive is less than a predefined archive size, the best-

dominated individuals in the previous archive and population are copied to the new archive.

If the archive is too large, the truncation method is employed iteratively to prevent the

removal of boundary solutions. At the first iteration, a distance matrix is created between every

two individuals (sample distance matrix of 12 individuals) in the archive and sorted in ascending

order, as shown in table 2.1.

Table 2.1 Sample Distances between 12 Individuals

1 2 3 4 5 6 7 8 9 10 11 12

1 230 1410 2200 3420 3660 4290 8120 9440 9660 10250 10700 11790

2 3590 6030 8320 9390 14410 18800 21170 22670 25200 26460 28290 30130

3 6620 10900 11140 12180 12290 14560 15570 17160 17550 20430 21610 21840

4 1740 3530 8730 10340 11440 15810 16450 22700 34060 57460 75860 82160

5 2980 5480 8740 8910 11100 12430 15220 15830 19150 20060 20220 23510

6 50 570 1920 3620 4520 4590 5880 7470 9140 10120 10710 13620

7 1040 2790 3360 4700 5300 10360 11900 12710 12810 13000 14030 18490

8 240 1220 3420 3650 4700 4830 6020 6830 7710 8370 13080 13430

9 810 1540 2130 6590 6600 6830 8050 10250 10480 11660 11900 12940

10 900 3050 3570 3620 5520 5540 6500 8210 9500 10000 11090 11740

11 910 4230 8960 14580 17060 17310 20060 20980 22240 23040 24770 26270

12 380 6300 8520 24700 27850 30790 39270 58170 59240 63970 67560 71820

22

Starting from the first column of table 2.1, the individual that has the smallest distance

will be taken out to reduce cluster. When multiple individuals have the same distance, the

selection process is re-sorted to the next column, and so on. The same procedure continues until

the total number in the next archive equals the predefined value. The constraint handling in

SPEA2 was the same as that in SPEA which used a greedy repair method.

2.1.2 NSGA AND NSGA II ALGORITHMS

Srinivas and Deb (1994) developed the most direct implementation of Goldberg’s sketch.

The different trade-off fronts in the population were peeled off step by step, and fitness sharing

was performed separately for each front. The algorithm is detailed as follows:

Input: N --- population size

Nmax --- maximum number of non-dominated solutions

 T --- maximum number of generations

 Pc --- crossover rate

 Pm --- mutation rate

 --- niche radius

 tdom --- domination pressure

 Pt --- generation t

Output: O --- non-dominated set

Step 1: Initialization:

Set Po = Ø and t = 0.

For i = 1, . . . , N, do:

Choose i I randomly.

Set Po = Po + {i}.

Step 2: Fitness assignment and selection of mating pool:

23

Set Premain = Pt and initialize the dummy fitness value Fd with N.

Determine set Pnondom of individuals in Premain whose decision vectors are non-dominated

with regard to m(Premain).

Delete Pnondom in the further classification process (Premain = Premain – Pnondom).

Set the raw fitness of individuals in Pnondom to Fd and perform fitness sharing in the

decision space (only within Pnondom).

Decrease the dummy fitness value Fd, such that it is lower than the smallest fitness in

Pnondom:

0 < Fd < min{F(i) | i Pnondom}

If Premain Ø, then go to (b); otherwise, stop.

Step 3: Crossover:

Set P2 = Ø for i = 1, . . . , N/2

do:

Randomly choose two individuals i, j P1 and remove them from P1.

Randomly select a cut point, then cross over at the selected cut to create children k, l I.

Add k, l to P2 with probability pc.

Step 4: Mutation:

Set P3 = Ø, then, for each individual i P2, do:

Mutate i with mutation probability pm.

Set P3 = P3 + {i}

Step 5: Termination:

Set Pt+1 = P3 and t = t + 1

24

If t ≥ T or the number of non-dominating individuals> Nmax, then set O = ƒ(m(Pt+1));

otherwise, go to step 2.

Srinivas and Deb(1995) transformed the testing problem F3 used into an unconstrained

optimization problem using an exterior penalty function. This problem was used to test NSGA’s

ability in optimizing multi-parameter problems as well as handling constrained search spaces.

F3: Minimize , and

 Subject to

Both objectives were penalized if any point lies in the infeasible region. The exterior

penalty function is shown below:

Where g(x) is inequality constraints, and h(x) is equality constraint.

Deb (2002) introduced a fast and elitist MOGA algorithm, the non-dominated sorting

genetic algorithm (NSGA II), which improved on the original non-dominated sorting genetic

algorithm (NSGA) in the following ways: finding a diverse set of solutions and converging near

the true Pareto-optimal set.

To begin NSGA II, one first randomly generates a population P1 with a size of Np

solutions and then sorts the solutions in P1 into several fronts of non-dominated solutions. To

preserve the diversity of the non-dominated solutions, a crowding distance is evaluated. The

original NSGA used the well-known fitness-sharing approach, which has been found to maintain

sustainable diversity in a population, given appropriate settings of the associated parameters. The

sharing function method involves the sharing parameter σ, which sets the extent of sharing

25

desired in a problem. There are two challenges with this sharing function approach: the

performance of the algorithm largely depends on the sharing parameter set by the user, and,

because each solution must be compared with all other solutions in the population, the overall

complexity of the sharing function approach is O(N
2
).

In NSGA II, the sharing-function approach is replaced by a crowding-comparison

approach that eliminates both of the above difficulties to some extent. This new approach does

not require any user-defined parameter to maintain diversity among population members. The

crowding-distance computation requires that the population be sorted in ascending order

according to each objective function value. Thereafter, for each objective function, the boundary

solutions are assigned large values. All other solutions are assigned distance values equal to the

absolute normalized difference in the function values of two adjacent solutions, as shown in

figure 2.2. The new generation of solutions is selected according to both front values and

crowding distances. Figure 2.2 illustrated the components of crowding distance in the case of

two objective functions. The crowding distance at point i is the summation of two fractions:

C(i)distance =

Figure 2.2 Crowding distances (not normalized)

26

Considering the chromosomes obtained using the tournament selection operator for P1,

the offspring population O1 is created with respect to the crossover rate (Pc) and the mutation rate

(Pm). After merging P1 and O1 to form Rt, the algorithm sorts Rt in several non-dominated fronts

Fi, where the best Fis form the next population Pt+1. This process is illustrated in figure 2.3.

Between two solutions with different non-domination ranks, the solution with the lower

(better) rank is selected. Otherwise, if both solutions belong to the same front, the solution that is

located in the less crowded region prevails. To maintain a size of Np for the next generation, not

all solutions are kept. The selection process is illustrated in figure 2.4.

In a recent study, Bhattacharya (2010) used NSGA II to solve a conflicting bi-objective

facility location problem. With the application of NSGA II, Bhattacharya was confident that

more objectives could be introduced into the model in the future, along with their uncertainties or

fuzziness. The following naming convention was used in the NSGA II algorithm, as shown in

figure 2.3:

Np --- number of population

It --- number of total iterations

Pc --- probability of crossover

Pm – probability of mutation

Pt --- parents’ population of generation t

Ot ---- offspring population of generation t

P t+1---parents’ population of generation t+1

27

Figure 2.3 NSGA II algorithm

Figure 2.4 NSGA II new generation selection process

28

Figure 2.4 shows the progression from generation t to generation t+1 in NSGA II. First, a

combined population Rt = Pt U Ot is formed. Then the population Rt is sorted according to non-

domination. Solutions belonging to the best non-dominated set F1 are the best solutions in the

combined population. If the size of F1 is smaller than N, solutions from the set F2 are chosen

next, followed by solutions from the set F3, and so on. To choose exactly N population members,

the solutions of the last front Fl are sorted by the crowding distance, and the best solutions

needed to fill all population slots are chosen as shown in figure 2.4.

2.1.2 CONSTRAINT HANDLING BY NSGA II

Deb (2002) proposed a constraint-handling method using the binary tournament

selection, in which two solutions were picked from the population and there may be, at most,

three situations:

1. Both solutions are feasible.

2. One is feasible and other is not.

3. Both are infeasible.

Deb gave the definition of constraint dominance such that solution i is said to be a

constrained-dominate solution j if:

1) Solution i is feasible and solution j is not;

2) Solutions i and j are both infeasible, but solution i has a smaller overall constraint

violation; or

3) Solutions i and j are feasible, and solution i dominates solution j.

 The effect of using this constrained-domination principle is that any feasible solution has a

better non-domination rank than any infeasible solution. All feasible solutions are ranked

according to their non-domination level based on the objective function values. Among two

29

infeasible solutions, the one with a smaller constrain violation has a better rank. An infeasible

solution’s having a larger overall constraint-violation was classified as a member of a larger non-

domination level.

Sadeghi et al. (2013) implemented NSGA II in the field of supply chain management

(SCM) in the context of vendor-managed inventory (VMI). One of the most important issues in

SCM is inventory management. Many strategies have been attempted, including quick response

(QR), advanced continuous replenishment (ACR), and VMI. Sadeghi extended Zavanella’s

(2009) VMI model and proposed a bi-objective VMI of a supply chain consisting of a single

vendor and multiple retailers. The first objective was the minimization of total chain cost,

including production, ordering, holding, and transportation. The second objective was the

maximized reliability of the production system using the redundancy allocation problem

approach. The goal was to determine the order size, the replenishment frequency of the retailers,

the routing tour, and the number of machines of different types in series. Through this approach,

the above two objectives were simultaneously optimized.

In addition, there were five constraints. First, the retailer’s warehouse had a

predetermined, limited space; second, the average inventory level of the vendor was restricted to

an upper bound; third, the replenishment frequency was limited; fourth, the space required for

machine installation was constrained; and fifth, there was an upper bound for the budget to

provide the machines. Moreover, the vendor determined the shortest route to deliver goods in

order to reduce transportation costs. A comparison of three different types of algorithms,

including the new algorithm introduced in this dissertation, which can be used to solve this

multiobjective optimization problem, is shown in chapter 7.

30

2.1.3 NPGA Algorithm

The niched Pareto genetic algorithm (NPGA), proposed by Horn and Nafpliolis (1993),

combines tournament selection and the concept of Pareto dominance in the following way:

Input: N --- population size

Nmax --- maximum number of non-dominated solutions

 T --- maximum number of generations

 Pc --- crossover rate

 Pm --- mutation rate

 --- niche radius

 tdom --- domination pressure

 Pt --- generation t

Output: O --- non-dominated set

Step 1: Initialization:

Set Po = Ø and t = 0.

For i = 1, . . . , N, do:

Choose i I randomly.

Set Po = Po + {i}.

Step 2: Fitness assignment and selection of mating pool:

Set i = 1 and P1 = Ø.

Select two competitors i, j Pt and a comparison set Pdom of tdom individuals at

random.

If m(i) (decision variable) is non-dominated with respect to Pdom and m(j) is not, then i is

the winner of the tournament.

P1 = P1 + {i}

31

Otherwise, if m(j) (decision variable) is non-dominated with respect to Pdom and m(i) is not, then j

is the winner of the tournament.

P1 = P1 + {j}

Otherwise, the tournament is decided by fitness sharing:

Calculate the number of individuals in the partially filled mating pool that are within

distance of i and j:

n(i) = {k | k P1 d(i,k) < }

n(j) = {k | k P1 d(j,k) < }

If n(i) < n(j), then P1 = P1 + {i}; otherwise, P1 = P1 + {j}.

Step 3: Crossover:

Set P2 = Ø for i = 1, . . . , N/2, then do:

Randomly choose two individuals i, j P1 and remove them from P1.

Randomly select a cut point, then cross over at the selected cut to create children k, l I.

Add k, l to P2 with probability pc.

Step 4: Mutation:

Set P3 = Ø for each individual i P2, then do:

Mutate i with mutation probability pm.

Set P3 = P3 + {i}.

Step 5: Termination:

Set Pt+1 = P3 and t = t + 1.

If t ≥ T or the number of non-dominating > Nmax, then set O =ƒ(m(Pt+1)).

Otherwise, go to step 2.

32

2.2 SHORT SURVEY OF META-HEURISTIC ALGORITHMS IN MULTIOBJECTIVE

OPTIMIZATION

Many comparative studies have been performed in metaheuristic methods applied to

system optimization to identify the best solution technique. Dorn et al. (1996) examined four

heuristic methods in the context of the schedule optimization problem: iterative deepening,

random search, TS, and genetic algorithms. They developed a methodology to satisfy the given

controversial constraints gradually, allowing them to reach results in a timely manner. Their

work was developed through the attempted building of reusable scheduling software. Their

results showed that, for the studied application, iterative deepening and TS are better suited than

random search and genetic algorithms.

