THESIS

ALTERATION OF ORGANIC MATTER AND COPPER MINERALIZATION IN THE MIDCONTINENT RIFT, USA

Submitted by

Max Schultz

Department of Geosciences

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2017

Master's Committee:

Advisor: John Ridley

Sally Sutton Alan Kennan Copyright by Max Schultz 2017

All Rights Reserved

ABSTRACT

ALTERATION OF ORGANIC MATTER AND COPPER MINERALIZATION IN THE MIDCONTINENT RIFT, USA

This study applies petrographic, organic and isotopic geochemical analyses in an effort to discern the vertical and lateral dimensions or conduits of detectable main stage mineralization partial oxidation, heating, and fluid flow in and near the sediment-hosted stratiform Cu deposits in the Midcontinent Rift. Field and core samples from a 100 km traverse along strike of the Nonesuch Formation are analyzed at atomic, molecular, micro- and macroscopic levels for comparison to address the problem. Analytical tools - optical petrography (68 samples), Rock-Eval II (RE; 74 samples) pyrolysis, gas chromatography and gas chromatography-mass spectroscopy (GC and GC-MS; 9 samples), as well as stable isotopic analyses of C and O (δ^{13} C and δ^{18} O; 27 samples) - and their results here compared indicate that partial oxidation of organic matter (OM) does not exclusively co-occur with Cu mineralization.

Two morphologies of OM with distinct geochemical and petrographic characteristics have been identified. Filamentous organic matter (FOM) is generally darker colored opaque inertinite while amorphous organic matter (AOM) is lighter in color and commonly translucent. Reflected and transmitted light microscopy identified disseminated chalcocite and chalcopyrite mineralization; this mineralization coincides with darker average AOM color (higher thermal alteration index or TAI). Most of the seven identified vertically breached dark gray shaley laminations are Cu mineralized and situated in the lower to middle portion of their respective sections.

ii

Outcrop samples show significantly lower quotients of RE hydrogen index to oxygen index (HI/OI) and values of total organic carbon (TOC) than do drill core specimens. Core profiles show gradients of increasing HI and decreasing OI stratigraphically up-section, when outlier values are excluded, and the HI gradient is steeper with respect to stratigraphic position than is typical for sedimentary basins. Oxygen index values increase with proximity to Cu minerals and the lowest HI samples are from in and adjacent to mineralized rock at or near White Pine, MI. Most Cu mineralized samples show OI above 30 mg CO₂/g TOC with HI under 72 mg HC/g TOC and the opposite is true for the HI of most unmineralized samples.

The FOM shows a lower H/C ratio than does the AOM. Darker colored AOM and lower HI/OI quotients than in unmineralized Nonesuch Formation material are apparent in Cu mineralized samples. The lowest T_{max} and highest HI values are in unmineralized orange (low TAI) AOM, and nearly 70% of the darker brown AOM samples are Cu mineralized. No overall correlation between other RE parameters, Cu mineralization and TAI is apparent, however. All of the samples containing breached shaley laminae show low TOC but show no other relation to RE parameters.

Four measures of organic maturity - the production, thermal alteration, and methylphenanthrene-1 indices, and the C₂₉ Ts/(C₂₉ hopane + C₂₉ Ts) parameter - show bidirectionally increasing thermal maturity of OM outward from the four central sampling sites. This aligns with multiple previous studies which have reported a paleothermal low in the vicinity of the Iron River syncline. A strong linear correlation on cross plot of C₂₉ sterane $\beta\beta/(\beta\beta+\alpha\alpha)$ versus C₂₉ sterane S/(S+R $\alpha\alpha\alpha$) suggests that the gas chromatography-mass spectroscopy samples experienced similar heating rates in the subsurface. A single organofacies source is suggested by the pristane/n-C₁₇ and phytane/n-C₁₈ quotients and their crossplot. The distribution of tricyclic terpanes and the presence of 1,2,5-TMN in all samples, with the occurrence of C₃₂ $\alpha\alpha$ methylhopanes a majority of gas chromatography-mass spectroscopy samples concur with recent paleobiological reports of a significant cyanobacterial contribution to Nonesuch Formation OM.

Three generic patterns of OM alteration are distinguished by GC and GC-MS: least altered, partially altered, and altered; no relation to Cu mineralization is apparent for any of the three categories. Least altered samples have whole rock extract chromatograms typical of source rocks in the upper half of the oil window - a broad, smooth GC trace, dominated by *n*-alkanes *n*- C_{11} to *n*- C_{14} with associated peak clusters of monomethyl alkanes commonly associated with Proterozoic carbonaceous rocks. Altered samples show sharp narrow whole rock extract GC traces distinguished by 2-4 dominant *n*-alkanes, lack peaks of clusters of homologous sets of monomethyl alkanes, and have lesser abundance of alkanes, and a conspicuous higher abundance and broader array of polycyclic aromatic hydrocarbons (PAHs). The partially altered sample shows a bimodal GC trace distinct from those of the other two categories. Rock-Eval II HI values overlap for the altered and least altered samples, whereas the OI values are higher for altered samples, with the latter also showing the highest T_{max} value.

The presence of sterane and terpane biomarkers at White Pine, MI discounts previous studies' assertion that their absence indicates a strictly localized oxidative destruction of such compounds during Cu mineralization. All analyzed samples have significant non-biomarker PAHs and derivatives thereof, including: 3-methylbiphenyl, phenanthrenes, trimethylnaphthalenes, dibenzothiophene (DBT), dibenzofuran (DBF), fluorene, benzofluoranthene, benzopyrene, perylene; this suggests widespread, regional aromatization

iv

associated with localized Cu mineralization. In contrast, diminished values of DBT and DBF relative to either methylated or dimethylated homologues in Cu mineralized samples are interpreted to reflect a localized effect of epigenetic OM oxidation associated with mineralization and alteration. The pristane/n-C₁₇ is elevated in the Cu mineralized samples, consistent with localized oxidative destruction of n-alkanes during mineralization. It is suggested that dehydrocyclization of phenylphenanthrenes during Cu mineralization formed the observed benzofluoranthenes and benzopyrenes. The phenanthrene/ Σ methylphenanthrene parameter shows regular relation to HI/OI quotient, although it is less well correlated to Cu mineralization, HI or OI than in other studies.

Decreased concentrations of saturated compounds associated with Cu mineralization, as well as moretane/hopane, C_{29} Ts/(C_{29} hopane + C_{29} Ts), and trimethylnaphthalene index measures, and an interpreted thermal cracking of long chain hydrocarbons to form diamantanes during Cu mineralization, indicate localized increases in maturity of OM occurs in Cu mineralized samples in the central portion of the sampling traverse (within the overall thermal maturity low in the central sites of the sampling traverse). However, aside from diminished abundance of saturated hydrocarbons, some counterexamples to these Cu mineralizationassociated organic maturation parameters exist, and no regular relation of any of these measures to depth is apparent.

A ternary plot comparing relative abundances of DBT, DBF and fluorene shows the gas chromatography-mass spectroscopy samples clustered nearest to the thiohydrocarbon DBT vertex of the plot, with the implication of relatively little oxidative alteration but considerable S introduction for the subset of GC-MS samples. In contrast, the position of the GC-MS samples

۷

on the DBT/phytane axis of the plot comparing DBT/phytane versus pristane/phytane suggests relatively little introduction of S with significant aromatization.

An overall trend of low δ^{18} O at lower δ^{13} C exists for carbonates of the Nonesuch Formation. No relation between carbonate vein, concretion or laminite isotopic ratios of C or O and depth or proximity to mineralization or between isotope ratios and elemental composition is apparent. Still, the most negative stable isotopic ratios co-occur with sections of Nonesuch Formation in which OM is mostly strongly oxidized, based on OI values. The upper end of isotopic ratios of carbonate C and O approximates that of Copper Harbor Formation stromatolites, which is taken to be the primary carbonate composition in the sequence. The relatively broad spread to more negative δ^{13} C values can be interpreted as a result of variable degrees of mixing with C derived by oxidation of indigenous OM. The lack of relation of carbonate isotopic ratios to distance to Cu mineralization suggests that OM oxidation likely took place throughout the Nonesuch Formation and was neither restricted to, nor strongly heightened in, Cu mineralized rocks.

ACKNOWLEDGEMENTS

This work would not have been possible without financial and intellectual support at CSU, particularly from John Ridley. Sally Sutton, Sven Egenhoff, and Judy Hannah each drove me forward, shared knowledge and enthusiasm for this project. The SEG Graduate Student Fellowship and the Malcolm McCallum Scholarship smoothed my path forward and brighten the way ahead. I am fortunate to have had such strong graduate program compatriots – Marissa Boraas, Jake McCane, and others – to assist in the many steps to this final product. My journey would not have been possible without the three human fundaments of any task that I tackle: Bob and Donna, and my dear Desirée. I cannot thank Philip Wells, Daniel Gourley, Z.L. Lucius, Teddy Schafer, Tom Kasper and Lucile Fiske enough for their support.

DEDICATION

A #2 dot-filling standardized test might not seem like a ticket to the Promised Land, but that is how my Uncle Orton Lynn Gray sprung my mother from the dead-end of servile Middle American womanhood. Rural North Dakota, late 1960s, Orton said, "Hey Donna, so there is this test called the ACT and I think that you should take it." She did so, and the joys of university and biochemistry and worldliness became her. Orton Gray's thirst for knowledge, his genuine egalitarian equanimity, his very offbeat self, and his humanitarian nature made Woodworth, North Dakota just the right spot for my mother to be in that time. We miss him, and work to carry on in his noble steps.

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	vii
DEDICATION	.viii
TABLE OF CONTENTS	viiii
Chapter 1: Introduction	1
1.1 Problem and Context	1
1.2 Objectives	2
1.3 Study Area and Geologic History	2
1.3.1 Physiography and Genesis of the Midcontinent Rift	2
1.3.2 Stratigraphy of the Midcontinent Rift System	6
1.3.2.1 Bergland Group	8
1.3.2.2 Oronto Group	9
1.3.3 Climate	12
1.4 The Nonesuch Formation Sediment Hosted Stratiform Copper Deposits	12
1.5 Organic Geochemical Background	20
1.5.1 Kerogen Classification	26
1.6 Organic Geochemistry with Specific Reference to Precambrian Organic Matter	31
Chapter 2: Studies of Relations Between Organic Matter and Metal Ore	37
2.1: Kupferschiefer Stratiform Copper	38
2.1.1 Organic Geochemical Studies of the Kupferschiefer	39
2.2 Alligator Ridge Gold and Organic Alteration	51
2.3 Idrija Mercury Deposit	55
Chapter 3: Previous Organic Geochemical Studies of the Nonesuch Formation	57
3.1 Origin and Character of Nonesuch Formation Organic Matter	58
3.2 Organic Maturity of the Nonesuch Formation	59
3.2.1 Petrographic Appearance and Maturity	59
3.2.2 Geochemical Maturity	60
3.3 White Pine Oil Studies	62
3.4 Other Thermal Constraints for the Nonesuch Formation	64
3.5 Stable Isotope Ratios of the Nonesuch Formation	66
3.5.1 Nonesuch Formation Carbonate Carbon and Oxygen Isotopes	66
3.5.2 Nonesuch Formation Kerogen Pyrolyzate Carbon Isotopes	67
3.6 White Pine Chlorite Homogenization Halo	68
3.7 Organic Matter-Copper Relations at White Pine	68
3.8 Water-Washing and Organic Geochemistry at White Pine	71
Chapter 4: Methods	72
4.1 Thin Section Microscopy	72
4.2 Rock-Eval Pyrolysis	73
4.2.1 Total Organic Carbon Analysis	75
4.2.2 Rock-Eval and LECO TOC Inaccuracies and Thresholds for Reliability	75
4.3 Light Stable Isotope Principles, Fractionation and the Delta Notation	77
4.3.1 Carbonate Stable Isotope Ratio Determination	77

4.4 Soxhlet, Gas Chromatography and Mass Spectrometry	.78
4.4.1 Extract Gas Chromatography	. 79
4.4.2 Gas Chromatography-Mass Spectroscopy Principles and Analysis	. 79
Chapter 5: Sampling	. 82
5.1 Core Samples	. 84
5.1.1 Michigan Department of Environmental Quality Core Samples	. 84
5.1.2 Michigan Technical University Core Samples	. 85
5.2 Outcrop Samples	. 85
5.2.1 Copper Falls, Potato Creek, Saxon Falls, and Presque Isle River Outcrop Samples	. 89
5.2.2 Big Iron and Little Iron River Outcrop Samples	. 98
Chapter 6: Results	100
6.1 Petrography of Organic Matter, Copper and Calcite	100
6.2 Rock-Eval and LECO TOC Overall Pattern	103
6.2.1 Rock-Eval and LECO TOC Relation to Copper Mineralization	112
6.3 Stable Isotopes	120
6.4 Molecular Makeup of Organic Matter	127
6.4.1 Whole-Rock Extract Gas Chromatography	127
6.4.2 Saturate Gas Chromatography-Mass Spectroscopy	133
6.4.3 Aromatic Gas Chromatography-Mass Spectroscopy	136
6.4.3.1 Aromatic Gas Chromatography-Mass Spectroscopy Total Ion Current	
Chromatograms	136
6.4.3.2 Aromatic Gas Chromatography-Mass Spectroscopy Ion Chromatograms	145
6.4.3.3 Polycyclic Aromatic Compound Ternary Plot	153
Chapter 7: Discussion and Interpretation	156
7.1 Regional Variations in Apparent Maturity	156
7.1.1 Production and Thermal Alteration Indices	156
7.1.2 Methylphenanthrene and Methyldibenzothiophene Indices	157
7.1.3 Methylnaphthalene Indices	158
7.1.4 Pristane and Phytane Versus Associated Normal Alkanes	159
7.1.5 Moretane and Hopane Comparison	159
7.1.6 Ts/Ts+Tm Trisnorhopane and C ₂₉ Ts/(C ₂₉ Hopane +C ₂₉ Ts) Parameters	160
7.1.7 Geographic Distribution of Sterane Maturity Parameters	161
7.1.8 Pregnane	162
7.1.9 Soxhlet Extractable Organic Matter Yield	163
7.1.10 Long Versus Short Chain Triaromatic Steroids	163
7.1.11 Diamantanes	163
7.2 Variations in Apparent Maturity Related to Depth and Mineralization	164
7.2.1 Production and Thermal Alteration Indices	164
7.2.2 Methylphenanthrene and Methyldibenzothiophene Indices	165
7.2.3 Pristane and Phytane Versus Associated Normal Alkanes	165
7.2.4 Moretane and Hopane Comparison	165
7.2.5 Ts/Ts+Tm Trisnorhopane and C ₂₉ Ts/(C ₂₉ Hopane +C ₂₉ Ts) Parameters	165
7.2.6 Diamantanes	166
7.2.7 Methylnaphthalene Indices	167
7.2.8 Sterane Maturity Parameters, Copper Mineralization and Depth	167
7.2.9 Long Versus Short Chain Triaromatic Steroids	167

7.3 Evidence for Organic Matter Oxidation	167
7.3.1 Rock-Eval Evidence for Organic Matter Oxidation	168
7.3.2 Relation of Hydrogen/Oxygen Index Ratio to Mineralization	167
7.3.3 Petrographic and Geochemical Distinction of Filamentous Versus Amorphous C	Organic
Matter	169
7.3.4 Aromatization and Oxidation of Organic Matter	170
7.3.5 Phenanthrene and its Methylated Homologues	171
7.3.6 Fluorene and its Methylated Homologues	175
7.3.7 Dibenzofuran and its Methylated Homologues	175
7.3.8 Dibenzothiophene and its Methylated Homologues	176
7.3.9 Pristane to Phytane Ratio and Depositional Environment by Comparison to	
Dibenzothiophene Versus Phenanthrene	176
7.3.10 Pristane to Normal Heptadecane Ratio	178
7.3.11 Sterane Maturity Parameters and Oxidation of Organic Matter	179
7.3.12 Fluorene and Heteroatomic Fluorene Homologues	182
7.3.13 Polycyclic Aromatic Compound Ternary Plot	183
7.3.14 Stable Isotopes of Carbonate	184
7.4 Distribution of Organic Matter Oxidation	185
Chapter 8: Conclusion	189
References	192
Appendix A: Photomicrographs and Hand Sample Images	202
Appendix B: Sample and Analysis Listing	277
Appendix C: Locality, Field, and Core Log Descriptions	279
Appendix D: LECO TOC and Rock-Eval II Data	287
Appendix E: Carbonate Carbon and Oxygen Stable Isotope Data	293
Appendix F1: Total Extract Gas Chromatography Data	294
Appendix F2: Aromatic Gas Chromatography-Mass Spectroscopy Data	322
Appendix F3: Saturate Gas Chromatography-Mass Spectroscopy Data	369
List of Acronyms and Abbreviations	415

<u>1. Introduction</u> <u>1.1 Problem and Context</u>

Industry estimates suggest that many kilotons of recoverable Cu as fine-grained disseminated sulfides are in place in and near the White Pine Mine, northern Michigan (Johnson, 2014). Current commercial interest, historic production greater than 3.5 billion pounds Cu, and incomplete understanding of the mode of metallization in the SSC deposits of northern Michigan justify the present analysis: A combined geochemical investigation with the goal of identifying pathways of Cu-associated hydrothermal fluid flow (Sirois, 2015).

Economic Cu ores, with variable minor Ag, sit near the base of the 200 m thick shaley siltstones of the 1.08 Ga Nonesuch Formation; the ores are stratiform bodies up to a few kilometers strike extent and up to a few meters thick in the lowest few meters of the Nonesuch Formation or extending up to 5 meters into the underlying redbed clastic sedimentary rocks of the Copper Harbor Conglomerate (Ensign *et al.*, 1968; Brown, 1971). At the White Pine Mine and the Copperwood prospect, Cu emplacement is thought to have occurred by reduction of oxidized, Cu-bearing fluids upon flow into and through the dark gray shales and interaction with reduced C therein. Cu deposition by this mechanism would likely overlap spatially with oxidation of OM in the Nonesuch Formation; such hydrothermally affected OM would plausibly show distinct organic geochemical alteration signatures. This mode of emplacement may also have imprinted distinct isotopic signatures in carbonates in the Nonesuch Formation.

Genetic models for this style of deposit will benefit from a clearer understanding of the relationship of fluid flow to structural features (e.g.: the Keweenaw Fault, basement topography). Future Cu extraction could be streamlined by better constraints on zones of greatest Cu concentration. Future exploration for analogous deposits elsewhere in the region will benefit from this study's determination if haloes of organic alteration of barren hostrocks adjacent to Cu

1

mineralization can serve as indicators of proximity to economic Cu deposits or of hydrothermal fluid conduits.

1.2 Objectives

Comparative analysis of RE pyrolitic and GC-MS parameters with organic petrography to ascertain the degree of syn-mineralization oxidation of organic matter (OM) in the Nonesuch Formation is the main objective of this study. Ideally this provides a means of delineating paleohydrothermal fluid conduits. Stable isotope data on C and O from carbonate laminites, concretions, and veins provide supporting data to identify the extent of hydrothermal mobilization of C_{org} to neomineralized, C_{carb} .

1.3 Study Area and Geologic History

1.3.1 Physiography and Genesis of the Midcontinent Rift System

The samples in this survey come from a short segment on the southeast margin of the more than 2,000 km long, 40-90 km wide, Superior arm of the Mesoproterozoic Midcontinent rift system of North America (Figure 1). The rift cuts across Precambrian basement terranes of ages ranging from 1.85 Ga to older than 2.5 Ga (Bickford, 1988). Rift opening and abundant rift-filling volcanism likely occurred between 1109 and 1087 Ma (Davis and Sutcliff, 1985). Major magmatic activity in the rift was focused in two pulses -1109-1105 Ma and 1100-1094 Ma (Paces and Miller, 1993). Volcanic rocks dominated during active rifting and sedimentation dominated the post-rift subsidence phase, depositing what became the more than 30 km thick rift fill beneath today's Lake Superior (Behrendt *et al.*, 1988). Twenty kilometers of mostly subaerial volcanic rocks underlie a 5 km-thick mixed series of sedimentary and volcanic rocks; a further 7 km sedimentary rock sequence sits above the mixed unit (Ojakangas *et al.*, 2001).

Figure 1: Location of the North American Midcontinent rift system, from Ojakangas *et al.* (2001). Samples in this study come from the red-highlighted lineament in the Superior arm of the rift.

Near to the end of rift extension, the Grenville Province to the southeast experienced tectonic compression (Cannon and Hinze, 1992). Grenville compression partially inverted the original graben-bounding normal faults into major reverse faults. This, and broad folding at 30-50 m.y. after extension ceased, suggest that tectonic stresses of the Grenville orogen overwhelmed and partially closed the Midcontinent rift system (Cannon and Hinze, 1992).

The nature and form of the Midcontinent rift are attributable to at least two different driving forces. Basinal void space formed first by rift extension and later, flexural crustal subsidence/sagging caused by rift-fill loading above low-viscosity mantle material (Nyquist and Wang, 1988). During rift extension a system of axial half-grabens developed, separated along the length of the rift by structural accommodation zones (Ojakangas *et al.*, 2001). It is generally accepted that tectonic extension energized by a mantle plume caused initial rift opening and voluminous volcanism (Van Schmus, 1992; Cannon and Nicholson (1992). Basin filling occurred both along the rift axis and in basins flanking a central, post-volcanic horst. See Figure 2. Paleomagnetic measurements and interpretation by Elmore and van der Voo (1982) and others suggest that rift filling occurred at low latitudes in a tropical to subtropical climate.

Figure 2: Schematic map of the gravitational trend of the Midcontinent rift system showing major tectonic zones. The geophysical trends seen here result from differences in the lithology of rift-fill rock sequences. From Ojakangas *et al.* (2001).

The conditions that formed the Midcontinent rift provided some important elements for SSC deposit genesis, namely a thick pile of mafic rocks, a sufficiently steep geothermal gradient, and a low-latitude rift basin setting. Isotopic, petrochemical, and geophysical evidence support the presence of a hotspot in the genesis of the rift (Miller and Nicholson, 2013). The massive volume $(1.3-2.0 \times 10^6 \text{ km}^3)$ of primitive, mafic rock extruded over a geologically short period and the comparatively moderate crustal extension of the rift would require the anomalous hot asthenosphere of a mantle plume (Cannon, 1992; Hutchinson *et al.*, 1990).

1.3.2 Stratigraphy of the Midcontinent Rift System

Rift fill rocks, the Keweenawan Supergroup, are exposed only in the Lake Superior area, commonly in thick monoclinal columns that dip toward the rift axis beneath the lake. Reverse faults associated with Grenville compression repeat the section in some areas. Three major lithologic components are present: 1) a thick edifice of subaerial lava flows, 2) local accumulations of plutonic to hypabyssal intrusive rocks, and 3) the upper sequence of post-extension, sag-period sedimentary rocks (Miller and Nicholson, 2013). The bulk of the Keweenawan Supergroup rocks are extrusives of the Bergland and Powder Mill Groups and consist of huge volumes of subaerial tholeiitic basalts with minor rhyolite. Early post-rift red-bed sedimentary rocks are mostly intrabasinally-derived material that was dominantly deposited in fluvial settings: this is the Oronto Group. Above the Oronto Group is the progressively more mature red-bed fluvial sediment of the Bayfield Group, of extra-basinal provenance (Ojakangas *et al.*, 2001; Figure 3 and Figure 4).

Figure 3: The comparative stratigraphy of the full Keweenawan Supergroup in the Lake Superior region. From Ojakangas *et al.*, 2001.

Figure 4: Stratigraphic column of the Midcontinent Rift, Upper Peninsula Michigan, showing SSC deposits of the Nonesuch and the native Cu deposits more intimately associated with mafic rocks. The detail shows Cu concentration in layers of Nonesuch Formation at White Pine. Notice the "fringe zone" slightly cutting across stratigraphic horizons. From Schmidt and Rogers, 2007.

1.3.2.1 Bergland Group

The Portage Lake Volcanics are the base of the Bergland Group in northern Wisconsin and Upper Michigan. These are dominantly olivine-rich flood basalts, 3-5 km thick in the Keweenaw Peninsula, with minor interlayered felsic volcanic and sedimentary units (Davis and Paces, 1990). The Bergland Group bears about 1% rhyolite in the deep central grabens of the Midcontinent rift. Rift flanking zones, like those preserved as the Porcupine Volcanics and the North Shore Volcanic Group, show as much as 10-25% rhyolite (Cannon and Nicholson, 1992). Indeed, the Porcupine Volcanics, intersected by the sampling traverse of this study, are a rhyolite-andesite volcanic sequence.

1.3.2.2 Oronto Group

The transgressive-regressive sequence of the Oronto Group was deposited in three units atop the Bergland Group Volcanics as extrusive volcanism diminished (Elmore et al., 1989). The Copper Harbor Formation, up to 2 km thick, shows intermittent, upward-decreasing, basalt flows of the Lakeshore Traps in its lower 1,000 m. Clast-supported conglomerate composes the lower part of the Copper Harbor Formation; clasts are dominantly volcanic, mainly sourced from Bergland Group rocks. The upper part of the Copper Harbor Formation is largely volcanicderived sandstone with minor siltstone. This fining-upward and fining-basinward sequence records a prograding alluvial fan complex (Ojakangas *et al.*, 2001). Pauses in Copper Harbor Formation sedimentation are evidenced by the presence of rare stromatolitic beds, sometimes associated with calcite pseudomorphs after gypsum, as well as carbonate-filled syneresis or muddesiccation shrinkage cracks (Elmore, 1984). Evaporite mineral pseudomorphs, the red color of the unit and shrinkage cracks may be interpreted as recording deposition in an arid or semi-arid environment. Formation water encountered in the Copper Harbor conglomeratic sandstones at White Pine Mine is an alkaline brine with a chloride and TDS content approximately twice that of seawater, a condition which partly satisfies the requisite Cu solubility for economic SSC deposition (Johnson, 2014, Ridley, 2013).

Red conglomeratic sandstone and dark-gray siltstone to shale are interbedded and interlaminated in the lowest 6 m of the Nonesuch Formation and the basal contact (atop the Copper Harbor Formation) is arbitrarily placed at the base of the lowest 1 m thick unit containing dark-gray siltstone and shale (cf. White, 1971). The Nonesuch Formation is a mostly finegrained sequence of gray to black shale and siltstone with minor light gray sandstone. Cu-ore and petroleum seeps are found in the lowest 10 m of the Nonesuch Formation at the White Pine Mine (Ojakangas *et al.*, 2001). The lower portion of the Nonesuch Formation shows textures

9

suggesting sedimentation of mud and silt from suspension in a low-energy, standing-water, depositional setting. A transition from quiet-water to an increasingly fluvial-influenced depositional system is inferred from coarsening-upward sequences observed in the upper portion of the Nonesuch Formation (Imbus, 1988).

The fine-grained, often carbonaceous, sediment of the Nonesuch Formation and its association with continental red-bed alluvial fan and fluvial deposits, suggest a lacustrine environment of deposition. Sedimentary structures observed by the author (Figure 5, cf. Suszek, 1997) recent Os isotope data (Cumming, 2012), rare but partially preserved anhydrite/gypsum nodules, and paleogeographic reconstructions suggesting that the nearest coastline was 800 km distant, further support lacustrine, non-marine, deposition (Ojakangas *et al.*, 2001; Elmore *et al.*, 1989). However, marine embayment/estuarine environment of Nonesuch Formation deposition have also been suggested. Evidence for marine deposition includes: 1) the presence of organic molecular fossils similar to those found in Phanerozoic oils of marine origin (Pratt *et al.*, 1991), 2) high total S content, S/C ratio and S isotope dispersion that is characteristic of syngenetic sulfides formed by reduction of seawater sulfate (Burnie *et al.*, 1972; Hieshima and Pratt, 1991), and 3) an intimate association of framboidal pyrite to OM in the Nonesuch Formation.

Figure 5: Straight to semi-arcuate infilled cracks 15 m stratigraphically above Nonesuch Formation base, Presque Isle River. Rock hammer head at right for scale.

The Freda Formation, up to 3600 m thick, shows stacked cyclic sequence packages of red-brown sandstone, siltstone, mudstone, and shale. Freda Formation depositional sequences are both fining-upward and coarsening-upward. The environment of deposition was a braided

stream network; this system interfingers with, and ultimately overlaps the top of the Nonesuch Formation (Daniels, 1982).

1.3.3 Climate

The samples in this study come from a present-day continental to semi-maritime climate. Lake Superior's proximity moderates air temperatures in the sample area and prevailing northerly winds provide for cold winters, cool summers, and regularly high humidity throughout the year (U.S. E.P.A., 1992). The mean annual temperature for the area is 40° F, with summertime highs in the low 80's and wintertime lows near 0° F, according to the National Oceanic and Atmospheric Administration. Annual precipitation by rainfall is 80 cm, and yearly snowfall regularly totals 450 cm (Michigan State University, 1998).

1.4 The Nonesuch Formation Sediment Hosted Stratiform Copper Deposits

At White Pine Mine the Cu-bearing beds are mainly in the lower 7 m of the Nonesuch Formation. There, local usage describes four stratigraphic units, which are, in ascending order, the lower sandstone (the upper most Copper Harbor Formation conglomeratic sandstone bed), the parting shale, the upper sandstone, and the upper shale (White and Wright, 1955). The extent of individual Cu-bearing beds at White Pine is measurable in square miles (White and Wright, 1955). At White Pine Cu is present mainly in the upper and parting shales where mining nomenclature provides 12 distinct lithostratigraphic units through which five laterally extensive foci of greatest Cu enrichment (up to 3% Cu by weight) are recognized. An informal naming scheme has been developed for the lowermost Nonesuch Formation's beds, to aid miners in distinguishing the ore zones (Figure 6, from White and Wright, 1955). Overall stratigraphy at White Pine Mine and the Copperwood deposit are depicted in Figures 7 and 8.

No.	HL	Typical Ore Column	Lithologic Description	Lbs	CO	Der	Non
		i ji picar ene construit	Linkinght briter profit	20	40	60	80
47	17_	Widely	Gray, widely laminated siltstone and back shale.	20	40	00	40
_	16						
46	15'	uzv	Dark gray, massive bedded siltstone				
44	14:	Brown Massive	Red-brown to gray, massive bedded siltstone with calcareous nodules.	Γ			
	13						
43	12	Thinly	Gray, thinly laminated siltstone and back shale.				
41		Upper Transition ~	Gray, fine-grnd. sandstone with black shale partings				
	11'			Г			
30	101 9'-	Upper Sandstone	Red to gray, fine- to med grained to coarse-grained sandstone with con- glomeratic lenses. Occas- sional shale member. Occasionally cross- bedded near base.				
29	8'_	Inter	Gray , widely laminated				
			shale.				
27	6-	Top Zone	Gray, widely laminated silt- stone and black shale.				
28	5'-	DGM	Dark gray, massive bedded siltstone with occassional calcareous blebs and nodules.				
	4'-	-2-	Pod to argu macelus	Г			
24	3'_	Red Massive	siltstone with "Junior line" at base.				
23	2'_	Domino	Gray siltstone and black, thinly laminated shale .				
-	'-		Crew Res and southt				
21	0	Lower Transition	with black shale partings.				
10		Copper Harbor Conglomerate					

Figure 6: Mining nomenclature and typical thicknesses, ore grades of beds in the area of the White Pine Mine. From White and Wright, 1955.

Figure 7: A general stratigraphic column at the White Pine Mine, from Sirois, 2015.

Figure 8: A generalized stratigraphic column at the Copperwood deposit, from Sirois, 2015.

Sediment hosted stratiform Cu deposits worldwide rank second only to porphyry Cu deposits in terms of Cu production (Robb, 2003). The Cu deposits of the Nonesuch Formation show many of the characteristic features of this deposit type. Recent economic Cu-focused studies of the Nonesuch Formation include those by Bornhorst and Williams (2013) Johnson (2014) and Sirois (2015). The thin but laterally extensive White Pine main stage cupriferous zone, localized in reduced carbonaceous horizons near to the boundary between reduced and oxidized sedimentary facies shows many hallmarks of the deposit type, especially the association with continental redbeds and evaporites (Brown and Chartrand, 1983). Total organic content (TOC) is generally less than 0.3% for the Nonesuch Formation in northern Michigan and Wisconsin, but select finely laminated calcareous and non-calcareous silty shales show TOC ranging from 0.25 to 2.8%, with an average of 0.6% (Imbus *et al.*, 1988; Hieshima *et al.*, 1989).

The lowest 15 m of the White Pine Nonesuch Formation can be divided into packages that display chemical and petrographic evidence of penetration by ascending fluids (Sutton *et al.*, 2013). Copper mineralization as sulfides is mainly restricted to the lowest 5 m, sometimes with modest enrichment of Ag, V, and Zn (Sutton *et al.*, 2013). This basal zone has the greatest abundance of vertical fracture fillings and vertically breached shale laminae (Sutton *et al.*, 2013). The next 5 m package is low in S, trace metals and Cu, although native Cu does occur. Greater S concentration, with modest increases in Cu, As, Cd, Mo, Pb, Sb, characterizes the third 5 m package (Sutton *et al.*, 2013). Content of C_{org} varies according to the 5 m packages above; TOC is below 0.5% in the lowest 5 m package, below 0.2% in the second package and rises gradually above (Sutton *et al.*, 2013).

Three structural domains recording three deformation episodes and two stages of Cu mineralization are recognized at the White Pine Mine. Mauk *et al.* (1989) describe: 1)

16

synsedimentary extensional growth faults; 2) a set of NE-SW trending high angle normal faults crosscutting (post-dating) main-stage mineralization, and; 3) S-dipping thrust faults accompanying second stage Cu mineralization. The first Cu mineralization stage is the early diagenetic SSC event, the "main stage" of White Pine ore emplacement (e.g. White and Wright, 1955). The distinct second stage Cu mineralization accompanied thrusting and introduced mainly native Cu focused in calcite-rich veins, especially in the southwestern portion of the mine (Ruiz *et al.*, 1984). Ho and Mauk (1996) instead reported second-stage mineralization as dominantly chalcocitic, concluding that it resulted from reduction of sulfate introduced as a component of the mineralizing fluids.

Similar to other SSCs, ore is found mainly as very fine-grained disseminated Cu sulfides (White and Wright, 1966). Native Cu, silver and silver sulfides (e.g. acanthite) are also important ore minerals (Johnson, 2014). As at other deposits of this type, White Pine and Copperwood sulfide minerals (and metals) show lateral and vertical zonation, although the Nonesuch Formation deposit ores are dominantly chalcocitic (Brown, 1978). The general main stage sulfide zonation is: barren (no sulfide, often with hematite) => native Cu => chalcocite => bornite => chalcopyrite => galena => sphalerite => greenockite => pyrite (Brown, 1978). This zonation progresses upward through the Nonesuch Formation as well as inward from the paleomargin of the basin (Brown, 1978).

The geometry and textural relations of sulfide minerals of the transition between the cupriferous and pyritic zones (the fringe surface) are important to genetic explanation (Seasor and Brown, 1989). The top of the cupriferous zone is independent of lateral facies changes and transgresses bedding (Brown, 1971). Significantly, the fringe surface is stratigraphically lower where greater amounts of introduced Cu were precipitated in the basal Nonesuch Formation beds

17

(Misra, 2000). Sulfide minerals at the fringe show textures interpreted to reflect a systematic step-by-step replacement of fine-grained diagenetic pyrite by chalcopyrite, bornite, digenite, and, finally, chalcocite (White, 1960). Most workers now accept a post-sedimentary, syndiagenetic ore emplacement model (Robb, 2003). Ore fluids are thought to have evolved by interaction with Cu-substituted minerals (e.g., hematite, magnetite, biotite, hornblende and pyroxene) in the clastic, oxidized sedimentary sequence of the Copper Harbor Formation (Brown, 2009). These fluids are likely to have been characterized by low temperatures (under 130°C), a near-neutral pH (6-7.5), moderate salinity (up to 20 wt% NaCl equivalent), and oxidized conditions (Robb, 2003). Such conditions, would favor Cu transport as cuprous chloride complexes with aqueous S species as dominantly sulfate ions (Rose, 1976). See Figures 9 and 10. Ore fluids encountering the reducing environment of the Nonesuch Formation then precipitated metals by three mechanisms: 1) deposition of native Cu; 2) conversion of precursor pyrite to chalcocite, and; 3) deposition of chalcocite with Cu and S derived entirely from the fluid phase (likely by thermochemical sulfate reduction; Ho and Mauk, 1996). These mechanisms explain ore mineral replacement textures, geometry and relation of the fringe surface to ore concentrations, and vertical mineral zoning with the most soluble sulfide minerals (galena, sphalerite, greenockite) farthest along the path of the upward circulating fluids (Brown, 1978; Seasor and Brown, 1989). All three mechanisms require a reducing agent external to the ascending ore fluid.

Figure 9: Pourbaix (Eh-pH) plot for the system Cu-O-H-S-Cl at 25° C (with $\Sigma S = 10^{-4}$ m and Cl⁻ = 0.5 m). Illustrated fields show the range of stability for hematite, various S species and the cuprous-chloride complex for conditions most likely compatible with the formation of SSC deposits (Robb, 2003). The brine ascending through the Copper Harbor Formation is thought to have had Eh-pH conditions in the zone of stability for cuprous chloride complexes (at center, CuCl₃²⁻). Copper became unstable in solution after mixing of brine with reductive fluids in the lower Nonesuch Formation, precipitating chalcocite and other ore minerals.

Figure 10: Model showing the effects of mixing a typical SSC-type ore fluid with a reduced fluid on metal precipitation. The sequence of deposition is the same as the zonation of metals observed in at White Pine and in the Kupferschiefer (Robb, 2003).

Ho and Mauk (1996) used differences in S isotope signatures to conclude that S enrichment in the Nonesuch Formation might have occurred by hydrothermal activity. If chalcocite formation occurred by reduction of sulfate in the ore fluids, this would result in net S addition to the sediments as well as increased S to C ratios in mineralized versus unmineralized samples (Ho and Mauk, 1996). Indeed, molar S/C ratios show trends associated with Cu deposition in the lower Nonesuch Formation at White Pine, especially in areas affected by second-stage mineralization (Mauk and Hieshima, 1992).

1.5 Organic Geochemical Background

Organic matter (OM) refers to material formed by living organisms and containing C-C bonds. Given suitable conditions, OM accumulates and is preserved in the rock record; diagenetic, catagenetic, and metagenetic evolution of OM occurs with increasing degrees and

durations of burial and heating. Bitumen (organic matter soluble in organic solvents), kerogen (the organic-insoluble portion of OM in sedimentary rocks), pyrobitumen (infusible and insoluble bitumen), and petroleum form by burial, diagenesis and catagenesis of primary OM. See Figures 11 through 15. Tissot and Welte (1976), Hunt (1995), among others, cover these processes in detail.

Figure 11: Schematic structural characteristics of Type II kerogen: a) at the end of diagenesis (atomic H/C = 1.25, O/C = 0.09); and b) at the end of catagenesis (H/C = 0.73, O/C = 0.03). Kerogen and bitumen each increase in aromaticity with increasing thermal maturity, especially above artificial levels R_0 greater than 0.9% (Craddock et al., 2015). This similarity likely results from loss of aliphatic chains from both organic fractions during petroleum generation. Killops and Killops, 2005.

Figure 12: Maturation trends by Rock-Eval pyrolysis are generally predictable: increasing maturity coincides with increasing S_1 and T_{max} but decreasing S_2 values. From Tissot and Welte, 1984.

Figure 13: Schematic HC formation as function of source rock burial. The evolution of the HC composition is shown in insets for three structural types. Depths are illustrative only and correspond to an average for Mesozoic and Paleozoic rocks. Other actors exerting significant influence include: kerogen type, burial history, and geothermal gradient. From Taylor *et al.*, 1998.

Figure 14: Gas chromatograms of saturated HCs from an immature extract of coaly organic matter (top) and from an oil believed to have been sourced from a similar facies (bottom). Both show many of the same characteristics - high wax content, odd C_n preference in the wax range, high pristane/phytane ratio - but maturity effects have altered many of the details. (Waples and Curiale, 1999).

Figure 15: Gas chromatograms of two oils from Wyoming. Both were sourced from the Permian Phosphoria Formation but are hosted in different strata. The bimodal distribution of *n*-alkanes in the top oil is consistent with a lower thermal maturity than that of the unimodal *n*-alkane distribution of the oil at the bottom. (Waples and Curiale, 1999).

1.5.1 Kerogen Classification

The nature of precursor OM determines the kerogen type produced in early diagenesis.

See Figure 16. Kerogen is typified by ratios of contained Corg, H, and O, commonly on van

Krevelen diagrams, as in Figure 17. Organic petrologists refer to distinctive kerogen types,

which they subdivide based on their chemical composition, inferred origins and appearance

(Tissot and Welte, 1984). See Table 1.

Figure 16: The nature of the primary organic matter determines the kerogen type formed during diagenesis. From McCarthy *et al.*, 2011.

Figure 17: Kerogen types and maturation paths, defined by atomic H/C and O/C ratios (van Krevelen diagram) and also by hydrogen and oxygen indices (Modified van Krevelen diagram). Potter *et al.*, 2005.

Table 1: Types of kerogen, as classified by van Krevelen diagram, with respective matter source/nature. Potter *et al.*, 2005.

Maceral	Kerogen Type	Source
Alginite	I	Fresh-water algae
Exinite	II	Pollen, spores
Cutinite	II	Land-plant cuticle
Resinite	II	Land-plant resins
Liptinite	II	Land-plant lipids; marine algae
Vitrinite	III	Land-plants wood and cellulose
Inertinite	IV	Charcoal; oxidized material

The distribution of components in parent kerogens influences the HCs generated at the peak of oil formation; see Figure 18. Type I kerogens consist mainly of algal and amorphous kerogen, and are prone to oil generation. Type II kerogens are derived from mixed terrestrial and marine material; waxy oil is the dominant economic product of Type II kerogen maturation. Woody, terrestrial material most prone to gas generation upon maturation comprises Type III kerogen. Type IV kerogen is derived from residual organic matter found in sediments that have been reworked after erosion. Type IV kerogen may have experienced alteration by subaerial weathering, combustion or biologic oxidation prior to ultimate burial and is considered dead or inert C due to its relatively H-poor chemistry; there is no potential to generate HCs in these inertinites (Hunt, 1995). Kerogens of the first three types are indistinguishable from Type IV inertinites at very high maturities using only Rock-Eval pyrolysis (Tissot and Welte, 1984).

Figure 18: Distribution of HCs generated from samples representing different kerogen types at the peak of oil formation. Areas are proportional to amount of HCs per unit mass of C_{org} . From Killops and Killops, 2005.

The biota from which kerogen is derived are constructed from a relatively few simple molecular components that are mostly unchanged over geologic time (Hunt, 1995). Carbohydrates, proteins, lipids, resins, pigments, and other classes of organic building blocks are the structures of life and metabolic systems. Flora and fauna contain differing proportions of the major constituents that produce unique chemical signatures - biochemical fossils or biomarkers. Together, these factors lead to production of different, distinct kerogen types and a broad array of biochemical fossils. These biomarkers can be isolated from whole rocks (as bituminous extracts and kerogen pyrolyzates) and also from crude oils. Bituminous extracts (rock extracts) are obtained by organic solvent extraction of 5 grams of sample pulp (finely ground rock) placed in a cellulose thimble and extracted with dichloromethane using Soxhlet apparatus (Bjorlykke, 2013). The ratios and distributions of such biomarkers (and, to some extent, those of HCs generally) are utilized to interpret the provenance, the depositional and thermal history of preserved OM (cf. Peters *et al.*, 2005; Engel and Macko, 1987; Killops and Killops, 2005). This is depicted in Figure 19.

Figure 19: Approximate correlation of various maturity parameters with stages of petroleum generation. Killops and Killops, 2005.

1.6 Organic Geochemistry with Specific Reference to Precambrian Organic Matter

Organic matter preserved in Precambrian rocks is unique in that it has persisted despite its vast period of existence in crustal rocks vulnerable to tectonic recycling and significant stresses related to high pressures and temperatures. Such ancient OM is also unique in that it was generated in differing biotic and ecosystemic regimes, leading to distinct chemical differences from more recently generated OM.

The mean TOCs of Precambrian sedimentary rocks are lower than those of comparable Phanerozoic lithofacies, probably reflecting lower primary productivity/biomass generation, as well as metagenetic C loss and erosion of many representative Precambrian environments (Engel and Macko, 1993). The UCLA Precambrian Paleobiology Group showed 67% of their 315 samples as below 0.5% TOC, 17% of their samples as between 0.5 and 1.0% TOC, 14% of their samples with TOC between 1 and 5% TOC, and 2% of samples with TOC greater than 5% (Hayes *et al.*, 1983). Reimer *et al.* (1979) reported Early Archean sediments of the South African Swaziland Sequence with an average of 0.43% TOC. This is similar to the mean TOC finding of 0.38% by Imbus *et al.* (1988) for the Nonesuch Formation. Precambrian kerogens display as much chemical variability as kerogens in the Phanerozoic record (McKirdy and Hahn, 1982).

Precambrian Type I kerogen, H-rich, presents petrologically as thin films of lamellar alginite and also as discrete ellipsoid or disc-shaped algal bodies (McKirdy and Kanstler, 1980). Type I organic morphologies are derived from bloom or mat-forming cyanobacteria, partially reworked by anaerobic bacteria, thus incorporating lipid-rich bacterial cells (McKirdy *et al.*, 1980). The inferred depositional environments for this material are: 1) evaporitic, alkaline playa-lacustrine facies similar to those of the Observatory Hill Beds, Officer Basin, S. Australia (atomic H/C = 1.19-1.37 with atomic O/C = 0.05-0.1), and 2) marine phosphorites of the

Ordovician Beetle Creek Formation, Georgina Basin, Queensland, Australia (atomic H/C = 1.13 with O/C = 0.05-0.1), and the similar Lesser Karatau deposit, Former USSR (atomic H/C = 0.53), and the Areyonga Formation, Amadeus Basin, N. Territory, Australia (atomic H/C = 0.53 and O/C = 0.05-0.2; Powell *et al.*, 1975). The latter two lower H/C values reflect their higher degree of thermal alteration due to deeper burial (McKirdy and Hahn, 1982). Precambrian Type I kerogen generally presents a pyrolysis-hydrogenation-gas chromatography (PH-GC) pyrogram in which *n*-alkanes up to C_{25} or higher are dominant; simple aromatics (benzene, toluene, etc.) occur in very low concentrations relative to aliphatic moieties of equivalent C_n , though this is dependent upon kerogen rank (McKirdy and Hahn, 1982). Likely precursors of this highly aliphatic OM include lipid-rich planktonic chlorophytes, or bacterial/microbial mats (McKirdy *et al.*, 1980).

Precambrian Type II kerogen, such as that of the 1.45 Ga McMinn Formation, McArthur Basin, N. Territory, Australia occupy an intermediate position on a van Krevelen plot (H/C = 0.5-0.9 and O/C = 0.07-0.2, at low levels of maturity/oxidation; Peat *et al.*, 1978). This material can be a mixture of Type I and III kerogens, but has also been described as a derivative of acritarchs, bacterial lipids, or amorphous sapropelized algal/protozoan remains (McKirdy and Hahn, 1982). It may be in some part a derivative of sporopollenin, a chemically resistant biopolymer in the cell walls of certain algae (Brooks and Shaw, 1972). It presents petrologically mainly as lamalginite although some reports indicate the presence of amorphous algal or protozoan remains and some acritarchs (Engel and Macko, 1993). This material differs little in PH-GC pyrograms from Precambrian Type I OM but it is significantly more naphthenic. The maturation of such Precambrian Type II OM occurs by progressive shortening of aliphatic chains and a loss of alkyl groups, as well as generally increasing aromatization of alicyclic rings

(McKirdy and Hahn, 1982). Such Precambrian Type II OM has been isolated from bituminous shales and carbonates of the 0.8 Ga Bitter Springs Formation, Amadeus Basin, Australia (atomic H/C = 0.80-0.85) and from several units within the 1.6-1.7 Ga McArthur Group, McArthur Basin, Australia (atomic H/C = 0.75-0.92; Saxby, 1976). Among the Precambrian sequences known to contain kerogens that have not matured well past the peak oil window (Rock-Eval T_{max} below 450°C) are a number of units generally of a similar composition (H/C = 0.70-1.66 and HI = 150-740; Engel and Macko, 1993). This group contains kerogen of Type I and Type II.

Oxygen-rich, H-poor kerogen (Type III or Type IV) is preserved in very low concentrations in certain Proterozoic and also Paleozoic stromatolitic carbonates and cherts (atomic H/C 0.5-0.8 with O/C = 0.05-0.4, and atomic H/C = 0.4-0.6 with O/C = 0.1-0.4, respectively) presuming minimal maturation/oxidation (McKirdy, 1976). Such kerogen of this age is likely derived from cyanobacterial mucillage and from algal and bacterial pectic tissue (McKirdy *et al.*, 1980). Type IV kerogen presumably underwent partial oxidation during early diagenesis (McKirdy and Hahn, 1982). The saturated portion of these and other humic Precambrian kerogens often shows an odd C_n preference in the C₁₀+ range, possibly reflecting derivation from bacterial cell-wall lipids (McKirdy *et al.*, 1980). A distinct group of Precambrian Type II/III (H/C = 0.90-1.17 and HI = 100-484) kerogens have been reported (Engel and Macko, 1993). Significantly, at least one member of this latter group is thought to have undergone bacterial degradation (sapropelization) of the primary algal biota, and possibly partial oxidation *prior* to compaction and lithification, which may explain the trend towards Type III kerogen (Crick *et al.*, 1988). See Table 3. Table 3: Origins, chemical characteristics, typical associated depositional environments, and Cambrian and Precambrian examples of kerogen. Engel and Macko, 1993.

Kerogen type	Source	Chemical characterization	Depositional environment	Precambrian and Camb examples	orian
1	Lipid-rich chlorophytes and cyanophytes (eg: <i>Tasmanites,</i> <i>Giaecapsomorpha)</i> Bloom and mat- forming cyanophytes; acritarchs; archaebacteria	Hydrogen-rich (alginite coalification track), <i>n</i> -alkanes up to C ₂₅ dominate pyrolyzate; simple aromatic hydrocarbons (benzene, toluene, ethylbenzene, and the xylenes) occur in very low concentrations relative to aliphatic moieties of similar carbon numbers	Reported from Ordovician and older rocks for which anoxic lacustrine or marine environments may be inferred	Beetle Crk Fm., Geog Basin, Queensland (phosphorite restrict marine shelf); Observa Hill Fm., Officer Basin Australia (Cambriar dolomitic argillaceou mudstone; alkaline pl lake, evaporitic)	ina ed itory , S. n us aya
Π	Partially degraded (sapropelized) algae and zooplankton; bacterial lipids; acritarchs	Intermediate coalification track, complex chemical composition; pyrolysates differ little in aromaticity from Type I kerogen but are considerably more naphthenic; <i>n</i> -alkyl chains prominent but shorter and present in lower concentration relative to branched and cyclic alkyl moieties	Various anoxic to suboxic environments, including lacustrine and marine sabkha to outer shelf	Ouldburra Fm., Officer B S. Australia (micriti carbonate; shallow ma to evaporitic); McMinn McArthur Basin, N. Te Australia (shale and siltstone; outer mari shelf); Velkerri Fm. McArthur Basin (pyri mudstone and siltstor	Sasin, c rrine Fm., rrr., f ne , tic ne)
ш	Geochemically gellifie algal humic acids incorporating some bacterial lipids.	ed Oxygen-rich, hydrogen- poor; pyrolysate commonly displays an odd-carbon-number predominance in the C _{3D} , range which may be a biomarker for bacterial cell wall lipids; simple aromatic hydrocarbons prominent relative to short-chain <i>n</i> -alkyl moieties	Suboxic, shallow to marine	deep Pertatatak Fr Amadeus Basir Terr., Australia (and siltstone; o marine shelf); E Springs Fm. Amadeus Basir Terr., Austra (dolomite, pa anhydritic; sha marine to evapo	n., n, N. shale suter sitter n, N. lia rthy llow oritic)
īV	Partially oxidized alg cellulose and sheath mucillage; bacterial pectic tissue	al As above, but with lower pyrolyzate yield	Oxic, shallow mar Typically found in ve concentrations in or late Proterozoi stromatolitic carbo and cherts for whit inter- to supra-ti environment may inferred	rine. Wilkawillin ery low Limestone, Arn ertain Basin, S. Austr ic (stromatolit nates limestone); Wo ch an Fm., Adelaid idal Geosyncline, y be Australia (stromatolit limestone)	a owie alia ic noka le S. ic

The saturate fraction of typical Precambrian extracted OM generally presents a classic "marine signature;" that is, a prevalence of C_{12} to C_{20} *n*-alkanes, often with predominantly odd over even C_n homologs in the vicinity of *n*- C_{15} and *n*- C_{17} (Tissot and Welte, 1984). This *n*-alkane signature is thought to result from the decarboxylation of the corresponding normal fatty acids (especially *n*- C_{16} and *n*- C_{18} homologs) which are important lipid constituents of planktonic and benthic organisms (Engel and Macko, 1993).

Branched alkane species increase in abundance in oils with increasing geologic age (Hoering, 1981). Both *iso-* and *anteiso-*alkanes (2- and 3-methyl-substituted, respectively) are common components of most Precambrian oils and extracts (Engel and Macko, 1993). Monomethyl alkanes such as the 4-, 5-, and 6-methyl-substituted alkanes and the midchain methyl-substituted isomers - so-called "X compounds," first reported in Omani oils by Klomp (1980) - are found in unusual abundances in Precambrian oils and extracts. These singly branched alkanes, among the most distinctive compounds found in Precambrian-sourced hydrocarbons, and are widely believed to form by rearrangements and cracking of C skeletons during long periods of kerogen maturation (Engel and Macko, 1993). Summons *et al.* (1988) posited a bacterial origin to the midchain methyl-substituted alkanes found exclusively in Precambrian and Early Paleozoic oils and extracts, whereas later workers ascribe them to cyanobacterial input (George *et al.*, 2008).

A broad selection of isoprenoid HCs have been reported from Precambrian oils and extracts. The C_{12} to C_{20} regular (head-to-tail linked) isoprenoid alkanes are the most commonly reported isoprenoid compounds (Engel and Macko, 1993).

Steranes (tetracyclic compounds derived from steroids and sterols via diagenetic and catagenetic degradation and saturation) in Precambrian oils and sediments provide definitive

evidence of eukaryotic inputs to their precursor OM, and to their thermal maturity. The presence of steranes in the 1.7 Ga Barney Creek Formation of the McArthur Basin provides evidence for the presence of eukaryotes which is significantly earlier than the age of well-established fossil evidence for these organisms (1.4 Ga; Summons and Walter, 1990). Sterane distributions and ratios may be used to infer maturity levels of Precambrian rocks, despite their lesser abundance in Neoproterozoic as compared to Mesozoic rocks. Hopanes associated with bacterial inputs are generally abundant in Precambrian rocks as compared to their occurrence in younger strata (Ourisson and Rohmer, 1992).

2. Studies of Relations Between Organic Matter and Metal Ore

The general view that OM plays a role in some forms of ore mineralization is evidenced by occurrence of OM in sedimentary rocks in association with metallic ores at, for example, the Pb, Zn and Ag deposits of the McArthur Basin of Australia (Logan *et al.*, 2001; Summons *et al.*, 1988), Cu deposits of the European Kupferschiefer (Püttman *et al.*, 1989) and SSC deposits of northern Michigan, USA (Ho *et al.*, 1990; Ho and Mauk, 1996). Additional accounts of organics-ore association include those of U (e.g., Gize, 2000), Au (e.g., Fairmaid *et al.*, 2011; Ilchik *et al.*, 1986), Hg (e.g., Lavric *et al.*, 2003; Gize, 2000), and in particular the large deposits of Mississippi Valley Type Pb-Zn deposits (e.g., Disnar and Sureau, 1990).

Organic geochemistry has been applied to OM-associated mineral deposits to identify HC biomarkers of major organic precursors and molecular alterations indicative of important Earth processes such as thermal maturity and biodegradation (e.g., Logan *et al.*, 2001; Rieger *et al.*, 2008). Some workers have reported correlation of trends between biomarker/abiotic HC parameters and metal enrichments (Hulen and Collister, 1999; Spangenberg and Macko, 1998).

With analytical advances it is now possible to use organic geochemical parameters to search for thermal anomalies associated with hydrothermal ore deposits and to map conduits of ore-emplacing paleofluids (Ilchik *et al.*, 1986). Significantly, the organic parameters inferred to represent hydrothermalism may occupy larger areas than the orebodies themselves, potentially offering a means of exploration. Still, few would confidently claim to totally understand the relevance of organics to the mineralization process, although the review by Greenwood *et al.* (2013) highlights promising insightful outcomes from several well-studied OM-ore associations. See also the 2000 edition of Reviews in Economic Geology on *Ore Genesis and Exploration*, *v. 3: The roles of organic matter* (eds. T.H. Giordano et al).

2.1 Kupferschiefer Stratiform Copper

The Upper Permian cupriferous shale, or Kupferschiefer, of northern Europe shares many geologic and interpreted genetic features with the Nonesuch Formation SSCs (Ridley, 2013). The stratigraphic term Kupferschiefer describes a thin (less than 4 m) bed of marine bituminous marl occupying an estimated 600,000 km² extent, from Poland in the east across Germany and the North Sea to northeast England, where it is called the Marl Slate and lacks reported economic Cu concentrations (Vaughan et al., 1989). It has been exploited for Ag, Cu, and other base metals since the Middle Ages and is regarded as the type example of a shale-hosted, stratabound, disseminated sulfide deposit (Speczik et al., 1986). The term Rote Fäule was first used by miners to describe barren, red-colored rocks found in the vicinity of the ore. It is applied to rocks of the Weisseliegende (white sandstone), Kupferschiefer, and Zechsteinkalk layers which exhibit various types of red coloration caused by disseminated hematite and goethite (Vaughan et al., 1989). Some workers early on interpreted the Rote Fäule to represent a shallow-water equivalent of the black, Cu-bearing shales but a diagenetic origin is suggested and widely accepted based on the presence of hematite pseudomorphs after syngenetic pyrite (Jowett *et al.*, 1987).

Organic C content generally decreases from bottom to top in the Kupferschiefer, which reflects decreasing preservation with increasing oxygenation of the Zechstein Sea (Püttman *et al.*, 1989). However, the lowest TOC values are found in the bottom-most samples of the basal, most-altered Rote Faule (Bechtel *et al.*, 2000). The change from black shale to red shale (Rote Fäule) across Cu ores in the Kupferschiefer is interpreted to be a result of near complete epigenetic oxidation and dissolution of indigenous OM during flow of Cu-bearing fluids on the up-flow margins of the ores (Speczik and Püttman, 1987).

2.1.1 Organic Geochemical Studies of the Kupferschiefer

The Kupferschiefer has been a topic of OM-ore study since the middle 1980s. Kotarba *et al.* (2006) applied RE, GC/GC-MS, and compound class-specific SI methods to examine thermal maturity and source rock prospectivity of the Permian Kupferschiefer, building upon a significant body of organic geochemical studies of Cu ore-organic relations in the region.

Overall Kupferschiefer mineralized and highly oxidized ore-adjacent areas) show: 1) kerogens depleted in H equivalents (low HI; Sun and Püttman, 2001); 2) a dominance of aromatic compounds in EOM, especially PAHs; 3) lower MPI1 (demethylation) and lower MDR; 4) saturated HCs depleted in n-alkanes of intermediate to high molecular weight; and, 5) a higher degree of OM degradation indicated by increasing phenanthrene/methylphenanthrene ratio (demethylation), than do barren, least-altered samples (Bechtel *et al.*, 2000). Barren samples do however show increasing maturity with depth as reflected by generally decreasing HI and increasing T_{max} values, diminished EOM yields and correlation of MPI1 and depth in agreement with the relation of MPI1 to organic maturity (Bechtel *et al.*, 2000).

The Bechtel *et al.* (2000) study is most closely analogous to this study, in terms of deposit type, analytical tools and end goals, although Sun and Püttman (2001) replicated some of their findings. Sun (1998) showed that mineralized and barren Kupferschiefer samples are Type II and Type III kerogens on modified van Krevelen plots (cf. Bechtel *et al.*, 2000). All barren Kupferschiefer samples fall within the area where Type II OM dominates, whereas the Rote Fäule and some of the mineralized samples do not (Bechtel, *et al.*, 2000). Departures from the expected thermal evolution pathways for a given kerogen are seen in Figure 20 from Bechtel *et al.* (2000). Sun (1998) suggested that secondary oxidation of OM during mineralization altered Type II kerogen to the Type II-III mixture observed. Alternatively, this could reflect multiple OM source types, C_{carb} interferences during pyrolysis of organic-lean, carbonate-rich samples.

Discrimination thereof necessitated kerogen typing by crossplots of HI versus T_{max} , as in Figure 21. The mineralized Kupferschiefer samples show a slight negative correlation between HI and burial depth (Figure 22), with HI values significantly reduced at a given depth compared with the barren samples.

Figure 20: Modified van Krevelen diagram of Rock-Eval pyrolysis on Kupferschiefer SSC samples. Maturation pathways typical for the different kerogen types are indicated. Bechtel *et al.*, 2000.

Figure 21: Relationship between HI and temperature of maximum pyrolysis yield (T_{max}) for Kupferschiefer SSC samples. Fields in the diagram are labeled according to the predominance of the respective kerogen type. Bechtel *et al.*, 2000.

Figure 22: Correlation plot of HI versus downhole depths of the Kupferschiefer. Bechtel et al., 2000.

Organic matter from highly mineralized samples adjacent to Rote Fäule and especially from Rote Fäule samples show low HI and higher OI values than does the whole sample set of Bechtel *et al.* (2000; cf. Sun and Püttman, 2001). Bechtel *et al.* (2000) interpreted their similarly broad scatter of HI versus OI data points (Figure 20) to reflect OM degradation due to both burial-induced thermal maturation and oxidation associated with base metal mineralization.

The vast majority of barren Kupferschiefer samples show relatively low T_{max} values (Figure 23). In comparison, mineralized and ore-proximal Kupferschiefer samples plot in different fields on the T_{max} versus depth diagram. The Rote Fäule samples show highest T_{max} values (despite the present shallow burial depth of Kupferschiefer in the localities from which these samples were collected). In fact, the increasing T_{max} values towards the Rote Faule are

characteristic of OM degradation by partial oxidation by ascending oxidizing brines in and just above the Rote Faule.

Figure 23: Correlation plot of T_{max} versus downhole depths of the Kupferschiefer. Bechtel et al., 2000.

With decreasing distance to the Rote Fäule, the EOM yield decreased from 50-70 mg/g C_{org} to values between 25-35 mg/g C_{org} (Bechtel *et al.*, 2000). See Figure 24. This trend parallels a general increase in the aromatic portion of EOM from 20-38% in Pb-Zn mineralized samples (lacking Cu) up to 40-54% aromatics in the most-altered Rote Faule samples. Increasing aromatic EOM yield accompanies a decrease in the proportion of saturated HC in EOM from Pb-Zn mineralized samples to Rote Fäule samples. Barren zone samples give greater yield of EOM and a wider range of values (33-61 mg/g C_{org}); the wider spread of values is in part due to this subset's broader span of sample collection depths due to km-scale vertical structural offsets (Bechtel *et al.*, 2000).

Figure 24: Plot of the C_{org} -normalized, C_{15} + soluble organic matter yield vs. downhole depths of the Kupferschiefer (Bechtel *et al.*, 2000).

Multiple studies of the Permian Kupferschiefer describe distinct differences in the saturate and aromatic fractions of extracted OM and of the vitrinite reflectance for ore-proximal versus ore-distal samples (Sun, 1998; Bechtel *et al.*, 2000). This evidence for oxidative alteration of OM in highly mineralized Kupferschiefer samples near the most-altered Rote Fäule zones coincides with correlations of RE and EOM yields versus the present sample depths. Aromatic compositions changed with decreasing distance to the most-altered and mineralized zones by increasing abundance of PAH (Bechtel, *et al.*, 2000). This trend was posited by Sun and Püttman (2001) to result from dealkylation of oxy-alkylated aromatics to produce DBF, among other aromatics. Sun (1998) found that vitrinite reflectance increased with proximity to ore and Rote Fäule, coincident with increasing aromaticity. Proximity to mineralized and most-altered zones correlate with increases in the ratio of phenanthrene to methylphenanthrenes (and

thus, also to decreases in the MPI1 with proximity to ore, possibly by demethylation of methylphenanthrenes; Bechtel *et al.*, 2000).

The aromatic portion's GC traces from Pb-Zn mineralized samples at greater distance to the Rote Fäule zone are successively dominated by phenanthrene, methyl-, dimethyl-, and trimethyl-phenanthrenes (Figure 25, Bechtel *et al.*, 2000). Further aromatic constituents include biphenyl, DBF, and DBTs. The Cu-mineralized zone shows the same compounds, but with reduced intensities of the methylphenanthrene and increasing number of aromatic rings. Increased aromaticity is defined by the appearance of PAHs including fluoranthrene, pyrene, and benzo(k)fluoranthrene (Figure 26). Rote Fäule samples show these PAHs and also benzo(a)anthracene, triphenylene, and chrysene as the dominant aromatic compounds (Figure 27). Barren zone samples show PAHs at only minor intensities in comparison (Bechtel *et al.*, 2000).

Figure 25: Gas chromatogram of the aromatic HC fraction from a Kupferschiefer sample representative of the Pb-Zn mineralized zone. B = biphenyl; DBF = dibenzofuran; DBT = dibenzothiophene; Ph = phenanthrene; MPh = methylphenanthrenes; DMPh = dimethylphenanthrenes; TMPh = trimethylphenanthrenes. Bechtel *et al.*, 2000.

Figure 26: Gas chromatogram of the aromatic HC fraction from a Kupferschiefer sample representative of the Cu mineralized zone. DBF = dibenzofuran; DBT = dibenzothiophene; Ph = phenanthrene; MPh = methylphenanthrenes; DMPh = dimethylphenanthrenes. Bechtel *et al.*, 2000.

Figure 27: Gas chromatogram of the aromatic HC fraction from a Kupferschiefer sample representative of the Rote Faule zone. Ph = phenanthrene; MPh = methylphenanthrenes. Bechtel *et al.*, 2000.

The methylphenanthrene index (MPI1) averaged 0.8 for Rote Fäule and mineralized samples, and ~0.96 for the barren, ore-distal samples; MPI1 values decrease towards the Rote Fäule, as shown in Figure 28 (Bechtel *et al.*, 2000; cf. Sun, 1998). The observed MPI1 depression in highly mineralized samples is thought to result from H donation during thermochemical sulfate reduction by alkylated phenanthrenes.

Figure 28: Correlation plot of the methylphenanthrene index, sensu Radke, et al., 1982. From Bechtel et al., 2000.

The values of the methyldibenzothiopene ratio (MDR) increase continuously from 2.2 to 7.2 with increasing depth (Figure 29). For samples presently at less than 2000 m depth, there is a broad scatter of MDR values; this is thought to reflect varied degrees of OM degradation by oxic brines associated with Cu ore emplacement in the Kupferschiefer.

Figure 29: Correlation plot of the methyldibenzothiophene ratio (MDR of Radke *et al.*, 1982) of the Kupferschiefer. From Bechtel *et al.*, 2000.

The depletion of MPs relative to phenanthrene in EOM can be used to quantify the extent of OM alteration by the oxidizing hydrothermal brines (Püttman *et al.*, 1989). Speczik (1994) tied increasing Cu grade to vitrinite reflectance as well as Ph/ Σ MPh to plot a classic bell-curve by these three parameters from GC/GC-MS and VR data. Speczik (1994) showed that values for the Ph/ Σ MPh provide a measure for the intensity of alteration. Unoxidized and weakly oxidized samples showed Ph/ Σ MPh = 0.6-1.2, while oxidized samples give values between 1.5 and 3.0 (Speczik, 1994). Bechtel *et al.* (2000) showed averaged Ph/ Σ MPh for Rote Fäule and mineralized samples of 0.82 and 0.457 for barren ore-distal rocks. Clear boundaries between Rote Fäule, mineralized, and barren Kupferschiefer samples are apparent in the plot of HI versus $Ph/\Sigma MPh$, shown in Figure 30 from Bechtel *et al.* (2000).

Figure 30: Hydrogen index vs. the Ph/ Σ MPh ratio of Kupferschiefer samples, from barren, mineralized, and Rote Faule zones. Bechtel *et al.*, 2000.

Bechtel *et al.* (2000) showed that mineralized and ore-proximal rocks have higher abundances of pristane and phytane relative to heptadecane (n-C₁₇) and octadecane (n-C₁₈) than do unmineralized ore-distal barren samples in the Kupferschiefer. Their values for ore-proximal and mineralized samples averaged 0.76 and 0.79, respectively, and ore-distal samples averaged 1.22 for pristane/n-C₁₇ and 1.54 for phytane/n-C₁₈ (Bechtel *et al.*, 2000).

The isotopic composition of C_{org} and C_{carb} showed changes corresponding to the alteration patterns of OM elucidated by GC-MS and RE data (Bechtel *et al.*, 2000). Kupferschiefer kerogens as well as bitumens in and proximal to the most altered zone showed enrichment of ¹³C relative to ore-distal, unaltered samples as in Figure 31 (Bechtel *et al.*, 2000; Sun and Püttman, 2001). This can be explained by preferential release of isotopically light C_{org} through progressive degradation of OM (Sun and Püttman, 2001). Conversely, Kupferschiefer calcites of Rote Fäule samples are depleted in ¹³C and ¹⁸O to the highest extent relative to barren samples, followed by calcite of the mineralized zone as shown by Figure 32 (Bechtel *et al.*, 2000). This negative correlation suggests the generation of carbonate from isotopically light CO_2 liberated by degradation of OM. Oxidative conversion of C_{org} into carbonates after deposition of the sediment is the best explanation given the trends in C isotopic composition of OM and calcite (Bechtel *et al.*, 2000).

Figure 31: Histogram of the δ^{13} C values of the total C_{org} from the Kupferschiefer of the Polish Zechstein Basin. Bechtel *et al.*, 2000.

Figure 32: δ^{13} C vs. δ^{18} O diagram of calcites from the Kupferschiefer of Poland. Bechtel *et al.*, 2000.

The multiple independent lines of evidence corroborate and convince this observer of the veracity of the conclusion of Bechtel, *et al.* (2000): Within the Polish Cu deposits, the OM of the Kupferschiefer acted as a geochemical trap by its reducing potential, precipitating metal sulfides from ascending, oxidizing brines caused by decreasing Eh conditions.

2.2 Alligator Ridge Gold and Organic Alteration

Ilchik *et al.* (1986) quantified OM maturation by RE to map Au hydrothermal enrichment conduits. They showed that OI and HI values more accurately reflect Au, As and Sb enrichments than did mineral alteration patterns observable in the field. Mineralized samples showed HI values ranging from 1 to 55, while the HI range for unmineralized samples was 10 to 76; deposit-distal background samples showed a similar HI range to those of unmineralized mine samples. Select pyrograms (Figure 33) representing each of the three classes of all samples show a significant decrease of the S_2 peak (and resultant HI depression) for samples proximal to, or bearing, ore-grade Au concentrations. This significant increase in organic maturity above background in both mineralized and unmineralized samples indicates that thermal effects of hydrothermal fluid flow are more extensive than ore grade or other field-observable mineralogic alteration patterns (Ilchik *et al.*, 1986).

Figure 33: Effects of hydrothermalism on kerogens of the Pilot Shale at Alligator Ridge, NV, as determined by pyrolysis. Pyrograms representative of mineralized, unmineralized, and background samples are on the right. Note the decreases in the S_1 and S_2 peaks caused by hydrothermal activity (Ilchik *et al.*, 1986).

Ilchik *et al.* (1986) showed HI isopleths at Vantage II, which they interpreted as isotherms for the hydrothermal event. Heat flow is controlled by fluid advection rather than conduction through the rock matrix, so the isotherms extend in the direction of maximum fluid flow (as in Figure 34, from Ilchik *et al.*, 1986). Rock-Eval maturity parameters can thus serve as useful proxies for mapping hydrothermal flow patterns associated with sediment-hosted precious metal deposits.

Figure 34: Hydrogen index isopleths and proposed mineralizing fluid pathways at Alligator Ridge Vantage II and III orebodies. Most samples come from 50-100 feet below present topographic surface. Arrows indicate proposed fluid flow path (Ilchik *et al.*, 1986).

The OI range for mineralized and unmineralized samples is significantly greater than for the background samples. Background samples showed OI between 10 and 45, whereas both mineralized and unmineralized samples gave OI between 0 and 150 - an oxidation anomaly associated with ore deposition. One mineralized sample registered an OI value of 303 (Ilchik *et al.*, 1986). Visually prominent oxidation features in the deposit proper - destruction of sulfide minerals and OM - coincide with elevated OI values; these samples are mostly found adjacent to significant hematite concentrations.

2.3 Idrija Mercury Deposit

Rock-Eval pyrolysis parameters and GC-MS study of the molecular composition of regional barren rocks, host rocks, and mine ores revealed oxidative degradation of indigenous and migrated OM at the world-class Hg deposit at Idrija, Slovenia (Lavric *et al.*, 2003). The study also applied stable isotopic analyses of kerogens, bitumens, pyrobitumens, and some *n*-alkanes to provide mine-scale constraints on ore fluid pathways and insights as to the nature of hydrothermal alteration of the Idrija OM (cf. Palinkas *et al.*, 2001).

Idrija bitumens from mineralized samples were depleted in aliphatic HC and enriched in PAH, S-PAH and hydrogenated PAH relative to unmineralized and regional samples. Idrija deposit's PAH may have formed by: 1) pyrolytic fragmentation of organic compounds followed by reformation (cyclization, aromatization, annelation), and 2) transformation of biological precursors (eg: saturated cyclic compounds) by dehydrogenation and dealkylation. Efficiency of both processes increase with elevated temperature: higher temperatures will show higher PAH contents and mixtures of degraded biomarkers and residual immature biomarkers (Engel and Macko, 1993). Thermochemical sulfate reduction involved with cinnabar precipitation may have further enhanced aromatization of Idrija HC by S catalysis. Lavric *et al.* (2003) concluded that the occurrence of hydrogenated PAH in the Idrija ore samples indicated a higher degree of alteration and the pathway of hydrothermal fluids. It seems probable that the high concentrations

of S-PAH in Idrija mineralized samples were formed during mineralization and related to hydrothermally mediated reduction of sulfate by OM (Lavric *et al.*, 2003).

3. Previous Organic Geochemical Studies of the Nonesuch Formation

(Cumming *et al.*, 2013). Organic matter thought to be indigenous to the Nonesuch Formation is found as kerogen, bitumen, pyrobitumen in pore spaces, and as seep oil, fluid inclusion oil and vein inclusion pyrobitumen. This occurrence is spectacular for several reasons: life was still very primitive, limiting production potential; also, the preservation of the Nonesuch Formation without tectonic destruction or sufficient heating to completely destroy its OM is outstanding for rocks of this age (Erwin, 2015; Hunt, 1995).

The OM in the Nonesuch Formation was produced and accumulated around 1.087 Ga

Nishio (1919) early suggested the importance of OM-Cu relations in the ore deposits of the Nonesuch Formation. Barghoorn et al. (1965) put out the first detailed microscopic study of the Nonesuch Formation's OM by petrographic and biologic examination of kerogen isolates. Further detailed organic petrography of the Nonesuch Formation includes works by Imbus (1988), Thompson and Rizer (1993), King (2009), Colbert (2011), and Fourgani (2012). Significant contributions to the known paleoecology and paleoenvironment of Nonesuch Formation deposition include those by Elmore et al. (1989), Pratt et al. (1991) and Cumming et al. (2013). Petroleum prospectivity of the Nonesuch Formation OM was central to the publications of Imbus et al. (1988), Uchytil et al. (1997) and Hegarty et al. (2007). Advances in high-sensitivity organic analytical mechanics drove a boom of OM-focused geochemical research on the Nonesuch Formation in the late 1980s and 1990s. Degradation of OM similar to that recorded in the Kupferschiefer ores has been inferred for the Nonesuch Formation ores through low *n*-alkane contents of whole rock extracts, (Ho *et al.*, 1990; Ho and Mauk, 1996), higher apparent thermal maturity of OM in ore (Hieshima and Pratt, 1991) and lower solvent extraction yields of HC in ore (Mauk and Hieshima, 1992). Imbus et al. (1992) reported a

relatively broad range δ^{13} C for Nonesuch Formation kerogens from Michigan and Wisconsin, and a strong enrichment in ¹³C in samples below 0.15% TOC.

3.1 Origin and Character of Nonesuch Formation Organic Matter

Early optical study of kerogen concentrates under incident white light by Barghoorn *et al.* (1965) identified an anastomose filamentous organic material (FOM) that was interpreted by Moore *et al.* (1969) to represent fungal or actinomycete mats. Strother and Wellman (2016) encountered small (10 micron maximum dimension), ellipsoidal organic-walled microfossils in the Nonesuch Formation, as well as in the coeval lacustrine mudstones of the Torridon Group of the north-west Scottish Highlands. Individual cells of the newly identified microfossil, *Eohalothece lacustrina*, are associated with benthic microbial biofilms. The majority of such samples have been recovered in palynological preparations in the form of large, apparently planktonic colonies.

Rock-Eval pyrolysis HI and OI values from 41 Nonesuch Formation samples plot over a fairly broad area on a modified van Krevelen diagram (Imbus *et al.*, 1992). A simplistic interpretation might invoke a large range in thermal maturity to explain apparent disproportionation of H (decreasing HI down the Type I or II coalification tracks), however thermal maturity is generally equivalent throughout the basin, and HI shows no clear relation to TOC level or lithology differences (Imbus *et al.*, 1992). Per that study, Type I kerogens (HI above 300, OI below 10), indicating probable algal origin, are found only in the eastern (Michigan) Nonesuch Formation, whereas two Michigan and one Wisconsin Type II kerogens (HI below 300, OI under 25) are reported by Imbus *et al.* (1992). Contribution of terrestrial higher-plant material to produce Type II-III kerogen (OI above 25) could not have occurred at this time in the Precambrian but such kerogen is nonetheless present in eastern lower and upper

divisions. This is attributed to hydrothermal alteration of OM during mineralization for the two lower eastern Nonesuch Formation samples (cf. Ho *et al.*, 1990), whereas the upper eastern division Type II-III kerogens are thought to have been oxidized in shallow ponded environments prior to deep burial (cf. Milavec, 1986). Kerogens whose HI and OI values preclude typing may be attributed to extensive degradation via oxidation, prolonged heating, microbial activity or low initial TOC.

Colbert (2011) showed the presence of mid-chain substituted monomethyl alkanes as well as 1,2,5-TMN from inclusion oil in calcite from White Pine, interpreted to derive from a cyanobacterial source (cf. George *et al.*, 2008). Imbus *et al.* (1992) put forth the *b/e* parameter (comparing the abundance of branched-cyclic alkanes relative to that of *n*-alkanes), which suggests a greater bacterial biomass contribution to the aromatic, generally western (Wisconsin) kerogens.

3.2 Organic Maturity of the Nonesuch Formation 3.2.1 Petrographic Appearance and Maturity

The filamentous organic matertial (FOM) of the Nonesuch Formation fluoresces under blue light (Organic Petrography 1 - OP 1) in all eastern (Michigan) samples, but does not fluoresce where identified in the great majority of western (Wisconsin) samples (Imbus *et al.*, 1988). The Michigan FOM is orange whereas the Wisconsin FOM is a dark-orange red color under incident light (Imbus *et al.*, 1988). The two distinct organic petrographies also show a continuum between end-member kerogen pyrolysate compositions by pyrolysis-gas chromatography-mass spectrometry. Organic Petrography 1 kerogens are mainly aliphatic whereas the mostly western kerogens of OP 2 are distinct in their significantly higher content of aromatic compounds (Imbus *et al.*, 1988). This greater aromaticity may represent a higher degree of kerogen maturity, as is suggested by the co-occurrence of bitumen-like granular black material in OP2 (eg: Teichmüller, 1982). It has, however, been shown that relatively high aromaticity of kerogen pyrolysates does not always represent increased thermal maturation (Eglinton *et al.*, 1988). The distinct optical petrographic and organic geochemical evidences were interpreted by Imbus *et al.* (1988) to represent variable primary production or preservation differences superimposed over maturity differences between the Nonesuch Formation in Michigan (eastern samples) and Wisconsin (western samples). Regional differences in kerogen appearance led Imbus *et al.* (1988) to tentatively suggest a thermal maturity trend increasing westward.

Colbert (2011) reported yellow fluorescence color present in at least some of the inclusions in all of that study's samples. This indicates early- to peak-oil window maturity (cf. Killops and Killops, 2005).

3.2.2 Geochemical Maturity

Biomarker maturity ratios from high sensitivity GC-MS on inclusion oil from near White Pine Mine by Colbert (2011) suggest an early- to peak-oil window maturity for the HCs. However, the wide range of fluid inclusion homogenization temperatures along with an inconsistency between these and the biomarker data indicate that the thermal history of the Colbert (2011) inclusion oil is more complex than that of typical oils. Outside of the White Pine area, the Nonesuch Formation is moderately mature with respect to petroleum generation (Pratt *et al.*, 1991). Rock-Eval T_{max} values from Presque Isle and Iron River syncline suggest maturity equivalent to the initial phase of oil generation (Pratt *et al.*, 1991). In contrast to kerogen color observations interpreted to indicate a westward-increasing maturity trend, maturity-related molecular parameters seen in bitumens show no consistent trends across the Michigan and
Wisconsin portions of the Nonesuch Formation (octene/m- + p-xylenes, % n-C₈/n-C₈₋₂₂, R_c; Imbus *et al.*, 1992).

Likewise, the range of T_{max} values reported by Imbus *et al.* (1992) show no regional eastwest segregation, and generally correspond to the early oil generation thermal regime. Uchytil *et al.* (1997) report T_{max} values in the early to early-middle oil generation window. Other workers have reported T_{max} values for the Nonesuch Formation in the marginally mature (incipient oil generation) range of organic maturity (Palacas, 1997). Ho *et al.* (1989) interpreted T_{max} values for White Pine samples to mean that the rocks had not experienced heating much higher than 100°C. Others (Barghoorn *et al.*, 1965) cited abundant porphyrins in the lower Nonesuch Formation Formation and inferred temperatures limited to under about 120-175°C, depending upon duration of heating.

At White Pine, Fourgani (2012) found that the highest TOC values occur in the unmineralized pyrite zone and that Type III and IV kerogens dominate. Given that Type III and IV kerogens generally form from Phanerozoic plants, this suggests either erroneous data or alteration of the OM at White Pine; a general lack of fluorescence of this OM could be interpreted as further evidence of thermochemical alteration (Fourgani, 2012). Fourgani (2012) reported variable maturity indicated by a wide range of T_{max} and R_o values for White Pine samples: some White Pine samples showed as post-mature while others gave values indicating immaturity with respect to HC generation.

General thermal maturity of OM from the White Pine Mine is interpreted to be higher than that of bitumen from unmineralized Nonesuch Formation strata (Pratt *et al.*, 1991). Unmineralized core extracts are enriched in hopanes versus steranes by factors of 2 to 8 compared to a factor of 0.4 for seep petroleum, probably due to preferential thermal destruction

or alteration of hopanes compared with steranes (Pratt *et al.*, 1991). Indeed, overall thermal maturity at White Pine Mine is consistent with peak petroleum generation, while outside the mine thermal maturity is consistent with the onset of petroleum generation (Price *et al.*, 1996).

3.3 White Pine Oil Studies

Active seeps in the White Pine Mine extrude crude oil and salty water (up to 30% TDS, mostly Ca-Na-Cl; Brown, 2006). Petroleum seeps from the roof of the mine via joints and boltholes. At White Pine some oil inclusions in calcite as well as native Cu bear pyrobitumen or petroleum; some of these are thought to be contemporaneous to second-stage mineralization (Nishioka *et al.*, 1985). Petroleum also occurs locally in pores of the "lower sandstone," in association with pyrobitumen cements (Mauk, 1993). Biomarker and stable C isotope analysis strongly support an oil-source rock correlation between the Nonesuch Formation OM and petroleum seeps in the mine (e.g., Pratt *et al.*, 1991). Gas chromatograms of petroleum and pyrobitumen reflect *n*-alkane rich liquid HCs with a homologous series of monomethyl and *n*-alkanes (Mauk and Burruss, 2002).

The same study (Mauk and Burruss, 2002) ruled out significant biodegradation based on low pristane/phytane, pristane/n-C₁₇ and phytane/n-C₁₈ ratios found in inclusion oils. This is supported by the reasonable supposition that fluid migration and entrapment occurred at temperatures too hot for biodegradation to occur (Mauk and Burruss, 2002).

Pyrobitumen inclusions in vein calcite are associated with second-stage mineralization at White Pine; the texture of these inclusions indicates that these are primary inclusions trapped during calcite growth (Kelly and Nishioka, 1985). Pyrobitumen commonly forms by thermal degradation of oils, and may be the case in this situation (cf. Price *et al.*, 1996). Mauk and Burrus (2002), favoring a water-washing genesis of calcite inclusion pyrobitumen at White Pine,

ruled out a strictly thermal origin, stating that "all geothermometry" indicates low temperatures at the mine site. Exsolution and migration of a gas-rich HC phase - phase separation - can alternatively leave a pyrobitumen residue. Mauk and Burruss (2002) excluded phase separation as the primary means of petroleum alteration at White Pine based on the observed similarity of chromatograms of bitumen extracted from both mineralized and unmineralized Nonesuch Formation to those of inclusion oils from White Pine.

Seep petroleum samples from the unfaulted northeastern part of the White Pine Mine have a lower thermal maturity (early oil window) than do those from seeps in the thrusted, twicemineralized, southwestern domain (late oil window), as inferred from *n*-alkane distributions (Mauk and Hieshima, 1992). Mauk and Hieshima (1992) suggested that exogenous petroleum mixing with locally generated HCs might explain this disparity. Another possibility is that seep petroleum is mostly endogenous to the local White Pine Mine Nonesuch Formation, and experienced different degrees of hydrothermally mediated chemical alteration. The latter interpretation is supported by similarities in the isotopic compositions of individual *n*-alkanes from seep petroleum and from petroleum in the "lower sandstone" (Mauk et al., 1993). The spatial overlap between inferred higher maturity and brittle structural deformation suggests that hydrothermal activity associated with second-stage mineralization locally enhanced thermal maturity of seep petroleums near to compressional faults (Mauk and Hieshima, 1992). Indigeneity of petroleum is further supported by similar distributions of acyclic isoprenoids, monomethyl alkanes, cyclohexanes, triterpanes and C₂₇ to C₂₉ steranes between the petroleum from the White Pine Mine seeps and extracts of nonmineralized cores (Pratt et al., 1991). It is significant that the pyrobitumen cements and veins of the "lower sandstone" may have formed as

a result of oxidation of precursor petroleum during second-stage mineralization (Mauk and Hieshima, 1992).

3.4 Other Thermal Constraints for the Nonesuch Formation

Price *et al.* (1996) built time-temperature histories for a variety of potential Nonesuch Formation burial histories; these were then evaluated by comparison to organic and inorganic thermal maturity indicators. This modeling indicates that maximum temperatures for the Nonesuch Formation, 110-125°C, were reached at about 1075 Ma and coincided with maximum burial depth of less than 6, and more likely, 4 km (Price *et al.*, 1996). Hegarty *et al.* (2007) proposed much later maturation (ca. 200-300 Ma) in Midcontinent rift fill rocks, but that study focused on a sub-basin in what is now western Iowa. Heat flow estimates and thermal conductivity measurements were used by Mauk and Hieshima (1992) to estimate a maximum paleotemperature between 140-150°C for 4 km burial depth and 280-300°C for a 6 km burial.

Colbert's (2011) FI study of White Pine area indicates that aqueous and oil inclusions were trapped in calcite of the Nonesuch Formation during diagenesis at temperatures between 100-130°C. That study suggested that the inclusions were then heated to levels of at least 150°C for a short period of time, either shortly after diagenesis or around 200-300 Ma, with some indication that maximum post-entrapment temperatures exceeded 250°C (cf. Mauk and Hieshima, 1992; Hegarty *et al.*, 2007). It is possible that heating these samples beyond 150°C during microthermometry caused additional re-equilibration of some of the calcite-hosted inclusions, which could have caused an artificial skew toward higher temperatures in the data histograms (Colbert, 2011).

Apatite fission track and vitrinite reflectance led Hegarty *et al.* (2007) to conclude that Nonesuch Formation equivalents in western Iowa experienced maximum burial to a depth of 4 km, at about 200-300 Ma. Others have bracketed the maximum burial of the Nonesuch in the White Pine region between 1.5 and 3.6 km (e.g., Brown, 1971; White, 1971, Nishioka, 1983). For this author, the up to 4 km of overlying Freda Formation beneath an angular unconformity to the Paleozoic rocks above it suggest that at least 3 km may be taken as a minimum burial depth for the Nonesuch Formation.

Illite/smectite geothermometry (Price and McDowell, 1993; Li *et al.*, 1995) suggests a northeastern increasing thermal maturity trend. They suggested maximum paleotemperatures of 115°C, 160°C, and 190°C for Presque Isle syncline, White Pine, and Houghton area Nonesuch Formation, respectively. This gradient (opposite to that reported by Imbus *et al.*, 1992) parallels northeasterly increases in the amount of uplift on the Keweenaw Fault as well as progressively more pervasive alteration and native Cu mineralization in the Portage Lake Volcanics (Price and McDowell, 1993). However, Essene and Peacor (1995) point out inherent inaccuracies for technique. Price and McDowell (1993) also report a significant thermal maturity low in the Iron River syncline, west of White Pine Mine (shown in Figure 35).

Figure 35: Price and McDowell (1993) cross-section schematic of horizontal and vertical illite/smectite expandability. The Iron River syncline area - the location of the WPB-1 - is depicted here as a thermal low. Their data show a modest increase in thermal maturity to the southwest in the Nonesuch Formation, but the overall trend increases in thermal maturity to the northeast.

Other lines of evidence have been applied to constrain paleotemperatures at White Pine. Brown (1971) inferred, by his observation of pink bornite at White Pine that paleotemperatures were below 75°C (pink bornite exsolves chalcopyrite at higher temperatures). The same paper noted the presence of djurlite (Cu_{1.96}S) and, based on that mineral's breakdown to chalcocite and digenite above that 93°C, asserted that value as a thermal maximum for the Nonesuch Formation. Fluid inclusion homogenization temperatures from vein calcite (which may be early or be late fault-associated) and the observation of monoclinic calcite constrained vein-filling temperatures to the range 70-100°C (Nishioka, 1983).

3.5 Isotopic Ratios of the Nonesuch Formation

3.5.1 Nonesuch Formation Carbonate Carbon and Oxygen Isotopes

Cupriferous waters entered the site of the Nonesuch Formation SSC deposits as oxidized fluids and became reduced on interaction with OM, which was presumably oxidized to form CO₂ (Ridley, 2013). At other SSC deposits, it has been shown that enrichment of OM in ¹³C towards oxidized ore-associated zones and that this enrichment correlates with more negative δ^{13} C values of C_{carb} (Bechtel *et al.*, 2000). This negative correlation is thought to reflect the generation of carbonate from isotopically light CO₂ released through the degradation of OM (Bechtel *et al.*, 2000). The bulk of the carbonate in the "regular" Nonesuch Formation samples of Imbus (1990) plot in the zone of "common diagenetic cements" on the δ^{18} O versus δ^{13} C crossplot; this set of samples partly coincides in isotopic composition with those determined for Copper Harbor Formation sediments and hydrothermal-derived calcites associated with the underlying Keweenawan Portage Lake Volcanics. Imbus (1990) interpreted this coincidence to mean that the carbonate chemistry of the lake waters was possibly influenced by hydrothermally derived fluids. These "remarkable" isotopic similarities among Nonesuch Formation, Copper Harbor Formation and Portage Lake Lava Series hydrothermal carbonates were interpreted by Imbus *et al.* (1992) to suggest a shared hydrothermal synmineralization genesis of calcite. Cross correlation of C cycle parameters (TOC, %CaCO₃, δ^{13} C, and δ^{18} O) suggest a relationship between primary productivity and carbonate precipitation in the Michigan Nonesuch Formation and evidence organic cycling in the Wisconsin Nonesuch Formation (Imbus, 1990).

3.5.2 Nonesuch Formation Kerogen Pyrolyzate Carbon Isotope Ratios

Ho et al.'s (1989) analysis of kerogen pyrolyzate C from the lower Nonesuch Formation at White Pine identified δ^{13} C values between -34 and -31‰; this is similar to the mean δ^{13} C value of -32.68‰ (±1.5, overall range -27 to -34‰) for the 218 kerogen pyrolyzates in the 1992 Imbus *et al.*, study. Overall these values are ¹³C depleted relative to those commonly observed in Phanerozoic-Precambrian kerogens (Schidlowski, 1987). The observed strong ¹³C enrichment in samples below 0.15% TOC throughout the Nonesuch Formation may result from any or a combination of: destruction of isotopically light OM constituents by oxidation, microbial activity or alteration by mineralizing fluids (Imbus et al., 1992). That study thus excluded the low TOChigher δ^{13} C from consideration when it described the geographic segregation of kerogen δ^{13} C: eastern samples from middle to low stratigraphic position are enriched in ¹³C relative to those of the western Nonesuch Formation, in Wisconsin. In contrast, when the low TOC-higher $\delta^{13}C$ values are considered, the western samples specifically - and the formation overall - show enrichment in ¹³C up section (Imbus *et al.*, 1992). A strong trend of kerogen ¹³C depletion is apparent with increasing % CaCO₃ in the eastern samples of Imbus et al. (1992), as well as across the region. Both of the two previous trends may be interpreted as suggesting the possibility of oxidative destruction of OM by ascending ore fluids liberating isotopically light C and proximal remineralization of such as carbonate. Overall it has been concluded that

negligible isotope fractionation of kerogen from the mineralization processes and associated oxidation of C_{org} occurred in the Nonesuch Formation (Greenwood *et al.*, 2013).

3.6 White Pine Chlorite Homogenization Halo

Li *et al.* (1995) found a zonation in the chemical composition of detrital-shaped chlorites in the Nonesuch Formation. They posited that the narrower range of Fe/Fe+Mg ratios in the White Pine area than for unmineralized samples collected away from the mine is an alteration halo. Li *et al.* (1995) presumed that high water-rock ratios drove chlorite homogenization in the vicinity of the White Pine orebody based on the finding of Price and McDowell (1993) of only minor changes in the inferred regional paleotemperatures in this part of the Midcontinent rift. Still, given the 85 km length of their sampling traverse, from White Pine east-northeast to Houghton, Michigan, Li *et al.* (1995) acknowledged that the chemical differences in chlorites might result from variations inherited from different sedimentary provinces.

3.7 Organic Matter-Copper Relations at White Pine

Previous White Pine deposit petrographic and organic analyses have suggested that regular relations between organic geochemical maturity/oxidation parameters and Cu ores exist on the deposit-scale. A similar degree of oxidation to that of ore-proximal Kupferschiefer is noted for White Pine Mine OM by comparison to the data of Bechtel *et al.* (2000) from the Kupferschiefer. At White Pine, the OM in and near to the 5 m-thick ore zone is strongly oxidized according to RE data; this material has not followed the normal maturation trend expected for lacustrine or shallow marine restricted basin OM (Sutton *et al.*, 2013). Still, no conclusive regional-scale thermochemical alteration pattern has been firmly established for the Nonesuch Formation like the correlations between RE/GC-MS parameters and Cu enrichment

shown by Bechtel *et al.* (2000). Ore fluid conduits and pathways for the Nonesuch Formation are not well constrained, neither broadly nor at individual deposits (cf. Ilchik *et al.*, 1986).

Bulk parameters and petrographic indicators of organic matter content in the Nonesuch Formation appear to indicate that organic matter and petroleum served as direct, or very nearly direct, reductants. Copper-rich beds at White Pine (up to 1-4% Cu) are mainly of welllaminated, dark gray to black, organic-rich shale; oxidized strata contain up to 1% Cu, often less than 0.05%, while the richest ores are in the darker gray units (Mauk *et al.*, 1991; Misra, 2000). At Copperwood too, there is an overall negative correlation with the level of host rock oxidation in the lower Cu bearing sequence and the abundance of chalcocite (Sirois, 2015). These relationships hint that OM throughout the Nonesuch Formation served as a reducing agent during Cu mineralization (Ho and Mauk, 1996). However, redox reactions in ore deposition may have locally conserved C_{org} because the TOC values of mineralized and unmineralized samples are similar (Ho and Mauk, 1996).

Some evidence suggests that mixing of the oxic cupriferous brine with reduced pore fluids from the lower carbonaceous siltstones of the Nonesuch Formation occurred in the several meters just beneath the lithostratigraphic boundary with the Copper Harbor Formation. At White Pine, most of the "lower sandstone"/uppermost Copper Harbor Formation material is not visibly altered in hand sample, a coarse- to fine-grained red sandstone, but in places has been "bleached" to a gray or greenish gray; many White Pine Mine drill core logs record this "gray sandstone" just below the main ore horizon. Most of the gray sandstone is unmineralized, but in places, the "bleached" sandstone hosts rich disseminations of native Cu as well as chlorite and pyrobitumen cements (Butler and Burbank, 1929 and Mauk *et al.*, 1991). Very little calcite cement remains in these samples, but in its place as a cement is a black pitchy HC which is up to 2% of the rock's

constituents (Butler and Burbank, 1929). The "bleached" rock's greenish coloration occurs due to chlorite fringes about sand grains and the former reddish ferric oxides are absent, having apparently been reduced to ferrous oxide, which may in part have gone into chlorite (Butler and Burbank, 1929).

Rock-Eval pyrolyses of mineralized Nonesuch Formation samples have not generally been informative for provenance studies because of their low OM content and their significant progress down maturation curves. For example, Ho *et al.* (1989) identified two Cu mineralized samples each with low HI and OI (70 mg HC/g TOC and 40-50 mg CO₂/g TOC) that they interpreted as typical of thermally degraded OM in which source distinctions have been destroyed.

Bitumens from both mineralized and unmineralized lower Nonesuch Formation at White Pine show gas chromatograms in which the *n*-alkanes are depleted relative to other Proterozoic bitumens (Ho and Mauk, 1996). This suggests that thermal maturation of the Nonesuch Formation at White Pine coincided with hydrothermal ore emplacement. In this respect, it is significant that pristane/*n*-C17 and phytane/*n*-C18 ratios are lower in mineralized than unmineralized samples (Ho and Mauk, 1996). As compared to mineralized strata, extractable OM from unmineralized White Pine Mine strata showed higher ratios of pristane/phytane, more pronounced odd C preference and *n*-alkanes of higher C_n (Hieshima and Pratt, 1991). Lower EOM yields are reported for the mineralized White Pine Mine samples (Hieshima and Pratt, 1991).

3.8 Water-Washing and the Nonesuch Formation's Organic Geochemistry at White Pine

Significant degradation of bitumen in both mineralized and unmineralized samples of the lower Nonesuch Formation is reported, which may be attributed to either regional-scale water washing or biodegradation (Ho and Mauk, 1996.) The solubility of a given C_n compound decreases in the following order: aromatics > cycloalkanes > normal alkanes (Engel and Macko, 1993). The C_1 -C₁₇ fraction of the White Pine inclusion oils shows extensive but variable depletion of normal, branched, cyclic, and aromatic HCs; these patterns are consistent with water-washing as the dominant form of alteration of White Pine inclusion oils (Mauk and Burruss, 2002). This observation led Mauk and Burruss, (2002) to estimate levels of depletion (relative to a leastdepleted sample) of both isoprenoids C_{13} - C_{20} and *n*-alkanes C_6 - C_{17} for oils from vein inclusions at White Pine. That study concluded that the strata at White Pine experienced water:oil ratios ranging from 200:1 to "very much greater" than 9000:1. This range of values is significantly elevated relative to water: oil ratios (110 ± 40) typically estimated for petroleum-producing sedimentary basins (Ballentine et al., 1996). The extremely high water:petroleum ratios align with reports of water-washing of petroleum at other hydrothermal ore deposits and at oceanic spreading centers (Disnar and Heroux, 1995; Simoneit and Fetzer, 1995). The hydrothermal genesis of ore at White Pine Mine means that high water: oil ratios are not unexpected. Certainly it is reasonable to expect that unaltered rocks in sedimentary basins have experienced a lesser degree of aqueous through-flow than rocks in hydrothermal ore deposits (Criss and Taylor, 1986).

4. Methods

4.1 Thin Section Microscopy

Singly polished ultra-thin (20 micron) sections of field and core samples prepared by Leek Petrographics of Denver were integral for determining the nature and content of organic, Cu, and carbonate materials. Samples were examined by transmitted and reflected light microscopy on a Leica DM2500P microscope and hand sample examination on a Leica MZ16 microscope at CSU.

Other workers have reported kerogen color of a given sample as the "lightest" (tending toward yellow) repeatedly observable color for each specimen (cf. Hayes *et al.*, 1983). In this work, kerogen color is reported as the median of the observed color extrema for each observed organic morphology. Thermal Alteration Index (TAI) colors and values are after those by Jones and Edison (1978). This index is aligned with the Rock-Eval II parameters in Mastalerz *et al.* (2016). See Figure 36.

Maturation and Rank			6 R.)	thers.	evron 1978)	or 9) hous	hillips 96)	or 0) stem #	E	974)
Thermal maturity	Hydrocarbon generation zone	ASTM coal rank	Vitrinite Reflectance (%	T _{me} (Jarvie and of 2001, after Staplin	TAI & Color, Ch (Jones and Edison,	SCI and Cok (Staplin, 1965 (based on amor pl kerogen)	SCI and Color, P (Robertson and others, 196	TAI and Cole (Pearson, 199 + Munsell Color Sy	TAI, Geocher	TAI (Burgess, K
mid- 0 early 0 mature 0 mature 0		peat	- 0.2		very pale yellow	light yellow greenish yellow	colorless			yellow-green
						1	1	1 #23,678		
		lignite sub- bituminous	- 0.3		pale yellow	1.5	pale yellow	pale yellow	-1	<u> </u>
						yellow	lemon yellow	1+ ^{#20,520} yellow		yellow
			- 0.38		pale yellowish orange	1.7	3	2- #19,688		
			- 0.4	- 420 -	2.3		golden yellow	sunny yellow		2
					2.4	2 orange yellow	yellow/orange	2 #20,856	-2	yellow orange
	early oil generation	AC	- 0.5	- 425 -	2.5	23	<u> </u>	#23,002		2+
			- 06	420	2.6		mid-orange	2+	<u> </u>	orange brown
			- 0.0	F 430 7	orange	2.5	6	bright orange		4.0
	peak of oil generation (70-0.90%)	high- B volatile – bituminous A	- 0.7	- 436 -	orange brown	A COLUMN	Ĩ	3- #21,322		light
			- 0.8	- 442 -		2.7	orange brown	orange/tan		brown
			- 0.9	- 447 -	2.9	orange brown		2	-2+	<u> </u>
- 1.00 -			= 10	- 453 -			8	vellowish	-3	
postmature 0.1 late	dry gas window condensat wet gas zone	medium- volatile bituminous	10	154		3	and a	brown		1446
			12	404	3.2	brown	mid-brown	#23,177		
			1.5	4/2	3.3		8.5	3+	<u> </u>	dark brown
		low- volatile	1.5	401	3.5	3.3		dark yellowish		4
					3.6	dark brown		brown		- 4+
		semianthracite	- 2.0	- 508 -		3.7	very dark	4- #21,913	-3+	5
				000	dark brown		brown	grayish brown		
			- 2.5		<u> </u>	almost black	5.5	¢19,365 4	- 4	very dark brown
		anthracite			3.9		10	very dark	- 4	to black
			- 3.0		<u> </u>			gray		
	no hydrocarbon generation		- 4.0			-	black		- 5	
			- 5.0		black	50		5	-	
		meta- anthracite				black		black		

Figure 36: Selected TAI and spore color index scales and their approximate correspondence to the vitrinite reflectance and T_{max} values. From Mastalerz *et al.*, 2016.

4.2 Rock-Eval II Pyrolysis

Rock-Eval II pyrolysis selectively quantifies and characterizes bitumen and kerogen in a given HC source rock sample. The technique utilizes flame-ionization detection (FID) to measure the concentration of organic species in the gas stream generated during each period of oven step heating. This gives a quantitative measure of each group of components. Pyrograms, cross-plots of time and FID response are used to depict the results of RE analyses, as in Figure

12 (Tissot and Welte, 1984). Weatherford Geochemical Service Group in Shenandoah, Texas performed the RE and LECO TOC analyses for this study.

Samples for RE II analyses are ground and sieved through a -60 mesh (250 micron) screen. After grinding, 2 grams of sample material is loaded into a metal crucible. The sample is then placed in an electric oven that has been previously cleaned of potential contaminants. The sample is then step-heated in an inert (He) atmosphere. The sample is held isothermally at 300° C for three minutes. Volatiles are removed from the oven and conveyed to the FID in a N₂ gas stream, which prevents the sample from combusting. Free HCs (oil and gas already in the rock) volatilized during the first step comprise the S₁ peak, reported in milligrams HC per gram of rock. This is represented graphically as the area beneath the peak S₁ in Figure 12. Note that non-indigenous HCs introduced by migration or contaminations by drilling fluids are included in the S₁ peak, if they are present.

Temperature is then increased to 550° C at a rate of 25° C/min and the S₂ and S₃ peaks are measured from the pyrolitic degradation of kerogen in the sample. Nonvolatile HCs thermally cracked and volatilized in this second step, as well as heavy HCs (greater than C₄₀) released here comprise the S₂ peak (Hunt, 1995). The S₂ peak is used to determine the HI and the T_{max} value, the temperature at which S₂ yield is at a maximum. T_{max} depends on the maturity and original nature of the kerogen. The HI is the ratio of the amount of petroleum generated (S₂) to the total content of organic material (TOC) of the sample (100xS₂/TOC = HI; Hunt, 1995). The production index (PI) is the ratio S₁/(S₁+S₂).

The CO₂ released from kerogen cracking in the 300° - 390° C range is separated from the HCs and stored until heating is completed. The O content of the kerogen controls the quantity of CO₂ that is formed. This CO₂ is then released and a thermal conductivity detector measures its

abundance in the known volume of gas. This gives the S_3 peak, in milligrams of CO_2 per gram of rock. The ratio between the quantity of CO_2 formed by pyrolysis (S_3) and TOC is the oxygen index (OI = $100xS_3/TOC$).

At the start of each analytical session a known, well-categorized source rock standard sample (of Mancos shale) is pyrolyzed; standards are analyzed every six samples to ensure proper instrument calibration and function. Variability in analytical results on the standard are acceptable if within a narrow range (+/- 3° C for T_{max} values for example; Weatherford Geochemical Services Pamphlet).

4.2.1 Total Organic Carbon Analysis

The LECO method of analysis determined the TOC of samples in this study. This process measures the TOC value by combusting the C_{org} present and measuring the CO_2 produced on a LECO 600 C analyzer. Ground rock samples 0.1 grams in mass were treated in concentrated HCl for a minimum of two hours to remove carbonates. Samples were separated from acid by filtration and then dried at 110° C in a LECO crucible for at least an hour. The LECO 600 operates with detection limits to 0.01 weight percent CO_2 (Weatherford Geochemical Services Pamphlet).

The amount of CO_2 generated on heating is proportional to the amount of C_{org} (TOC) of the sample. The LECO method for TOC determination does not include measurement of low molecular weight bitumen present in the sample. Such pre-existing short-chain HCs would be volatilized during drying, and thus the LECO TOC value may underestimate the true TOC, relative to other techniques (Peters, 1986).

<u>4.2.2 Rock-Eval and LECO TOC Inaccuracies and Thresholds for Reliability</u> Rock-Eval and LECO TOC parameters are at best imperfect: Snowdon (1995) showed

that localized depression of T_{max} values is commonly coincident with high gamma-ray log

signature and elevated HI and TOC. The presence of S-rich (and thus thermally labile) kerogen might be responsible for some instances of T_{max} depression. Other inaccuracies may be attributed to mineral matrix composition: rock components may either retain HC compounds, generally lowering S₁ or S₂ peaks while increasing T_{max} , or liberating inorganic CO₂ and increasing S₃ and OI (Fowler *et al.*, 2014). The presence of inorganic CO₂ generated during pyrolysis (by incomplete HCl carbonate leaching or by CO₂ released from clay minerals) may generate erroneous, inflated TOC values (Hunt, 1995).

Jiang *et al.* (2016) demonstrate a total loss of free HCs below C_{10} in less than 24 hours when powdered, low TOC samples were exposed to open air. This resulted in a 38% decrease in the S₁ peak. Similarly, they demonstrate a 29% decrease in the S₁ peak when powdered samples were stored in sealed containers for 7 days prior to RE. In their study, volatile losses occurred at much slower rates for higher (above 11%) TOC samples. This supports at least partial control on S₁ depression by adsorption/desorption of light (sub-C₁₀) HCs on *in-situ* OM and mineral matrix.

Rock-Eval and TOC parameters are thus reliable only above threshold TOC, S_1 and S_2 values. Mineral matrix effects are important if TOC, S_1 and S_2 are low, but are not significant where samples have TOC greater than 5%. Other workers report different threshold values: a decrease in the HI due to mineral matrix effects must be taken into account for samples with TOC less than 1.5% (Peters, 1996). Oxygen index has questionable significance if TOC is less than or equal to 0.5% (Sykes and Snowdon, 2002).

 T_{max} values for samples with S₂ peaks less than 0.5 mg HC/g rock are often inaccurate such T_{max} values are unreliable unless a distinct, definitive kerogen peak is noted on the pyrogram (Weatherford Geochemical Services Pamphlet). Sykes and Snowdon (2002) suggest 0.2 mg HC/g rock as the S₂ value below which T_{max} values are unreliable.

4.3 Light Stable Isotope Principles, Fractionation and the Delta Notation

Most elements consist of more than one stable isotope. These various isotopes of an element have slightly different chemical and physical properties because of their mass differences - the lighter isotopes move faster and form weaker bonds (Rollinson, 1994). Chemical reactions may thus measurably change these isotopic ratios by fractionation. Thus the isotopic ratios of diagenetic minerals may give evidence of prevailing conditions during their genesis (Longstaffe and Ayalon, 1988). Various isotope standards (defined as 0‰) are used for reporting isotopic compositions. Carbon and oxygen stable isotope ratios in this study are reported relative to the VPDB, or Vienna Pee Dee Formation Belemnite standard. The origin and nature of C_{carb} in the Nonesuch Formation is explored by the stable isotopic ratios of C and O (δ^{13} C and δ^{18} O, respectively). The stable isotopic notation and principles are described by Sharpe (2007), Kreulen (1988), Andres and Fallick (1986) and others.

4.3.1 Carbonate Stable Isotope Ratio Determination

Carbonate laminite and vein samples were extracted from hand specimens using a 0.9 mm diamond-bit microdrill at CSU. Sample weights of 20-100 mg were soaked for three hours in 10% hydrogen peroxide to oxidize and release C_{org} . They were then rinsed with deionized water and dried under heat lamp.

The University of New Mexico CSI lab analyzed the carbonate samples by the method described by Spotl and Vennemann (2003). The samples were loaded in 12 mL borosilicate exetainers, at which time the exetainers were flushed with He and the samples were reacted for 12 hours with H_3PO_4 at 50° C. The evolved CO_2 was measured by continuous flow Isotope Ratio Mass Spectrometer using a Gasbench device coupled to a Thermo Fisher Scientific Delta V Plus Isotope Ratio Mass Spectrometer. Reproducibility was better than 0.1‰ for both δ^{13} C and δ^{18} O

(both VPDB) based on repeats of a laboratory standard (Carrara Marble). The laboratory standard was calibrated versus NBS 19, for which the δ^{13} C is 1.95‰ and δ^{18} O is 2.2‰.

4.4 Soxhlet, Gas Chromatography and Mass Spectroscopy

Organic extraction and molecular analyses ("biomarker analysis") for this study were performed by Weatherford Geochemical Service Group in Shenandoah, Texas, and the overview of analytical conditions and procedures comes from their Geochemical Services Pamphlet. Organic extractions utilized 5 grams of sample pulp (ground to -60 mesh) that was placed in a cellulose Soxhlet thimble and then extracted with dichloromethane using Soxhlet apparatus; this method obtained total HC extracts of 9 samples. Both Soxhlet thimble and apparatus are run through the extraction process prior to sample addition to minimize likelihood of extract contamination. Freshly activated Cu metal is added at the start of the extraction process to ensure removal of any elemental S that might be extracted with the bitumen. Extraction continues until no additional color is observed leaching from the sample (usually 12-20 hours). At this point the extract is collected, filtered through a Whatman #40 filter paper. Solvent is then carefully evaporated from the filtrate and the EOM yield obtained by transferring it to a premassed sample vial. Each total extract was split into two aliquots; the first was stored for total extract analysis and gravimetric yield determination.

Nine samples from four profiles over 20 km of strike extent (BIR, cores WPB-1, 517 and 523) from the Iron River syncline and WP mine areas were analyzed by GC and GC-MS. All profiles are marked by Cu mineralization at the base of the Nonesuch Formation. The samples are from about 3 to 25 m above the base of the Nonesuch Formation and collectively straddle the mineralized/barren fringe so that they are variably in or above ore zones, or in and above sub-ore concentrations of Cu at the base of the Nonesuch Formation.

Biomarker analysis samples were selected on the basis of requirements for reliable data of TOC greater than 0.2% and higher S_1 and S_2 production during RE pyrolysis. The requirements dictated that OI ranged from 10-60 and samples with OI greater than 75 were not analyzed. The limited size and organic leanness of the samples meant that GC and GC-MS data was obtainable only for the saturated and aromatic fractions of the whole rock extracts, and not for the resins, polar and NSO components.

4.4.1 Extract Gas Chromatography

This study's column chromatography was done by injection of a $0.1 - 1.0 \,\mu\text{L}$ sample from the second aliquots into a split/split-less port of an Agilent 6890N GC held at a temperature of 275° C. From there the sample passes through a 60 m x 0.25 mm Agilent DB-1 column using a constant pressure of He as the carrier gas. The column oven is programmed to hold at 30° C for 5 minutes but then to increase to 320° C at 3° C/minute at which point it is held at this final temperature for 20 minutes. Components eluting the column are detected using an FID held at 350° C. The addition of an internal standard prior to injection allows these components to be identified. Under these conditions, compounds from *n*-C₄ to *n*-C₄₂ are observed, with *n*-alkanes, key isoprenoids and key aromatic compounds reported. Extract standards are run periodically to check retention times and other chromatographic performance criteria (Weatherford Geochemical Services, 2000).

4.4.2 Gas Chromatography-Mass Spectrometry Principles and Analysis

Two analytical tools - gas chromatography (GC) and mass spectrometry (MS) - can be combined into a single instrument (GC-MS) to analyze mixtures of compounds. The GC separates the mixture and the MS records the masses of components eluted at different times. The GC-MS records mass fraction gas chromatograms for the mixture, which plot the amount of each component versus its retention time (time required to travel through the column, or elute). Each component of the mixture is characterized by its retention time in the gas chromatogram and the mass of its molecular ion and fragments thereof.

Prior to GC-MS analysis, the saturate and aromatic components are separated by medium pressure liquid chromatography, to avoid possible interferences. Both saturate and aromatic fractions are examined using an HP 6890 GC equipped with an HP 7683 auto-sampler, on-column injector and the HP 5973 mass selective detector.

The saturates are separated using a 60 m DB-5 column using a column oven program that starts at 100° C and ends at 320° C with a total run time of 118.5 minutes. The aromatics are separated using a 60 m DB-1 column using a column oven program that starts at 70° C and ends at 315° C with a total run time of 131.33 minutes. Helium is used as the carrier gas. Both saturate and aromatic GC runs use the on-column injection technique with the injector temperature programmed at 3° C above that of the column oven. The MSD is operated in the selected ion mode (SIM).

For saturate biomarker analysis, ions are collected in two time windows; window 1 covers from 5-30.00 minutes; window 2 extends from 30.00-118.5 minutes. The dwell time is set to 20 milliseconds for each mass in both windows. For aromatic biomarker analysis, ions are collected in two time windows; window 1 extends from 5-77.8 minutes; window 2 extends from 77.8-131.33 minutes. Again, both windows are set to 20 milliseconds dwell time for each mass. The components are quantified relative to an internal standard that is added to the fraction after the liquid chromatographic separation (Weatherford Geochemical Services Pamphlet).

Weatherford identified the majority of peaks for both aromatic and saturated fraction GC-MS chromatograms. However, a significant proportion of the dominant peaks on the aromatic TIC and on the "biomarker" high m/z fragmentograms were left unidentified in the Weatherford

analysis. In the absence of authentic chemical reference standards analyzed under the same GC-MS conditions, certainty of identification is not total. The majority of the peaks unidentified by Weatherford were thus tentatively identified by the author at CSU by manual comparison of a given chromatogram or mass spectrum with chromatograms and mass spectra available in the U.S. National Library of Medicine's Pubchem.gov Open Chemistry Database. Additionally, tentative compound identification was based on comparison of the mass spectra and relative retention times of the unknown peaks to chromatograms in the broad array of GC-MS literature. The mass spectra were used specifically to differentiate between suspected components by their distinct fragmentation patterns.

5. Sampling

Outcrop and core sampling of the Nonesuch Formation yielded 76 samples for pyrolytic analysis, 74 of which were thin-sectioned and polished for petrographic microscopy; 32 of these samples were also analyzed for stable isotopic ratios, and 9 for biomarkers by GC-MS. See Appendix A: Samples Collected.

The samples give a roughly 100 km near-linear WSW-ENE span of 11 stratigraphic transects. The transects cover an average of 96 m, ranging from 60 to 200 m, covering 30-100% of the Nonesuch Formation thickness at a given site. An overview map is shown in Figure 37. Imbus' (1990) samples cover a significantly larger spatial spread than do the samples in this study. Imbus included four samples in the 100 km to the west of this study's westernmost site (Copper Falls, Mellen, Wisconsin), and one sample from the easternmost Nonesuch Formation outcrop, near Houghton, Michigan some 80 km northeast of this study's easternmost sample site. Hegarty et al. (2007) examined the organic maturity of Nonesuch Formation equivalents as far west as Iowa; the Uchytil, et al. (1997) traverse covers 240 km west-southwest from Houghton, Michigan into northwest Wisconsin. Pratt, et al. (1991) analyzed samples from White Pine, Michigan into northern Wisconsin, with about 60 samples from Bear Creek Company Cu exploration cores. Li et al. (1995) sampled between White Pine and Houghton, Michigan in their SEM investigation of clay-Cu relationships; likewise, Ho and Mauk (1996) sampled from Presque Isle syncline to Houghton. Other previous studies cover a lesser geographic extent than do those of this study, being limited mainly to White Pine Mine proper (Kelly and Nishioka, 1985; Ho et al., 1989; Mauk and Hieshima, 1992; Mauk and Burruss, 2002; Fourgani, 2012; Sutton *et al.*, 2013).

5.1 Core Samples

Extensive diamond drill core exploration for SSC deposits in the Michigan Upper Peninsula produced hundreds of meters of Nonesuch Formation core material during the late 1950s and early 1960s. Further drilling in the mid-1990s and early 2000s produced still more core. Much of this material has been transferred from industry to public curation by organizations including the Michigan Department of Environmental Quality (MDEQ) and Michigan Technical University (MTU). Core samples in this study come from drillholes WPB-1, PC-1, PC-5, 517, 523 and 28G, as shown in overview map.

5.1.1 Michigan Department of Environmental Quality Core Samples

The author visited the MDEQ geologic core repository at Marquette, MI in April 2015. The MDEQ core facility is not climate-controlled and appears to sometimes permit outside precipitation/moisture into the core storage bays.

All of the cores in this study had previously been sampled extensively, and not much material remained in the potential ore zone at the lowest 5 m of the cores. The Nonesuch Formation is generally fairly well-indurated but in many dark gray, fine-grained silty to shaley sections, the core had fallen apart and consisted of jumbled chunks of indeterminate original position in the core. These disintegrated zones were not sampled in this study. This, coupled with previous sampling, and the MDEQ mandate to retain at least 1/2 of the core material for a given segment, commonly precluded sampling the darkest gray organic-rich zones in the lower Nonesuch Formation.

Core sample candidates were identified first with preference for visually apparent organic richness. The intact (not disaggregated) darkest gray, most organic-rich samples were then selected for a spacing giving greatest focus on the lowest 10 m of the Nonesuch Formation. Samples of about 20 g each were selected. Some of these came as pre-cut 1/4 vertical splits, some as 1/2, and others as whole core for splitting at CSU.

Two days of sampling from five diamond drill cores netted 37 segments. The PC boreholes were drilled in 1959 and the WPB-1 borehole in 1961. The 517 and 523 boreholes were both drilled in 1995 and are 27 mm diameter core. The PC boreholes and the WPB-1 borehole are 47.6 mm diameter core.

5.1.2 MTU Core Samples

Colbert (2011) sampled 47.6 mm diameter core material from borehole 28G, housed at the MTU repository in Houghton, MI. Borehole 28G was drilled in 1983 in the White Pine Mine vicinity. Colbert's sample spacing gives greatest resolution in the lowest 10 m of the Nonesuch Formation in borehole 28G. The author selected a subset of Colbert's 28G borehole samples on the basis of visually apparent organic richness.

5.2 Outcrop Samples

Outcrops of the Nonesuch Formation occur in riverbeds and banks in the western Upper Peninsula of Michigan. Samples from five of the most complete sections were analyzed for this survey. These sites are river-incised canyons and gorges with extensive vegetative cover, commonly showing relatively discontinuous and often diminutive bedrock outcroppings. (Figures 38, 39, 40).

Figure 38: The Saxon Falls, MI, sample site. Note line of bedding strike expressed as river-spanning riffle. Nonesuch Formation crops out at right.

Figure 39: Saxon Falls, Montreal River, MI sample site:Top of Copper Harbor Conglomerate behind hammer, Nonesuch Formation base closer to point of view. Notice the strong positive outcropping habit of the Copper Harbor Conglomerate relative to the weak topographic expression of the finer-grained Nonesuch Formation.

Figure 40: Fractured fissile shaley siltstone at Copper Falls, Bad River, WI. The majority of samples from this site were too broken to collect as singular specimens.

The riverside position and common, sometimes pervasive, fracturing in these locations present some possibility of geologically recent, shallow oxidation of OM, especially given the relatively high dissolved O contents of such perennially cool (temperature) river waters (USGS National Water Information System). As such, samples ideally originated more than 5 cm distant from fractures, but this criterion - to minimize the likelihood and potential extent of recent OM oxidation - was not met for the majority of the rocks collected by the author. Samples were collected as high above apparent peak river level as possible, and were generally collected between 1 and 2.5 m above river. Most outcrop pyrolysis samples in this study (27 of 41) were collected by the author during fieldwork in September 2015; the balance come from

material collected by Sarah Colbert in 2010 and stored at CSU. Weathered surfaces were avoided in sample collection in the interest of minimizing shallow, recent oxidation. Visibly weathered surfaces were cut or ground off prior to RE, LECO, and GC/GC-MS analyses in the interest of minimizing inclusion of OM that may have undergone recent or shallow oxidation by weathering processes.

5.2.1 Copper Falls, Potato Creek, Saxon Falls, and Presque Isle River Outcrop Samples

Three out of four field sites visited by the author were sampled with particular attention to visually apparent organic richness, presence/absence of secondary Cu minerals, calcite veining, sedimentary texture and near-surface oxidation. Samples were taken from intervals of the darkest color, finest grain size and as far from fractures and flowing water as possible. Samples for which these conditions are not met may give unreliable pyrolysis and GC-MS data and are noted as such in the analysis and discussion.

Irregular outcroppings, interbedded discontinuous lenses of redbed conglomeratic sandstone material with shaley siltstone and inaccuracies in previous maps complicated the identification of the Nonesuch Formation-Copper Harbor Formation contact. Nonetheless, each sample has been assigned a quantitative height above the base of the Nonesuch Formation, as defined by White (1971). Surface estimation of the distance up-section from the base of the Nonesuch Formation to each sample site was corrected for structural dip and for deviation from perpendicular surface transit. One site, Potato Creek, showed very extensive (60 m high) outcrops of a near homogeneous, coarse-grained crossbedded redbed sandstone that occupied the location previously mapped as Nonesuch Formation (cf. Cannon *et al.*, 1996). The section at Potato Creek was not sampled.

At the three sections sampled by the author, interbedded red sandstone and gray shale are prominent in the lowest 10 m of the Nonesuch Formation. Well-cemented medium-grained

conglomeratic red sandstone episodically recurs in 1-3 m thick beds, diminishing in abundance up-section. The sandstone interbeds were typically separated by 1-4 m of finer-grained shaley dark gray to gray siltstone.

At Copper Falls State Park, the Nonesuch Formation is intermittently exposed on both sides of the Bad River. Strata strike averages 240°, 80° N at Copper Falls. See Figure 41. There the Proterozoic sediments are incised to form cliffs and the outcrops range from river level to many tens of meters above river level. The Nonesuch Formation is very pervasively fractured and commonly fissile at river level at Copper Falls. Root penetration and water-wet sample surfaces were common for most samples at Copper Falls. Sampling was restricted to less than 7 m above river level. Some samples are pervasively fractured (as in Figure 42) but still included for more complete coverage. Samples from the north side of the river are suffixed A while south side samples are suffixed B (as in Figure 41).

Figure 41: Sample locations at Copper Falls, Bad River, WI.

Figure 42: Pervasive fracture and root penetration of outcrops at Copper Falls was more prevalent than at Saxon Falls or Presque Isle River sample sites.

The Saxon Falls, MI section - on the east side of the Montreal River - exposes almost the entire extent of the Nonesuch Formation at river level and in places along the rim of the river gorge, 33 m above river level. Two sampling transects of the exposed Nonesuch Formation were taken there, one near river level and one at the rim (Figure 43). Strata strike dip roughly 240°, 80° N at Saxon Falls. Samples from the rim are suffixed A while those from the lower exposure are suffixed B. These two separate collections are combined in the data analysis. River-level samples commonly showed pervasive fracturing perpendicular to bedding. About one third of the river-level Saxon Falls samples showed thin faintly iridescent blue veneers on weathered surfaces, interpreted to be secondary Cu minerals, eg: azurite or covellite; it is possible that this veneer is actually an Mn oxide such as pyrolusite. As shown in Figures 44 and 45, rounded,

discrete biscuit-like weathering geometries at the base of conglomeratic sandstone incursions were present. No infilling material was present between the positive relief structures, which are taken by the author to represent casts of dessication cracks; this is interpreted to support a lacustrine, rather than marine, environment of deposition.

Figure 43: Sample locations at Saxon Falls, Montreal River, MI.

Figure 44: Biscuit-shaped positive relief structures at 104 m above Nonesuch Formation base, Saxon Falls, MI. Right side is down-section in this image.

Figure 45: At left, notice the semi-polygonal, rounded biscuit-like positive relief structures on underside of a coarser-grained (lithologically very similar to Copper Harbor Conglomerate material) incursion at Saxon Falls. Down-section is to the right side of the image. Site is 77 m above Nonesuch Formation base. There are provisionally interpreted as the underside of desiccated mud as interpreted by the author on the basis of their continuous network. It is also possible that they result from a post-lithification structural disturbance.

The Nonesuch Formation is almost entirely exposed at Presque Isle River site, mostly less than 5 m above river level, and on both sides of the river. Strata strike ~280°, 20° N at the Presque Isle River site (Figure 46). Most samples come from the east side of the river, and not more than 5 m distal to the river. Minor, very small HC seeps were intermittently apparent in eddies near the riverbanks at this site. Secondary Cu minerals - especially malachite - were apparent as mottled crustiform coatings at the majority of sampling locations at Presque Isle River within 30 m of Nonesuch Formation base. See Figure 47. At about 15 m vertically upsection from the base of the Nonesuch Formation, and again at 26 m up-section, *ex-situ*/loose small boulders showed continuous and straight to semi-arcuate void-filling networks of material distinct from the host rock. These blocks were too large to remove from the field. See Figures 5, 48. These are interpreted to be relict mud-crack infillings rather than syneresis cracks: the former suggest a lacustrine environment of deposition. The blocks are probably close to their original stratigraphic position, as suggested by similarities in lithology to their surrounding outcrops.

Figure 46: Sample locations downstream of Lepisto Falls, Presque Isle River, MI.

Figure 47: Sample PI-7, at 15 m above Nonesuch Formation base, was collected adjacent to obvious secondary copper mineral crust.

Figure 48: Site is 15 m above Nonesuch Formation base, Presque Isle River, MI. Infilling of cracks interpreted by the author to result from desiccation of wet sediments prior to burial. Note speckled veneer of probable malachite, bottom R.

5.2.2 Big Iron and Little Iron River Outcrop Samples

Colbert (2011) collected samples from stream outcrops of the Nonesuch Formation at both the Big Iron River (BIR) and the Little Iron River (LIR). Incomplete Nonesuch Formation sections are exposed at both sites. At BIR, the best outcrop expression is of the upper and middle Nonesuch Formation, at the upstream southern end of the section. Colbert gathered material at roughly regular intervals with particular attention to visible veins, secondary Cu minerals or other unusual features. Stratigraphic position of these samples was recorded in terms of surface meters downsection from the top of the Nonesuch Formation at BIR, from north to south. At LIR, samples were taken from south to north, from the Copper Harbor up section into the Nonesuch Formation. Trigonometric correction for stratal dip has been applied but the depths of these samples are best viewed in terms of their relative position rather than as absolute numerical height above the Nonesuch Formation base.

Fourteen outcrop samples in this study come from Colbert's material. The author selected for outcrop samples from the Colbert study on the basis of visually apparent organic richness and to minimize the presence of fractures in the hand samples. Some samples are pervasively fractured but still included in the interest of maximum spatial resolution of sampling.

6. Results

6.1 Petrography of Organic Matter, Copper, and Calcite

Organic matter is present in 87% of thin sections in one or both of two distinct morphologies. Amorphous translucent isotropic material (AOM) in laminar masses of yellow and orange to dark brown coloration is commonly found in association with a more discrete filamentous organic matter (FOM; 67% of AOM co-occurs with FOM, and vice versa). The FOM is typically black, opaque material that presents as both singular wisps and continuous wavy agglomerations thereof; the FOM resembles inertinized alginite of Teichmüller (1982). Less than 10% of the FOM is translucent and lighter colored (ranging to orange in one instance, in sample BIR 13), whereas the AOM is 85% translucent and generally brown to orange in color. The rare slides that show FOM without AOM show a range of FOM color, from TAI = 2.6 to 3.8 (orange to dark brown). Similarly, the small proportion (7% of total FOM) of translucent reddish brown to brown FOM (TAI = 2.9 to 3.6) is apparent in slides that also host AOM of reddish brown to brown color (TAI = 2.9 to 3.6). Thermal Alteration Index values for AOM average to 3.12 and to 3.86 for FOM. Collectively, the AOM coloration corresponds to the early mature to late mature range as in Mastalerz et al. (2016), and the FOM to post-mature TAI values.

Fluffy amorphinite can be compacted and pressed into wavy sheets which decrease in size with increased degradation (Teichmüller, 1982). While this might suggest the derivation of FOM by compaction and alteration of the AOM, the co-occurrence of both morphologies (and rarely, translucent FOM with AOM) in single samples, both in association and as discrete entities, argues against a genetic relation.

The AOM sometimes appears as granules with patchy extent – this is often as a partial AOM coating of quartz grains. The color of the AOM on quartz grains is excluded from

consideration here as it is difficult to distinguish from other mineral veneers (especially hematite) on quartz and other translucent silicate grains.

A small minority of samples show bituminous inclusions, which are often associated with calcite veins and brecciated Nonesuch Formation hostrock. One of the bituminous inclusions is apparent as a bedding-concordant fracture filling solid with shrinkage cracks. The margins of this mass show higher reflectance than does the center and it is adjacent to several disseminated fine grained chalcocite masses.

Pyrobitumen in concentric anisotropic orange to black (PPL transmitted) mottled reflecting material is present in two heavily fractured, thickly calcite veined samples, intimately associated with chalcocite as interstitial material between detrital mineral grains. It is possible that this anisotropic orange to black material, which easily ground away during a second hand polishing with Ag tarnish compound, represents neobiogenic growths of HC oxidizing bacteria or fungi. The slide was cut in 2016, so it is most likely (to this observer) that this material is pyrobitumen (cf. Barghoorn *et al.*, 1965).

Copper minerals are present in 25% of thin sectioned samples, mostly as very fine grained subhedral angular masses of chalcocite, often showing incipient or complete replacement of pyrite grains, and to a lesser extent, of framboids. Lesser chalcopyrite (10% of thin section samples), covellite, and bornite are also present as very fine grained subhedral grains from rounded to angular, and commonly replacing pyrite.

Petrographic observation reveals three main calcite morphologies: as vein-filling material, calcite matrix cement in silt laminations, and concretionary masses contorting and sometimes cutting beds (both concordant and discordant to bedding). Calcite is also present as pervasive cement independent of clast lithology/grain size; one sample shows a localized halo of

101

matrix calcite focused around clay-rich rip-up clasts in sandstone matrix. While calcite occurrence is relatively common in the Nonesuch Formation, it occurs in a minority of samples and only rarely occupies an entire sample. Appendix A gives detailed sample descriptions, hand sample images and thin section photomicrographs.

Thin (sub-mm wide) discordant or layer parallel calcite veins and rounded concretions are interpreted to be syn-diagenetic. Concretions were present prior to matrix cementation as the grains in the shale are arranged around them but do not show clear deformation or replacement (Figure A20, A29). Also, Cu minerals on the edges of the calcite nodules indicate that this calcite precipitated prior to Cu mineralization (Figure A30). Mauk *et al.* (1993) made the same interpretation based on their observation of a four-fold lesser compactional deformation of individual bedding laminae within such nodules as compared to laminae immediately outside of the concretions. Vein calcite occupies brittle deformed fractures, suggesting formation later in diagenesis than the concretionary nodules. Primary origin is possible for the layer parallel segregations (laminites) that cement detrital silt-size grains and do not disturb bedding as do the clearly diagenetic concretions. However, Mauk *et al.* (1993) placed these laminite cements later in the diagenetic sequence based on textural observations indicating that the laminite calcite growth post-dates quartz overgrowths in the siltstones of the lower Nonesuch Formation.

The color of a given hand sample can serve as a crude proxy for the redox history of the rock: greenish hues can be caused by elevated chlorite (ferrous iron) content while red color in rocks commonly results from higher content of hematite with its ferric iron. Sample selection favoring the darkest gray, most OM-rich samples and the general absence (or unreliable identification) of the "bleached [reduced] gray sandstone" meant that no systematic effort to

102

qualitatively or quantitatively distinguish the hematite or chlorite contents of the rocks in this study was undertaken.

6.2 Rock-Eval and LECO TOC – Overall Patterns

Overall this study shows lower TOC (ranging from 0.01 to 0.86%) than prior organic geochemical surveys of the Nonesuch Formation in this region. Hieshima *et al.* (1989) reported upper range TOC values of 0.8 to 1.2% for the Nonesuch Formation, and Imbus *et al.* (1988) reported a range of Nonesuch Formation TOC values from zero to 2.5%. Figure 49 shows TOC values of representative samples of Imbus *et al.* (1988) and representative upper-range TOC core samples and high C outcrop samples of this study. Although select high TOC values in this study are broadly similar to those previously reported for the Nonesuch Formation, many samples - mostly those collected from outcrops - are significantly lower in TOC. There are three possible explanations for this discrepancy. One explanation is that the samples in this study experienced significant oxidation of OM during extended weathering in outcrop or decades of storage without curation for OM preservation. Another possible explanation is that preferential disaggregation of organic-rich intervals led to sampling of better-indurated, less organic-rich samples. It is also possible that extensive previous sampling of high C intervals of finite core material exhausted available material for destructive analyses.

Nonesuch TOC, WSW-ENE

Figure 49: Representative TOC samples of Imbus et al. (1991) versus upper range (cores) and TOC maxima (outcrop) of this study. Samples are grouped regionally from WSW to ENE, but are not horizontally scaled.

Higher TOC values on average are found in core samples, rather than those collected from outcrop. This difference may reflect the greater ease of identifying organic-rich intervals in cores versus in outcrop, and also the non-outcropping habit of the more readily weathered organic rich portions of the Nonesuch Formation.

Average TOC for the unmineralized RE and thin section sampled subset is 0.22%, but this is higher (0.34%) when outcrop samples are excluded; unmineralized outcrop samples of this subset show average TOC of 0.11%. Mineralized core samples showed TOC similar to that of mineralized outcrop samples (0.18 and 0.19%, respectively). The HI/OI ratio of outcrop samples was smaller than that for core material in both mineralized (0.51 and 1.54, respectively) and unmineralized (0.20 and 1.91, respectively) samples. Taken together this strongly suggests that recent near-surface outcrop oxidation strongly influences organic composition.

All samples in this study had a measurable S_1 peak, but many lacked a clearly defined S_2 peak. The S_2 peak is absent or poorly defined in the majority of outcrop samples, and is only

recorded in those samples showing TOC greater than 0.25%. All samples from the lowermost 5 m of the Nonesuch Formation have low S_2 .

A Modified van Krevelen plot of this study's samples, Figure 50, depicts two distinct populations: a group at low OI (under 50 mg CO_2/g TOC) and with low to moderate HI (less than 10 to 360 mg HC/g TOC) and a scatter of samples to high OI at relatively low HI. The two populations can be discerned on the basis of TOC - all but one sample with OI greater than 75 mg/g show TOC less than 0.12%. The first group overlaps, but extends to lower HI at higher OI, the field identified by Imbus *et al.* (1991) in their regional oil and gas prospectivity study of the Nonesuch Formation (dashed line).

Modified van Krevelen Plot

TOC represented by symbol size for samples below 0.20 %, detection limit (0.01 %) values enlarged for visibility

Figure 50: Modified van Krevelen plot of the organic matter in the Nonesuch Formation. The outlined field shows the range of values from a wider survey of the Nonesuch Formation by Imbus *et al.* (1991). Symbol size is scaled by TOC in order to emphasize more reliable data.

The distribution of HI with T_{max} is shown in Figure 51. T_{max} values below 400° C cannot be representative of kerogen transformations, and all of these data points were flagged as unreliable because of low pyrolysis yields and no clear S₂ peak. The low T_{max} values are nearly all from samples with low TOC and low pyrolyzable yields. Samples which produced clearly quantifiable S₂ peaks on heating all have TOC greater than 0.35% and have T_{max} dominantly in the range 430 to 440° C. In the subset of samples producing clear S₂ peaks there is a minor increase in T_{max} with decreasing HI, which would be consistent with a range of maturity. High T_{max} outliers are both outcrop samples (BIR 13 and BIR 16) and both have unusual pyrograms with extended duration or double S_2 peaks suggesting the presence of unusual volatile high molecular weight HCs.

Figure 51: Temperature of maximum S_2 yield (T_{max}) versus HI for the Nonesuch Formation. The solid lines show typical evolution paths of Type I and II kerogen on maturation; the dashed lines are approximate contours of vitrinite reflectance along paths of kerogen (after Hunt, 1995). Symbol size is scaled by TOC in order to emphasize more reliable data.

The combined overall implication of the Modified van Krevelen plot and the T_{max} -HI plot is a Type III organic matter origin. Given the age and the high HI of a minority of samples, it is interpreted to have been Type I or II. Apparent maturities by PI and HI indices and on T_{max} are mainly mature (greater than 0.15, less than 100, and greater than 435° C, respectively; cf. Peters and Cassa, 1994). These maturity indicators do show some variability from marginally immature to late-mature to slightly post-mature indications. The majority of well-characterized samples are late-mature by these measures (especially by HI). The least mature samples are those from highest in the stratigraphic section in the Western syncline (PIR samples) and Iron River syncline (WPB samples).

The observed correlation between low TOC and high OI indicates a probable preferential oxidation of OM in C-lean samples. Two possible explanations for this relationship exist: 1) Oxidation of organic matter may have been pervasive throughout the Nonesuch Formation, but its extent was buffered in organic-rich samples, or 2) At least some samples of low TOC were originally richer but now are lean because they are strongly oxidized. The timing and extent of oxidation is not clear. The low TOC and high OI of the broadly fractured sample groups from the stream outcrop profiles at CF, SF and most from PI sections are interpreted to result at least in part from recent weathering in the wet climate.

There is generally a negative correlation between T_{max} and HI, and for HI versus OI, but the scatter is relatively wide in both Figure 50 and 51. It is notable that the overall negative sloping HI versus OI trend is steeper for mineralized than for unmineralized samples. Organic C content is uniformly very low in the FOM-only samples, which average to less than 0.1% TOC (these fall into the zone of inertinite on the modified van Krevelen plot). In contrast, the AOMonly samples are C-rich by comparison (average 0.46%). The AOM-only samples show up as a mixture of Type II-III and Type IV OM on modified van Krevelen plots, with slightly greater prevalence of more H-rich Type II-III material present. The AOM-only T_{max} values are generally in the 435-450° C range, while the FOM-only samples' T_{max} values are unreliable because of low S₂ response.

108

Excluding the lowest TOC (less than 0.15%) and highest OI (greater than 100 mg/g) samples reveals regional and vertical patterns in the HI, and to a lesser degree, OI, value distributions. All of the highest HI samples are from the middle and upper levels of the Nonesuch Formation in the Western syncline (samples PIR) and the Iron River syncline (WPB samples). If one further excludes the lone sample collected from greater than 104 m above the Formation base, core profiles show a gradient of increasing HI, and a trend of diminishing OI with stratigraphic height (Figures 52 and 53). Similarly, these core profiles show an overall positive correlation between HI/OI ratio and stratigraphic height (Figure 54).

Figure 52: Hydrogen index in samples relative to height above the base of the Nonesuch Formation in three core profiles. The greyed symbols are regarded as unreliable due to low yields. Note that values of HI of less than about 15 are imprecise because they are calculated assuming an S_2 RE pyrolysis peak of 0.01 mg HC/g TOC even in cases where this peak cannot be readily identified on the pyrogram.

Figure 53: Oxygen index in samples relative to height above the base of the Nonesuch Formation in three core profiles. Negative correlation is apparent in all three core profiles as well as for the group overall.

Figure 54: Overall positive correlation between HI/OI ratio and stratigraphic height for three selected core profiles. The greyed symbols are regarded as unreliable due to low yields (they are calculated assuming an S_2 RE pyrolysis peak of 0.01 mg HC/g TOC even in cases where this peak cannot be readily identified on the pyrogram).

Exluding the lowest TOC, high OI (under 0.15% and above 100 mg/g), stratigraphically outlying (above 104 m) samples, as well as the three profiles for which only one or two data points are available (PI, LIR, 28G), reveals mixed positive and negative correlations between HI and stratigraphic position for the other profiles (PC1, PC5, BIR, SF and CF). The same is true

with respect to the relationship between OI and stratigraphic height for this subset of samples. However, the remaining profiles show dominantly (4 of 5) positive correlation of HI/OI ratio versus stratigraphic position (Figure 55).

Figure 55: Dominantly positive correlation of HI/OI ratio and stratigraphic height for the remaining profiles containing at least three points. The greyed symbols are regarded as unreliable due to low yields (they are calculated assuming an S_2 RE pyrolysis peak of 0.01 mg HC/g TOC even in cases where this peak cannot be readily identified on the pyrogram).

No statistically significant correlation between HI or HI/OI and stratigraphic height is apparent, even with the exclusion of fewer data points for a third, even broader subset of samples. The line of best fit is positive for both stratigraphic height versus HI as well as versus HI/OI (Figures 56 and 57). The excluded outliers are: 1) four data points within 60 m above the base of the formation, all with HI above 200, and; 2) two points with very high OI (above 2200), and; 3) the LIR and PIR samples, for which only one or two points remain in this subset.

Figure 56: Statistically insignificant correlation line for HI versus stratigraphic height for the larger dataset. The slope of the line of best fit is nonetheless positive.

Figure 57: Statistically insignificant but nonetheless positive line of best fit for the plot of HI/OI versus stratigraphic height.

<u>6.2.1 Rock-Eval and LECO TOC Relation to Copper Mineralization</u> The lowest HI samples are from in or adjacent to mineralized rock at and near White

Pine. No such relation with high OI samples exists. Most (28/42) unmineralized samples for which RE and thin section data exists show HI greater than 72 mg HC/g TOC; in contrast, nearly all RE/thin section analyzed Cu-mineralized samples (20/23) show OI greater than 30 and HI

below 72 mg HC/g TOC. A majority (8/14) of the unmineralized high HI samples show OI values above 258 (these 8 samples average 682 OI, while the 14 samples as a whole average OI of 376). Average TOC for the high OI, low HI mineralized samples is 0.14%, whereas the few mineralized samples with higher HI show higher average TOC of 0.73%. A majority (14/23) of mineralized samples show low HI/OI (less than 0.33); greater than 90% of mineralized samples with HI/OI less than 0.33 show TOC below 0.15%.

No statistically significant correlation exists between TOC and TAI values of AOM, for either mineralized or unmineralized samples (excluding from consideration the samples lacking AOM altogether, as in Figure 58). Similarly, no statistically significant correlation of HI to TAI values of AOM for either mineralized and unmineralized samples (Figure 59). Mineralized samples show a slightly steeper negative slope than do unmineralized samples on this diagram. No correlation of OI to TAI of AOM values is apparent for either mineralized and unmineralized samples, as in Figure 60.

Figure 58: No statistically significant correlation of TOC and TAI values of AOM exists, for either mineralized or unmineralized samples. Samples lacking AOM altogether which are here depicted as TAI = 0, and are enclosed in the blue oval. Mineralized samples are red, unmineralized are blue.

Figure 59: No correlation of HI to TAI values of AOM for either mineralized or unmineralized samples exists. Note that mineralized AOM-bearing samples show a slightly steeper negative slope than do unmineralized AOM-bearing samples. Mineralized samples are red, unmineralized are blue. Samples in which AOM was absent are depicted as TAI = 0, within the blue oval.

Figure 60: No strong correlation of lower OI at lower TAI of AOM is apparent. Mineralized samples are red, unmineralized are blue. The oval envelops the samples in which AOM was not observed.

No strong correlation between T_{max} and AOM TAI values is apparent for mineralized samples if the low-S₂ samples are included. This is also the case if only the samples with reliable T_{max} are considered (Figures 61, 62).

Figure 61: No strong correlation between AOM color (and TAI value) and T_{max} is apparent for the broader set of barren and mineralized samples. Mineralized samples are red, unmineralized are blue. The oval envelops the samples in which AOM was not observed.

Figure 62: No strong correlation between AOM color (and TAI value) and T_{max} is apparent for the reliable subset of T_{max} values. Mineralized samples are red, unmineralized are blue.

No strong, reliable trends of HI, OI, or Tmax are apparent with respect to the color of organic matter, nor does OM color show a strong correlation to Cu mineralization (Figure 63). The lowest T_{max} values and the highest HI values are for unmineralized samples with low TAI AOM (orange or orange brown). Most (67%) of the darkest (dark brown) AOM samples are mineralized (Figure 64).

Figure 63: Color of AOM and mineralization with HI versus OI plot (excluding 5 outliers with OI greater than 900). Red data points are mineralized; blue points are barren of Cu minerals. The TAI color range and representative data point halo color scheme is: orange (2.6) - light orange halo; orange brown (2.7 to 2.8) - dark orange halo; reddish brown (2.9 to 3.1) - pink halo; brown (3.2 to 3.6) - purple halo; dark brown (3.7 to 3.8) - brown halo.

Figure 64: The TAI/ color of AOM and mineralization with HI versus T_{max} values (excludes points with S₂ under 0.2, excepting those with discernible S₂ peaks). Red data points are mineralized; blue points are barren of Cu minerals. The TAI color range and representative data point halo color scheme is: orange (2.6) - light orange halo; orange brown (2.7 to 2.8) - dark orange halo; reddish brown (2.9 to 3.1) - pink halo; brown (3.2 to 3.6) - purple halo; dark brown (3.7 to 3.8) - brown halo. Samples lacking AOM in thin section show no halo.

Mineralized samples for which RE and thin section data exists (n = 23) show an average HI/OI ratio of 1.02 with average AOM and FOM TAI values (excluding samples for which OM of a given type is absent in thin section) of 3.13 and 3.83, respectively. In contrast, unmineralized samples for which RE and thin section data exists (n = 33) show average HI/OI ratio of 2.08 with average AOM and FOM TAI average values of 2.95 and 3.86, respectively.