Sexton (1999) conducted a comparative study of genetic algorithms and simulated

annealing to optimize neural networks. The application of artificial neural networks (ANNs) has

become increasingly popular due to its ability to approximate unknown functions. The author

examined test problems and two real-world problems. The ANN was held constant at six hidden

nodes for the GA and SA for the purpose of comparison only. Sexton concluded that the GA

appeared able to systematically obtain better solutions, regarding optimizing neural networks,

than SA could obtain. Youssef (2001) explored three general iterative algorithms for

combinatorial optimization problems: EAs, SA, and TS. Youssef summarizes the following

similarities among the three optimization heuristics:

 They are approximation algorithms and do not guarantee the finding of an optimal

solution.

 They are blind and do not know when to stop.

 They have a hill-climbing property, such that they occasionally accept uphill moves.

33

 They are general and can be easily applied to any combinatorial optimization

problem.

 Under certain conditions, those algorithms asymptotically converge to an optimal

solution.

Youssef used two measures, the time complexity of the algorithm and the quality of the

solution, to perform a comparison in the context of the floor-planning problem. The objective

function is a vector function:

where x is a particular floor-plan solution.

To solve this problem, Youssef introduced fuzzy logic into the study. Only one linguistic

value was defined for each variable (i.e., area, length, delay). The degree of satisfaction was

described by membership functions for fuzzy sets of linguistic values: small area, short length,

and low delay. Youssef compared GA, SA, and TS based on

 quality of the best solution

 progress of the search from the initial solution to the point at which the stopping

criteria are met

 iteration count

 the number of solutions found at successive intervals of the cost function

 With respect to these measures, TS ranked first, GA ranked second, and SA ranked third;

however, this result has its limitations. As Youssef (2001) mentioned, the intention was to study

the behaviors of the three heuristics in solving a hard engineering problem, not to demonstrate

the superiority of one algorithm over another in all problem domains. Aytug (2002) conducted a

comparative study in the context of facility location allocation optimization problems. The focus

34

was on those genetic algorithms with nonlinear objective functions. Two types of Gas—GALS

and Gas—were coded, and their results were compared to those found using Daskin’s heuristics

method. Daskin (1980) developed a single-nod substitution heuristics method to maximize

expected coverage with a system-wide probability p.

Maximum

In examining four approaches to solving large-scale maximum expected coverage

location problems, Aytug found that the GA approach generated high-quality solutions within

predictable times. Daskin’s heuristic approach produced better-quality solutions than the GA, but

it was computationally cumbersome. Ruiz (2005) evaluated several heuristics for the flow shop

problem. The contribution was to include more recent available heuristics and five meta-

heuristics for this specific optimization problem. Ruiz used the standard test of Taillad (1993),

which included 120 benchmark instances. The objective of the flow shop optimization problem

was to minimize total completion time. To accomplish this, Ruiz evaluated a total of 25 heuristic

methods. The stopping criterion for all of the meta-heuristic methods tested was a maximum of

50,000 makespan evaluations. Ruiz performed a design of experiments and an analysis of

variance on the results of 15 different optimization algorithms. Ruiz determined the validity of

the experiments by carefully checking three hypotheses: normality, homogeneity of variance,

and independence of residuals. By allowing 60 seconds for every 1,000 jobs in the problem, Ruiz

found that the feature that affected CPU time the most was the number of jobs. An ANOVA

analysis indicates whether or not there are statistically significant differences between

algorithms. With respect to the meta-heuristics algorithms, the GAs of Reeves (1993) and

Stutzle’s (1998) ILSs were better than all of the other methods. With respect to the permutation

flow shop maximum makespan problem, the GA was better than the TS method.

35

Arostegui (2006) compared the relative performances of TS, SA, and GA on various

types of facility location problems (FLP). Capacitated FLP, multi-period FLP, and multi-

commodity FLP, three variations of facility location problems, were examined to compare the

performances of TS, SA, and GA. This FLP study was the first to compare TS, GA, and SA

using more than one classical facility location problem type. Arostegui discovered that GA was

superior in the solution-limited evaluations. TS showed very good performance for all types of

FLPs in the time-limited evaluation.

2.2.1 TABU SEARCH

Tabu search (TS) is a metaheuristic technique that guides a local heuristic search

procedure to explore the solution space beyond local optimality. TS enhances the performance of

local search methods by using memory structures. Once a potential solution has been

determined, it is marked as “taboo” (“tabu” being a different spelling of the same word), and the

algorithm does not visit that possibility again. This search method is attributed to Glover (1993).

Local search procedures often become stuck in poor-scoring areas (i.e., where the system

reliability stays flat). To avoid these pitfalls, TS carefully explores the neighborhood of each

solution as the search progresses. The solutions admitted to the new neighborhood, are

determined through the use of memory structures. Using these memory structures, the search

progresses by iteratively moving from the current solution to an improved solution in

. These memory structures form what is known as the tabu list, a set of rules and banned

solutions used to filter what solutions will be admitted to the neighborhood to be

explored by the search. In its simplest form, a tabu list is a short-term set of those solutions that

have been visited in the recent past (less than iterations ago, where is the number of

previous solutions to be stored; is also called the “tabu tenure”).

36

The memory structures used in TS can be divided into three categories:

 Short-term: the list of solutions recently considered. If a potential solution appears

on this list, it cannot be revisited until it reaches an expiration point.

 Intermediate-term: a list of rules intended to bias the search toward promising

areas of the search space.

 Long-term: a list of rules that promote diversity in the search process (i.e., with

regard to resets when the search becomes stuck in a plateau or a suboptimal dead-

end).

2.2.2 SIMULATED ANNEALING

Simulated annealing (SA) is another generic probabilistic metaheuristic search method

for the global optimization problem in a large search space. The name and inspiration for SA

came from metallurgical annealing, a technique involving the heating and controlled cooling of a

material to increase the size of its crystals and reduce the number of defects in the material. In an

analogy of this physical process, each step of the SA algorithm replaces the current solution with

a random “nearby” solution, chosen with a probability that depends on the differences among

corresponding function values and on a global parameter T (simulating the cooling temperature),

which is gradually decreased during the process.

37

CHAPTER 3: AIRCRAFT STRUCTURAL RELIABILITY AND MOEA APPLICATIONS

This chapter provides a short survey on ensuring aircraft structural reliability and

applications of multiobjective evolutionary algorithms in real-world problems.

3.1 AIRCRAT STRUCTURAL RELIABILITY

Aircraft structural reliability is maintained by following three regulatory requirements:

safe-life, fail-safe, and damage tolerance. In the early time of aircraft manufacturing, all civil

aircraft had to be designed safe-life. This philosophy requires that no cracks of a certain size

occur during the entire design service life. Later, the concepts of fail-safe and damage tolerance

were introduced. Being fail-safe requires that the aircraft structure be able to sustain strength

under a limit load. Damage tolerance is the concept that frequent human inspections will allow

early detection of cracks developed through slow crack growth. In recent years, initial and repeat

inspections have been triggered by structural health monitoring systems. The concept of

conditional inspection has been gaining ground, leading to reduced inspection costs and

increased mission availability.

The typical design philosophy is to satisfy the safe-life requirement at longitudinal joints

of wing panels and longitudinal lap joints of fuselage skin, and to meet the fail-safe and damage

tolerance requirements for the rest of the primary structure of the airframe. Landing gears are

usually designed for safe life. The use of crack growth damage tolerance as a substantiation

methodology for airframe has been received increasing attention as a logical and viable

improvement in fatigue reliability and structural integrity.

Metal fatigue still plays an important role in the design of modern optimized aircraft. The

ability to design accurately against the probability of fatigue failures is crucial. Ensuring

simultaneous reliability, high durability, minimal weight, and low cost constitute the main

38

challenge. A key element of the airframe design and certification process is the full-scale fatigue

test (FSFT), which seeks to:

 Representatively exercise the structure to discover where fatigue cracking may occur;

 Determine the economic life and the safe-life of the major structural components under

an operationally representative loads spectrum;

 Validate modifications and repairs required for early cracking; and

 Build an engineering database for life-cycle fleet management.

 A full-scale fatigue test applies cyclic loading to the entire airframe for two lifetimes. The

cyclic loading is designed to simulate the operational loading environment in a compact form

due to a limited testing budget. Actuators apply cyclic loadings on the wing, fuselage, and

vertical fin. The horizontal stabilizers are usually tested off of the aircraft as a component test.

The applied loads are equivalent to aerodynamic and inertia loadings that the aircraft would

experience during normal operations. The applied point loads, driven by actuators, are

determined by aerodynamic and finite element analyses. Simulating the aerodynamic pressures,

inertial loads, and internal pressures using a system of discrete loading rams or jacks presents a

significant challenge in the ground testing of a complete airframe. The jack loads required to

simulate each of the design fatigue conditions were defined and then applied to a vehicle-level

finite element model (FEM) of the test article. Missions predefined by the customers were mixed

together randomly to simulate a lifetime operational usage. This spectrum load sequence, to be

applied on the airframe during full-scale fatigue testing, is generally obtained from the flight data

records of previous flights. Considering fatigue loads in various types of missions for which the

aircraft is used and a statistical mix of these missions, a representative flight load spectrum block

was derived.

39

Molent (2006) compared full-scale airframe fatigue test results from several aircraft,

including F/A-18s, F-16s, and P-3Cs. These military aircraft were designed according to

different requirements and different design regulations; any shared data apparent from those

FSFT results would be highly valuable. Molent concluded as a result of this review that a

relatively simple crack-growth model can adequately represent typical crack growth and that this

model can be used to help optimize fatigue design so that an airframe will survive the

certification fatigue test requirements.

Molent discovered that crack growth was basically exponential. Lead cracks start to grow

early in the service life. Under the assumption that critical cracks commence growth shortly after

the aircraft is introduced into service, whereas lead cracks grow exponentially with time, the

simple CG model can be expressed as follows:

Ln(a) = ᴪN + Ln(ao)

Where N is the “fatigue life”, ᴪ is a parameter that is geometry, material and load

spectrum dependent,” a” is the initial crack-like size of the discontinuity from which the crack

starts at the start of loading. The presence of cracks found in these tests indicates that, despite the

best efforts of designers, fatigue cracking is likely to develop in all airframes in service, and an

FSFT is required to reveal these to allow analysis of their importance to the life of the airframes.

The worst possible fatigue scenario is the presence of the largest crack-like discontinuity in the

airframe coincident with the locations of maximum cyclic stresses. Normally, cracks discovered

in FSFT occur due to poor fatigue detail designs that were somehow ignored by routine fatigue

analysis.

40

3.2 MOEA REAL-WORLD APPLICATIONS

Aerospace design optimization usually focuses on the effects of structural performance

and aerodynamics on the geometry of an airframe component. In the past decade, there have

been many attempts to develop compromised solutions incorporating manufacturing cost and

fatigue life models into an integrated system in order to balance the conflicting objectives of

minimizing weight and manufacturing cost while maintaining structural integrity and fatigue

reliability.

Huque [2012] provided a computational fluid dynamics (CFD) and response surface-

based multiobjective design optimization method. The Pareto-optimal front of six different 2-D

airfoil profiles was presented. The standard least square method was used to generate response

surface. The elitist non-dominated sorting genetic algorithm (NSGA-II) was used to determine

the Pareto-optimal set based on the response surfaces. This research was carried out in the

following steps:

 Identify several airfoil profiles with their geometric coordinates.

 Perform CFD simulations around the airfoils based on Re (Reynolds number) and α

(angle of attack).

 Determine response surfaces for lift and drag coefficients as a function of Re and α.

 Perform the optimization using NSGA-II which used the following input parameters:

1. Population size: 100

2. Generations: 250

3. Crossover probability: 1.0

4. Distribution parameter (for crossover): 20

5. Mutation probability: 0.25

41

6. Distribution parameter (for mutation): 200

Rao (2007) applied multiobjective cost and weight optimization to the initial design of

turbine disks. Rao et al. did a case study on a design of high-pressure turbine disk from an

aircraft engine. Rao et al. discovered that optimization with cost as the objective function has

been rarely used in the past for a number of reasons:

 Lack of detailed information for accurately determining the cost of manufacture at the

design stage

 Difficulty modeling manufacturing cost in terms of geometry parameters and design

variables

 Minimizing mass or weight considered analogous to minimizing cost

Rao et al. developed an integrated optimization system including computer-aided design

(CAD), finite element analysis, cost estimation, and fatigue life prediction models within a

MATLAB script environment. The goals were to demonstrate an MDO process driven by cost

and structural performance; and to show that there is a definite difference between minimizing

weight and minimizing cost in finding the optimal shape of a high-pressure turbine disk in a civil

aircraft engine.

The cost calculations for every process are embedded in an object-oriented environment

and treated as black-box models reused interactively by the designer. This is a bicriteria

optimization problem in which the goals are to minimize both volume and manufacturing cost.

Turbine disk-lifting methods fundamentally affect safe component life, material usage, and

maintenance procedures; an optimization of the disk profile should account for those methods’

fatigue effects. The material’s S-N curve was used, and the modified Goodman relationship was

42

used to incorporate the mean stress effects because fatigue loading is not fully reversible in disk

design.

Many MOEA algorithms have matured over the years, with a newly emergent breed of

hybrid algorithms combining the benefits of two different types of optimization methodologies to

develop higher-performance new MOEAs. For a tailless delta wing aircraft, unfavorable

aeroelastic responses can be suppressed with the help of active control. Maneuver load

alleviation (MLA) is the concept of redistribution of forces and moments on airframes through

the optimal actuation of control surfaces.

Suresh (2013) presented a hybrid optimization algorithm combining the heuristic-based

NSGA-II with calculus-based, goal-programming methods for minimizing the tailless delta wing

root bending and twisting movements. The constraints were stability equations and limitations on

actuator hinge movements. The primary objective of Suresh’s paper was to present a hybrid

method to promote superior spread and faster convergence than NSGA-II, with an accurate

Pareto front. The optimization was carried out in two phases. In the first phase, which entailed an

initial 50 generations, the problem was solved by the NSGA-II method; the second phase used

the goal-programming method. The result from the first Pareto-ranked solution at the 50th

generation was captured with the goal of identifying the ideal objective vector, and the pseudo

weights were assigned according to the position of the population on the Pareto front. For this

type of MLA problem, the hybrid method performed much better in terms of spread, accuracy,

and speed of convergence than did the conventional NSGA-II and goal-programming methods.

The hybrid method led to a maximum 10% savings in computational time.

The next chapter presents an innovative hybrid method combining a metaheuristic tabu

search with evolutionary genetic algorithms. After the introduction of TSEA, this hybrid MOEA

43

algorithm is applied to aircraft structural reliability problems to maximize the aircraft horizontal

stabilizer reliability and minimize the retrofitting cost during fatigue testing. Further chapters

also compare TSEA with other metaheuristic algorithms for real-world and other applications.

TSEA applies the concept of tabu search and uses tabu list memory aid to guide the genetic

algorithm to search the Pareto-optimal front. The tabu list serves as a moving boundary to

accelerate the search toward the Pareto-optimal front with good spread.

44

CHAPTER 4: TABU SEARCH EVOLUTIONARY ALGORITHM (TSEA)

Inspired by the efficiency of the metaheuristic tabu search and many state-of-the-art

MOEAs, an innovative, hybrid tabu search evolutionary algorithm (TSEA) is provided in this

dissertation. TSEA combines the advantages of tabu search memory structure and non-

dominated sorting genetic algorithms to improve the performance of multiobjective system

optimizations. This new algorithm provides an effective methodology for tackling real-world

multiobjective system optimization problems that are nonconvex, wherein the objective

functions cannot even be explicitly written. The effectiveness of the innovative algorithm TSEA

is demonstrated in its application to commonly accepted testing problems and to large, complex

real-world applications. The results obtained from both sets of applications are compared with

state-of-the-art MOEAs in chapters 5, 6, and 7.

4.1 MATHEMATICAL MODEL

The proposed hybrid TS and evolutionary algorithm TSEA focuses on solving

multiobjective optimization problems (MOP) as shown below:

MOP1:

 Max

 subject to

 where

x is the decision vector, X is the decision space,

y is the objective vector, and Y is the objective space.

45

4.2 FITNESS ASSIGNMENT AND FITNESS SHARING

The fitness of the population is based on its Pareto-optimal status. The purpose of the

fitness function is to guide the search algorithm toward the Pareto front. Therefore, it is crucial to

choose the most effective fitness function for multiobjective optimization problems. This

algorithm is built on the NSGA and involves finding the Pareto fronts one layer at a time. The

fitness is assigned by peeling off each layer of non-dominated individuals as their rankings. Non-

dominated solutions make up the first layer, as shown in figure 4.1, and are selected among all

current populations. Then solutions of layer 1 are removed from the pool for selecting non-

dominated solution layer 2, and so on. At the end, the number of individuals in the pool is less

than the predefined tabu list size and all members in the pool (last layer) go onto the tabu list, as

shown in figure 4.1. All individuals in a given layer share the same fitness.

Figure 4.1 Formation of tabu list

46

4.3 TABU DISTANCE TO REINE FITNESS

The fitness values defined by non-dominating ranks may not be sufficient for the later

binary tournament selection process, especially when many individuals are dominated by the

same set of non-dominated individuals. The selection for the next generation is performed

through crossover and mutation. When selecting the parents, a binary tournament selection with

replacement is based on the fitness of the two selected individuals. If they have the same fitness,

a tabu distance (TD) is introduced to separate them. TD is determined as the average distance an

individual with respect to the entire tabu population, as shown in figure 4.2. This tabu distance is

added to the fitness to promote diversity in the solutions. When selecting a new parent, the one

with larger tabu distance (i.e., farther away from the tabu list (tabu population) is always selected

to increase the spread in the solutions.

Figure 4.2 Tabu distance

47

4.4 TABU SEARCH TO GUIDE EVOLUTIONARY SEARCH ALGORITHMS

The purpose of this research is to provide an innovative evolutionary algorithm guided by

tabu search to explore new ways for multiobjective GA optimization to converge to the Pareto-

optimal front effectively. Following is a detailed introduction of TSEA.

Predetermine the following parameters:

N --- population size

Tmax --- maximum of number of iterations

Build the initial population P0, which represents the entire decision space. Build an empty

tabu list.

Randomly select a subset of P0 as the prepopulation Pp of size N and check with the tabu

list (if it is not empty).

While iter < Tmax

Step 1: Find all feasible solutions from previous population Pp:

While the population is currently not empty, do:

Find all non-dominated solutions, and assign the fitness of i = i + 1 (last batch has the

fitness of k).

Remove all non-dominated solutions from the current population.

Step 2: Move the last group of individuals to the tabu list.

Step 3: Build the current population Pt:

Select all individuals with fitness values of 1, . . . (k–1).

For the rest of the slots of the current population:

 Fill with randomly selected feasible solutions from the individual space

 For the entire new population, calculate the tabu distance, which is defined as the

average distance from an individual to all individuals in the tabu set.

48

Step 4: Crossover:

 Select two parents from current population using the binary tournament approach.

The parent that has lower fitness (fitness is to be minimized) prevails.

 When two individuals have the same fitness, selection is based on the tabu distance.

 Perform a crossover operation on the current population and accept the offspring

based upon the crossover probability pc.

 If the crossover is given a go-ahead, two parents are selected by the binary

tournament approach. If the two individuals have the same fitness value, then the one

with the larger tabu distance is selected.

 All selected individuals in the new generation are then checked against the tabu list to

make sure none of them are on the tabu list.

Step 5: Mutation:

 Mutate the current population with a mutation rate of pm.

 Check with the tabu list before accepting any new individuals.

Step 6: Termination:

If iteration t < Tmax, go to step 1.

Otherwise, stop.

End while.

Choose the feasible and non-dominated solutions from the current population as the final

solutions.

The uniqueness of TSEA lies in the combination of a non-dominated fitness assignment

and a constantly moving tabu front formed from a tabu list (with long-term memory) to guide

and accelerate the search for the Pareto-optimal front without trapping in local optima. This new

49

metaheuristic algorithm offers superior performance when applied to bicriteria real-world

applications, as shown in sections 5 and 7. It converges faster than such state-of-the-art

algorithms as SPEA2 and NSGA II and provides more evenly spread-out Pareto-optimal

solutions than the other algorithms. TSEA is also applied to typical convex (problem number 1)

and nonconvex (problem number 2) testing problems as developed by Zitzler (2000) to

demonstrate its wide spectrum of effectiveness. The Pareto-optimal solutions are also compared

with those of state-of-the-art algorithms such as SPEA2 and NSGA II.

4.5 CONSTRAINT HANDLING

 Unlike the SPEA 2, which used a repair method, or the NSGA II, which used a constraint-

dominance, TSEA is designed for use in an interactive mode with the DM such that selected

constraints can be relaxed based upon the DM’s preference. After obtaining non-dominated

solutions near the Pareto-optimal front, a compromise programming ranking method is used, and

those infeasible non-dominated solutions are deleted at this time. All the rest of the constraints

are strictly enforced at every iteration.

50

CHAPTER 5: APPLICATION OF TSEA IN AIRCRAFT TAIL STRUCTURE RELIABILITY

OPTIMIZATION

Before a new type of military aircraft can go into production, full-scale fatigue tests are

usually conducted to ensure the aircraft has sufficient fatigue life and structural integrity. The

purpose of the fatigue test is to prove that the aircraft can sustain the entire test without cracking.

If test loading conditions are too severe, an optimized retrofitting plan is needed to reallocate

limited resources to ensure the completion of the test.

A decision support system (DSS) is needed to provide the flexibility and insight to

develop the retrofitting plans. The underlying database of fatigue damage rates is predetermined

by a reliability model. An innovative multiobjective optimization algorithm combining

metaheuristic tabu search with an evolutionary algorithm embedded in the DSS, TSEA helps

DMs select the best plan to execute prior to the airplane fatigue test; this way, aircraft can sustain

the fatigue test without needing to stop for repairs.

Potential fatigue-critical locations will be at the rear spar of each bay. Doublers or

stiffeners can be installed on the rear spar web to increase the strength and stiffness of the

horizontal tail structure. For real-world system reliability optimization problems, it is difficult

and sometimes unnecessary to obtain exact solutions. Rather, close-to-optimum solutions are

considered acceptable, especially under conflicting objectives such as cost. Figure 5.1 shows a

typical horizontal aircraft stabilizer.

51

Figure 5.1 Aircraft horizontal stabilizer

5.1 NEED FOR CONTINUED RESEARCH

The few difficulties related to GA multiobjective optimization recognized by Deb (1999)

included difficulties converging to a Pareto-optimal front and maintaining diversity in Pareto-

optimal fronts. Deb then proposed a simple construction methodology for building the tests for

objective functions from single-objective optimization problems. This allows a multiobjective

GA to be tested in a controlled manner on various aspects of problem difficulties. Deb suggested

the following areas for future research in developing better multiobjective GAs:

 comparisons of existing multiobjective GA implementations

 knowledge of the dynamics of GA populations with generations

 scalability of multiobjective GAs with several objectives

 development of constrained test problems for multiobjective optimization

52

 convergence to Pareto-optimal fronts

 definitions of appropriate multiobjective GA parameters (such as elitism)

 comparisons of two populations

 hybrid multiobjective GAs

 real-world applications

 multiobjective scheduling and other optimization problems

Janssens (2008) pointed to various future challenges in the area of evolutionary meta-

heuristics designed to solve multiobjective problems:

 how to efficiently generate the small set of non-dominant solutions that DMs

need

 how to properly approximate when the number of points on the Pareto curve

becomes exponentially large

 the need for further exploration of the performance and complexity of some

heuristics that have been proposed to construct an approximation of the curve

 the need to develop standards for evaluation and conduct more theoretical

work regarding quality evaluation

 an assessment of the computational complexity of maintaining the “archive”

of all non-dominated solutions obtained during the search process

5.2 PURPOSE OF THIS REAL-WORLD APPLICATION

Guliashki (2009) conducted a survey of evolutionary algorithms used in multiobjective

optimization problems and concluded, “At the next stage, the EMOO researchers concentrated

on developing better and computationally faster algorithms by means of scalable test problems

and adequate performance metrics to evaluate EMOO algorithms. One of the major aspects of

53

scientific research is the efficiency, which is regarded at algorithmic level and at a data structure

level.”