Many samples show dark gray to black thin (sub 10 mm thickness) continuous even parallel laminations of fine shaley organic-rich material alternate in varve-like patterns with thin to medium thickness (10 to 100 mm) light gray siltstone laminations. Abrupt vertical disruptions to, and sub cm scale offsets of, the continuous nature of the thin dark gray shaley laminations are apparent in a minority (7 total) of samples, most of which are in the lower or middle Nonesuch Formation (see Appendix A, Figures A36, A50, A55, A59). The majority of these features show ductile rather than brittle deformation, although the broken shaley lamination in CF-3A (Figure A55) shows sharp angular margins to the fractures. Some of these "breached shaley laminations," as described by Sutton et al. (2013), show silty light gray material penetrating and migrated stratigraphically upward through the overlying shaley laminae. A majority (6 of 7) of these samples are Cu-mineralized or adjacent (sub 20 m distant) to Cu mineralization, and only one is barren, distal to mineralization and in the upper one-third of the Nonesuch Formation. No reliable T_{max} values exist for these samples. All of the breached shaley laminae samples with TOC data (6 of 7) show TOC below 0.36%, and most are under 0.10% (4 of 6). No correlation of AOM or FOM color to mineralization is apparent in these breached shaley laminated samples, nor do clear patterns of OM Type, HI or OI to mineralization exist (Table 4). It is possible that these sedimentary structures represent clastic dikes extruded upward during pre-lithification compaction of the Nonesuch Formation: By such a mechanism, the quartz-rich (overall less compactible) silty material distorted and was extruded upward through the somewhat cohesive but more readily distorted shaley dark gray laminae. It is yet not possible to ascribe a genetic syn-mineralization upward fluid flow mechanism to these features; however, their occurrence as generally near to or in Cu mineralized rocks seems to support this conclusion of Sutton et al. (2013).

able 4: The RE ffset and broken scending fluids a osition reveals n	and other parameter i shaley laminae we: associated with ore. io clear patterns or o	rs for samples sho re observed have . Comparison of I correlation of thes	wing vertically c previously been RE, LECO, Cu er se measures for th	lisrupted shaley] suggested to resu nrichment (or pro nis study's None:	laminations. SamJ It from penetratio oximity to enrichm such Formation sa	ples in which ven n and disturbanc nent)) and stratig mples.	rtically se by raphic
LIR 3	28G 571	CF 3A	SF 1A	BIR 14	BIR 11	BIR 10	Sample
0.01	0.09	0.06	0.01	0.21	ı	0.35	TOC %
ı	I	16	200	24	ı	72	IH
ı	ı	48	500	43	ı	258	Ю
min'd	min'd	distal	adjacent	min'd	min'd	min'd	Cu
lower 1/3	lower 1/3	upper 1/3	lower 1/3	lower 1/3	middle 1/3	middle 1/3	Strat. Position
AOM absent	AOM absent	3.2	3.9	3.2	3.2	3.8	AOM TAI
FOM absent	3.9	3.9	3.9	3.9	3.2	3.9	FOM TAI

. δ . Ē foi Ē Tab offs asce posi

•

6.3 Stable Isotopes

Samples come from eight profiles at stratigraphic heights from the base to the middle Nonesuch Formation. The data here replicate many of the aspects of the larger dataset of Imbus *et al.* (1991). Delta¹⁸O values range from -14 to -5 ‰ (VPDB); δ^{13} C from -13 to -1.5 ‰ (VPDB) with two outliers of significantly lower δ^{13} C (-31 and -26 ‰). A narrower cluster of isotope compositions is apparent in most samples from the lower Nonesuch Formation (lowest 20 m) with δ^{18} O = -9.5 to -7 ‰ and δ^{13} C = -4 to -1.5 ‰.

No strong overall relation between carbonate vein, concretion or laminite isotope values and depth or proximity to mineralization, or between isotope values and elemental composition of the OM in the matrix of the samples is apparent (Figures 65, 66, 67). However, it is noted that the most strongly negative δ^{13} C values do co-occur throughout the Nonesuch Formation sections with the most oxidized samples (by OI, as in Figure 68). No regular pattern of HI/OI or HI values versus isotopic composition of carbonates is apparent (Figures 69, 70). Similarly, no relationship between calcite stable isotope values and OM color and TAI values exists.

Figure 66: The halo color indicates the TAI value range in which the AOM of each sample fits: orange (2.6) - light orange; orange brown (2.7 to 2.8) – dark orange; reddish brown (2.9 to 3.1) – pink; brown (3.2 to 3.6) – purple; dark brown (3.7 to 3.8) – brown; black (3.9) – black. Point shape indicates morphology of calcite sample: triangle - conjugate veins at 45° to lamination; horizontal dash - vertical vein (90° to lamination); asterisk in square - calcite halo about internally laminated, darker-colored rip-up clasts; circle - matrix calcite segregated on light gray thin silty discontinuous laminae; square - matrix calcite segregated on light gray thin silty continuous laminae; cross shape in square - calcite segregation as blebby, ovoid concretions which disturb lamination.

Figure 67: The halo color indicates the TAI value range in which the FOM of each sample fits: orange (2.6) - light orange; orange brown (2.7 to 2.8) – dark orange; reddish brown (2.9 to 3.1) – pink; brown (3.2 to 3.6) – purple; dark brown (3.7 to 3.8) – brown; black (3.9) – black. Point shape indicates morphology of calcite sample: triangle - conjugate veins at 45° to lamination; horizontal dash - vertical vein (90° to lamination); asterisk in square - calcite halo about internally laminated, darker-colored rip-up clasts; circle - matrix calcite segregated on light gray thin silty discontinuous laminae; square - matrix calcite segregated on light gray thin silty continuous laminae; cross shape in square - calcite segregation as blebby, ovoid concretions which disturb lamination.

Figure 68: Stable isotope versus OI values for samples with thin section petrographic observations by stratigraphic position.

Figure 69: Stable isotope versus HI/OI values for samples with thin section petrographic observations by stratigraphic position.

Figure 70: Stable isotope versus HI values for samples with thin section petrographic observations by stratigraphic position.

An overall trend from all the data of lower δ^{13} C at lower δ^{18} O is apparent. The higher end of the range closely resembles the isotopic compositions of carbonates in stromatolites in the underlying Copper Harbor Formation (Imbus *et al.*, 1992), and is taken as the composition of primary carbonate in the sequence. More negative δ^{13} C can be interpreted as results of variable degrees of mixing with C derived by the oxidation of indigenous OM: the two low δ^{13} C outliers have isotope values indicative of partial or complete oxidation of OM. More negative δ^{18} O may result from interaction with an external fluid of any source, or from equilibration of carbonates with clay or other silicate minerals in the host sequence.

Two outliers with significantly lower δ^{13} C could well result from oxidation of organic matter in ore deposition. The liberated light C_{org} was either reincorporated as C_{carb} immediately adjacent to ore in the mineralized sample, or the isotopically light C_{org} in CO₂ migrated upsection and was re-deposited as C_{carb} in the vein sample (523-7). The position of the vein sample (523-7) 60 m above the base of the Nonesuch Formation alternatively suggests widespread organic oxidative effects throughout the Nonesuch Formation, rather than strictly localized OM oxidation and C_{org} re-deposition as carbonate associated with Cu mineralization.

The three low-angle vein samples are more interesting: these three stratigraphically lowest vein conjugates at 45° to lamination show less negative δ^{13} C values than the upper Nonesuch Formation veins of Imbus et al. (1992) possibly indicating a greater degree of oxidatively-mobilized C_{org} being reincorporated as C_{carb} higher in the Nonesuch Formation through fracture-filling diagenetic calcite growth.

The lack of relations between distance to mineralization and carbonate C and O isotope values indicate that OM oxidation likely took place throughout the Nonesuch Formation and was neither restricted to mineralized sequences nor was heightened significantly in mineralized rock sequences.

6.4 Molecular Makeup of Organic Matter 6.4.1 Whole-Rock Extract Gas Chromatography

Nine samples from four profiles over 20 km strike length (BIR, cores WPB-1, 517 and 523) from the Iron River syncline and WP mine areas were analyzed by GC and GC-MS. Each of the four profiles show Cu mineralization in the lowermost Nonesuch Formation. The samples are from about 3 to 25 m above the base of the Nonesuch Formation and collectively straddle the

mineralization fringe such that they are variably in, above ore zones, or in and above sub-ore concentrations of Cu at the base of the Nonesuch Formation.

Samples for these analyses were chosen based on requirements for reliable data of TOC greater 0.2% and higher S_1 and S_2 production during RE pyrolysis. The requirements meant that OI ranged from 10 to 60 and samples with high OI (above 75) were not analyzed. The limited size and organic leanness of the samples meant that it was possible only to obtain whole extract GC data and GC-MS data for saturate and aromatic fractions (for biomarker contents and associated maturity indices), but not for resins, polar and NSO components. Table 5 lists selected compound contents and ratios of the nine extracts.

The BIR samples (from the Top Zone, the Dark Gray Massive and Domino members of the WP mining scheme) all show disseminated chalcocite, often replacing pyrite. The BIR 16 thin section shows blue fluorescing oil inclusions which were observed by Colbert (2011) to give an average fluid inclusion homogenization temperature of 159° C (range 94 to 200° C). The BIR GC-MS samples were collected stratigraphically below two thin section samples showing probable pyrobitumen similar to that described by Barghoorn *et al.* (1965).

The WPB samples are both adjacent (under 10 m distal) to Cu mineralization, while the 523 samples are mixed, one is adjacent and the other distal. The 517 samples are both distal to Cu mineralization.

Three generic patterns are identified from the nine chromatograms and are classified as "least altered," "partially altered," and "altered" (Figure 71). Least altered samples (Table 5, Figure 72a) have chromatograms typical of source rocks in the upper half of the oil window.

The five least altered samples have RE pyrolysis HI from 29 to 54 and OI from 10 to 37.

Figure 71: Least altered samples show broad, smooth whole extract GC traces, whereas the altered (BIR 13, WPB-1 and WPB-3) samples show distinctly different, sharper peak distributions over narrower ranges of elution times. The bimodal distribution of the less altered BIR 15 sample stands out from the other unimodal peak distributions.

Table 5: Selected chemical parameters, compound ratios, and indices from the Nonesuch Formation. For definitions, refer to list of acronyms. D = index normally indicative of depositional environment; M = index normally indicative of maturity.

				less altered			slightly altered		altered	
Sample#		523.1	523.3	517-2.5	517-3	BIR-16	BIR-15	BIR-13	WPB-1	WPB1-3
TOC		0.75	0.47	0.56	0.8	0.63	0.25	0.35	0.27	0.23
HI		54	39	29	45	38	24	31	44	44
OI		19	37	34	10	14	60	57	48	40
S1		0.14	0.09	0.07	0.19	0.25	0.04	0.05	0.04	0.02
S2		0.09	0.18	0.16	0.37	0.24	0.07	0.11	0.12	0.1
EOM (ppm)		581	175	138	405	285	86	122	172	118
		orange brown	red brown	orange	red brown	orange	orange brown	orange		
color/TAI of AOM		(2.7)	(2.9)	brown (2.8)	(2.9)	brown (3.2)	(2.8)	brown (3.2)	no TS	no TS
color/TAI of FOM		n/a	black, 3.9	n/a	n/a	n/a	n/a	black, 3.9	no TS	no TS
		no, adjacent	no, distal	no, distal	no, distal	chalcocite,		chalcocite,	no, adjacent	no, adjacent
Cu		(4 m)	(12 m)	(15 m)	(17 m)	widespread	chalcocite, rare	widespread	(1 m)	(10 m)
m above base of Nonesuch Formati	on	15.9	17.3	19.5	22.1	lowermost	low	middle	3.6	20.9
GC parameters										
Pristane/Phytane		1.73	1.71	0.67	1.05	1.03	1.2	1.4	1.81	0.24
Pristane/n C ₁₇		0.12	0.13	0.1	0.09	0.12	0.37	0.14	0.45	0.05
Phytane/n C ₁₈		0.1	0.12	0.19	0.11	0.2	0.4	0.25	0.45	0.42
CPI (Carbon Preference) Hunt		0.88	0.48	1.16	1.19	0.57	1.56	0.78	0.78	1.71
Normal Paraffins (%)		36.8	34.4	26.5	27	25.7	19.3	23.7	20.4	16.3
Isoprenoids (%)		3.1	2.4	2.5	2.6	2.4	2.7	1.8	4.6	1.3
Phenanthrene/ $n C_{18}$		0.02	0.07	0.03	0.03	0.09	0.35	0.62	0.28	0.54
Resolved Unknowns (%)		58.3	63.1	71	70.3	71.8	77.5	74	74.8	81.6
Steranes (m/z 217: 218)		50.5	05.1	71	70.5	/1.0	11.5	71	71.0	01.0
dia $(S+R)/qqq$ steranes $(S+R)$ C ₂₇	М	0	1.51	0.91	0	3.28	1 44	17	1 32	1 11
$S_{2/2} = S_{2/2} = S_{2$	м	0	0.00	0.27	0	5.20	0.21	1.7	0.27	0.00
$S/S+R(C_{29} uuu)(217)$	M		0.28	0.37			0.31	0.25	0.37	0.29
$\beta\beta/(\beta\beta S+\alpha\alpha R) C_{29}(217)$	М	0	0.34	0.48		0.23	0.35	0.26	0.41	0.36
Terpanes (m/z 191)										
C23 triterpanes/C21 triterpanes	D	1.55	1.74	2.14	1.97	1.37	2.58	1.77	0.95	1.22
Norhopane/Hopane	D	0.82	0.77	0.68	0.71	0.83	0.84	0.98	1.44	1.12
Moretane/Hopane	М		0.19	0.15			0.14	0.17	0.41	0.35
Ts/(Ts+Tm) trisnorhopanes	M/D		0.47	0.36		0.47	0.54	0.47	0.09	0.18
C ₂₉ Ts/C ₂₉ Hopane	М		0.27			0.32	0.34	0.23	0.03	0.09
H ₃₂ S/(R+S) Homohopanes	М		0.54	0.59		0.61	0.58	0.59	0.59	0.59
Steranes/Hopanes	D	0.66	0.9	0.4	0.19	0.89	0.65	1.05	0.13	0.29
Triaromatic and Monoaromatic S	teroids									
(C ₂₀ +C ₂₁)/S TAS	М			0.27	0.55	0.46	0.38	0.44	0.23	0.31
TAS #1 $20/(20+27)$	М			0.4	07	0.68	0.55	0.68	0.54	0.61
TAS $\#2\ 21/(21+28)$	М			0.61	0.82	0.77	0.74	0.74	0.54	0.57
Phenanthrenes, Naphthalenes, an	d Diben	zothiophenes								
MPI-1 (methylphenanthrene)	М	0.67	0.73	0.83	0.87	1.05	0.83	0.88	0.33	0.09
MPI-2	М	0.78	0.87	0.96	1.03	1.29	1	1.05	0.4	0.11
DNR-1 (dimethylnaphthalene)	М	5.27	6.65	3.34	5.79	2.58	7.82	10.53	8.38	2.99
DNR-2	М	1.9	2.31	1.63	2.32	1.08	1.47	2.3	2.41	1.45
MDR (methyldibenzothiophene)	М	5.4	8.29	2.27	3.61	4.05	11.35	11.29	4.84	1.93
MDR23	М	0.46	0.43	0.73	0.94	0.36	0.36	0.37	0.25	0.04
MDR1	М	0.15	0.1	0.51	0.35	0.17	0.06	0.06	0.11	0.05
phenanthrene/sum methylphenanthrenes M		0.67	0.59	4.58	0.43	0.59	1.14	1.11	2.15	4.16
phenanthrene/sum methylphenanthrenes M phenanthrene/sum dimethylphenanthrenes N		0.37	0.39	0.34	0.28	0.5	1.85	2.04	2,63	14.54
fluorene/sum methylfluorenes		1.5	1.87	1.06	1.08	1.08	1.04	2	2.34	2.21
dibenzofuran/sum dimethyl-DBF		2.29	0.07	0.47	0.47	1.11	1.87	4.1	5.17	97.01
DBT/MDBT		0.69	0.06	0.39	0.42	0.81	0.91	0.88	1.15	3.22
dimethylnaphthalene index		2.51	27	2.45	2.96	1.92	2.14	2.67	3.04	1.91
trimethylnaphthalene index		2.28	2.16	1.83	1.88	2.05	2.6	2.81	2.55	2.33
DBT/Phenanthrene	М	0.08	0.08	0.01	0.13	0.03	0.04	0.02	0.06	0.15

Figure 72: Representative Soxhlet whole extract chromatograms for the Nonesuch Formation. Peak identification was for these chromatograms were largely provided by proprietary software of Weatherford Laboratories. UCM = unresolved complex mixture; NC = n-alkane with C number; IP = isoprenoid with C number; PHEN = phenanthrene.

The least altered extracts are dominated by *n*-alkanes, with highest concentrations at *n*- C_{11} to *n*- C_{14} and a smooth decrease to higher lengths (Figure 72a). Their UCM is small and peaks

at high C number. None of the least altered extracts show any marked odd/even *n*-alkane preference (CPI is about 1). Pristane/phytane is generally uniform and slightly above one, although the 523 samples both show a slight odd over even preference and the 517-2.5 sample favors even C numbers (values around 1.7 and a value of 0.67, respectively). Pristane/heptadecane and phytane/octadecane ratios are uniform and low (0.1 to 0.2). Each of the least altered samples' traces have significant clusters of peaks interpreted as multiple isomers of monomethylalkanes, as are typical of Precambrian source rocks and oils. The one mineralized sample characterized as least altered shows twice the phenanthrene response of the other least altered samples.

The samples typified as altered (Table 5, example in Figure 72c) are distinguished by a sharp maximum of *n*-alkanes over a narrow range (n-C₁₃ to n-C₁₆, n-C₁₅ to n-C₁₈ and n-C₁₅ to n-C₁₆, respectively). Hydrogen indices are in the same range as for unaltered samples (37 to 44) but OIs are slightly higher (40, 48, 52). The highest T_{max} of the GC-MS samples is 467° C and is for the altered sample BIR 13. Normal alkanes as a percentage of total resolved compounds are less abundant than in least altered samples (16-20% compared to greater than 25%). Clusters of peaks from homologous sets of monomethylalkanes are not apparent and have been replaced by multiple resolved peaks of other compounds that elute at similar times as midrange *n*-alkanes. Some of these are isoprenoids, but the most prominent are PAHs like the trimethylnaphthalenes (between nC_{15} and nC_{16} and prominent on BIR 15, WPB-3 and BIR 13) and dimethylnaphthalenes (between nC_{14} and nC_{15} and prominent on the WPB and BIR 13, 15 chromatograms). Fluoranthene is dramatically present as such a PAH peak on the WPB1 chromatogram, and to a lesser extent on the WPB-3 and BIR 13 whole rock extract GC chromatograms (cf. Liang *et al.*, 2005). Pristane/phytane ratios differ between the three samples,
spanning the range of this measure for all GC-MS samples (0.24 to 1.81), but may be unreliable due to peak overlap. Phytane/octadecane ratios are higher in the three altered samples than in all of the less altered samples, and are mostly higher than the slightly altered sample. Phenanthrene forms a distinct and moderately prominent peak. The percentage range of resolved unknowns is higher for the altered samples than for any of the least altered samples. There is no significant increase in the size of the UCM for the altered samples relative to the less- and unaltered samples.

The partially altered sample, BIR 15, is identifiable based on its chromatogram with characteristics intermediate between least altered and altered (Figure 72b). Hydrogen index is slightly lower than for altered and least altered samples (28) but OI is higher than for any other GC-MS sample (60). The range of *n*-alkanes is similar to that of least altered samples, but the concentration of high molecular mass alkanes are lower and there are double maxima at n-C₁₆ and n-C₂₃ rather than smooth decreases with increasing C number. Normal alkanes form 19% of resolved compounds. As with the altered samples, there is no significant increase in the UCM, the peak clusters from homologous sets of monomethylalkanes are replaced by resolved peaks near mid-range *n*-alkanes.

The least altered extracts are largely similar to most extracts previously analyzed from Nonesuch Formation shales and siltstones (Ho *et al.*, 1990; Hieshima and Pratt, 1991; Pratt *et al.*, 1991; Mauk and Hieshima, 1992; Ho and Mauk, 1996; Uchityl *et al.*, 1997).

6.4.2 Saturate Gas Chromatography-Mass Spectroscopy

This study's GC analyses of saturated HC fractions show a significant difference in the HC composition of mineralized and unmineralized samples (Figure 73). Püttman *et al.* (1990) noted disparity in the saturate portion TIC chromatograms across Cu mineralization in the

Kupferschiefer, with saturate content lesser and overall range of chain length diminished for samples in mineralized zones. Here, however, the mineralized BIR samples show broader ranges of saturate compound elution times (and chain lengths), with abundances similar to those for barren samples. Overall, abundances of saturated compounds generally increase with depth, whereas increasing depth correlates to a narrowing of the range of detected compounds (except for the 517 profile). It is notable that the samples categorized as "altered" by the overall total extract GC chromatogram show both narrowed (WPB-1 and WPB-3) and relatively broad (BIR 13) distributions of saturated compounds. In particular, the great similarity of the WPB sample saturate TIC traces to those of the "less altered" samples is remarkable. In this respect, the aromatic portion's GC-MS results can offer a more reasonable means of distinguishing differences potentially associated with mineralization and hydrothermal alteration of organic matter.

Figure 73: The saturate portion TIC for the Nonesuch Formation samples. Notice the broader range and similar abundance of detected compounds for the mineralized BIR samples. This finding is counter to the well-documented trend of diminished saturate compounds in mineralized Kupferschiefer samples.

The majority of the GC-MS samples in this study contain the C_{32} 2-alpha methylhopanes, which are only known from cyanobacteria (cf. Dutkiewicz *et al.*, 2006 and Summons *et al.*, 1988). Only the 523-3, 517-3, and the BIR 16 samples did not contain these compounds, while the rest showed concentrations between 1 and 4 ppm total for the compounds.

The majority of the samples in this study show m/z 191 mass chromatograms in which tricyclic terpanes (m/z 191) maximize at C₂₃ and also include a series of extended tricyclic terpanes to at least C₃₀. This is true for 523-3 (10 ppm), 517-2.5 (14.5 ppm), BIR 13 (69.1 ppm), and BIR 15 (63.2 ppm) based on peak areas. Samples BIR 16, 517-3, and 523-1 maximize at C₂₃ as well, but show limited spread and lesser C₂₃ concentrations (10.3, 3.5, and 3.3 ppm, respectively and spreads to C₂₆, C₂₅, and C₂₄, respectively). The m/z 191 mass chromatograms for samples WPB-3 and WPB-1 respectively maximize at C₁₉ and C₂₀, but significant concentrations of C₂₃ tricyclic terpanes are still apparent (32 and 37.6 ppm, correspondingly).

The distribution of tricyclic terpanes of these samples is typical of generation from algal and/or bacterial organic matter (cf. Dutkiewicz *et al.*, 2006). The majority of the GC-MS samples in this study contain the C_{32} 2-alpha methylhopanes, which are only known from cyanobacteria (cf. Dutkiewicz *et al.*, 2006 and Summons *et al.*, 1988). Further, the presence of significant concentrations of 1,2,5-TMN in the aromatic fraction of all 9 samples indicates probable cyanobacterial input (cf. Colbert, 2011). This is in alignment with chroococcalian cyanobacterial cells and masses observed by Strother and Wellman (2016) in Nonesuch Formation kerogen concentrates.

Most samples in this study (excluding 517-3 and 523-1) show the C₂₁ molecule pregnane as the dominant sterane (m/z 217).

135

6.4.3 Aromatic Gas Chromatography-Mass Spectroscopy

<u>6.4.3.1 Aromatic Gas Chromatography-Mass Spectroscopy Total Ion Current Chromatogram</u> The GC-MS analysis on the aromatic fraction of extracts detected and quantified multiple
mid- and higher-mass PAHs and monoaromatic and triaromatic steroid biomarkers (MAS and TAS). Signal to noise ratio was good for most mass fragmentograms, except for triaromatic methyl steroids (*m/z* 245) in three least altered samples that are dominated by *n*-alkanes (core samples from NE WP mine area 517-3, 523-1, 523-3).

The aromatic compound 1,2,5-TMN, elsewhere linked to unicellular photosynthetic inputs (cf. Peters *et al.*, 2005), is present in all samples in significant concentrations (excepting the 0.5 ppm in 517-3).

Overall there are similarities and differences between the traces of the different samples. All samples have a large number of unidentified peaks at early elution times on the m/z 231 (TAS) fragmentogram. These are derivatives of pregnane and similar molecules with C numbers from 19 to 21 (Figure 74). Samples from WPB have much higher concentrations of multiple early-eluting aromatic steroids than all other samples.

C₂₀ - C₂₁ triaromatic steroids (TAS-C₂₀, TAS-C₂₁)

Figure 74: Structure of sterane TAS molecules derived from aromatization of homopregnane (C_{20}) and pregnane (C_{21}). Aeppli *et al.*, 2014.

All samples have high to extremely high concentrations of non-biomarker PAHs and derivative compounds, notably 3-methylbiphenyl, phenanthrene, trimethylnaphthalenes,

methylphenanthrenes and dimethylphenanthrenes. In addition, biphenyl, dibenzofuran, dibenzothiophene, fluorene and derivatives were quantified in all samples.

Phenanthrene dominates the BIR 13 aromatic TIC; methylphenanthrene peaks are the second most prominent compounds, with DBF the fourth most abundant compound, based on the similarities of the Nonesuch Formation sample in the m/z 178, 192, 206, and 220 mass fragmentograms to those found in the literature (Ré-Poppi and Santiago Silva, 2002). An unidentified mixed-mass spectra peak is third highest. Also apparent are the dimethylphenanthrene and lesser trimethyldibenzothiophene peaks (Figure 75).

Figure 75: The TIC for the aromatic portion of the BIR 13 sample is dominated by phenanthrene (Ph), and successively by its methylated homologues (methyl-, dimethyl-, ethyl-). The four methylphenanthrene peaks are together depicted as MePh. Eluting just prior to the dimethylphenanthrenes (DmePh) and the methylphenanthrenes is the o-terphenyl (oT) peak, the internal reference standard. The next two smaller peaks represent various co-eluted, unidentified ions of m/z below 178.The late eluting peaks are of mixed mass. The minor trimethyldibenzothiophene peak is labeled tmDBT.

The WPB-3 sample's aromatic portion is strongly dominated by the phenanthrene and oterphenyl (internal reference standard) peaks respectively (Figure 76). The unidentified large peak between DBF and DBT on the WPB chromatogram shows five different m/z fragment contributors on its mass spectrum. The unidentified large peak between DBF and DBT shows no identifiable m/z dominance. Benzo(b)naphthothiophene (cf. Rospondek *et al.*, 2007) is apparent as a late-eluting m/z 234 constituent of minor abundance. Trimethyldibenzothiophene is the latest-eluting peak identified.

Figure 76: Phenanthrene (Ph) and o-terphenyl (oT, internal reference standard) dominate the aromatic TIC of WPB-3. The unidentified large peak between DBF and DBT shows no identifiable m/z dominance. Benzo(b)naphthothiophene (BbNpTp) (cf. Rospondek *et al.* (2007)) is apparent as a late-eluting m/z 234 constituent of minor abundance. Trimethyldibenzothiophene (tmDBT) is the latest-eluting peak identified. The methylphenanthrene peaks are together depicted as MePh. Biphenyl (Bp) is the earliest eluting compound on this chromatogram.

The WPB-1 sample's aromatic TIC (Figure 77) dominant peak is the phenanthrene (oterphenyl being the reference standaard), with lesser methylbiphenyl as the second most abundant compound and a C3-naphthalene couplet third with TMN compounds making up the fourth most abundant peak.

Figure 77: Internal reference standard o-terphenyl (oT) is most noticeable on the WPB1 aromatic TIC; the phenanthrene (Ph) peak is the most prominent indigenous derived peak on the aromatic TIC of WPB-1. Methylbiphenyl (MebPh) is the second most abundant compound and a C3-naphthalene (C3-Np) couplet is third with TMN compounds making up the fourth most abundant peak. DBF is apparent as well. The four methylphenanthrene (MePh) peaks are together depicted as MePh. Benzo(b)naphthothiophene is apparent as the latest eluting identified compound. The peak similar to that which was tentatively identified as the trimethyldibenzothiophenes does not show a singular mass dominance and remains unidentified for WPB1.

The least altered BIR 16 aromatic TIC shows the same strongly dominant phenanthrene maximum as do the other mineralized as well as the altered samples. The mineralized BIR samples also all show the second most abundant aromatic constituents as the methylphenanthrenes (around 34.8 minutes, m/z 192). See Figures 78 to 83.

Figure 78: The total ion chromatogram for the aromatic portion of the mineralized but least organically altered BIR 16 sample.

Figure 79: The aromatic fraction total ion chromatogram for the BIR 15 sample, mineralized and slightly altered.

Figure 80: The aromatic TIC for the unmineralized distal to Cu mineralization and least organically altered sample 517-2.5.

Figure 81: The total ion chromatogram for aromatic portion of sample 517-3, which is unmineralized and least organically altered as well as distal to Cu mineralization.

Figure 82: The TIC for the aromatic portion of 523-1. Unmineralized sample is within 5 m of overlying Cu mineralization.

Figure 83: Total ion current chromatogram for the 523-3 sample's aromatic fraction. Unmineralized but semiproximal to Cu mineralization (5.4 m below it, and 12.2 m above it).

Figure 84: The aromatic portion TIC for the three mineralized BIR samples (sample BIR 16 is least altered, BIR 15 is slightly altered and BIR 13 is most altered). BIR 13 and BIR 15 (dark blue and green) show phenanthrene as the most abundant aromatic, and their second most abundant aromatic constituents as the methylphenanthrenes (around 34.8 minutes, m/z 192). The prominent maximum on BIR 16's aromatic TIC is the o-terphenyl (m/z 230, internal reference standard), which is also apparent as the second highest peak on the other BIR samples.

Figure 85: Aromatic TIC for most altered samples. The WPB-1 is the lowest in section of the three, and shows the broadest UCM.

Figure 86: The TIC for the aromatic portion of the 523 samples showing their shared maximum as the m/z 230 internal reference standard o-terphenyl.

Figure 87: The TIC for the aromatic portion of the 517 samples showing their shared maximum at m/z 230, the oterphenyl reference standard.

6.4.3.2 Aromatic Gas Chromatography-Mass Spectroscopy Ion Chromatograms

The MAS (m/z 253) chromatogram for BIR 13 (Figure 88) shows the benzo(e)pyrene as the dominant compound, followed closely in abundance by benzo(a)pyrene. Lesser benzofurans and perylene are also present.

Figure 88: The BIR 13 m/z 253 chromatogram shows identical peaks to the more abundant PAH compounds of BIR 15, BIR 16 and WPB-1. The benzo(e)pyrene (BeP) peak most prominent, secondary abundance of benzo(a)pyrene (BaP). The benzo(a)fluoranthene (BaF) and benzo(b)fluoranthene (BbF) peaks are also apparent as third and fourth most abundant, followd by perylene (Pne).

The TAS chromatogram (m/z 231) of BIR 13 shows the most abundant TAS compound being the C₂₁ homopregnane-derivative diasterane - pictured in Figure 74 - at just 25% the abundance of the three maximum peak heights, which are unidentified because they consist of multiple co-eluting mass fragments.

The BIR 13 m/z 245 aromatic chromatogram's most abundant triaromatic methylsteroids identified by Weatherford are below 20% the height of the most abundant peak, which is dominated by m/z 226 contribution, likely benz(a)anthracene.

Comparison with the m/z 252 chromatogram (in order to identify fragmentation ratios to aid in peak identification) and the literature reveals that the WPB-3 m/z 253 chromatogram shows the benzo(a)pyrene peak most prominent, secondary abundance of benzo(e)pyrene and

perylene as the third most abundant component. The next four highest peaks show contribution from multiple co-eluting compounds and do not conform to expected breakdown ratios m/z252/253; these remain unidentified. The benzo(a)fluoranthene and benzo(b)fluoranthene peaks are also apparent. It is probable that the earliest eluting peaks represent the phenylphenanthrenes, and also the 2,2-binaphthalene. See Figure 89. Grafka *et al.* (2015) proposed dehydrocylization of phenylphenanthrene parent molecules as the dominant genetic mechanism in the formation of benzo(b)fluoranthene and benzo(e)pyrene.

Figure 89: The m/z 253 MAS chromatogram for the WPB-3 sample. The benzo(a)pyrene (BaP) peak most prominent, secondary abundance of benzo(e)pyrene (BeP), and perylene (Pne) as the third most abundant component. The benzo(a)fluoranthene (BaF) and benzo(b)fluoranthene (BbF) peaks are also apparent. Grafka *et al.* (2015) proposed dehydrocylization of the PhP parent molecules for the formation of BbF and BeP.

The WPB-3 m/z 231 chromatogram shows dramatically lower abundance and greater

noise than for the other altered m/z 231 plots. Again, though, early eluting peaks showed too

mixed a composition for positive identification, but approach a factor of three greater peak height than the TAS compounds identified by Weatherford. No positive identification of the mixed compound co-eluting peaks early on the m/z 231 is possible for WPB-3 at this time. The m/z 245 is similar to that of WPB-1, with early-eluting mixed m/z contributed unidentified peaks dominant. It is clear that most of the unidentified early-eluting peaks bear some contribution from substituted m/z 230 compounds, likely methylphenylnaphthalene.

The MAS (m/z 253) chromatogram for WPB-1 shows benzo(a)pyrene as the dominant component, with lesser benzo(e)perylene and perylene (Figure 90). Early-eluting compounds on the m/z 253 are mixed mass signals, with the fourth highest showing a significant component of methylated homologues of phenanthrene; their resemblance to the phenylphenanthrenes and binaphthalene in WPB-3 suggests at least some contribution from these compounds.

Figure 90: The benzo(a)pyrene (BaP) peak most prominent, secondary abundance of benzo(e)pyrene (BeP), and perylene (Pne) as the third most abundant component.

Far lesser abundance of the TAS compounds exist in WPB-1 than in the previous altered m/z 231 chromatograms. The WPB-1 m/z 231 (TAS) chromatogram shows the most abundant TAS compound being the C₂₁ at 75% the height of the highest peak. The maximum peak on the m/z 231, as well as the third and fourth highest peaks, show a mixture of contributing fragments and remain unidentified. The perylene identified in the m/z 253 chromatogram contributes about half the peak height of the highest peak on the m/z 231. The m/z 245 for the WPB-1 sample shows triaromatic methylsteroids as present, but they are well below the maximum height, early eluting m/z 220-rich probable methylated phenanthrene peak, which is 30% higher than the most abundant triaromatic methylsteroid. Figures 91 to 96 show the m/z 253 chromatograms for the remainder of the sample suite, while comparative m/z 253 chromatograms are found in Figures 97 and 98.

Figure 91: The m/z 253 chromatogram for the slightly altered, mineralized BIR 15 sample.

Figure 92: The m/z 253 chromatogram for the mineralized but least organically altered BIR 16.

Figure 93: The m/z 253 chromatogram for the unmineralized, least altered and distal to Cu mineralization sample 517-2.5.

Figure 94: The m/z 253 chromatogram for the least organically altered, unmineralized and distal to Cu sulfide mineralization sample 517-3.

Figure 95: The m/z 253 chromatogram for the 523-1 sample. This sample is barren but within 5 m of the overlying Cu mineralization.

Figure 96: Ion m/z 253 chromatogram for sample 523-3. This sample is unmineralized, and 5.4 m below mineralization, as well as 12.2 m above Cu mineralization.

Figure 97: M/z 253 MAS chromatogram comparison for four of the least altered samples - 517(red and green) and 523 (light and dark blue) samples. Note the greater abundance of these compounds in the two samples from closest-to-base of Nonesuch Formation.

Figure 98: *M*/*z* 253 MAS chromatogram comparison for the WPB and BIR samples.

6.4.3.3 Polycyclic Aromatic Compound Ternary Plot

Li *et al.* (2013) compared 150+ samples of known, varied depositional origin on ternary plots of the total contents of fluorene, dibenzothiophene and dibenzofuran, as well as their alkylated homologs Figure 99. Each of the un-alkylated parent molecules is depicted in Figure 100. Each corner represents the sum of GC-MS signal intensity (sums of areas under peaks identified on the chromatogram) for each of the homologous series, as identified by comparison with retention indices reported in literature and correlation with co-injection of internal standards. The authors put forth a preliminary diagram establishing diagnostic regions of the ternary plot most commonly occupied by each of several depositional/lithological classes of petroleum source rocks. Samples representing typical fluvial/deltaic/freshwater lacustrine shale, brackish/saline lacustrine shale, marine shale, marine carbonate and swamp environments were used in the ternary plots, as depicted in the diagnostic regions of Li and others (2013).

Figure 99: Ternary diagram of fluorenes, dibenzothiophenes (DBTs) and dibenzofurans (DBFs) of the aromatic GC-MS for Nonesuch Formation data. The diagnostic zones here were identified by comparison of 150+ samples of known source rock lithologies and depo-conditions. The Σ DBT- Σ DBF- Σ fluorenes poles are defined slightly differently from the plot's originators, Li *et al.*, 2013.

Figure 100: Correlation of chemical structures of fluorene, DBT, and DBF. Dibenzothiophene is sometimes referred to as the "sulfur fluorene" and DBF the "oxygen fluorene." From Li *et al.*, 2013.

Of the nine Nonesuch Formation GC-MS samples, one plotted within the zone of typical brackish/saline lacustrine shales (Figure 99). Three of the GC-MS samples plotted within the zone of marine carbonate petroleum source rocks. The balance of samples fall near to the marine carbonate sector, in the 50% of the plot nearest to the DBT apex. These samples show relatively more S-PAHs than the "typical" marine carbonates, lacustrine and marine shales of zones 1, 2, and 3. The majority of samples showed less than 20% DBFs.

This study's ternary plot of $\Sigma DBTs-\Sigma DBFs-\Sigma$ fluorenes differs from those of the Li *et al.* (2008) study in several areas. First, no *m*/*z* 194 GC-MS analysis on the aromatic extracts was done and so we exclude the dimethylfluorenes (of which as many as 12 isomers have been previously identified in similar extracts, eg: Li *et al.*, 2008) from our calculations. This study does not include the DMDBTs because they were apparent on the *m*/*z* 212 chromatogram. Third, the MDBFs were not apparent as peaks in the *m*/*z* 196 chromatogram in the expected time range and were excluded. This study's GC-MS did not use an internal standard for identification of DMDBFs, and they were not included in the relative abundance calculations. Finally, our study did not apply the deuterated DBT (C₁₂D₈S) standard for more positive identification of trimethylated members of that series on the *m*/*z* = 192 chromatogram (as in the Li *et al.*, 2008, study).

7. Discussion and Interpretation

Organic matter is the most temperature-sensitive solid constituent in sedimentary rocks (Peters *et al.*, 2005). Petrographic and geochemical organic maturity parameters commonly utilized in petroleum prospectivity studies are applied here to assess the degree of organic maturation, as well as its relation to hydrothermal emplacement of disseminated Cu in the sedimentary Nonesuch Formation of the Midcontinent rift system. Over a dozen such parameters were assessed and compared - thermal alteration index (TAI) values, Rock-Eval parameters (the PI or production index quotient, T_{max} values), Soxhlet extract yield and GC-MS molecular maturity indices (see Peters *et al.*, 2005 and Engel and Macko, 1993). These measures show varied indications of organic maturity for this study's samples, and differing relationships to geographic distribution as well as Cu mineralization and stratigraphic position.

The chemical and molecular makeup of OM in the Nonesuch Formation has been potentially influenced by varying degrees of alteration during sedimentation and early burial, and varying depths and temperatures of burial, both within a single profile and across the region of the study area. Other processes that may likely have altered the organic and Cu mineral chemistry of the Nonesuch Formation include syndiagenetic hydrothermal activity or groundwater flow unrelated to Cu ores, the hydrothermal fluids of Cu ores, oil migration into or out of the rocks, and weathering, either in outcrop or in core since sampling. It is not possible at present to specify whether - or the degree to which - each of these processes affected a given sample or set of samples.

7.1 Regional Variations in Apparent Maturity

7.1.1 Production and Thermal Alteration Indices

The PC-5, PC-1, PIR and WPB samples, in the central portion of the sampling traverse,

show the lowest average PI values (0.35 to 0.5) while the WP vicinity samples and the samples from CF and SF show significantly higher average PI values (0.6 to 1.0). This mirrors the thermal maturity trends described by Price and McDowell (1993, Figure 35) as well as the westward increasing thermal maturity trend of Imbus *et al.* (1988). It is possible that the extremely low S₂ values of many of the SF and CF samples are responsible for artificially inflating the PI values used in this asserted bidirectional increase in thermal maturity. Significantly, AOM coloration is lightest and its TAI values are at minima for the sample set in the PC-5, PC-1, PIR and WPB samples. It must be noted that only one of the five PIR samples showed AOM for consideration by the TAI. No such relation to geographic distribution is apparent with respect to color or TAI of FOM.

7.1.2 Methylphenanthrene and Methyldibenzothiophene Indices

The maturity indices that give most reliable results in this type of deposit (MPI1 and MDR, the methylphenanthrene and methyldibenzothiophene ratios, respectively) are correlated to calculated VR values (R_c and R_m). The calculated VR values for MPI1 and MDR indices indicate early to peak oil window for this study's samples, excluding three very high MDR outliers (Table 5). The MPI1 is better correlated to PI values than is any other maturity parameter examined in this study (See Figure 101).

Figure 101: The strongest correlation of any GC-MS maturity parameter to RE maturity indicators is seen here in the plot of MPI1 versus PI. Red data points are mineralized, orange data points are within 1 m of mineralization, yellow are within 5 m (X'd data points are below the nearest Cu mineralization), gray points are sub 20 m to mineralization, and brown is within 25 m of mineralization.

Stojanovic *et al.* (2007) applied ratios based on the degradation of dimethylphenanthrene (DMPh) and trimethylphenanthrene (TMPh) into corresponding methylphenanthrenes and phenanthrene as aromatic maturity indicators for crude oil. The Phen/ Σ DMPh (phenanthrene to sum dimethylphenanthrene) ratio is highest (2.6 to 14.5) for most altered samples, minimal in least altered samples (below 2, and dominantly below 0.5). Trimethylphenanthrenes were not identified fully enough to justify calculation of the phenanthrene to TMPh ratio.

7.1.3 Methylnaphthalene Indices

Methylnapthalene isomerization ratios were shown by Radke (1987) and Stojanovic *et al.* (2007) to vary regularly in relation to established bulk maturity parameters. The dimethylnaphthalene index (1,3-)+(1,6-)+(1,7-)DMN/[(2,3-)+(1,4-)+(1,5-DMN)] of Radke (1987) indicates a range of maturity broader than expected for so small of a dataset that is relatively

of the Iron River syncline Nonesuch Formation, to submature some 16 m above at WPB-3, with

uniform in maturity by other measures. The altered samples range from high maturity at the base

the altered BIR 13 registering as medium high maturity. The other samples are variously sub- to medium maturity by this DMN index. The trimethylnaphthalene (TMN) index of Stojanovic *et al.* (2007) shows similarly tangled, though slightly less wide-ranging maturities, and no clear pattern with respect to geography. The TMN index is defined as: (1,3,6-TMN + 1,3,7-TMN)/(1,3,5-TMN + 1,4,6-TMN).

7.1.4 Pristane and Phytane Versus Associated Normal Alkanes

The pristane/ nC_{17} versus phytane/ nC_{18} plot (Figure 102) indicates moderate to high maturity of OM. Figure 102 is also interpreted to suggest a single organofacies as the OM source (Seifert and Moldowan, 1986).

Figure 102: Relationship of normalized isoprenoid biomarker contents of Nonesuch Formation EOM. Maturity increases toward the origin. Lettered zones are associated with: terrestrial Type III OM deposited in suboxic conditions (A); Type III coaly OM (B); Type II-III mixed OM (C), and; Type I-II algal, marine OM deposited in reducing conditions (D; zones after Ashok, *et al.*, 2013). Red data points are mineralized, orange data points are within 1 m of mineralization, yellow are within 5 m (X'd data points are below the nearest Cu mineralization), gray points are sub 20 m to mineralization, and brown is within 25 m of mineralization.

7.1.5 Moretane and Hopane Comparison

The moretane/hopane ratio decreases with thermal maturity, reaching thermal equilibrium

at a value of 0.05 (equivalent to VR of 0.7%). Values range from 0.68 to 1.44 for this measure,

suggesting thermally submature OM for the samples in this study. It is significant that the two most strongly altered samples (by TOC, MPI1, methylation ratios of PAHs), from WPB, are the least thermally mature by this measure.

<u>7.1.6 Ts/Ts+Tm Trisnorhopane and C₂₉Ts/(C₂₉ hopane + C₂₉Ts) Parameters</u> The Ts/(Ts+Tm) terpane thermal maturity parameter compares the C₂₇ 17 α -trisnorhopane

(Tm) and 18α -trisnorhopane II (Ts) GC-MS signals, and reaches thermal equilibrium at unity, which is equivalent to 1.4% R₀ (postmature). The majority of nonzero values for samples in this study are in the range 0.37 to 0.54 (low to moderate maturity). Two of the 9 GC-MS samples show very low maturity by this measure (0.09 and 0.18): these are the WPB samples, for which the Ts/Ts+Tm value is half or less that of other areas. All samples outside of the WPB area are in the mature range by this measure, implying a thermal maturity low for the Iron River syncline area, as did Price and McDowell's (1993) study.

The Ts/Ts+Tm trisnorhopane maturity measure is strongly source dependent and varies with changes in source rock lithology, Eh and pH (Peters *et al.*, 2005). Co-elution with tricyclic or tetracyclic terpanes on m/z 191 mass chromatograms is possible, and may not be ruled out in the present absence of m/z 370 mass chromatograms.

The C₂₉Ts/(C₂₉ hopane + C₂₉Ts) parameter's trend with maturity should be comparable with, though slightly less than, the maturity trend of the Ts/Ts+Tm trisnorhopane maturity/depositional measure (Peters *et al.*, 2005). The C₂₉Ts/(C₂₉ hopane + C₂₉Ts) results of this study concur with the convention in the literature, suggesting that most samples are mature with respect to HC generation, and further supporting the interpreted paleothermal low in the vicinity of the WPB sample core drill hole.

7.1.7 Geographic Distribution of Sterane Maturity Parameter Values

Living organisms possess sterols exclusively with the 20R configuration (Peters *et al.*, 2005). During diagenesis and catagenesis, steranes are gradually transformed to a mixture of 20R and 20S isomers, until they reach a thermal equilibrium value of about 0.55 for the 20S/(20R+20S) ratio (Figure 19). Thermal equilibrium is reached for this parameter at about 0.9% R_o, at the end of the peak oil generation window (also known as the S/S+R C₂₉ $\alpha\alpha\alpha$ ratio; Seifert and Moldowan, 1986). The S/S+R C₂₉ $\alpha\alpha\alpha$ sterane ratio for Nonesuch Formation GC-MS samples in this study (0.25 to 0.37 for the 6 of 9 samples with nonzero values) indicates low maturity and no pattern exists with respect to geographic distribution.

The $\beta\beta/(\beta\beta+\alpha\alpha)$ C₂₉ sterane ratio increases with maturation from near-zero values to about 0.70 at thermal equilibrium (Peters and others, 2005). The range of values for the samples in this study (0.23 to 0.48) indicates thermal maturity in the early to peak oil generation window, without any ordered geographic distribution of values.

A cross plot of C₂₉ sterane $\beta\beta/(\beta\beta+\alpha\alpha)$ versus C₂₉ sterane S/S+R $\alpha\alpha\alpha$ (Figure 103) shows that the studied EOM samples are low to moderately mature. The relatively strong linear correlation of the two parameters suggests that the samples experienced similar heating rates in the subsurface, and that analytical error was minimal (cf. Peters *et al.*, 2005).

Figure 103: Cross plot of C_{29} sterane $\beta\beta/(\beta\beta+\alpha\alpha)$ versus C_{29} sterane S/S+R $\alpha\alpha\alpha$ which shows that the studied EOM samples are low to moderately mature (maturity increases away from the origin; Peters *et al.*, 2005). Red data points are mineralized, orange data points are within 1 m of mineralization, yellow are within 5 m (X'd data points are below the nearest Cu mineralization), gray points are sub 20 m to mineralization, and brown is within 25 m of mineralization.

The ratio of diagenetic (S+R) to $\alpha\alpha\alpha$ (S+R) for the C₂₇ steranes indicates late oil window maturity and shows regular variation with position on the sampling traverse (Table 5, Figure 37). Thermal equilibrium is reached at 1.00 (equivalent to VR of 1.4%) for this parameter, and when the outliers (0, 3.28) are excluded, the values range from 0.91 to 1.7. The highest values for this parameter are mainly for the mineralized BIR samples.

7.1.8 Pregnane

The steranes are nearly dominated by the C_{21} molecule pregnane and to a lesser extent C_{22} molecule homopregnane, which is consistent with high maturity, a large contribution of algal/bacterial matter, or both (cf. Dutkiewicz *et al.*, 2006). Other studies have ascribed high

abundance of pregnane to higher salinity in the depositional environment (cf. Mueller *et al.*, 1995).

7.1.9 Soxhlet Extractable Organic Matter Yield

Soxhlet EOM yields show no regular pattern with respect to geographic locality, nor to AOM TAI (Table 5, Figure 37). Rock-Eval OI values are uniformly below 15 for higher EOM yielding samples (greater than 384 ppm), and lower yielding samples all show OI greater than 34. That the bitumen-rich samples show less oxidation of OM supports the TOC-OI negative correlation as representative of oxidative destruction of OM.

7.1.10 Long Versus Short Chain Triaromatic Steroids

Higher concentrations of low molecular weight TAS compounds (C_{20} , C_{21} derivatives of pregnane and homopregnane, respectively) relative to the longer chain C_{26} , C_{27} , and C_{28} TASs have been interpreted to indicate higher levels of thermal maturity (Figure 19; Lillis *et al.*, 1998). The abundances and quotients of such low molecular weight TAS compounds relative to their longer-chain TAS homologues are generally higher for the BIR samples. However, the failure to detect these compounds in the 523 samples, and a high-quotient sample (517-3) coupled with a high abundance (peak heights in the thousands for 517-2.5) obscure what may be a regular pattern with respect to geographic position for this parameter.

7.1.11 Diamantanes

Diamantanes are cage HCs that occur in all kinds of fossil fuels (Peters, et al., 2005).

Due to their peculiar cage molecular structures - similar to a subunit of the diamond lattice – they have been widely used in the maturity assessment of highly mature to over-mature oils as well as source rocks since the 1990s (Ma, 2016). No diamantanes were detected in the aromatic portion, and while the saturate portion samples all show diamantane and methyldiamantanes, no other diamantane compound peaks were identified. No pattern of diamantane abundance is apparent with respect to geographic distribution. The saturate fraction GC-MS sample diamantanes

163

showed similar degree of alkylation (15-20% unalkylated diamantane), and the methyldiamantane index, a maturity parameter created by Fang *et al.* (2016) showed no relation to geographic locality.

7.2 Variations in Apparent Maturity Related to Depth and Mineralization 7.2.1 Production and Thermal Alteration Indices

The PI values do not correlate with Cu mineralization/distance to mineralization, AOM TAI, EOM yield or T_{max} values. The degree of HC generation would ideally correspond to each of these parameters. Similarly, neither Soxhlet EOM yields nor TAI values show regular variation with respect to distance from Cu mineralization (Figures 66, 67, 104). The lack of correlation might suggest sample contamination, loss of free HCs or of kerogenous OM in outcrop/core storage, or that Cu mineralization, S₁ HC generation, and thermal alteration changing AOM color occurred as somewhat independent processes.

Figure 104: Normalized EOM yields versus distance to Cu mineralization, Nonesuch Formation.

7.2.2 Methylphenanthrene and Methyldibenzothiophene Indices

Neither the MPI1 nor the MDR values (Figure 19) show regular variation with respect to Cu mineralization or depth. The Ph/ Σ DMPh maturity parameter of Stojanovic *et al.* (2007) gives conflicting signals with respect to mineralization: mineralized samples range from submature to highly mature by the DMPh maturity measure. The same is true for the Ph/ Σ DMPh value versus T_{max}, and HI parameters. However, Ph/ Σ DMPh does align with OI values for the GC-MS samples of this study. The submature values by the Ph/ Σ DMPh (as calibrated by Stojanovic *et al.*, 2007) are all below OI = 41, and all GC-MS samples with OI greater than 40 show as high maturity by Ph/ Σ DMPh. However, PI values decrease as Ph/ Σ DMPh values increase to the mature range; one would expect the opposite trend of higher PI with higher Ph/ Σ DMPh.

7.2.3 Pristane and Phytane Versus Associated Normal Alkanes

The two samples that fall below the 0.1 pristane/n-C₁₇ cutoff for Figure 102 are both distal to Cu mineralization; one of these shows higher phytane/n-C₁₈ (0.42) and is 25 m away from Cu sulfide mineralization. The relation of low pristane/n-C₁₇ to greater distance from Cu mineralization contradicts the findings of Ho and Mauk (1996), while the apparent association of higher phytane/n-C₁₈ with Cu mineralization and proximity thereof agrees with their results.

7.2.4 Moretane and Hopane Comparison

Two of the three low values (indicating greatest thermal maturity) for the moretane/hopane ratio are for Cu mineralized rocks. However, the other low value for this measure occurred in a less altered sample and the mineralized samples are not significantly outside the range of other samples with respect to moretane/hopane.

 $\frac{7.2.5 \text{ Ts/Ts}+Tm \text{ Trisnorhopane and } C_{29}\text{Ts/(}C_{29} \text{ hopane } + C_{29}\text{Ts}\text{)} \text{ Parameters}}{\text{While incomplete data on the } C_{29}\text{Ts/(}C_{29} \text{ hopane } + C_{29}\text{Ts}\text{)} \text{ parameter complicates}}$

interpretation of its relation to mineralization, it should be noted that of the 6 samples for which data exists, mineralized samples make up two of three most mature values by this measure. No

regular pattern with relation to depth is apparent for the $C_{29}Ts/(C_{29} hopane + C_{29}Ts)$ maturity measure. The Ts/Ts+Tm trisnorhopane parameter is less clearly related than the previous maturity indicator to the spread of Cu mineralization, stratigraphic position or to the clear GC OM alteration pattern.

7.2.6 Diamantanes

Diamantanes, colorless solid HCs, exhibit high density and resistance to oxidation, and can be produced by thermal cracking of long chain *n*-alkanes (Gordadze and Giruts, 2008). The two unmineralized samples classified as altered (WPB-1 and WPB-3) showed significantly lower total diamantane peak areas than did most other samples (the exception being 517-3). That the two lowest total diamantane peak areas of unmineralized samples (and presumably a lesser degree of thermal cracking of long chain n-alkanes; Gordadze and Giruts, 2008) occur in the two furthest-from-base unmineralized samples (WPB-3, 20.9 m above base; 517-3, 22.1 m above base) and that the absolute furthest-from-base sample is mineralized but shows a total diamantane value an order of magnitude greater than that of the WPB-3 could be interpreted to suggest enhancement of thermal cracking of long chain HCs during Cu mineralization. In this respect it seems significant that of the two unmineralized altered samples, the more distal to base and further from mineralization has less than half the diamantanes of its counterpart and maximizes at $n-C_{16}$ on the whole extract TIC whereas the mineralization-proximal of the two (WPB-1, sub 1 m distant to Cu mineralization) is lowest in section and maximizes at $n-C_{14}$. Enhanced thermal cracking of long chain HCs to diamondoids during mineralization would, however, have to have been limited to the site of Cu precipitation for the WPB-1 to be so close to Cu mineralization but show so little total diamantanes relative to the much higher diamantane content of the other GC-MS samples. The methyldiamantane index showed no relation to Cu mineral proximity, depth, RE parameters or EOM yield.

7.2.7 Methylnaphthalene Indices

The mineralized and altered samples are medium to medium-high maturity by the TMN measure, while the less altered unmineralized samples are submature to medium mature. The DMN index shows no clear pattern with respect to depth or mineralization.

7.2.8 Sterane Maturity Parameters, Copper Mineralization and Depth

As with geographic distribution, no meaningful pattern of sterane maturity parameters of

Peters *et al.* (2005) is apparent. No relationship between the maturity parameters derived from the m/z 217 chromatogram and Cu mineralization or stratigraphic position exist.

7.2.9 Long Versus Short Chain Triaromatic Steroids

Higher concentrations of low molecular weight TAS compounds (C_{20} , C_{21} derivatives of pregnane and homopregnane, respectively) relative to the longer chain C_{26} , C_{27} , and C_{28} TASs have been interpreted to indicate higher levels of thermal maturity (Figure 19; Lillis *et al.*, 1998). Neither abundances nor quotients of such low molecular weight TAS compounds relative to their longer-chain TAS homologues show regular variation with proximity to Cu mineralization or to organic alteration identified on the TIC chromatograms.

7.3 Evidence for OM Oxidation

The presence of Nonesuch Formation sterane and terpane biomarkers away from White Pine (Pratt *et al.*, 1991) and the absence of sterane or terpane biomarkers at White Pine (Hoering, 1978; Imbus *et al.*, 1988) have previously been interpreted as resulting from oxidative destruction of such compounds during ore deposition (Peters *et al.*, 2005). This study's sterane and terpane biomarkers, recognized at White Pine and elsewhere indicate that this interpretation is not completely correct and that advances in analytical hardware necessitate re-examination of previous studies' analytical methods, data, and interpretations.

This study's directed sampling allows interpretation of OM oxidation regionally in the Nonesuch Formation and specifically in and above Cu mineralized zones. Still, it is not possible to quantify the extent of oxidation in any specific horizon in the Nonesuch Formation, nor to show consistently increasing degree of oxidation with increasing proximity to Cu mineralized zones.

7.3.1 Rock-Eval Evidence for OM Oxidation

All analyzed profiles show a consistent pattern of decreasing HI towards the base of the Nonesuch Formation. This pattern spans approximately 100 m - the lower half of the Nonesuch Formation. The lowest HI values are substantially lower than in the ore and in the Rote Faule in the Kupferschiefer (Bechtel *et al.*, 2001) and include some below ten. Such low values are probably unreliable because they are calculated from poorly defined peaks of production during RE pyrolysis. The pattern of decreasing HI towards the base of the Nonesuch Formation may be a result of higher temperature at the base of the formation, but the gradient of HI (up to 200 mg/g TOC per 100 m of section) is steeper than typically observed in sedimentary basins (e.g., Jin and Sonnenberg, 2012). Oxygen index has more scatter in each profile, likely related to the increased susceptibility of organic lean samples to changes in OI. Still, an increase in OI towards the base of the Nonesuch Formation can be inferred. Increases in OI from about 20 to 50 with proximity to Cu mineralization is apparent in organic rich samples, very similar to those recorded in the Kupferschiefer (Bechtel *et al.*, 2000).

Organic matter of most of the lean samples is O rich and reasonably inferred to have been oxidized although the timing and context of this oxidation is not defined. We cannot rule out oxidation in outcrop and since coring, although the low UCM in all extracts shows that weathering was not a significant process beyond the differing degrees of alteration implied from molecular composition of the whole-rock extracts analyzed from organically richer samples. In

168
contrast the isotopic compositions of carbonates indicate widespread syndiagenetic oxidation of OM, as suggested by Ho and Mauk (1996).

7.3.2 Relation of Hydrogen/Oxygen Index Ratio to Mineralization

Copper bearing samples show a lower average HI/OI ratio than do unmineralized samples (1.1 and 2.0, respectively, and with exclusion of BIR with its oil inclusions). This suggests Cu deposition with direct reduction by locally-available OM, as does the low TOC-high OI correlation's greater prevalence in Cu mineralized samples. Greater than 90% of mineralized samples with HI/OI less than 0.33 show TOC below 0.15.

In contrast, the fact that unmineralized ore-distal samples show a lower average HI/OI ratio than do ore-adjacent unmineralized samples suggests that OM oxidation associated with ore hydrothermal fluid flow may have been a more broadly distributed effect rather than a local impact (HI/OI ratio values of 1.81 versus 2.62, respectively).

7.3.3 Petrographic and Geochemical Distinction of Filamentous Versus Amorphous Organic Matter

Darkening or blackening of OM can be interpreted as representing oxidation of the organic constituents, and indeed, the black FOM-only samples are inertinite based on the RE data (Robert, 1980). The black, mostly opaque FOM is highly oxidized relative to the AOM - the 7 FOM-only samples for which RE data exists show an average HI/OI ratio of 0.18, whereas the same group of 16 AOM-only samples average 4.73. The four AOM-only samples showing reddish-brown or darker color (TAI = 3.0 or greater, coincident with late mature per Mastalerz *et al.*, 2016) average to 0.875 on the HI/OI ratio. Co-occurrence of AOM and FOM in mineralized and unmineralized samples suggests that this differing color and chemistry is not related to Cu mineralization.

7.3.4 Aromatization and Oxidation of Organic Matter

The higher abundance of the benzopyrenes and benzofluoranthenes in the mineralized samples could plausibly be the result of oxidation of OM during mineralization. That the only observed occurrence of phenylphenanthrenes is in the two most strongly altered - but barren of Cu - samples (by TOC, MPI-1, ratios of unmethylated versus methylated PAHs, cf. Yawaranah *et al.*, 1994), which show lesser abundance of the benzopyrenes and benzofluoranthenes than the mineralized GC-MS samples is significant. It has been documented that dehydrocyclization of phenylphenanthrenes during diagenetic oxidative hydrothermal alteration can generate the benzopyrenes and benzofluoranthenes (cf. Grafka *et al.*, 2015, Marynowski *et al.*, 2009, Marynowski and Wyszomirski, 2007). Given the observed differences in molecular makeup of these samples, it seems reasonable to conclude that such dehydrocyclization of the phenylphenanthrenes occurred during syndiagenetic oxidative hydrothermal alteration specifically associated with Cu mineralization, resulting in generation of the benzopyrenes and benzopyrenes benzopyrenes and benzopyrenes benzopyrenes and benzopyrenes and benzopyrenes and benzopyrenes benzopyrenes and benzopyrenes.

All of the whole-rock organic extracts are from samples within to about 30 m above Cu mineralization zones at the base of the Nonesuch Formation and are within the zone of inferred HI reduction and slight OI increase. The GC and GC-MS data show variable degree of alteration within this sample subset. The most significant effects on molecular makeup of the OM that can be inferred to have occurred with alteration are aromatization (from the richness of the aromatic fraction of all extracts) and dehydrogenation (from the decrease in MPI-1 for example). None of these changes can be correlated with increased OI, and no O-containing compounds like ketones or carboxylic acids were detectable within the analysis, but could be present. Aromatization and dehydrogenation are, though, consistent with a decrease in HI and dehydrogenation and aromatization reactions inferred are consistent with oxidation (as in Shock *et al.*, 2013). It is not

clear that TSR was a significant process during Cu precipitation at White Pine. However, aromatization and dehydrogenation could have contributed to TSR and thus to the availability of sulfide for Cu precipitation by reactions similar to the schematic exchange:

$$C_6H_{14} + H_2SO_4 - > C_6H_6 + H_2S_4$$

The least altered extracts are dominated by *n*-alkanes, with highest concentrations at *n*- C_{11} to *n*- C_{14} and a smooth decrease to higher lengths. The three altered samples show slightly higher OI and are distinguished by a sharp maximum of *n*-alkanes over a narrow range. The slightly altered sample (with the highest OI) shows a gas chromatogram with a range of *n*-alkanes that is similar to that of least altered samples, but the concentrations of high molecular mass alkanes are lower and there are double maxima at *n*- C_{15} and *n*- C_{24} rather than smooth decreases with increasing C number. This is consistent with the oxidative alteration of OM observed in the Kupferschiefer, where highly altered Rote Fäule material is characterized by a predominance of short chain *n*-alkanes (less than *n*- C_{17}) at the expense of mid- and long chain homologues (e.g., Kotarba *et al.*, 2006; Püttman *et al.*, 1989).

Concentrations of the thio- and oxo-aromatics dibenzothiophene and dibenzofuran, as well as the PAHs phenanthrene, benzofluoranthene, and benzopyrene are higher for mineralized and more altered samples.

7.3.5 Phenanthrene and its Methylated Homologues

Speczik (1994) showed that low-rank vitrinite reflectance anomalies correlate well with the location of ore-grade occurrences of Cu sulfides in the Kupferschiefer. By comparison with these parameters, Speczik showed that values for the ratio phenanthrene/sum methylphenanthrenes (Ph/ Σ MPh) provide a measure for the intensity of oxidative OM-alteration associated with ore deposition. Bechtel *et al.* (2000) successfully applied this ratio as a measure of Rote Fäule OM oxidation during hydrothermal alteration associated with proximal (single mscale) Cu and minor precious metal mineralization, variably above, below, and concurrent with increased Ph/ Σ MP ratios. Unoxidized and weakly oxidized samples showed Ph/ Σ MPh = 0.6-1.2, while oxidized samples give values between 1.5 and 3.0.

It was found that the ratio of phenanthrene to sum of methylphenanthrenes provides an imperfect but still apparent measure of the intensity of alteration. The aromatic portion of the most altered extracts in this study are characterized by an increase in the ratio of phenanthrene to methylated phenanthrenes.

Excepting the least-altered sample that shows the maximum Ph/ Σ MP value for the group, the slightly altered, most altered and mineralized samples show the highest range (1.1 to 4.2) and the least altered samples range from 0.43 to 0.67 and are barren of Cu. No regular increase in biphenyl at the expense of phenanthrene in the most altered samples was apparent.

This study's samples do not show regular relation between HI, OI, and Ph/ Σ MPh, as is clear in Figures 105 and 106. The Ph/ Σ MPh shows a closer (although statistically insignificant) correlation to the HI/OI ratio than to either the HI or the OI alone, which suggests that the measure is at least in some part aligned with the degree of oxidation of OM in a given sample. See Figure 107.

Figure 105: Note that the mineralized samples (BIR13, 15, 16, red) are under the 1.5 to 3 Ph/ Σ MPh range of oxidized, Cu-bearing Kupferschiefer samples while the ore-adjacent WPB-1 (orange) sample shows Ph/ Σ MPh of 2.15. That the barren ore-distal samples (gray are within 20 m of Cu mineralization; brown is up to 25 m away from Cu mineralization) occupy both ends of the spectrum similarly confounds this organic oxidation parameter's usefulness. Red data points are mineralized, orange data points are within 1 m of mineralization, yellow are within 5 m (X'd data points are below the nearest Cu sulfide mineralization), gray points are sub 20 m to mineralization, and brown is within 25 m of mineralization.

Figure 106: The Cu mineralized samples (BIR13, 15, 16, red) are below the 1.5 to 3 Ph/ Σ MPh range of oxidized, Cu-bearing Kupferschiefer samples while the ore-adjacent WPB-1 (orange) sample shows Ph/ Σ MPh of 2.15. Barren ore-distal data points are gray (within 20 m of Cu mineralization) and brown (up to 25 m away from Cu mineralization). Yellow data points indicate barren samples within 5 m of Cu mineralization (X indicates sample position beneath the nearby Cu concentration). Red points are mineralized.

Figure 107: The Ph/ Σ MPh shows a statistically insignificant but closer correlation to the HI/OI ratio than do any of the other GC-MS-RE parameter crossplots, which suggests that the measure is aligned with the degree of oxidation of OM in a given sample. Red data points are mineralized, orange data points are within 1 m of mineralization, yellow are within 5 m (X'd data points are below the nearest Cu mineralization), gray points are sub 20 m to mineralization, and brown is within 25 m of mineralization.

It is significant that the mineralized BIR samples show values between 0.6 and 1.1, in the unoxidized range. In contrast, the unmineralized, less than 20 m from ore, distal samples are above 4 on the Ph/ Σ MPh ratio, and the ore-adjacent (within 1 m) sample, 523-1, is in the range Speczik *et al.* (2007) presented for mineralized, highly oxidized samples. However, 523-1 shows the highest HI and the second lowest OI of the group; the BIR samples show the highest *and* the lowest OI values. Two of the three samples showing the highest Ph/ Σ MPh were not thin sectioned, and the TAI of the other is on the low end at 2.8, orange color (on AOM, no FOM present). The two darkest colored, highest TAI (both 3.2 AOM) GC-MS samples were the mineralized BIR 15 and 16 material, which showed broadly different Ph/ Σ MPh values of 1.1 and 0.59, respectively. Based on OI, the more oxidized sample (BIR 15, with OI = 60) does show a higher, more oxidized Ph/ Σ MPh value than BIR 16 (OI = 14). The study's overall average TAI

value of 3.12 is not far below that of BIR 15 and 16, which is compatible with their overall lessoxidized Ph/ Σ MPh values despite the disparity in the GC-MS parameter.

The two most strongly altered samples (with respect to TOC, MPI-1, Ph/ΣMPh, Ph/Σdimethylphenanthrenes, fluorene/Σmethylfluorenes and DBT/ΣDMDBTs), from the Iron River syncline, meet and exceed the range for "oxidized" Kupferschiefer samples as defined by Speczik (1994), 1.5 to 3. That the most strongly oxidized samples by this measure, WPB-3 and 517-2.5 (Phen/ΣMP ratios 4.2 and 4.6), are both nearly 20 m away from Cu mineralization testifies to a broad alteration of OM in the Nonesuch Formation.

Notably, the barren sample 523-1, taken just 4.5 m below chalcopyrite mineralization, shows in the "unoxidized" range (0.6 to 1.2, per Speczik, 1994); this could be construed as suggesting very localized, rather than pervasive, redox reactions of OM during Cu mineralization. However, the probable fracture-association and presumable focusing of fluids with such anomalous (as described by Brown, 1971) mineralization implies alteration could be highly localized.

7.3.6 Fluorene and its Methylated Homologues

The altered extracts' aromatic portions are characterized by an increase in the ratio of fluorene to its methylated analogues. The BIR 13 and WPB samples are from 2 to 2.2 on the ratio fluorene/ Σ methylfluorenes whereas the less altered and least altered samples are between 1 and 1.9. Neither HI/OI ratio, nor mineralization show regular relation to this ratio, nor does the TAI of AOM.

7.3.7 Dibenzofuran and its Dimethylated Homologues

The methyldibenzofurans were not identified on the fragmentograms, but increases in the proportion of DBF to its dimethylated homologues imply de-methylation of DMDBF in the altered and mineralized samples. The ratio DBF/ Σ DMDBF is between 4 and 100 for the most

altered samples, between 1 and 4.1 for the mineralized samples. The DBF/ΣDMDBF ratio averages 0.88 for least altered samples, although an outlier of 2.3 is present in this group. Unmineralized least altered samples average below 0.83, outlier included. Overall, this is interpreted to suggest oxidative alteration of OM was most active in the altered and mineralized samples. No relationship to the color of contained OM is apparent, nor to HI/OI ratio.

7.3.8 Dibenzothiophene and its Methylated Homologues

The aromatic portions of the most altered extracts in this study are characterized by a loss of methylated analogues and preservation of dibenzothiophene, as represented by the DBT/ΣMDBT ratio. Altered samples range from 0.9 to 3.2 on this measure, mineralized samples between 0.81 and 0.91, and least altered unmineralized samples are between 0.1 and 0.7. This suggests a localized effect of epigenetic oxidation associated with mineralization and alteration. No relation between this ratio and AOM TAI or HI/OI ratio is apparent, however.

7.3.9 Pristane to Phytane Ratio and Depositional Environment by Comparison to Dibenzothiophene Versus Phenanthrene

In the Kupferschiefer, increases of the pristane to phytane ratio with proximity to Cu mineralization have been interpreted to result from increasing oxidation during deposition and diagenesis in the Kupferschiefer (Püttman *et al.*, 1989). This study's pristane/phytane ratio ranges from 1.03 to 1.81 for the group of samples that were either mineralized or within 10 m of Cu mineralization, whereas the samples more distal to Cu mineralization showed lower values for the measure (from 0.24 to 1.05). If one excludes the oil-inclusion bearing BIR 16 sample (HI/OI = 2.64, with its probably not closely indigenous OM content), this measure shows some association to the HI/OI ratio, with the majority of the former group ranging from 0.47 to 1.08 and the latter between 0.85 and 4.5. The outlier to this trend, 523-1, shows HI/OI and pristane/phytane of 3.6 and 1.73, respectively. This study's GC-MS sample set thus partially supports the findings of previous studies that either: 1) mineralizing hydrothermal alteration

events result in oxidation of OM and increased pristane/phytane (e.g., Püttman *et al.*, 1989), or 2) increased thermal maturity interpreted have been driven by mineralizing fluids (cf. Gize, 2000).

A plot of pristane/phytane versus DBT/Phenanthrene (Figure 108, after Hughes *et al.*, 1995) positions the Nonesuch Formation samples in two plausibly correct depositional environment sectors (lacustrine hypersaline and marine shale/other lacustrine) and no relationship to mineralization or OM alteration is clear. This may be interpreted as indicating a lesser degree of oxidative alteration of the samples. It is worth noting that the S-aromatic (DBT) is sufficiently minimal in content relative to the abundant phenanthrene that all samples plot in the lowest 1/5 of their respective zones. This can be interpreted as suggesting a relatively high degree of aromatization concurrent with minimal introduction of S for the whole group of GC-MS samples. No relationship between alteration and mineralization, RE parameters, or AOM TAI is apparent on the plot of pristane/phytane versus DBT/Phenanthrene.

Figure 108: The Pr/Ph versus DBT/Phenanthrene plot, after Hughes *et al.* (1995). Red points are mineralized, orange is within 1 m of Cu mineralization, yellow is within 20 m, and gray is under 25 m distant. Data points stratigraphically below the proximal mineralization are X-marked.

7.3.10 Pristane to Normal Heptadecane Ratio

In SSC deposits outside of the Midcontinent Rift, the ratio of isoprenoids to *n*-alkanes increases in association with Cu mineralization (Püttman *et al.*, 1989). Higher values for the pristane/n-C₁₇ and phytane/n-C₁₈ parameters have been interpreted to indicate increased oxidation of OM, but other influences such as variations in depositional environment, migration effects or biodegradation also may affect these measures.