From what has been reviewed in the literature so far, multiobjective reliability

optimization based on real engineering problems has mostly been explored in the context of

solving typical problems such as floor planning, schedule optimization, “traveling salesman,”

redundancy allocations for integrated circuit boards, and so on. Because these real-world

problems are usually large and complex, metaheuristic methods such as GAs, SAs, and TSs are

often used. Many comparative studies have been performed on these metaheuristic methods,

however, using simple benchmark problems. These metaheuristics are valuable in their

application to solving complex nonlinear multiobjective optimization problems where they can

help DMs decide how best to allocate their limited resources and achieve the most economical

results.

Of the three meta-heuristic methods, the evolutionary multiobjective optimization

(EMOO) approach is a popular and useful field of research. Although the GA method is used in

many real-world problems, it still lacks application in the aircraft industry logistics area, where

aircraft structural reliability is still facing many optimization challenges. This is due to the

substantial problem size and the complexity of its objective functions, which normally—because

they are highly nonlinear—cannot be expressed explicitly. One challenge in applying EMOO is

determining a small set of Pareto-optimal solutions from which DMs can choose. The number of

solutions is exponential for discrete problems, and it is often difficult to construct the full Pareto

curve; therefore, approximation is applied.

The focus of this real-world application is determined based on the literature review and

the challenges pointed out by the three papers mentioned above. This study will address the ninth

54

of Deb’s proposed future research areas: that is, it seeks to apply GA to a real-world problem. It

also addresses the fifth area by exploring new ways for multiobjective GA optimization to

converge to Pareto-optimal fronts. This study will try to answer Janssens’s (2008) first challenge

by exploring ways to reach a small set of Pareto solutions quickly using GA.

The purpose of this research is to address the research gaps with regard to using EMOO

to optimize the reliability of aircraft horizontal tail structures. To meet the challenges noted

above, this research will attempt to develop an efficient EMOO algorithm to provide DMs with a

small set of non-dominant solutions as the output of a DSS. This EMOO algorithm will be a

nonelitist algorithm because elitist EMOOs tend to be less efficient.

A new MOEA method that combines the benefit of tabu search with genetic algorithms

called TSEA is developed in this dissertation research to achieve the same set of solutions. TSEA

will contribute to the state of the art by providing an efficient methodology for achieving

multiobjective aircraft design optimization in DSS. This research effort is well in line with

Guliashki’s (2009) prediction regarding the directions of new findings.

5.3 RELIABILITY AND COST MODELS

Military aircraft must sometimes carry out missions that put the aircraft in stall buffet

conditions. A stall buffet condition occurs when the aircraft is flying at a low level with a high

angle of attack. The air flow passing over the wings starts to separate, causing a turbulent flow

downstream, this then encroaches on the horizontal stabilizers. This turbulent flow excites

vibration along the horizontal stabilizers, which has a negative impact on their fatigue life (i.e.,

their structural reliability). A typical aircraft horizontal stabilizer is shown in figure 5.1. Because

the rear spar carries most of the load, fatigue-critical locations usually are located at selected

bays of the rear spar. The goal of the reliability optimization is to maximize the minimum fatigue

life at fatigue-critical locations.

55

This is a bi-objective problem where the objectives are to (1) maximize reliability and (2)

minimize cost. The objective for optimizing the reliability of the aircraft horizontal stabilizer is

defined as follows:

Rs =1 – max(FL1, FL2, . . . , FLn) (1)

 Here, the reliability of the aircraft horizontal stabilizer corresponds to the reliability of

the bay with the worst fatigue prone detail design. An example of fatigue detail is a rivet hole

where, if continued cyclic loading (tension, then compression, then tension) exists for a long

enough period, a crack might occur. Other examples, such as the corner of a window cutout, are

also sensitive to fatigue failure and are therefore labeled as fatigue details. The concept of the

“weakest link” is used in this definition, where when the worst fatigue detail uses up its fatigue

life (FLi = 1), the reliability of the horizontal stabilizer goes to zero.

The objective for minimizing cost of retrofitting the horizontal stabilizer is defined as

follows:

Cs = ΣScosti + ΣDcosti (2)

Where

n --- the number of bays that are sensitive to stall buffet

FLi --- fatigue life used up at the critical location of bay, which is the ratio of fatigue

damage accumulated so far over the allowed lifetime fatigue damage. FLi is unit less ratio and its

maximum value is 1.

Scosti --- cost of installed stiffener at bay i, which is proportional to the weight of the

stiffener

Dcosti --- cost of installed doublers at bay i, which is proportional to the weight of the

doublers

56

Subject to:

 FLi <= 1; i=1,…, n (1)

 xdi = 0 or 1; i= 1, …, n (bays that installs doublers when xdi = 1)

 xsj = 0 or 1; j=1, …, n (bays that installs stiffeners when xsi = 1)

 except when i = j, xdi = xsj = 1 (2)

 Each of the 14 bays on the horizontal stabilizer can be installed with doublers or a

stiffener, but not both, or nothing. This constraint was relaxed to allow each bay to install both

doublers and stiffeners based on the DM’s opinion. When ranking the Pareto-optimal solutions

for DMs, this relaxation was penalized by assigning a large weight, as shown in table 5.9. A

binary coding scheme was used in this application. (Each chromosome had a length of 28 binary

bits.) The first 14 bits represented the installation of doublers in each bay, with the last 14

representing the installation of stiffeners for each bay. The initial pool of all possible

combinations of 28 bit-long chromosomes was generated, and each generation was selected from

this pool randomly. The following naming conventions were used throughout this application:

where FLi = 0 represents full life remaining and FLi = 1 represents no life remaining since a

detectable crack has initiated.

FLi --- FLio or FLid or FLis

FLio --- fatigue life used up at the critical location of bay i without doublers or stiffener

FLid --- fatigue life used up at the critical location of bay i with doublers installed

FLis --- fatigue life used up at the critical location of bay i with stiffener installed

The fatigue life used up at each bay of the horizontal stabilizer is calculated by the

following equation:

FLio = (Dmgsi x Nsi + Dmgmi x Nmi + Dmgbi x Nbi)/DLTi (3)

57

where

Dmgsi --- fatigue damage from a severe flight that experienced a deterrent level of stall

buffet for 8 seconds, where fatigue damage is relative damage (i.e., the fraction of actual fatigue

damage over lifetime total allowable damage).

DLTi --- life time fatigue damage allowable at bay i

When FLio reaches 1, detectable cracks can be found in the structure. The horizontal

stabilizer will still be able to carry loads until cracks are found during planned inspections and

repaired.

Nsi --- number of severe flights in a lifetime

Dmgmi --- fatigue damage from a medium severe flight that experienced a deterrent level

of stall buffet for 4 seconds

Nmi --- number of medium severe flights in a lifetime

Dmgbi --- fatigue damage from a benign flight that experienced a stall buffet for 0.5

seconds

Nbi --- number of benign flights in a lifetime

Typical fatigue analysis locations at bay 20 are also shown in figure 5.2. For the purpose

of this study, only fatigue-critical location 2 will be examined. In its lifetime, a military aircraft

may experience stall buffeting in some of its flights that is severe enough to reach a deterrent

level. A deterrent level of buffeting is defined as a severe level of buffeting that constitutes a

clear deterrent to any further decrease in airspeed or increase in angle of attack. Table 5.1

summarizes such flights.

58

Table 5.1 Stall Buffet Mission Summary

 To obtain the stress time history at location 2 for an entire flight, a sequence of flight events

called a fatigue template is predetermined. Load conditions determined according to this fatigue

template are applied to the airframe FEM. Loads to stress transfer functions were applied to

obtain the stress time histories. This stress time history was rain flow counted to find all stress

reversals. Endo & Matsuishi (1968) developed the Rainflow Counting method by relating stress

reversal cycles to streams of rainwater flowing down a Pagoda. Rainflow is an effective way

separating small, uninteresting oscillations from the larger ones, without affecting turning

points by the smoothing effect of a filter or interrupting a large range before it is actually

completed. The rainflow method allows the application of Miner’s rule in order to assess the

fatigue life of a structure subject to complex loading.

 The time history of a typical load, stress, or strain as shown in figure 5.2 is usually variable

amplitude. With the load, stress, or strain time history plotted such that the time axis is vertically

downward as shown in figure 5.2, the lines going horizontally from a reversal to a succeeding

range can be considered as rain flowing down a roof represented by the history of peaks and

valleys. The operation of the rainflow method is shown in figure 5.3 for a history consisting of

four peaks and four valleys.

Mission Type Mission name Duration of buffet per mission (sec.)

Benign Type I 0.4

Medium Type II 0.7

Severe Type III 4.7

59

Figure 5.2 Typical load, stress or strain time history

Figure 5.3 Rain flow counting method

60

Figure 5.4 Fatigue analysis locations at aircraft horizontal stabilizer

 The fatigue damage from each stress reversal cycle is computed according to a test-

verified S-N curve. The Palmgren-Miner linear cumulative fatigue damage theory is known as

the Miner’s rule. According to Miner’s rule, failure occurs when:

where

ni = number of cycles at the ith stress level

Ni = number of cycles to failure corresponding to the ith stress level

ni∕Ni = damage ratio at the ith stress level

The fatigue damage from all cycles of a flight is accumulated according to the Miner’s Rule:

Dmg =

where

Dmg is fatigue damage, or the ratio of life used up so far (when Dmg = 0, a crack is

assumed to have initiated).

61

ni is the number of cycles of the ith stress applied

Ni is the expected lifetime in cycles at the ith stress level

P is the number of discrete stress levels

Figure 5.5 Typical aluminum S-N curves

For all fatigue-critical locations on the horizontal stabilizer, the fatigue damage for three

types of missions is determined using Miner’s rule, which is shown in table 2. Because the stall

buffeting mostly affects the outboard portion of the horizontal stabilizer, only bays 15 through 30

were examined. The damage rates shown in table 5.2 are listed by unit of fatigue damage per

100,000 flights. The fatigue damages allowed over the course of a lifetime, based on the buildup

at each fatigue-critical location, are listed in table 5.2. Figure 5.4 shows the maximum stresses at

those two bays with and without doublers. The magnification factors applied to the stresses with

and without the doublers can be calculated by the following equation:

Mac_d = (.705 + .713) / 2 = .72

Design loads for the three types of missions—I, II, and III, with varied stall buffet severity—

were applied on the horizontal stabilizer. Stresses at fatigue-critical location 2 shown in figure

62

5.2 were obtained from static analysis. Fatigue damages from each mission were calculated using

Miner’s rule.

Fatigue damage rates for the three types of missions without any retrofitting were

obtained by dividing the mission fatigue damage with mission length, as shown in table 5.3.

Since the stall buffet mostly affects the outboard portion of the horizontal stabilizer, only bays 16

through 29 are examined. The last column in table 5.2 shows the allowable lifetime damage for

each bay. The damage rates shown in table 5.3 are for retrofitting with doublers.

These fatigue damage rates in tables 5.2, 5.4, and 5.5 are given in units of damage per

100,000 flights. Notice that the damage rates are nonlinear with respect to locations and

installation of doublers or stiffeners, which demonstrates the extent of the complexity of the

problem. This DSS can be applied to many similar situations due to the generality of this

modeling system.

Table 5.2 Damage Rates at Fatigue-Critical Locations

ID Mission I Mission II Mission III

LT Dmg

Allowable

UPCHRD15 1.048 14.796 99.133 77483

UPCHRD16 1.348 19.031 127.508 95868

UPCHRD17 1.260 17.782 119.139 89696

UPCHRD18 1.266 17.872 119.744 95219

UPCHRD19 1.767 24.950 167.165 96519

UPCHRD20 4.697 66.307 444.254 99832

UPCHRD21 6.183 87.295 584.875 100000

UPCHRD22 6.128 86.514 579.643 100000

UPCHRD23 7.199 101.638 680.975 100000

UPCHRD24 4.933 69.644 466.613 100000

UPCHRD25 4.137 58.403 391.302 97504

UPCHRD26 2.545 35.924 240.689 97339

UPCHRD27 1.225 17.292 115.853 77620

UPCHRD28 0.526 7.429 49.773 76801

UPCHRD29 1.368 19.318 129.428 96356

UPCHRD30 0.427 6.031 40.406 74915

63

1) All fatigue damage rates are multiplied by 100000 to avoid computation on small

numbers. The unit of fatigue damage rates at any bay is fatigue damage per flight

2) Life time fatigue damage allowable, when total fatigue damage reaches this level at any

bay, crack is initiated.

3) Each row provides fatigue damage rates at the upper chord of each bay for three types of

missions.

Table 5.3 Maximum Stresses Comparison

This factor is applied to stresses at bays 15 through 30 to rerun the fatigue damages per

flight using Miner’s rule. The results from this analysis are shown in table 5.4. To optimize the

reliability of the horizontal stabilizers (i.e., to maximize their fatigue life), a number of doublers

or stiffeners can be installed at selected bays to reduce stress levels at fatigue-critical areas. Cost

is associated with the materials and manufacturing of the doublers or stiffeners as well as their

design and engineering. Therefore, when the system reliability increases with the installation of

doublers or stiffeners, the system cost also increases. Because the dimension of each bay varies,

the cost associated with the installation of doublers or stiffeners also varies. Typical doublers are

shown in figure 5.6, while typical stiffeners are shown in figure 5.7.

Bay Elem ID Retrofit fmax with retrofit fmax without retrofit factor

Upr Bay 24 3253271 stiffener 9.961 11.139 0.894

Upr Bay 25 3262271 stiffener 7.947 9.66 0.823

Upr Bay 26 3271271 doubler 5.467 7.756 0.705

Upr Bay 27 3280291 stiffener 3.181 5.517 0.577

Upr Bay 28 3291251 doubler 2.698 3.784 0.713

64

Figure 5.6 Typical doublers in bay 28

Table 5.4 Fatigue Damage Rate with Doublers

1) All fatigue damage rates are multiplied by 100000 to avoid computation on tiny numbers.

The unit of fatigue damage rates at any bay is fatigue damage per flight

2) Life time fatigue damage allowable, when total fatigue damage reaches this level at any

bay, crack is initiated.

ID Mission I Mission II Mission III

UPCHRD15 2.053 28.978 194.151

UPCHRD16 2.172 30.670 205.491

UPCHRD17 1.771 24.999 167.494

UPCHRD18 1.789 25.253 169.196

UPCHRD19 1.729 24.414 163.573

UPCHRD20 2.187 30.869 206.819

UPCHRD21 2.197 31.018 207.820

UPCHRD22 2.201 31.068 208.154

UPCHRD23 2.218 31.318 209.832

UPCHRD24 2.222 31.368 210.169

UPCHRD25 2.272 32.079 214.929

UPCHRD26 2.283 32.233 215.960

UPCHRD27 2.361 33.326 223.284

UPCHRD28 2.312 32.646 218.727

UPCHRD29 1.786 25.211 168.912

UPCHRD30 2.349 33.168 222.226

65

3) Each row provides fatigue damage rates at the upper chord of each bay for three types of

missions.

Figure 5.7 Typical stiffeners in bay 27

The magnification factors applied to the stresses with and without the stiffeners are

shown in figure 5.5. Because there are no data to calculate the factors for bays before bay 24 or

after bay 28, the factors at bay 24 are used for lower-numbered bays, and the factors for bay 28

are used for higher-numbered bays.

Figure 5.8 Factors on maximum stresses with stiffeners

66

These factors were applied to stresses at bays 15 through 30, and the fatigue damage per

flight were recalculated using the same analysis tool. The results of this analysis are shown in

table 5.5.

Table 5.5 Fatigue Damage Rate with Stiffeners

1) All fatigue damage rates are multiplied by 100000 to avoid computation on small

numbers. The unit of fatigue damage rates at any bay is fatigue damage per flight.

2) Life time fatigue damage allowable, when total fatigue damage reaches this level at any

bay, crack is initiated.

3) Each row provides fatigue damage rates at the upper chord of each bay for three types of

missions.

5.4 DSS SYSTEM DEFINITION

The DSS contains three components: a graphical user interface (GUI), a database, and

several modules to provide the optimized retrofitting solutions. The GUI receives input from the

ID Mission I Mission II Mission III

UPCHRD15 4.754 67.114 449.664

UPCHRD16 5.042 71.185 476.939

UPCHRD17 4.079 57.590 385.856

UPCHRD18 4.122 58.197 389.917

UPCHRD19 3.981 56.195 376.509

UPCHRD20 5.076 71.662 480.138

UPCHRD21 5.102 72.022 482.548

UPCHRD22 5.110 72.142 483.354

UPCHRD23 5.153 72.746 487.398

UPCHRD24 5.161 72.867 488.211

UPCHRD25 3.812 53.816 360.568

UPCHRD26 2.050 28.944 193.922

UPCHRD27 1.024 14.449 96.811

UPCHRD28 1.003 14.163 94.894

UPCHRD29 0.780 11.018 73.822

UPCHRD30 1.019 14.383 96.366

67

user (i.e., the DM), who provides information such as the number of stall buffet flights and their

durations. After the user pushes the “Run” button, the DSS will run for about several mimutes, at

the end of which it will provide several non-dominant solutions and their rankings. The solutions

include suggestions for where to install doublers and stiffeners. Figure 5.7 shows the GUI. There

are three types of flights and sorties, as shown in table 5.6, from which the user can choose.

Table 5.6 Flight and Sortie Types

The user must press the “OK” button after inputting the number of flights and their

duration times. The DSS will prompt the user to provide more input until all combinations of

flight type and sortie type have been visited.

A message of “All Done!” will appear after the DSS has run through all of its modules

and found the desired results. The user can hit the “Exit” button when done using the DSS. The

DSS provides its users with a number of fatigue-critical locations where doublers or stiffeners

can be installed to ensure that the fatigue life is maximized for all locations on the horizontal

stabilizer studied. By performing these modifications, the user should be able to build a

horizontal stabilizer that will survive the fatigue test without premature fatigue failures.

Flight Type

initial buffet

moderate buffet

severe buffet

Sortie Type

short

medium

long

68

Figure 5.9 GUI for aircraft tail structure, Mod DSS

 The entire DSS is developed on a combination of Microsoft Visual Basic.net (front end)

and MATLAB (embedded search engine) platforms, with one user input form; one database,

which contains all costing and damage rates stored on separate Excel files; and 10 major

modules, which make up the algorithm for solving the multiobjective optimization problem. The

decision variables for this DSS are:

xi --- doublers at each fatigue-critical location, where i = 1 to n. xi is a binary variable of 0

(no retrofitting) or 1 (install doublers).

yi --- stiffeners at each fatigue-critical location. yi is a binary variable of 0 (no retrofitting)

or 1 (install stiffener).

The fatigue life at each fatigue-critical location can be calculated by querying the

database tables. The database is made up of fatigue damage rates pre-calculated. Table 5-3 shows

69

the fatigue damage rates for the initial buffet flight. The damage rates are divided into the

following three categories:

No_s_no_d --- damage rates for the case of no doublers and no stiffeners

D_only --- damage rates for the case of doublers only

S_only --- damage rates for the case of stiffeners only

The unit used for the damage rates is damage per 100,000 flights. Notice that the damage

rates are nonlinear with respect to their locations and the installation of either doublers or

stiffeners, which demonstrates the extent of complexity for this issue. This DSS can be applied to

many similar situations due to the generality of the system. The architecture of this DSS is

shown in figure 5.10.

70

Figure 5.10 DSS architecture

5.5 TSEA IMPLEMENTATION DSS

The architecture of the DSS is shown in figure 5.10. The real optimization is

accomplished with the module’s “solver” and “optim.” For each variable combination, the model

“solver” calls the module “optim” to evaluate all hard and soft constraints. The DSS has

embedded TSEA as its search engine, as shown in figure 5.11.

In the aircraft tail structure application, the objective space consists of system reliability

and cost. Fitness is assigned by extracting each layer according to non-dominance. The new

generation is composed of individuals passed on from the current generation by selecting

71

individuals with higher fitness as well as the tabu distance, crossover from the current

generation, and mutation from the current generation. At the end of the fitness assignment, the

maximum-fitness individuals are placed on the tabu list to guide the search.

The search starts with an initial generation by randomly selecting 200 from the pool of all

individuals. The tabu list is initially empty. All individuals are assigned a fitness value.

Individuals with the lowest (worst) level of fitness are put on the tabu list. The current generation

is then chosen from the previous generation of higher-fitness individuals as well as new offspring

obtained through crossover and mutation. Before the selection of the new generation, an average

distance between each individual and all other individuals on the tabu list is calculated.

The parents for new offspring are selected based on fitness and this average distance

(tabu distance). Binary tournament selection is used to select the parents. Crossover and mutation

are conducted according to predetermined probabilities. The new generation comprises three

parts: solutions passed on from the current generation through a picking process that selects

individuals with higher fitness, solutions crossed over from the current generation, and solutions

mutated from the current generation.

72

Figure 5.11 DSS search engine architecture

 The new generation becomes the input for next iteration. The tabu list is updated by adding

the new worst individuals. The search process continues until it reaches the maximum allowable

iterations. After all the iterations have been gone through, all non-dominated solutions are

summarized in table 5.7. Those non-dominated solutions are ranked by the compromise

programming (CP) method as shown in section 5.7.

73

5.6 RESULTS COMPARISON WITH THE STATE OF THE ART

Provided herein is an innovative GA guided with tabu search to explore new ways for

multiobjective GA optimization to converge to the Pareto-optimal front efficiently. The purpose

of this research is to apply the EMOO principle in multiobjective optimization for analyzing the

trade-offs between maximizing the reliability of aircraft horizontal tail structures and minimizing

the cost associated with suggested retrofitting. To meet these challenges, an efficient EMOO

algorithm called TSEA provides the DM with a small set of non-dominated solutions as the

output of a DSS.

In the aircraft tail structure reliability and cost bi-criteria optimization application, TSEA

provided Pareto-optimal solutions closer to the Pareto optimal front than those from SPEA2 and

NSGA II, as shown in figure 5.12. At the same cost, TSEA found horizontal stabilizer

retrofitting options that gave higher reliability (i.e., with longer fatigue lives). Results from

NSGA II are close to those from TSEA, but they are spread out and scattered. SPEA2 provided

closer and smoother results than did NSGA II. At a lower cost range, TSEA and SPEA2 reached

very similar results. At a higher cost range, their results diverged with higher system reliabilities

from TSEA. Notice the limitation of this comparison (bi-criteria): more comparisons of

multiobjective system optimizations are needed to accurately rank TSEA with state-of-the-art

meta-heuristic search algorithms.

74

Table 5.7 Non-dominated Solutions

The number of flights in the three categories of benign, medium, and severe are given as

1,000, 300, and 20, respectively. The crossover rate was set at 0.6, and the mutation rate was set

at 0.2. The output from this multiobjective optimization DSS includes the number of doublers or

stiffeners needed and their installation locations.

Cost Reliability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1220 0.90076

2 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1065 0.89995

3 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1000 0.89982

4 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 815 0.89907

5 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 750 0.89894

6 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 700 0.89781

7 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 635 0.89768

8 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 595 0.89687

9 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 560 0.89438

10 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 495 0.89425

11 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 495 0.89425

12 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 465 0.87559

13 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 400 0.87546

14 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 395 0.86433

15 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 330 0.8642

16 0 0 0 0 1 1 1 1 0 310 0.8619

17 0 0 0 0 1 1 1 1 0 310 0.8619

18 0 0 0 1 0 1 1 1 0 305 0.8535

19 0 0 0 0 1 1 0 1 0 230 0.84006

20 0 0 0 0 1 1 0 1 0 230 0.84006

21 0 0 0 1 0 1 0 1 0 225 0.83166

22 0 0 0 0 1 0 0 1 0 155 0.82614

23 0 0 0 0 1 0 0 1 0 155 0.82614

24 0 0 0 1 0 0 0 1 0 150 0.81774

25 0 0 0 0 1 0 70 0.80199

26 0 0 0 1 0 65 0.79359

doublers installations stiffeners installations

75

Figure 5.12 Aircraft tail structure reliability non-dominated solutions

Figure 5.13 shows the evaluation of the TSEA search process. It starts from a random set

of retrofitting options and reaches its final 23 non-dominated solutions in 200 iterations.

Figure 5.13 DSS results showing the Pareto-optimal front (in blue)

76

This aircraft tail structural reliability and cost optimization application was executed as a

constrained bicriteria optimization problem. All fatigue damage accumulated at any bay cannot

exceed the life time fatigue damage allowable for the same fatigue critical location. However, the

constraint that in any given bay, there can be only one type of retrofitting installation or none has

been relaxed until the final CP ranking phase.