Pristane/*n*-heptadecane ratios are higher in the three altered samples, consistent with

preferential oxidation of the *n*-alkanes during alteration. However, these ratios are vulnerable to

other factors, including migration, expulsion efficiency, water solubility, and biodegradation, and indeed, Ho and Mauk (1996) reported decreased rather than increased pristane/*n*-heptadecane and phytane/*n*-octadecane associated with mineralization.

It is significant that the two unmineralized samples closest to mineralization of Cu both show lower than average prevalence of isoprenoids for the unmineralized group of GC-MS samples. The prevalence of isoprenoids in mineralized GC-MS samples averages 2.8%, whereas unmineralized samples average 2.3% isoprenoids: this aligns with previous studies indicating increases in the ratio of isoprenoids to their respective associated *n*-alkanes with mineralization (Bechtel *et al.*, 2000), and interpreted increased thermal maturity in association with mineralization (Gize, 2000).

7.3.11 Sterane Maturity Parameters and Oxidation of Organic Matter

The ratio of diagenetic (S+R) to $\alpha\alpha\alpha$ (S+R) for the C₂₇ steranes shows correlation to the OI values of this study's GC-MS samples, when the oil-included and poor GC-MS signal samples (three of these) are excluded (Figure 109). The C₂₇ diasterane (S+R) to $\alpha\alpha\alpha$ (S+R) C₂₇ sterane parameter increases with OI.

Figure 109: With the exclusion of the three samples below the line of best fit (due to oil inclusions in the mineralized BIR 16 and poor GC-MS resolution for the two leftmost, zero-value samples), the correlation between the C_{27} diasteranes to $\alpha\alpha\alpha$ steranes is stronger. Red points are mineralized, orange is within 1 m of Cu mineralization, yellow is within 20 m, and gray is under 25 m distant. Data points stratigraphically below the proximal mineralization are X-marked.

The overall negative correlation of OI to the S/S+R $C_{29} \alpha \alpha \alpha$ parameter is an expected maturity trend but the above trendline position of the mineralized and sub 1 m samples may be interpreted to suggest localized OM oxidation during Cu mineralization. See Figure 110.

Figure 110: Red points are mineralized, orange is within 1 m of Cu mineralization, yellow is within 20 m, and gray is under 25 m distant. Data points stratigraphically below the proximal mineralization are X-marked. Increased biomarker ratio at decreased OI trend is expected for increased maturity, while the mineralized and nearest-mineralization above-trendline OI values can be seen to suggest local OM oxidation during mineralization. Red data points are mineralized, orange data points are within 1 m of mineralization, yellow are within 5 m, gray points are sub 20 m to mineralization, and brown is within 25 m of mineralization.

Oil inclusions in BIR 16 (the lowest OI, mineralized sample) observed by Colbert (2011) explain the unexpected positive trendline on the plot of OI- $\beta\beta/(\beta\beta+\alpha\alpha)$ C₂₉. See Figure 111. The other BIR samples, both mineralized, show a greater degree of oxidation by OI than would be predicted by a trendline excluding all mineralized samples.

Figure 111: Oil inclusions in BIR 16 (the lowest OI, mineralized sample) observed by Colbert (2011) could explain the unexpected positive correlation. Red data points are mineralized, orange data points are within 1 m of mineralization, yellow are within 5 m (X'd data points are below the nearest Cu mineralization), gray points are sub 20 m to mineralization, and brown is within 25 m of mineralization.

7.3.12 Fluorene and Heteroatomic Fluorene Homologues

The relative paucity of DBFs in the GC-MS samples (compared to those of Li *et al.*, 2015) can be interpreted to indicate relatively little oxidation of EOM in these samples. If the HCs in this study's Nonesuch Formation samples were generated during hydrothermalism by oxic brines, which to a degree oxidizes in-place organic kerogens, it seems reasonable to expect a relict signature of that oxidation in the form of enhanced DBF concentrations.

Fluorene is thought to derive from biphenyls; the DBT series lack clear biological precursors, while "natural" DBFs in crude oil and sedimentary organic matter have been described as metabolites of lichens or higher fungi. The prospect of significant contribution of lichen to lacustrine or marginal marine OM seems so unlikely that it is concluded that the relative lack of DBFs in this study's samples more likely represents marginal occurrence of OM oxidation during hydrothermalism associated with ore emplacement rather than significant inputs from lichen. Other studies suggested that DBFs may originate from dehydrated and condensed

polysaccharides, which could conceivably be derived from algae or photosynthetic bacteria in the Nonesuch Formation (Sephton *et al.*, 1999).

7.3.13 Polycyclic Aromatic Hydrocarbon Ternary Plot

Li *et al.* (2013) noted that the relative abundance of DBT displays no regular relationship with the MDR maturity parameter, at least for marine shales. However, for the Type II and III organic-bearing Eocene suboxic lacustrine shales in their study, the DBT and DBF abundances did vary with depth. Specifically, the authors stated that the relative abundance of DBT gradually increases with increasing maturation, while the relative abundance of DBF does the opposite. Both compounds keep an approximately constant value in the window of oil generation. Those authors also note that biodegradation may lead to great variations of abundance in each of the DBT, fluorene, and DBF homologous series, in particular increasing DBT concentrations.

It is significant that total DBT content has been shown to decrease with increasing distance of migration of oil, similar to the carbazole (amine fluorene) content. The total DBT and alkyl-DBT content and relative content of isomers are controlled by both maturity and migration fractionation (Li *et al.*, 2008). With increasing maturity, the MDR, the 2,4-/1,4-DMDBT and 4,6-/1,4-DMDBT ratios should be elevated due to the increasing amount of thermostable isomers (Chakhmakhchev *et al.*, 1997).

The S enrichment of the Nonesuch Formation samples in this study, as indicated by their proximity to the relatively S enriched DBT point of the ternary plots, could be interpreted as evidence of widespread hydrothermalism (Figure 99). Specifically, high concentrations of DBTs are associated with thermochemical sulfate reduction (Wei *et al.*, 2012). No geographic segregation with respect to ternary plot position is apparent. Absolute concentrations of DBT in petroleum have been shown to decrease with increasing migration (Li *et al.*, 2008). The

relatively high concentrations of DBT and the general lack of physical evidence of HC migrations might be interpreted to support indigeneity of the EOM in this study's GC-MS samples, although short distance (meter scale) migration cannot be ruled out. However, the one GC-MS sample - BIR 16 - showing definitive migrated solid bitumen (as well as Cu mineralization) presented 0.5% of the maximum observed DBT concentration of the sample suite, whereas unmineralized and non-bituminous samples like 523-3 presented lesser concentrations of DBT (0.04% of the maximum observed).

7.3.14 Stable Isotopes of Carbonate

Strongly negative isotopic ratios of stable C and O in carbonates on two samples of the Nonesuch Formation may be interpreted as reflecting re-mineralization of isotopically light OM with a strongly negative isotopic signature, as suggested by Imbus *et al.* (1988). It is significant that one of the strongly negative δ^{13} C samples is from coarse grained, clearly secondary, calcite in bedding-perpendicular veins (523-7); very thin (sub-mm width) vertical and horizontal calcite-bearing fractures were present in 523-7, but only the vertical fracture was drilled. The other strongly negative δ^{13} C sample is from the layer-parallel calcite concretions that contort (but are not associated with changes in thickness of) the bedding of a chalcopyrite-rich sample (PIR-12). The organic matter of 523-7 is exclusively reddish brown AOM, while PIR-12 shows no OM in thin section. The redness of the 523-7 hand sample precluded RE analysis, whereas PIR-12's low TOC (0.03%) and S₂ disqualify the other RE parameters from reliable interpretation. Nonetheless, the relatively oxidized, Type IV position of the PIR-12 material (HI: 31, OI: 250) is potentially representative of localized oxidation and carbonate remineralization of OM in concert with Cu mineralization.

7.4 Distribution of OM Oxidation

The aromatic maturity indices MPI1 and MDR indicate early to peak oil window at WP mine and similar or lower grade in the Iron River syncline. These are slightly lower grades than inferred from other indices (T_{max} , HI) and from temperatures inferred from clay mineralogy, which collectively indicate post-peak oil window for the WP area. The MPI1 gives calculated VR equivalent (R_c) maturities equivalent to the range between 0.77 and 1.0 for all samples from the WP mine area and significantly lower from Iron River syncline (0.42, 0.57). This measure shows varied patterns with depth and mineralization - the Cu mineralization proximal WPB sample that is closer to the base of the Nonesuch Formation is of higher R_c maturity than is the sample 20 m above the base. The BIR samples show higher R_c maturity with increasing degree of Cu mineralization and less regular pattern of MPI1 R_c maturity to depth than at the Iron River syncline. The shallower 517 sample is less mature by this measure than the deeper sample, whereas the deeper, more distal to Cu mineralization 523 sample is more mature than the shallower sample that is closer to Cu mineralization.

The lower MPI1 from the Iron River syncline may be interpreted as a result of oxidative hydrothermal alteration, as in the Kupferschiefer (Bechtel *et al.*, 2000), or of lower temperatures, as indicated by clay mineralogy (Price and McDowell, 1993).

The MDR gives calculated VR maturity of 0.71 to 1.01 for six of the nine samples, but significantly higher values (2.69, 7.63, 7.77) for three samples from the WP mine area which have partially altered or least altered GC traces. The outlier MDR VR equivalent maturity samples are significantly beyond the range of calibration (Radke *et al.*, 1984). These outliers are thus unrealistic but still imply distinct OM characteristics in these samples.

The MPI1 and MDR maturity indices neither confirm nor rule out the proposal that the WP ore body is associated with a paleothermal anomaly (suggested by Mauk and Hieshima, 1992).

The ratio of diagenetic (S+R) to $\alpha\alpha\alpha$ (S+R) C₂₇ steranes shows a slight trend to lesser maturity for the Iron River syncline samples and maximal maturity concurrent with mineralization of the BIR samples. The moretane/hopane ratio has maximal values in the most altered WPB samples, suggesting lower thermal maturity in the Iron River syncline. Two of the three most mature samples by this measure are mineralized: BIR 13 and BIR 15. The high norhopane/hopane ratios of the two altered WPB samples suggests a marine carbonate facies for the Nonesuch Formation shales and siltstone (cf. Peters *et al.*, 2005). The BIR samples, all mineralized, show higher norhopane/hopane ratios than the least altered samples. The Ts/(Ts+Tm) and C₂₉Ts/(C₂₉ hopane + C₂₉Ts) maturity parameters both show lesser maturity of OM in the Iron River syncline (submature) whereas they show higher maturity in the mineralized BIR samples. The Ts/(Ts+Tm) ratio in particular reaches maxima in the BIR samples. Each of the five above trends potentially reflect maturity influence affected by the OM oxidizing Cu mineralizing process.

There is a slight overall trend of increased HI to increasing S/S+R $C_{29} \alpha \alpha \alpha$ ratio; this weak but positive correlation is counter to the expected maturity trend, and is clearly impacted by the low HI-low S/S+R $C_{29} \alpha \alpha \alpha$ values of the hydrothermally mineralized BIR Nonesuch Formation samples. This may reflect increased thermal maturation of these samples during mineralization. See Figure 112.

Figure 112: No statistically significant correlation exists between S/S+R $C_{29} \alpha \alpha \alpha$ values and HI. The positive slope of the line of best fit is counter to expected maturity trends, largely due to low-rank position of the mineralized samples. Red points are mineralized, orange is within 1 m of Cu mineralization, yellow is within 20 m, and gray is under 25 m distant. Data points stratigraphically below the proximal mineralization are X-marked.

The $\beta\beta/(\beta\beta+\alpha\alpha)$ C₂₉ maturity measure shows no correlation to HI, and the mineralized

samples show low HI and lower maturity than most other GC-MS samples (Figure 113). In the

absence of the aberrant mineralized data points, a strong negative correlation between these

parameters would exist, as might be expected.

Figure 113: C_{29} sterane ratio increases with maturation from near-zero values to about 0.70 at thermal equilibrium (Peters and others, 2005). This study's samples are in the early to peak oil generation window by this measure. Red points are mineralized, orange is within 1 m of Cu mineralization, yellow is within 20 m, and gray is under 25 m distant. Data points stratigraphically below the proximal mineralization are X-marked.

Of the two very low Ts/(Ts+Tm) samples, one is situated within 1 m of mineralization and the other is nearly 20 m away from mineralization. That the four highest Ts/(Ts+Tm) values (0.47 to 0.54) are found in the 3 mineralized and one of the sub 10 m distal to (and below) mineralization GC-MS samples may mean that mineralizing fluids played a role in increasing thermal maturity by this measure.

Other saturate fraction biomarker maturity parameters show less clear patterns with respect to depth, Cu mineralization and RE maturity parameters. The saturate parameters calculated from peak areas identified in ChromEdge Lite or provided by Weatherford but showing lesser correlation to Cu mineralization or RE parameters include: diahopane/hopane; H_{32} S/R+S homohopane, triterpanes/hopanes; triterpanes/steranes; C₂₃ triterpanes/C₂₁ triterpanes; C_{24} tetraterpanes/C₂₃ triterpanes; C₂₀-C₃₀ triterpanes/(C₂₇-C₃₅ hopanes + C₂₀-C₃₀ triterpanes); steranes/hopanes; and, pregnane index.

8. Conclusion

This study's data shows that geochemical and petrographic alteration of OM co-occurs with Cu mineralization on a widespread, regional scale, rather than strictly in the vicinity of zones of greatest Cu mineral concentrations:

- Two geochemically distinct populations of primary Proterozoic OM are petrographically different but often co-occur. Darker color, lesser H/C ratio and greater opacity of FOM than AOM are interpreted to result from processes operating prior to, and largely independent of, Cu mineralization. The color and hence TAI of AOM within a given sample is related, probably genetically, to Cu mineralization. However, no clear geographic or stratigraphic trends of AOM color exist, and AOM color does not darken with increasing proximity to Cu mineralization. No relationships between TAI values and GC, GC-MS, RE or stable isotopic geochemical patterns are apparent;
- Thermal maturity as indicated by the PI, TAI, MPI1, Ts/Ts+Tm and the C₂₉ Ts/(C₂₉ hopane + C₂₉ Ts) measures shows bidirectionally increasing degrees of thermal alteration of OM distributed regionally outward from the four central sampling sites. On the local, sub 20-km scale, Cu mineralized samples show higher thermal maturity on the basis of moretane/hopane, C₂₉ Ts/(C₂₉ hopane + C₂₉ Ts), TNy measures, as well as saturate and diamantane content. The analyzed GC-MS samples likely experienced similar heating rates in the subsurface.
- With the exclusion of outlier data points, Rock-Eval II core profiles show overall
 gradients of increasing HI with increasing stratigraphic height above the Copper Harbor
 Formation, whereas a negative OI relation to stratigraphic height exists. Taken together,
 that HI gradients span 30-100% of the Nonesuch Formation, are steeper than typically
 expected for such sedimentary basins, and that OI increases with proximity to Cu

mineralization but HI reaches minima in and adjacent to zones of Cu mineralization implies both broad scale and localized oxidation of OM in association with ore emplacement;

- Isoprenoid to corresponding *n*-alkane ratios, the distribution of tricyclic terpanes, the presence of 1,2,5-TMN in all samples and the widespread occurrence of $C_{32} \alpha$ methylhopanes in a majority of GC-MS samples are interpreted to result from a single, dominant cyanobacterial OM source. These measures also imply a single paleoenvironment of production and deposition.
- Gas chromatography and GC-MS show three distinct populations of varied degree of OM alteration, which align to some degree with RE HI and OI values. The degree of OM alteration identified by GC and GC-MS does not clearly align with thermal maturity trends or with Cu mineralization two of the altered samples are situated at the thermal maturity low in the center of the sample traverse (and are barren), whereas the other altered sample contains Cu minerals and is near to the thermal maximum in the vicinity of White Mine, MI. Lack of alignment of GC-MS alteration patterns to thermal maturity or to the presence or absence of Cu mineralization, as well as the overall similar style of OM alteration or degradation of those recorded in the altered and partially altered GC-MS samples to those earlier reported for both mineralized and unmineralized White Pine mine samples (Ho *et al.*, 1990; Mauk and Hieshima, 1992; Ho and Mauk, 1996) means that reactions specifically related to Cu deposition were not directly responsible for the three distinct GC-MS alteration patterns;
- Identification of a broad array of aromatic and PAHs throughout the GC-MS samples indicates widespread aromatization of OM, and with significant increases in the degree of

aromaticity relative to saturate compound content in Cu mineralized and organically altered samples;

No simple relation between carbonate stable isotope ratios and depth or mineralization proximity is clear, although broad depletion of ¹³C in carbonates concurrent with OM oxidation is implied by the overlap of strongly negative δ¹³C values with sections of highest OI as well as the broad spread of δ¹³C to more negative values relative to the interpreted primary carbonate composition. This concurs with data from the analogous Kupferschiefer indicating variable degrees of mixing of primary carbonate feedstock C with that derived by oxidation of indigenous OM;

Future studies could build upon this work by close examination of the potential relationship between the liberation of Fe from hematite during Cu mineralization and remineralization of Fe in association with ore mineral deposition. This would be best addressed by petrographic examination of the "bleached sandstone" and comparison with underlying, unbleached Copper Harbor Formation material. The organic geochemical composition of the pyrobitumen cements in the bleached sandstone is another worthwhile object of study, which may be well-addressed in a combined effort with consideration of the chlorite-hematite-organic alteration relations.

Future investigations of this type should ideally analyze only the absolutely freshest, unweathered outcrop samples possible. Outcrop samples must be from unfractured rock when possible, because OM is surficially oxidized, probably both microbiologically and abiogenically. Given the sensitivity of such analyses, core analysis would best be executed in the future on only the most recently collected and best curated drill core material available.

References

- Aeppli, C. Nelson, R.K., Radovic, J.R., Carmichael, C.A., Valentine, D.L., and Reddy, C.M., 2014, Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of *Deepwater Horizon* oil. *Environmental Science and Technology*. 48: 12: 6726-6734.
- Andres, J.E., and, Fallick, R.D., 1986, Stable isotopes in sedimentary geology. *Journal of the Geological Society*. **100**:1375-1391.
- Ashok, R., Saxena, R.K., Pande, H.C., Vartika, R., Mittal, A.K., and Pande, A., 2013, Oil-oil and oil-source correlation by application of compound specific isotope analysis: A frontier tool applied to Kali-Kuthalam area in Cauvery Basin. Society for Petroleum Geology India, 10th Biennial Conference.
- Ballentine, C.J., O'Nions, R.K., and Coleman, M.L., 1996, A magnus opus: helium, neon, and argon isotopes in a North Sea oilfield. *Geochimica et Cosmochimica Acta*, **60**: 831-849.
- Barghoorn, E.S., Meinschein, W.G., Schopf, J.W., 1965, Paleobiology of a Precambrian Shale. *Geology*, **148**: 461-472.
- Behrendt, J.C., Green, A.G., Cannon, W.F., Hutchinson, D.R., Lee, M., Milkereit, B., Agena,
 W., Spencer, C., 1988, Crustal structure of the Midcontinent Rift System: results from the
 GLIMPCE deep seismic reflection profiles. *Geology*, 16:81-85.
- Bickford, M.E., 1988, The formation of continental crust, II: An application to the Proterozoic evolution of southern North America. *GSA Bulletin*, **100**:1375-1391.
- Bechtel, A., Gratzer, R., Puttmann, W., and Oszezepalski, S., 2000, Geochemical characteristics across the oxic-anoxic interface within the Kupferschiefer of the Lubin-Sieroszowice mining district. *Chemical Geology*, **185**:9-31.
- Brooks, J., and Shaw, G., 1972, Geochemistry of sporopollenin. *Chemical Geology*, 10:69-87.
- Brown, A.C., 2006, Genesis of native copper lodes in the Keweenaw district, northern Michigan: A hybrid evolved meteoric and metamorphogenic model. *Economic Geology*, **101**: 1437-1444.
- Brown, A.C., and Chartrand, F.M., 1983, Stratiform copper deposits and interactions with coexisting atmospheres, hydrospheres, biospheres and lithospheres. *Precambrian Research*, **20**:533-542.
- Brown, A.C., 1978, Stratiform copper deposits evidence from their post-sedimentary origin. *Minerals Science Engineering*, **10**:172-181.
- Brown, A.C., 1971, Zoning in the White Pine copper district, Ontonagon County, Michigan. *Economic Geology*, **66**:543-573.
- Burnie, S., Schwarcz, H., and Crocket, J., 1972, A sulfur isotopic study of the White Pine Mine, Michigan. *Economic Geology*, **67**: 895-914.
- Butler, B.S., and Burbank, W.S., 1929, Copper Deposits of Michigan: USGS Professional Paper 144.
- Cannon, W., and Hinze, W., 1992, Speculations on the origin of the North American midcontinent rift. *Tectonophysics*, **213**:49-55.
- Cannon, W., 1992, The midcontinent rift in the Lake Superior region with emphasis on its geodynamic evolution. *Tectonophysics*, **213**:41-48.
- Cannon, W., and Nicholson, W., 1992, Middle Proterozoic midcontinent rift system, *in* U.S.G.S. Professional Paper 1556: Archean and Proterozoic Geology of the Lake Superior Region, U.S.A., 1993, *eds.* Sims, P., and Carter, L., 99 p.

- Cannon, W., Woodruff, L.G., Nicholson, S.W., and Hedgman, C.A., 1996, Bedrock geologic map of the Ashland and the northern part of the Ironwood 30' X 60' quadrangles, Wisconsin and Michigan. U.S.G.S. Miscellaneous Geologic Investigations Map I-2566, scale 1:100,000.
- Chakhmakhchev, A., Suzuki, M., Takayama, K., et al., 1997, Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments. *Organic Geochemistry*, 26(7-8): 483-490.
- Colbert, S.J., 2011, Fluid inclusion study of the Mesoproterozoic Nonesuch Formation biogenic sources and thermal history of oil.
- Craddock, P.R., et al., 2015, Evolution of kerogen and bitumen during thermal maturation via semi-open pyrolysis investigated by infrared spectroscopy. *Energy Fuels*, **29**:4:2197-2210.
- Crick, I., Boreham, C., Cook, A., and Powell, T., 1988, Petroleum geology and geochemistry of Middle Proterozoic McArthur Basin, Northern Australia II: Assessment of source rock potential, *American Association of Petroleum Geologists Bulletin*, **72**:1495-1514.
- Criss, R.E., and Taylor, Jr., H.P., 1986, Meteoric-hydrothermal systems, *in:* J.W. Valley, H.P. Taylor, Jr., and J.R. O'Neil, eds., Stable isotopes in high-temperature geological processes. *Mineralogical Society of America Reviews in Mineralogy*, **16**:373-424.
- Cumming, V.M., Poulton, S.W., Rooney, A.D., and Selby, D., 2013, Anoxia in the terrestrial environment during the late Mesoproterozoic. *Geology*, **41**:583-586.
- Cumming, V.M., 2012, Rhenium-osmium geochronology and geochemistry of ancient lacustrine sedimentary and petroleum systems, Durham theses, Durham University. 192 p.
- Daniels, P., 1982, Upper Precambrian sedimentary rocks: Oronto Group, Michigan-Wisconsin. Geological Society of America, Memoir, **156**:107-133.
- Davis, D., and Paces, J., 1990, Time resolution of geologic events on the Keweenaw Peninsula and implications for development of the midcontinent rift system. *Earth and Planetary Science Letters*, **97**:54-64.
- Davis, D., and Sutcliffe, R.H., 1985, U-Pb ages from the Nipigon plate and northern Lake Superior. *Geologic Society of America Bulletin*, **96**:1572-1579.
- Disnar, J.R., and Heroux, Y., 1995, Degradation et lessivage des hydrocarbures de la formation ordovicienne de Thumb Mountain encaissant la gite Zn-Pb de Polaris (Territoires du Nord-Ouest, Canada). Canadian Journal of Earth Sciences, **32**:1017-1034.
- Disnar, J.R., Surau, J.F., 1990, Organic matter in ore genesis progress and perspectives. *Organic Geochemistry*, **16**: 577-599.
- Dutkiewicz, A., Volk, H., George, S.C., Ridley, J., and Buick, R., 2006, Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. *Geology*, **34**: 673-678.
- Eglinton, T.I., Philp, R.P., and Rowland, S.J., 1988, Flash pyrolysis of artifically matured kerogens from the Kimmeridge clay, U.K. *Organic Geochemistry*, **12**:33-41.
- Elmore, R.D., Milavec, G., Imbus, S., and Engel, M., 1989, The Precambrian Nonesuch Formation of the North American midcontinent rift, sedimentology, and organic geochemical aspects of lacustrine deposition. *Precambrian Research*, **43**:191-213.
- Elmore, R.D., 1984, The Copper Harbor Conglomerate: a late Precambrian fining-upward alluvial fan sequence in northern Michigan. GSA Bulletin, **95**:610-617.

- Elmore, R.D., and van der Voo, R., 1982, Origin of hematite and its associated remanence in the Copper Harbor Conglomerate (Keweenawan), Upper Michigan. *Journal of Geophysical Research*, **87**:10918-10928.
- Engel, M.H., and Macko, S.A., 1993, Organic Geochemistry, Springer, 832 p.
- Ensign, C.O., Jr., and 8 others, 1968, Copper deposits in the Nonesuch Shale, White Pine, Michigan, *in* Ridge, J.D., ed., Ore Deposits of the United States 1933-1967, **1**: New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, p. 459-488.
- Erwin, D.H., 2015, Early metazoan life: divergence, environment and ecology. *Philosophical Transactions of the Royal Society*, **370**:1684.
- Essene, E.J., and Peacor, D.R., 1995, Clay mineral thermometry A critical perspective. *Clays* and *Clay Minerals*, **43**: 5:540-553.
- Fairmaid, A.M., Kendrick, M.A., Phillips, D., Fu, B., 2011, The origin and evolution of mineralizing fluids in a sediment-hosted orogenic gold deposit, Ballarat East, Southeastern Australia. *Economic Geology*, **106**: 653-666.
- Fang, C., Wei, W., Liu, D., and Liu, J., 2016, Evolution characteristics and applications of diamondoids in coal measures. *Journal of Natural Gas Geoscience*, **1**:1: 93-99.
- Fourgani, Aiyda, 2012, Organic geochemistry of Mesoproterozoic Nonesuch Formation at White Pine, Michigan, USA. Colorado State University MS thesis, 160 p.
- Fowler, M., Obermajer, M., and K.R. Stewart, 2014, Rock-Eval/TOC data for selected samples from twelve wells in the Jeanne d'Arc Basin, offshore Eastern Canada: Geological Survey of Canada Open File 7648.
- George, S.C., and others, 2008, Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years. *Geochimica et Cosmochimica Acta*, **72**: 844-870.
- Giordano, T.H., et al. (eds.), 2000, Ore Genesis and Exploration, <u>Reviews in Economic Geology</u>. Kluwer, 895 p.
- Gize, A.P., 2000, The organic geochemistry of gold, platinum, uranium and mercury deposits, *in* Giordano, T.H., et al. (eds.), Reviews in Economic Geology: Ore Genesis and Exploration: The Roles of Organic Matter, 217-250.
- Gordadze, G.N., and Giruts, M.V., 2008, Synthesis of adamantane and diamantane hydrocarbons by high-temperature cracking of higher *n*-alkanes. *Petroleum Chemistry*, **48**:6: 414.
- Grafka, O., Marynowski, L., and Simoneit, B., 2015, Phenyl derivatives of polycyclic aromatic compounds as indicators of hydrothermal activity in the Silurian black siliceous shales of the Bardzkie Mountains, Poland. *International Journal of Coal Geology*: **139**:1: 142-151.
- Greenwood, P.F., Brocks, J.J., Grice, K., Schwark, L., Jaraula, C.M.B., Dick, J.M., and Evans, K.A., 2013, Organic geochemistry and mineralogy I: Characterization of organic matter associated with metal deposits. *Ore Geology Reviews*, **50**:1-27.
- Hayes, J., Kaplan, I., and Wedeking, K., 1983, Precambrian organic geochemistry, preservation of the record, in: Earth's Earliest Biosphere (J. Schopf, ed.), Princeton University Press, Princeton, New Jersey, p. 93-134.
- Hegarty, K.A., Foland, S.S., Cook, A.C., Green, P.F., and Doody, I.R., 2007, Direct measurement of timing: Underpinning a reliable petroleum system model for the Midcontinent rift system, *AAPG Bulletin*, **91**:7:959-979.

- Hieshima, G., and Pratt, L., 1991, Sulfur/carbon ratios and extractable organic matter of the Middle Proterozoic Nonesuch Formation, North American midcontinent rift. *Precambrian Research*, 54: 65-79.
- Ho, E. and Mauk, J., 1996, Relationship between organic matter and copper mineralization in the Proterozoic Nonesuch Formation, northern Michigan. *Ore Geology Reviews*, **11**:71-88.
- Hoering, T.C., 1978, Molecular fossils from the Precambrian Nonesuch Shale, *in* Ponnamperuma, C. (ed.) <u>Comparative Planetology</u>. Academic Press, New York, p. 243-255.
- Hoering, T.C., 1981, Monomethyl acyclic hydrocarbons in petroleum and rock extracts. *Carnegie Institute of Washington, Yearbook*, **80**:389-393.
- Hulen, J.B., Collister, J.W., 1999, The oil-bearing, carlin-type gold deposits of Yankee basin, Alligator Ridge district, Nevada. *Economic Geology Bulletin*, **94**: 1029-1049.
- Hunt, J.M., 1995, Petroleum Geochemistry and Geology, 2nd ed., 743 p.
- Hutchinson, D., White, R., Cannon, W., and Schulz, J., 1990, Keweenaw hot spot: Geophysical evidence for a 1.1 Ga mantle plume beneath the midcontinent rift system. Journal of Geophysical Research, **95**:10869–10884.
- Ilchik, R.P., Brimhall, G.H. Jr., and Schull, H.W., 1986, Hydrothermal maturation of indigenous organic matter at the Alligator Ridge Gold Deposits, Nevada. *Economic Geology*, 81:113-130.
- Imbus, S.W., Engel, M., Elmore, R., and Zumberge, J., 1988, The origin, distribution and hydrocarbon generation potential of the organic-rich facies in the Nonesuch Formation, Central North American Rift system: A regional study. *Organic Geochemistry*, 13:207-219.
- Imbus, S.W., 1990, Organic petrologic and geochemical studies on the Oronto group Nonesuch Formation (Middle Proterozoic) of the Midcontinent Rift System, northern Wisconsin and Upper Peninsula Michigan. University of Oklahoma PhD. Thesis, Norman, OK.
- Imbus, S.W., Macko, S.A., Elmore, R.D., and Engel, M.H., 1992, Stable isotope (C, S, N) and molecular studies on the Precambrian Nonesuch Shale (Wisconsin-Michigan, USA): Evidence for differential preservation rates, depositional environment and hydrothermal influence. *Chemical Geology*, **101**:255-281.
- Jiang, C., et al., 2016, Hydrocarbon evaporative loss from shale core samples as revealed by Rock-Eval and thermal desorption-gas chromatography analysis: Geochemical and geological implications. *Marine and Petroleum Geology*, **70**:9:294-303.
- Jin, H., and Sonnenberg, S.A., 2012, Source rock potential of the Bakken Shales in the Williston Basin, North Dakota and Montana. Search and Discovery Article #20156.
- Johnson, R.D., 2014, Technical Report on the White Pine copper property, White Pine, Michigan, USA: NI-43-101, Prepared for Highland Copper Company Inc., 76 p.
- Jowett, E.C., and Rydzewski, A., and Jowett, R.J., 1987, THe Kupferschiefer Cu-Ag ore deposits in Poland: a re-appraisal of the evidence of their origin and presentation of a new genetic model. *Canadian Journal of Earth Science*, **24**:2016-2037.
- Kelley, W.C., and Nishioka, G.K., 1985, Precambrian oil inclusions in late veins and the role of hydrocarbons in copper mineralization at White Pine, Michigan. *Geology*, 13:334-337.
- Killops, S., and Killops, V., 2005, Introduction to Organic Chemistry, Blackwell, 376 p.
- King, N., 2009, Using copper mineralization to evaluate small-scale controls on mudstone

permeability in the Nonesuch Formation. Colorado State University M.S. thesis, Fort Collins, CO.

- Kotarba, M.J., Peryt, T.M., Kosakowski, P., and Wieclaw, D., 2006, Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in southwest Poland. *Marine and Petroleum Geology*, 23:371-386.
- Kreulen, R., 1988, Stable isotopes in sedimentary geology. Sedimentary Geology, 54:4:350-351.
- Lavric, J.V., Spangenberg, J.E., and Rezun, B., 2003, Organic geochemical records of hydrothermal alteration at Idrija mercury deposit, Slovenia. *Geologija*, **46**:1:129-134.
- Li, G., Mauk, J.L., and Peacor, D.R., 1995, Preservation of clay minerals in the Precambrian (1.1 Ga) Nonesuch Formation in the vicinity of the White Pine copper mine, Michigan. *Clays and Clay Minerals*, 43: 2: 361-376.
- Li, M., Wang, T., Liu, J., Gao, L., 2008, Total alkyldibenzothiophenes content tracing the filling pathway of condensate reservoir in the Fushan Depression, South China Sea. *Science in China* D:Earth Scienes, 51:138-145.
- Li, M., Wang, T., Bong, Z., Zhang, W., Sadik, A., and Hongbo, L., 2013, Ternary diagrams of fluorenes, dibenzothiophenes and dibenzofurans: Indicating depositional environment of crude oil source rocks. *Energy Exploration and Exploitation*, 31:4:569-588.
- Li, S., Amrani, A., Pang, X., Haijun, Y., Said-Ahmad, W., Zhang, B., and Pang, Q., 2015, Quantitative source assessment of deep oils in the Tazhong Basin. *Organic Geochemistry*, 78:1-22.
- Liang, F., Lu, M., Keener, T., Liu, Z., and Khang, S., 2005, The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator. *Journal of Environmental Monitoring*, **7**: 983-988.
- Lillis, P.G., Dolan, M.P., Warden, A., and King, D.J., 1998, Organic geochemistry of oils from Oil Spring and Florence Oil Field near Cañon City, Colorado. USGS Open File Report 98-617.
- Logan, G.A., Hinman, M.C., Walter, M.R., Summon, R.E., 2001, Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments, N. Territory, Australia. *Geochimica et Cosmochimica Acta*, **65**: 2317-2336.
- Longstaffe, F.J., and Ayalon, A., 1988, Oxygen isotope studies of diagenesis and pore-water evolution in the western Canada sedimentary basin: Evidence from the Upper Cretaceous basal Belly River Sandstone, Alberta. *SEPM Journal of Sedimentary Research*, **58**:3:489-505.
- Marynowski, L., and Simoneit, B.R.T., 2009, Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. *PALAIOS*, **24**:11: 785-798.
- Marynowski, L., and Wyszomirski, P., 2007, Organic geochemical evidences of early diagenetic oxidation of terrestrial organic matter during the Triassic arid and semi arid climatic conditions. *Applied Geochemistry*, **23**:9:2612-2618.
- Mastalerz, M., Hampton, L., and Drobniak, A., 2016, Evaluating thermal maturity using transmitted light techniques: color changes in structureless organic matter and palynomorphs, Indiana Geological Survey Ocassional Paper 73, 41 p.
- Mauk, J.L., and Burruss, R.C., 2002, Water washing of Proterozoic oil in the Midcontinent Rift System. *AAPG Bulletin*, **86**:6:1113-1127.

- Mauk, J.L., and Hieshima, G.B., 1992, Organic matter and copper mineralization at White Pine, Michigan, U.S.A. *Chemical Geology*, **99**:189-211.
- Mauk, J.L., Kelly, W.C., van der Pluijm, B.A., and Seasor, R.W., 1993, Relations between deformation and sediment-hosted copper mineralization: Evidence from the White Pine portion of the midcontinent rift system. *Geology*, **20**:427-430.
- Mauk, J.L., Seasor, R.W., Kelly, W.C., and van der Pluijm, B.A., 1989, The relationship between structure and second-stage copper mineralization in the White Pine district of the Midcontinent Rift, northern Michigan. *GSA Abstracts with Programs*, **21**: A130.
- McCarthy, K., et al., 2011, Basic petroleum geochemistry for source rock evaluation. *Oilfield Review*, **23**:2:32-43.
- McKirdy, D.M., 1976, Biochemical markers in stromatolites, *in*: Stromatolites, ed. M.R. Walter, p. 163-191. Amsterdam: Elsevier.
- McKirdy D.M., and Hahn, J.H., 1982, The composition of kerogen and hydrocarbons in Precambrian rocks, *in*: <u>Mineral Deposits and Evolution of the Biosphere</u>, H.D. Holland and M. Schidlowski, eds. Berlin: Springer-Verlag. 420 p.
- McKirdy, D.M., and Kanstler, A.J., 1980, Oil geochemistry and potential source rocks of the Officer Basin, South Australia. *Journal of the Australian Petroleum Exploration Association*, **20**:1:68-86.
- McKirdy, D.M., McHugh, D.J., and Tardif, J.W., 1980, Comparative analysis of stromatolitic and other microbial kerogens by pyrolysis-hydrogenation-gas chromatography, *in:* Biogeochemistry of Ancient and Modern Environments, eds. P.A. Trudinger, M.R. Walter, and B.J. Ralph, p 187-200. Berlin: Springer-Verlag.
- Milavec, G.J., 1986, The Nonesuch Formation: Precambrian sedimentation in an intracratonic rift. University of Oklahoma MS thesis, 142 p.
- Miller, J., and Nicholson, S., 2013, Geology and mineral deposits of the 1.1 Ga midcontinent rift in the Lake Superior region - an overview: http://www.d.umn.edu/~mille066/Teaching/5100/Articles/Miller%20and%20Nicholson% 202013.pdf.
- Moore, L.R., Moore, J.R.M., and Spinner E., 1969, A geomicrobiological study of the Precambrian Nonesuch Shale. *Yorkshire Geologic Society Proceedings*, **37**: 351-394.
- Nishio, K., 1919, Native copper and silver in the Nonesuch Formation, Michigan. *Economic Geology*, **14**: 324-334.
- Nishioka, G.K., 1983, Origin of late veins in the White Pine copper deposits, northern Michigan: M.S. Thesis. University of Michigan, Ann Arbor, Michigan, 35 p.
- Ojakangas, R., Morey, G., and Green, J., 2001, The Mesoproterozoic midcontinent rift system, Lake Superior Region, USA. *Sedimentary Geology*, **142**:421-442.
- Ourisson, G., and Rohmer, M., 1992, Hopanoids 2, Biohopanoids: A novel class of bacterial lipids. *Accounts of Chemical Research*, **25**: 403-408.
- Paces, J., and Miller, Jr., J., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagnetic processes associated with the 1.1 Ga Midcontinent Rift System. *Journal of Geophysical Research*, 98:13997-14013.
- Palacas, J.G., 1997, Source-Rock Potential of Precambrian Rocks in Selected Basins of the United States. USGS Bulletin 2146-J.

- Palinkas, L.A., Strmic, S., and Herlec, U., 2001: The ore-forming fluids in the Idria mercury mine, Slovenia. In: A. Piestrzynski et al. (eds.), Mineral deposits at the beginning of the 21st century Swets and Zeitlinger, p. 321-324.
- Peat, C.J., Muir, M.D., Plumb, K.A., McKirdy, D.M., and Norvick, M.S., 1978, Proterozoic microfossils from the Roper Group, Northern Territory, Australia. *Journal of Australian Geology and Geophysics*, 3:1-17.
- Peters, K.E., and Cassa, M.R., 1994, Applied source rock geochemistry, *in* Magoon, L.B., and Dow, W.G. (eds.) <u>The Petroleum System From Source to Trap</u>. *AAPG Memoir* **60**:432-436.
- Potter, E.P., Maynard, J.B., and Depetris, P.J., 2005, Mud and Mudstones. New York: Springer.
- Powell, T.G., Cook, P.J., and McKirdy, D.M., 1975, Organic geochemistry of phosphorites: relevance to petroleum genesis. *AAPG Bulletin*, **59**:618-632.
- Pratt, L., Summons, R., and Hieshima, G., 1991, Sterane and triterpane biomarkers in the Precambrian Nonesuch Formation, North American midcontinent rift. *Geochimica et Cosmochimica Acta*, **55**:911-916.
- Price, K.L., Huntoon, J.E., and McDowell, S.D., 1996, Thermal history of the 1.1-Ga Nonesuch Formation, North American mid-continent rift, White Pine, Michigan: AAPG Bulletin, 80:1:1-15.
- Price, K.L., and McDowell, S.D., 1993, Illite/smectite geothermometry of the Proterozoic Oronto Group, midcontinent rift system: Clays and Clay Minerals, **41**:2:134-147.
- Püttmann, W., Merz, C., and Speczik, S., 1989, The secondary oxidation of organic material and its influence on Kupferschiefer mineralization of Southwest Poland. *Applied Geochemistry*, 4:151-161.
- Radke, M., Willsch, H., Leythaeuser, D., and Teichmüller, M., 1982, Aromatic components of coal: relation of distribution pattern to rank. *Geochimica Cosmochimica Acta*, 46: 1831-1848.
- Radke, M., Leythaeuser, and Teichmüller, M., 1984, Relationships between rank and composition from coals of different origins. *Organic Geochemistry*, **10**:51-63.
- Radke, M., Welte, D.H., and Wilsch, H., 1986, Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type. *Organic Geochemistry*, **10**:51-63.
- Radke, M., 1987, Organic geochemistry of aromatic hydrocarbons. *Advances in Petroleum Geochemistry*, **2**: 141-207.
- Ré-Poppi, N., and Santiago-Silva, M.R., 2002, Identification of polycyclic aromatic hydrocarbons and methoxylated phenols in wood smoke emitted during production of charcoal. *Chromatographia*, **55**: 475-481.
- Reimer, T., Barghoorn, E., and Margulis, L., 1979, Primary production in an Early Archean microbial ecosystem. *Precambrian Research*, **9**:93-104.
- Rieger, A., Schwark, L., Cisternas, M.E., Miller, H., 2008, Genesis and evolution of bitumen in Lower Cretaceous lavas and implications is for strata-bound copper deposits, north Chile. *Econcomic Geology*, **103**:387-404.
- Robert, P., 1980, The optical evolution of kerogen and geothermal histories applied to oil and gas exploration: *in* Durand, B., et al., Kerogen: Insoluble organic matter from sedimentary rocks: Paris, Edition Technip, p. 385-414.
- Rollinson, H. R., 1994, <u>Using Geochemical Data</u>. Essex, England: Longman Scientific & Technical, 323 p.

Rospondek, M.F., Marynowski, L., and Gora, M., 2007, Novel arylated polyaromatic thiophenes: Phenylnaphtho[*b*]thiophenes and naphthylbenzo[*b*]thiophenes as markers of organic matter diagenesis buffered solutions. *Organic Geochemistry*, **38**: 1729-1756.

Rose, A.W., 1976, The effect of cuprous chloride complexes on the origin of redbed copper and related deposits. *Economic Geology*: **71**: 1036-1048.

- Ruiz, J., Jones, L.M., and Kelly, W.C., 1984, Rubidium-strontium dating of ore deposits hosted by Rb-rich rocks, using calcite and other common Sr-bearing minerals. *Geology*, 12:159-262.
- Saxby, J.D., 1976, The significance of organic matter in ore genesis, *in:* <u>Handbook of</u> <u>Stratabound and Stratiform Ore Deposits</u>, ed. K.H. Wolf, p. 111-133. Amsterdam: Elsevier.
- Schidlowski, M., 1987, Application of stable carbon isotopes to early biochemical evolution of Earth. *Annual Review of Earth Sciences*, **15**:47-72.
- Schmidt, J.M., and Rogers, R.K., 2007, Metallogeny of the Nikolai large igneous province in southern Alaska and its influence on the mineral potential of the Talkeetna Mountains. *Geological Society of America Special Paper 431*:623-657.
- Seasor, R.W., and Brown, A.C., 1989, Syngenetic and diagenetic concepts at the White Pine copper deposit, Michigan. *Geologic Association of Canada Special Paper*, **36**:257-268.
- Sephton, M.A., Looy, C., Veefkind, R., Visscher, H., Brinkuis, H., and de Leeuw, J., 1999, Cyclic diaryl ethers in a Late Permian sediment, *Organic Geochemistry*, 30:4:267-273.
- Seifert, W.K., and Moldowan, J.M., 1986, Use of biological markers in petroleum exploration. In: Methods in Geochemistry and Geophysics, **24**:261-290.
- Sharpe, Z., 2007, <u>Principles Of Stable Isotope Geochemistry</u>. Upper Saddle River, N.J.: Pearson/Prentice Hall, 323 p.
- Shock, E.L., Canovas, P., Yang, Z., Boyer, G., Johnson, K., Robinson, K., Fecteau, K., Windman, T., Cox, A., 2013, Thermodynamics of organic transformations in hydrothermal fluids. Reviews in Mineralogy and Geochemistry, **76**: 311-350.
- Simoneit, B.R.T., and Fetzer, J.C., 1995, High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums indicators of high temperatures and water washing (abs.). *AAPG Bulletin*, **79**:925.
- Sirois, R., 2015, NI-43-101 Technical report on the Copperwood copper project, Michigan, USA, Prepared for Highland Copper Company, Inc., 154 p.
- Snowdon, L., 1995, Rock-Eval T_{max} suppression: Documentation and amelioration. *AAPG Bulletin*, **79**:1337-1348.
- Spangenberg, J.E., Macko, S.A., 1998, Organic geochemistry of the San Vicente zinc-lead district, eastern Pucara Basin, Peru. *Chemical Geology*, **146**:1-43.
- Stojanovic, K., Jovancicevic, B., Vitorovic, D., Pevneva, G., Golovko, J., and Golovko, A.,
 2007, New maturation parameters based on naphthalene and phenanthrene isomerization and dealkylation processes aimed at improved classification of crude oils (Southeastern Pannonian Basin, Serbia). *Geochemistry International*, 45:8:781-797.
- Strother, P.K., and Wellman, C.H., 2016, Paleoecology of a billion-year-old non-marine cyanobacterium from the Torridon Group and Nonesuch Formation. *Paleontology*, 59:1:89-108.
- Speczik, S., and Puttman, W., 1987, Origin of Kupferschiefer mineralization as suggested by coal petrology and organic geochemical studies. *Acta Geologica Polonica*, **37**:167-187.

- Spotl, C., and Vennemann, T.W., 2003, Continuous-flow IRMS analysis of carbonate minerals. *Rapid Communications in Mass Spectrometry*, **17**:1004-1006.
- Summons, R.E., Powell, T.G., Boreham, C.J., 1988, Petroleum geology and geochemistry of the middle Proterozoic Mcarthur Basin, N. Australia: composition of extractable hydrocarbons. *Geochimica et Cosmochimica Acta*, **52**:1747-1763.
- Summons, R.E., and Walter, M.R., 1990, Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. *American Journal of Science*, **290-A**:212-244.
- Sun, Y., 1998, Influences of secondary oxidation and sulfide formation on several maturity parameters in the Kupferschiefer. *Organic Geochemistry*, **29**:5-7:1419-1429.
- Sun, Y., and Püttman, W., 2001, Oxidation of organic matter in the transition zone of the Zechstein Kupferschiefer from the Sangerhausen Basin, Germany. *Energy and Fuels*, 15:817-829.
- Suszek, T., 1997, Petrography and sedimentation of the Middle Proterozoic (Keweenawan) Nonesuch Formation, western Lake Superior region, midcontinent rift system: Geological Society of America, Special Paper, 312:195-210.
- Sutton, S., Ridley, J., Fourgani, A., and King, N., 2013, Relationship of organic matter oxidation, Cu-mineralization and trace element geochemistry, Nonesuch Shale, Michigan, U.S.A. *Mineralogia Special Paper* **41**.
- Sykes, R., and Snowdon, L., 2002, Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis. *Organic Geochemistry*, **33**:12:1441-1455.
- Taylor, G.H. et al., eds, 1998, Organic Petrology, Berlin, 704 p.
- Teichmüller, M., 1982, Origin of the petrographic constituents of coal, *in* <u>Stach's Textbook of</u> <u>Coal Petrology</u>. (Stach et al., eds.), Gebruder-Bortraeger, Berlin, p.219-294.
- Tissot, B.P., and Welte, D.H., 1984, <u>Petroleum Formation and Occurrence</u>. Springer: New York, 699 p.
- U.S. Environmental Protection Agency, 1992, Mine Site Visit: Copper Range Company White Pine Mine, from:

http://www3.epa.gov/epawaste/nonhaz/industrial/special/mining/techdocs/copper/copper 4.pdf.

- Uchytil, S.J., Jarvie, D.M., and Steffenson, C.K., 1997, Hydrocarbon prospectiveness of the Middle Proterozoic Nonesuch Formation in northern Wisconsin and Michigan, Wisconsin Geologic and Natural History Survey, 13 p.
- Van Schmus, W., 1992, Tectonic setting of the midcontinent rift system. *Tectonophysics*, **213**:1-15.
- Vaughn, D.J., Sweeney, M., Diedel, G.F., and Haranczyk, C., 1989, The Kupferschiefer: An overview with an appraisal of different types of mineralization. *Economic Geology*, **84**: 1003-1027.
- Waples, D.W., and Curiale, J.A., 1999, Oil-oil and oil-source rock correlations, *in* Beaumount, E.A., and N.H. Foster, eds., *Exploring for oil and gas traps*, American Association of Petroleum Geologists, Tulsa, OK, p. 8-1 to 8-71.
- White, W.S., and Wright, J.C., 1966, Sulfide mineral zoning in the basal Nonesuch Shale, northern Michigan. *Economic Geology*, **61**:1171-1190.
- White, W.S., and Wright, J.C., 1955, The White Pine copper deposit, Ontonagon County, Michigan. *Economic Geology*, **49**:675-716.

- White, W.S., 1971, A paleohydrologic model for the mineralization of the White Pine copper deposit: northern Michigan. *Economic Geology*, **66**:1-13.
- White, W.S., 1960, The White Pine copper deposit. *Economic Geology*, **55**:402-410.
- Yawanarajah, S., and Kruge, M., 1994, Lacustrine shales and oil shales from Stellarton Basin, Nova Scotia, Canada: Organofacies variations and use of polyaromatic hydrocarbons as maturity indicators. *Organic Geochemistry*, **21**: 153-170.

Appendix A: Sample Descriptions, Photomicrographs and Hand Sample Images White Pine Basin Core WPB1 WPB1-5, 100.1 m above base

Finely interlaminated OM-rich layers, shale, wavy and crudely interlaminated with m.g. siltstone. Individual laminae are very thin and largely continuous across core, though discontinuous laminae are present (40%), lenticular. Lamina-sets of dominantly (over 75%) darker material vs dominantly lighter material are 5-10 mm thick - varve-like geometry. Darker, gray-black, thin (under.5 mm thick) wavier (concave up and down in small amplitude, 5 mm alternations) laminations of clay-size fraction OM particles present. Calcareous cement in light grayish white siltstone laminae - calcareous cemented light gray silty laminae encase dark gray finer silty lenticular lams in places, with sharp, irregular contact. Wispy to wavy discontinuous OM-rich laminae may be ripples; 35% shale, 65% silt. No ore present. Organic matter is amorphous and presents as orange (TAI = 2.6) groundmass associated with lowest-energy sectors of normal graded bedding, commonly associated with pyrite concentrations. Pyrite is sub- to euhedral and commonly about 5 microns but agglomerations approaching maximum dimension of 50 microns are also present. Two anastomosing whitish gray calcareous cemented fine silty laminae near the top of the sample sampled for stable isotopes. This is the crossstratified gray siltstone of Figure 8. Darker laminae are composed of clay, mica, pyrite and OM. The opaque appearance of the darker layers is due in part to the presence of small spherical framboids of pyrite that are 10-20 microns diameter and concentrated in OM rich laminations. Light colored laminae are composed primarily of quartz silt.

Figure A1: Transmitted light view of orange AOM with pyrite subhedra in association. Field of view is 350 microns wide. Sample WPB1-5.

Figure A2: Halved core sample of laminated shaly siltstone with mm scale at bottom. Light colored laminae are composed primarily of quartz silt. Darker laminae are composed of clay, mica, pyrite and OM. The opaque appearance of the darker layers is due in part to the presence of small spherical framboids of pyrite that are 10-20 microns diameter and concentrated in OM rich laminations. Sample WPB1-5.

WPB1-7, 49.9 m above base

Massive to crudely thinly laminated dark greenish-gray micaceous siltstone, coarse-grained with rare dark gray to gray-brown shale laminae. Sample is 85% silt/sand, 15% shale. Rare distinct bedding is apparent as 2 mm-wide darker, finer-grained wispy parallel to discordant, sub-parallel laminae, potentially representing penecontemporaneous deformation or intraformational rip-ups. Blotchy calcareous cemented, and with significant vein calcite in fracture at 45 degrees to bedding in hand sample. No Cu minerals or OM present in thin section. Hematite-coated quartz grains, subangular, present (about 1%). Brown blotchy exterior on cut surfaces of core, possibly surficial oxidation? This is the interbedded siltstone, gray to red-brown, of Figure 7.

Figure A3: Wet sediment deformed greenish gray micaceous siltstone, mm scale at R. Sample WPB1-7.

WPB1-6, 13.7 m above base

Homogenous pyritic silty mudstone, massive to very thinly laminated with most laminae lenticular and under 2mm wide. Multiple 1 cm thick concentrations of very thinly laminated grayish-black shale alternate with coarse gray siltstone. Black laminae are more continuous and parallel - despite the discontinuous presentation as in photo. Also present are thicker, finegrained brownish gray laminae (to 2 cm); these are more laterally continuous and showing both
irregular anastomosing and near-parallel forms. Pinkish white to transparent calcite/hematite filled fractures crosscut and offset bedding at 60° , sampled for stable isotopes. Isolated silt-rich pinkish-white calcite blebs (under 1 mm diameter) and some rare thin (sub 1 mm thick), laterally discontinuous subhorizontal calcite filled fractures. Discordant interlaminae present on bedparallel end of sample, darker gray shale fragments to 3 mm, potentially rip-up clasts. Content: 85% silt, 15% shale overall. Thin section is massive, without OM-rich laminae; FOM present to 130 x 10 microns, black (TAI = 3.9), opaque, isotropic and showing higher reflectivity than AOM of WPB1-5. No Cu minerals in thin section (pyritic only), but assayed 0.01 wt. % Cu. This is the Thinly Bed of WP nomenclature (Figure 6).

Figure A4: Hematitic calcite vein truncating/offsetting thick lamination, mm scale at bottom. Sample WPB1-6.

Figure A5: Filamentous OM in transmitted PPL, showing as opaque black wavy laminar material. Sample WPB1-6.

WPB1-4, 2.7 m above base

Light reddish-gray, blotchy coloration, coarse grained, massive siltstone, well-sorted and with very rare, faintly visible thin laminae of darker and finer-grained silt particles. Lamination is not ubiquitous and not observed in lighter areas, which appear massive. Calcite cement throughout. Pyritic with significant hematite (1% overall) and no Cu minerals aside from a lone very fine subhedral chalcopyrite grain; hematite is present both as quartz coatings (translucent) and as nearly opaque black to red, marginally translucent agglomerations. Sample is 100% siltstone. No OM apparent in thin section. Dark Gray Massive of Figure 6.

Figure A6: Lone chalcopyrite grain in sample WPB1-4, PPL REFL.

<u>*Core 517*</u> **517-1**, 206.7 m above base

Thin to very thin laminae in laminasets of OM-rich black, clay-size fraction layers alternating with grayish-white coarse siltstone layers. Grayish-black shale, variably continuous to sub-2 mm wide, in laminasets to 5 mm thick, wavy and parallel to wavy discontinuous laminated, between light grayish white coarse grained siltstone. Variable calcite content, with some lighter-color laminae very calcite-rich but others less so; calcite cement is not disseminated throughout. Convex down patterning in bases of light laminae, and some anastomosing/possibly folded dark, OM-rich black lams. No Cu minerals, and 49% silt, 51% shale. Amorphous OM presents as orange brown (TAI = 2.7) wavy lamellar masses of discontinuous OM-rich laminae, which are similar in appearance to lamalginite (some of this material is significantly darker, with TAI = 3.7 dark brown in places). The wavy discontinuous nature of the OM-rich laminations and their

contortion about the larger-grained siltstone laminations at least in places evidence compactional deformation, as load structures. Hand sample shows thickly striped appearance (approximately 5 mm thick alternate light whitish gray banding = very thin lamina composite bedsets). Stable isotope sampled from 15% CaCO₃ cement in lighter gray laminae. Gray laminated siltstone of Figure 8, with pseudo-boudins of gray silt nearly encased in gray-black OM-rich laminae. Thin section shows FOM (opaque and black, TAI = 3.9) in close association with AOM (TAI = 2.6, orange) and v.f.g. phyllosilicate agglomerations, all of which in places show contorted bedding, but are elsewhere concordant with lamination.

Figure A7: Hand sample showing laminasets with lode structures; mm scale at L. Sample 517-1.

Figure A8: PPL lode structure - clay-rich lamination distorted by greater competence of silty quartz-rich laminae during compaction. The AOM is intimately associated with sub 2 micron clay mineral accumulations and pyrite. Sample 517-1.

517-3, 22.1 m above base

Black laminated siltstone and shale of WP nomenclature. Very very thin, alternate, gradationally-bounded, laminae of dark gray (f.g. silt/shale) to gray c.g. siltstone, with lighter layers commonly calcite-cemented. Laminae are wavy to gently undulating, often lenticular and less than 1 mm wide; 90% f.g. silt/shale, 10% m.g. silt. No Cu minerals in thin section. Bronze-gray sub 1 mm wide bedding aligned lenticular agglomerations of phyllosilicates apparent in hand sample. Translucent isotropic lamellar reddish brown AOM (TAI = 2.9) present as dispersed matrix in irregular mica-rich laminations with associated v.f.g. pyrite subhedra. No lamellar black opaque OM present.

Figure A9: Thin section showing AOM and phyllosilicate-rich discontinuous laminations, with associated v.f.g. pyrite subhedra. Sample 517-3.

517-2.5, 19.5 m above base

Dark gray laminated siltstone of Figure 7. Very thin, continuous and parallel laminae in alternate dark gray fine grained siltstone/shale and lighter gray coarse-grained siltstone, both micaceous. Some laminae undulate, with darker gray staying similar thickness and lighter gray changing thickness - ripple laminations. Calcite cements lighter colored layers. Subhorizontal fracture-fill calcite present at base of core sample. Shows 50% f.g. silt/shale, 50% m.g and c.g. silt with 0% Cu assay. No Cu minerals; widespread pyrite, some framboidal. Widespread allogenic chlorite coating quartz grains. Significant amounts (but under 1% total area) of translucent isotropic amorphous orange brown OM (TAI = 2.8) present in lenticular, discontinuous slightly wavy clay-rich shale laminae.

Figure A10: Orange brown AOM in PPL, concentrated in shale-size clay-rich discontinuous wavy laminations. Field of view is 0.6 mm wide, sample 517-2.5.

517-4, 11.1 m above base

Widely Bed of Figure 6. Massive gray-green siltstone and lighter gray siltstone, with rare thin discontinuous laminae, trough-shaped. Micaceous and bearing uneven subhorizontal (concave up/down on a 4 cm wavelength, 5 mm amplitude) calcite-filled fractures. Some (under 25% total) calcite cemented zones. One lone very thin, planar and parallel black opaque OM-rich shale layer, with irregularities, likely either rip-up clasts or folded laminae. Contains 90% m.g. silt, 10% shale and 0% Cu by assay. No Cu minerals. Significant hematite coating grains present, anisotropic. Filament of 100 x 10 micron opaque black (3.9 TAI) OM present, slightly undulating and proximal to pyrite agglomeration of similar dimension (130 x 30 microns).

Figure A11: Massive gray-green siltstone with rare continuous gradational-bounded OM-rich shale laminations, dark gray; 517-4.

517-1.5, 9.8 m above base

Brown Massive of Figure 6. Dark grayish-green massively bedded coarse-grained micaceous siltstone. No calcite matrix cement. Bedding sub-parallel fracture with calcite cement and brecciated siltstone suspended in neomineral cement. 90% silt/Ss, 10% shale. Assayed 0% Cu, no Cu mins in thin section; pyrite is common as single subhedral grains. Massive texture, with common allogenic hematite and chlorite coated quartz grains, subangular. In thin section, one single opaque black (TAI = 3.9) wisp of FOM, with associated concentration of clay-size fraction phyllosilicates and possibly reddish-brown AOM (TAI = 3.0), is distinct from adjacent pyrite. The hand sample contains a 2 mm wide wisp of black probable opaque FOM agglomerated concordant to massive bedding. Significant hematite present (0.5% total grains).

Figure A12: Carbonaceous wisp at 32x, FOM rip-up suggestive of possible algal mat origin (mm scale at bottom); 517-1.5.

517-2, 4.8 m above base

Upper Sandstone of Figure 6. Massive light gray siltstone (85%) with 1 mm thick continuous and discontinuous (lenticular) whitish laminae (even, parallel; no grain size change visible). Lighter layers are strongly calcite-cemented and show pinkish tint (hematite or kspar?). Significant oxidized iron stain on exterior of core - oxidized pyrite? 80% f.g. silt, 30% c.g. silt. Whitest lams have calcite cement (up to 40% locally) and few to no phyllosilicates. Collected 23 mg stable isotope sample from horizontal whitish gray to pinkish gray laminations, discontinuous. Sample comes from the middle of a fining-upward sequence and assayed 0.09% Cu. No Cu minerals in thin section. Strongly pyritiferous throughout, subhedral. Organic matter is randomly distributed throughout as isolated bed parallel masses of orange brown (TAI = 2.8). Hematite present as red incomplete coatings on anisotropic quartz grains.

517-5, 3.2 m above base

Red Massive unit of Figure 6. Brownish-gray massive coarse-grained siltstone with very thin dark gray shale laminae, (undulating lenticular, f.g. silt or shale) in laminasets (under 3 mm)

between and with hematite-coated quartz-rich bronzy-reddish brown massive fine-grained thicker laminae. Coarser layers appear are more gray in color and finer laminae show reddish gray color. Non-calcareous. 65% silt, 35% shale. 0.06% Cu assay, no Cu minerals in thin section. Organic matter, if indeed present, is as reddish brown (TAI = 3.0) AOM matrix of rare clay-fraction dominant phyllosilicate-rich thin laminations. Black opaque FOM present in association with pyrite and AOM.

Figure A13: PPL of very thin, discontinuous shale laminations in massive siltstone, pyritic with FOM and reddish brown AOM in association. Sample 517-5.

517-6, 0.5 m above base

Sandy siltstone; gray-green crudely laminated micaceous sandy siltstone, non-calcareous with v.f.g. pyrite present in finer-grained green-gray laminae. Oxidation on grain surface as brown staining. Laminae are gently undulating in form and sometimes anastomose (contorted bedding juxtaposing coarse subangular micaceous quartz siltstone against finer-grained darker gray

laminae, some overturned finer laminae observed). 60% silt, 40% shale. 1.88% Cu assay, but only very rare isolated v.f.g. subhedral chalcocite present in thin section, associated with mottled yellow-reflecting tarnish, possibly pyrobitumen. Organic matter is black opaque (TAI = 3.9) FOM, with faint hints of slightly translucent brown (TAI = 3.2) AOM, and concentrated in distorted very thin siltstone laminae; some AOM /FOM in association present near base of overground void. Domino Bed of WP nomenclature, as in Figure 6.

Figure A14: Brown AOM, slightly translucent (TAI = 3.2), concentrated at base of thin even parallel lamination of missing (overground) probable shale; AOM shows clay association and bounds FOM (black, opaque, TAI = 3.9). Sample 517-6.

Figure A15: Hand sample showing brown clay-rich layers. Field of view is 5 cm wide. Sample 517-6.

<u>*Core 523*</u> **523-8**, 157.1 m above base

Dominantly massive, coarse-grained siltstone, green-gray, well-sorted. Massive siltstone shows sharp to gradational contacts with darker, continuous interlaminae. Such reddish-brown clay to fine silt laminae (sub-1 mm thick) are generally horizontal and sub-parallel, but undulating, convex-up, convex-down geometries exist; ripple marks and rip-up clasts of reddish, hematite-coated quart rich material are present. Isolated, minute (under 4 mm²) pink domains of calcite cement are present in the massive green-gray siltstone; these are more concentrated proximal to the finer, darker laminae. Oxidized pyrite shows rusty red on weathered surfaces. Sample is 15% shale, 85% f.g. and m.g. silt. Assayed 0% Cu, and no Cu minerals in thin section. Organic matter not apparent in thin section. Brownish-red laminated siltstone of Figure 8.

Figure A16: Dominantly massive siltstone with visible crossbedding and pinkish calcite cement in isolated sub mm concentrations. Scale is mm ruled, top. Sample 523-8.

523-7, 59.5 m above base

Parallel, mostly even but with some minor irregularities, crisp to gradational bounded, thin to thick laminae of v.c.g. green-gray siltstone and maroon/red v.f.g. siltstone. Very narrow (sub 0.5 mm) vertical calcite-filled fracture, with subhorizontal fractures joining at high angles. Calcite vein and detrital (primary) pyrite present in sample. Hematitic growths common near pyrite accumulations and calcite blebs to 1 mm diameter are present. Sample is 60% shale, 40% silt, 0% Cu by assay, with dispersed reddish brown AOM (3.0 TAI) aligned with bedding. Significant (1%) hematite present, subhedral and dispersed. Sample is from the gray and redbrown siltstone of Figure 7.

523-6, 44.3 m above base

Sample is gray massive siltstone with oxidized subhedral f.g. pyrite. Sample shows sharp transition from massive reddish-gray v.f.g. silt/shale to massive dark gray v.f.g sandstone. Rare very thin blackish-gray discontinuous and wispy laminae also present. Massive dark gray sandstone grades back to v.f.g. reddish-gray siltstone/shale at base. Sample shows some interlamination in thin gradational wavy parallel to even parallel laminations. Transition shows undulating contact - in places the lower sandstone protrudes up into siltstone and "overhangs" siltstone (more gradational transition here). No OM apparent in thin section. Chalcopyrite present as rare, isolated v.f.g. subhedra, and pyrite dominates sulfides.

523-4, 21.3 m above base

Dark gray massive to thinly laminated (laterally discontinuous) laminae of finer-grained black sediment intercalated with gray v.f.g. sandstone. Sample contains multiple 4mm wide, very thin lenticular but mostly parallel and slightly undulating whiter-gray silt laminae. Some of the black laminae anastomose and inosculate. Two subhorizontal calcite veins/fractures (under 1 mm thick). Chalcopyrite is nearly ubiquitous as f.g. replacements of rounded subhedra pyrite and pyrite framboids. One laterally continuous fracture showing void space. Oxidized pyrites (sub-0.5 mm maximum dimension) present on exterior of core. Calcite cement present in lighter colored laminae. Sample is 65% shale, 35% silt/v.f.g. Ss. Isotropic, lamellar translucent orangebrown (TAI = 2.7) AOM accumulations interspersed with very fine phyllosilicates in lowest-energy, finest-grained laminae, and associated with pyrite. Filamentous OM, wavy and discontinuous with sulfide association, present (TAI = 3.9). Assayed 0% Cu, although chalcopyrite is apparent as very fine-grained subhedral masses in association with opaque FOM. Galaxy Bed of WP terminology, as in Figure 8.

Figure A17: Hand sample with mm scale, of chalcopyritic dark gray thinly wavy discontinuous laminated shaly siltstone. Sample 523-4.

Figure A18: PPL of black FOM, with orange brown AOM, wavy and discontinuous with sulfide association (both pyrite and chalcopyrite). Sample 523-4.

523-1, 17.3 m above base

Sample is dark gray to very light gray very thinly laminated siltstone and darker gray-black shale laminae. Laminations are very thin, subhorizontal, even parallel to wavy, and commonly distorted by concretionary calcite. Numerous calcite concretions, some subhedral (up to 0.1 by

0.8 cm but mostly 0.5 mm max dim.), some having a greenish cast with few to no suspended detrital inclusions. Concretions locally disturb bedding, contorting dark layers concentrically or in lenticular bulges about concretions, large and small. This sample has the most intense calcite cement of the suite. Sampled 7 mg of the calcareous concretionary blebs sub-parallel to bedding (not from the too-thin to sample calcareous fracture at 60° to bedding). Some concretions are semispherical or at least circular, while most are elongate parallel to bedding. Sample assayed 0% Cu but shows chalcopyrite in association with calcite concretions and AOM in thin section. Organic matter is lightly translucent, laminar agglomerations, amorphous, orange brown (TAI = 2.7), associated with concentrations of pyrite; ovoid sub-10 mm darker orange constituents apparent in some discrete AOM grains. A strong association of lamellar OM to margins of clayrich shale interlaminations is apparent. This is the Marker Bed of WP terminology, as in Figure 6. Sample contains 65% shale, 35% silt. Figure A19: Hand sample with mm scale at L of calcareous concretions distorting but concordant with silt and shale laminae. Figure A20, A21: Framboid and subhedra (f.g.) of pyrite, AOM, and calcite concretion disruption of thin laminae, PPL and REFL 100X.

Figure A19: Hand sample with mm scale at L of calcareous concretions distorting but concordant with silt and shale laminae. Sample 523-1.

Figure A20: Pyrite, AOM, and calcite concretion disruption of thin laminae, PPL. Note chalcopyrite replacement of framboidal pyrite. Sample 523-1.

Figure A21: Pyrite, AOM, and calcite concretion disruption of thin laminae, REFL PPL. Note chalcopyrite replacement of framboidal pyrite. Sample 523-1.

523-3, 15.9 m above base

Sample is a dark gray shaley siltstone with very thin bronzy-gray shale laminae between darkgray f.g. silt laminae and v.c.g. siltstone/v.f.g. qtzose sandstone laminae (high calcite, white to gray-white). Bronzy-gray shale and dark gray silt lams are sometimes irregular, wavy and anastomose, while white/gray-white c.g. silt/f.g. Silty layers are often lenticular/pseudoboudinaged; even parallel lamination dominates overall. Bronzy-gray shale makes up 20%, dark gray silt is 45%, v.c.g. silt/v.f.g. sand is 35%. Sample assayed 0% but no Cu minerals in thin section. Amorphous reddish-brown (TAI = 3.0) faintly translucent OM concentrated in finestgrained layers and commonly intimately associated with pyrite, as bedding parallel aggregations. Black opaque FOM-rich continuous lamination present isotropic (TAI = 3.9) opaque laminae are closely associated with pyrite. The darker OM-rich laminae are often contorted and even when they show near parallel symmetry, silicate grains commonly distort the OM. This is the Stripey of WP terminology, as in Figure 6. Stable isotope sampled from 20% calcite content of thin silty gray laminations.

523-2, 3.7 m above base

Wispy black subparallel very thin laminations in dark gray siltstone at top 1 cm of core sample. Sample is mostly massive, dark gray siltstone with irregular, darker gray-black rip-up clast-rich, wispy black laminated finer silt and shale. Deformed laminae/rip-ups are largely concordant to bedding and are supported by massive quartzose siltstone. A small minority of rip-up clasts are calcite-cemented, light gray siltstone. Interformational rip-up conglomeratic siltstone are apparent, as well as a single sub 1 mm thick pink and white fracture-filling calcite zone at base (hematite). Pink and white calcite also form a 0.5 mm thick subvertical fracture-fill which

222

offsets a sub 1 mm wide fracture of the same color and mineralogy. Lamellar accumulations of amorphous isotropic brown (TAI = 3.2) organic matter wavy and slightly oblique to bedding are common. Organic-rich zones are closely associated with dark brown to black (TAI = 3.8 to 3.9) opaque FOM, AOM and pyrite concentrations. Sample assayed 0.98% Cu and incipient chalcocite replacement present on pyrite subhedra (anisotropic yellow mottled-reflecting tarnish present). Sample is 85% silt, 15% shale. Stable isotope sampled from conjugate calcite veins at 45° to bedding (not in thin section). This sample is from the Upper Transition of WP terminology, as seen in Figure 6.

Figure A22: Hand sample with mm scale, showing one of the stable isotope sampled hematitic calcite veins oblique to bedding. Sample 523-2.

523-5, 1.0 m above base

Light gray-green massive siltstone hosting bronzy-gray shale (irregular lenticular lamina 2 mm thick at bottom) with numerous discontinuous, somewhat discordant wispy black laminae (often near 45° to bedding) defines this sample. Contorted bedding hints at pre-compaction slumping and faulting or rip-up clast inclusion. Wispy black interlaminae offset by 0.1 mm wide calcite-filled fracture (some brecciation of light gray massive siltstone). At least 7 subhorizontal, sub 1

mm wide calcite-filled fractures, some offset by the subvertical one. Some of the subhorizontal fractures anastomose. Anhedral, unoxidized chalcocite on fresh surface, but only weak incipient chalcocite replacement of pyrite is apparent in thin section. Some cohesive faulted fragments show different, more cohesive and subparallel (but still very wavy/irregular) thin laminations of all three lithologies above. Thin section is very thin, and OM is not apparent; it consists of 15% shale, 85% silt. The sample is 0.69 wt. % Cu by assay, and is from the Domino Bed of WP terminology (Figure 6).

Figure A23: Fractured and faulted shaly siltstone shows folding and significant cm scale offsets. Millimeter scale at bottom. Sample 523-5.

Core PC1

PC1-1, 59.7 m above base

Sample composed of light gray very thinly to thickly laminated, c.g. siltstone laminae (with variable calcareous cement) with dark gray to grayish black shale laminae. Graded clay-silt couplet laminations, with silty material repeatedly fining upward to clay/shale in varve-like geometries dominate the sample. Laminations are wavy and parallel, continuous. Oxidized pyrite euhedra up to 0.5 mm are present. Sub 0.5 mm thick wavy/irregular black calcareous fracture w/o visible constituent grains, continuous across 2 cm width of core; (black color is

discontinuous). Calcite for stable isotope analysis collected from gray silty laminae. Composition of sample is 70% silt, 30% shale and 0% Cu assay with no ore minerals present in thin section. Thin section ground away the darker, OM-rich shale laminations; no OM apparent in thin section. Minor hematite present.

PC1-2, 43.5 m above base

Light gray siltstone and dark gray shale laminae, both very thin, continuous across core, define this sample. Dark gray, v.f.g. silt laminae anastomose/inosculate in places, leaving lenticular light gray siltstone lams (6 mm x 0. 5mm). Darker laminae show small-amplitude wavy texture. Thin (0.5 mm thick), vuggy-centered horizontal fracture in c.g. gray siltstone bounded by brownish black f.g. siltstone lams (0.1 mm thick); f.g. brown bounding lams anastomose after 1 cm. Sample composition is 65% shale, 35% silt with 0% Cu by assay, and no Cu minerals. Lamellar bedding parallel AOM is translucent orange, associated with mica rich clay size fraction concentrations (TAI =2.7), contorting about quartz grains in laminae, and association with pyrite subhedra is common.

PC1-3, 10.9 m above base

Very thin, brown, lenticular to continuous and parallel shale laminae in massive gray f.g. siltstone, micaceous and massive, define this sample. Rare, faint light gray zones apparent, 1 mm thick and semi-continuous across core, in f.g. siltstone. Transition at end of sample is black wavy-crinkly, sub 1 mm thick semi-continuous fracture-fill or wispy lamination grading through gray f.g. siltstone to brown, f.g. siltstone/shale. Quartz grains with hematite coating common, as are pyritic accumulations with intimate-associated hematite coats on quartz. Sample is non-

225

calcareous throughout, and 75% m.g. silt, 25% shale. 0.03% Cu assay, no Cu minerals in thin section. Thin section is massive and no OM is apparent. This is the Upper Shale of WP terminology, as in Figure 6.

PC1-6, 10.7 m above base

Sample is a brownish-red v.f.g. silt to shale sharply changing to greenish-gray c.g. silt, largely massive texture but with blotchy variegation. This specimen is mostly massive bedded c.g. silt to v.f.g. sand, subangular quartzose and micaceous. Some thin alternate laminae of both are present. Overall composition is 60% silt/sand, 40% shale/fine silt. Sample assayed 0.03% Cu, and two 0.75 mm diameter circular chalcocite agglomerations are notable, as well as near-total replacement of v.f.g. subhedral pyrite by chalcocite. Opaque black FOM (TAI = 3.9) and reddish-brown (3.1 = TAI) faintly translucent isotropic amorphous OM (up to 20 micron agglomerations) present, especially along margins of two 800-900 micron diameter circular chalcocite nodules. Circular chalcocite agglomerations are situated in line with two different semi-continuous organic-rich laminations with minor v.f.g. subhedral chalcocite along margins, as well as lesser v.f.g. covellite. Significant (0.5% total) hematite presence is apparent, mostly as grain coatings seen in thin section. This is the Brown Massive of Figure 6. Very soft Mohs scale (below 3) showing on scratch testing of the larger of two circular chalcocite OM-embedded masses, and a reddish-brown reflecting v.f.g. nonpleochroic isotropic-appearing material (hematite) dragged into scratch axis from adjacent margin of nodule. This material is also present on both parallel margins of scratch, and some has been dragged off the nodule to the distal edge - here it is opaque and appears isotropic, with bright red internal reflection.

Figure A24: Hand sample with mm scale at bottom showing 9 mm diameter chalcocite nodule and crudely laminated siltstone substrate. Sample PC1-6.

Figure A25: PPL and REFL chalcocite nodule to 0.9 mm diameter with minor v.f.g. subhedral chalcocite along margins, and v.f.g. hematite streaking into and along margins of nodule and intimately concentrated FOM and AOM. Note bright blue covellite grain at R of nodule, just below center. Sample PC1-6.

Figure A26: PPL chalcocite nodule to 0.9 mm diameter with minor v.f.g. subhedral chalcocite along margins, and v.f.g. hematite streaking into and along margins of nodule and intimately concentrated FOM and AOM. Arrows at bottom R indicate position of minor covellite. Sample PC1-6.

PC1-4, 10.1 m above base

This is the Brown Massive bed of Figure 6's WP terminology, and shows 0.025% Cu assay. The sample is mostly a massive gray f.g. siltstone alternating (~0.5 cm) with brownish-gray c.g. siltstone and v.f.g. sandstone, calcareous. Some rare black wispy discontinuous laminae apparent in hand sample (no grains visible, 1 mm wide x 0.1 mm thick.). Black wisps more prevalent in brownish coarser silt layers. Mostly (95%) silty nature defines the sample. Pyrite is the dominant sulfide, with very rare chalcopyrite in NE quadrant as v.f.g. sub- to euhedral grains. Several opaque black (3.9 = TAI) lamellar agglomerations of wavy discontinuous filamentous organic-rich material are present.

PC1-5, 2.4 m above base

As seen in Figure 6, this is the Red Massive of WP terminology, and it shows 0.17% Cu by assay. Sample is massive, reddish-brown siltstone and shale, micaceous. Rare black irregular lamination, 1 mm wide, 0.1 mm thick, exists, no grains visible; rare, darker brown round to irregular, black laminations under 1 mm wide (rip-ups?). Sample is dominantly (95+%) silt. Thin section shows AOM, translucent brown (TAI = 3.3) amorphous, with the darkest OM nearly opaque and rare, fracture-adjacent f.g. chalcocite and, minor v.f.g. covellite. Dominantly siltstone, with strong phyllosilicate concentrations associated with/mixed into AOM.

Figure A27: Amorpohous organic matter in PPL, showing opacity of chalcocite and covellite grains, as well as brown translucent AOM. Sample PC1-5.

Figure A28: Covellite and chalcocite adjacent to fracture REFL PPL with AOM top center. Sample PC1-5.

Core PC5

PC5-1, 83.5 m above base

This sample is mostly gray siltstone, very thinly laminated, with very thin black, organic-rich shale laminae. Black laminations are wavy and parallel. Dark gray lams shift gradually up to light gray shale then up into gray siltstone. Non-calcareous (although vuggy fracture may represent calcite dissolution void) nature with respect to cement defines this sample, as does its composition: 80 to 95% silt, 5 to 20% shale/clay. Very f.g. oxidized sulfide is present. Majority of laminations are continuous and very thin, but the very finest - sub 0.5 mm thick - show rare, 3-4 stacked black laminations in a convex geometry, nearly or completely encasing gray lenticular silt laminations up to 3 mm wide. Very thin gray-green clay lams and very thin black laminae show some tears/discontinuities possibly indicating disruption during compaction or possibly due to vertical fluid movement. Wavy black laminations appear to have behaved more cohesively

than silty layers, which form boudin-like geometries commonly 5 mm long. Pyrite framboids (to 80 microns diameter) common at silt/clay interfaces. Stable isotope sampled from gray slightly calcareous silty laminations. No Cu minerals are apparent in thin section. Organic matter is amorphous, aligned and associated with clay-rich laminations, commonly molded about quartz grains and associated with pyrite with TAI = 2.6 (orange); also present in a clay-rich lamination is a pyrite-associated brown translucent OM filament (TAI = 3.2).

PC5-2, 80.0 m above base

This is calcareous gray siltstone, m.g to c.g., very thinly laminated, with thin dark gray/black, laterally continuous OM-rich wavy laminae, often encasing lenticles of silt, which are less than 1mm thick; several anastomose carbonaceous laminations. Sample composition is 60%-40% silt/shale and it is pyritic, without any Cu minerals. Organic matter is amorphous, lamellar and distorted about quartz silt and smaller pyrite grains, giving a wavy black appearance associated with clay-rich zones (AOM is TAI = 2.6, FOM is TAI = 3.9). This is the black laminated siltstone of WP terminology (Figure 8).

PC5-3, 66.6 m above base

This sample is mainly massive, a brownish-gray siltstone made up of 95% silt/sand. Occasional calcite is present in irregular beds and blebs 1 mm to 20 mm thick, often as calcite cemented, silt bands. Organic matter is absent in thin section. No ore minerals, strictly disseminated pyrite, commonly showing hematite "smears" or haloes adjacent, coating neighboring quartz grains. This is the gray member of black laminated siltstone of Copperwood terminology (Figure 8).

PC5-6, 21.3 m above base

This is dark gray shale, very thinly laminated, parallel and continuous, (60%) with massive to crudely thin laminated (parallel and slightly wavy) light-gray, often lenticular c.g. siltstone and v.f.g. sandstone, calcareous. Uneven, gradational contacts are common between lithologies. Greenish gray phyllosilicate-rich layers are most continuous and sharpest-bounded, usually under 1 mm thick and very continuous, even parallel with slight waviness. Calcite-rich gray silt (15% calcite) laminae disrupt bedding in places and shows undulating gradational contact with darker gray shale layers. Silty grayish white laminae sampled for stable isotopes. Sample is pyritic with no Cu minerals. Rare organic matter present as orange (TAI = 2.6) lamellar both discordant and bedding aligned lamalginite-like filaments. As in Figure 6, this is the Marker bed of WP nomenclature.

PC5-8, 20.4 m above base

The sample shows irregular to wavy parallel, very thin black shale laminae with crudelylaminated, calcareous, silty gray laminae, and f.g. shaley gray very thin laminations of phyllosilicates. Gray-white calcareous concretions throughout distort laminations, and are sub 2 mm maximum dimension. Thin laminations dominate, and are continuous except for the silty gray laminae, some of which are discontinuous; overall composition is 60% shale, 40% silt. Chalcopyrite is present, replacing v.f.g. pyrite grains and framboids, dispersed throughout (in calcite concretions, phyllosilicate-rich laminae, and silty laminae). Amorphous orange (TAI = 2.6) translucent isotropic interstitial agglomerations crudely aligned with faint laminations. Stable isotope sampled from moderately calcareous silty gray thin laminae. This is the Marker bed of WP terminology seen also in Figure 6.

232

Figure A29: Irregular to wavy parallel, very thin black shale laminae with crudely-laminated, calcareous, silty gray laminae, and f.g. shaley gray very thin lams of phyllosilicates. Gray-white calcareous concretions throughout distort laminations, and are sub 2 mm maximum dimension. Thin laminations, continuous except for the silty gray laminae, some of which are discontinuous. Millimeter ruled scale at R. Sample PC5-8.

Figure A30: PPL shows calcite nodule at center, with opaques including chalcopyrite present, replacing v.f.g. round pyrite grains and framboids, dispersed outside of the calcite nodule (in both phyllosilicate-rich laminae and silty laminae). Amorphous orange OM present as translucent isotropic interstitial agglomerations crudely aligned with lamination. Sample PC5-8.

Figure A31: PPL shows calcite concretion at center, with brightly reflecting yellowish opaque chalcopyrite present, replacing v.f.g. round pyrite grains. Chalcopyrite is most apparent as miniscule bright yellow flecks (under 5 micron diameter) at margin of calcite mass at center. Sample PC5-8.

PC5-4, 8.1 m above base

This sample is massive, brownish-gray micaceous siltstone with rare, coarser-grained whitishgray calcareous m.g. siltstone laminae (under 2 mm thick) and is 90% silt. Stable isotope analyzed carbonate materal was drilled from calcareous light gray silty laminae. This is the massive red-brown siltstone of the WP nomenclature (Figure 6) Upper Shale. Prominent hematite-coated quartz grains are common, and the sample is pyritic with no Cu minerals. Rare organic matter in a single wisp/filament of dark reddish brown (TAI = 3.15) lamellar, aligned and similar to lamalginite in appearance.

PC5-7, 6.4 m above base

This sample is dark grayish-red shale laminae with coarser-grained lighter gray siltstone, which is whiter in the calcareous-cemented lams (perhaps 1/10 of gray silty layers are calcite-

cemented); the sample is 60% silt, 40% shale. It is pyritic with minor, rare chalcocite replacements of pyrite. Organic matter is reddish brown (TAI = 2.85), and pseudolamellar as short, discontinuous sheets and some filaments, both translucent and which are deformed about quartz grains. This sample is possibly same as Upper Sandstone of WP nomenclature (Figure 6).

PC5-5, 3.2 m above base

Massive, reddish-gray siltstone defines this sample, which is 80% silt, 20% shale. Massive siltstone with numerous lithic fragments on the microscopic scale. This is the Red Massive of Figure 6. Pyrite dominates the opaque minerals although rare v.f.g. chalcocite is present. Organic matter is amorphous reddish brown (TAI = 2.9), horizontally aligned, and with distortion about quartz grains. Significant hematite present as oxidative zone about sulfides. Chalcocite is as rare v.f.g. subhedra, present (NE quadrant extreme). Mottled yellow to green-reflecting opaque grain, possibly bituminous, present in SE quadrant, isotropic.

Figure A32: Pyritic with minor, rare chalcocite (center) replacements of pyrite, PPL REFL. Sample PC5-5.

Core 28G

28G-514', 17 m above mineralization

This is the Marker Bed of Figure 6. It is dark gray shaley siltstone with calcite nodules to 3×1 mm, displacing organic-rich thin wavy/undulating discontinuous laminations. Vertical calcite vein is present, as 1 mm thick, irregular, anastomosing and inosculating material, in places disturbing bedding. The sample is 60% silt, 40% shale. Also significant is pyrite as subhedral calcite vein-filling (along margins) neo-formed masses. Thin even parallel to wavy parallel laminae of darker gray finer-grained shale with thicker, silt-sized lighter gray laminations. Filamentous organic matter is lamellar, opaque and black, envelops silicate grains as a matrix-like mass (TAI = 3.9); this material is less prevalent than is widespread transparent lamellar AOM with TAI = 3.3, brown color.

Figure A33: PPL REFL showing calcite vein with neomineral pyrite, brown AOM and black FOM. Sample 28G-514'.

28G-520', 15 m above mineralization

As shown in Figure 6, this is the Marker Bed of WP terminology. The sample is a dark gray shaley siltstone with thin even parallel to wavy parallel alternate light gray (m.g. silt-dominated) laminae. Calcite vein disrupts/brecciates shaley siltstone, and shows masses of pyrite at its margins, in close association with most OM-rich laminations. Structureless AOM concentrated in dark gray, finest-grained laminations and is broadly distributed about quartz and other silicate grains. No Cu minerals. Organic matter is dominantly orange brown, unstructured AOM, isotropic and translucent, and encases subangular silicate grains (TAI = 2.8). Sample composition is 50% shale, 50% silt. Colbert (2011) reported fluid inclusion oil in the next sample down section, 28G-522'.

28G-526', 12 m above mineralization

This is the Marker Bed shown in Figure 6. Dark gray continuous thinly laminated clay-size fraction dominates, with minor siltstone, light gray interpersed as thin interlaminae. A massive, calcite accumulation is present in a thick vein (1 cm width). Organic matter is dark brown, translucent isotropic and dominantly FOM, elsewhere as amorphous accumulations (TAI = 3.7). No Cu minerals in thin section, although pyrite is widespread.

28G-539', 7 m above mineralization

This sample is a massive gray shale with visible pyrite, and calcite veins, with calcareous fractures showing primary OM-rich discontinuous laminations at the margins of fractures. Organic matter is present as filamentous lamellar concentrations of black opaque material (TAI = 3.9). Colbert (2011) reported oil inclusions in this sample and an oil homogenization temperature on them as 117 °C. 60% shale, 40% silt. There is chalcopyrite present as very rare (sub-1% of sulfides apparent) v.f.g. anisotropic subhedra.

Figure A34: Filamentous opaque black OM with pyrite. Sample 28G-539'.

Figure A35: REFL PPL shows chalcopyrite, anhedral. Sample 28G-539'.

28G-571', mineralized

This is a red massive shale with pyrite and black opaque FOM. No other organic matter is present in thin section. Sample contains significant neoformed hematite growth about chalcocite as subangular masses. Breached shaley lamination (FOM is amorphous, lamellar, and black - TAI 3.9) is apparent, with silty material disrupting OM-rich lamination. Immediately above the breached lamination is a concentration of pyrite, with associated hematite. Detrital chlorite present, but no neomineral chlorite growths. Sample is noncalcareous and 60% shale, 40% silt. Chalcocite is present as very rare (sub 0.5% of sulfides apparent), incipient replacements of pyrite.

Figure A36: Silty dike breaching shaley lamination with very minor chalcocite at L center. PPL REFL. Sample 28G-571'.

28G-572', Cu mineralized

This sample is of the Domino of WP terminology (Figure 6). Light gray sandy siltstone, crudely laminated micaceous sandy siltstone, non-calcareous. Interlaminae of darker gray carbonaceous content are gently undulating in form and sometimes anastomose. Lamellar, wavy FOM is opaque and black (TAI 3.9). Significant detrital chlorite is present, and reddish hematitic degradation of sulfides is widespread, in both v.f.g. (30 micron) and c.g. sulfides. Chalcocite replacements of pyrite are apparent as rare v.f.g. clasts.

Figure A38: Chalcocite and pyrite PPL REFL. Sample 28G-572'

Figure A39: Chalcocite and pyrite PPL. Sample 28G-572'.

Presque Isle River Outcrop

PIR-12, 92 m above base

The sample is an indistinctly bedded dark gray siltstone, m.g., with blotchy pink calcitecemented irregular oblong forms (to 1 mm maximum) coloring 45% of sample light gray. Pyrite, disseminated and subhedral, focused in thin laminations. Composition is 60% silt, 40% shale. Calcareous blebs sampled for stable isotopes. Organic matter not present in slide, but hematite coated quartz common. At least 15 anisotropic chalcopyrite grains present with adjacent pyrite showing incipient chalcocite replacement. Significant chalcopyrite in PIR-11, sampled 89 m above base.

Figure A41: REFL PPL of chalcopyrite in matrix material, with incipient chalcocitization of adjacent pyrite grain. Sample PIR-12.

PIR-10, 59.9 m above base

This sample is green-gray thinly laminated (gently parallel even undulose to wavy) gray siltstone with dark gray shaly laminae. Fine anhedral pyrite disseminated throughout sample. Thin laminae of light gray m.g. silt are variably faintly calcareous, sampled for stable isotopes. No Cu minerals apparent. Isotropic orange (TAI = 2.6) lamellar translucent AOM with pyrite associated as small subhedra present in thin discontinuous slightly wavy laminations. Organic matter commonly encases more durable quartz grains, giving anastomose/inosculate appearance. Several subround translucent amorphous isotropic orange blebs of OM (to 30 microns maximum dimension) present.

Figure A42: Isotropic orange (TAI = 2.6) lamellar translucent AOM with pyrite associated as small subhedra present in thin discontinuous slightly wavy laminations. PPL of sample PIR-10

PIR-9, 25.5 m above base

This sample is a gray to dark gray siltstone with some very thin grayish-black laminated f.g. silt to shale interlaminae (mostly straight, even parallel, with some gently undulose and some crossbedded fine laminae). Thin section is massive, with subhedral disseminated pyrite, and pyritic masses about silicates in agglomerations approaching 300 microns. Sample is wellcemented throughout with calcite cement, and sampled for stable isotopes. No Cu minerals or OM apparent, excepting one rare, isolated incipient chalcocite replacement of v.f.g. pyrite. Apparent oxidation (browning of shale layers) on surface of core sample, penetrates less than 2 mm.

PIR-8, 25.4 m above base

This sample is a massive gray siltstone, v.f.g. and dominantly quartzose. Pyrite dominates opaques, with very isolated (sub 1%) incipient chalcocite/bornite replacement of 100 x 90 micron pyrite grains, as well as a single bornite grain. Significant hematite-coated detrital quartz (about 20%) is present. No OM is apparent in thin section. Calcite-cemented laminations sampled for stable isotopes.

Figure A43: Anisotropy of lone bornite grain in left upper quadrant, XPL REFL. Sample PIR-8.

Figure A44: Anisotropy of lone bornite grain in left upper quadrant, XPL REFL. Sample PIR-8.

PIR-7, 14.9 m above base

This sample shows Cu-staining of malachite on exterior of brownish gray fissile m.g. siltstone, with lenticular siliceous concretions (5x20 cm). Composition is 90% siltstone, 10% shale, with rare interlaminae of micaceous darker gray siltstone. Mud or syneresis cracks apparent near sample site. Ripple mark showing normal graded bedding from m.g. subangular silicates in to v.f.g. phyllosilicates in thin section. No OM is apparent. Stable isotope sampled from siltstone calcite-cemented laminae. Significant hematite-coated quartz grains, subangular, are present (about 28%), as is neomineral chlorite (about 25%). The sample is pyritic with some incipient chalcocite replacements of framboids of 80 x 30 micron dimensions. Pyrite dominates the sample and chalcocite comprises around 2% of the sulfide minerals apparent. Many of the pyrites are bounded by hematite - oxidation in situ?

Figure A45: Incipient chalcocite on framboidal pyrite; pyrite dominates the sample and chalcocite comprises around 2% of the sulfide minerals apparent. PPL REFL. Note hematite about pyrite. Sample PIR-7.

PIR-6, 3.5 m above base

Red to white v.f.g. sandstone interlaminated with wavy/undulose c.g. silty lenticular to continuous thicker even parallel to wavy parallel laminated siltstone describe this sample. Ripple marks of finer material bound top and bottom of this noncalcareous specimen. This is the Lower Transition of WP terminology (Figure 6).

Saxon Falls Outcrop

SF-4A, 103.7 m above base

This sample shows thin ripple lamination in otherwise massive m.g. siltstone. 100% silt size clasts. Hematite coated quartz present; no OM apparent in thin section. Calcite-rich lamination sampled for stable isotopes. No Cu minerals apparent in thin section.

SF-2B, 94.6 m above base

This sample is thin even parallel to very thin discontinuous laminated dark gray OM-rich claysize material in gray siltstone. Wispy black opaque FOM (TAI = 3.9) is apparent in association with dispersed AOM, black and opaque as intermixed matrix with v.f.g. shale-size phyllosilicate rich domains. Chlorite coating on detrital quartz grains common (15%) as well as very common quartz grains with hematite coating (20%). Composition is 80% siltstone, 20% clay-size and noobserved Cu minerals. Figure A46: Wispy black opaque FOM (TAI = 3.9) apparent in association with dispersed AOM, black and opaque as intermixed matrix with v.f.g. shale-size phyllosilicate rich domains.

Figure A46: Wispy black opaque FOM (TAI = 3.9) apparent in association with dispersed AOM, black and opaque as intermixed matrix with v.f.g. shale-size phyllosilicate rich domains. Sample SF-2B

SF-3B, 77.2 m above base

Thickly laminated siltstone (gray) and shaley siltstone (dark gray), with thin calcareous laminations present describe this sample. It has opaque black (TAI = 3.9), very rare, FOM contorted about quartz clasts in overall wavy discontinuous laminar presentation. No Cu minerals, solely pyritic sulfides.

SF-3A, 43.8 m above base

This is a gray massive f.g. sandstone, red hematite coating quartz grains ubiquitous (to 25%). No OM apparent, and 100% sandstone. No Cu minerals. Stable isotope sampled from matrix calcite cement.

SF-4B, 41.3 m above base

This is a massive pyritic siltstone with significant hematite stained quartz (10%). No OM apparent, 100% siltstone in this sample. No Cu minerals. Stable isotope sampled from matrix calcite cement.

SF-5B2, 14.5 m above base

This specimen is a gray massive to thickly laminated, lenticular siltstone, showing en echelon 1 cm long, 1 mm wide pinkish white calcite filled fractures at 30 degrees to bedding. Massive in thin section, pyrite dominates sulfides. Calcite vein with isolated, rare very fine-grained chalcocite and covellite matrix grains in suspended in carbonate, replacing pyrite. Sample shows black wisps of opaque FOM (3.9 TAI), at 30 degrees to massive bedding, and is 100% siltstone.

This is likely the Galaxy bed of WP terminology (Figure 6). Sample has insufficient calcite for stable isotopes on calcite veins.

Figure A47: Hand sample showing massive bedded en echelon hematitic calcite veined siltstone. Sample SF-5B2:

Figure A48: Covellite matrix grain suspended in calcite vein PPL and REFL. Sample SF-5B2.

Figure A49: Covellite matrix grain suspended in calcite vein PPL. Sample SF-5B2.

SF-5B, 14.5 m above base

This is a pervasively fractured massive dark gray siltstone. No thin section. This is similar in appearance to the Galaxy bed of WP terminology (Figure 6).

SF-2A, 13.0 m above base

This sample is a red m.g. quartzose lithic sandstone with 1 x 10 mm shale burgundy colored ripup, rounded, set in massive matrix. Rip-up clast shows dark red, horizontally and vertically fractured clay size fraction material, quartzose, and with black opaque (TAI = 3.9) AOM and significant bright red hematite grains, isotropic and translucent. Compactional deformation of rip-up clast is evidenced by contorted margins where silt size grains impact and penetrate the ripup. Coarse calcite matrix cement localized around rip-up clast, sampled for stable isotopes. Pyritiferous, but no Cu minerals apparent.

SF-1A, 7.8 m above base

This is a very thin even parallel continuous laminated siltstone (light gray) and mudrock (dark gray), pyritic. Clay-poor, quartz dominant composition describe this sample's component clasts. Very thin calcite veinlet (vertical, and hematite-bounded in places) breaches shaley laminations,

and slightly offsets lamination. Very thin opaque black (TAI = 3.9) FOM-bearing lamination, discontinuous and wavy, present, associated with f.g. pyrite. Composition is 60% siltstone, 40% clay-sized shale. Opaque black (TAI = 3.9) dispersed AOM-bearing clay size-fraction lamination shows concentration of phyllosilicates and vertical displacement associated with vertical calcite veinlets. No ore minerals are apparent and there is insufficient calcite in veinlet for reliable stable isotope sampling.

Figure A50: Hand sample showing calcareous concretion, vertical hematitic calcite veinlets, and vertically fractured, offset shaley laminae. Note molar-tooth calcite concretion at bottom right. Sample SF-1A.

Figure A51: PPL opaque black (TAI = 3.9) dispersed AOM-bearing clay size-fraction lamination shows concentration of phyllosilicates and vertical displacement associated with vertical calcite veinlets. Sample SF-1A.

SF-6B, 4.1 m above base

This is a massive gray f.g. siltstone with less than 10% v.f.g. silt/shale as irregular, randomly oriented angular clasts (10 x 4 mm maximum) present - contorted bedding. Pyritic (disseminated subhedra to 30 microns, mostly sub 10 microns). This is possibly analogous to the Domino Scent of a Mule of WP nomenclature (Figure 6) and is 65% silt, 35% mudstone. Vertical calcite veinlet bisects sample. Faintly translucent, concentrations of AOM (TAI = 3.9) and clay-size fraction phyllosilicate-rich material apparent in distorted wavy interlaminations with quartzose siltstone laminations, both together as apparent rip-up clasts in massive siltstone. No Cu minerals.

Figure A52: Hand sample showing contorted bedding/rip-up clasts of finer-grained shaley material, with minor hematitic veinlets. Sample SF-6B.

Figure A53: PPL overview of contorted bedding AOM-rich interlaminae with silt laminations in massive siltstone. Sample SF-6B.

Copper Falls State Park Outcrop

CF-5B, 90.6 m above base

This is dominantly black siltstone with minor (~7%) lenticular silty red-light-gray laminations, thin and thick. Hematite is present as isolated (20%) quartz grain coatings, subangular detrital quartz. Amorphous OM present in concordant but irregular and discontinuous lenticular accumulations, reddish brown in color (TAI = 2.9); some minor black opaque anastomosing OM also present (TAI = 3.9). No Cu minerals are present.

Figure A54: FOM and AOM present together. Sample CF-5B.

CF-3A, 87.5 m above base

This is a gray m.g. siltstone interlaminated (thickly, often even, wavy and continuous) with darker gray wavy continuous to broken lenticular shale laminations (breached). Pyrite, disseminated and euhedral to subhedral is present as very fine grains, no Cu minerals. Silty clastic dike intrudes clay-fraction rich thin lamination, and commonly disrupts/truncates claysize fraction dominated laminations = breached shaley laminae. Filamentous anastomose and inosculate nearly opaque dark brown (TAI = 3.9) OM, discontinuous, suspends some quartz grains. Hematite coating on many of the silt fraction quartz grains.

Figure A55: Fractured, offset shaley laminations, clay rich, in hand sample. Millimeter scale at bottom. Sample CF-3A.

CF-4B, 85.0 m above base

This sample shows black densely anastomosing (7%) even to wavy thin shale laminations with reddish gray and gray m.g. siltstone laminations (thick), coupled with dark gray uneven irregular m.g. silt laminations encasing lenticular silty red lams. No Cu minerals are apparent. Calcareous light gray siltstone laminae sampled for stable isotopes. During sample prep, oily residue (potentially originating in this sample) collected on sawing fluid surface. Composition is 80% siltstone, 20% shale. Filamentous organic matter dominates the organic fraction, as black opaque (TAI = 3.9), wavy material, inosculating/anastomosing about intervening silicate and pyrite grains. Hematite coated quartz silt-size grains are common (20%).

CF-3B, 42.3 m above base

Massive reddish-gray sandy siltstone with dark gray irregular discordant OM-rich domains to 10 by 5 mm, and discordant, discontinuous red to gray-red very thin internally wavy laminated material - rip-ups. No Cu minerals present in thin section. Rare isolated wavy black opaque FOM is present, (TAI = 3.9), intimately associated with pyrite. Hematite coating quartz and calcite is common in sand (55%) part of thin section, and significant hematite haloes about pyrite grains are present. No ore minerals are present.

CF-4A, 39.0 m above base

This sample is a pervasively fractured gray siltstone with rare (10%) darker gray silt laminae (even and parallel). Calcareous veins present, often concordant with FOM concentrations (zone of weakness?) not stable isotope sampled. No Cu minerals, pyrite common as v.f.g. subhedra. Thin discontinuous undulating anastomose/inosculate laminations contain OM as filaments of black opaque (TAI = 3.9) material. There is a significant halo of black opaque (TAI = 3.9) AOM about calcite concretion. This sample also shows FOM also present in concordant black opaque laminations.

CF-2B'', 6.4 m above base

Sample is a wavy, sometimes lenticular, irregular undulose thin dark gray shale interlaminae in gray siltstone, m.g. Copper secondary mineral stain was apparent in field. Strongly calcareous

gray silt matrix sampled for stable isotopes. Red calcareous (calcite and hematite) vein present in hand sample. Chalcopyrite is widespread as very fine grained round granule and replacements of framboids to 50 microns. This sample is shaley overall (70%) with minor (30%) silt size fraction. Organic matter is filamentous, opaque black (TAI = 3.9), wavy and anastomose discontinuous, and commonly coexists spatially with chalcopyrite.

Figure A56: Chalcopyrite in black opaque FOM (TAI = 3.9). Sample CF-2B''.

Figure A57: Chalcopyrite replacement of pyrite framboid. Sample CF-2B".

CF-2B', 6.4 m above base

This sample is a red to red-gray m.g. angular sandstone, massive to thick bedding, immediately (0.05 m) upsection from dark gray siltstone with malachite stain. 100% sand size clasts. Silty red matrix is slightly calcareous, dominantly hematite-coated quartz, sampled for stable isotopes. No OM apparent, nor are ore minerals.

CF-2B, 6.4 m above base

This sample is a gray and dark gray irregular/anastomosing interlaminated shale (dark gray) and m.g. siltstone (gray), which is pervasively fractured. Calcareous vein, pink, is likely hematitic.

CF-2A, 4.0 m above base

Sample is a gray siltstone, extremely fissile and fractured, thinly laminated with minor darker gray shale (even and parallel to wavy and discontinuous lenticular laminations). Organic matter is present as black opaque (TAI = 3.9) filaments, wavy and discontinuous, and as amorphous agglomerations of dark brown faintly translucent material about polishing/grinding voids (likely OM-rich or shale-rich previously; TAI = 3.7). Overall composition is 55% siltstone, 45% claysize.

CF-1B, 3.4 m above base

This sample is a dark gray massive pyritic siltstone with rare, thin to thick gray-black shale interlaminations (discontinuous and undulating). Pervasively fractured, and with malachite stain on surface. Faintly calcareous gray silt laminations sampled for stable isotopes. Very thin sample (under 1.5 cm thick). Discontinuous hematitic calcite veinlet is present. Filamentous organic matter, opaque and black (TAI = 3.9) present, in association with concentrations of fine-grained chalcocite after pyrite, along transitions between clay-size fragment phyllosilicate rich zones and silty quartzose domains. Minimal f.g. pyrite is present. A hematite-lined calcite veinlet shows a suspended grain of secondary, very fine chalcocite. Overall composition is 70% silt, 30% clay-size grains.

Figure A58: Sample CF-1B. PPL of chalcocite and hematite filling calcite vein, with adjacent pyrite.

CF-1A-2, 2.0 m above base

Thin black shale interlaminations between thick laminae of gray-red siltstone (hematite coated quartz very common - 80%), fissile. Significant but not pervasive fracture, as well as malachite/azurite staining present. Post-depositional fractures filled with pinkish white calcite (with minor associated hematite). Hematite coated quartz grains abundant in silt size fraction. Thin section shows calcite (subhedral) veins crosscutting and offsetting thin continuous subparallel shaley laminations. Rare wispy discontinuous opaque black OM (TAI = 3.9) present in two main laminae, both truncated by calcite vein. Overall composition is 95% m.g. silt, 5% clay-size. This sample is analogous in appearance to WP terminology's Domino/Lower Sandstone (Figure 6). Pyrite is sole sulfide present, abundant and fine-grained.

CF-1A, 2.0 m above base

This sample shows igneous and cherty clasts in c.g. siltstone as gray red laminae, thick, alternate with gradationally bounded dark red f.g./m.g. silt laminae, crossbedded. Significant, nearly pervasive fracture dominates this sample, which is analogous to WP terminology's Domino/Lower Sandstone (Figure 6), and is 100% sandstone.

Little Iron River Outcrop

The LIR samples were collected at regular intervals between the top of the Copper Harbor Formation and the top of the Parting Sandstone of WP nomenclature, ascending from LIR-2.

LIR-10, Uppermost lower Nonesuch Formation

This is black, massive shale. Largely massive siltstone in thin section shows 3 discontinuous crudely laminar FOM in concordant concentrations of opaque black (TAI = 3.9) material. No Cu minerals are apparent.

LIR-9

As in Figure 6, this is the Stripey bed of WP nomenclature, a calcareous black to dark gray thickly interlaminated siltstone with lesser shale. Faint ripple lamination are present in thin section, as cuspate clay-rich laminae thin above projecting quartzose convex-up f.g. siltstone laminations, in lower right 1/10 of thin section. Orange brown (TAI = 2.8) amorphous organic matter is distinctly present as lamellar, translucent and largely bedding-concordant material, in association with silt-size laminations. Filamentous organic matter is rare but present as brown faintly translucent material with TAI = 3.2. No Cu minerals are apparent in thin section.

261

LIR-8

This is a gray siltstone, massive to very thinly laminated. Continuous even parallel clay rich thin laminations show rare FOM (black, opaque, TAI = 3.9, with v.f.g. pyrite intimately associated) as well as lamellar translucent brown AOM also with strong pyrite association (TAI = 3.2). No Cu minerals are apparent in thin section.

LIR-6

This is a calcareous, thinly laminated gray siltstone with thin dark gray shale interlaminations. Organic matter is filamentous and lamellar, concentrated in concordant forms, faintly translucent and isotropic with dark brown color (TAI = 3.8), strong association to v.f.g. pyrite; AOM also present in association with FOM, as transparent brown (TAI = 3.2) lamination-concordant masses. Lenticular, calcite-rich laminations show prominent m.g. subhedral calcite crystals, which in places offset FOM and AOM. In places calcite-rich zones bound organic material, with some disruption and displacement of segments of the organic rich laminae. No Cu minerals in thin section.

LIR-5

This is massive siltstone with one faint, very crudely laminated bedding plane which shows clay and OM concentrations about subrounded quartz grains - probable rip-ups. Faintly opaque to translucent FOM present as wavy wisps of dark brown silicate-enveloping wisps of wavy/anastomose/inosculate agglomerations (TAI = 3.8). No Cu minerals apparent, with pyrite common as f.g. subhedral grains.

LIR-4

This sample shows wavy contorted laminations in clay-fraction dominant zones that conform to siltstone laminations that are sometimes sausage-shaped - likely compactional lode structures. Organic matter is mostly present as amorphous discontinuous translucent isotropic lamellar concentrations, brown (TAI = 3.2), and concurrent with v.f.g. concentrations of phyllosilicates. Black FOM (TAI = 3.9) is also present as rare thin wavy isotropic opaque wisps. Hematite coated m.g. silt size quartz grains present as rare subangular red translucent anisotropic bodies. Cu minerals not present in thin section.

LIR-3

This is a rock with gently undulating gray clay-rich thin laminations in light gray siltstone (thicker laminae). It shows breached phyllosilicate-rich v.f.g. shaley laminations in thin section, as photographed. Significant detrital chlorite is present, and 1% of grains are hematite coated quartz. Organic matter is not apparent in thin section. Chalcocite is present as rare v.f.g. subhedral grains, shown adjacent to yellow reflecting anisotropic mass of opaque chalcopyrite.

Figure A59: V.f.g. phyllosilicate-rich shale lamination showing siliciclastic silt-size clastic dike breaching the horizontal shale lamination, PPL. Sample LIR3.

LIR-2, lowest sample (nearest Nonesuch Formation base)

This is Figure 6's parting shale, with native Cu at sample site. It is a gray silty shale with thin alternate parallel light gray silty and dark gray f.g. silt to shale interlaminae; non-calcareous. Significant detrital hematite-coated quartz grains subangular. Very rare Cu ore in thin section are chalcocite grains, v.f., subhedral, and intimately associated with yellow reflective probable pyrobitumen (as in photo). Amorphous organic matter is apparent as brown translucent (TAI = 3.2) isotropic lamellar masses and also, more commonly, as margins of black opaque FOM-rich laminations (TAI = 3.9). Bituminous, solid, anisotropic faintly translucent brown to dark brown bed-parallel mass with rounded ends fills bed-parallel void space (left by overground fracture fill or v.f.g. interval?). The zones of greatest opacity and darkest color of this lamellar mass of bitumen coincide with highest reflectance (a faint bluish-gray mottled color). Bituminous solid material shows higher reflectance along its exterior, with high-reflectance margins verging

inward toward center of mass in locations where the vertical dimension thins the most - a "higher reflectance outer layer and a lower reflectance inner core suggesting overprinting by a postemplacement rapid heating event" (cf. Glikson *et al.*, 2000 in Mastalerz *et al.*, 2000). Shrinkage cracks are apparent at one end of the bitumen mass, suggesting that this is pyrobitumen, which concurs with the anisotropic optical properties of the lamellar mass. Immediately above another set of shrinkage cracks in the bituminous material are multiple discrete agglomerations of chalcocite (initially tarnished to reflect mottled yellow, blue and green).

Figure A60: PPL solid bitumen in lamination concordant mass, showing zones of highest bitumen opacity (which are most reflective in next image). Sample LIR2.

Figure A61: REFL PPL solid bitumen in lamination concordant mass, showing highest reflectivity coincident with highest opacity. Sample LIR 2.

Figure A62: PPL shrinkage cracks are apparent at one end of the solid bitumen mass - which may suggest that this is pyrobitumen, cf. Rasmussen and Buick (2000). Note also the dark gray translucent stain, potentially representing bitumen expelled in association with shrinkage crack contraction. Sample LIR 2.

Figure A63: PPL. Immediately above another set of shrinkage cracks in the solid lamellar bituminous material are multiple discrete agglomerations of chalcocite (tarnished). Sample LIR2.

Figure A64: XPL REFL, showing subhedral chalcocite, tarnished (lower right). Sample LIR2. Note also anisotropy of the bituminous lamellar mass, as compared to Figure A65.

Figure A65: XPL REFL, showing anisotropy of solid bitumen in sample LIR2.

Big Iron River Outcrop

BIR 7, 700 m downstream from Nonesuch Formation top

This sample is a cross-stratified gray siltstone with wavy to discontinuous laminations that in places show concavity in darker laminae (possibly reflecting wet sediment contortion about more competent silt-size laminae). It is heavily fractured by calcite veins, with chalcocite anhedra as space-filling material (secondary to) between detrital mineral grains. The BIR slides were cut and polished in 2009 and 2010, and some of them contained an orange translucent concentric banded material about chalcocite anhedra - this orange material polished away easily by hand with mild abrasive anti-tarnish compound. The orange material surrounded c.g. anhedral chalcocite and also occupied chalcocite-bearing veins which offset bedding. The mottled reflectivity of such masses extended beyond the radial growths themselves, and occurred on adjacent grains, probably as a thin surface coating. This material is similar in appearance to the "residual petroleum" material described by Barghoorn *et al.* (1965) in transmitted light

microscopy as "alternate sharply delineated layers and spheroids of reddish and light amber..HCs exhibiting varying degrees of devolatilization...and frequently arranged in an undulating concentric manner about a mineral center, often chalcocite." After a second polishing, the orange translucent material disappeared; it is debatable whether it was HC residue or a recent biogenic mass. Kerogenous AOM present as amorphous lamellar brown (TAI = 3.2) domains associated with finest-grained black opaque wavy to anastomose laminations. Fracture-filling chlorite about chalcocite grain, and many chalcocite grains distributed in black opaque FOM concentrations (TAI = 3.9), with chalcocite also commonly occurring in association with thin, bedding offsetting, fracture-filling pyrobitumen accumulations oblique to lamination. Medium grained chalcocite also present in silt-size discontinuous quartzose laminations.

Figure A66: PPL orange banded concentric growths about chalcocite core. Sample BIR 7.

Figure A67: PPL of previous feature, but after removal of orange material by anti-tarnish hand polishing. Sample BIR 7.

Figure A68: PPL and REFL showing the pyrobitumen/biogenic growth's chalcocite core and reflective nature. Sample BIR 7.

BIR 8, 720 m downstream from Nonesuch Formation top

This is a light gray thinly laminated siltstone with thin dark gray even parallel continuous interlaminated shale. No thin section.

BIR 10, 760 m downstream from Nonesuch Formation top

This sample is a brecciated black shale with significant malachite stain, foliated appearance in hand sample, calcareous and pervasively fractured. Calcite veins disrupt bedding in thin section, showing breached shaley laminae. Translucent isotropic amorphous bedding concordant lamellar organic matter is brown (TAI = 3.2) but significant FOM is also apparent as wavy opaque accumulations of black (TAI = 3.9) material. Very large anhedral chalcocite grains present, occupy secondary spaces in the same manner as in BIR 7. Covellite is present and rare, as v.f.g. anisotropic masses in association with concentrations of chalcocite. Incipient authigenic chlorite growths are commonly associated with chalcocite and covellite concentrations, in places envelop the Cu sulfides, and chloritic veins and vein margins also apparent. Filamentous organic matter is apparent in shale clasts as black opaque (TAI = 3.9) lamellar material associated with dark brown AOM, faintly translucent (TAI = 3.8). Orange to brown in transmitted light (PPL) to mottled bright yellow reflecting, chalcocite-associated concentric banded surficial material (polished away easily by hand, after initial preparation polish), possibly neo-biotic coating, or, possibly, devolatilized bituminous material similar to that of Barghoorn *et al.* (1965).

Figure A69: PPL - chlorite partially encasing f.g. covellite (anisotropy) on margin of c.g. calcite vein. Sample BIR 10.

Figure A70: XPL and REFL – chlorite partially encasing an anhedral covellite grain, in association with vein calcite. Sample BIR 10.

Figure A71: PPL, chalcocite (Ch) grain adjacent to FOM apparent in shale clasts as black opaque (TAI = 3.9) lamellar material associated with dark brown AOM, faintly translucent (TAI = 3.8). Sample BIR 10.

Figure A72: Chalcocite encasing adularia, both suspended in vein calcite, PPL REFL. Sample BIR 10.

BIR 11, 800 m downstream from Nonesuch Formation top

This is a gray laminated siltstone with darker gray shale laminae, even and parallel. Syneresis cracks present. Discontinuous, locally disrupted/breached phyllosilicate-rich shale laminations

are present, varying in thickness and in places disturbed by calcite blebs. Concave up patterns in shale portion may represent lode structures. Isolated, clay mineral-associated brown lamellar wavy isotropic translucent AOM present, brown (TAI = 3.2), with some possible FOM, also brown and translucent (compacted AOM?) No Cu minerals present, pyrite dominates the opaque reflective fraction.

BIR 13, 850 m downstream from Nonesuch Formation top

This is a gray siltstone and interlaminated dark gray shale, ripple-laminated, with bed-concordant phyllosilicates apparent in hand sample; laminations are disrupted by a large (2 x 4 cm) concretion (calcareous). Translucent AOM is intimately associated with v.f.g. clay mineral accumulations (layer parallel aligned); AOM is orange (TAI = 2.55); significant black (TAI = 3.9) opaque lamellar FOM dominates (85% of OM) intimately associated with translucent AOM. Tarnished f.g. chalcocite is widespread as incipient pyrite replacements, some of which show bornite and covellite after chalcocite. This material is analogous to Figure 6's Top Zone of WP nomenclature.

Figure A73: PPL AOM as orange brown (TAI = 2.8) pseudo-lamellar material, in association with pyrite. Sample BIR 13.

BIR 14, 850 m downstream from Nonesuch Formation top

This sample was reported by Colbert (2011) as bearing native Cu in the same shale layer as syneresis cracks. It shows cross-bedding and ripple marks in light gray silt layers and dark gray shaley laminae; 65% silt, 35% shale. This sample is analogous to the Top Zone of WP nomenclature (Figure 6). Chalcocite is present, tarnished, widespread, f.g. to m.g., and with bornite/covellite replacements apparent together within individual grains. Rare brown (TAI = 3.2) AOM in association with FOM. FOM is black opaque (TAI = 3.9) wisps most concentrated at silt-shale grain size interfaces, in association with chalcocite. Shaley laminations breached by silty material are apparent but not widespread.

BIR 15, 880 m downstream from Nonesuch Formation top

Colbert (2011) described this as a large lithic nodule. The sample is a large concretion of calcareous shale (5 x 5 cm) showing small-scale crossbedding and lenticular discontinuous laminae. This sample is analogous to the dark gray massive of WP nomenclature (Figure 6). It is pyritic, with rare chalcocite incipient replacements. Brown AOM is apparent (TAI = 3.2) as compacted wavy laminar masses distorted about silicate grains - similar appearance to FOM (which is absent).

BIR 16, 900 m downstream from Nonesuch Formation top

This sample contains a quartz and calcite vein with pyrite visible in hand sample (Colbert, 2011); fluorescent blue oil inclusions are present with homogenization temperature reported as 159° C. This is the Marker Bed of Figure 6. Pyrite as widespread disseminated f.g. subhedra commonly rounded, with some framboids, many of which show incipient chalcocite replacement. Brown AOM is apparent (TAI = 3.2) as compacted wavy laminar masses distorted about silicate grains similar appearance to FOM (which is absent).
Appendix B: Sample and Analysis Listing

The listing at each locality is from stratigraphic base to top. Stratigraphic heights for outcrop sections are estimated from dip, deviation from perpendicular transect, and distance from a contact of the Nonesuch Formation and are shown in italics. Informal stratigraphic units within the Nonesuch Formation are given where they can be identified and are indicated with UPPER CASE. The units follow schemes developed by the White Pine Mine staff (e.g. Ensign, *et al.*, 1968) and for the Copperwood Project (Bornhorst and Williams, 2013).

Sample	Height (m) above base of Nonesuch	Stratigraphy/ Sedimentology	TOC (Leco)	Rock Eval	duplicate	C and O carbonate isotopes	Soxhlet Extract GC/GC-MS
	Formation						
Copper Falls	, Bad River						
CF-1A-2	2	silt/shale black thin laminae in gray-red siltstone.	V	V		V	
CF-1B	3.4	dark gray massive siltstone with rare thin, darker finer laminae	V				
CF-2A	4	fissile gray to dark gray thinly laminated siltstone.	V	V		V	
CF-2B	6.6	gray-dark gray-red siltsone	v	V	X,X	v	
CF-4A	38	fissile dark gray laminated silststone	V	V			
CF-3B	41	dark gray massive shale	V	V	Х	V	
CF-4B	71.5	reddish-black shale with intercalated cross-stratified siltstone.	V	V			
CF-3A	80	grayish-red siltstone with black mud rip-ups (?).	V	V			
CF-5B	80.1	brown-red siltstone	V	V		V	
Saxon Falls,	Montreal Rive	r					
SF-6B	4.1	DOMINO (?), massive gray silt with darkerangular rip-ups	V	V			
SF-1A	7.8	UPPER SS (?), dark-gray fine silt laminae in rediish-gray silt/sand	V	V		V	
SF-2A	13	UPPER SS (?), reddish gray with clay rip-ups to 3 cm				V	
SF-5B	14.5	GALAXY (?), dark gray massive shale.	V	V	Х	V	
SF-4B	41.3	massive gray siltst.	V	V	х	v	
SF-3A	43.8	dark gray laminated siltst.	V	V		V	
SF-3B	72.2	thickly laminated, even parallel graded siltstone (light gray) and	V	V			
SF-2B	94.6	gray / red-brown siltstone in reddish brown laminated siltstone.	v	V			
SF-4A	103.7	cross-stratified gray siltstone	v	V		v	
Copperwood	d, PC-5 (drilled	1959)					
PC-5-7	6.4	UPPER SS.	V	V		V	
PC-5-4	8.1	UPPER SHALE	V	V		V	
PC-5-8	20.4	MARKER BED	V	V		V	
PC-5-6	21.3	MARKER BED. Dark gray shale, very thinly laminated				V	
PC-5-3	66.6	BLACK LAMINATED SILTSTONE - gray member.	V	V			
PC-5-2	80	BLACK LAMINATED SILTSTONE	V	V			
PC-5-1	83.5	BLACK LAMINATED SILTSTONE; gray, very thinly laminated, very thin	V	V		V	
		black shale laminae.					
Copperwood	d, PC-1 (drilled	1959)					
PC-1-5	2.4	GRAY LAMINATED (PARTING SHALE). Massive, reddish-brown siltst.					
PC-1-4	10.1	UPPER SHALE. Massive gray fine siltstone alternating (~0.5 cm) with					
		brownish-gray coarse siltstone					
PC-1-6	10.7	UPPER SHALE. Brown-red fine silt to shale					
PC-1-3	10.9	UPPER SHALE. Brown shale laminae in massive gray fine siltstone	V	V			
PC-1-2	43.5	DARK GRAY LAMINATED SILTST. Light gray siltstone and dark gray shale	v	V			
PC-1-1	59.7	BLACK LAMINATED SILTSTONE. Light gray laminated coarse silt with	V	V		V	
		dark gray shale laminae.					
Presque-Isle	River						
PI-7	14.9	gray to dark gray thinly laminated (UPPER SHALE?)	V	V		V	
PI-8	25.5	massive gray siltstone	V	V		V	
PI-9	25.5	gray to dark gray thin laminated siltst. (GALAXY?)	V	V		V	
PI-10	59.9	gray / dark gray thin laminated siltst. (BLACK LAMINATED SILTST.?)	V	V		V	
PI-12	92	dark gray shaley siltstone (BLACK LAMINATED SILTST.?)	V	V		V	
Iron River Sy	ncline, WPB-1	l (drilled, 1961)					
WPB-1-4	2.7	DARK GRAY MASSIVE (?) Light red-gray coarse massive siltstone	v	V			
WPB-1-1	3.6	THINLY (?) Brownish-green-gray thinly laminated, very fine sand	v	V		V	V
WPB-1-6	13.7	WIDELY - gray to light gray coarse siltstone	V	V		V	
WPB-1-3	20.9	UPPER SHALE (?) Dark gray-black micaceous siltstone	V	V			V
WPB-1-2	23.2	DARK GRAY LAMINATED SILTST gray-green coarse siltstone	V	V			

Appendi	x B, ctd.						
Sample	Height (m)	Stratigraphy/ Sedimentology	TOC	Rock	duplicate	C and O	Soxhlet
	above base		(Leco)	Eval		carbonate	Extract
	of Nonesuch					isotopes	GC/GC-MS
	Formation						
WPB-1-7	49.9	gray - red-brown interbedded siltstone (with black mudstone	٧	V			
WPB-1-5	100	light gray - dark gray laminated siltstone	V	V		V	
Little Iron R	iver, Silver Cit	у					
LIR-2	0.8	PARTING SHALE	V				
LIR-3	5	UPPER SHALE	V				
LIR-4	9	UPPER SHALE. Massive gray siltst., non-calcareous	V				
LIR-6	13	UPPER SHALE. Massive gray siltst.	V	V			
LIR-10	17	UPPER SHALE. Massive gray siltst.	V				
Big Iron Rive	er, Silver City						
BIR-16	4.5	DOMINO (PARTING SHALE). Dark gray green, thinly laminated	V	V			V
BIR-15	13	DARK GRAY MASSIVE, calcareous concretion 4x4x2 cm	V	V			V
BIR-14	18	TOP ZONE, light gray silt, discontinuous dark gray shale laminae.	V	V			
BIR-13	19	TOP ZONE, coarse gray silt with fine shaley laminae	V	V			V
BIR-11	32	gray laminated siltstone, showing syneresis cracks	V	٧			
BIR-10	39	black shale	V	V			
BIR-8	44	light gray laminated siltstone	V	V			
BIR-7	48	cross-stratified gray siltstone, finely laminated	V	V			
White Pine,	28G (drilled 1	.965)					
28G-572	0.5	DOMINO	V				
28G-571	1	RED MASSIVE; massive shale	V				
28G-539	11	UPPER SHALE (massive gray, pyritiferous.)					
28G-520	17	MARKER BED	V	V			
28G-514	19	MARKER BED	V	V			
White Pine,	517 (drilled 1	995)					
517-6	0.5	DOMINO; thinly laminated green-gray fine silt and light gray to gray- black coarse siltstone	. √	V			
517-5	3.2	RED MASSIVE; brown-gray, massive coarse silt with black laminae	v	V			
517-2	4.8	UPPER SAND; massive light gray siltstone	V	V		V	
517-1.5	9.8	BROWN MASSIVE (?) dark gray-green coarse micaceous siltstone.	V	V			
517-4	11.1	WIDELY; Massive gray siltstone	V	V			
517-2.5	19.5	UPPER SHALE; dark gray laminated siltstone	V	V			V
517-3	22.1	GALAXY; black laminated siltstone and shale	V	V			V
517-1	206.7	gray laminated siltst	V	V		V	
White Pine,	523 (drilled 1	995)					
523-5	1	DOMINO; light gray-green massive siltstone	V	V			
523-2	3.7	UPPER TRANSITION; wispy black thin laminations in dark gray siltstone	٧	٧		V	
523-3	15.9	STRIPEY; dark gray shaley siltstone.	V	V		V	V
523-1	17.3	MARKER BED; dark gray thinly laminated siltstone with grav-black	V	V		V	V
		shale laminae.					
523-4	21.3	GALAXY; lenticular fine black silt in gray very fine sandstone.	V	V			
523-6	44.3	gray massive siltstone, subhedral pyrites	V	V			
523-7	59.5	gray / red brown siltst.				V	

Appendix C: Locality, Field, and Prior Core Log Sample Descriptions

Sample	Core depth (ft) / distance on	Height (m) above base of Nonesuch	Field and hand-specimen notes and descriptions.
	profile (m)	Formation	
Copper Falls	, Bad River		
CF-1A-2	2	2	Parting shale/Domino equivalent? Fine grained (silt/shale) black thin interlams between thick lams of gray-red siltstone. Post-depositional fractures filled with pinkish white calcite + hematite or K- spar. Field Note: 8 m above river level at base of Nsch; sharp contact w CHC. Fissile dark gray massive siltstone and reddish tan c.g. silt w/ minority gray f.g. silt in wavy thin laminae. Same strat pos'n as CF-1B. Significant but not pervasive fracture. Secondary Cu minerals present (malachite). N side Bad R.
CF-1B	3.4	3.4	Red Laminated; Dark gray massive siltstone with thin, darker and finer laminations (rare). Scour (?) filled with lighter gray silty material Field Note:S side of Bad River. 6 m ARL. Massive gray siltstone, heavily fractured, so grabbed several small less ox'd parts, as dry and deeply sourced as noss (=5 cm from frre). Eait bluich iridescence = MnD2
CF-2A	4	4	Gray Siltstone; Extremely fissile/fractured gray to dark gray thinly laminated, parallel and even to wavy and/or lenticular siltstone. Very thin, platy sample (<1.5 cm thick). Field Note: 10 m ARL, similar lithol. To CF-1A-2. N side Bad R.
CF-2B	6.6	6.4	Red siltstone/gray siltstone. Gray and dark gray irregular/anastomose thinly laminated siltstone with red (hematite or oxidized OM?)-filled fracture. Field Note: 7 m ARL, pervasively fractured dark gray siltstone. Small pieces, all wet. S side of Bad River
CF-4A	39.1	38	Dark gray laminated silststone. Extremely fissile (fractured?) gray siltstone with rare (~10%) darker gray silt laminae even and parallel. Field note: very fractured fissile black shale with calcite-filled frxrs. Same N-S line as CF-2B, 3 m ARL, N side Bad R.
CF-3B	42.3	41	Dark gray massive shale subunit of CW terminology "Gray and red-brown interbedded siltstone" (?). Massive gray sandy siltstone with dark gray clay rip-ups to 1 cm x .5 cm, and discordant, torn- up red to gray-red very thin internally wavy laminated material. S side of Bad R., 2 m ARL.
CF-4B	85.2	71.5	Reddish-black shale with intercalated cross-stratified siltstone. Black densely anastomose (~7%) laminations with reddish gray and gray silty laminations thick, coupled with dark gray laminations encasing lenticular silty red lams. Field note: 3 m ARL, S side Bad R. Reddish tan c.g. siltst or f.g. Ss w/ wavy black anastomose v.f.g. (shale?) laminae, thin and up to 40%.
CF-3A	87.7	80	Grayish-red siltstone with black mud rip-ups (?). Gray siltstone interlaminated (thickly, often wavy continuous) with darker gray wavy continuous to broken/ripped up (?)/vertically broken by cross-stratal flow(?) lenticular lams. NOTABLE discordant silty unbedded zone with randomly oriented black material to .3 cm x 1 cm.
CF-5B	90.8	80.1	Brown-red siltstone, subunit interbedded red siltstone and laminated brown/red siltstone. Dominantly black siltstone with minor (~7%) lenticular silty red-light-gray laminations, thin and thick. Field note: 5 m ARL, S. side Bad R., gray dominantly siltstone with minority (<7% lighter silt). Very difficult digging beneath roots to reach sufficiently unweathered/fractured samples. MnO present.
Saxon Falls,	Montreal Rive	r	
SF-6B	4	4.1	Domino (?) Massive gray f.g. silt/clay with darker gray clay/shaley angular rip-ups, randomly oriented,, from 2mmx2mm to 1cm x4 mm. Field note: 5 m ARL, S. side Bad R., gray dominantly siltstone with minority (<7% lighter silt). Very difficult digging beneath roots to reach sufficiently unweathered/fractured samples. MnO present.
SF-1A	8	7.8	Upper ss? Black f.g. silt or shale thin laminae, gently undulose (~5%) and f.g. silt or shale dark gray laminae (thick) and c.g. silt or Ss (reddish gray) thick laminae. Lenticular lams in silty/Ss layers. All Lams cross-cut by vertical fractures offsetting crisp lam bounds by up to 1 mm. = vertically breached lams (?) Field note: Top of outcrop/bluff, 110' above river. Basal Nonesuch, ~30' upsection of base. Sampled in gully, dug 10" into fissile but well indurated shale. Bluish iridescence present (= MnO?) and common red color on fractured surfaces. 1 m away is a fracture striking 316, dipping 76NE.

Appendix	C. ctd.		
Sample	Core depth (ft) / distance on profile (m)	Height (m) above base of Nonesuch Formation	Field and hand-specimen notes and descriptions.
SF-2A	15	13	Ss, reddish gray with clay rip-ups to 3 cm. Sandstone is massive, f.g. Top of outcrop/bluff, 110' above river. From a promontory outcrop between 2 gullies (this is a more resistant layer, bc? not shale). Red-brown, med.gr. Ss/Cgl w. shale/siltstone rip-ups to 25 cm and red sandy blebs to 20 cm.
SF-5B		14.5	Black massive shale. Galaxy (?) Extremely fractured, apparently massive dark gray siltstone. 3 m ARL.
SF-4B	50	41.3	Massive gray siltst. Gray massive to thinly laminated micaceous c.g. siltstone, with one thin laminated, very disturbed (ripped-up?) dark red-gray lamination, undulating and terminating in a gray siltstone/reddish f.g. silt/clay zone possibly representing dissociation of the dark lamination. Field note: C.g. massive gray siltstone 1 m below stripey whitish to dark gray wavy anastomose thinly bedded to thickly laminated siltstone. 2 m above river
SF-3A	45	43.8	Dark gray laminated siltst.
SF-3B	100	72.2	Black laminated siltstone. Thickly laminated, even parallel graded siltstone (light gray) and darker gray finer silt/clay laminae showing concave up lode structure (?) Field note: Gully between CHC incursions. Many photos. Numerous anastomose black thin to thick laminations in whitish gray siltstone. Pervasive, repeated vertical fracture in Andersonian conjugates, 170,85 & 316, 69. Fracture makes avoidance of surface oxidation hard (samples are small). 3 m above river level.
SF-2B	120	94.6	Gray and red-brown interbedded siltstone, subunit reddish brown laminated siltstone. Dark gray siltstone and shale thinly interlaminated with even, gradational-bounded pinkish gray c.g. silt. Darker gray very thin anastomosing/inosculating) and sometimes concave up (lode structure?) laminations in lighter pinkish gray c.g. silt layers. Dominantly (75%) darker and finer-grained overall. Field note: River level +3m. Black and white striped, with 1 m intervals of white-dominant siltstone. Anastomose patterns common. Sample is black thinly laminated shaley siltstone.
SF-4A	130	103.7	Cross-stratified gray siltstone, subunit red intercalate cross laminated siltstone. Dark gray f.g. silt/shale thick cross-laminae in lenticular ripple-laminated siltstone with reddish gray coarse silt/Ss. 105' above river. Next positive outcrop of Nsch dstrm of SF-3A. Thickly laminated f.g. silt/shale with odd rounded positive texture (cross-current ripples or drying?). MnO stain. Less than 1 m up section from conglomerate/sandstone lens (photo'd).
Copperwoo	d, PC-5 (drille	d 1959)	
PC-5-7	839.5	6.4	Upper ss. dark grayish-red shale laminae with coarser-grained lighter gray siltstone, which is whiter in the calcareous-cemented lams (perhaps 1/10 of gray silty layers are calcite-cemented). ~60% silt, 40% shale. Logged originally as: "from 807'-861', logged as: Micaceous, alternate shale, siltstone and sandstone of varying thicknesses and ratios. Med. gray. "
PC-5-4	823.4	8.1	Upper shale. massive, brownish-gray micaceous siltstone with rare, coarser-grained whitish-gray calcareous siltstone lams (<1.5 mm). 90% silt. Originally logged as: "from 807'-861', logged as: Micaceous, alternate shale, siltstone and sandstone of varying thicknesses and ratios. Med. gray."
PC-5-8	783.2	20.4	Marker bed
PC-5-6	780.2	21.3	Marker bed. Dark gray shale, very thinly laminated, parallel and continuous, (60%) with massive to crudely thin laminated (parallel and slightly wavy) light-gray, often lenticular v.c.g. siltstone and v.f.g. sandstone, calcareous. Uneven, gradational contacts between lithologies. Greenish gray clay layers are most continuous and sharpest-bounded, usually0.15 mm thick and very continuous, almost even parallel with slight waviness. Calcite-rich gray silt (~15% calcite) disrupts bedding in places and shows undulating gradational contact with darker gray silty layers. Originally logged as: "(1"=20') Micaceous, massively bedded, difficult parting, occasional 1/2-2" calcite-cemented, bleached, silt lenses. Medium gray."
PC-5-3	631.5	66.6	Gray member of black laminated siltstone. Massive, brownish-gray siltstone, 95% silt/sand. Originally logged as from 587'-777', logged as: (1"=20') Micaceous, medium to thick bedding; dark gray to green-gray; shale 40-60%; parting moderately easily to hard; thin laminae of silt and shale, graded bed; occasional calcite in irregular beds and blebs 1 mm thick; laminae w/ shale, abundant 1/2 to 1" calcite cemented, bleached silt bands at 715', 716', 721', 722', 730', 731', 732', 734', 738', 739, 747, 743, 745, 752, 754.

Appendix	C, ctd.		Field and hand-specimen notes and descriptions.								
Sample	Core depth (ft) / distance on profile (m)	Height (m) above base of Nonesuch Formation									
PC-5-2	587.2	80	Black Laminated Siltstone: Calcareous, gray siltstone, v.c.g.,very thinly laminated, with very thin dark gray/black, laterally continuous OM-rich wavy laminae, often encasing lenticles of silt ~ <1mm; several anastomose carbonaceous lams. 60-40 silt/shale. Originally logged as "from 587'-777', logged as: (1"=20') Micaceous, medium to thick bedding; dark gray to green-gray; shale 40-60%; parting moderately easily to hard; thin laminae of silt and shale, graded bed; occasional calcite in irregular beds and blebs 1 mm thick; laminae w/ shale, abundant 1/2 to 1" calcite cemented, bleached silt bands at 715', 716', 721', 722', 730', 731', 732', 734', 738', 739, 747, 743, 745, 752, 754."								
PC-5-1	576.1	83.5	Black laminated siltst. Gray siltstone, very thinly laminated, with very thin black, organic-rich shale laminae. OM-rich lams are wavy and parallel. Dark gray lams shift gradually up to light gray shale then up into gray siltstone. Non-calcareous (although vuggy fracture may represent calcite diss'ln void). 80 to 95% silt, 5 to 20% shale/clay. V.f.g. oxidized sulfide present. Majority of lams are continuous and very thin, but the very finest - ~50 microns thick - show rare, 3-4 stacked black OM-rich laminations in a convex geometry, nearly or completely encasing gray lenticular silt lam (red arrow) up to 3 mm wide. Very very thin gray-green clay lams and very very thin OM-rich black lams do show some tears/detachments that may indicate disturbance on compaction. Originally logged as "from 576'-589', logged as: (1"=20') Micaceous, thinly bedded, varying amounts of shale from 50-90%, parting easily, thinly laminated, graded bedding, silt and shale layers less than 1 mm thick; dark gray to green-gray; uniform texture; massive siltstone bed."								
Copperwood	, PC-1 (drilled	1959)									
PC-1-5	888.4	2.4	Gray laminated. Massive, reddish-brown siltstone and shale, micaceous. A single black wisp, 1 mm wide, 0.05 mm thick, exists, no grains visible; some, very rare, darker brown round to irregular clay particles (<0.5 mm, rip-ups?) wide. 95+% silt. Originally logged as "(1"=2') Micaceous, thinly to medium bedded, shale 70-90%, parting easily, reddish gray. Limey Marker at 896.6. My Notes: Gray massive siltstone"								
PC-1-4	864.2	10.1	Upper shale. Massive gray f.g. siltstone alternating (~0.5 cm) with brownish-gray c.g. siltstone and v.f.g. sandstone, calcareous. Some rare unID'd black wisps (no grains visible ~ 1 wide, 0.1 mm thick.). Black wisps more prevalent in brownish coarser layers. 95% silt. Original Logged as: (1"=2') "Micaceous, moderately to thickly bedded, uniform texture, shale 50-70%, parting moderately easily, varies to thin-bedded at base. Dark gray to reddish brown." My Notes: Gray massive siltstone								
PC-1-6	862.2	10.7	Upper shale. Brownish-red v.f.g. silt to shale crisply changing to greenish-gray c.g. silt, irregular subhorizontal boundaries (blotchy at times), largely massive texture. Some thin alternate laminae of both are present. 60% silt/sand, 40% shale/fine silt. Isolated clay-rich rip-up, darker and randomly oriented <1mm oblong, with a second, smaller similar clast at random orientation several mm away. Originally logged as : (1"=2') "Micaceous, thinly bedded alternate laminae of siltstone and shale 1-2mm thick, shale 70-90%, easily parting."								
PC-1-3	861.4	10.9	Upper shale. Very thin, brown, lenticular to continuous and parallel shale laminae in massive gray f.g. siltstone, micaceous and massive . Rare, faint light gray zones apparent, ~1 mm thick and semi-continuous across core, in f.g. siltstone. Transition at end of sample is black wavy-crinkly, 0.1 mm thick semi-continuous fracture-fil or wispy lamination grading through gray f.g. siltstone to brown, f.g. siltstone/shale. Non-calcareous throughout. 75% silt/sand, 25% brown/black shale/clay. Original: Logged as "(1"=2') Micaceous thinly bedded alternate laminae of silststone and shale 1-2 mm thick, shale 70-90%, easily parting."								
PC-1-2	754	43.5	Dark gray laminated siltst. Light gray siltstone and dark gey shale laminae, both very thin, continuous across core. Whitish-gray, v.f.g. silt laminae anastomose/inosculate in places, leaving lenticular light gray siltstone lams (6 mm x .5mm). Laminae show small-amplitude wavy texture, and are generally. 0.5 mm thick, vuggy-centered fracture in c.g. gray siltstone bounded by brownish black f.g. siltstone lams (0.1 mm thick); f.g. brown bounding lams anastomose after ~1 cm. 65% shale, 35% silt. Original:"Logged as: (1"=20') Micaceous, massively bedded, shale <30%, no parting, 45 degree fracture; occasional 1-3mm calcite laminae, dark gray" My Notes: gray laminated siltstone.								

Appendix	<i>C</i> , <i>ctd</i> .		
Sample	Core depth (ft) / distance on	Height (m) above base of Nonesuch	Field and hand-specimen notes and descriptions.
	profile (m)	Formation	
PC-1-1	701.3	59.7	Black laminated siltst. Light gray very thinly to thickly laminated, v.c.g. siltstone laminae (some calcareous) with dark gray to grayish black shale laminae. Graded laminations, with silty material fining upward to clay/shale. Laminations are wavy and parallel, continuous. Oxidized pyrite up to 0.1 mm present. 0.05 mm thick wavy/irregular black calcareous fracture (?) w/o visible constituent grains, continuous across width of core (1"); (black color is discontinuous). UnID'd non-carbonate whitish-gray thin (<0.5 mm) shale laminae (no grains visible, likely very fine phyllos) show internal, concordant, discontinuous wisps of black material or possibly, voids, (~1 mm wide but linking to ~1 cm); (photo 2, 40x and Leica 2). Subvertical, calcite-filled fracture at margin. 70% silt, 30% shale. Originally logged as (1"=20') "Micaceous med bed., sh. 50-70%, parts mod. Easily; calcareous vuggy?, brecciated?, dark gray in color." My Notes: gray laminated siltstone
Presque-Isle	River	14.0	Courte derbarry thick leaving to day discussed friend on interfereinstings of derbarry OM side
PI-7	48.2	14.9	Gray to dark gray thinly laminated to disrupted/ripped-up interlaminations of darker, OM-rich material at ~30 deg to horiz, to 2.5 cm wide. Silty lams are even and lenticular. Sample note: 2 m above river level, brownish gray fissile f.g. siltstone, just 3 m upsection of very thin CHC-esque lens (.3 m thick). Cu stain, as photo'd. Cherty lenticular concretions, non-calcareous, parallel to bedding, 5cm x 20 cm. Ex-situ (but most likely local, ie: Nsch) micaceous siltstone w/ rip-ups and mudcracks. E side of river
PI-8	82.7	25.5	Massive gray siltstone. Uniform, unlaminated, with minor pyrite, dominant qtz.
PI-9	82.7	25.5	Gray to dark gray very thin laminated (even parallel near to straight with some gently undulose and some crossbedded fine lams against massive-bedded) siltstone. Lenticular dark lam .5 cm wide present, isolate in lighter gray silt.
PI-10	193.8	59.9	Very finely laminated gently undulose to wavy dark gray to gray silty and shaly laminae.
PI-12	298.2	92	Shaley siltstone. Indistinctly bedded dark gray with blotchy pink calcite blobs (to .5mm) coloring ~45% of sample light gray. Silty to shaly.
Iron River Sy	ncline, WPB-1	1 (drilled, 1961)
WPB-1-4	521.1	2.7	Dark Gray Massive equiv? Light reddish-gray coarse and massive siltstone, well-sorted and with very rare, faintly visible thin laminae of darker and finer-grained silt particles. Lamination is not ubiquitous and not observed in lighter areas, which appear massive. Calcite cement throughout. Rusty red 0.05 mm weathered pyrite and smaller, less-oxidized chalcopyrite (BLUE DOTS). 100% siltstone. Pyrite or chalcopyrite, phyllosilicates. Some sub-parallel alignment of phyllosilicate grains. 1961 Drill log: "Logged as: (1"=50') Interbedded siltstone and shale and massive sandstone. (1"=10') Well-bedded thinly laminated even-grained micaceous siltstone. Pyrite/Chalcopyrite in limey layers"
WPB-1-1	518.1	3.6	Thinly equiv? Brownish-green-gray thinly laminated, v.f.g. sandstone and coarse siltstone. Laminae are wavy, parallel and often discontinuous or lenticular and commonly ~ 1 cm or less in width. Extensively (>70% of lams) calcite cemented, with some coarser-grained laminae light gray in color (>40% CaCO3), while more organic-rich shale laminae are near-black. 50% silt, 50% shale. Black, OM-rich lams are wavy/undulating, with anastomose and possible folded geometry. conjecture: brown blotchy exterior = oxidation?; wavy, undulose/possibly folded laminae - possible algal mats? 1961 logged as: (1"=50') Interbedded siltstone and shale and massive sandstone. (1"=10') Well-bedded thinly laminated even-grained micaceous siltstone.
WPB-1-6	485	13.7	Widely, gray to light gray coarse siltstone, massive to very thinly laminated with most laminae lenticular and <~2mm wide. Multiple 1 cm thick layers of very thinly laminated grayish-black shale alternate with coarse gray siltstone - black lams here are more continuous and parallel - despite some distortion as in photo 29 Notable thicker, darker gray-brown, and finer-grained but rare laminae are significant - more laterally continuous and showing both irregular anastomosing and near-parallel forms. Calcite-filled fractures crosscut bedding at ~60°. Pyritic, micaceous, with isolated pinkish-white calcite blebs (<1 mm) and some rare thin (<0.5mm thick), lat. discont. subhoriz. calcite filled fxrs. Mud rip-ups present on bed-parallel end of sample, darker gray shale fragments to 3 mm. 85% silt, 15% shale. 1961 logged as: (1"=50') Interbedded siltstone and shale. Massive sandstone w/ thin shaley limestone bed. (1"=10') gray-green and dark gray thick bedded (2-10 cm), v.f.g sandstone or coarse siltstone and fine grained siltstone or shale. Varve- like graded beds, each bed graded from coarse siltstone to shale.