The optimization outcomes from NSGA II and SPEA 2, shown in figure 5.12, resulted

from developing three sets of MATLAB codes for all three algorithms. The MATLAB code for

NSGA II is developed according to the original definition of those algorithms in the literature

(Deb 2002), as shown in figure 5.16. The NSGA II code developed is validated by application to

classical testing problems in chapter 6 and comparison of the results with those published in Deb.

The SPEA2 code developed, shown in figure 5.15, is validated by applying it to benchmark

testing problems in chapter 6 and comparing the results with those published in Zitzler (2001).

 The MATLAB codes for all three algorithms are shown in figures 5.14, 15, and 16. The

execution of the optimization process was done on a Dell Precision M4800 PC with the

Windows 7 operating system.In the TSEA algorithm, the tabu-list is checked after the crossover

and the mutation processes to ensure its convergence to the Pareto optimal front. The

comparison of Pareto-optimal solutions from TSEA, NSGA-II, and SPEA2 was performed by

running each MATLAB code on a Dell Precision M4800 PC with the Windows 7 operating

system. The computing time elapsed is summarized in table 5.8.

Figure 5.14 showed the matlab code logic for the aircraft horizontal stabilizer reliability

and cost optimization problem (Act).

77

Figure 5.14 TSEA MATLAB code

78

Figure 5.15 SPEA2 MATLAB code

79

Figure 5.16 NSGA II MATLAB code

80

Table 5.8 Aircraft Tail Structure Optimization Computing Results

5.7 RANK PARETO RESULTS BY COMPROMISE PROGRAMMING

All three types of norms—the absolute distance, the Euclidean, and the min max norms

of each non-dominated solution—were evaluated as shown in table 5.9. All non-dominated

solutions were ranked by compromise programming method (Romero 1998). Large weights were

assigned to each non-dominated solution according to the difficulty of installation, which is

proportional to the number of bays that have to have installed both doublers and stiffeners. The

more difficult the installation, the higher the retrofitting cost. The DSS runs for less than 15

seconds (Dell PC with 32-bit operating system, 8 GB RAM) though each generation, with

convergence usually occurring in 200 generations.

The outputs of this multiobjective optimization DSS will include the number of doublers

or stiffeners needed and their installation locations. The 22 non-dominated solutions shown in

table 5.9 are ranked using the CP method. All weights are assumed to be 1. Figure 5.17 shows

their rankings according to L
1
, L

2
, and L

∞
. Only the top five non-dominated solutions

(highlighted in red) are selected for each closeness norm measure.

Algorithm Application Iteration

Computing

time (sec.) Population

External

Population

TSEA Aircraft horizontal stabilizer 200 138 100 tabu list = 30

NSGA II Aircraft horizontal stabilizer 200 703 100 N/A

SPEA 2 Aircraft horizontal stabilizer 200 623 100 Nbar = 30

81

Table 5.9 CP Ranking of Top Non-dominated Solutions

*Infeasible non-dominated solutions where both doublers and stiffener are required in certain

bay.

 At any given bay, only doublers or stiffener can be installed, but not both. This constraint

has been relaxed (based upon DM’s preference) to allow search to progress to the Pareto optimal

front. The penalty of cost for installing both doublers and stiffeners in a certain bay has lowered

the CP rankings. Those solutions (solutions 1, 2 and 3 in table 5.9) would not be recommended

to DMs, as shown in figure 5.15. This DSS could serve as a robust tool for DMs attempting to

efficiently modify existing aircraft tail structures to prolong the aircraft’s fatigue life and thereby

increase its reliability. If the goal were to double its reliability, this DSS could provide

options cost reliability L1 L2 L∞

1* 1220 0.90076 1 1 1

2* 1065 0.89995 0.87336 0.74967 0.86580

3* 1000 0.89982 0.81829 0.65541 0.80952

4 815 0.89907 0.66512 0.42190 0.64935

5 750 0.89894 0.61006 0.35202 0.59307

6 700 0.89781 0.57731 0.30302 0.54978

7 635 0.89768 0.52225 0.24437 0.49351

8 595 0.89687 0.49517 0.21188 0.45887

9 560 0.89438 0.48810 0.18722 0.42857

10 495 0.89425 0.43304 0.14229 0.37229

11 465 0.87559 0.58118 0.17510 0.34632

12 400 0.87546 0.52612 0.13986 0.29004

13 395 0.86433 0.62564 0.19718 0.33993

14 330 0.8642 0.57058 0.16902 0.34114

15 310 0.8619 0.57472 0.17648 0.36260

16 305 0.8535 0.64877 0.23764 0.44098

17 230 0.84006 0.70925 0.34121 0.56639

18 225 0.83166 0.78330 0.43492 0.64477

19 155 0.82614 0.77420 0.49087 0.69628

20 150 0.81774 0.84825 0.60551 0.77466

21 70 0.80199 0.92595 0.84940 0.92162

22 65 0.79359 1 1 1

82

retrofitting options that enable the aircraft to sustain two lifetimes of fatigue testing. This DSS

runs 200 iterations on a Dell Tech PC in less than 10 minutes.

Figure 5.17 Ranking of non-dominated solutions by CP

The most significant contribution of this DSS is that all of its model parameters—such as

damage rates, costs, and weights—for each FCL are chosen to be as close to reality as possible

without any loss of generality. No real data are used in this research due to security issues.

However, the fatigue damage rates are close to the real data for demonstrating the various

algorithms. Therefore, this DSS can easily be adopted to solve similar multiobjective

optimizations problems for any aircraft structure.

83

CHAPTER 6: COMPARISON OF THE TSEA WITH THE STATE OF THE ART ON

TESTING PROBLEMS

Four problems were chosen to demonstrate TSEA’s competitiveness to state-of-the-art

algorithms such as NSGA II and SPEA2: two benchmark testing problems and two real-world

applications. The two test problems from Zitzler (2000) are widely used by researchers to show

how their algorithms fit in with the state-of-the-art algorithms. The first testing problem was

selected for its convex nature and the second testing problem for its nonconvex nature to

demonstrate the complete spectrum of TSEA’s application range. One real-world application is a

decision support system (DSS) to guide the aircraft horizontal tail retrofitting process by

providing Pareto-optimal solutions under severe turbulent conditions.

The TSEA algorithm is embedded in this DSS to obtain the Pareto-optimal retrofitting

solutions. The goal of this DSS is to minimize retrofitting costs and maximize the reliability of

the horizontal tail structure. This multiobjective system reliability optimization application

demonstrates the robustness of TSEA modeled in a real-world-variable environment, as shown in

chapter 5. Another real-world application of TSEA is the vendor-managed inventory of the

supplier chain. The purpose of this application of TSEA is to show how well the algorithm works

in a combinatorial (binary variable) redundancy allocation type of multiobjective optimization

environment, as shown in chapter 7. In this chapter, the focus is on comparing TSEA with state-

of-the-art methods using two classical testing problems.

6.1 TESTING PROBLEM 1 STATEMENT

Zitzler (2000) suggested six test problems to compare multiobjective evolutionary

algorithms. Two test problems are selected in this research to compare the proposed TSEA

method with two state-of-the-art multiobjective evolutionary algorithms: SPEA2 and NSGA II.

Test problem T1 has a convex Pareto-optimal front:

84

Under the constraints: 0 < xi < 1, where i = 1, . . . , 30

Test problem T2 has a nonconvex Pareto-optimal front:

where m = 30 and . The Pareto-optimal front is formed with .

The constraint is enforced by only allowing each xi to be within the range of 0 and 1

when selecting each generation. Therefore, optimization is performed within the feasible

decision space.

6.1.1 ENVIRONMENT SETTINGS FOR TESTING PROBLEM 1

The following parameters are chosen to ensure consistency of comparison:

Popsize = 100

Maxiter = 250

Crossover rate = .6

Mutation rate = 0.2

Total variable n = 30

All algorithms are coded and executed in MATLAB on a Dell PC. All three algorithms,

NSGA II, SPEA2, and TSEA, are run using the same environment settings. The original

85

population is selected by random. For TSEA, the tabu list size is set at 30, while for the SPEA2

the archive size is fixed at 100.

6.1.2 BENCHMARK TEST PROBLEM #1 RESULTS COMPARISON

For this convex optimization problem, TSEA results fit between that of NSGA II and

SPEA2 in terms of both the spread of Pareto-optimal solutions and the magnitude of the

solutions. SPEA2 tends to have a few outliers. In general, all three algorithms have fairly

consistent results. NSGA II, however, has provided more Pareto-optimal solutions than SPEA2

and TSEA. SPEA2 has the best set of results in terms of minimizing both objectives. TSEA

provides consistent results with the other two algorithms without any outliners. The comparison

is shown in figure 6.1 for the first testing problem.

Figure 6.1 Testing problem #1 results comparison

The optimization results from NSGA II and SPEA 2 shown in figure 6.1 were obtained

by developing three sets of MATLAB codes for all three algorithms. The MATLAB code for

NSGA II was developed according to the original definition of those algorithms in literature

86

(Deb 2002). The NSGA II code developed was validated by applying it to classical testing

problems in this chapter and comparing the results with those published in Deb. The SPEA2

code developed was validated by applying it to benchmark testing problems in this chapter and

comparing the results with those published in Zitzler (2001).

The MATLAB codes for all three algorithms are shown in figures 5.14, 5.15, and 5.16.

The optimization process was executed on a Dell Precision M4800 PC with the Windows 7

operating system. Different environmental parameters were input to the three algorithms for this

classical testing problem.

For testing problem 1, the tsea code executed for 223 seconds to complete 200 iterations

with the following input parameters:

N--------- Population size of 100

Tabu----- Tabu list size of 30

Pc-------- crossover rate of 0.60

Pm--------mutation rate of 0.20

For testing problem 1, the spea code executed for 610 seconds to complete 250 iterations

with the following input parameters:

N------- Population size of 100

Nbar---- population of 30

Pc------ crossover rate of 0.60

Pm------mutation rate of 0.20

For testing problem 1, the NSGAII code executed for 232 seconds to complete 250

iterations with the following input parameters:

Np----- Population size of 100

87

Pc----- crossover rate of 0.60

Pm-----mutation rate of 0.20

 The comparison of Pareto-optimal solutions from TSEA, NSGA-II, and SPEA2 was

performed by running each MATLAB code on a Dell Precision M4800 PC with the Windows 7

operating system. The computing time elapsed is summarized in table 6.1.

Table 6.1 Testing Problem #1 Optimization Computing Results

6.2 TESTING PROBLEM 2 STATEMENT

 Test problem T2 represents a nonconvex Pareto-optimal front. This test problem was used

by Zitzler (2000), who used six test problems to compare several state-of-the-art evolutionary

algorithms. One of these six test problems was chosen as test problem T2 in this research.

ƒ1(x1) = x1

g(x2, . . . , xn) = 1 + 9 * (
)/(n-1)

6.2.1 ENVIRONMENT SETTINGS FOR TESTING PROBLEM 2

The following parameters are chosen to ensure consistency of comparison:

Popsize = 100;

 Maxiter = 200;

Number of variables = 30;

Crossover rate = .6;

Algorithm Application Iteration

Computing

time (sec.) Population

External

Population

TSEA Testing problem #1 200 223 100 tabu list = 30

NSGA II Testing problem #1 200 232 100 N/A

SPEA 2 Testing problem #1 200 610 100 Nbar = 30

88

Mutation rate = 0.2;

Total variable n = 30.

6.2.2 BENCHMARK TEST PROBLEM #2 RESULTS COMPARISON

All three algorithms were coded and executed in MATLAB both for benchmark testing

problems and to verify the optimization results from the original analysis in literature. All three

algorithms were run using the same environment settings. The original population was selected

at random. For TSEA, the size for the tabu list was chosen as 30, whereas the archive size was

fixed at 100 for SPEA2.

Figure 6.2 Testing problem #2 results comparison

For this nonconvex testing problem, SPEA2 gave the best Pareto-optimal set, while

NSGA II provided more non-dominated solutions. Again, TSEA fits right in the middle of

NSGA II and SPEA2, as shown in figure 6.2. The optimization results from NSGA II and SPEA

89

2, shown in figure 6.2, were developed by developing three sets of MATLAB codes for all three

algorithms. The MATLAB code for NSGA II was developed according to the original definition

of those algorithms in the literature (Deb 2002). The NSGA II code developed was validated by

applying it to classical testing problems in chapter 6 and comparing the results with those

published in Deb. The SPEA2 code developed was validated by applying it to benchmark testing

problems in chapter 6 and comparing the results with those in Zitzler (2001).