Appendix	C. ctd.		
Sample	Core depth	Height (m)	Field and hand-specimen notes and descriptions.
	distance on	of Nonesuc	= h
	profile (m)	Formation	i.
WPB-1-3	461.5	20.9	Upper Shale equiv? Dark gray-black micaceous siltstone with fracture-fill calcite, (subhedral xtals up to 0.1 mm) some fillings up to 1 mm max. dimension. Calcite blebs to 0.2 mm wide present, discordant to bedding. Massive to irregular bedding, rare darker gray rip-ups of shale, lenticular and discontinuous, to 2 mm, within a dark brownish-gray to dark gray (coloration is blotchy) matrix, heavily fractured m.g. quartzose siltstone blotchy coloration of cement and distorted bedding = (higher-E deposition storm, or perhaps early diagene fluid movement?) Fractured surfaces showing fairly uniform pseudofoliated near-metamorphic fabric and reflective, greasy
			sandstone, well bedded and fine to c.g." ??Fractured surfaces showing fairly uniform pseudofoliated near-metamorphic fabric and reflective, greasy lustre may represent chloritization/greenschist metamorphism.??
WPB-1-2	454	23.2	Dark Gray Laminated Siltstone equiv., Micaceous, gray-green coarse-grained siltstone, in irregular, contorted thin laminae (some partially encasing rare darker, black shale laminae, wavy and somewhat discordant wisps up to 1mm wide). Lacking calcareous laminae, and cement is non-calcareous. One piece shows massive and distorted irregular bedding, with a brownish-gray domain and more definite rip-ups (photo 23). Fracture-fill calcite and pink (K-spar?) rimey coating on fracture oblique to bedding. Similar-oriented phyllosilicate grains may reflect gravity settling or some degree of imbrication (?). 70% siltstone, 30% shale. 1961 Logged as: (1"=50') Interbedded siltstone and shale. (1"=10') Brown and gray interbedded v.f.g. sandstone or coarse siltstone and fine grained siltstone or shale, w/ varve-like graded beds, each bed graded from coarse siltstone to shale. Individual beds are from 1 mm to 10 cm thick. Mud-chip tear-up (interformational) conglomerate and some slump structures. Some isolate lenses or thin beds of pebble conglomerate (particles >5 mm diameter). Conjecture: represent interformational conelomerate (BLUE-DOTTED SAMPLES). With rip-ups of clav and poss carb material as well.
WPB-1-7	366.2	49.9	Similar to gray and red-brown interbedded siltstone (subunit black mudstone ripups). Dark greenish-gray micaceous siltstone, coarse-grained with rare dark gray to gray-brown shale laminae. Very weak calc-cement. Massive to crudely thinly laminated, most distinct bedding is apparent as 2 mm-wide darker, finer-grained wispy parallel to discordant, sub-parallel laminae/rip- ups. 85% silt/sand, 15% shale. "1961 logged as: (1"=50') Thinly laminated highly micaceous, siltstone and shale." Conjecture: Wet-sed def'mn? Or rip-ups = intraformational conglomerate? Brown blotchy exterior = oxidation?
WPB-1-5	201.9	100	Gray siltstone; Wavy parallel, alternate laminae of light whitish-gray and dark gray f.g. siltstone/OM-rich shale. Individual laminae are very very thin and largely continuous across core, though discontinuous lams (40%) are lenticular. Lamina-sets of dominantly (>75%) darker material vs dominantly lighter material are ~.5-1 cm thick. Darker, gray-black, greasier-looking thin (<0.1 mm thick) wavier (concave up and down in small amplitude, ~0.5 cm alternations) laminations of clay-size particles present. Calcareous cement, rare, in light grayish white siltstone lams - calcareous lams encase dark gray silty lenticular lams in places, with sharp, irregular contact. 40% shale, 60% silt. Epoxy/resin on outer edge? Multiple irregular, bedding parallel fractures present, several calcite-cemented; one of same in irregular vertical orientation. Finely interlaminated clay-rich layers (enriched in ?bitumen, as rounded opaque blebs ?) and siltstone layers. Fine, continuous strand of ?migrated HCs? focused along a clay-rich layer, crosscut by?later calcite?. Bedding-oblique fractures appear to show darkening (HCs?) along their axis, but some show unilateral darkening on one side (R for the main one) relative to the other. 1961 drill logger:" Logged as (1"=50') Interbedded siltstone and shale in thin varve-like beds. Symbol: Interbedded v.f.g. sandstone or coarse siltstone to shale. Individual beds are from 1 mm to 10 cm thick."
Little Iron Riv	ver, Silver City		
LIR-2 LIR-3 LIR-4 LIR-6 LIR-10	regular sampling: dip = 18°	0.8 5 9 13 17	Parting shale Upper shale Massive gray siltst., non-calcareous, reg. sampling between CHC top and Parting Ss Massive gray siltst. Massive gray siltst.
Big Iron Rive	r, Silver City		

<u>Appendix</u> Sample	<u>C, ctd.</u> Core depth (ft) / distance on profile (m)	Height (m) above base of Nonesuch Formation	Field and hand-specimen notes and descriptions.
BIR-16	900	4.5	Domino. Calcareous, silty shale, thinly laminated with thick calcite vein (3mm wide) Fissile and
BIR-15	850	13	thinly bedded on the larger scale. Dark gray green overall.
BIR-14	850	18	Top Zone, calcareous coarser-grained silty light gray matrix with discontinuous darker gray shale
			interlaminae.
BIR-13	850	19	Top Zone, Calcareous cemented in coarser gray silty layers, with large white calcareous concreti- apparently disrupting fine-grained shaley silt interlaminae in a light gray coarser matrix.
BIR-11	800	32	Gray laminated siltstone, showing syneresis cracks
BIR-10	760	39	Black shale, with brecciated/foliated appearance, significant secondary malachite, calcareous an very fragile due to pervasive fracturing
BIR-8	720	44	Light gray laminated siltstone
BIR-7	700	48	Cross-stratified gray siltstone, fine laminated
White Pine,	28G (drilled 1	.965)	
28G-572	572	0.5	Domino
286-571	5/1	1	Red massive. Massive shale with sulfides, non-calcareous.
286-539 286-520	520	17	Marker bed. sparry Calcite vein, anastomose and inosculate, to 2mm wide; massive dark gray shaley siltstone with thin even parallel to wavy parallel alternate dark gray and light gray (coarse material silty)
28G-514	514	19	Marker bed. dark gray shaley siltstone with calcite nodules to 3 mm wide by 1 mm thick. Vertic calcite vein .5 mm thick, irregular, anastomose/inosculate, disturbs bedding in places. Thin, even parallel to wavy parallel laminations of darker gray finer lams with thicker siltier-sized lighter gra laminations.
White Pine,	517 (drilled 1	995)	
517-6	3136.15	0.5	Domino. Crude, very thinly laminated alternate layers of greenish-gray shale/v.f.g. siltstone and light gray to gray-black coarse siltstone. Non-calcareous. V.f.g. sulfides present in finer-grained, green-gray laminae, gently undulating in geometry, sometimes anastomosing. some brown oxidation(of ore?) on v.f.g. silt/shale layers. 60% silt, 40% shale. Originally logged as" Domino: Sandy siltstone; gray-green (5E 2/1); shale, well-laminated at base, grading upward to crudely laminated chloritic micaceous sandy siltstone. Just below "Junior Lime" - crudely laminated w/ mudcracks."
517-5	3127.5	3.2	Red Massive; Brownish-Gray, massive coarse-grained siltstone with very thin black, OM-rich laminae, (undulating lenticular, f.g. silt or shale) in laminasets (<0.3 cm) with bronzy-reddish brown massive fine-grained thicker lams of probable sulfide ore. Coarser layers appear to bear more chlorite and finer laminae show reddish, v.f.g. probable sulfide. Non-calcareous. "ore" bar overlies the very thin OM-rich black lam and appears to have a very very fine black OM-rich lam above it. noncalcareous. 65% silt, 35% shale. Possible mig'd bitumen.Originally Logged as Tiger Ss. Graded beds (<4 in.) Med/-gray (N3-> N5); siltstone dark-brown (5R 2/2), v.f.g., gray Ss, grading upward to hematitic siltstone and shale laminae as graded beds; shale laminae are commonly truncated and distorted w/ loadcasts and flame structures.
517-2	3122.25	4.8	Upper sand. Massive light gray siltstone with 1 mm thick continuous and discontinuous (lenticular) pinkish-white pseudo laminae (even, parallel; no grain size change visible). Lighter layers are strongly calcite-cemented. Significant massive light gray = 85%. Reddish/pink tint to calcite cemented layers (hematite or kspar?). Significant iron oxide stain on ext of core - ox'd pyrite/sulfide? 80% silt, 30% sand/silt. Whitest lams have sparry-looking calcite cement (up to 40% locally) and few to no dark grains, instead supporting pinkish white translucent subangular grains of probable qtz. 1961 Logged as "middle of a 2 ft long fining upward sequence. Upper Ss Ss, brown-gray (5YR6/1) to med-gray (N4->N6); siltstone, gray-green (5YR3/2) to med-gray (N4->N6); shale, dark-gray (N1_>N2), course to v.f.g. poor to well-sorted, calcareous +/- lithic Ss w/ subangular to subround lithic frags and mudchip intraclasts (2mm-1cm diam.); interbedded w/ crudely laminated siltstone and shale; shale partings and lenses throughout." Conjecture: Laminations are actually just differential cementation (no grain size change, or apparent lineations, associated)

<u>Appendix</u>	<i>C</i> , <i>ctd</i> .									
Sample	Core depth (ft) / distance on profile (m)	Height (m) above base of Nonesuch Formation	Field and hand-specimen notes and descriptions.							
517-1.5	3106.9	9.8	Brown massive? Dark grayish-green massively bedded coarse-grained micaceous siltstone. No calcite cement. Bedding-sub-parallel fracture with (?) silica (noneffervescent) cement. 85% silt/Ss, 15% shale. Originally logged as Tiebel Ss as above, w/ dissem. pyrite in siltstone/shale beds. (N4->N7 Munsell)							
517-4	3101.5	11.1	Widely; Massive gray siltstone and lighter gray siltstone, with rare thin discontinuous laminae, trough-shaped. Micaceous and bearing uneven subhorizontal (concave up/down on a 2 inch wavelength, .5 cm amplitude) calcite-filled fractures. Some (<25% total) calcite cemented zones. One lone very thin, planar and parallel black OM-rich shale layer, with rips/folds/irregularities as in photo 41. 90%silt/Ss, 10% shale.Originally logged as Tiebel Ss (Predom. Planar-bedded v.f.g. Ss w. minor siltstone, shale laminae and partings. Ss is predom. Planar-bedded with minor trough xbeds and convolute beds (ripple x-laminae). Fining upward from 3108 to 3101'. (N4->N7 Munsell)							
517-2.5	3078	19.5	Dark gray laminated siltstone; Very thin, continuous and parallel laminae in alternate dark gray fine grained siltstone/shale and lighter gray coarse-grained siltstone, both micaceous. Some lams undulate, with darker gray staying similar thickness and lighter gray changing thickness. Calcite cements lighter colored layers. Subhorizontal fracture-fill calcite present at base of core sample. Subvertical fracture showing calcite and void at either end (photo 39). 50% f.g. silt/shale, 50% silt/Ss.1995 logged as calcareous crudely laminated siltstone (N1->N2 Munsell) with non-calcareous well-laminated shale.							
517-3	3074.6	22.1	Galaxy (black laminated siltstone and shale). Very very thin, alternate, gradationally-bounded, laminae of dark gray (f.g. silt/shale) to gray c.g. siltstone, with lighter layers commonly calcite- cemented. Laminae are wavy to gently undulating, often lenticular and <1 mm wide. 0.5 mm wide dark silty blebs and blotchy, finer-grained stain (bedding-parallel fracture assoc.) of possible HCs visible on outside of core. Fracture-assoc. blotchy dark oil? stain on exterior (photo 38). 90% f.g. silt/shale, 10% c.g. silt. Basal 1 cm of sample is lighter gray and shows clay-sized bronzy gray blebs subconcordant with bedding up to 1 mm wide and fat but lenticular.							
517-1	3065	206.7	Gray laminated siltst.Gray laminated siltstone with soft-sed def'mn (my interpretive term). Thin to very thin laminae in laminasets of OM-rich black, clay-rich layers alternating with grayish-white coarse siltstone layers. grayish-black shale, variably continuous to <2 mm wide, in laminasets to ~0.5 cm thick, wavy and parallel to wavy discontinuous laminated, between light grayish white coarse grained siltstone. Variable calcite content, with some lighter-color laminae very calcite-rich but others less so; calcite cement NOT disseminated throughout. Concave up patterning in bases of light laminae, and some anastomosing/possibly folded dark, OM-rich black lams. 50% silt, 50% shale. Upward concavities may represent load structures - the cohesiveness of the darker shale contrasts the pillowy structures. Thickly striped appearance (~.5 cm thick alternate white/gray banding = very thin lamina composite bedsets)							
White Pine,	523 (drilled 19	995)								
523-5	2868.1	1	Domino. Light gray-green massive siltstone hosting bronzy-gray shale (irregular lenticular lamina 2 mm thick at bottom) with numerous discontinuous wispy black ?rip-ups? (some approaching 45° to bedding) of higher apparent [OM]. Brecciated/slumped disturbance texture. Wispy black rip-ups offset by .1 mm wide calcite-filled fracture (some brecciation of light gray massive siltstone). At least 7 subhorizontal, .05 mm wide calcite-filled fractures, some offset by the subvertical one. Some of the subhorizontal fractures anastomose. Anhedral, unoxidized chalcocite ? visible on fresh surface. irregular, blotchy brown bounding green color, across beds = oxidation of sulfides? Some pieces show different, more cohesive and subparallel (but still very wavy/irregular) thin laminations of all three lithologies listed above. 70% shale, 30% silt. Originally logged as: "Lower Transition: Ss, siltstone, brown-pink, (5YR 6/1) to green-gray (5E 4/1); shale, dark-gray (N1>N2); coarse to v.f.g. poor-to-well-sorted, hematitic to chloritic to gray (OM-rich), calcareous lithic Ss w/ subangular to subrounded lithic fragments and angular mudchip intraclasts; Ss interbedded w/siltstoneand shale beds and laminae, and shale partings; beds become thinner and finer-grained upwards. Planar bedded Ss w/ siltstone/shale partings. Just above calcite& red (Kspar?) filled veins < 2mm wide at 10-45 deg to L.A.?" My Notes: gray-green siltstone							

<u>Appendix</u> Sample	<u>C, ctd.</u> Core depth (ft) / distance on profile (m)	Height (m) above base of Nonesuch Formation	Field and hand-specimen notes and descriptions.								
523-2	2859.1	3.7	Upper transition. Wispy black subparallel very thin laminations in dark gray siltstone at top 1 cm. Massive, dark gray siltstone with irregular, darker gray-black rip-up clast-rich, wispy black laminated finer silt and shale. A very small minority of rip-up clasts appears to be calcite- cemented, light gray siltstone. Interformational rip-up conglomeratic siltstone. 1, 0.1 mm thick pink and white fracture-filling calcite/?k-spar? zone at base. Pink and white calcite/kpar also from a 0.5 mm thick subvertical fracture-fill which offsets a 0.05mm fracture of the same color/app. mineralogy. 85% silt, 15% shale. Originally logged as "Upper Transition: med. to v.f.g., well- sorted, calcareous hematitic or chloritic Ss and Ss w/ interbedded shale laminae and shale partings; Ss, siltstone bed decrease in width upward, fining upward unit. (SE 4/1, N5>N7, N1 >N2)." My notes: Greenish-gray siltstone, with fracture-fill calcite, just above UZV								
523-3	2819	15.9	Stripey. Overall dark gray shaley siltstone. Very thin bronzy-gray shale laminae between dark- gray f.g. silt laminae and v.c.g. siltstone/v.f.g. qtzose sandstone laminae (high calcite, white to gray-white). Bronzy-gray shale and dark gray silt lams are sometimes irregular, wavy and ?anastomose/inosc?, while white/gray-white c.g. silt/f.g. Ss layers are often lenticular/pseudo- boudin'd; even parallel lamination dominates, overall. Bronzy-gray shale = 20%, dark gray silt =45%, v.c.g. silt/v.f.g. sand = 35%. Originally logged as: "Massive black siltstone: shale, siltstone. Dark gray (N3) to gray-black (N2); shale and siltstone laminae (?0.3mm/3mm wide??); well-<br indurated, calcareous; greater concentration of calcite laminae near center of unit w/ wisps of shale/discontinuous shale laminae; calcareous nodules (1.5cmx2mm) sub-parallel to horizontal near base of unit. Traces of v.f.g. disseminated pyrite throughout." My Notes: Dark gray wavy laminated siltstone								
523-1	2814.7	17.3	Marker bed; Dark gray very thinly laminated siltstone and darker gray-black shale laminae. Laminations are very very thin, subhorizontal, even parallel to wavy, and commonly distorted by concretionary calcite. Numerous calcite concretions, some subhedral (up to 0.1 x 0.8 cm but mostly ~0.5 mm max dim.), some having a greenish cast(chlorite?), with very little silt/shale suspended. Concretions locally disturb bedding, contorting dark layers concentrically or in lenticular bulges about concretions, large and small. This sample has the most intense calcite cement of the suite. 65% shale, 35% silt. Originally logged as "Marker siltstone and shale - gray- black (N2) to very light gray (N8); shale laminae (< .5mm wide) alternating with discontinuous calcareous siltstone laminae (<1.0 mm wide) giving the unit an overally blotchy appearand; small- scale calcareous nodules (1.0cmx2.0mm) cross-cut laminites throughout; randomly located zones of continuous silstone, shale laminae that give the appearance of dark stripes throughout the marker bed: Tr. v.f.g. disseminated pyrite throughout." My Notes: Dark gray laminated siltstone with calcite concretions.								
523-4	2801.5	21.3	Galaxy. Very thin, lenticular (lat. discont.) laminae of finer-grained black silt or clay (OM?) intercalated with gray v.f.g. sandstone. Multiple 4mm wide, very thin lenticular but mostly parallel and slightly undulating whiter-gray silt laminae. Some of the black laminae anastomose and inosculate. Two subhorizontal, high calcite-content fractures (<0.1 mm thick). One laterally continuous fracture showing voids (calcite diss'ln?). Oxidized pyrites (<0.3 mm) present on exterior of core. Calcite cement present in lighter colored laminae. 65% shale, 35% silt/Ss.								
523-6	2726.7	44.3	Gray Massive siltstone (my term) Subhedral pyrites (<0.5 mm), oxidized, in both Ss/silt and shale. Sharp transition from massive reddish-gray v.f.g. silt/shale to massive dark gray v.f.g sandstone. Some interlamination in thin gradational wavy parallel to even parallel lams. Transition shows undulating contact - in places the lower sandstone protrudes up into siltstone and "overhangs" siltstone (more gradational transition here, as in photo 59). Subvertical calcite-filled fracture (0.1 mm wide) and black subvertical fracture 0.05 mm wide (bitumen migration?) Rare very thin blackish-gray discontinuous and wispy laminae. Massive dark gray sandstone grades back to v.f.g. reddish-gray siltstone/shale at base. 75% silt, 25% shale.								
523-7		59.5	Gray / red brown siltst. Parallel, even, with some minor irregularities, crisp to gradational bounded, thin to thick laminae of v.c.g. green-gray siltstone and maroon/red shale/v.f.g. siltstone. Very narrow (<0.1 mm) vertical calcite-filled fracture, with subhorizontal fxrs joining at high angles - each with diffuse fxr-assoc'd calcite blebs to 0.25 mm around. 60% shale, 40% silt.								

Appendix D: LECO TOC and Rock-Eval II Pyrolysis Data

			Sample	Sample											
Client ID	Depth (ft)	Formation	Type	Prep	Leco	Rock Eval				Rock Eval in	dices			Notes	
				•	TOC	S1	S2	S3 Tr	nax **	HI (DI	\$2/\$3	S1/TOC	PI Checks	Pyrogram shape
					wt %	mg HC/g	mg HC/g	mg CO2/ g (°0	C)				(%)		
						rock	rock	rock							
CF-1A-2		Nonesuch	Outcrop	NOPR	0.078	0.020	0.01	0.13	423 **	12.8	166.7	0.08	26.1	0.67 TOC	f
CF-1B		Nonesuch	Outcrop	NOPR	0.061	0.000	0.01	0.10	306 **	16.4	163.9	0.10	-1	-1 TOC	f
CF 2A		Nonesuch	Outcrop	NOPR	0.121	0.020	0.05	0.12	438 **	41.3	99.2	0.42	16.9	0.29 TOC RE	f
CF 2B		Nonesuch	Outcrop	NOPR	0.018	0.021	0.01	0.76	355 **	55.6	4222.2	0.01	114.1	0.67 TOC	f
CF 2B (dupl	1)	Nonesuch	Outcrop	NOPR	0.020	0.030	0.01	0.07	-1	50.0	350.0	0.14	150.3	0.75 TOC RE	f
CF 2B (dupl	(2)	Nonesuch	Outcrop	NOPR	0.079	0.020	0.01	0.11	-1	12.7	139.2	0.09	25.4	0.67 TOC	f
CF 3B		Nonesuch	Outcrop	NOPR	0.010	0.020	0.01	0.11	422 **	100.0	1100.0	0.09	203.0	0.67 TOC	f
CF 3B (dupl	0	Nonesuch	Outcrop	NOPR	0.008	0.020	0.01	0.04	-1	125.0	500.0	0.25	252.0	0.67 TOC	f
CF 4A		Nonesuch	Outcrop	NOPR	0.045	0.020	0.02	0.11	382 **	44.4	244.4	0.18	44.9	0.50 TOC	f
CF 4B		Nonesuch	Outcrop	NOPR	0.138	0.021	0.01	0.08	-1	7.2	58.0	0.13	14.9	0.67 TOC RE	f
CF 3A		Nonesuch	Outcrop	NOPR	0.063	0.010	0.01	0.03	-1	15.9	47.6	0.33	15.4	0.49 TOC	f
CF 5B		Nonesuch	Outcrop	NOPR	0.083	0.010	0.01	0.16	-1	12.0	192.8	0.06	12.0	0.50 TOC RE	f
SE 6B		Nonesuch	Outcrop	NOPR	0.037	0.010	0.01	0.07	367 **	27.0	189.2	0.14	26.5	0.50 TOC	f
SE-1A		Nonesuch	Outcrop	NOPR	0.010	0.020	0.02	0.05	-1	200.0	500.0	0.40	204.3	0.51 TOC RE	f
SE 5B		Nonesuch	Outcrop	NOPR	0.068	0.010	0.01	0.08	350 **	14.7	117.6	0.13	15.0	0.51 TOC	f
SE 5B (duni	1	Nonesuch	Outcrop	NOPR	0.000	0.020	0.07	0.00	-1	46.5	162.8	0.29	46.6	0.50 TOC	f
CE NB	/	Nonesuch	Outcrop	NOPP	0.040	0.010	0.02	0.12	472 **	100.0	1200.0	0.09	90.6	0.50 TOC PE	f
SE /R /dual	N.	Nonesuch	Outcrop	NOPR	0.010	0.010	0.01	0.07	425	66.7	466.7	0.00	122.6	0.50 TOC NE	f
CE 3A	0	Nonesuch	Outcrop	NODD	0.013	0.020	0.01	0.00	-1	100.0	400.7	0.14	202.4	0.67 TOC PE	4
SE 3D		Nonesuch	Outcrop	NOPR	0.010	0.020	0.01	0.05	-1	10.0	75.0	0.11	202.4	0.87 TOC NE	4
55 30		Nonesuch	Outcrop	NOPR	0.075	0.031	0.01	0.00	-1	12.7	10.5	0.17	03.1	0.84 TOC	6
57 20		Nonesuch	Outcrop	NOPR	0.050	0.050	0.01	0.08	-1	27.0	222.2	0.15	103.0	0.75 TOC	ſ
DC F 7	020 5	Nonesuch	Outcrop	NUPR	0.010	0.010	0.01	0.05	318	100.0	500.0	0.20	102.5	0.51 TOC	T C
PC-5-7	839.5	Nonesuch	Core	EXP	0.044	0.010	0.03	0.05	441 ***	08.2	113.0	0.50	23.3	0.25 TOC	f
PC-5-4	823.4	Nonesuch	Core	EXP	0.016	0.020	0.04	0.08	439 **	250.0	500.0	0.50	127.6	U.34 TUC RE	T.
PC-5-8	/83.2	Nonesuch	Core	EXP	0.352	0.081	0.50	0.11	438	142.0	31.2	4.55	22.9	U.14 TOC RE	n:its2sn:nts2sn
PC-5-3	631.5	Nonesuch	Core	EXP	0.072	0.020	0.01	0.11	-1	13.9	152.8	0.09	27.6	0.67 TOC RE	T.
PC-5-2	587.2	Nonesuch	Core	EXP	0.200	0.020	0.10	0.03	431 **	50.0	15.0	3.33	10.0	0.17 TOC RE	n:lts2sh:hts2sh
PC-5-1	5/6.1	Nonesuch	Core	EXP	0.41/	0.052	0.50	0.15	435	119.9	36.0	3.33	12.4	0.09 TOC RE	n:lts2sh:hts2sh
PC-1-3	861.4	Nonesuch	Core	EXP	0.065	0.010	0.01	0.03	-1	15.4	46.2	0.33	15.4	0.50 TOC RE	T
PC-1-2	754	Nonesuch	Core	EXP	0.351	0.062	0.50	0.11	436	142.5	31.3	4.55	17.6	0.11 TOC RE	n:lts2sh:hts2sh
PC-1-1	701.3	Nonesuch	Core	EXP	0.145	0.020	0.05	0.12	432 **	34.5	82.8	0.42	13.6	0.28 TOC	n:lts2sh:hts2sh
PI-7		Nonesuch	Outcrop	NOPR	0.010	0.020	0.02	0.04	335 **	200.0	400.0	0.50	203.7	0.50 TOC	f
PI-8		Nonesuch	Outcrop	NOPR	0.010	0.019	0.01	0.10	-1	100.0	1000.0	0.10	194.9	0.66 TOC	f
PI-9		Nonesuch	Outcrop	NOPR	0.007	0.010	0.01	0.16	404 **	142.9	2285.7	0.06	148.8	0.51 TOC RE	f
PI -10		Nonesuch	Outcrop	NOPR	0.860	0.307	3.14	0.13	430	365.1	15.1	24.15	35.7	0.09 TOC RE	
PI-12		Nonesuch	Outcrop	NOPR	0.032	0.030	0.01	0.08	434 **	31.2	250.0	0.13	95.1	0.75 TOC	f
WPB1-4	521.1	Nonesuch	Core	EXP	0.066	0.030	0.01	0.14	-1	15.2	212.1	0.07	45.5	0.75 TOC RE	f
WPB1-1	518.1	Nonesuch	Core	EXP	0.272	0.041	0.12	0.13	438 **	44.1	47.8	0.92	15.1	0.25 TOC RE	n:lts2sh:hts2sh
WPB1-6	485	Nonesuch	Core	EXP	0.103	0.040	0.04	0.16	392 **	38.8	155.3	0.25	38.9	0.50 TOC RE	f
WPB1-3	461.5	Nonesuch	Core	EXP	0.227	0.020	0.10	0.09	440 **	44.1	39.6	1.11	8.7	0.16 TOC RE	n:lts2sh:hts2sh
WPB1-2	454	Nonesuch	Core	EXP	0.265	0.020	0.14	0.13	432 **	52.8	49.1	1.08	7.6	0.13 TOC RE	n:lts2sh:hts2sh
WPB1-7	366.2	Nonesuch	Core	EXP	0.160	0.040	0.07	0.12	349 **	43.8	75.0	0.58	25.1	0.36 TOC RE	f
WPB1-5	201.9	Nonesuch	Core	EXP	0.762	0.081	1.95	0.27	434	255.9	35.4	7.22	10.6	0.04 TOC RE	n:lts2sh
LIR-2		Nonesuch	Outcrop	NOPR	0.071	-1	-1	-1	-1	-1	-1	-1	-1	-1 TOC	
LIR-3		Nonesuch	Outcrop	NOPR	0.010	-1	-1	-1	-1	-1	-1	-1	-1	-1 TOC	
LIR-4		Nonesuch	Outcrop	NOPR	0.111	-1	-1	-1	-1	-1	-1	-1	-1	-1 TOC	

		29	ample	Sample													
Client ID	Depth (ft) Form	mation Ty	pe	Prep		Leco	Rock Eval					Rock Eval	indices			Notes	
					*	TOC	S1	S2	\$3	Tmax	**	HI	01	S2/S3	S1/TOC	Pl Check	s Pyrogram shape
						wt %	mg HC/g	mg HC/g	mg CO2/g	g (°C)					(%)		
LIR-5	No	nesuch 0	Outcrop	NOPR		0.055	-1	-1	-1	-1		-1	-1	-1	-1	-1 TOC	
LIR-6	No	nesuch 0	Outcrop	NOPR		0.662	0.278	0.54	0.13	419		81.6	19.6	4.15	42.0	0.34 TOC RE	n:lts2sh:hts2sh
LIR-10	No	nesuch 0	Outcrop	NOPR		0.116	-1	-1	-1	-1		-1	-1	-1	-1	-1 TOC	
BIR-16	No	nesuch 0	Jutcrop	NOPR		0.633	0.247	0.24	0.09	444	**	37.9	14.2	2.67	39.0	0.51 TOC	n:lts2sh:hts2sh
BIR-15	No	nesuch 0	utcrop	NOPR		0.248	0.049	0.07	0.15	406	**	28.2	60.5	0.47	19.8	0.41 TOC	f
BIR-14	No	nesuch O	outcrop	NOPR		0.208	0.030	0.05	0.09	402	**	24.0	43.3	0.56	14.6	0.38 TOC RE	f
BIR-13	No	nesuch 0	outcrop	NOPR		0.353	0.040	0.11	0.2	467	**	31.2	56.7	0.55	11.3	0.27 TOC	hts2p:lts2sh
BIR-10	No	nesuch 0	utcrop	NOPR		0.345	0.020	0.25	0.89	435	**	72.5	258.0	0.28	5.8	0.07 TOC RE	n:lts2sh:hts2sh
BIR-8	No	nesuch 0	utcrop	NOPR		0.435	0.068	0.12	0.22	509	**	27.6	50.6	0.55	15.5	0.36 TOC RE	f
BIR-7	No	nesuch 0	Outcrop	NOPR		0.285	0.041	0.08	0.14	440	**	28.1	49.1	0.57	14.3	0.34 TOC RE	f
28G-572	572 No	nesuch C	ore Chip	EXP		0.024	-1	-1	-1	-1		-1	-1	-1	-1	-1 TOC	
28G-571	571 No	nesuch C	ore Chip	EXP		0.085	-1	-1	-1	-1		-1	-1	-1	-1	-1 TOC	
28G-520	520 No	nesuch C	ore Chip	EXP		0.425	0.072	0.39	0.11	430	**	91.8	25.9	3.55	16.8	0.16 TOC RE	n:lts2sh:hts2sh
28G-514	514 No	nesuch C	ore Chip	EXP		0.620	0.099	0.86	0.14	432		138.7	22.6	6.14	16.0	0.10 TOC RE	n:lts2sh:hts2sh
517-6	3136.15 No	nesuch C	ore	EXP		0.144	0.020	0.01	0.08	-1		6.9	55.6	0.13	13.9	0.67 TOC RE	f
517-5	3127.5 No	nesuch C	ore	EXP		0.098	0.030	0.01	0.05	-1		10.2	51.0	0.20	31.0	0.75 TOC RE	f
517-2	3122.25 No	nesuch C	ore	EXP		0.034	0.040	0.02	0.18	303	**	58.8	529.4	0.11	116.9	0.67 TOC	f
517-1.5	3106.9 No	nesuch C	ore	EXP		0.089	0.010	0.01	0.21	-1		11.2	236.0	0.05	11.3	0.50 TOC RE	f
517-4	3101.5 No	nesuch C	ore	EXP		0.114	0.030	0.01	0.06	-1		8.8	52.6	0.17	26.2	0.75 TOC RE	f
517-1	3078 No	nesuch C	ore	EXP		0.175	0.040	0.02	0.14	424	**	11.4	80.0	0.14	22.6	0.66 TOC RE	f
517-2.5	3074.6 No	nesuch C	ore	EXP		0.560	0.071	0.16	0.19	454	**	28.6	33.9	0.84	12.6	0.31 TOC RE	n:lts2sh:hts2sh
517-3	3065 No	nesuch C	ore	EXP		0.817	0.188	0.37	0.08	442	**	45.3	9.8	4.63	23.0	0.34 TOC RE	n:lts2sh:hts2sh
523-5	2868.1 No	nesuch C	ore	EXP		0.133	0.020	0.01	0.15	-1		7.5	112.8	0.07	15.2	0.67 TOC RE	f
523-2	2859.1 No	nesuch C	ore	EXP		0.163	0.052	0.06	0.06	444	**	36.8	36.8	1.00	31.7	0.46 TOC RE	f
523-3	2819 No	nesuch C	ore	EXP		0.465	0.091	0.18	0.17	441	**	38.7	36.6	1.06	19.6	0.34 TOC	n:lts2sh:hts2sh
523-1	2814.7 No	nesuch C	ore	EXP		0.745	0.138	0.40	0.11	448	**	53.7	14.8	3.64	18.5	0.26 TOC	n:lts2sh:hts2sh
523-4	2801.5 No	nesuch C	ore	EXP		0.831	0.141	0.54	0.05	440)	65.0	6.0	10.80	16.9	0.21 TOC RE	n:lts2sh:hts2sh
523-6	2726.7 No	nesuch C	ore	EXP		0.100	0.021	0.01	0.05	-1		10.0	50.0	0.20	20.5	0.67 TOC RE	f

Explanations

TOC - Total Organic Carbon, wt. %

S1 - volatile hydrocarbon (HC) content, mg HC/ g rock

S2 - remaining HC generative potential, mg HC/ g rock

S3 - carbon dioxide content, mg CO2 / g rock

* - comments regarding contamination

HI - Hydrogen index = S2 x 100 / TOC, mg HC/ g TOC

OI - Oxygen Index = S3 x 100 / TOC, mg CO2/ g TOC

** - low S2, Tmax is unreliable

RE - Programmed pyrolysis on Rock-Eval instrument

PI - Production Index = S1/(S1 + S2)

Sample preparation

EXT or EXP - Extracted Rock, NOPR - Normal Preparation

"-1" - not measured or invalid value for Tmax

Pyrogram results

f - flat S2 peak

n - normal

ItS2sh - low temperature S2 shoulder

ItS2p - low temperature S2 peak

htS2p - high temperature S2 peak

htS2sh - high temperature S2 shoulder

Appendix D, ctd.

Appendix D, ctd. Kerogen Type and Maturity Batch 1 1000 Immature Mature ondensate - Wet Gas Zone Postmature TYPE I 900 Oil oil-prone HYDROGEN INDEX (HI, mg HC/g TOC) 400 400 500 400 200 100 Window usually lacustrine **TYPE II** oil-prone usually marine TYPE II-III TYPE III gas-prone **Dry Gas Window** 80 ♦ ᅌ TYPE IV 0 inert 450 Tmax (°C)475 400 425 500 Batch 2 1000 Immature TYPE I oil-prone Postmature Mature ondensate - Wet Gas Zone 900 Oil Window HADROGEN INDEX (H, mg HC/g 100) 500 400 100 100 100 100 usually lacustrine **TYPE II** oil-prone . usually marine TYPE II-III \diamond TYPE III ♦ gas-prone **Dry Gas Window** \diamond ♦ \diamond **ΌΤΥΡΕ ΙV** 0

450 Tmax (°C)475

500

inert

425

400

Sample	Height (m) above base of Nonesuch Fm.	Stratigraphy/ Sedimentology	δ ¹³ C (PDB)	δ ¹⁸ Ο (PDB)
Copper Fa	alls. Bad River			
CF-1A-2	2	laminated gray-black siltstone	-5.95	-10.66
CF-2A	4	gray - dark gray fissile shale	-3.82	-8.45
CF-2B'	6.6	gray siltstone	insuff	insuff
CF-2B"	6.6	gray siltstone	-5.09	-5.65
CF-3B	41	dark gray massive shale	-9.40	-10.59
CF-4B	71.5	reddish cglm with black siltst laminae	-5.96	-8.73
Saxon Fal	lls, Montreal River			
SF-1A	7.8	Upper ss?	insuff	insuff
SF-2A	13	red-gray ss with clay rip-ups	-8.36	-10.20
SF-5B	14.5	black massive shale	insuff	insuff
SF-4B	41.3	massive gray siltst.	-10.72	-12.97
SF-3A	43.8	dark gray laminated siltst.	-12.55	-12.12
SF-4A	103.7	dark gray siltstone/shale	-8.54	-8.39
Copperwo	ood, PC-5 (drilled 19	959)		
PC-5-7	6.4	Upper ss	-12.57	-7.40
PC-5-4	8.1	Upper shale	-10.26	-5.77
PC-5-8	20.4	Marker bed	-3.75	-5.96
PC-5-6	21.3	Marker bed	-2.28	-5.38
PC-5-1	83.5	Black laminated siltst.	-10.76	-13.08
Copperwo	ood, PC-1 (drilled 19	959)		
PC-1-1	59.7	Black laminated siltst.	-12.01	-12.21
Presque-l	lsle River			
PI-7	14.9	Upper shale	-7.74	-10.04
PI-8	25.5	Dark gray laminated siltstone	-9.42	-12.11
PI-9	25.5	Dark gray laminated siltstone	-9.79	-7.36
PI-10	59.9	Black laminated siltstone	-6.24	-8.65
PI-12	92	gray and red-brown interbedded siltst.	-25.77	-8.14
Iron River	r Syncline, WPB-1 (c	drilled, 1961)		
WPB-1-1	3.6	Thinly	-1.22	-7.27
WPB-1-6	13.7	Widely	-6.55	-11.34
WPB-1-5	100	gray siltstone	-6.01	-6.85
White Pir	ne, 517 (drilled 1995	5)		
517-2	4.8	Upper sand	-11.88	-7.65
517-1	206.7	gray laminated siltst.	-9.86	-9.68
White Pir	ne, 523 (drilled 1995	5)		
523-2	3.7	Upper transition	-7.59	-13.51
523-3	15.9	Stripey	-2.68	-7.68
523-1	17.3	Marker bed	-1.72	-7.88
523-7	59.5	gray / red brown siltst.	-30.95	-13.62

<u>Appendix E: Carbonate Carbon and Oxygen Stable Isotope Data</u> Insuff. = insufficient carbonate in sample for analysis

Appendix F1: Total Extract Gas Chromatography Data Definitions on page 319.

EXTRACT GC

Company:	Colorado State University	Client ID:	WPB1-1	
Country:		Project #:	BH-79915	
Basin:		Lab ID:	6121836392	
Lease:		Sample Type:	Core	
Block:		Sampling Point:		
Field:		Formation:		
Well Name:	Colorado State University Samples	Geologic Age:		
Latitude:		Top Depth:	518.10	
Longitude:		Bottom Depth:		
Preparation:		GC Method:	G02G	

WGC parameters		Th	ompson ¹	Mango ²	Halpern ³
Pristane/Phytane	1.81	A.	BZ/nC ₆	P ₁	Tr ₁
Pristane/n C17	0.45	В.	TOL/nC7	P ₂	Tr ₂
Phytane/nC18	0.45	C.	(nC6+nC7)/(CH+MCH)	P ₃	Tr ₃
nC ₁₈ /(nC ₁₈ +nC ₁₉)	0.60	L.	Isoheptane Value	5N1	Tr ₄
nC ₁₇ /(nC ₁₇ +nC ₂₉)	0.90	F.	nC ₇ /MCH	N ₂	Tr ₅
CPI Hunt ⁴	0.42	U.	CH/MCP	6N1	Tr ₇
Normal Paraffins	20.4	R.	nC7/2MH	K1	Tr ₈
Isoprenoids	4.6	S.	nC₀/22DMB	K ₂	C1
Cycloparaffins		н.	Heptane Value	5N1/6N1	C ₂
Branched (iso-) Paraffins			MCH/nC7	P ₃ /N ₂	C ₃
BTX aromatics			mpXYL/n C ₈	In(24DMP/23DMP)	C4
Resolved unknowns	74.8				C ₅

Company: Well Name: Depth:	Colorado State University Colorado State University Samples 518 10 -		Client ID: Project #:	WPB1-1 BH-79919 61218363	5	
Sampling Poin	t:		File Name:	G216049	7.D	
Peak	Compound	Ret.			ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
1C4	Iso-alkane C4					
NC4	Normal Alkane C4					
IC5	Iso-alkane C5					
NC5	Normal Alkane C5					
22DMB	2,2-Dimethylbutane					
CP	Cyclopentane					
23DMB	2,3-Dimethylbutane					
2MP	2-Methylpentane					
3MP	3-Methylpentane					
NC6	Normal Alkane C6					
22DMP	2,2-Dimethylpentane					
MCP	Methylcyclopentane					
24DMP	2,4-Dimethylpentane					
223TMB	2,2,3-Trimethylbutane					
BZ	Benzene					
33DMP	3,3-Dimethylpentane					
СН	Cyclohexane					
2MH	2-Methylhexane					
23DMP	2,3-Dimethylpentane					
11DMCP	1,1-Dimethylcyclopentane					
ЗMH	3-Methylhexane					
1C3DMCP	1-cis-3-Dimethylcyclopentane					
1T3DMCP	1-trans-3-Dimethylcyclopentane					
3EP	3-Ethylpentane					
1T2DMCP	1-trans-2-Dimethylcyclopentane					
NC7	Normal Alkane C7					
ISTD	Internal Standard					
MCH	Methylcyclohexane					
113TMCP	1,1,3,-Trimethylcyclopentane					
ECP	Ethylcyclopentane					
124TMCP	1,2,4-Trimethylcyclopentane					
123TMCP	1,2,3-Trimethylcyclopentane					
TOL	Toluene					
NC8	Normal Alkane C8					
IP9	Isoprenoid C9					
EB	Ethyl-benzene					
MXYL	<i>m</i> -xylene					
PXYL	<i>p</i> -xylene					
OXYL	o-xylene					
NC9	Normal Alkane C9					
IP10	Isoprenoid C10					
PB	Propyl-benzene					
NC10	Normal Alkane C10	26.640	2907	814		
IP11	Isoprenoid C11	27.947	1999	441		
NC11	Normal Alkane C11	31.917	12180	3946		
NC12	Normal Alkane C12	36.857	32413	10012		
IP13	Isoprenoid C13	37.600	10762	2641		
IP14	Isoprenoid C14	40.371	10696	3234		
NC13	Normal Alkane C13	41.492	88414	27177		
IP15	Isoprenoid C15	44.943	24006	6514		
NC14	Normal Alkane C14	45.849	121115	36890		

Company: Well Name:	Colorado State University Colorado State University Samples		Client ID: Project #:	WPB1-1 BH-79915	02	
Sampling Poir	518.10 - nt:		File Name:	G2160497	92 7.D	
earlphing i en			The Humer	02100101		
Peak	Compound	Ret.			ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
IP16	Isoprenoid C16	48.506	43166	10180	8 G 92	- 11 CON - 21 - 2
NC15	Normal Alkane C15	49.946	125847	31939		
NC16	Normal Alkane C16	53.806	59846	14693		
IP18	Isoprenoid C18	55.747	23380	4057		
NC17	Normal Alkane C17	57.469	29534	7124		
IP19	Isoprenoid C19 (Pristane)	57.828	13166	2492		
PHEN	Phenanthrene	58.916	5795	1504		
NC18	Normal Alkane C18	60.954	16170	4282		
IP20	Isoprenoid C20 (Phytane)	61.426	7269	1317		
NC19	Normal Alkane C19	64.273	10662	2823		
NC20	Normal Alkane C20	67.438	10290	2640		
NC21	Normal Alkane C21	70.463	12608	2943		
C25HBI	Highly Branch Isoprenoid C25	70.727	1397	287		
NC22	Normal Alkane C22	73.302	6118	2268		
NC23	Normal Alkana C23	70.139	22914	1570		
NC24	Normal Alkana C24	70.040	32014	1120		
NC25	Normal Alkana C25	01.374	4093	F27		
NC20	Normal Alkane C27	86 206	2030	558		
NC28	Normal Alkane C28	88 /91	2222	382		
NC20	Normal Alkane C29	90.710	3452	761		
NC30	Normal Alkane C30	92 857	1456	289		
NC31	Normal Alkane C31	94 934	2936	515		
NC32	Normal Alkane C32	96,916	1881	339		
NC33	Normal Alkane C33	98.886	889	192		
NC34	Normal Alkane C34	100.826	2217	390		
NC35	Normal Alkane C35	102.688	1306	168		
NC36	Normal Alkane C36	104.774	2150	263		
NC37	Normal Alkane C37	107.017	569	142		
NC38	Normal Alkane C38					
NC39	Normal Alkane C39					
NC40	Normal Alkane C40					
NC41	Normal Alkane C41					
1						
-						

Company:	Colorado State University		Client ID:	WPB1-3		
Well Name:	Nonesuch Formation Core Samples		Project #:	BH-79239		
Depth:	461.50 -		Lab ID:	612180628	6	
Sampling Poir	ıt:		File Name:	G5160569.	D	
Peak	Compound	Ret.			ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
IC4	Iso-alkane C4					
NC4	Normal Alkane C4					
IC5	lso-alkane C5					
NC5	Normal Alkane C5					
22DMB	2,2-Dimethylbutane					
CP	Cyclopentane					
23DMB	2,3-Dimethylbutane					
2MP	2-Methylpentane					
3MP	3-Methylpentane					
NC6	Normal Alkane C6					
22DMP	2,2-Dimethylpentane					
MCP	Methylcyclopentane					
24DMP	2,4-Dimethylpentane					
223TMB	2.2.3-Trimethylbutane					
BZ	Benzene					
33DMP	3,3-Dimethylpentane					
СН	Cyclohexane					
2MH	2-Methylhexane					
23DMP	2.3-Dimethylpentane					
11DMCP	1.1-Dimethylcyclopentane					
3MH	3-Methylhexane					
1C3DMCP	1-cis-3-Dimethylcyclopentane					
1T3DMCP	1-trans-3-Dimethylcyclopentane					
3EP	3-Ethylpentane					
1T2DMCP	1-trans-2-Dimethylcyclopentane					
NC7	Normal Alkane C7					
ISTD	Internal Standard					
MCH	Methylcyclohexane					
113TMCP	1.1.3Trimethylcyclopentane					
ECP	Ethylcyclopentane					
124TMCP	1.2.4-Trimethylcyclopentane					
123TMCP	1.2.3-Trimethylcyclopentane					
TOI	Toluene					
NC8	Normal Alkane C8					
IP9	Isoprenoid C9					
EB	Ethyl-benzene					
MXYL	<i>m</i> -xylene					
PXYL	p-xylene					
OXYL	o-xvlene					
NC9	Normal Alkane C9					
IP10	Isoprenoid C10					
PB	Propyl-benzene					
NC10	Normal Alkane C10	26.555	12249	3893		
IP11	Isoprenoid C11	27.916	381	122		
NC11	Normal Alkane C11	31.876	12894	4416		
NC12	Normal Alkane C12	36.802	25573	7959		
IP13	Isoprenoid C13	37.551	6539	1557		
IP14	Isoprenoid C14	40.313	2927	750		
NC13	Normal Alkane C13	41,416	29706	9700		
IP15	Isoprenoid C15	44.894	9048	2216		
NC14	Normal Alkane C14	45.757	33919	10100		

Company: Well Name: Depth:	Colorado State University Nonesuch Formation Core Samples 461 50 -		Client ID: Project #:	WPB1-3 BH-79239 61218062	9	
Sampling Point	nt:		File Name:	G516056	9.D	
Peak	Compound	Ret.			ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
IP16	Isoprenoid C16	48.427	17877	2959		
NC15	Normal Alkane C15	49.969	474087	113668		
NC16	Normal Alkane C16	53.867	694945	148903		
IP18	Isoprenoid C18	55.675	19549	3452		
NC17	Normal Alkane C17	57.482	350783	82237		
IP19	Disprenoid C19 (Pristane)	57.774	18403	4000		
PHEN	Phenanthrene Name Allege C42	00.80	102930	25673		
INC18	Normal Alkane C18	64,269	184907	48159		
IP20	Normal Alkana C10	64.490	20417	21567		
NC19	Normal Alkana C20	67 220	39417	6009		
NC20	Normal Alkana C20	70.359	21449	1206		
	Highly Branch Icontended C2E	70.309	14000	4396		
NC22	Normal Alkana C22	70.040	14070	2076		
NC22	Normal Alkana C22	76.029	142/9	3970		
NC23	Normal Alkane C23	78.664	4906	3029		
NC24	Normal Alkana C25	78.004	7408	1082		
NC25	Normal Alkana C25	92 712	6270	1903		
NC20	Normal Alkane C26	86,086	6364	1654		
NC27	Normal Alkana C28	99.375	7110	1212		
NC20	Normal Alkane C28	00.373	7119	1312		
NC29	Normal Alkana C29	90.590	7509	700		
NC30	Normal Alkana C30	92.731	2/01	123		
NC31	Normal Alkana C31	94.002	0243	1/51		
NC32	Normal Alkana C32	90.013	2173	403		
NC33	Normal Alkana C34	96.752	4000	250		
NC34	Normal Alkana C34	100.661	1299	352		
NC35	Normal Alkana C36	104.544	1271	407		
NC37	Normal Alkane C30	104.344	13/1	210		
NC38	Normal Alkana C38	100.797	600	1/4		
NC30	Normal Alkane C30	109.507	022	108		
NC40	Normal Alkana C40					
NC40	Normal Alkane C40					
NC41	Normal Alkane C41					
1						
-						

Company:	Colorado State University	(Client ID:	BIR-13		
Well Name:	Colorado State University Samples	I	Project #:	BH-79915	6	
Depth:		I	Lab ID:	61218445	09	
Sampling Poir	ıt:		File Name:	G2160492	2.D	
Book	Compound	Pot	_		nnt	nnt
l abel	Name	Time	Area	Height	(Area)	(Habt)
IC4	Iso-alkane C4	THE	Area	Theight	Inical	(ingine)
NC4	Normal Alkane C4					
IC5	Iso-alkane C5					
NC5	Normal Alkane C5					
22DMB	2 2-Dimethylbutane					
CP	Cvclopentane					
23DMB	2.3-Dimethylbutane					
2MP	2-Methylpentane					
3MP	3-Methylpentane					
NC6	Normal Alkane C6					
22DMP	22-Dimethylpentane					
MCP	Methylovclopentane					
24DMP	2.4.Dimethylpentane					
223TMB	2.2.3-Trimethylbutane					
B7	Renzene					
33DMP	3.3-Dimethylpentane					
CH	Cyclobezane					
2MH	2 Methylbevane					
23DMP	2 3-Dimethylnentane					
11DMCP	1 1-Dimethylovolopentane					
змн	3. Methylbevane					
1C3DMCP	1-cis-3-Dimethylovclopentane					
1T3DMCP	1 trans 3 Dimethylovclopentane					
3ED	3-Ethylpentane					
1T2DMCP	1 trans 2 Dimethylovolopentane					
NC7	Normal Alkane C7					
ISTD	Internal Standard					
MCH	Methylovclobevane					
113TMCP	113 Trimethylovclopentane					
ECP	Ethyloyclopentane					
124TMCP	1.2.4-Trimethylovolopentane					
124TMCP	1,2,3 Trimethylevelopentane					
TOI	Toluene					
NC8	Normal Alkana C8					
IPO	Iconropoid C9					
	Ethyl benzene					
	m vulene					
PYVI	n xylene					
	p-xylene					
NCO	Normal Alkana C9					
IR10	Isoprepoid C10					
	Brond bonzono					
PD NC10	Normal Alkane C10	26 655	2688	873		
IP11	Isonrenoid C11	27.053	1109	106		
NC11	Normal Alkane C11	21.833	22815	7640		
NC12	Normal Alkane C12	36.979	22013	26447		
IP13	Isoprepoid C13	37,600	10361	20447		
1014	Isoprenoid C14	40.224	0012	2841		
NC13	Normal Alkane C13	40.301	120878	2090		
IP15	Isoprenoid C15	41.509	212078	5072		
NOLA	Nermal Alliana C14	44.900	2130/	3273		
NC14	Normal Alkane C14	45.864	150/68	42313		

Company: Well Name:	Colorado State University Colorado State University Samples		Client ID: Project #:	BIR-13 BH-79915	i.	
Depth:			Lab ID:	61218445	09	
Sampling Poir	nt:		File Name:	G2160492	2.D	
Peak	Compound	Ret.			nnt	nnt
Label	Name	Time	Area	Height	(Area)	(Hght)
IP16	Isoprenoid C16	48.520	49683	10867		
NC15	Normal Alkane C15	50.088	689104	141263		
NC16	Normal Alkane C16	53.968	640269	134230		
IP18	Isoprenoid C18	55.774	40984	6017		
NC17	Normal Alkane C17	57.555	190250	39604		
IP19	Isoprenoid C19 (Pristane)	57.869	27389	5851		
PHEN	Phenanthrene	58.959	48442	11840		
NC18	Normal Alkane C18	60.991	77058	14681		
IP20	Isoprenoid C20 (Phytane)	61.455	19522	5475		
NC19	Normal Alkane C19	64.296	42521	10889		
NC20	Normal Alkane C20	67.463	54209	14532		
NC21	Normal Alkane C21	70.488	48436	13476		
C25HBI	Highly Branch Isoprenoid C25	70.751	6092	864		
NC22	Normal Alkane C22	73.388	51592	13999		
NC23	Normal Alkane C23	76.100	59017	15604		
NC24	Normal Alkane C24	78.886	106309	19972		
NC25	Normal Alkana C25	81.390	48498	11568		
NC20	Normal Alkana C26	85.843	8120	2223		
NC27	Normal Alkana C28	88 500	6710	1060		
NC20	Normal Alkane C28	00.509	5/01	1401		
NC30	Normal Alkane C29	90.724	4000	684		
NC31	Normal Alkane C31	92.000	4009	871		
NC32	Normal Alkane C32	96 937	3419	532		
NC33	Normal Alkane C33	98 910	3453	734		
NC34	Normal Alkane C34	100.801	1539	293		
NC35	Normal Alkane C35	102 663	1371	263		
NC36	Normal Alkane C36	104 736	939	187		
NC37	Normal Alkane C37	107.046	1423	290		
NC38	Normal Alkane C38	109.607	888	118		
NC39	Normal Alkane C39	112.605	599	86		
NC40	Normal Alkane C40					
NC41	Normal Alkane C41					
0						

EXTRACT GC

Company:	Colorado State University	Client ID:	BIR-15	
Country:		Project #:	BH-79915	
Basin:		Lab ID:	6121844513	
Lease:		Sample Type:	Outcrop	
Block:		Sampling Point:		
Field:		Formation:		
Well Name:	Colorado State University Samples	Geologic Age:		
Latitude:		Top Depth:		
Lonaitude:		Bottom Depth:		
Preparation:		GC Method:	G02G	

¹Thompson, K.F.M., 1983. GCA: V.47, p.303. ²Mango, F.D., 1994. GCA: V.58, p.895. ³Halpern, H.I., 1995, AAPG Bull.: V.79, p.801. ⁴Hunt, 1979

77.5

Resolved unknowns

Company:	Colorado State University		Client ID:	BIR-15		
Well Name:	Colorado State University Samples	1	Project #:	BH-79915	5	
Depth:			Lab ID:	61218445	13	
Sampling Poir	ıt:		File Name:	G2160493	3.D	
Book	Compound	Bot	_		nnt	nnt
Peak	Name	Ret.	Area	Hojaht	ppt (Area)	/Habt)
	Iso-alkane C4	Time	Alea	пеідії	(Alea)	(ngiii)
NC4	Normal Alkana C4					
105	Iso-alkane C5					
NC5	Normal Alkane C5					
22DMR	2.2 Dimethylbutane					
	2,2-Dimetryibutane					
	2.2 Dimethylleutana					
23DIVID	2, 3-Dimetryibutane					
ZIVIP	2-Methylpentane					
SIVIP	3-Methylpentane					
NCO	Normal Alkane Co					_
ZZDIVIP	2,2-Dimethylpentane					
MCP	Methylcyclopentane					
24DMP	2,4-Dimethylpentane					
2231 MB	2,2,3-Trimethylbutane					
BZ	Benzene					
33DMP	3,3-Dimethylpentane					
СН	Cyclohexane					
2MH	2-Methylhexane					
23DMP	2,3-Dimethylpentane					
11DMCP	1,1-Dimethylcyclopentane					
ЗМН	3-Methylhexane					
1C3DMCP	1-cis-3-Dimethylcyclopentane					
1T3DMCP	1-trans-3-Dimethylcyclopentane					
3EP	3-Ethylpentane					
1T2DMCP	1-trans-2-Dimethylcyclopentane					
NC7	Normal Alkane C7					
ISTD	Internal Standard					
MCH	Methylcyclohexane					
113TMCP	1,1,3,-Trimethylcyclopentane					
ECP	Ethylcyclopentane					
124TMCP	1,2,4-Trimethylcyclopentane					
123TMCP	1,2,3-Trimethylcyclopentane					
TOL	Toluene					
NC8	Normal Alkane C8	15.488	234	60		
IP9	Isoprenoid C9					
EB	Ethyl-benzene					
MXYL	<i>m</i> -xylene	18.409	1349	484		
PXYL	<i>p</i> -xylene	18.471	391	150		
OXYL	o-xylene	19.663	1714	492		
NC9	Normal Alkane C9	21.055	1865	595		
IP10	Isoprenoid C10	23.034	347	145		
PB	Propyl-benzene	23.217	1198	371		
NC10	Normal Alkane C10	26.656	12127	3536		
IP11	Isoprenoid C11	27.924	2075	408		
NC11	Normal Alkane C11	31.928	15761	5349		
NC12	Normal Alkane C12	36.863	23415	7431		
IP13	Isoprenoid C13	37.606	4399	1085		
IP14	Isoprenoid C14	40.377	2956	822		
NC13	Normal Alkane C13	41.488	28729	9300		
IP15	Isoprenoid C15	44.948	7027	1639		
NC14	Normal Alkane C14	45.839	49278	14267		

Company: Well Name:	Colorado State University Colorado State University Samples		Client ID: Project #:	BIR-15 BH-79915		
Depth:	•		Lab ID:	61218445	13	
Sampling Poir	it:		File Name:	G2160493	.D	
Poak	Compound	Pot			nnt	nnt
Label	Name	Time	Area	Height	(Area)	(Haht)
IP16	Isoprenoid C16	48.511	23756	4158		(
NC15	Normal Alkane C15	49.951	44877	14564		
NC16	Normal Alkane C16	53.825	85502	15541		
IP18	Isoprenoid C18	55.758	34522	5410		
NC17	Normal Alkane C17	57.487	62659	14657		
IP19	Isoprenoid C19 (Pristane)	57.840	23386	4615		
PHEN	Phenanthrene	58.931	17377	5108		
NC18	Normal Alkane C18	60.975	48014	13279		
IP20	Isoprenoid C20 (Phytane)	61.441	19426	3419		
NC19	Normal Alkane C19	64.299	53872	15447		
NC20	Normal Alkane C20	67.467	73855	20832		
NC21	Normal Alkane C21	70.496	72688	20279		
C25HBI	Highly Branch Isoprenoid C25	70.751	4747	956		
NC22	Normal Alkane C22	73.394	70095	19431		
NC23	Normal Alkane C23	76.168	59597	15076		
NC24	Normal Alkane C24	78.852	40589	14300		
NC25	Normal Alkane C25	81.388	53284	9462		
NC26	Normal Alkane C26	83.847	11941	3223		
NC27	Normal Alkane C27	86.223	9993	2514		
NC28	Normal Alkane C28	88.507	8/0/	1491		
NC29	Normal Alkane C29	90.724	8184	2025		
NC30	Normal Alkane C30	92.869	4/11	1013		
NC31	Normal Alkana C31	94.940	3045	712		
NC32	Normal Alkana C32	90.930	3943	715		
NC34	Normal Alkane C34	100 845	2563	949		
NC35	Normal Alkane C35	102.672	2303	326		
NC36	Normal Alkane C36	102.072	2377	217		
NC37	Normal Alkane C37	107.058	2109	423		
NC38	Normal Alkane C38	109 741	2003	265		
NC39	Normal Alkane C39	112 596	948	103		
NC40	Normal Alkane C40	112.000	040	100		
NC41	Normal Alkane C41					

Company:	Colorado State University	c	lient ID:	BIR-16		
Well Name:	Colorado State University Samples	P	Project #:	BH-79915		
Depth:		L	ab ID:	6121844515		
Sampling Poi	int:	F	ile Name:	G2160498	3.D	
Book	Compound	Det			nnt	nnt
Peak	Namo	Ret.	Aroa	Hoight	ppt (Area)	/Habt)
	Iso-alkane C4	Time	Area	пенупт	(Alea)	(ngiii)
NC4	Normal Alkana C4					
105	Iso-alkane C5					
NC5	Normal Alkana C5					
22DMR	2.2 Dimethylbutane					
22DIVID	Cyclopentane					
	2.2 Dimethylkutana					
23DIVID	2,3-Dimetryibutane					
ZIVIP	2-Methylpentane					
SIVIP	3-Methylpentane					
NCO	Normal Alkane Co					
ZZDIVIP	2,2-Dimethylpentane					
MCP	Methylcyclopentane					
24DMP	2,4-Dimethylpentane					
2231 MB	2,2,3-Trimethylbutane					
BZ	Benzene					
33DMP	3,3-Dimethylpentane					
СН	Cyclohexane					
2MH	2-Methylhexane					
23DMP	2,3-Dimethylpentane					
11DMCP	1,1-Dimethylcyclopentane					
ЗМН	3-Methylhexane					
1C3DMCP	1-cis-3-Dimethylcyclopentane					
1T3DMCP	1-trans-3-Dimethylcyclopentane					
3EP	3-Ethylpentane					
1T2DMCP	1-trans-2-Dimethylcyclopentane					
NC7	Normal Alkane C7					
ISTD	Internal Standard					
MCH	Methylcyclohexane					
113TMCP	1,1,3,-Trimethylcyclopentane					
ECP	Ethylcyclopentane					
124TMCP	1,2,4-Trimethylcyclopentane					
123TMCP	1,2,3-Trimethylcyclopentane					
TOL	Toluene					
NC8	Normal Alkane C8	15.296	1489	545		
IP9	Isoprenoid C9	17.122	1147	309		
EB	Ethyl-benzene					
MXYL	<i>m</i> -xylene	18.386	563	187		
PXYL	p-xylene	18.448	140	60		
OXYL	o-xylene	19.637	999	277		
NC9	Normal Alkane C9	21.038	16089	5846		
IP10	Isoprenoid C10	23.024	3769	1111		
PB	Propyl-benzene	23.200	456	168		
NC10	Normal Alkane C10	26.654	67403	23384		
IP11	Isoprenoid C11	27.947	7159	2315		
NC11	Normal Alkane C11	31.937	112956	37679		
NC12	Normal Alkane C12	36.875	120080	38635		
IP13	Isoprenoid C13	37.602	13683	3560		
IP14	Isoprenoid C14	40.373	4485	1188		
NC13	Normal Alkane C13	41.496	103443	32626		
IP15	Isoprenoid C15	44,936	5014	1089		
NC14	Normal Alkane C14	45.839	88737	26185		

Company: Well Name:	Ipany: Colorado State University Client Name: Colorado State University Samples Project		Client ID: Project #:	BIR-16 BH-79915		
Depth: Sompling Boi	- 		Lab ID:	61218445	15	
Sampling Pol	nt.		File Name.	G2100490	D.D	_
Peak	Compound	Ret.			ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
IP16	Isoprenoid C16	48.484	16385	4034		
NC15	Normal Alkane C15	49.936	73623	19233		
NC16	Normal Alkane C16	53.848	108494	21353		
IP18	Isoprenoid C18	55.753	19696	3508		
NC17	Normal Alkane C17	57.480	64930	13000		
IP19	Isoprenoid C19 (Pristane)	57.831	7539	1460		
PHEN	Phenanthrene	58.919	3884	821		
NC18	Normal Alkane C18	60.959	36409	9306		
IP20	Isoprenoid C20 (Phytane)	61.432	7297	1545		
NC19	Normal Alkane C19	64.276	22539	6188		
NC20	Normal Alkane C20	67.440	18335	4942		
NC21	Normal Alkane C21	70.467	14030	3842		
C25HBI	Highly Branch Isoprenoid C25	70.740	1299	288		
NC22	Normal Alkane C22	73.362	10885	2940		
NC23	Normal Alkane C23	76.138	9984	2484		
NC24	Normal Alkane C24	78.846	41248	9921		
NC25	Normal Alkane C25	81.366	15071	2727		
NC26	Normal Alkane C26	83.828	4051	1116		
NC27	Normal Alkane C27	86.202	32/6	837		
NC28	Normal Alkana C28	88.496	2//6	649		
NC29	Normal Alkana C29	90.708	3017	764		
NC30	Normal Alkana C30	92.803	1822	3/2		
NC32	Normal Alkane C31	94.930	2023	325		
NC32	Normal Alkana C32	90.917	947	194		
NC34	Normal Alkane C34	100 778	582	104		
NC35	Normal Alkane C35	102.644	282	62		
NC36	Normal Alkane C36	102.044	377	78		
NC37	Normal Alkane C37	107.096	793	85		
NC38	Normal Alkane C38	107.000	100	00		
NC39	Normal Alkane C39					
NC40	Normal Alkane C40					
NC41	Normal Alkane C41					

Company:	Colorado State University		Client ID:	517-2.5		
Well Name:	Nonesuch Formation Core Samples		Project #:	BH-79239		
Depth:	3074.60 -		Lab ID:	612180626	0	
Sampling Poin	t:		File Name:	G5160570.	D	
Peak	Compound	Ret.			ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
IC4	Iso-alkane C4					
NC4	Normal Alkane C4					
IC5	lso-alkane C5					
NC5	Normal Alkane C5					
22DMB	2,2-Dimethylbutane					
CP	Cyclopentane					
23DMB	2,3-Dimethylbutane					
2MP	2-Methylpentane					
3MP	3-Methylpentane					
NC6	Normal Alkane C6					
22DMP	2,2-Dimethylpentane					
MCP	Methylcyclopentane					
24DMP	2,4-Dimethylpentane					
223TMB	2,2,3-Trimethylbutane					
BZ	Benzene					
33DMP	3,3-Dimethylpentane					
CH	Cyclohexane					
2MH	2-Methylhexane					
23DMP	2,3-Dimethylpentane					
11DMCP	1,1-Dimethylcyclopentane					
ЗМН	3-Methylhexane					
1C3DMCP	1-cis-3-Dimethylcyclopentane					
1T3DMCP	1-trans-3-Dimethylcyclopentane					
3EP	3-Ethvlpentane					
1T2DMCP	1-trans-2-Dimethylcyclopentane					
NC7	Normal Alkane C7					
ISTD	Internal Standard					
MCH	Methylcyclohexane					
113TMCP	1.1.3Trimethylcyclopentane					
FCP	Ethylcyclopentane					
124TMCP	1.2.4-Trimethylcyclopentane					
123TMCP	123-Trimethylcyclopentane					
TOI	Toluene					
NC8	Normal Alkane C8					
IP9	Isoprenoid C9					
FB	Ethyl-benzene					
MXYI	m-yylene					
PXYI	n-xylene					
OXYL	0-xylene					
NC9	Normal Alkane C9					
IP10	Isoprepoid C10					
PB	Propyl-henzene					
NC10	Normal Alkane C10					
IP11	Isoprenoid C11					
NC11	Normal Alkane C11	31 872	3771	1262		
NC12	Normal Alkane C12	36.804	57164	19159		
IP13	Isoprepoid C13	37 543	7312	1922		
IP14	Isoprenoid C14	40 313	3270	883		
NC13	Normal Alkane C13	40.515	115/60	36381		
IP15	Isoprepoid C15	41.430	5008	1196		
NO14	Name Alkene O14	44.004	100504	07057		
NC14	Normal Alkane C14	45.771	126584	3/85/		

Company:	Colorado State University		Client ID:	517-2.5		
Well Name:	Nonesuch Formation Core Samples		Project #:	BH-79239		
Depth:	3074.60 -		Lab ID:	612180620	50	
Sampling Poi	nt:		File Name:	G5160570	.D	
Peak	Compound	Ret.		11-1-1-4	ppt	ppt
Label	Name	11me	Area	Height	(Area)	(Hght)
IP16	Isoprenoid C16	48.409	25538	6617		
NC15	Normal Alkane C15	49.861	142883	30866		
INC16	Normal Alkane C16	53.729	129140	27086		
IP18	Isoprenoid C18	55.663	21484	5147		
NC17	Normal Alkane C17	57.394	105521	23251		
IP19	Isoprenoid C19 (Pristane)	57.739	10616	2009		
PHEN	Phenanthrene	58.827	2414	616		
NC18	Normal Alkane C18	60.874	82377	18944		
IP20	Isoprenoid C20 (Phytane)	61.339	15915	4104		
NC19	Normal Alkane C19	64.181	46375	12/69		
NC20	Normal Alkane C20	67.338	34557	9542		
NC21	Normal Alkane C21	70.359	24907	7355		
C25HBI	Highly Branch Isoprenoid C25	70.641	1962	484		
NC22	Normal Alkane C22	73.252	21004	5731		
NC23	Normal Alkane C23	76.027	16594	4406		
NC24	Normal Alkane C24	78.689	13600	3481		
NC25	Normal Alkane C25	81.246	9536	2538		
NC26	Normal Alkane C26	83.706	7509	1978		
NC27	Normal Alkane C27	86.084	5890	1564		
NC28	Normal Alkane C28	88.373	5073	1263		
NC29	Normal Alkane C29	90.590	4388	1102		
NC30	Normal Alkane C30	92.732	3048	727		
NC31	Normal Alkane C31	94.798	6453	1042		
NC32	Normal Alkane C32	96.811	1652	382		
NC33	Normal Alkane C33	98.756	2662	427		
NC34	Normal Alkane C34	100.651	1600	249		
NC35	Normal Alkane C35	102.515	1420	235		
NC36	Normal Alkane C36	104.525	1003	157		
NC37	Normal Alkane C37	106.796	600	118		
NC38	Normal Alkane C38	109.352	254	90		
NC39	Normal Alkane C39					
NC40	Normal Alkane C40					
NC41	Normal Alkane C41					
1						

Company:	Colorado State University		Client ID:	517-3		
Well Name:	Nonesuch Formation Core Samples		Project #:	BH-7923	9	
Depth:	3065.00 -		Lab ID:	6121806	262	
Sampling Poin	it:		File Name:	G516057	1.D	
Book	Compound	Bot	_		net	nnt
Peak	Nomo	Ret.	Aroa	Hoight	ppt (Aroo)	/Habt)
	Iso alkana C4	Time	Area	neight	(Alea)	(ngiii)
NC4	Normal Alkana C4					
105	Normal Alkane C4					
NOF	Normal Alkana CE					
NC3	2.2 Dimetholistene					
22DIVIB	2,2-Dimethylbutane					
	Cyclopentane					
23DIVIB	2,3-Dimethylbutane					
ZIVIP	2-Methylpentane					
SMP	3-Methylpentane					
NC6	Normal Alkane Co					
22DMP	2,2-Dimethylpentane					
MCP	Methylcyclopentane					
24DMP	2,4-Dimethylpentane					
223TMB	2,2,3-Trimethylbutane					
BZ	Benzene					
33DMP	3,3-Dimethylpentane					
СН	Cyclohexane					
2MH	2-Methylhexane					
23DMP	2,3-Dimethylpentane					
11DMCP	1,1-Dimethylcyclopentane					
3MH	3-Methylhexane					
1C3DMCP	1-cis-3-Dimethylcyclopentane					
1T3DMCP	1-trans-3-Dimethylcyclopentane					
3EP	3-Ethylpentane					
1T2DMCP	1-trans-2-Dimethylcyclopentane					
NC7	Normal Alkane C7					
ISTD	Internal Standard					
MCH	Methylcyclohexane					
113TMCP	1,1,3,-Trimethylcyclopentane					
ECP	Ethylcyclopentane					
124TMCP	1,2,4-Trimethylcyclopentane					
123TMCP	1,2,3-Trimethylcyclopentane					
TOL	Toluene					
NC8	Normal Alkane C8					
IP9	Isoprenoid C9					
EB	Ethyl-benzene					
MXYL	<i>m</i> -xylene					
PXYL	p-xylene					
OXYL	o-xylene					
NC9	Normal Alkane C9					
IP10	Isoprenoid C10					
PB	Propyl-benzene					
NC10	Normal Alkane C10	26.615	196	46		
IP11	Isoprenoid C11	27.915	48	13		
NC11	Normal Alkane C11	31 870	16246	5513		
NC12	Normal Alkane C12	36 804	78397	25592		
IP13	Isoprepoid C13	37 530	11000	2706		
IP14	Isoprenoid C14	40 300	4257	1122		
NC13	Normal Alkane C13	40.309	120969	38350		
IP15	Isoprepoid C15	41.420	6217	1260		
NC14	Nermal Alliana C14	44.000	400000	200		
INC14	Normal Alkane C14	45.769	129902	3858/		