The MATLAB codes for all three algorithms are shown in figures 5.14, 5.15, and 5.16.

The execution of the optimization process was done on a Dell Precision M4800 PC with the

Windows 7 operating system. For the second testing problem, the TSEA code (figure 5.14)

executed for 284 seconds to complete 200 iterations with the following input parameters:

N----- Population size of 100

tabu-----tabu lise size of 30

Pc------ crossover rate of 0.60

Pm-----mutation rate of 0.20

For testing problem 2, the spea code (figure 5.15) executed for 510 seconds to complete

200 iterations with the following input parameters:

N----- Population size of 100

Nbar---- population of 30

Pc------ crossover rate of 0.60

Pm-----mutation rate of 0.20

For testing problem 2, the NSGAII code (figure 5.16) executed for 170 seconds to

complete 200 iterations with the following input parameters:

Np----- Population size of 100

90

Pc------ crossover rate of 0.60

Pm-----mutation rate of 0.20

 The comparison of Pareto-optimal solutions from TSEA, NSGA-II, and SPEA2 was

performed by running each MATLAB code on a Dell Precision M4800 PC with the Windows 7

operating system. The computing time elapsed is summarized in table 6.2.

Table 6.2 Testing Problem #2 Optimization Computing Results

Algorithm Application Iteration

Computing

time (sec.) Population

External

Population

TSEA Testing problem #2 200 284 200 tabu list = 30

NSGA II Testing problem #2 200 170 200 N/A

SPEA 2 Testing problem #2 200 510 200 Nbar = 30

91

CHAPTER 7: COMPARISON OF TSEA WITH STATE OF THE ART ALGORITHMS FOR A

SUPPLY CHAIN MANAGEMENT PROBLEM

Supply chain management (SCM) is critical in today’s competitive marketplace. With an

integrated supply chain, companies can reduce costs and enhance their competitiveness. SCM

plays an important role in the coordination among a network of facilities and distribution options

to increase the efficiency and responsiveness of all parties in the network.

In this research, a bi-objective vendor-managed inventory model in a supply chain with

one vendor and several retailers was developed to minimize the total cost and maximize network

reliability. The two objectives conflict. Meanwhile, many constraints have to be satisfied. While

the demand rates of the retailers are deterministic and known, the constraints are the total budget,

storage space required, vendor’s total replenishment frequencies, and average inventory.

 In addition to the production and storage costs of the vendor and the retailers, the

transportation cost of delivering the item to retailers is also considered part of the total chain

cost. The goal is to find the order size, the replenishment frequency of the retailers, the optimal

traveling route from the vendor to the retailers, and the number of machines so as to minimize

the total chain cost while maximizing the system reliability of producing the item. Because all

variables are coded in an arbitrary manner and not all time-related intervals are specifically

spelled out, the model used here can be easily adapted for any business situation.

7.1 MATHEMATICAL MODEL

The following notations and assumptions (from Sadeghi [2014]) are used throughout this

section:

i an index used for a retailer; i = 1, 2, . . . , r

j an index used for a machine; j = 1, 2, . . . , m

Ai ordering cost for retailer i

92

A ordering cost for the vendor

hi holding cost for retailer i

H holding cost for the vendor

P vendor’s production rate (item/time unit)

ni vendor replenishment frequency of retailer i (decision variable)

n1 vendor replenishment frequency of retailer 1

di demand rate of retailer i (item/time unit)

d1 demand rate of retailer 1

D demand rate of the vendor

qi order quantity for retailer i

q1 order quantity for retailer 1 (decision variable)

Qv total vendor order quantity

Z upper bound for the average inventory of the vendor

f space required to store one unit of the product

F total available storage space for retailers

Λ upper bound for replenishment frequencies

TC total cost of the VMI system

R production system reliability

Rj reliability of machine j

Nj number of redundant machines j (decision variable)

Cj purchasing cost of machine j

e total available space to install machines

s space occupied by a machine

93

B budget available to install machines

Skl cost of transportation from retailer k to retailer l

T production cycle time

xkl 1 if retailer k is reached from retailer l; 0 otherwise (decision variable)

Sadeghi (2014) assumed an equal consumption interval for retailers; the following equation

reflected this assumption:

where z ɛ {1, 2, . . . , r} is based on (1). The order quantity of the ith retailer is obtained by

where d1 was utilized to simplify modeling.

By minimizing the total system inventory cost and maximizing the total system

reliability, the multiobjective VMI problem can be modeled by the following equation (Sadeghi,

2014):

MinTC(minimize total cost) =

+

MaxR(maximize reliability) =

s.t.

The warehouse space for all retailers is limited to F.

94

Vendor’s average inventory is restricted to Z.

 λ

 The replenishment frequency is limited to λ.

 --- the budget constraint

 The space occupied by redundant machines is restricted to a predetermined value.

 It is assumed that the vendor delivers the products to all the retailers using a single vehicle.

It is also assumed that the optimal traveling route from vendor to retailers is a base for

calculating transportation cost. The vehicle is not allowed to pass a retailer’s location twice to

save money and time.

Nj, ni, q1, xkl are nonnegative integers.

 All of the above constraints were satisfied by checking the feasibility whenever the

optimization algorithms need to select a new individual from the predefined generation pool. The

constraints boundary data for four retailers and seven machines are shown in table 7.1.

Table 7.1 Basic Data of the Numerical Example

The transportation costs for retailers are shown in table 7.2.

Reliability Cost demand rate ordring cost holding cost

machine 1 0.65 19342 retailer 1 8361 58 6

machine 2 0.25 11293 retailer 2 7376 95 8

machine 3 0.36 33194 retailer 3 1388 27 2

machine 4 0.11 43688 retailer 4 2313 68 7

machine 5 0.73 32276

machine 6 0.95 43596

machine 7 0.77 18198

95

Table 7.2 Transportation Costs between Retailers

All of the boundary data for each constraint are shown in table 7.3.

Table 7.3 Supplier Chain Management Boundary Limitations

7.2 TSEA COMAPRE TO STATE OF THE ART

All three algorithms: NSGA II, SPEA2, and TSEA were run on the SCM model using the

same initial environment settings and number of iterations. Initial environmental conditions are

as follows:

N = 100

Pm = 0.2 (mutation rate)

Pc = 0.6 (crossover rate)

Tabu = 30 (used in TSEA as the size of its tabu list)

 (used in SPEA2 as the size of its archive)

The system reliabilities vs. costs are plotted in figure 7.1. After a set number of iterations,

TSEA provided Pareto-optimal solutions superior to those of SPEA2 and NSGA II, as shown in

Ratiler1 Ratiler2 Ratiler3 Ratiler4

Ratiler1 0 473 319 576

Ratiler2 473 0 399 708

Ratiler3 319 399 0 676

Ratiler4 576 708 676 0

ID Limits Description

H 12 holding cost of the vendor

P 23974 vendor's production rate (item/time unit)

A 265 ordering cost of the vendor

B 450000 available budget to install machines

s 3 occupied space by a machine

e 100 total available space to install machines

Z 2000 vendor's average inventory

f 3 space required storing one unit of product

F 3000 total available storage space for retailers

λ 120 upper bound for replenishment frequencies

96

figure 7.1. For solutions with the same cost, TSEA finds optimized solutions in the SCM system

that has higher reliability. Therefore, TSEA is able to reach non-dominated solutions that are

closer to the Pareto optimal front than NSGA II and SPEA 2. The objectives are to minimize cost

and maximize system reliability. SPEA2 exhibited some divergence from NSGA II and TSEA.

The best Pareto-optimal results TSEA found are attributed to its long-term memory, which in

turn is due to the tabu list, which helped guide the search to zoom in on the Pareto front faster

than the other two algorithms did. Current application is in bicriteria optimization of the SCM,

which demonstrated the partial superiority of TSEA over SPEA2 and NSGA II. More

comparisons of a larger number of objective functions will be conducted in the future to

complete this claim.

Figure 7.1 SCM system reliability comparisons

 The optimization results from NSGA II and SPEA 2, shown in figure 7.1, were derived

by developing three sets of MATLAB codes for all three algorithms. The MATLAB code for

97

NSGA II was developed according to the original definition of those algorithms in the literature

(Deb 2002). The NSGA II code developed was validated by applying it to classical testing

problems in chapter 6 and comparing the results with those in Deb. The SPEA2 code developed

was validated by applying it to benchmark testing problems in chapter 6 and comparing the

results with those in Zitzler (2001).

The MATLAB codes for all three algorithms are shown in figures 5.14, 5.15, and 5.16.

The execution of the optimization process was done on a Dell Precision M4800 PC with the

Windows 7 operating system. For the supplier chain management problem, the TSEA code

(figure 5.14) executed for 249 seconds to complete 100 iterations with the following input

parameters:

N----- Population size of 100

tabu-----tabu lise size of 30

Pc------ crossover rate of 0.60

Pm-----mutation rate of 0.20

For the supplier chain management problem, the spea code (figure 5.15) executed for 196

seconds to complete 100 iterations with the following input parameters:

N----- Population size of 100

Nbar---- population of 30

Pc------ crossover rate of 0.60

Pm-----mutation rate of 0.20

For the supplier chain management problem, the NSGAII code (figure 5.16) executed for

688 seconds to complete 100 iterations with the following input parameters:

Np----- Population size of 100

98

Pc------ crossover rate of 0.60

Pm-----mutation rate of 0.20

 The comparison of Pareto-optimal solutions from TSEA, NSGA-II, and SPEA2 was

performed by running each MATLAB code on a Dell Precision M4800 PC with the Windows 7

operating system. The computing time elapsed is summarized in table 7.4.

Table 7.4 Supplier Chain Management Optimization Computing Results

Algorithm Application Iteration

Computing

time (sec.) Population

External

Population

TSEA Supplier Chain Management 200 249 100 tabu list = 30

NSGA II Supplier Chain Management 200 688 100 N/A

SPEA 2 Supplier Chain Management 200 196 100 Nbar = 30

99

CHAPTER 8: SUMMARY AND CONCLUSIONS

8.1 SUMMARY

Aircraft horizontal stabilizers sometimes have to encounter stall buffet loading

conditions, which may have a significant impact on fatigue life. When simulated stall buffet

loads are applied to the horizontal stabilizers during full-scale fatigue tests, it is essential that the

structure is properly retrofitted to be able to sustain this type of loading throughout the testing. A

set of balanced retrofitting options is needed for the DM to have higher structural reliability with

minimum cost. An innovative tabu evolutionary algorithm, TSEA, was developed to meet this

challenge. This algorithm can also be the engine of a DSS to help the DMs perform trade-off

studies, as shown in chapter 5. The purpose of this dissertation is to propose a novel

multiobjective optimization evolutionary algorithm (TSEA) created through a combination of the

metaheuristic search method TS and the genetic algorithm. This algorithm was compared with

evolutionary, state-of-the-art, multiobjective optimization algorithms, NAGA II and SPEA2, on

benchmark testing problems and two real-world applications. One of them was for SCM coded

in real variables; the other was for an aircraft structure coded in binary variables.

8.2 CONCLUSIONS

The objectives for both real-world applications were to minimize cost and maximize

system reliability. By comparing the proposed algorithm (TSEA) with two state-of-the-art

multiobjective optimization algorithms, this dissertation showed that TSEA outperformed those

algorithms by providing a set of non-dominated solutions closer to the Pareto-optimal front. This

innovative multiobjective optimization algorithm was also embedded in a DSS for the aircraft

tail structure modification to provide the DM with structural retrofitting Pareto-optimal options

to maximize the aircraft’s fatigue life and reduce cost at the same time based upon user input.

This DSS can serve as a robust tool to help DMs determine how to efficiently modify an existing

100

structure to be able to sustain two lifetimes of fatigue testing, by which one lifetime of a structure

without cracking is warranted. The constraint handling of TSEA partially relies on the interaction

between the DM and DSS so that some constraints may be relaxed to find the non-dominated

solutions that are close to the Pareto optimal front. The significant contribution of this DSS is

that all of its model parameters, such as damage rates and costs for each bay, are chosen to be as

close to reality as possible and yet can be modified to represent different aircraft configurations.