Weil Name: Nonesuch Formation Core Samples Project #: BF-7223 Sampling Point: 3065:00 - Label Ref. pt. pt. Peak Compound Ref. - pt. pt. pt. Label Name Time Area Height (Area) pt. (Hght) IP16 Isoprenoid C16 48.406 24742 6653 - (Hght) (Hght) IP16 Isoprenoid C16 48.406 24742 6653 - - pt. (Hght) - <th>Company:</th> <th>Colorado State University</th> <th></th> <th>Client ID:</th> <th>517-3</th> <th>5</th> <th></th>	Company:	Colorado State University		Client ID:	517-3	5	
Deptin: Subs.00 Lab ID: 612 (302022) Sampling Point: File Name: G560571.D Peak Compound Ret. rm Area Height (Hght) IP16 Isoprenoid C16 48 406 24742 6553 (Hght) NC15 Normal Alkane C15 49 857 127643 33411 NC16 Normal Alkane C16 55 721 104520 27280 IP18 Isoprenoid C18 55 661 24535 5762 NC17 Normal Alkane C17 57 384 8005 22340 IP19 Isoprenoid C18 (Pitstane) 57,734 7634 1601 PHEN Phenanthrene 58 705 2133 558 NC18 Normal Alkane C21 70 357 24725 7151 NC20 Normal Alkane C21 70 357 24725 7151 NC21 Normal Alkane C21 76 322 14863 3586 NC22 Normal Alkane C22 73 248 1453 166	Well Name:	Nonesuch Formation Core Samples		Project #:	BH-79239	~~	
Part Compound Ret. Area Height (Area) (Hight) IP16 Isoprenoid C16 44,400 24742 6563 93411 NC15 Normal Alkane C15 44,8400 24742 6563 93411 NC16 Normal Alkane C16 53,722 104520 27280 1011 IP18 Isoprenoid C18 56,661 24535 5762 1011 IP19 Isoprenoid C18 66,863 65566 16816 1112 IP20 Isoprenoid C18 66,863 65566 16816 112 IP20 Isoprenoid C18 66,863 65566 16816 112 NC16 Normal Alkane C19 04,170 4773 12178 102 NC20 Normal Alkane C20 67,335 10355 102 102 NC21 Normal Alkane C22 73,248 19443 5316 NC23 Normal Alkane C23 76,022 14850 3888 NC24 Normal Alkane C24 7	Deptn:	3065.00 -		Lab ID:	61218062	62	
Peak Compound Name Ret. Time Area Area Height Height (Area) ppt (Hght) IP16 Isoprenoid C16 48.406 24742 6563 NC15 Normal Alkane C15 49.857 127543 33411 NC16 Normal Alkane C16 53.722 104520 27290 IP18 Isoprenoid C18 55.661 24635 5762 NC17 Normal Alkane C17 57.344 88005 22340 IP19 Isoprenoid C19 (Pristane) 57.734 7034 1601 PHEN Phenanthrene 58.765 2138 558 NC18 Normal Alkane C19 64.170 43738 12178 NC20 Normal Alkane C21 70.357 12164 5316 NC21 Normal Alkane C22 73.248 14435 5316 NC22 Normal Alkane C23 76.02 14860 3888 NC24 Normal Alkane C25 81.247 7956 2161 NC25 Normal Alkane C26 88.374 3453	Sampling Poli	11.		File Name:	G51605/1		
Label Name Time Area Height (Årea) (Hight) IP16 isoprenoid C16 48.406 24742 6563 (Hight) NC15 Normal Alkane C15 49.857 127643 33411 NC16 Normal Alkane C16 53.722 104520 27280 IP18 Isoprenoid C18 55.661 24535 5762 NC17 Normal Alkane C17 57.384 88005 22340 IP19 isoprenoid C18 (Piristane) 57.73 7303 1731 IP20 isoprenoid C19 (Piristane) 61.330 7303 1731 INC19 Normal Alkane C20 67.335 5955 1022 INC20 Normal Alkane C21 70.357 24725 7151 INC22 Normal Alkane C22 73.248 19443 5316 INC23 Normal Alkane C23 76.022 14850 3888 INC24 Normal Alkane C25 81.247 7956 2168 INC24 Normal Alkane C30 92	Peak	Compound	Ret.			ppt	ppt
IP16 Isoperoid C16 44.466 24742 658 NC15 Normal Alkane C15 44.857 127543 33411 NC16 Normal Alkane C16 53.722 104520 27290 IP18 Isoperoid C18 55.661 24535 5702 NC17 Normal Alkane C17 57.344 88005 22340 IP19 Isoperoid C19 (Pristane) 57.734 7634 1601 PHEN Phenanthrene 58.785 21.33 558 NC19 Normal Alkane C18 60.863 63598 18816 IP20 Isoperoid C20 (Phytane) 61.330 7303 1731 NC21 Normal Alkane C21 70.357 24725 7151 C221 Normal Alkane C23 76.022 14850 3886 NC24 Normal Alkane C23 76.022 14850 3886 NC24 Normal Alkane C24 78.644 10570 2811 NC24 Normal Alkane C30 92.732 2184 175	Label	Name	Time	Area	Height	(Area)	(Hght)
NC16 Normal Alkane C15 49.857 127543 33411 NC16 Normal Alkane C16 53.722 104520 27280 IP18 Isoprenoid C18 55.661 24535 5762 NC17 Normal Alkane C17 57.344 88005 22240 IP19 Isoprenoid C19 (Pistane) 57.734 7634 1801 PHEN Pnenanthrene 58.785 2138 5658 NC18 Normal Alkane C18 60.863 63598 18816 IP20 Isoprenoid C20 (Phytane) 61.330 7303 1731 NC20 Normal Alkane C21 70.357 24725 7151 C224 Normal Alkane C21 73.248 19443 5316 NC22 Normal Alkane C23 76.022 14850 3888 NC24 Normal Alkane C24 78.664 10570 2811 NC26 Normal Alkane C26 83.708 5949 1339 NC27 Normal Alkane C27 80.854 4123 851	IP16	Isoprenoid C16	48.406	24742	6563		
NC16 Normal Alkane C16 53 722 104520 27200 IP18 Isoprenoid C18 55 661 24535 5762 NC17 Normal Alkane C17 57 384 88005 22340 IP19 Isoprenoid C19 (Pristane) 57 734 7634 1001 PHEN Normal Alkane C18 80.883 63598 18816 IP20 Isoprenoid C20 (Phytane) 61.330 7033 1731 NC19 Normal Alkane C21 70.387 24778 7758 NC20 Normal Alkane C21 70.397 24772 7751 NC22 Normal Alkane C23 76 022 71.841 5316 NC22 Normal Alkane C23 76 022 14850 3888 NC24 Normal Alkane C24 78.644 10570 2811 NC25 Normal Alkane C25 61.247 7956 2168 NC26 Normal Alkane C26 83.74 3453 851 NC26 Normal Alkane C30 92.732 2184 475 <	NC15	Normal Alkane C15	49.857	127543	33411		
IP18 Isoprenoid C18 55.661 24535 5762 IP19 Isoprenoid C19 (Pristane) 57.734 7634 1601 PHEN Pnenanthrene 58.785 2138 5538 INC18 Normal Alkane C18 60.863 63598 16816 IP20 Isoprenoid C20 (Priytane) 61.330 7303 1731 NC19 Normal Alkane C19 64.176 43738 12176 NC20 Normal Alkane C20 67.335 33516 9355 NC21 Normal Alkane C22 73.248 19443 5316 NC22 Normal Alkane C23 76.022 14850 3888 NC24 Normal Alkane C26 83.708 5949 1339 NC25 Normal Alkane C26 83.374 3453 861 NC28 Normal Alkane C30 92.752 2184 051 NC26 Normal Alkane C31 94.811 361 365 NC28 Normal Alkane C31 94.581 366 101	NC16	Normal Alkane C16	53.722	104520	27290		
NC17 Normal Alkane C17 57.384 88006 22340 IP19 Isopreniol C19 (Pristane) 57.734 7784 7834 1801 PHEN Phenanthrene 58.795 2138 558 INC18 Normal Alkane C18 60.863 63598 16816 IP20 Isopreniol C20 (Phytane) 61.330 7730 1731 NC19 Normal Alkane C20 67.335 33516 9355 NC21 Normal Alkane C21 70.357 24725 7751 NC22 Normal Alkane C23 70.616 2574 578 NC22 Normal Alkane C23 76.022 14850 3888 NC24 Normal Alkane C23 76.02 14150 3881 NC25 Normal Alkane C25 81.247 7956 2168 NC26 Normal Alkane C27 86.082 4712 1193 NC28 Normal Alkane C28 80.553 301 NC29 Normal Alkane C30 92.732 2184 475	IP18	Isoprenoid C18	55.661	24535	5762		
IP19 Isoprenoid C19 (Pristane) 57.734 7634 1001 PHEN Phenanthrene 58.765 2138 558 NC18 Normal Alkane C18 60.863 63598 16816 IP20 Isoprenoid C20 (Priytane) 61.330 7303 1731 NC19 Normal Alkane C19 64.176 47378 12178 NC20 Normal Alkane C21 70.357 24725 7161 C25HBI Highly Branch Isoprenoid C25 70.616 2574 578 NC22 Normal Alkane C23 76.022 14450 3888 NC24 Normal Alkane C25 81.247 7956 2168 NC27 Normal Alkane C26 83.708 5949 1539 NC27 Normal Alkane C28 83.708 5949 1539 NC27 Normal Alkane C31 94.811 3612 616 NC30 Normal Alkane C31 94.811 3612 616 NC31 Normal Alkane C33 96.74 1769 317	NC17	Normal Alkane C17	57.384	88005	22340		
PHEN Phenanthrene 58,765 2138 558 NC18 Normal Alkane C13 60,863 63598 18816 IP20 Isoprenoid C20 (Phytane) 61,330 7303 1731 NC19 Normal Alkane C20 67,335 33516 9355 NC21 Normal Alkane C21 70,357 24725 7761 C25HBI Highly Branch Isoprenoid C25 70,816 2574 578 NC22 Normal Alkane C23 76,022 14450 3886 NC24 Normal Alkane C23 76,022 14450 3886 NC25 Normal Alkane C25 81,247 7956 2168 NC26 Normal Alkane C27 80,082 4712 1193 NC28 Normal Alkane C30 92,732 2184 475 NC30 Normal Alkane C31 94,811 3612 616 NC32 Normal Alkane C33 98,748 1769 317 NC34 Normal Alkane C35 100,639 318 133	IP19	Isoprenoid C19 (Pristane)	57.734	7634	1601		
NC18 Normal Alkane C18 60.863 635968 16816 IP20 Isoprenoid C20 (Phytane) 61.330 7333 1731 NC19 Normal Alkane C19 64.176 43738 12178 NC20 Normal Alkane C21 70.357 24725 7151 C25HBI Highly Branch Isoprenoid C25 70.616 2574 578 NC21 Normal Alkane C23 76.022 14850 3888 NC24 Normal Alkane C23 76.022 14850 3888 NC24 Normal Alkane C25 81.247 7956 2168 NC28 Normal Alkane C25 81.247 7956 2168 NC28 Normal Alkane C28 83.708 5949 1539 NC28 Normal Alkane C29 90.585 3350 801 NC30 Normal Alkane C33 98.748 1751 234 NC31 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C35 133 133 133	PHEN	Phenanthrene	58.795	2138	558		
IP20 Isoprenoid C20 (Phytane) 61.320 7303 1731 NC19 Normal Alkane C19 64.176 43738 12178 NC20 Normal Alkane C20 67.335 33516 9355 NC21 Normal Alkane C21 70.357 24725 7151 C25HBI Highly Branch Isoprenoid C25 70.616 2574 578 NC22 Normal Alkane C22 73.248 19443 5316 NC24 Normal Alkane C23 76.022 14850 3888 NC24 Normal Alkane C24 76.684 10570 2811 NC25 Normal Alkane C25 81.247 7956 2183 NC26 Normal Alkane C27 86.082 4712 1193 NC28 Normal Alkane C29 90.585 3350 801 NC29 Normal Alkane C30 92.732 2184 475 NC30 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C32 98.74 1769 317 <tr< td=""><td>NC18</td><td>Normal Alkane C18</td><td>60.863</td><td>63598</td><td>16816</td><td></td><td></td></tr<>	NC18	Normal Alkane C18	60.863	63598	16816		
NC19 Normal Alkane C19 64.176 43738 12178 NC20 Normal Alkane C20 67.335 33516 9355 NC21 Normal Alkane C21 70.357 24725 7151 C25HBI Highly Branch Isoprenoid C25 70.616 2574 5736 NC22 Normal Alkane C23 78.022 14850 3888 NC24 Normal Alkane C23 78.022 14850 3888 NC24 Normal Alkane C25 81.247 7956 2168 NC26 Normal Alkane C26 83.708 5949 1539 NC27 Normal Alkane C27 86.082 4712 1193 NC28 Normal Alkane C29 90.585 3350 851 NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C34 100.639 318 133	IP20	Isoprenoid C20 (Phytane)	61.330	7303	1731		
NC20 Normal Alkane C20 67.335 33516 9355 NC21 Normal Alkane C21 70.357 24725 7151 C25HBI Highly Branch Isoprenoid C25 70.616 2574 578 NC22 Normal Alkane C23 78.022 14850 3888 NC24 Normal Alkane C23 78.022 14850 3888 NC24 Normal Alkane C24 78.684 10570 2811 NC25 Normal Alkane C26 83.708 5949 1539 NC27 Normal Alkane C27 88.082 4712 1193 NC28 Normal Alkane C28 83.374 3551 NC29 Normal Alkane C30 92.732 2144 475 NC30 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C36 100.639 318 133 NC35 Normal Alkane C36 100.639 118 133 NC36	NC19	Normal Alkane C19	64.176	43738	12178		
NC21 Normal Alkane C21 70.357 24725 7151 C25HBi Highly Branch Isoprenoid C25 70.616 2574 578 NC22 Normal Alkane C22 73.246 19443 5316 NC23 Normal Alkane C24 78.684 10570 2811 NC25 Normal Alkane C24 78.684 10570 2811 NC26 Normal Alkane C25 81.247 7956 2168 NC27 Normal Alkane C27 86.082 4712 1193 NC28 Normal Alkane C27 86.082 4712 1193 NC28 Normal Alkane C29 90.585 3350 801 NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C36 NOrmal Alkane C37 NOrmal Alkane C38 NOrmal Alkane C39 NC39 Normal Alkane C40 NOrmal Alkane C41 Normal Alk	NC20	Normal Alkane C20	67.335	33516	9355		
C25HBI Highly Branch Isoprenoid C25 70.616 2574 578 NC22 Normal Alkane C22 73.248 19443 5316 NC24 Normal Alkane C23 76.022 14850 3888 NC24 Normal Alkane C24 78.684 10570 2811 NC25 Normal Alkane C26 81.247 7956 2168 NC26 Normal Alkane C27 86.082 4712 1193 NC27 Normal Alkane C28 88.374 3453 851 NC28 Normal Alkane C30 92.732 2184 475 NC30 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C34 100.639 318 133 NC35 Normal Alkane C36 NC37 NC36 Normal Alkane C37 NC38 Normal Alkane C38 NC37 NC38 Normal Alkane C38 NC39 Normal Alkane C40 NC40 Normal Alkane C40 NC41 Normal Alkane C40 NC41 Normal Alkane C40 NC40	NC21	Normal Alkane C21	70.357	24725	7151		
NC22 Normal Alkane C22 73.248 19443 5316 NC23 Normal Alkane C23 76.022 14850 3888 NC24 Normal Alkane C25 81.247 7956 2168 NC25 Normal Alkane C26 83.708 5549 1539 NC26 Normal Alkane C27 86.082 4712 1193 NC28 Normal Alkane C29 90.585 3350 801 NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C32 98.871 1251 264 NC33 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C35 Normal Alkane C36 NC37 Normal Alkane C36 NC37 Normal Alkane C38 Normal Alkane C38 Normal Alkane C39 Normal Alkane C39 NC39 Normal Alkane C40 Normal Alkane C41 Normal Alkane C41 Normal Alkane C41	C25HBI	Highly Branch Isoprenoid C25	70.616	2574	578		
NC23 Normal Alkane C23 76.022 14850 3888 NC24 Normal Alkane C24 78.684 10570 2811 NC25 Normal Alkane C25 81.247 7956 2168 NC26 Normal Alkane C26 83.3708 5949 1539 NC27 Normal Alkane C26 83.3708 5949 1539 NC28 Normal Alkane C26 83.374 3453 851 NC29 Normal Alkane C29 90.585 3350 801 NC30 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C32 96.817 1251 284 NC33 Normal Alkane C34 100.639 318 133 NC35 Normal Alkane C36 NC37 Normal Alkane C37 NC38 Normal Alkane C37 Normal Alkane C39 NC40 Normal Alkane C40 NC41 Normal Alkane C41 Normal Alkane C41 Normal Alkane C41 Normal Alkane	NC22	Normal Alkane C22	73.248	19443	5316		
NC24 Normal Alkane C24 78.684 10570 2811 NC25 Normal Alkane C25 81.247 7956 2168 NC26 Normal Alkane C26 83.708 5949 1539 NC27 Normal Alkane C27 86.082 4712 1193 NC28 Normal Alkane C29 90.585 3350 801 NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C34 100.639 318 133 NC36 Normal Alkane C36 NC39 Normal Alkane C36 NC38 Normal Alkane C38 NC39 Normal Alkane C38 NC39 Normal Alkane C40 Normal Alkane C41 Normal Alkane C41	NC23	Normal Alkane C23	76.022	14850	3888		
NC25 Normal Alkane C25 81 247 7956 2168 NC28 Normal Alkane C26 83 708 5949 1539 NC27 Normal Alkane C27 86 062 4712 1193 NC28 Normal Alkane C28 88 374 3453 851 NC29 Normal Alkane C29 90.585 3350 801 NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C32 96.817 1251 284 NC33 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C34 100.639 318 133 NC35 Normal Alkane C36 NC37 Normal Alkane C36 NC37 Normal Alkane C38 NC39 Normal Alkane C40 NC40 Normal Alkane C40 Normal Alkane C41 100 100 100 100 100 100 100 100 100 100 100 1	NC24	Normal Alkane C24	78.684	10570	2811		
NC26 Normal Alkane C26 83 708 5949 1539 NC27 Normal Alkane C27 86.082 4712 1193 NC28 Normal Alkane C28 88.374 3453 851 NC29 Normal Alkane C29 90.585 3350 801 NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C32 96.817 1251 284 NC33 Normal Alkane C32 96.817 1251 284 NC33 Normal Alkane C32 96.817 1251 284 NC33 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C35 Normal Alkane C35 Normal Alkane C37 Normal Alkane C37 NC36 Normal Alkane C38 Normal Alkane C40 NC40 Normal Alkane C41	NC25	Normal Alkane C25	81.247	7956	2168		
NC27 Normal Alkane C27 86.082 47.12 1193 NC28 Normal Alkane C28 88.374 3453 851 NC29 90.585 3350 801 NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C32 96.817 1251 264 NC33 Normal Alkane C32 96.817 1251 264 NC34 Normal Alkane C33 98.748 1769 317 NC35 Normal Alkane C36 Normal Alkane C36 NC37 Normal Alkane C36 NC37 Normal Alkane C38 NC39 Normal Alkane C39 NC40 Normal Alkane C40 NC40 Normal Alkane C41 Normal Alkane C41 Normal Alkane C41 Normal Alkane C41	NC26	Normal Alkane C26	83.708	5949	1539		
NC28 Normal Alkane C28 88.374 3453 851 NC29 Normal Alkane C29 90.585 3350 801 NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C31 94.811 3612 616 NC33 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C33 98.748 1769 317 NC35 Normal Alkane C36 1769 317 NC36 Normal Alkane C36 1769 317 NC36 Normal Alkane C36 170 170 NC38 Normal Alkane C37 170 170 NC40 Normal Alkane C40 170 170 NC41 Normal Alkane C40 170 170	NC27	Normal Alkane C27	86.082	4712	1193		
NC29 Normal Alkane C29 90.585 3350 801 NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C32 96.817 1251 284 NC33 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C34 100.639 318 133 NC36 Normal Alkane C35 Normal Alkane C36 NC37 Normal Alkane C38 NC39 Normal Alkane C38 NC39 Normal Alkane C40 NC41 Normal Alkane C41	NC28	Normal Alkane C28	88.374	3453	851		
NC30 Normal Alkane C30 92.732 2184 475 NC31 Normal Alkane C31 94.811 3612 616 NC32 96.817 1251 264 NC33 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C34 100.639 318 133 NC35 Normal Alkane C36 NC37 Normal Alkane C36 NC37 Normal Alkane C38 NC38 Normal Alkane C39 NC40 Normal Alkane C40 NC41 Normal Alkane C41	NC29	Normal Alkane C29	90.585	3350	801		
NC31 Normal Alkane C31 94.811 3612 616 NC32 Normal Alkane C32 96.817 1251 264 NC33 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C34 100.639 318 133 NC35 Normal Alkane C35 Normal Alkane C36 NC37 Normal Alkane C37 NC38 Normal Alkane C37 NC38 Normal Alkane C40 NC40 Normal Alkane C40 NC40 Normal Alkane C41 Normal Alkane C41 Normal Alkane C41 Normal Alkane C41	NC30	Normal Alkane C30	92.732	2184	475		
NC32 Normal Alkane C32 98.817 1251 264 NC33 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C34 100.639 318 133 NC36 Normal Alkane C35 100.639 318 133 NC36 Normal Alkane C35 100.639 318 133 NC37 Normal Alkane C36 100.639 318 133 NC38 Normal Alkane C37 100.639 318 133 NC38 Normal Alkane C37 100.639 100.639 100.639 NC38 Normal Alkane C37 100.639 100.639 100.639 100.639 NC38 Normal Alkane C37 100.639 100.639 100.639 100.639 NC40 Normal Alkane C40 Normal Alkane C41 100.639 100.639 100.639	NC31	Normal Alkane C31	94.811	3612	616		
NC33 Normal Alkane C33 98.748 1769 317 NC34 Normal Alkane C34 100.639 318 133 NC35 Normal Alkane C35 Normal Alkane C36 NC37 Normal Alkane C37 NC38 Normal Alkane C39 NC40 Normal Alkane C40 NC41 Normal Alkane C41	NC32	Normal Alkane C32	96.817	1251	264		
NC34 Normal Alkane C34 100.639 318 133 NC35 Normal Alkane C35 NC36 Normal Alkane C36 NC37 Normal Alkane C37 NC38 Normal Alkane C38 NC39 Normal Alkane C39 NC40 Normal Alkane C40 NC41 Normal Alkane C41 Normal Alkane C41 Normal Alkane C41 Normal Alkane C41	NC33	Normal Alkane C33	98.748	1769	317		
NC35 Normal Alkane C35 NC36 Normal Alkane C36 NC37 Normal Alkane C37 NC38 Normal Alkane C38 NC39 Normal Alkane C39 NC40 Normal Alkane C41	NC34	Normal Alkane C34	100.639	318	133		
NC35 Normal Alkane C36 NC38 Normal Alkane C37 NC39 Normal Alkane C39 NC40 Normal Alkane C40 NC41 Normal Alkane C41	NC35	Normal Alkane C35					
NC37 Normal Alkane C37 NC38 Normal Alkane C38 NC39 Normal Alkane C40 NC41 Normal Alkane C41	NC36	Normal Alkane C36					
NC30 Normal Alkane C30 NC40 Normal Alkane C40 NC41 Normal Alkane C41	NC37	Normal Alkane C37					
NC40 Normal Alkane C40 NC41 Normal Alkane C41	NC36	Normal Alkane C30					
NC40 Normal Alkane C40 NC41 Normal Alkane C41	NC39	Normal Alkane C39					
	NC40	Normal Alkane C40					
	NC41	Normal Alkane C41					
	1						
	5						
	8						

¹Thompson, K.F.M., 1983. GCA: V.47, p.303. ²Mango, F.D., 1994. GCA: V.58, p.895. ³Halpern, H.I., 1995, AAPG Bull.: V.79, p.801. ⁴Hunt, 1979

Company: Well Name:	Colorado State University Colorado State University Samples		Client ID: Project #:	523-1 BH-79915	22	
Sampling Poin	2014.70 -		File Name	G2160495	22 5 D	
oumping rom			The Hame.	02100400		-
Peak	Compound	Ret.			ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
IC4	Iso-alkane C4				810 - OC	
NC4	Normal Alkane C4					
IC5	Iso-alkane C5					
NC5	Normal Alkane C5					
22DMB	2,2-Dimethylbutane					
CP	Cyclopentane					
23DMB	2,3-Dimethylbutane					
2MP	2-Methylpentane					
3MP	3-Methylpentane					
NC6	Normal Alkane C6					
22DMP	2,2-Dimethylpentane					
MCP	Methylcyclopentane					
24DMP	2,4-Dimethylpentane					
223TMB	2,2,3-Trimethylbutane					
BZ	Benzene					
33DMP	3,3-Dimethylpentane					
CH	Cyclohexane					
2MH	2-Methylhexane					
23DMP	2,3-Dimethylpentane					
11DMCP	1,1-Dimethylcyclopentane					
3MH	3-Methylhexane					
1C3DMCP	1-cis-3-Dimethylcyclopentane					
1T3DMCP	1-trans-3-Dimethylcyclopentane					
3EP	3-Ethylpentane					
1T2DMCP	1-trans-2-Dimethylcyclopentane					
NC7	Normal Alkane C7					
ISTD	Internal Standard					
MCH	Methylcyclohexane					
113TMCP	1,1,3,-Trimethylcyclopentane					
ECP	Ethylcyclopentane					
124TMCP	1,2,4-Trimethylcyclopentane					
123TMCP	1,2,3-Trimethylcyclopentane					
TOL	Toluene					
NC8	Normal Alkane C8	15.296	1290	461		
IP9	Isoprenoid C9	17.166	80	26		
EB	Ethyl-benzene					
MXYL	<i>m</i> -xylene					
PXYL	<i>p</i> -xylene					
OXYL	o-xylene					
NC9	Normal Alkane C9	21.040	17393	6369		
IP10	Isoprenoid C10	23.026	1765	580		
PB	Propyl-benzene	23.207	331	85		
NC10	Normal Alkane C10	26.653	49592	17596		
IP11	Isoprenoid C11	27.950	3920	1339		
NC11	Normal Alkane C11	31.935	90493	30395		
NC12	Normal Alkane C12	36.877	119209	38729		
IP13	Isoprenoid C13	37.603	13778	3920		
IP14	Isoprenoid C14	40.372	5135	1553		
NC13	Normal Alkane C13	41.501	118530	37565		
IP15	Isoprenoid C15	44.938	5552	1468		
NC14	Normal Alkane C14	45.844	107464	32468		

Company: Well Name: Depth:	Colorado State University Colorado State University Samples 2814 70 -		Client ID: Project #:	523-1 BH-79915 61218363	22	
Sampling Poin	nt:		File Name:	G2160495	5.D	
Peak	Compound	Ret.			ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
IP16	Isoprenoid C16	48.489	17374	4355		
NC15	Normal Alkane C15	49.939	99293	27060		
NC16	Normal Alkane C16	53.810	/8985	21/92		
IP18	Isoprenoid C18	55.751	16382	3759		
NC17	Normal Alkane C17	57.477	64504	1/15/		
IP19	Isoprenoid C19 (Pristane)	57.829	7824	1430		
PHEN	Phenanthrene	58.912	1001	233		
INC18	Normal Alkane C18	60.961	40923	13058		
IP20	Normal Alkana C10	64.270	4514	0000		
NC19	Normal Alkana C20	67.442	35420	9920		
NC20	Normal Alkana C20	70,443	27004	7030		
COELIDI	Highly Branch Isopropoid C25	70.470	21974	0240		
NC22	Normal Alkana C22	73.265	17742	342		
NC22	Normal Alkana C22	75.303	1/743	4900		
NC23	Normal Alkane C23	78,810	14300	3917		
NC24	Normal Alkana C25	70.010	8601	2271		
NC25	Normal Alkana C26	82 820	7029	1960		
NC20	Normal Alkane C26	86,206	7028	1660		
NC27	Normal Alkane C27	88 501	5124	1330		
NC20	Normal Alkane C28	00.501	4765	1320		
NC29	Normal Alkana C29	90.712	4703	075		
NC30	Normal Alkana C30	92.606	4062	9/5		
NC31	Normal Alkana C31	94.932	3303	610		
NC32	Normal Alkana C32	90.930	2930	003		
NC33	Normal Alkana C33	96.88/	2053	496		
NC34	Normal Alkana C34	100.778	1/39	400		
NC35	Normal Alkana C36	102.049	102/	302		
NC30	Normal Alkana C37	104.003	020	208		
NC38	Normal Alkane C37	100.977	930	104		
NC30	Normal Alkana C30	112 564	665	75		
NC39	Normal Alkana C40	112.004	352	75		
NC40	Normal Alkana C40	100.029	703	00		
NC41	Normal Alkane C41	120.125	515	36		
1						
1						
-						

¹Thompson, K.F.M., 1983. GCA: V.47, p.303. ²Mango, F.D., 1994. GCA: V.58, p.895. ³Halpern, H.I., 1995, AAPG Bull.: V.79, p.801. ⁴Hunt, 1979

Company: Well Name: Depth:	Colorado State University Colorado State University Samples 2819.00 -		Client ID: Project #: Lab ID:	523-3 BH-7991 6121836	5 326	
Sampling Poin	it:		File Name:	G216049	6.D	
		_			1. maa 777 m.	
Peak	Compound	Ret.	A	Uninht	ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
104	Iso-alkane C4					
NC4	Normal Alkane C4					
105	Iso-alkane C5					
NC5	Normal Alkane C5					
22DMB	2,2-Dimethylbutane					
CP	Cyclopentane					
23DMB	2,3-Dimethylbutane					
2MP	2-Methylpentane					
3MP	3-Methylpentane					
NC6	Normal Alkane C6					
22DMP	2,2-Dimethylpentane					
MCP	Methylcyclopentane					
24DMP	2,4-Dimethylpentane					
223TMB	2,2,3-Trimethylbutane					
BZ	Benzene					
33DMP	3,3-Dimethylpentane					
CH	Cyclohexane					
2MH	2-Methylhexane					
23DMP	2,3-Dimethylpentane					
11DMCP	1,1-Dimethylcyclopentane					
3MH	3-Methylhexane					
1C3DMCP	1-cis-3-Dimethylcyclopentane					
1T3DMCP	1-trans-3-Dimethylcyclopentane					_
3EP	3-Ethylpentane					
1T2DMCP	1-trans-2-Dimethylcyclopentane					
NC7	Normal Alkane C7					
ISTD	Internal Standard					
MCH	Methylcyclohexane					
113TMCP	1,1,3,-Trimethylcyclopentane					
ECP	Ethylcyclopentane					
124TMCP	1.2.4-Trimethylcvclopentane					
123TMCP	1.2.3-Trimethylcyclopentane					
TOL	Toluene					
NC8	Normal Alkane C8	15.299	175	59		
IP9	Isoprenoid C9	17.218	173	27		
EB	Ethyl-benzene					
MXYL	<i>m</i> -xylene	18 395	243	78		
PXYL	<i>p</i> -xylene	18 449	66	25		
OXYL	o-xylene	19 649	313	95		
NC9	Normal Alkane C9	21 041	15722	5751		
IP10	Isoprenoid C10	23.028	1709	545		
PR	Propyl-benzene	23 210	700	218		
NC10	Normal Alkane C10	26.664	91234	31823		
IP11	Isoprenoid C11	27.953	5484	1850		
NC11	Normal Alkane C11	31 0/7	141304	46356		
NC12	Normal Alkane C12	36.882	130612	41846		
IP13	Isoprepoid C13	37 609	1230/	3361		
IP10	Isoprenoid C14	10 376	12394	1242		
NC13	Normal Alkane C13	40.576	4/40	34720		
1015	Isopropoid C15	41.001	6054	1404		
1011		44.941	0054	05000		
NC14	Normal Alkane C14	45.843	83590	25926		

Company: Well Name:	Colorado State University Colorado State University Samples 2819 00 -		Client ID: Project #:	523-3 BH-79915	26	
Sampling Poir	nt:		File Name:	G2160496	20 5.D	
Peak	Compound	Ret.			ppt	ppt
Label	Name	Time	Area	Height	(Area)	(Hght)
IP16	Isoprenoid C16	48.489	10495	2907		
NC15	Normal Alkane C15	49.934	61834	17832		
NC16	Normal Alkane C16	53.803	40283	11941		
IP18	Isoprenoid C18	55.753	8208	1857		
NC17	Normal Alkane C17	57.471	27950	7410		
IP19	Isoprenoid C19 (Pristane)	57.834	3563	666		
PHEN	Phenanthrene	58.920	1250	319		
NC18	Normal Alkane C18	60.956	1/261	4820		
IP20	Isoprenoid C20 (Phytane)	61.422	2087	420		
NC19	Normal Alkana C20	64.277	12834	3359		
NC20	Normal Alkana C20	07.443	9560	2001		
C25UPI	Highly Branch Isopropoid C25	70.469	1560	1900		
NC22	Normal Alkana C22	70.709	1000 5961	213		
NC22	Normal Alkane C22	76 1 42	4827	1275		
NC23	Normal Alkane C24	78,830	15601	3636		
NC24	Normal Alkane C25	81 367	2782	761		
NC26	Normal Alkane C26	83,832	2702	589		
NC27	Normal Alkane C27	86 208	1868	496		
NC28	Normal Alkane C28	88 499	1643	369		
NC29	Normal Alkane C29	90,715	2079	467		
NC30	Normal Alkane C30	92 859	1241	258		
NC31	Normal Alkane C31	94,930	938	248		
NC32	Normal Alkane C32	96.924	964	181		
NC33	Normal Alkane C33	98.897	657	142		
NC34	Normal Alkane C34	100.810	833	95		
NC35	Normal Alkane C35	102.646	467	77		
NC36	Normal Alkane C36	104.693	396	71		
NC37	Normal Alkane C37	106.982	209	62		
NC38	Normal Alkane C38	109.586	186	36		
NC39	Normal Alkane C39					
NC40	Normal Alkane C40					
NC41	Normal Alkane C41					
-						
						_

Parameter	Formula
EGC Parameters	
Pristane/Phytane	IP19/IP20
Pristane/nC17	IP19/NC17
Phytane/nC18	IP20/NC18
nC ₁₉ /(nC ₁₈ +nC ₁₉)	NC18/(NC18+NC19)
nC ₁₇ /(nC ₁₇ +nC ₂₉)	NC17/(NC17+NC29)
00111-04	
	((NC23+NC25+NC27+NC29+NC31)+(NC25+NC27+NC29+NC31+NC33))/(2*(NC24+NC26+NC28+NC30+NC32))
Normal Paraffins	100*(NC4+NC5+NC6+NC7+NC8+NC9+NC10+NC11+NC12+NC13+NC14+NC15+NC16+NC17+NC18+NC19+ NC20+NC21+NC22+NC23+NC24+NC25+NC26+NC27+NC28+NC29+NC30+NC31+NC32+NC33+NC34+ NC35+NC36+NC37+NC38+NC39+NC40+NC41)/TOTAL_RESOLVED
Isoprenoids	100*(IP9+IP10+IP11+IP13+IP14+IP15+IP16+IP18+IP19+IP20+C25HBI)/TOTAL_RESOLVED
Cycloparaffins	100*(CP+MCP+CH+11DMCP+1T3DMCP+1T2DMCP+MCH+113TMCP+ECP+124TMCP+123TMCP+1C3DMCP+ 1C2DMCP)/TOTAL_RESOLVED
Branched (iso-) Paraffins	100*(IC4+IC5+22DMB+23DMB+2MP+3MP+22DMP+24DMP+223TMB+33DMP+2MH+23DMP+3MH+3EP)/ TOTAL_RESOLVED
BTX aromatics	100*(BZ+TOL+MXYL+PXYL+OXYL)/TOTAL_RESOLVED (*OXYL added 05/21/2007)
Thompson ¹	
BZ/nC6	BZ/NC6
TOL/nC7	TOL/NC7
(nC6+nC7)/(CH+MCH)	(NC6+NC7)/(CH+MCH)
Isoheptane Value	(2MH+3MH)/(1C3DMCP+1T3DMCP+1T2DMCP)
nC7/MCH	NC7/MCH
CH/MCP	CH/MCP
nC7/2MH	NC7/2MH
nC6/22DMB	NC6/22DMB
Heptane Value	100*NC7/(CH+2MH+23DMP+11DMCP+3MH+1C3DMCP+1T3DMCP+1T2DMCP+MCH+NC7)
MCH/nC7	MCH/NC7
mpXYL/pC8	(MXYI +PXYI)/NC8
Mango ²	
P1	100*NC7/(22DMP+24DMP+223TMB+33DMP+2MH+23DMP+11DMCP+3MH+1C3DMCP+1T3DMCP+3EP+ 1T2DMCP+NC7+MCH+ECP+TOL)
P2	100*(2MH+3MH)/(22DMP+24DMP+223TMB+33DMP+2MH+23DMP+11DMCP+3MH+1C3DMCP+1T3DMCP+ 3EP+1T2DMCP+NC7+MCH+ECP+TOL)
P3	100*(3EP+33DMP+23DMP+24DMP+22DMP+223TMB)/(22DMP+24DMP+223TMB+33DMP+2MH+23DMP+ 11DMCP+3MH+1C3DMCP+1T3DMCP+3EP+1T2DMCP+NC7+MCH+ECP+TOL)
5N1	100*(ECP+1T2DMCP)/(22DMP+24DMP+223TMB+33DMP+2MH+23DMP+11DMCP+3MH+1C3DMCP+ 1T3DMCP+3EP+1T2DMCP+NC7+MCH+ECP+TOL)
N2	100*(11DMCP+1C3DMCP+1T3DMCP)/(22DMP+24DMP+223TMB+33DMP+2MH+23DMP+11DMCP+3MH+ 1C3DMCP+1T3DMCP+3EP+1T2DMCP+NC7+MCH+ECP+TOL)
6N1	100*(MCH+TOL)/(22DMP+24DMP+223TMB+33DMP+2MH+23DMP+11DMCP+3MH+1C3DMCP+1T3DMCP+ 3EP+1T2DMCP+NC7+MCH+ECP+TOL)
K1	(2MH+23DMP)/(3MH+24DMP)
K2	(3EP+33DMP+23DMP+24DMP+22DMP+223TMB)/(2MH+3MH+11DMCP+1C3DMCP+1T3DMCP)
5N1/6N1	(ECP+1T2DMCP)/(MCH+TOL)
P3/N2	(3EP+33DMP+23DMP+24DMP+22DMP+223TMB)/(11DMCP+1C3DMCP+1T3DMCP)
In(24DMP/23DMP) Halpern ³	In(24DMP/23DMP)
Tr1	TOL/11DMCP
Tr2	NC7/11DMCP
Tr3	3MH/11DMCP
Tr4	2MH/11DMCP
Tr5	(2MH+3MH)/11DMCP
Tr7	1T3DMCP/11DMCP
Tr8	(2MH+3MH)/(22DMP+23DMP+24DMP+33DMP+3EP)
C1	22DMP/(22DMP+23DMP+24DMP+33DMP+3EP)
C2	23DMP/(22DMP+23DMP+24DMP+33DMP+3EP)
C3	24DMP/(22DMP+23DMP+24DMP+33DMP+3EP)
C4	33DMP/(22DMP+23DMP+24DMP+33DMP+3EP)
C5	3EP/(22DMP+23DMP+24DMP+33DMP+3EP)

Appendix F2: Aromatic Gas Chromatography-Mass Spectroscopy Data Definitions on page 366.

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well	pany: Name:	Colorado State University Colorado State University Samples		Client ID: Project #:	WPB1-1 BH-79915		
Dept	h:	518.10 -		Lab ID:	61218363	92	
Sam	pling Point:			File Name:	M1160466	5.D	
	Peak	Compound	Ret.			ppm	ppm
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
230	OTP	Ortho-terphenyl (internal standard)	34.304	145625	47776	300.0	300.0
128	NAPH	Naphthalene					
134	ISOR	Isorenieratane					
142	2MN	2-Methyinaphthalene	17.696	2584	832	5.3	5.2
142	1MN	1-Methylnaphthalene	18.184	2331	712	4.8	4.5
154	BP	Biphenyl	20.136	15688	5213	32.3	32.7
156	2EN	2-Ethylnaphthalene	20.746	2941	922	6.1	5.8
156	1EN	1-Ethylnaphthalene	20.798	825	360	1.7	2.3
156	26DMN	2,6-Dimethylnaphthalene	21.094	19078	5432	39.3	34.1
156	27DMN	2,7-Dimethylnaphthalene	21.147	13277	5401	27.4	33.9
156	1317DMN	1,3 & 1,7-Dimethylnaphthalenes	21.548	28154	8891	58.0	55.8
156	16DMN	1,6-Dimethylnaphthalene	21.652	24254	8056	50.0	50.6
156	2314DMN	2,3 & 1,4-Dimethylnaphthalenes	22.140	13447	3359	27.7	21.1
156	15DMN	1,5-Dimethylnaphthalene	22.210	3862	1849	8.0	11.6
156	12DMN	1,2-Dimethylnaphthalene	22.576	5260	1679	10.8	10.5
168	2MBP	2-Methylbiphenyl	20.798	4346	1504	9.0	9.4
168	DPM	Diphenylmethane	21.670	1209	382	2.5	2.4
168	3MBP	3-Methylbiphenyl	23.342	40193	12311	82.8	77.3
168	4MBP	4-Methylbiphenyl	23.621	21527	6697	44.3	42.1
168	DBF	Dibenzoturan	24.353	10462	3258	21.6	20.5
170	BB_EMN	Etnyi-metnyi-Naphthalene	24.127	12105	3521	24.9	22.1
170	AB_EMN	Etnyi-metnyi-Naphthalene	24.615	4219	1345	8./	8.4
170	137 TMIN	1.3.6 Trimethylaenbthalana	24.771	18/19	3/11	38.6	30.9
170	130100	(1.4.6+1.2.6) Trimethylaephthelenen	24.920	17925	60000	20.3	22.0
170	1401331 226TMAN	2.3.6 Trimethylapathalapa	25.304	21214	5244	30.7	32.9
170	230 TWIN	2,3,0- minethylnaphthalene	25.400	5345	1649	43.9	40.5
170	1671261	(1 6 7+1 2 6) Trimethylaphthalenec	25.017	10594	2086	40.3	25.0
170	124TMN	1.2.4-Trimethylnaphthalene	25.007	1842	564	40.5	3.5
170	125TMN	1.2.5-Trimethylnaphthalene	26.522	8109	2664	16.7	16.7
178	DHEN	Depanthrene	20.002	98728	2004	203.4	184.8
178	ANTH	Anthracene	31 916	604	140	1.2	0.9
184	1357	1 3 5 7-Tetramethylpaphthalene	28 327	5143	1100	10.6	6.9
184	1367	1.3.6.7-Tetramethylnaphthalene	28.954	6583	2024	13.6	12.7
184	1247	(1 2 4 7+1 2 4 6+1 4 6 7)-Tetramethylnaphthalenes	29 372	4014	1257	83	7.9
184	1257	1.2.5.7-Tetramethylnaphthalene	29.477	2829	850	5.8	5.3
184	2367	2.3.6.7-Tetramethylnaphthalene	29,703	1492	469	3.1	2.9
184	1267	1,2,6,7-Tetramethylnaphthalene	29.947	2140	689	4.4	4.3
184	1237	1,2,3,7-Tetramethylnaphthalene	30.052	930	283	1.9	1.8
184	1236	1,2,3,6-Tetramethylnaphthalene	30.209	1759	489	3.6	3.1
184	1256	1,2,5,6-Tetramethylnaphthalene	30.644	5619	1589	11.6	10.0
184	DBT	Dibenzothiophene	30.906	5885	1531	12.1	9.6
191	BH32	C32 Benzohopane					
191	BH33	C33 Benzohopane					
191	BH34	C34 Benzohopane					
191	BH35	C35 Benzohopane					
192	3MP	3-Methylphenanthrene	34.652	10630	3019	21.9	19.0
192	2MP	2-Methylphenanthrene	34.774	15712	4657	32.4	29.2
192	9MP	9-Methylphenanthrene	35.228	10075	2717	20.8	17.1
192	1MP	1-Methylphenanthrene	35.367	9501	2725	19.6	17.1

Com	pany: Nome:	Colorado State University		Client ID:	WPB1-1		
Dont	Name:	519 10		Project #:	BH-/9910	02	
Sam	n. pling Point:	518.10 -		File Name	M1160/66	52 5 D	
Joann	ping rom.			rife Name.	101100400		
	Peak	Compound	Ret.			ppm	maa
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
198	CAD	Cadalene	29.041	1399	415	2.9	2.6
198	12467PMN	1,2,4,6,7-Pentamethylnaphthalene	33.136	336	97	0.7	0.6
198	12357PMN	1,2,3,5,7-Pentamethylnaphthalene	33.345	279	73	0.6	0.5
198	4MDBT	4 Methyl Dibenzothiophene	33.607	2999	893	6.2	5.6
198	12367PMN	1,2,3,6,7-Pentamethylnaphthalene	34.008	278	87	0.6	0.5
198	23MDBT	2 & 3 Methyl Dibenzothiophenes	34.095	1482	407	3.1	2.6
198	12356PMN	1,2,3,5,6-Pentamethylnaphthalene	34.478	1359	378	2.8	2.4
198	1MDBT	1 Methyl Dibenzothiophene	34.635	620	188	1.3	1.2
206	36DMP	3,6-Dimethylphenanthrene	37.416	2172	605	4.5	3.8
206	26DMP	2,6-Dimethylphenanthrene	37.616	3815	1122	7.9	7.0
206	27DMP	2,7-Dimethylphenanthrene	37.706	2873	761	5.9	4.8
206	39DMP	(3,9+3,10+2,10+1,3)-Dimethylphenanthrenes	38.032	9080	2355	18.7	14.8
206	29DMP	(2,9+1,6)-Dimethylphenanthrenes	38.195	5128	1099	10.6	6.9
206	17DMP	1,7-Dimethylphenanthrene	38.303	5648	1697	11.6	10.7
206	23DMP	2,3-Dimethylphenanthrene	38.484	2232	615	4.6	3.9
206	19DMP	1,9-Dimethylphenanthrene	38.575	2222	554	4.6	3.5
206	18DMP	1,8-Dimethylphenanthrene	38.882	2428	696	5.0	4.4
206	12DMP	1,2-Dimethylphenanthrene	39.244	1900	523	3.9	3.3
219	RET	Retene	42.231	3318	926	6.8	5.8
231	231A20	C20 Triaromatic Steroid	46.701	195	43	0.4	0.3
231	231B21	C21 Triaromatic	48.565	140	49	0.3	0.3
231	231C26	C26 20S Triaromatic	55.279	216	66	0.4	0.4
231	231D26	C27 20S & C26 20R Triaromatic	56.401	347	59	0.7	0.4
231	231E28	C28 20S Triaromatic	57.360	305	74	0.6	0.5
231	231F27	C27 20R Triaromatic	57.813	163	43	0.3	0.3
231	C291A1	C29 Triaromatic					
231	C291A2	C29 Triaromatic	50.050	440		0.0	0.0
231	231G28	C28 20R Triaromatic	58.953	118	28	0.2	0.2
231	DINO	Triaromatic Dinosteroid					
231	C20TA2						
2.51	C291A3	C27 20S 3 Method Trioromatic Steroid					
245	C35	C27 20S 3-Methyl Triaromatic Steroid					
245	E2S	C28 20S 2-Methyl Triaromatic Steroid					
245	E3SC3R	C28 20S 3-Methyl & C27 20R 3-Methyl TAS					
245	E4SC4R	C28 20S 4-Methyl & C27 20R 4-Methyl TAS					
245	\$25	C29 20S 2-Methyl Triaromatic Steroid					
245	DA	Triaromatic Dinosteroid a					
245	S3S	C29 20S 3-Methyl Triaromatic Steroid					
245	DB	Triaromatic Dinosteroid b					
245	S4SE2R	C29 20S 4-Methyl & C28 20R 2-Methyl TAS					
245	E3R	C28 20R 3-Methyl Triaromatic Steroid					
245	E4R	C28 20R 4-Methyl Triaromatic Steroid					
245	DC	Triaromatic Dinosteroid c					
245	DD	Triaromatic Dinosteroid d					
245	S2R	C29 20R 2-Methyl Triaromatic Steroid					
245	S3R	C29 20R 3-Methyl Triaromatic Steroid					
245	DE	Triaromatic Dinosteroid e					
245	S4R	C29 20R 4-Methyl Triaromatic Steroid					
245	DF	Triaromatic Dinosteroid f					

Com Well Dept	npany: Name: th:	Colorado State University Colorado State University Samples 518.10 -		Client ID: Project #: Lab ID:	WPB1-1 BH-79915 612183639	2	
Sam	pling Point:			File Name:	M1160466	.D	
_	Deele						
lon	Peak Label	Name	Ket. Time	Area	Height	ppm (Area)	(Haht)
253	S253A	C21 Ring-C Monoaromatic Steroid		711-04	Theight	pricaj	(
253	S253B	C22 Monoaromatic steroid					
253	S253C	C27 Reg 56(H), 106(CH3) 20S					
253	S253D	C27 Dia 106(H),56(CH3) 20S					
253	S253E	C27 Dia10pH,5pCH3 20R+Reg5pH,10pCH3 20R					
253	S253F	C27 Reg 5α(H),10β(CH3) 20S					
253	S253G	C28 Dia 10αH,5αCH3 20s+Reg5βH,10βCH3 20S					
253	S253H	C27 Reg 5α(H),10β(CH3) 20R					
253	S253I	C28 Reg 5α(H),10β(CH3) 20S					
253	S253J	C28 Dia 10αH,5αCH3 20R+Reg5βH,10βCH3 20R					
253	S253K	C29 Dia 106H,56CH3 20S+Reg56H,106CH3 20S					
253	S253L	C29 Reg 5α(H),10β(CH3) 20S					
253	S253M	C28 Reg 5α(H),10β(CH3) 20R					
253	S253N	C29 Dia 106H,56CH3 20R+Reg56H,106CH3 20R					
253	PERYLENE	Perylene					
253	S253O	C29 Reg 5α(H),10β(CH3) 20R					
342	OHTMP	C26 Octahydrotetramethylpicene - Oleanane isomer					
342	OHTMP_U	C26 Octahydrotetramethylpicene - Ursane isomer					
342	OHTMP_L	C26 Octahydrotetramethylpicene - Lupane isomer					
365	SH29	C29 8,14-secohopanoids	55.351	1155	361	2.4	2.3
365	SH30	C30 8,14-secohopanoids	56.781	653	176	1.3	1.1

Company: Well Name: Depth: Sampling Point:	Colorado State University Colorado State University Samples 518.10 -	Client ID: Project #: Lab ID: File Name:	WPB1-1 BH-79915 6121836392 M1160466.D
	Miscellaneous Ratios	By Areas	By Heights
	Triaromatic Staroids m/z 231		
	(C20+C21)/5 TAS	0.23	0.25
	TAS #1 20/20+27	0.54	0.50
	TAS #2 21/21+28	0.54	0.64
	%26TAS	43.5	48.2
	%27TAS	32.8	31.4
	%28TAS	23.7	20.4
	%29TAS	0.0	0.0
	C28/C26 20S TAS	1.41	1.12
	C28/C27 20R TAS	0.72	0.65
	Monoaromatic Steroids m/z 253		
	Dia/Regular C27 MAS		
	%27 MAS		
	%28 MAS		
	%29 MAS		
	(C21+C22)/2 MAS		
	TAS/(MAS+TAS)	1.00	1.00
	TA28/(TA28+MA29)	1.00	1.00
	Triaromatic Methylsteroids m/z 245		
	Dinosteroid Index		
	C4/C3+C4 Mester		
	Phenanthrenes and Naphthalenes		
	MPI-1	0.33	0.33
	MPI-2	0.40	0.40
	Rc(a) if Ro < 1.3 (Ro%)	0.57	0.57
	Rc(b) if Ro > 1.3 (Ro%)	2.10	2.10
	DNR-1	8.38	5.86
	DNR-2	2.41	3.23
	TNR1	1.20	1.22
	TDE-1	4.40	4.72
	TDE-2	0.27	0.41
	MDR	4.84	4.75
	Rm (Ro%)	0.90	0.88
	MDR23	0.25	0.27
	MDR1	0.11	0.12
	DBT/Phenanthrene	0.06	0.05
	New Ratios		
	PNR	0,20	0.20
	MDPNR	0.69	0.70
	Dinosteroid Index 2	0.00	0.00

-

Weatherford [®]		AROMATIC BIOM	ARKE	RS
Company: Colorado State University Country: Basin: Lease: Block: Field:	Client ID: Project #: Lab ID: Sample Type: Sampling Point: Formation:	WPB1-3 BH-79239 6121806286 Core		
Well Name: Nonesuch Formation Core Samples	Geologic Age:			
Latitude:	Top Depth:	462		
Longitude:	Bottom Depth:			
Preparation: MPLC	GCMS Method:	M15A		
m/z 253: Monoaromatic steroids M616	0711.D RATIOS (o	n Areas) ¹ and Triaromatic Steroids (TAS)	Appl ²	TEV ³
	(C20+C21)/2	TAS 0.31	М	1.0 (1.3%)
1	TAS #1 20/20	+27 0.61	М	
	TAS #2 21/21	+28 0.57	М	
	%26 TAS	28.1	D	
Ť	%27 TAS	35.2	D	
	%28 TAS	36.7	D	
	%29 TAS	0.0	D	
	C28/C26 20S	TAS 1.67		
	C28/C27 20R	TAS 1.04		
	Dia/Regular C	27 MAS	-	
	%27 MAS		D	
m/z 231: Triaromatic steroids M616	0711.D %28 MAS		D	
	%29 MAS		D	
	(C21+C22)/2	MAS 100	IVI M	1.0 (1.3%)
	TAS/(MAS+1/	AS) 1.00	IVI	4.0.(0.00())
	Triaromatic N	Inthylatoroida	IVI	1.0 (0.8%)
	Dinosteroid In	dex 0.48	A	
	C4/C3+C4 Me	ster 0.54	A	
	Phenanthren	es, Naphthalenes, and Dibenzot	hiopher	ies
111 111 Warden and and and and and and and and and an	MPI-1	0.09	М	
	Rc(a) if Ro < 1	I.3 (Ro%) 0.42	М	
m/z 245 Triaromatic Methylsteroids M616	0711.D Rc(b) if Ro > 1	I.3 (Ro%) 2.25	М	
	MPI-2	0.11	М	
	DNR-1	2.99	М	
	DNR-2	1.45	М	
	TNR1	1.56	М	
	TDE-1	12.31	M	
	TDE-2	0.21	M	
A A MARCH WAR A WAR WAR WAR WAR WAR WAR	MMMMMMM MDR	1.93	M	
Annal marked by the a part of the state of t	Rm (Ro%)	0.71	M	
	MDR23	0.04	M	
	MDR1	0.05	M	
	DBT/Phenanth	nrene 0.15	U	

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com	pany:	Colorado State University		Client ID:	WPB1-3		
Vvell	Name:	Nonesuch Formation Core Samples		Project #:	BH-/9239	De l	
Sam	n: pling Point:	461.50 -		Eile Name	M6160711	D	
Sam	ping Font.			File Name.	100100711	.0	
	Peak	Compound	Ret.			ppm	maa
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
230	OTP	Ortho-terphenyl (internal standard)	34.217	228457	77382	300.0	300.0
128	NAPH	Naphthalene					
134	ISOR	Isorenieratane					
142	2MN	2-Methylnaphthalene	17.722	352	119	0.5	0.5
142	1 MN	1-Methylnaphthalene	18.206	287	92	0.4	0.4
154	BP	Biphenyl	20.131	7318	2503	9.6	9.7
156	2EN	2-Ethylnaphthalene	20.733	587	190	0.8	0.7
156	1EN	1-Ethylnaphthalene	20.787	245	99	0.3	0.4
156	26DMN	2,6-Dimethylnaphthalene	21.077	3966	1395	5.2	5.4
156	27DMN	2,7-Dimethylnaphthalene	21.131	3975	1364	5.2	5.3
156	1317DMN	1,3 & 1,7-Dimethylnaphthalenes	21.518	7014	2364	9.2	9.2
156	16DMN	1,6-Dimethylnaphthalene	21.625	8518	2819	11.2	10.9
156	2314DMN	2,3 & 1,4-Dimethylnaphthalenes	22.109	5483	1544	7.2	6.0
156	15DMN	1,5-Dimethylnaphthalene	22.174	2655	996	3.5	3.9
156	12DMN	1,2-Dimethylnaphthalene	22.539	4244	1378	5.6	5.3
168	2MBP	2-Methylbiphenyl	20.787	214	80	0.3	0.3
168	DPM	Diphenylmethane	21.647	494	159	0.6	0.6
168	3MBP	3-Methylbiphenyl	23.314	13277	4520	17.4	17.5
168	4MBP	4-Methylbiphenyl	23.583	8810	2985	11.6	11.6
168	DBF	Dibenzofuran	24.303	82404	26871	108.2	104.2
170	BB_EMN	Ethyl-methyl-Naphthalene	24.077	5850	1683	7.7	6.5
170	AB_EMN	Ethyl-methyl-Naphthalene	24.561	2177	741	2.9	2.9
170	13/TMN	1,3,7-Trimethylnaphthalene	24./12	6723	2185	8.8	8.5
170	1361MN	1,3,6-Trimethylnaphthalene	24.873	11/6/	3823	15.5	14.8
170	1461351	(1,4,6+1,3,5)- I nmethylnaphthalenes	25.314	/940	23/7	10.4	9.2
170	2361MN	2,3,6-Trimethylnaphthalene	25.432	12348	4157	16.2	16.1
170	12/ IMN	(4.6.7.1.1.2.6) Trimethylaenblthelenes	20.700	3446	1093	4.0	4.2
170	10/1201	(1,6,7+1,2,6)-Thmethylnaphthalene	20.041	16574	3464	21.0	13.5
170	12411010	1,2,4- Trimethylaphthalene	26.260	1070	4/1	2.1	1.0
170	DUEN	Phonosthrope	20.404	799044	240959	20.0	24.0
179		Anthracene	31,940	1643	249030	1034.0	500.7
194	1357	1 3 5 7 Tetramethylpaphthalapa	28 249	1643	459	2.2	1.5
184	1367	1 3 6 7-Tetramethylnaphthalene	28.884	2805	966	3.7	3.7
184	1247	(1 2 4 7+1 2 4 6+1 4 6 7). Tetramethylnanhthalanas	20.004	2005	760	3.1	2.9
184	1257	1 2 5 7-Tetramethylnanhthalene	29.292	2355	700	3.0	2.5
184	2367	2 3 6 7-Tetramethylnaphthalene	29.615	1115	360	1.5	1.4
184	1267	1 2 6 7-Tetramethylnaphthalene	29.862	1861	589	2.4	23
184	1237	1 2 3 7-Tetramethylnaphthalene	29.959	675	217	0.9	0.8
184	1236	1,2,3,6-Tetramethylnaphthalene	30,131	1953	613	2.6	2.4
184	1256	1.2.5.6-Tetramethvinaphthalene	30.551	10160	3177	13.3	12.3
184	DBT	Dibenzothiophene	30,798	120740	37492	158.6	145.4
191	BH32	C32 Benzohopane					
191	BH33	C33 Benzohopane					
191	BH34	C34 Benzohopane					
191	BH35	C35 Benzohopane					
192	3MP	3-Methylphenanthrene	34.529	20075	6242	26.4	24.2
192	2MP	2-Methylphenanthrene	34.658	35043	11218	46.0	43.5
192	9MP	9-Methylphenanthrene	35.121	56785	17389	74.6	67.4
192	1MP	1-Methylphenanthrene	35.250	77472	24053	101.7	93.3

Com	pany:	Colorado State University		Client ID:	WPB1-3		
Well	Name:	Nonesuch Formation Core Samples		Project #:	BH-79239		
Sam	n: pling Point:	461.50 -		Eile Name	M6160711	D	
Joann	ping Point.			File Name.	100100711	.0	
	Peak	Compound	Ret.			ppm	ppm
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
198	CAD	Cadalene	28.959	916	276	1.2	1.1
198	12467PMN	1,2,4,6,7-Pentamethylnaphthalene	33.045	251	76	0.3	0.3
198	12357PMN	1,2,3,5,7-PentamethyInaphthalene	33.250	210	67	0.3	0.3
198	4MDBT	4 Methyl Dibenzothiophene	33.497	11379	3510	14.9	13.6
198	12367PMN	1,2,3,6,7-PentamethyInaphthalene	33.906	272	88	0.4	0.3
198	23MDBT	2 & 3 Methyl Dibenzothiophenes	33.981	4546	1419	6.0	5.5
198	12356PMN	1,2,3,5,6-PentamethyInaphthalene	34.379	1073	316	1.4	1.2
198	1MDBT	1 Methyl Dibenzothiophene	34.529	5891	1808	7.7	7.0
206	36DMP	3,6-Dimethylphenanthrene	37.294	2137	628	2.8	2.4
206	26DMP	2,6-Dimethylphenanthrene	37.489	3228	1010	4.2	3.9
206	27DMP	2,7-Dimethylphenanthrene	37.569	2502	829	3.3	3.2
206	39DMP	(3,9+3,10+2,10+1,3)-Dimethylphenanthrenes	37.924	11480	3091	15.1	12.0
206	29DMP	(2,9+1,6)-Dimethylphenanthrenes	38.061	6735	1526	8.8	5.9
206	17DMP	1,7-Dimethylphenanthrene	38.175	11481	3693	15.1	14.3
206	23DMP	2,3-Dimethylphenanthrene	38.370	4634	1316	6.1	5.1
206	19DMP	1,9-Dimethylphenanthrene	38.438	5642	1675	7.4	6.5
206	18DMP	1,8-Dimethylphenanthrene	38.747	13111	4121	17.2	16.0
206	12DMP	1,2-Dimethylphenanthrene	39,113	11477	3619	15.1	14.0
219	REI	Retene	42.099	1260	379	1.7	1.5
231	231A20	C20 Triaromatic Steroid	46.572	184	53	0.2	0.2
231	231B21	C21 Iriaromatic	48.425	167	44	0.2	0.2
231	231026	C26 20S Tharomatic	55.129	95	31	0.1	0.1
231	231026	C27 205 & C26 20R Tharomatic	57 100	2/4	65	0.4	0.3
231	231E20	C27 208 Triarametia	57.199	159	40	0.2	0.2
231	231F27	C27 ZUR Inaromatic	57.657	119	35	0.2	0.1
231	C29TA1	C29 Triaromatic					
231	231628	C28 20R Triaromatic	58 778	124	30	0.2	0.1
231	DINO	Triaromatic Dinosteroid	50.770	124	30	0.2	0.1
231	TAOI	Triaromatic Oleanoid					
231	C29TA3	C29 Triaromatic					
245	C35	C27 20S 3-Methyl Triaromatic Steroid	57 028	49	15	0.1	0.1
245	C4S	C27 20S 4-Methyl Triaromatic Steroid	57.485	34	12	0.0	0.0
245	E2S	C28 20S 2-Methyl Triaromatic Steroid	011100			0.0	
245	E3SC3R	C28 20S 3-Methyl & C27 20R 3-Methyl TAS	58,103	62	18	0.1	0.1
245	E4SC4R	C28 20S 4-Methyl & C27 20R 4-Methyl TAS	58.538	124	30	0.2	0.1
245	S2S	C29 20S 2-Methyl Triaromatic Steroid					
245	DA	Triaromatic Dinosteroid a	58.892	47	14	0.1	0.1
245	S3S	C29 20S 3-Methyl Triaromatic Steroid	58.949	51	10	0.1	0.0
245	DB	Triaromatic Dinosteroid b	59.281	100	34	0.1	0.1
245	S4SE2R	C29 20S 4-Methyl & C28 20R 2-Methyl TAS	59.384	124	20	0.2	0.1
245	E3R	C28 20R 3-Methyl Triaromatic Steroid	59.498	36	10	0.0	0.0
245	E4R	C28 20R 4-Methyl Triaromatic Steroid	59.899	70	20	0.1	0.1
245	DC	Triaromatic Dinosteroid c	60.036	91	25	0.1	0.1
245	DD	Triaromatic Dinosteroid d	60.105	124	39	0.2	0.2
245	S2R	C29 20R 2-Methyl Triaromatic Steroid					
245	S3R	C29 20R 3-Methyl Triaromatic Steroid	60.551	66	16	0.1	0.1
245	DE	Triaromatic Dinosteroid e	60.677	93	23	0.1	0.1
245	S4R	C29 20R 4-Methyl Triaromatic Steroid	60.986	71	19	0.1	0.1
245	DF	Triaromatic Dinosteroid f	61.089	177	46	0.2	0.2

Com Well Dept	ipany: Name: th:	Colorado State University Nonesuch Formation Core Samples 461.50 -		Client ID: Project #: Lab ID:	WPB1-3 BH-79239 612180628	6	
Sam	pling Point:			File Name:	M6160711.	D	
_							
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
253	S253A	C21 Ring-C Monoaromatic Steroid				- 10 - 10 C	
253	S253B	C22 Monoaromatic steroid					
253	S253C	C27 Reg 56(H), 106(CH3) 20S					
253	S253D	C27 Dia 10β(H),5β(CH3) 20S					
253	S253E	C27 Dia10βH,5βCH3 20R+Reg5βH,10βCH3 20R					
253	S253F	C27 Reg 5α(H),10β(CH3) 20S					
253	S253G	C28 Dia 10αH,5αCH3 20s+Reg5βH,10βCH3 20S					
253	S253H	C27 Reg 5α(H),10β(CH3) 20R					
253	S253I	C28 Reg 5α(H),10β(CH3) 20S					
253	S253J	C28 Dia 10αH,5αCH3 20R+Reg5βH,10βCH3 20R					
253	S253K	C29 Dia 10pH,5pCH3 20S+Reg5pH,10pCH3 20S					
253	S253L	C29 Reg 5α(H),10β(CH3) 20S					
253	S253M	C28 Reg 5α(H),10β(CH3) 20R					
253	S253N	C29 Dia 106H,56CH3 20R+Reg56H,106CH3 20R					
253	PERYLENE	Perylene					
253	S253O	C29 Reg 5α(H),10β(CH3) 20R					
342	OHTMP	C26 Octahydrotetramethylpicene - Oleanane isomer					
342	OHTMP_U	C26 Octahydrotetramethylpicene - Ursane isomer					
342	OHTMP_L	C26 Octahydrotetramethylpicene - Lupane isomer					
365	SH29	C29 8,14-secohopanoids	55.209	279	83	0.4	0.3
365	SH30	C30 8,14-secohopanoids	56.627	1/1	52	0.2	0.2
							-
							-
							-
							-
							-

Company: Well Name: Depth: Sampling Point:	Colorado State University Nonesuch Formation Core Samples 461.50 -	Client ID: Project #: Lab ID: File Name:	WPB1-3 BH-79239 6121806286 M6160711.D	
	Miscellaneous Ratios	By Areas	By Heights	
	Triaromatic Steroids m/z 231			
	(C20+C21)/E TAS	0.31	0.33	
	TAS #1 20/20+27	0.61	0.60	
	TAS #2 21/21+28	0.57	0.59	
	%26TAS	28.1	32.3	
	%27TAS	35.2	36.5	
	%28TAS	36.7	31.3	
	%29TAS	0.0	0.0	
	C28/C26 20S TAS	1.67	1.29	
	C28/C27 20R TAS	1.04	0.86	
	Monoaromatic Steroids m/z 253			
	Dia/Regular C27 MAS			
	%27 MAS			
	%28 MAS			
	%29 MAS			
	(C21+C22)/2 MAS			
	TAS/(MAS+TAS)	1.00	1.00	
	TA28/(TA28+MA29)	1.00	1.00	
	Triaromatic Methylsteroids m/z 245			
	Dinosteroid Index	0.48	0.52	
	C4/C3+C4 Mester	0.54	0.55	
	Phenanthrenes and Naphthalenes			
	MPI-1	0.09	0.09	
	MPI-2	0.11	0.12	
	Rc(a) If Ro < 1.3 (Ro%)	0.42	0.42	
	RC(D) IT RO > 1.3 (RO%)	2.20	2.25	
	DNR-1	2.99	2.77	
	DNR-2	1.45	1.79	
	TNR1	1.56	1.75	
	TDE-1	12.31	13.48	
	TDE-2	0.21	0.31	
	MDR	1.93	1.94	
	Rm (R0%)	0.71	0.71	
	MDR23	0.04	0.04	
	MDR1	0.05	0.05	
	DBT/Phenanthrene	0.15	0.15	
	New Ratios			
	PNR	0.19	0.19	
	MDPNR	0.92	0.92	
	Dinosteroid Index 2	0.00	0.00	