 This DSS can easily be adopted to solve similar multiobjective optimizations problems for

any type of aircraft tail structure. Contribution to the state of the art in multiobjective system

reliability optimization is provided by the introduction of the TSEA algorithm. TSEA is much

more effective than SPEA 2 thanks to its application of a tabu list to guide the search to the

optimum solution and its avoidance of niching, a costly process in terms of CPU time. This

research also demonstrates that TSEA competes with and in some situations out performs state-

of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to

classic bi-criteria bench mark test problems and other complex, real world sizable applications.

8.3 FUTURE RESEARCH DIRECTIONS

The findings suggest several promising areas for future research. The key factor for

TSEA to outperform NSGA II and SPEA 2 on some large-scale, complex, real bicriteria

optimization applications is the introduction of the tabu list to help guide the search and avoid

pitfalls in reaching the Pareto-optimal front. How long this list should be and how long each

individual should be kept in this list are questions for future research. Elitism and the tabu list are

two opposite approaches to guide multiobjective optimization searches to their Pareto-optimal

solutions. A comparison of the effectiveness of both methods is needed to guide future research

efforts, especially with regard to studying which method is most effective for which types of

applications. Fuzzy logic has been introduced into multiobjective optimization research. More

101

studies are needed that incorporate fuzziness in multiobjective evolutionary and metaheuristic

algorithms to provide more realistic solutions to real-world engineering applications.

This research provided a novel metaheuristic evolutionary algorithm, TSEA, for

multiobjective optimization, applying the concept of the metaheuristic tabu search to

evolutionary approach of the genetic algorithms. Now that TSEA has been successfully applied

to bicriteria structural reliability optimization problems in the area of aircraft structure, it needs

to be applied in true multiobjective system reliability problems to further verify its effectiveness.

A comparison of TSEA with current options, such as NSGA II and SPEA2, on more large-scale

multiobjective real-world applications will be provided in follow-up research to rank the

efficiency of all applied metaheuristic optimization algorithms.

102

BIBLIOGRAPHY

 Agarwal M., 2010. Optimal redundancy allocation in complex systems, Journal of Quality in

Maintenance Engineering, V 16 No. 4 413-424.

Armentano, V. A. (2004). An application of a multiobjective tabu search algorithm to a Bicriteria

flow shop problem, J. Heuristics, 10(5), 463-81.

Arostegui Jr., M. A., 2006. An empirical comparison of Tabu Search, Simulated Annealing, and

Genetic Algorithms for facilities location problems, International Journal of Production

Economics, 103 742-754.

Aytug, H., 2002. Solving large-scale maximum expected covering location problems by genetic

algorithms: A comparative study. European Journal of Operational Research, 141 480-494.

Back, T. (1996). Evolutionary algorithms in Theory and Practice, New York, etc.: Oxford

University Press.

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In J. J. Grefenstette

(Ed.). Proceedings of an International Conference on Genetic algorithms and Their Applications,

pp. 101-111, sponsored by Texas Instruments and U.S. Navy Center for Aplied Research in

Artificial Intelligence (NCARAI).

Barichard, V. (2009). Multiobjective programming and goal programming: theroretical results

and practical applications. Springer, Berlin.

Bhattacharya, R., 2010. Solving conflicting bi-objective facility location problem by NSGA II

evolutionary algorithm. International Journal of Advanced Manu factoring Technology, 51 397-

414.

103

Blickle, T. (1996). Theory of Evolutionary algorithms and Application to System-Synthesis. Ph.

D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, ETH diss no. 11894.

Blickle, T. J., (1998). System-level synthesis using evolutionary algorithms. Design Automation

for Embedded Systems (1), 23-58.

Buck, J. (1994). Ptolemy: A framework for simulating and prototyping heterogeneous systems.

International Journal on Computer Simulation 4, 155-182.

Carlos, A. (2002). Theoretical and numerical constraint handling techniques used with

evolutionary algorithms: a survey of the state of the art, Computer Methods in Applied

Mechanics and Engineering, 191(11-12), 1245-87.

Cieniawski, S. E. (1995). Using genetic algorithms to solve a multi objective groundwater

monitoring problem, Water Resource Research 31(2), 399-409.

Coello CA, (2007). Evolutionary algorithms for solving multiobjective problems, 2
nd

 edn.

Springer, Berlin.

Deb, K., 1999. Multiobjective Genetic Algorithms: Problem Difficulties and Construction of

Test Problems. Evolutionary Computations, Vol 7, No. 3 205-230.

Deb, K., 2002. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE

Transactions on Evelutionary computation, vol. 6, No. 2, 182-197.

Dorn, J., 1996. Comparison of iterative improvement techniques for schedule optimization.

European Journal of Operational Research 94 349-361.

104

Fonseca, C. M., 1993. Genetic Algorithms for Multiobjective Optimization: Formulation,

Discussion and Generalization, Proceedings of the Fifth International Conference, San Mateo,

CA.

Fonseca, C. M. and Fleming, P.J. (1993). Genetic algorithms for multiobjective optimization:

Formulation, discussion and generalization. Proceedings of the Fifth International Conference on

Genetic Algorithms, pages 416-423, Morgan Kaufmann, San Mateo, California.

Fonseca, C. M. and Fleming, P. J. 1995. An overview of evolutionary algorithms in

multiobjective optimization, Evolutionary computation 3(1), 1-16.

Ghezavati VR. (2009). A new heuristic method for distribution networks considering service

level constraint and coverage radius. Expert Systems Appl 36:5620-5629.

Guliashki, V., 2009. Survey of evolutionary algorithms used in multiobjective optimization.

Problems of Engineering Cybernetics and Robotics, vol. 60, 42-54.

Hajela, P. and Lin, C.-Y. (1992). Genetic search strategies in multicriterion optimal design.

Structural Optimization 4, 99-107.

Horn, J., 1993. Multiobjective Optimization Using the Niche Pareto Genetic Algorithm.

Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World congress

on Computational Intelligence, Vol. 1, 1994.

Jadaan, OA, Rajamani, L., Rao, CR., “Non-dominated ranked genetic algorithm for solving

multiobjective optimization problems: NRGA”, Journal of Theoretical and Applied Information

Technology, Vol. 2, pp. 60-67, 2008.

105

Janssens, G. K., 2008. Recent challenges in the use of evolutionary algorithms for multiobjective

optimization. Proceedings of the International Conference on Information Technologies, 19-20

Sept. 2008, Bulgaria, 51-60.

Kale, A. A., etal. 2008. Tradeoff of weight and inspection cost in reliability based structural

optimization. Journal o Aircraft, v45, n 1, p 77-85.

Laumanns, M., 2002. Combining Convergence and Diversity in Evolutionary Multiobjective

Optimization. Evolutionary Computation 10(3):263-282.

Le Grauffre, P., (2007). A multicriteria decision support methodology for annual rehabilitation

programs of water networks, Computer Aided Civil and Infrastructure Engineering, 22(7), 478-

88.

Liang, L. Y., 2004. Optimizing the design of sewer networks using genetic algorithms and Tabu

Search, Engineering, Construction and Architectural Management, 11 No. 2 101-112.

Liang, Y. H., 2008. Combining neural networks and genetic algorithms for predicting the

reliability of repairable systems, International Journal of Quality & Reliability Management, V

25, No. 2 201-210.

Manzini R, (2007). Optimization models for the dynamic facility location and allocation

problem. Int J Prod Res 46(8):2061-2086.

Mathakari, S. (2007). Reliability-based optimal desing of electrical transmission towers using

multiobjective genetic algorithms, Computer Aided Civil and Infrastructure Engineering, 22(4),

282-92.

106

Molent, L., Barter, S.A. 2007. A comparison of crack growth behavior in several full-scale

airframe fatigue tests. International Journal of Fatigue 29(2007) 1090-1099.

Nakagawa, Y., 1981. An experimental comparison of the heuristic methods for solving reliability

optimization problems, IEEE Transactions of reliability, R-30, No. 2, 181-184.

Nesterenko, G. I., Nesterenko, B.G. 2009. Ensuring structural damage tolerance of Russian

aircraft. International Journal of Fatigue, 31 (2009) 1054-1061.

Rama Mohan Rao, A., 2010. A meta-heuristic algorithm for multiobjective optimal design of

hybrid laminate composite structures, Computer-Aided and Infrastructure engineering, 25 149-

170.

Rama Mohan Rao, A. (2008). Development of a hybrid meta-heuristic algorithm for

combinatorial optimization and its application for optimal design of laminated composite

cylindrical skirt, Computers and Structures, 86, 796-815.

Rao, A. R., et al. 2007. Applying Multiobjective Cost and Weight Optimization to the Initial

Design of Turbine Disks. Journal of Mechanical Design, Vol. 129, p. 1303-1310.

Rentizelas AA,(2010). Locating a bio-energy facility using a hybrid optimization method. Int J.

Prod Econ 123:196-209.

Romero, C., Tamiz, M. and Jones, DF, “Goal programming, compromise programming and

reference point method formulations: linkages and utility interpretations”. Journal of the

operational research society, Vol. 49, No. 9, pp. 986-991,1998

107

Rostegui Jr., M. A., “An empirical comparison of Tabu search, Simulated Annealing, and

Genetic Algorithms for facilities location problems”. International Journal of Production

economics, Vol. 103, pp. 742-754, 2006.

Ruiz, R., 2005. A comprehensive review and evaluation of permutation flowshop heuristics.

European Journal of Operational Research, 165 479-494.

Sadeghi, J. et al, “A hybrid vendor managed inventory and redundancy allocation optimization

problem in supply chain management: An NSGA-II with tuned parameters”. Computers &

Operations Research, Vol 41, pp. 53-64, 2014.

Shaffer, J. D., 1985. Multiple objective optimization with vector evaluated genetic algorithms,

Proc. First Int. Conf. on Genetic Algorithms, pp. 93-100. Lawrence Erlbaum.

Rostegui Jr., M. A., 2006. An empirical comparison of Tabu Search, Simulated Annealing, and

Genetic Algorithms for facilities location problems. International Journal of Production

economics, 103 742-754.

Schaffer, J. D. (1984). Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms, Ph.D. thesis, Vanderbilt University.

Schaffer, J. D. (1985). Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms, In J. J. Gerfenstette (Ed.), Proceedings of an International Conference on Genetic

Algorithms and Their Applications, Pittsburgh, PA, pp. 93-100.

Sexton, R. S., (1999). Optimization of neural networks: A comparative analysis of the genetic

algorithm and simulated annealing. European Journal of Operational Research, 114 589-601.

108

Srinivas, N. and Deb, K. (1994). Multiobjective optimization using non-dominated sorting in

genetic algorithms, Evolutionary computation 2(3), 221-248.

Suresh, P. S., et al. 2013. Optimal trends in Maneuver Load Control at subsonic and supersonic

flight points for tailless delta wing aircraft. Aerospace Science and Technology, 24 (2013) 128-

135.

Tan. K. C., 2001. Evolutionary Algorithms for Multiobjective Optimization: Performance

Assessments and Comparisons. IEEE congress on Evolutionary Computation Seoul, Korea. May

27-30, 2001.

Teklu, F. (2007). A genetic algorithm for optimizing traffic control signals considering routing,

Computer Aided civil and Infrastructure engineering, 22(1), 31-43.

Youssef, H., 2001. Evolutionary algorithms simulated annealing and search: a comparative

study. Engineering Applications of Artificial Intelligence, 14 167-181.

Zhao, J., Adams, D., 2011. Challenges in damage tolerance approach for dynamic loaded

rotorcraft components – From risk assessment to optimal inspection planning. ICAF 2011

Structural Integrity: Influence of Efficiency and Green Imperatives – Proceedings of the 26
th

Symposium of the International Committee on Aeronautical Fatigue, ICAF 2011, June 1, 2011 –

June 3, 2011.

Ziaul, H.,et al. 2012. Optimization of Wind Turbine Airfoil using Nondominated Sorting Genetic

Algorithm and Pareto Optimal Front. International Journal o Chemical Engineering, Vol 2012,

Article ID 193021, 9 pages.

109

Zizler, E., 1999. Evolutionary algorithms for multiobjective optimization: Methods and

applications”, Doctoral dissertation ETH 13398, Swiss Federal Institute of Technology, Zurich,

Switzerland.

Zizler, E., 2000. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results.

Evolutionary computation, 8(2):173-184.