Company: Colorado State University Client ID: BIR-13 Country: BH-79915 BH-79915 Basin: Lab ID: 612144609 Lease: Sampling Pyne: Outcrop Block: Sampling Point: Formation: Field: Formation: Geologic Age: Latitude: Bottom Depth: Preparation: Preparation: MPLC GCMMS Method: M15A m/z 253: Monoaromatic steroids M1160467.D MAS Nono-MAS Nono-MAS m/z 231: Triaromatic steroids M1160467.D M1160467.D Was 332.D D w22 73: MAS Static 20027.27 0.68 M 1.0 (1.3%) Mas 32.2 D C22/C22.07.07.15 D Static 200-27 W22 MAS 3.0.5 D Static 200-27 0.68 M W22 TAS 3.0.5 D Static 200-27 0.68 M W22 MAS S.2.2 D Static 200-27 Static 200-27 Static 200-27 W22 MAS	Weatherfor				AROMATIC E	BIOMA	RKE	RS
Preparation: MPLC OCUMS Method: MT0A m/z 253: Monoaromatic steroids M1160467.D RATIOS (on Areas) ¹ Appl ² TEV ² Monoa (MAS) and Triaromatic Steroids (TAS) C(20+C21)::: TAS 0.44 M 1.0 (1.3%) TAS #12020+27 0.66 M M 9/27 TAS 33.65 D V22 TAS 3.00 D C24/C22 C21:: TAS 0.67 M 9/27 TAS 33.65 D V22 TAS 3.15 D 9/27 TAS 3.6.6 D 9/227 TAS 0.82 DarRegular C27 WAS 2.35 9/27 WAS 3.7.6 D 9/28 WAS 3.2 D 1.0 (0.8%) M NA/28 WAS 9/28 WAS 9/28 WAS 9/28 WAS 9/28 WAS 9/28 WAS 9/28	Company: Colorado State University C Country: P Basin: L. Lease: S Block: S Field: F Well Name: Colorado State University Samples Latitude: T Longitude: B Preparation: MPL C		Client Proje Lab II Samp Samp Form Geolo Top D Botto	t ID: ct #: D: le Type: ling Point: ation: ogic Age: oepth: m Depth:	BIR-13 BH-79915 6121844509 Outcrop			
m/z 253: Monoaromatic steroids M1160467.D RATIOS (on Areas) ¹ Appl ² TEV ³ Mono. (MAS) and Triaromatic Steroids (TAS) (C20-C21)/2.TAS 0.44 M 1.0 (1.3%) TAS #1 2020-27 0.66 M 1.3%) 7.4 M Yas #1 2121+28 0.74 M 9.20 7.45 3.00 D W28 TAS 3.05 D 9.22 7.45 3.00 D W28 TAS 3.05 D 9.22 7.45 0.00 D W28 TAS 3.05 D 9.22 7.45 0.02 D W29 TAS 3.05 D 9.22 TAS 0.62 D W29 TAS 3.2 D 0.20 D S.22 D S.23 S.23 D S.23 D S.24 D S.23	Fieparation. MFLC		GCIVIS	s Method.	MIDA			
m/z 231: Triaromatic steroids M1160467.D m/z 245 Triaromatic Methylsteroids M1160467.D M1160467.D M1160467.D m/z 245 Triaromatic Methylsteroids M1160467.D M1160467.D M1160467.D m/z 245 Triaromatic Methylsteroids M1160467.D M1160467.D M1160467.D M116	m/z 253: Monoarom	atic steroids M116046	7.D	RATIOS (on A Mono- (MAS) an	Areas) ¹ d Triaromatic Steroid	/ Is (TAS)	Appl ^z	TEV3
m/z 231: Triaromatic steroids M1160467.D M22 Triaromatic Methylsteroids M1160467.D m/z 245 Triaromatic Methylsteroids M1160467.D MP-2 0.59 M1160467.D M1160467.D M27 Tas 0.68 M1160467.D %28 Tas M1160467.D %28 Mas M27 Tas 0.68 M1160467.D %28 Mas M1160467.D %28 Mas M27 Tas 0.68 M1160467.D %28 Mas M28 Mas 59.2 M28 Mas 0.11 M1160467.D %28 Mas M28 Mas 0.12 M28 Mas 0.11 M1160467.D %28 Mas M1160467.D M1160467.D M61.1 0.13 (R0%) M1160467.D M1160467.D M61.1 0.33 M1160467.D M61.1 M61.1 0.33 M1160467.D M61.1 M61.1 0.33 M1160467.D M61.1 M61.1 0.33 M1160467.D M61.1 <t< td=""><td></td><td></td><td></td><td>(C20+C21)/2 TAS</td><td>S</td><td>0.44</td><td>М</td><td>1.0 (1.3%)</td></t<>				(C20+C21)/2 TAS	S	0.44	М	1.0 (1.3%)
m/z 245 Triaromatic Methylsteroids M1160467.D M1160467.D M1160467.D M1160467.D MPI-1 M1160467.D MPI-1 M1160467.D MPI-1 M1160467.D MPI-1 MI160467.D MI160467.D MI160467.D MPI-1 MI160467.D MPI-1 MI160467.D MI160467.D MRC MI160467.D MI160467.D MI160467.D MI160467.D MI160467.D MI160467.D MI160467.D MI160467.D MI160467.D MI160467.D MI160467.D MI160467.D MI160467.D<		1		TAS #1 20/20+27	7	0.68	М	
w26 TAS 30.0 D w27 TAS 38.5 D w27 TAS 38.5 D w27 TAS 38.5 D w29 TAS 0.0 D C28/C26 20S TAS 1.25 C28/C27 20T TAS 0.82 Dia/Regular C27 MAS 2.35 w27 MAS 37.6 D W28 MAS 3.2 (C21+C22)/2 MAS 0.11 M MAS 3.2 D (C21+C22)/2 MAS 0.11 M 1.0 (0.8%) TAS/(MAS+TAS) 0.18 M TAS/(MAS+TAS) 0.59 M 1.0 (0.8%) THaromatic Methylsteroids M1160467.D MPI-1 0.68 M MPI-1 0.68 M M M M M MPI-1 0.68 M M M M M M M M M MPI-1 0.63 M M M M M M M M M M M M M M M <td< td=""><td></td><td>1 .</td><td></td><td>TAS #2 21/21+28</td><td>3</td><td>0.74</td><td>М</td><td></td></td<>		1 .		TAS #2 21/21+28	3	0.74	М	
m/z 231: Triaromatic steroids M1160467.D m/z 245 Triaromatic Methylsteroids M1160467.D M27 245 Triaromatic Methylsteroids M1160467.D M28 Construction M1160467.D M29 Construction M1160467.D M20 Construction M1160467.D M20 Construction M1160467.D M21 Construction M21 M22 Construction M21 M21 Construction M21 M22 Construct				%26 TAS		30.0	D	
m/z 231: Triaromatic steroids M1160467.D m/z 245 Triaromatic Methylsteroids M1160467.D m/z 245 Triaromatic Methylsteroids M1160467.D M1160467.D M1160467.D M28 MAS 32.2 Dia/Regular C27 MAS 3.2 M1160467.D %28 MAS M1160467.D %28 MAS M1160467.D %28 MAS M27 245 Triaromatic Methylsteroids M1160467.D M1160467.D M1160467.D M22 245 Triaromatic Methylsteroids M1160467.D M1160467.D M1160467.D M22 22 0.30 M1160467.D M1160467.D M22 2 0.37 M1160467.D M1160467.D M1160467.D 0.8 M1160467.D 0				%27 TAS		38.5	D	
m/z 245 Triaromatic Methylsteroids M1160467.D M1160467.D M1160467.D W1160467.D M1160467.D M1160467.D M1160467.D MP-1 0.88 M M Rc(a) If Ro < 1.3 (Ro%)				%28 TAS		31.5	D	
m/z 231: Triaromatic steroids M1160467.D %27 MAS 37.6 %27 MAS 37.6 %27 MAS 37.6 %27 MAS 32.2 %27 MAS 0.11 M1160467.D %28 MAS %27 MAS 3.2.2 %27 MAS 0.11 M1160467.D %28 MAS %28 MAS 59.2 %27 MAS 0.11 M1160467.D %28 MAS %27 MAS 0.13 M1160467.D %28 MAS M1160467.D M1160467.D MP1-1 0.88 M1160467.D M1160467.D MP1-1 0.88 M1160467.D MP1-1 MP1-1 0.88 MR(a) If Ro < 1.3 (R0%)				%29 TAS		0.0	D	
m/z 231: Triaromatic steroids M1160467.D m/z 231: Triaromatic steroids M1160467.D %29 MAS 3.2 %29 MAS 3.2 %29 MAS 3.2 %29 MAS 0.59 M100467.D %28 MAS %29 MAS 0.59 M100467.D %29 MAS %29 MAS 0.59 M100467.D %29 MAS %29 MAS 0.59 M100467.D %29 MAS M1160467.D %29 MAS M21 1.0 (0.83 M M22 1.05 M M21 0.05 M M22 1.05 M M21 1.05 M M22				C28/C26 20S TA	s	1.25		
m/z 231: Triaromatic steroids M1160467.D %27 MAS 37.6 D %28 MAS 59.2 D %28 MAS 3.2 D (C21+C22)/2 MAS 0.11 M 1.0 (1.3%) TAS(MAS+TAS) 0.18 M TA28(TA28+MA29) 0.59 M 1.0 (0.8%) Tairomatic Methylsteroids M1160467.D Tiaromatic Methylsteroids M m/z 245 Triaromatic Methylsteroids M1160467.D M1160467.D MPI-1 0.88 M MP-1 0.83 M		1		C28/C27 20R TA	S	0.82		
m/z 231: Triaromatic steroids M1160467.D %27 MAS 37.6 D %28 MAS 59.2 D %28 MAS 59.2 D %29 MAS 3.2 D (C21+c22)C MAS 0.11 M 1.0 (0.3%) TAS/(MAS+TAS) 0.18 M TA28/(TA28+MA29) 0.59 M 1.0 (0.8%) Triaromatic Methylsteroids Triaromatic Methylsteroids Triaromatic Methylsteroids T T MPI-1 0.88 M Rc(a) if Ro < 1.3 (Ro%)	- mumber hand	- Martin Martin Martin	mm	Dia/Regular C27	MAS	2.35		
m/z 231: Triaromatic steroids M1160467.D %28 MAS 59.2 %29 MAS 3.2 M1160467.D %28 MAS %29 MAS 3.2 M1160467.D %28 MAS %29 MAS 0.11 M1160467.D %28 MAS %29 MAS 0.11 M1160467.D %28 MAS %29 MAS 0.11 M1160467.D %28 MAS m/z 245 Triaromatic Methylsteroids M1160467.D MPI-1 0.88 MC at 1.3 (Ro%) 0.90 MPI-1 0.88 MC at 1.3 (Ro%) 1.77 MPI-1 0.88 MC at 1.3 (Ro%) 1.77 MPI-1 0.88 MC at 1.3 (Ro%) 1.77 MC at 1.3 (Ro%) 1.73 MC at 1.3 (Ro%) 1.73				%27 MAS		37.6	D	
⁹ (29 MAS 3.2 D ⁹ (29 MAS 3.2 D (C21+C22)/Σ MAS 0.11 M TAS/(MAS+TAS) 0.18 M TAS/(MAS+TAS) 0.59 M Tiaromatic Methylsteroids Tiaromatic Methylsteroids The state of the	m/z 231: Triaromatic	steroids M116046	7.D	%28 MAS		59.2	D	
m/z 245 Triaromatic Methylsteroids M1160467.D M1160467.D m/z 245 Triaromatic Methylsteroids M1160467.D M1160467.D M1160467.D M1160467.D M1160467.D M1160467.D M1160467.D MDR 11.29 MDR 10.06 MDR 10.06 MDR 0.06 MDR 0.06				%29 MAS		3.2	D	
m/z 245 Triaromatic Methylsteroids M1160467.D MPI-1 0.88 M Rc(a) if Ro < 1.3 (Ro%)				(C21+C22)/2 MA	s	0.11	М	1.0 (1.3%)
m/z 245 Triaromatic Methylsteroids M1160467.D MPI-1 0.53 Rc(a) if Ro < 1.3 (Ro%)	1			TAS/(MAS+TAS)		0.18	М	
Triaromatic Methylsteroids Triaromatic Methylsteroids Triaromatic Methylsteroids m/z 245 Triaromatic Methylsteroids M1160467.D Phenanthrenes, Naphthalenes, and Dibenzothiophenes MPI-1 0.88 M Rc(a) if Ro < 1.3 (Ro%) 0.90 M Rc(b) if Ro > 1.3 (Ro%) 1.77 M MPI-2 1.05 M DNR-1 10.53 M DNR-2 2.30 M TDE-1 2.73 M TDE-1 2.73 M TDE-2 0.35 M MDR 11.29 M MDR 11.29 M MDR1 0.06 M DDR20 0.27 0.27				TA28/(TA28+MA	29)	0.59	М	1.0 (0.8%)
m/z 245 Triaromatic Methylsteroids M1160467.D MPI-1 0.88 M Rc(a) if Ro < 1.3 (Ro%)				Triaromatic Met	hylsteroids			
m/z 245 Triaromatic Methylsteroids M1160467.D m/x 245 Triaromatic Methylsteroids M1160467.D MPI-1 0.88 M Rc(a) if Ro < 1.3 (Ro%)				Dinosteroid Index	(0.48	A	
Phenanthrenes, Naphthalenes, and Dibenzothiophenes m/z 245 Triaromatic Methylsteroids M1160467.D MPI-1 0.88 M Rc(a) if Ro < 1.3 (Ro%)	ar V Walter .			C4/C3+C4 Meste	er	0.59	A	
MPI-1 0.88 M m/z 245 Triaromatic Methylsteroids M1160467.D Rc(a) if Ro < 1.3 (Ro%)	1 1 MANAMANA			Phenanthrenes,	Naphthalenes, and D	ibenzoth	iophen	es
m/z 245 Triaromatic Methylsteroids M1160467.D Rc(a) If Ro < 1.3 (Ro%) 0.90 M Rc(b) If Ro > 1.3 (Ro%) 1.77 M MPI-2 1.05 M DNR-1 10.53 M DNR-2 2.30 M TNR1 1.37 M TDE-1 2.73 M TDE-2 0.35 M MDR 11.29 M Rm (Ro%) 7.63 M MDR1 0.06 M DRP3 0.37 M		www.mar.witherstandlandlandland	all because	MPI-1		0.88	M	
m/2 245 Triaromatic Methylsteroids M1160467.D Rc(b) if Ro > 1.3 (Ro%) 1.77 M MPI-2 1.05 M DNR-1 10.53 M DNR-2 2.30 M TNR1 1.37 M TDE-1 2.73 M TDE-2 0.35 M MDR23 0.37 M MDR1 0.06 M DR73 0.37 M		NA 41 - 1 - 1 - 1 -		RC(a) If Ro < 1.3	(KO%)	0.90	IVI	
MPI-2 1.05 M DNR-1 10.53 M DNR-2 2.30 M TNR1 1.37 M TDE-1 2.73 M TDE-1 2.73 M TDE-2 0.35 M MDR 11.29 M Rm (Ro%) 7.63 M MDR23 0.37 M MDR1 0.06 M DR22 D	m/z 245 Triaromatic	Methylsteroids M116046	7.D	Rc(b) if Ro > 1.3	(Ro%)	1.77	M	
MANA MANA MANA MANA MANA MANA MANA MANA				MPI-2		1.05	M	
MANA MANA MANA MANA MANA MANA MANA MANA				DNR-1		10.53	M	
INR1 1.37 M TDE-1 2.73 M TDE-2 0.35 M MDR 11.29 M Rm (Ro%) 7.63 M MDR23 0.37 M DBT/Phepapithrepe 0.02 D		7		DNR-2		2.30	M	
TDE-1 2.73 M TDE-2 0.35 M MDR 11.29 M Rm (Ro%) 7.63 M MDR23 0.37 M MDR1 0.06 M DBT/Phepanthrene 0.02 D				INRI		1.37	IVI	
IDE-2 0.35 M MDR 11.29 M Rm (Ro%) 7.63 M MDR23 0.37 M MDR1 0.06 M DEV/Peparithrepe 0.02 D		r f 5 1		TDE-1		2.73	IVI N4	
MDR 11.29 M Rm (Ro%) 7.63 M MDR23 0.37 M MDR1 0.06 M DR7/Phopanthrope 0.02 D				IDE-2		0.35	IVI NA	
Rm (R0%) 7.63 M MDR23 0.37 M MDR1 0.06 M DBT/Phopanthrope 0.02 D						11.29	IVI NA	
MOREZS 0.37 M MDR1 0.06 M DR1/Departurene 0.02 D	. 1	A II AN IVA II A A A		KIII (RO%)		7.63	M	
MDRT 0.06 M	more the much all	M Marthall Call Marthall		MDR23		0.37	M	
· · · · · · · · · · · · · · · · · · ·	A Marca Midday ADIN	and and and a side of the for production	www	DBT/Phenanthree	ne	0.08	D	

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well Dept	pany: Name: h:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID:	BIR-13 BH-79915 61218445	5	
Sam	pling Point:			File Name:	M116046	7.D	
_							
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
230	OTP	Ortho-terphenyl (internal standard)	34.320	237433	73345	300.0	300.0
128	NAPH	Naphthalene	14.349	88	29	0.1	0.1
134	ISOR	Isorenieratane					
142	2MN	2-Methylnaphthalene	17.695	2217	714	2.8	2.9
142	1MN	1-Methylnaphthalene	18.183	1938	630	2.4	2.6
154	BP	Biphenyl	20.134	48770	16754	61.6	68.5
156	2EN	2-Ethylnaphthalene	20.744	8956	2745	11.3	11.2
156	1EN	1-Ethylnaphthalene	20.797	2840	1263	3.6	5.2
156	26DMN	2,6-Dimethylnaphthalene	21.093	57105	16137	72.2	66.0
156	27DMN	2,7-Dimethylnaphthalene	21.145	39583	16507	50.0	67.5
156	1317DMN	1,3 & 1,7-Dimethylnaphthalenes	21.546	75175	23629	95.0	96.6
156	16DMN	1,6-Dimethylnaphthalene	21.651	61322	20371	77.5	83.3
156	2314DMN	2,3 & 1,4-Dimethylnaphthalenes	22.138	41971	10997	53.0	45.0
156	15DMN	1,5-Dimethylnaphthalene	22.208	9185	4300	11.6	17.6
156	12DMN	1,2-Dimethylnaphthalene	22.574	17047	5421	21.5	22.2
168	2MBP	2-Methylbiphenyl	20.797	3425	1199	4.3	4.9
168	DPM	Diphenylmethane	21.668	3716	1134	4.7	4.6
168	3MBP	3-Methylbiphenyl	23.358	288314	88971	364.3	363.9
168	4MBP	4-Methylbiphenyl	23.637	176553	54354	223.1	222.3
168	DBF	Dibenzoturan	24.352	23444	6547	29.6	26.8
170	BB_EMN	Ethyl-methyl-Naphthalene	24.125	54514	15270	68.9	62.5
170	AB_EMN	Ethyl-methyl-Naphthalene	24.613	16/34	5332	21.1	21.8
170	13/TMN	1,3,7- I rimethylnaphthalene	24.770	63996	19602	112.0	100.2
170	1461257	(1.4.6+1.2.6) Trimethylaenthylaentholeneo	24.944	69409	20090	60.0	64.0
170	1461331 226TMAN	(1,4,6+1,3,5)-Trimethylinaphthalene	25.360	54571	10000	04.5	64.9
170	230 TIVIN	2,3,5- Trimethylnaphthalene	25.502	21565	24137	94.0 27.2	90.0 24.6
170	167126T	(1 6 7+1 2 6) Trimethylnaphthalenec	25.010	21505	13520	27.2	55.3
170	124TMN	1.2.4.Trimethylnanhthalene	25.005	6680	2024	8.4	83
170	125TMN	1.2.5-Trimethylnaphthalene	26.521	18222	5545	23.0	22.7
178	PHEN	Dhenanthrene	31 671	2078468	551049	2626.2	2253.9
178	ANTH	Anthracene	31 932	7235	1664	9.1	6.8
184	1357	1.3.5.7-Tetramethylnaphthalene	28.342	15995	3911	20.2	16.0
184	1367	1.3.6.7-Tetramethylnaphthalene	28 970	22957	7759	29.0	31.7
184	1247	(1,2,4,7+1,2,4,6+1,4,6,7)-Tetramethylnaphthalenes	29.388	13899	3949	17.6	16.2
184	1257	1.2.5.7-Tetramethylnaphthalene	29,493	7900	2466	10.0	10.1
184	2367	2.3.6.7-Tetramethylnaphthalene	29.702	5778	1823	7.3	7.5
184	1267	1.2.6.7-Tetramethylnaphthalene	29.946	6941	2208	8.8	9.0
184	1237	1,2,3,7-Tetramethylnaphthalene	30.050	3715	1046	4.7	4.3
184	1236	1,2,3,6-Tetramethylnaphthalene	30.225	5306	1549	6.7	6.3
184	1256	1,2,5,6-Tetramethylnaphthalene	30.643	7625	2130	9.6	8.7
184	DBT	Dibenzothiophene	30.904	42500	12349	53.7	50.5
191	BH32	C32 Benzohopane					
191	BH33	C33 Benzohopane					
191	BH34	C34 Benzohopane					
191	BH35	C35 Benzohopane					
192	3MP	3-Methylphenanthrene	34.651	585810	154638	740.2	632.5
192	2MP	2-Methylphenanthrene	34.790	874298	258049	1104.7	1055.5
192	9MP	9-Methylphenanthrene	35.243	247493	70688	312.7	289.1
192	1MP	1-Methylphenanthrene	35.365	169884	51505	214.7	210.7

Com	pany:	Colorado State University		Client ID:	BIR-13		
Well	Name:	Colorado State University Samples		Project #:	BH-79915		
Dept	h:	-		Lab ID:	61218445	09	
Sam	pling Point:			File Name:	IVI1160467	7.D	
	Peak	Compound	Ret.			maa	maa
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
198	CAD	Cadalene	29.039	6026	1704	7.6	7.0
198	12467PMN	1,2,4,6,7-Pentamethylnaphthalene	33.135	1232	367	1.6	1.5
198	12357PMN	1,2,3,5,7-Pentamethylnaphthalene	33.344	1146	313	1.4	1.3
198	4MDBT	4 Methyl Dibenzothiophene	33.605	30003	9265	37.9	37.9
198	12367PMN	1,2,3,6,7-PentamethyInaphthalene	34.006	1404	419	1.8	1.7
198	23MDBT	2 & 3 Methyl Dibenzothiophenes	34.093	15732	4537	19.9	18.6
198	12356PMN	1,2,3,5,6-Pentamethylnaphthalene	34.494	2281	626	2.9	2.6
198	1MDBT	1 Methyl Dibenzothiophene	34.633	2658	673	3.4	2.8
206	36DMP	3,6-Dimethylphenanthrene	37.416	80490	26496	101.7	108.4
206	26DMP	2,6-Dimethylphenanthrene	37.615	224253	65289	283.3	267.0
206	27DMP	2,7-Dimethylphenanthrene	37.687	160486	46980	202.8	192.2
206	39DMP	(3,9+3,10+2,10+1,3)-Dimethylphenanthrenes	38.031	225049	56210	284.4	229.9
206	29DMP	(2,9+1,6)-Dimethylphenanthrenes	38.194	128069	29059	161.8	118.9
206	17DMP	1,7-Dimethylphenanthrene	38.302	74166	23108	93.7	94.5
206	23DMP	2,3-Dimethylphenanthrene	38.483	83139	23732	105.0	97.1
206	19DMP	1,9-Dimethylphenanthrene	38.556	16314	5569	20.6	22.8
206	18DMP	1,8-Dimethylphenanthrene	38.882	14933	4157	18.9	17.0
206	12DMP	1,2-Dimethylphenanthrene	39.225	11041	2934	14.0	12.0
219	RET	Retene	42.230	21905	5086	27.7	20.8
231	231A20	C20 Triaromatic Steroid	46.700	2782	627	3.5	2.6
231	231B21	C21 Triaromatic	48.564	3026	788	3.8	3.2
231	231C26	C26 20S Triaromatic	55.278	1014	300	1.3	1.2
231	231D26	C27 20S & C26 20R Triaromatic	56.418	2647	646	3.3	2.6
231	231E28	C28 20S Triaromatic	57.359	1266	306	1.6	1.3
231	231F27	C27 20R Triaromatic	57.812	1299	304	1.6	1.2
231	C29TA1	C29 Triaromatic					
231	C29TA2	C29 Triaromatic					
231	231G28	C28 20R Triaromatic	58.934	1063	258	1.3	1.1
231	DINO	Triaromatic Dinosteroid					
231	TA_OL	Triaromatic Oleanoid					
231	C29TA3	C29 Triaromatic					
245	C3S	C27 20S 3-Methyl Triaromatic Steroid	57.178	197	57	0.2	0.2
245	C4S	C27 20S 4-Methyl Triaromatic Steroid	57.631	260	88	0.3	0.4
245	E2S	C28 20S 2-Methyl Triaromatic Steroid	58.192	236	72	0.3	0.3
245	E3SC3R	C28 20S 3-Methyl & C27 20R 3-Methyl TAS					0.2920
245	E4SC4R	C28 20S 4-Methyl & C27 20R 4-Methyl TAS	58.699	869	207	1.1	0.8
245	S2S	C29 20S 2-Methyl Triaromatic Steroid					
245	DA	Triaromatic Dinosteroid a	59.042	389	101	0.5	0.4
245	S3S	C29 20S 3-Methyl Triaromatic Steroid	59.151	426	85	0.5	0.3
245	DB	Triaromatic Dinosteroid b	59.441	855	220	1.1	0.9
245	S4SE2R	C29 20S 4-Methyl & C28 20R 2-Methyl TAS	59.549	592	127	0.7	0.5
245	E3R	C28 20R 3-Methyl Triaromatic Steroid	59.622	463	104	0.6	0.4
245	E4R	C28 20R 4-Methyl Triaromatic Steroid	60.056	664	140	0.8	0.6
245	DC	Triaromatic Dinosteroid c	60.201	615	181	0.8	0.7
245	DD	Triaromatic Dinosteroid d	60.273	705	207	0.9	0.8
245	S2R	C29 20R 2-Methyl Triaromatic Steroid	60.563	131	31	0.2	0.1
245	S3R	C29 20R 3-Methyl Triaromatic Steroid	60.726	280	71	0.4	0.3
245	DE	Triaromatic Dinosteroid e	60.852	609	135	0.8	0.6
245	S4R	C29 20R 4-Methyl Triaromatic Steroid	61.160	418	106	0.5	0.4
245	DF	Triaromatic Dinosteroid f	61.268	1049	311	1.3	1.3
1							

Com Well Dept Sam	pany: Name: h: pling Point:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID: File Name:	BIR-13 BH-79915 612184450 M1160467.	9 D	
2000 CC							
lan	Peak	Compound	Ret.	Area	Unight	ppm	ppm /Habt)
262	C252A	C21 Ring C Mensoremotic Storaid	40.027	2201	rieigint 694	(Alea)	
253	3233A	C21 Ring-C Monoaromatic Steroid	40.927	3003	674	4.5	2.0
253	S253B	C22 Mondaromatic steroid	42.730	1102	340	3.0	2.0
253	S253D	C27 Dia 108/H) 58(CH3) 205	50 193	2800	792	3.5	3.2
253	S253E	C27 Dia 10p(1),5p(C13) 200	51 242	3343	541	4.2	2.2
253	S253E	C27 Beg 5g(H) 108(CH3) 20S	51 387	2271	457	2.9	1.9
253	S253G	C28 Dia 10aH.5aCH3 20s+Reg56H.106CH3 20S	51,731	3630	765	4.6	3.1
253	S253H	C27 Reg 5a(H).106(CH3) 20R	52.654	9838	1980	12.4	8.1
253	S253I	C28 Reg 5a(H) 10B(CH3) 20S	52,744	23388	5357	29.6	21.9
253	S253J	C28 Dia 10aH,5aCH3 20R+Reg5BH,10BCH3 20R	52.889	3631	672	4.6	2.7
253	S253K	C29 Dia 106H,56CH3 20S+Reg56H,106CH3 20S	53.034	1637	323	2.1	1.3
253	S253L	C29 Reg 5α(H),10β(CH3) 20S					
253	S253M	C28 Reg 5α(H),10β(CH3) 20R					
253	S253N	C29 Dia 106H,56CH3 20R+Reg56H,106CH3 20R					
253	PERYLENE	Perylene					
253	S253O	C29 Reg 5α(H),10β(CH3) 20R					
342	OHTMP	C26 Octahydrotetramethylpicene - Oleanane isomer					
342	OHTMP_U	C26 Octahydrotetramethylpicene - Ursane isomer					
342	OHTMP_L	C26 Octahydrotetramethylpicene - Lupane isomer					
365	SH29	C29 8,14-secohopanoids	55.351	2445	733	3.1	3.0
365	SH30	C30 8,14-secohopanoids	56.780	1297	357	1.6	1.5

Company: Well Name: Depth: Sampling Point:	Colorado State University Colorado State University Samples -	Client ID: Project #: Lab ID: File Name:	BIR-13 BH-79915 6121844509 M1160467.D
	Miscellaneous Ratios	By Areas	By Heights
	Triaromatic Steroids m/z 231		
	(C20+C21)/E TAS	0.44	0.44
	TAS #1 20/20+27	0.68	0.67
	TAS #2 21/21+28	0.74	0.75
	%26TAS	30.0	34.8
	%27TAS	38.5	35.3
	%28TAS	31.5	29.9
	%29TAS	0.0	0.0
	C28/C26 20S TAS	1.25	1.02
	C28/C27 20R TAS	0.82	0.85
	Monoaromatic Steroids m/z 253		
	Dia/Regular C27 MAS	2.35	2.33
	%27 MAS	37.6	36.6
	%28 MAS	59.2	60.5
	%29 MAS	3.2	2.9
	(C21+C22)/2 MAS	0.11	0.11
	TAS/(MAS+TAS)	0.18	0.20
	TA28/(TA28+MA29)	0.59	0.64
	Triaromatic Methylsteroids m/z 245		
	Dinosteroid Index	0.48	0.51
	C4/C3+C4 Mester	0.59	0.59
	Phenanthrones and Nanhthalones		
	MDL1	0.88	0.92
	MPL2	1.05	1.15
	$R_{C}(a)$ if $R_{0} < 1.3$ (R_{0} %)	0.90	0.92
	$R_{c}(b)$ if $R_{0} > 1.3$ ($R_{0}\%$)	1.77	1.75
	DNR-1	10.53	7.59
	DNR-2	2.30	2.97
	TNR1	1.37	1.52
	TDE-1	2.73	2.74
	TDE-2	0.35	0.44
	MDR	11.29	13.77
	Rm (Ro%)	7.63	15.42
	MDP22	0.27	0.27
	MDR1	0.3/	0.05
	DBT/Phenanthrene	0.02	0.02
	22110000-100-000		
	New Ratios		
	PNR	0.35	0.37
	MDPNR	0.89	0.89
	Dinosteroid Index 2	0.00	0.00

Weatherford [®]			AROMATIC BIOM	ARKE	RS
Company: Colorado State University Country: Basin: Lease: Block: Field: Well Name: Colorado State University Samples		nt ID: ect #: D: ple Type: pling Point: nation: ogic Age:	BIR-15 BH-79915 6121844513 Outcrop		
Latitude: Longitude:	Top Botto	Depth: om Depth:			
Preparation: MPLC	GCM	S Method:	M15A		
m/z 253: Monoaromatic steroids M116046	8.D	RATIOS (on /	Areas)'	Appl ²	TEV
		Mono- (MAS) an	d Triaromatic Steroids (TAS)	
		(C20+C21)/∑ TAS	S 0.3	зM	1.0 (1.3%)
T		TAS #1 20/20+27	0.5	5 M	
		TAS #2 21/21+28	0.74	ŧ M	
		%26 TAS	29.	3 D	
		%27 TAS	40.	t D	
		%28 TAS	29.4	3 D	
		%29 TAS	0,0	D	
		C28/C26 20S TA	S 1.3)	
		C28/C27 20R TA	S 0.7	f	
have have been and the way way was and	rrun	Dia/Regular C27	MAS 2.7	3	
		%27 MAS	41.3	B D	
m/z 231: Triaromatic steroids M116046	8.D	%28 MAS	57.3	B D	
		%29 MAS	0.9	D D	
		(C21+C22)/∑ MA	S 0.0	5 M	1.0 (1.3%)
		TAS/(MAS+TAS)	0.1	2 M	
		TA28/(TA28+MA	29) 0.7	6 M	1.0 (0.8%)
		Triaromatic Met	hylsteroids		
		Dinosteroid Index	0.4	A A	
		C4/C3+C4 Meste	r 0.6	3 A	
		Discourse	New John Street and Pill	Alalambar	
M M WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		Phenanthrenes,	Naphthalenes, and Dibenzo	thiopher	18 5
and the second second second for the	and a state of the local division of the loc	Rc(a) if Po < 1.3	(Ro%) 0.8		
m/z 245 Triaromatic Methyletoroide	8.0	Po(b) if Po > 4.2	(Ro%) 0.0	NA	
M116046		MPL2	(1070) 1.8		
		DNR 1	7.0	D M	
		DNR-1	1.8.		
1		TNR1	1.4	a M	
		TDE-1	1.0	A M	
		TDE-2	2.4	M	
		MDR	11 3	5 M	
		Rm (Ro%)	7.7	7 M	
		MDR23	0.3	5 M	
M Vymmmm W W yw W W W W W W		MDR1	0.0	5 M	
A. W. MARY MAN	www	DBT/Phenanthree	ne 0.0	+ D	

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well Dept	npany: Name: th:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID:	BIR-15 BH-79915 61218445	5	
Sam	pling Point	:		File Name:	M116046	8.D	
	Poak	Compound	Pot	_	_	nnm	nnm
Ion	Label	Name	Time	Area	Height	(Area)	(Haht)
230	OTP	Ortho-terphenyl (internal standard)	34.305	478685	147026	300.0	300.0
128	NAPH	Naphthalene	14.334	127	30	0.1	0.1
134	ISOR	Isorenieratane					
142	2MN	2-Methylnaphthalene	17.697	467	150	0.3	0.3
142	1MN	1-Methylnaphthalene	18.185	394	104	0.2	0.2
154	BP	Biphenyl	20.137	6044	1939	3.8	4.0
156	2EN	2-Ethylnaphthalene	20.747	991	272	0.6	0.6
156	1EN	1-Ethylnaphthalene	20.799	351	164	0.2	0.3
156	26DMN	2,6-Dimethylnaphthalene	21.095	6127	2023	3.8	4.1
156	27DMN	2,7-Dimethylnaphthalene	21.148	6740	2292	4.2	4.7
156	1317DMN	1,3 & 1,7-Dimethylnaphthalenes	21.531	12175	3871	7.6	7.9
156	16DMN	1,6-Dimethylnaphthalene	21.653	10099	3157	6.3	6.4
156	2314DMN	2,3 & 1,4-Dimethylnaphthalenes	22.141	8771	2239	5.5	4.6
156	15DMN	1,5-Dimethylnaphthalene	22.211	1646	876	1.0	1.8
156	12DMN	1,2-Dimethylnaphthalene	22.577	4231	1347	2.7	2.7
168	2MBP	2-Methylbiphenyl	20.799	435	149	0.3	0.3
168	DPM	Diphenylmethane	21.670	639	212	0.4	0.4
168	3MBP	3-Methylbiphenyl	23.343	72282	24136	45.3	49.2
168	4MBP	4-Methylbiphenyl	23.622	48078	15992	30.1	32.6
168	DBF	Dibenzofuran	24.354	12839	3945	8.0	8.1
170	BB_EMN	Ethyl-methyl-Naphthalene	24.128	13073	3420	8.2	7.0
170	AB_EMN	Ethyl-methyl-Naphthalene	24.598	4665	1396	2.9	2.8
170	137TMN	1,3,7-Trimethylnaphthalene	24.755	16456	5029	10.3	10.3
170	136TMN	1,3,6-Trimethylnaphthalene	24.929	25167	7805	15.8	15.9
170	146135T	(1,4,6+1,3,5)-Trimethylnaphthalenes	25.365	15987	4637	10.0	9.5
170	236TMN	2,3,6-Trimethylnaphthalene	25.487	26803	8670	16.8	17.7
170	127TMN	1,2,7-Trimethylnaphthalene	25.801	6689	1880	4.2	3.8
170	167126T	(1,6,7+1,2,6)-Trimethylnaphthalenes	25.888	21817	4409	13.7	9.0
170	124TMN	1,2,4-Trimethylnaphthalene	26.323	2916	791	1.8	1.6
170	125TMN	1,2,5-Trimethylnaphthalene	26.533	7250	2292	4.5	4.7
178	PHEN	Phenanthrene	31.639	917933	260074	575.3	530.7
178	ANTH	Anthracene	31.917	4145	948	2.6	1.9
184	1357	1,3,5,7-Tetramethylnaphthalene	28.328	5446	1463	3.4	3.0
184	1367	1,3,6,7-Tetramethylnaphthalene	28.955	9512	3034	6.0	6.2
184	1247	(1,2,4,7+1,2,4,6+1,4,6,7)-Tetramethylnaphthalenes	29.373	5626	1717	3.5	3.5
184	1257	1,2,5,7-Tetramethylnaphthalene	29.478	3677	1115	2.3	2.3
184	2367	2,3,6,7-Tetramethylnaphthalene	29.704	3697	1176	2.3	2.4
184	1267	1,2,6,7-Tetramethylnaphthalene	29.948	3601	1074	2.3	2.2
184	1237	1,2,3,7-Tetramethylnaphthalene	30.053	1934	568	1.2	1.2
184	1236	1,2,3,6-Tetramethylnaphthalene	30.210	2717	826	1.7	1.7
184	1256	1,2,5,6-Tetramethylnaphthalene	30.628	4043	1207	2.5	2.5
184	DBT	Dibenzothiophene	30.889	32949	9130	20.7	18.6
191	BH32	C32 Benzohopane					
191	BH33	C33 Benzohopane					
191	BH34	C34 Benzohopane					
191	BH35	C35 Benzohopane					
192	3MP	3-Methylphenanthrene	34.653	241647	67903	151.4	138.6
192	2MP	2-Methylphenanthrene	34.775	370152	105939	232.0	216.2
192	9MP	9-Methylphenanthrene	35.229	113098	31644	70.9	64.6
192	1MP	1-Methylphenanthrene	35.368	79278	22735	49.7	46.4

Com Well	pany: Name:	Colorado State University Colorado State University Samples		Client ID: Project #:	BIR-15 BH-79915	2	
Sam	n. pling Point:	1		File Name:	M1160468.	.D	
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
198	CAD	Cadalene	29.042	4341	1266	2.7	2.6
198	12467PMN	1,2,4,6,7-Pentamethylnaphthalene	33.137	737	204	0.5	0.4
198	12357PMN	1,2,3,5,7-Pentamethylnaphthalene	33.346	640	193	0.4	0.4
198	4MDBT	4 Methyl Dibenzothiophene	33.608	22558	6720	14.1	13.7
198	12367 PMN	1,2,3,6,7-Pentamethylnaphthalene	33.991	963	244	0.6	0.5
198	23MDBT	2 & 3 Methyl Dibenzothiophenes	34.096	11820	3196	7.4	6.5
198	12356PMN	1,2,3,5,6-Pentamethylnaphthalene	34.497	1382	336	0.9	0.7
198	1MDBT	1 Methyl Dibenzothiophene	34.636	1988	526	1.2	1.1
206	36DMP	3,6-Dimethylphenanthrene	37.416	35680	11842	22.4	24.2
206	26DMP	2,6-Dimethylphenanthrene	37.615	100816	28670	63.2	58.5
206	27DMP	2,7-Dimethylphenanthrene	37.687	72342	21017	45.3	42.9
206	39DMP	(3,9+3,10+2,10+1,3)-Dimethylphenanthrenes	38.031	111496	28173	69.9	57.5
206	29DMP	(2,9+1,6)-Dimethylphenanthrenes	38.194	62747	13531	39.3	27.6
206	17DMP	1,7-Dimethylphenanthrene	38.303	43263	12958	27.1	26.4
206	23DMP	2,3-Dimethylphenanthrene	38.484	44150	12204	27.7	24.9
206	19DMP	1,9-Dimethylphenanthrene	38.000	10289	34/5	6.4	7.1
206	18DMP	1,8-Dimethylphenanthrene	38.882	81/9	2122	5.1	4.3
206	12DMP	1,2-Dimethylphenanthrene	39.226	17202	2214	5.0	4.5
219	221420	C20 Triaramatia Staraid	42.230	17293	4430	10.0	9.0
231	231A20	C20 marchatic Sterold	40.700	1950	490	2.1	1.0
231	231621	C26 208 Trioromotio	40.004	1190	720	0.7	0.9
231	231026	C27 205 & C26 20R Triaromatic	56 437	3004	725	1.9	1.5
231	231E28	C28 20S Triaromatic	57 360	1530	318	1.0	0.6
231	231E27	C27 20R Triaromatic	57.812	1599	421	1.0	0.9
231	C29TA1	C29 Triaromatic	UTION2	1000	121	110	0.0
231	C29TA2	C29 Triaromatic					
231	231G28	C28 20R Triaromatic	58.952	1178	311	0.7	0.6
231	DINO	Triaromatic Dinosteroid					
231	TA OL	Triaromatic Oleanoid					
231	C29TA3	C29 Triaromatic					
245	C3S	C27 20S 3-Methyl Triaromatic Steroid	57.197	303	91	0.2	0.2
245	C4S	C27 20S 4-Methyl Triaromatic Steroid	57.631	383	105	0.2	0.2
245	E2S	C28 20S 2-Methyl Triaromatic Steroid					
245	E3SC3R	C28 20S 3-Methyl & C27 20R 3-Methyl TAS	58.264	688	159	0.4	0.3
245	E4SC4R	C28 20S 4-Methyl & C27 20R 4-Methyl TAS	58.699	868	194	0.5	0.4
245	S2S	C29 20S 2-Methyl Triaromatic Steroid					
245	DA	Triaromatic Dinosteroid a	59.043	279	117	0.2	0.2
245	S3S	C29 20S 3-Methyl Triaromatic Steroid	59.115	551	93	0.3	0.2
245	DB	Triaromatic Dinosteroid b	59.441	914	262	0.6	0.5
245	S4SE2R	C29 20S 4-Methyl & C28 20R 2-Methyl TAS	59.549	855	167	0.5	0.3
245	E3R	C28 20R 3-Methyl Triaromatic Steroid	59.640	492	147	0.3	0.3
245	E4R	C28 20R 4-Methyl Triaromatic Steroid	60.056	963	194	0.6	0.4
245	DC	Triaromatic Dinosteroid c	60.201	681	194	0.4	0.4
245	DD	Triaromatic Dinosteroid d	60.273	774	235	0.5	0.5
245	S2R	C29 20R 2-Methyl Triaromatic Steroid	60.581	48	36	0.0	0.1
245	S3R	C29 20R 3-Methyl Triaromatic Steroid	60.726	220	84	0.1	0.2
245	DE	Triaromatic Dinosteroid e	60.852	679	142	0.4	0.3
245	S4R	C29 20R 4-Methyl Triaromatic Steroid	61.178	416	121	0.3	0.2
245	DF	Triaromatic Dinosteroid f	61.269	1176	311	0.7	0.6

Company: Well Name: Depth:		Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID:	3		
Sam	pling Point:			File Name:	M1160468.	D	
	Deale	A					
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Haht)
253	S253A	C21 Ring-C Monoaromatic Steroid	40.927	3414	771	2.1	1.6
253	S253B	C22 Monoaromatic steroid	42.737	2806	639	1.8	1.3
253	S253C	C27 Reg 56(H),106(CH3) 20S	50.102	1025	273	0.6	0.6
253	S253D	C27 Dia 10p(H),5p(CH3) 20S	50.193	2794	791	1.8	1.6
253	S253E	C27 Dia10pH,5pCH3 20R+Reg5pH,10pCH3 20R	51.261	7270	1624	4.6	3.3
253	S253F	C27 Reg 5α(H),10β(CH3) 20S	51.387	6721	1517	4.2	3.1
253	S253G	C28 Dia 10αH,5αCH3 20s+Reg5βH,10βCH3 20S	51.731	2808	567	1.8	1.2
253	S253H	C27 Reg 5α(H),10β(CH3) 20R	52.654	20546	4420	12.9	9.0
253	S253I	C28 Reg 5α(H),10β(CH3) 20S	52.763	46444	10865	29.1	22.2
253	S253J	C28 Dia 10αH,5αCH3 20R+Reg5βH,10βCH3 20R	52.889	4383	861	2.7	1.8
253	S253K	C29 Dia 106H,56CH3 20S+Reg56H,106CH3 20S	53.052	866	190	0.5	0.4
253	S253L	C29 Reg 5α(H),10β(CH3) 20S					
253	S253M	C28 Reg 5α(H),10β(CH3) 20R					
253	S253N	C29 Dia 106H,56CH3 20R+Reg56H,106CH3 20R					
253	PERYLENE	Perylene					
253	S253O	C29 Reg 5α(H),10β(CH3) 20R					
342	OHTMP	C26 Octahydrotetramethylpicene - Oleanane isomer					
342	OHTMP_U	C26 Octahydrotetramethylpicene - Ursane isomer					
342	OHTMP_L	C26 Octahydrotetramethylpicene - Lupane isomer					
365	SH29	C29 8,14-secohopanoids	55.351	5372	1653	3.4	3.4
365	SH30	C30 8,14-secohopanoids	56.780	2315	640	1.5	1.3

Company: Well Name: Depth: Sampling Point:	Colorado State University Colorado State University Samples -	Client ID: Project #: Lab ID: File Name:	BIR-15 BH-79915 6121844513 M1160468.D
	Miscellaneous Ratios	By Areas	By Heights
	Triaromatic Steroids m/z 231		
	(C20+C21)/E TAS	0.38	0.36
	TAS #1 20/20+27	0.55	0.54
	TAS #2 21/21+28	0.74	0.70
	%26TAS	29.8	33.5
	%27TAS	40.4	38.2
	%28TAS	29.8	28.2
	%29TAS	0.0	0.0
	C28/C26 20S TAS	1.30	0.86
	C28/C27 20R TAS	0.74	0.74
	Monoaromatic Steroids m/z 253		
	Dia/Regular C27 MAS	2.73	2.90
	%27 MAS	41.3	40.9
	%28 MAS	57.8	58.2
	%29 MAS	0.9	0.9
	(C21+C22)/2 MAS	0.06	0.06
	TAS/(MAS+TAS)	0.12	0.13
	TA28/(TA28+MA29)	0.76	0.77
	Triaromatic Methylsteroids m/z 245		
	Dinosteroid Index	0.44	0.48
	C4/C3+C4 Mester	0.63	0.57
	Phenanthrenes and Naphthalenes		
	MPI-1	0.83	0.83
	MPI-2	1.00	1.01
	Rc(a) if Ro < 1.3 (Ro%)	0.87	0.87
	Rc(b) if Ro > 1.3 (Ro%)	1.80	1.80
	DNR-1	7.82	4.93
	DNR-2	1.47	1.93
	TNR1	1.68	1.87
	TDE-1	2.49	2.90
	TDE-2	0.31	0.43
	MDR	11 25	12 78
	Rm (Ro%)	7.77	11.83
		92020	
	MDR23	0.36	0.35
	MDR1	0.06	0.06
	DBT/Phenanthrene	0.04	0.04
	New Ratios		
	PNR	0.35	0.38
	MDPNR	0.91	0.91
	Dinosteroid Index 2	0.00	0.00
		0.00	0.00

Weatherford [®]		AROMATIC BIOMA	RKE	RS
Company: Colorado State University Country: Basin: Lease: Block: Field: Well Name: Colorado State University Samples Latitude: Longitude: Preparation: MPLC	Client ID: Project #: Lab ID: Sample Type: Sampling Point: Formation: Geologic Age: Top Depth: Bottom Depth: GCMS Method:	BIR-16 BH-79915 6121844515 Outcrop M15A		
m/z 253: Monoaromatic steroids M116046	P.D RATIOS (on	Areas) ¹	Appl ^z	TEV3
	Mono- (MAS) ar	nd Triaromatic Steroids (TAS)		
	(C20+C21)/∑ TA	S 0.46	М	1.0 (1.3%)
	TAS #1 20/20+2	7 0.68	М	
	TAS #2 21/21+2	8 0.77	М	
	%26 TAS	38.2	D	
	%27 TAS	28.9	D	
	%28 TAS	32.9	D	
	%29 TAS	0.0	D	
	C28/C26 20S TA	AS 0.80		
	C28/C27 20R TA	AS 1.14		
manus have a second with the second s	Dia/Regular C27	MAS 1.53		
The second	%27 MAS	54.8	D	
m/z 231: Triaromatic steroids M116046	9D %28 MAS	45.2	D	
	%29 MAS	43.2	D	
	(C21+C22)/5 MA	0.0	M	1.0 (1.3%)
	TACHMARTAR	0.44	M	1.0 (1.570)
	TA28/(TA28+MA	(29) 1.00	M	1.0 (0.8%)
	Triaromatic Met	thyIsteroids		
	Dinosteroid Inde	x 0.41	A	
	C4/C3+C4 Mest	er 0.55	A	
hall 19 march with an a second second	Phenanthrenes	, Naphthalenes, and Dibenzoth	lopher	ies
1000 and and and and and and have a free of the second and the sec	MPI-1	1.05	М	
	Rc(a) if Ro < 1.3	(Ro%) 1.00	M	
m/z 245 Triaromatic Methylsteroids M116046	9.D Rc(b) if Ro > 1.3	(Ro%) 1.67	М	
	MPI-2	1.29	M	
	DNR-1	2.58	M	
	DNR-2	1.08	M	
l v l	TNR1	1.00	M	
	TDE-1	2.04	M	
MANARAM ALLA HALLALA ALLA MALLA	TDE-2	0.27	M	
MAN WANNEW WANNAW W WWWWWWWWWWWWWWWWWWWWW	MDP	0.27	M	
Whow when the		4.05	NA	
ALIGA AM	MUMU Km (Ro%)	0.80	NA	
	MDR23	0.36	IVI	
	MDR1	0.17	M	
	DBT/Phenanthre	ene 0.03	D	

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Company: Well Name: Depth:		Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID:	BIR-16 BH-79915 61218445	15	
Sam	pling Point:			File Name:	M1160469	9.D	
	Deele				_		
Ion	Label	Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
230	OTP	Ortho-terphenyl (internal standard)	34.305	460795	146923	300.0	300.0
128	NAPH	Naphthalene	14.351	113	42	0.1	0.1
134	ISOR	Isorenieratane					
142	2MN	2-Methylnaphthalene	17.697	392	138	0.3	0.3
142	1 MN	1-Methylnaphthalene	18.202	372	91	0.2	0.2
154	BP	Biphenyl	20.137	344	107	0.2	0.2
156	2EN	2-Ethylnaphthalene	20.747	132	39	0.1	0.1
156	1EN	1-Ethylnaphthalene	20.782	88	28	0.1	0.1
156	26DMN	2,6-Dimethylnaphthalene	21.095	1256	439	0.8	0.9
156	27DMN	2,7-Dimethylnaphthalene	21.147	1376	453	0.9	0.9
156	1317DMN	1,3 & 1,7-Dimethylnaphthalenes	21.531	3674	1157	2.4	2.4
156	16DMN	1,6-Dimethylnaphthalene	21.653	2958	945	1.9	1.9
156	2314DMN	2,3 & 1,4-Dimethylnaphthalenes	22.141	2438	681	1.6	1.4
156	15DMN	1,5-Dimethylnaphthalene	22.211	1019	362	0.7	0.7
156	12DMN	1,2-Dimethylnaphthalene	22.576	1177	363	0.8	0.7
168	2MBP	2-Methylbiphenyl					
168	DPM	Diphenylmethane					
168	3MBP	3-Methylbiphenyl	23.343	24102	8048	15.7	16.4
168	4MBP	4-Methylbiphenyl	23.622	15562	5135	10.1	10.5
168	DBF	Dibenzofuran	24.354	4546	1273	3.0	2.6
170	BB_EMN	Ethyl-methyl-Naphthalene	24.127	5323	1390	3.5	2.8
170	AB_EMN	Ethyl-methyl-Naphthalene	24.615	2553	814	1.7	1.7
170	137TMN	1,3,7-Trimethylnaphthalene	24.755	12565	3912	8.2	8.0
170	136TMN	1,3,6-Trimethylnaphthalene	24.929	19388	6087	12.6	12.4
170	146135T	(1,4,6+1,3,5)-Trimethylnaphthalenes	25.365	15554	4510	10.1	9.2
170	236TMN	2,3,6-Trimethylnaphthalene	25.487	18293	5844	11.9	11.9
170	127TMN	1,2,7-Trimethylnaphthalene	25.800	4713	1286	3.1	2.6
170	167126T	(1,6,7+1,2,6)-Trimethylnaphthalenes	25.870	17157	3852	11.2	7.9
170	124TMN	1,2,4-Trimethylnaphthalene	26.323	2829	766	1.8	1.6
170	125TMN	1,2,5-Trimethylnaphthalene	26.532	5760	1857	3.8	3.8
178	PHEN	Phenanthrene	31.638	247140	73572	160.9	150.2
178	ANTH	Anthracene	31.917	3683	825	2.4	1.7
184	1357	1,3,5,7-Tetramethylnaphthalene	28.327	8073	1838	5.3	3.8
184	1367	1,3,6,7-Tetramethylnaphthalene	28.955	12004	4006	7.8	8.2
184	1247	(1,2,4,7+1,2,4,6+1,4,6,7)-Tetramethylnaphthalenes	29.373	7619	2412	5.0	4.9
184	1257	1,2,5,7-Tetramethyinaphthalene	29.477	4532	1342	3.0	2.7
184	2367	2,3,6,7-Tetramethylnaphthalene	29.704	3450	1092	2.2	2.2
184	1267	1,2,6,7-Tetramethylnaphthalene	29.948	3929	1133	2.6	2.3
184	1237	1,2,3,7-Tetramethyinaphthalene	30.053	2456	723	1.6	1.5
184	1236	1,2,3,6- Letramethyinaphthalene	30.209	3446	1053	2.2	2.2
184	1256	1,2,5,6-Tetramethyinaphthalene	30.628	4548	1198	3.0	2.4
184	DBT	Dibenzothiophene	30.889	8184	2171	5.3	4.4
191	BH32	C32 Benzohopane					
191	BH33	C33 Benzonopane					
191	BH34	C34 Benzohopane					
191	BH35	C35 Benzonopane					
192	3MP	3-Metnylphenanthrene	34.636	106850	30669	69.6	62.6
192	2MP	2-Metnyiphenanthrene	34.775	167239	50307	108.9	102.7
192	AWE	9-metnyiphenanthrene	35.228	75016	22135	48.8	45.2
192	1MP	1-Methylphenanthrene	35.350	68248	19777	44.4	40.4

Company: Well Name: Depth:		Colorado State University Colorado State University Samples		Client ID: Project #:	BIR-16 BH-79915 612184451	5	
Sam	n. pling Point:	-		File Name:	M1160469	.D	
_							
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
198	CAD	Cadalene	29.024	3019	774	2.0	1.6
198	12467PMN	1,2,4,6,7-Pentamethylnaphthalene	33.137	1342	399	0.9	0.8
198	12357PMN	1,2,3,5,7-Pentamethylnaphthalene	33.346	1168	359	0.8	0.7
198	4MDBT	4 Methyl Dibenzothiophene	33.608	5730	1677	3.7	3.4
198	12367 PMN	1,2,3,6,7-Pentamethylnaphthalene	34.008	1360	322	0.9	0.7
198	23MDBT	2 & 3 Methyl Dibenzothiophenes	34.078	2956	858	1.9	1.8
198	12356PMN	1,2,3,5,6-Pentamethylnaphthalene	34.496	1852	410	1.2	0.8
198	1MDBT	1 Methyl Dibenzothiophene	34.636	1416	399	0.9	0.8
206	36DMP	3,6-Dimethylphenanthrene	37.417	28786	8478	18.7	17.3
206	26DMP	2,6-Dimethylphenanthrene	37.598	83658	22067	54.5	45.1
206	27DMP	2,7-Dimethylphenanthrene	37.688	57875	18961	37.7	38.7
206	39DMP	(3,9+3,10+2,10+1,3)-Dimethylphenanthrenes	38.032	124224	32421	80.9	66.2
206	29DMP	(2,9+1,6)-Dimethylphenanthrenes	38.177	76369	16011	49.7	32.7
206	17DMP	1,7-Dimethylphenanthrene	38.304	55421	16709	36.1	34.1
206	23DMP	2,3-Dimethylphenanthrene	38.485	37516	10620	24.4	21.7
206	19DMP	1,9-Dimethylphenanthrene	38.007	15238	4729	9.9	9.7
206	18DMP	1,8-Dimethylphenanthrene	38.860	9///	2870	0.4	0.9
206	12DMP	Refere	39.227	56/8	1667	3.7	3.4
219	231420	C20 Triaromatic Staroid	42.213	4023	144	2.0	0.3
231	231A20	C20 marchatic Sterold	40.701	1129	217	0.4	0.3
231	231626	C26 20S Triaromatic	40.347	400	217	0.7	0.4
231	231026	C27 20S & C26 20R Triaromatic	56 420	688	143	0.4	0.2
231	231E28	C28 20S Triaromatic	57 379	318	90	0.4	0.2
231	231E27	C27 20R Triaromatic	57.813	303	85	0.2	0.2
231	C29TA1	C29 Triaromatic					
231	C29TA2	C29 Triaromatic					
231	231G28	C28 20R Triaromatic	58,953	345	86	0.2	0.2
231	DINO	Triaromatic Dinosteroid					
231	TA OL	Triaromatic Oleanoid					
231	C29TA3	C29 Triaromatic					
245	C3S	C27 20S 3-Methyl Triaromatic Steroid	57.180	192	38	0.1	0.1
245	C4S	C27 20S 4-Methyl Triaromatic Steroid	57.614	157	45	0.1	0.1
245	E2S	C28 20S 2-Methyl Triaromatic Steroid					
245	E3SC3R	C28 20S 3-Methyl & C27 20R 3-Methyl TAS	58.284	274	52	0.2	0.1
245	E4SC4R	C28 20S 4-Methyl & C27 20R 4-Methyl TAS	58.700	462	77	0.3	0.2
245	S2S	C29 20S 2-Methyl Triaromatic Steroid					
245	DA	Triaromatic Dinosteroid a	59.026	142	32	0.1	0.1
245	S3S	C29 20S 3-Methyl Triaromatic Steroid	59.116	239	44	0.2	0.1
245	DB	Triaromatic Dinosteroid b	59.442	338	79	0.2	0.2
245	S4SE2R	C29 20S 4-Methyl & C28 20R 2-Methyl TAS	59.532	223	54	0.1	0.1
245	E3R	C28 20R 3-Methyl Triaromatic Steroid	59.605	153	45	0.1	0.1
245	E4R	C28 20R 4-Methyl Triaromatic Steroid	60.057	283	72	0.2	0.1
245	DC	Triaromatic Dinosteroid c	60.184	255	60	0.2	0.1
245	DD	Triaromatic Dinosteroid d	60.274	246	62	0.2	0.1
245	S2R	C29 20R 2-Methyl Triaromatic Steroid	60.546	92	26	0.1	0.1
245	S3R	C29 20R 3-Methyl Triaromatic Steroid	60.727	123	35	0.1	0.1
245	DE	Triaromatic Dinosteroid e	60.872	270	41	0.2	0.1
245	S4R	C29 20R 4-Methyl Triaromatic Steroid	61.179	123	31	0.1	0.1
245	DF	Triaromatic Dinosteroid f	61.270	357	96	0.2	0.2

Company: Well Name:		Colorado State University Colorado State University Samples		Client ID: Project #:			
Sam	pling Point:	-		File Name:	M1160469.	5	
-	Peak	Compound	Ret.			ppm	ppm
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
253	S253A	C21 Ring-C Monoaromatic Steroid	40.928	1116	202	0.7	0.4
253	S253B	C22 Monoaromatic steroid	42.720	595	128	0.4	0.3
253	S253C	C27 Reg 56(H),106(CH3) 20S	50.103	212	51	0.1	0.1
253	S253D	C27 Dia 10p(H),5p(CH3) 20S	50.194	325	96	0.2	0.2
253	S253E	C27 Dia10pH,5pCH3 20R+Reg5pH,10pCH3 20R	51.280	354	85	0.2	0.2
203	5253F	C27 Reg 5a(H),10p(CH3) 205	51,388	320	75	0.2	0.2
203	8203G	C28 Dia 10aH, 5aCH3 205+Reg5pH, 10pCH3 205	51.732	999	206	0.7	0.4
255	6253H	C27 Reg 5a(H), 10p(CH3) 20R					
253	S2531	C28 Reg 5a(H), 10p(CH3) 205					
253	6253V	C20 Dia 100H, 50CH3 208+RegSpH, 10pCH3 208					
253	S253K	C29 Dia Toph, spens 203*Regsph, Topens 203					
253	S253L S253M	C28 Reg 5a(H), 10p(CH3) 208					
253	S253N	C29 Dia 108H 58CH3 20R+Rea58H 108CH3 20R					
253	DERVI ENE	Dervlene					
253	S2530	C29 Reg 5g(H) 108(CH3) 20R					
342	OHTMP	C26 Octabydrotetramethylpicene - Oleanane isomer					
342	OHTMP U	C26 Octahydrotetramethylpicene - Ursane isomer					
342	OHTMP L	C26 Octahydrotetramethylpicene - Lupane isomer					
365	SH29	C29 8,14-secohopanoids	55.352	602	175	0.4	0.4
365	SH30	C30 8,14-secohopanoids	56.782	451	101	0.3	0.2
_							

Company: Well Name: Depth: Sampling Point:	Colorado State University Colorado State University Samples -	Client ID: Project #: Lab ID: File Name:	BIR-16 BH-79915 6121844515 M1160469.D
	Miscellaneous Ratios	By Areas	By Heights
	Triaromatic Steroids m/z 231		
	(C20+C21)/E TAS	0.46	0.43
	TAS #1 20/20+27	0.68	0.63
	TAS #2 21/21+28	0.77	0.72
	%26TAS	38.2	32.7
	%27TAS	28.9	33.5
	%28TAS	32.9	33.9
	%29TAS	0.0	0.0
	C28/C26 20S TAS	0.80	1.08
	C28/C27 20R TAS	1.14	1.01
	Monoaromatic Steroids m/z 253		
	Dia/Regular C27 MAS	1.53	1.88
	%27 MAS	54.8	59.8
	%28 MAS	45.2	40.2
	%29 MAS	0.0	0.0
	(C21+C22)/2 MAS	0.44	0.39
	TAS/(MAS+TAS)	0.49	0.50
	TA28/(TA28+MA29)	1.00	1.00
	Triaromatic Methylsteroids m/z 245		
	Dinosteroid Index	0.41	0.42
	C4/C3+C4 Mester	0.55	0.56
	Phenanthrenes and Naphthalenes		
	MPI-1	1.05	1.05
	MPI-2	1.29	1.31
	Rc(a) if Ro < 1.3 (Ro%)	1.00	1.00
	Rc(b) if Ro > 1.3 (Ro%)	1.67	1.67
			12.12
	DNR-1	2.58	2.46
	DNR-2	1.08	1.31
	TNR1	1.18	1.30
	TDE-1	2.04	2.42
	TDE-2	0.27	0.33
	MDR	4.05	4.20
	Rm (Ro%)	0.80	0.82
	MDR23	0.36	0.40
	MDR1	0.17	0.18
	DBT/Phenanthrene	0.03	0.03
	New Ratios		
	PNR	0.42	0.49
	MDPNR	0.64	0.66
	Dinosteroid Index 2	0.00	0.00

Weath	erford [®]			AROMATIC BIO	MAF	RKE	RS
Company: Colorado State University Country: Basin: Lease: Block: Field:		Clier Proj Lab Sam Sam Forr	nt ID: ect #: ID: Iple Type: Ipling Point: mation:	517-2.5 BH-79239 6121806260 Core			
Well Name:	Nonesuch Formation Core Samples	Geo	logic Age:				
Latitude:		Top	Deptn:	3075			
Preparation:	MPLC	Bott	om Deptn:	M15A			
rieparation.	MIFEG	GCI	no methou.	MISA			
m/z 253: Mo	noaromatic steroids M6160	709.D	RATIOS (on	Areas) ¹	A	ppl ²	TEV ³
			Mono- (MAS) an	d Triaromatic Steroids (T	AS)		
			(C20+C21)/E TA	s o	.27	М	1.0 (1.3%)
	r.		TAS #1 20/20+2	7 0	.40	М	
			TAS #2 21/21+28	8 0	.61	М	
			%26 TAS	2	5.6	D	
			%27 TAS	4	6.0	D	
			%28 TAS	2	8.4	D	
	11		%29 TAS		0.0	D	
	1 1 1		C28/C26 20S TA	S 1	.24		
	1. 1. 1.	1	C28/C27 20R TA	S 0	.62		
	manufacture was a second with the way	Manna	Dia/Regular C27	MAS			
			%27 MAS			D	
m/z 231: Tria	aromatic steroids M6160	709.D	%28 MAS			D	
			%29 MAS			D	
			(C21+C22)/2 MA	S		М	1.0 (1.3%)
	2.42		TAS/(MAS+TAS)) 1	.00	М	
1			TA28/(TA28+MA	29) 1	.00	М	1.0 (0.8%)
alle e			Triaromatic Met	hylsteroids			
			Dinosteroid Index	x 0	.49	А	
I MNALLA			C4/C3+C4 Meste	er O	.51	А	
L DIVINI MINU							
1911.04.04	1 V Maple wood blog with a way and with the share	alun .	Phenanthrenes,	Naphthalenes, and Diben	zothic	ophene	es
NV. V			MPI-1	0	.83	М	
			Rc(a) if Ro < 1.3	(Ro%) 0	.87	М	
m/z 245 Tria	romatic Methylsteroids M6160	709.D	Rc(b) if Ro > 1.3	(Ro%) 1	.80	М	
			MPI-2	0	.96	М	
			DNR-1	3	.34	М	
			DNR-2	1	.63	М	
			TNR1	0	.87	М	
			TDE-1	2	.11	М	
			TDE-2	0	.19	М	
			MDR	2	.27	М	
			Rm (Ro%)	0	.73	М	
			MDR23	C	.73	M	
M.m.N.L.M.	Nharland have been and the hard hard hard hard hard hard hard hard	mm	MDR1	0	.51	М	
	• 27 387467974797451945104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DBT/Phenanthre	ne 0	.16	D	

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Company:		Colorado State University		Client ID:	517-2.5		
Well Name:		Nonesuch Formation Core Samples		Project #: BH		~	
Dept	n: pling Point:	3074.60 -		Lab ID: File Name:	612180620 Me1e0709	50	
Sam	ping Point.			File Name.	100100708	.0	
	Peak	Compound	Ret.			maa	maa
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
230	OTP	Ortho-terphenyl (internal standard)	34.217	230641	76577	300.0	300.0
128	NAPH	Naphthalene	14.399	292	109	0.4	0.4
134	ISOR	Isorenieratane					
142	2MN	2-Methylnaphthalene	17.711	1660	564	2.2	2.2
142	1MN	1-Methylnaphthalene	18.195	1071	372	1.4	1.5
154	BP	Biphenyl	20.120	3922	1328	5.1	5.2
156	2EN	2-Ethylnaphthalene	20.722	828	242	1.1	0.9
156	1EN	1-Ethylnaphthalene	20.776	314	134	0.4	0.5
156	26DMN	2,6-Dimethylnaphthalene	21.077	3138	1003	4.1	3.9
156	27DMN	2,7-Dimethylnaphthalene	21.120	2631	953	3.4	3.7
156	1317DMN	1,3 & 1,7-Dimethylnaphthalenes	21.507	7313	2403	9.5	9.4
156	16DMN	1,6-Dimethylnaphthalene	21.615	5541	1835	7.2	7.2
156	2314DMN	2,3 & 1,4-Dimethylnaphthalenes	22.109	3530	996	4.6	3.9
156	15DMN	1,5-Dimethylnaphthalene	22.174	1727	599	2.2	2.3
156	12DMN	1,2-Dimethylnaphthalene	22.540	1584	513	2.1	2.0
168	2MBP	2-Methylbiphenyl	20.776	522	182	0.7	0.7
168	DPM	Diphenylmethane	21.647	409	134	0.5	0.5
168	3MBP	3-Methylbiphenyl	23.303	25759	8603	33.5	33.7
168	4MBP	4-Methylbiphenyl	23.583	13470	4637	17.5	18.2
168	DBF	Dibenzofuran	24.303	1940	602	2.5	2.4
170	BB_EMN	Ethyl-methyl-Naphthalene	24.077	3940	1038	5.1	4.1
170	AB_EMN	Ethyl-methyl-Naphthalene	24.561	2218	748	2.9	2.9
170	137TMN	1,3,7-TrimethyInaphthalene	24.712	6553	2132	8.5	8.4
170	136TMN	1,3,6-TrimethyInaphthalene	24.873	10682	3590	13.9	14.1
170	146135T	(1,4,6+1,3,5)-Trimethylnaphthalenes	25.314	9416	2805	12.2	11.0
170	236TMN	2,3,6-TrimethyInaphthalene	25.432	8193	2728	10.7	10.7
170	127TMN	1,2,7-Trimethylnaphthalene	25.755	1899	687	2.5	2.7
170	167126T	(1,6,7+1,2,6)-Trimethylnaphthalenes	25.819	9842	2293	12.8	9.0
170	124TMN	1,2,4-TrimethyInaphthalene	26.249	1599	475	2.1	1.9
170	125TMN	1,2,5-TrimethyInaphthalene	26.464	3368	1119	4.4	4.4
178	PHEN	Phenanthrene	31.540	45688	14308	59.4	56.1
178	ANTH	Anthracene	31.820	1627	406	2.1	1.6
184	1357	1,3,5,7-Tetramethylnaphthalene	28.239	4264	1121	5.5	4.4
184	1367	1,3,6,7-Tetramethylnaphthalene	28.884	7573	2526	9.9	9.9
184	1247	(1,2,4,7+1,2,4,6+1,4,6,7)-Tetramethylnaphthalenes	29.293	5702	1841	7.4	7.2
184	1257	1,2,5,7-Tetramethyinaphthalene	29.400	2371	717	3.1	2.8
184	2367	2,3,6,7-Tetramethylnaphthalene	29.615	2131	643	2.8	2.5
184	1267	1,2,6,7-TetramethyInaphthalene	29.862	2070	654	2.7	2.6
184	1237	1,2,3,7-Tetramethylnaphthalene	29.970	991	295	1.3	1.2
184	1236	1,2,3,6-Tetramethylnaphthalene	30.131	2856	803	3.7	3.1
184	1256	1,2,5,6-Tetramethylnaphthalene	30.540	2293	607	3.0	2.4
184	DBT	Dibenzothiophene	30.798	7227	2140	9.4	8.4
191	BH32	C32 Benzohopane					
191	BH33	C33 Benzohopane					
191	BH34	C34 Benzohopane					
191	BH35	C35 Benzohopane					
192	3MP	3-Methylphenanthrene	34.540	21811	6696	28.4	26.2
192	2MP	2-Methylphenanthrene	34.658	30007	9172	39.0	35.9
192	9MP	9-Methylphenanthrene	35.121	29203	8859	38.0	34.7
192	1MP	1-Methylphenanthrene	35.250	18579	5751	24.2	22.5
Com	pany:	Colorado State University		Client ID:	517-2.5		
-------	--------------------	---	--------	------------	-----------	--------	--------
Well	Name:	Nonesuch Formation Core Samples		Project #:	BH-79239	60	
Sam	n: pling Point:	3074.60 -		Eile Name:	M6160700	00	
Joann	ping Point.			File Name.	100100702		
	Peak	Compound	Ret.			ppm	ppm
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
198	CAD	Cadalene	28.927	514	117	0.7	0.5
198	12467PMN	1,2,4,6,7-PentamethyInaphthalene	33.045	1426	424	1.9	1.7
198	12357PMN	1,2,3,5,7-PentamethyInaphthalene	33.239	583	172	0.8	0.7
198	4MDBT	4 Methyl Dibenzothiophene	33.497	8318	2438	10.8	9.6
198	12367PMN	1,2,3,6,7-PentamethyInaphthalene	33.906	967	255	1.3	1.0
198	23MDBT	2 & 3 Methyl Dibenzothiophenes	33.981	5293	1541	6.9	6.0
198	12356PMN	1,2,3,5,6-PentamethyInaphthalene	34.390	775	204	1.0	0.8
198	1MDBT	1 Methyl Dibenzothiophene	34.529	3670	1118	4.8	4.4
206	36DMP	3,6-Dimethylphenanthrene	37.306	6010	1884	7.8	7.4
206	26DMP	2,6-Dimethylphenanthrene	37.500	14023	4309	18.2	16.9
206	27DMP	2,7-Dimethylphenanthrene	37.580	9948	3110	12.9	12.2
206	39DMP	(3,9+3,10+2,10+1,3)-Dimethylphenanthrenes	37.924	41728	11358	54.3	44.5
206	29DMP	(2,9+1,6)-Dimethylphenanthrenes	38.072	22329	5341	29.0	20.9
206	17DMP	1,7-Dimethylphenanthrene	38.187	17441	5229	22.7	20.5
206	23DMP	2,3-Dimethylphenanthrene	38.370	8105	2358	10.5	9.2
206	19DMP	1,9-Dimethylphenanthrene	38.450	7783	2268	10.1	8.9
206	18DMP	1,8-Dimethylphenanthrene	38.759	3683	1108	4.8	4.3
206	12DMP	1,2-Dimethylphenanthrene	39.113	1858	625	2.4	2.4
219	REI	Retene	42.111	1859	451	2.4	1.8
231	231A20	C20 Triaromatic Steroid	46.583	1552	409	2.0	1.6
231	231B21	C21 Triaromatic	48.391	2272	399	3.0	1.6
231	231026	C26 20S Traromatic	55.129	1314	3/5	1.7	1.5
231	231026	C27 205 & C26 20R Triaromatic	55.284	3/98	1007	4.9	3.9
201	231E20	C20 205 Tharomatic	57.211	1633	590	2.1	1.0
231	231F27	C27 ZUR Tharomatic	57.657	2358	296	3.1	2.3
231	C291A1	C29 Triarematic					
231	231C28	C29 Tharomatic	59 790	1450	400	10	16
231	DINO	Triaromatic Dinesteroid	50.705	1455	400	1.5	1.0
231	TAOL	Triaromatic Oleanoid					
231	C29TA3	C29 Triaromatic					
245	C35	C27 20S 3-Methyl Triaromatic Steroid	57 028	246	95	0.3	0.4
245	C4S	C27 20S 4-Methyl Triaromatic Steroid	57 474	240	87	0.3	0.4
245	E2S	C28 20S 2-Methyl Triaromatic Steroid	01.474	201	07	0,0	0.0
245	E3SC3R	C28 20S 3-Methyl & C27 20R 3-Methyl TAS	58.114	1088	260	1.4	1.0
245	E4SC4R	C28 20S 4-Methyl & C27 20R 4-Methyl TAS	58.538	1275	323	1.7	1.3
245	S2S	C29 20S 2-Methyl Triaromatic Steroid	58.675	124	44	0.2	0.2
245	DA	Triaromatic Dinosteroid a	58.881	479	124	0.6	0.5
245	S3S	C29 20S 3-Methyl Triaromatic Steroid	58.972	320	90	0.4	0.4
245	DB	Triaromatic Dinosteroid b	59.281	1096	317	1.4	1.2
245	S4SE2R	C29 20S 4-Methyl & C28 20R 2-Methyl TAS	59.384	700	188	0.9	0.7
245	E3R	C28 20R 3-Methyl Triaromatic Steroid	59.476	872	185	1.1	0.7
245	E4R	C28 20R 4-Methyl Triaromatic Steroid	59.910	748	194	1.0	0.8
245	DC	Triaromatic Dinosteroid c	60.036	935	278	1.2	1.1
245	DD	Triaromatic Dinosteroid d	60.116	1195	344	1.6	1.3
245	S2R	C29 20R 2-Methyl Triaromatic Steroid	60.414	108	32	0.1	0.1
245	S3R	C29 20R 3-Methyl Triaromatic Steroid	60.562	436	117	0.6	0.5
245	DE	Triaromatic Dinosteroid e	60.677	1113	258	1.4	1.0
245	S4R	C29 20R 4-Methyl Triaromatic Steroid	60.997	621	170	0.8	0.7
245	DF	Triaromatic Dinosteroid f	61.100	1657	470	2.2	1.8

Con Well Dept	npany: Name: th:	Colorado State University Nonesuch Formation Core Samples 3074.60 -		Client ID: Project #: Lab ID:	517-2.5 BH-79239 61218062	60	
Sam	pling Point:			File Name:	M6160709	9.D	
r	Book	Compound	Bot				
lon	l abel	Name	Time	Area	Height	(Area)	(Haht)
253	\$253A	C21 Ring-C Monoaromatic Steroid	Time	Area	rieigite	(Area)	(right)
253	S253B	C22 Monoaromatic steroid					
253	S253C	C27 Reg 5B(H), 10B(CH3) 20S					
253	S253D	C27 Dia 10B(H),5B(CH3) 20S					
253	S253E	C27 Dia106H,56CH3 20R+Reg56H,106CH3 20R					
253	S253F	C27 Reg 5α(H),10β(CH3) 20S					
253	S253G	C28 Dia 10αH,5αCH3 20s+Reg5βH,10βCH3 20S					
253	S253H	C27 Reg 5α(H),10β(CH3) 20R					
253	S253I	C28 Reg 5α(H),10β(CH3) 20S					
253	S253J	C28 Dia 10αH,5αCH3 20R+Reg5βH,10βCH3 20R					
253	S253K	C29 Dia 106H,56CH3 20S+Reg56H,106CH3 20S					
253	S253L	C29 Reg 5α(H),10β(CH3) 20S					
253	S253M	C28 Reg 5α(H),10β(CH3) 20R					
253	S253N	C29 Dia 10βH,5βCH3 20R+Reg5βH,10βCH3 20R					
253	PERYLENE	Perylene					
253	S253O	C29 Reg 5α(H),10β(CH3) 20R					
342	OHTMP	C26 Octahydrotetramethylpicene - Oleanane isomer					
342	OHTMP_U	C26 Octahydrotetramethylpicene - Ursane isomer					
342	OHTMP_L	C26 Octahydrotetramethylpicene - Lupane isomer					
365	SH29	C29 8,14-secohopanoids	55.209	697	221	0.9	0.9
365	SH30	C30 8,14-secohopanoids	56.627	583	156	0.8	0.6
-							

Company: Well Name: Depth: Sampling Point:	Colorado State University Nonesuch Formation Core Samples 3074.60 -	Client ID: Project #: Lab ID: File Name:	517-2.5 BH-79239 6121806260 M6160709.D
	Miscellaneous Ratios	By Areas	By Heights
	Triaromatic Steroids m/z 231		
	(C20+C21)/E TAS	0.27	0.23
	TAS #1 20/20+27	0.40	0.41
	TAS #2 21/21+28	0.61	0.50
	%26TAS	25.6	27.4
	%27TAS	46.0	43.5
	%28TAS	28.4	29.2
	%29TAS	0.0	0.0
	C28/C26 20S TAS	1.24	1.06
	C28/C27 20R TAS	0.62	0.67
	Monoaromatic Steroids m/z 253		
-	Dia/Regular C27 MAS		
	%27 MAS		
	%28 MAS		
	%29 MAS		
	(C21+C22)/2 MAS		
	TAS/(MAS+TAS)	1.00	1.00
	TA28/(TA28+MA29)	1.00	1.00
	Triaromatic Methylsteroids m/z 245		
	Dinosteroid Index	0.49	0.50
	C4/C3+C4 Mester	0.51	0.53
	Phononthrouse and Nonhthalanae		
	MDI 1	0.92	0.82
	MPI-1	0.05	0.82
	$R_{C}(a)$ if $R_{0} < 1.3$ ($R_{0}\%$)	0.87	0.86
	$R_{c}(b)$ if $R_{0} > 1.3$ ($R_{0}\%$)	1.80	1.81
	DNR-1	3.34	3.27
	DNR-2	1.63	1.96
	TNR1	0.87	0.97
	TDE-1	2.11	2.36
	TDE-2	0.19	0.30
	MDR	2.27	2.18
	Rm (Ro%)	0.73	0.72
		0.10	0.12
	MDR23	0.73	0.72
	MDR1	0.51	0.52
	DBT/Phenanthrene	0.16	0.15
	New Ratios		
	PNR	0.65	0.68
	MDPNR	0.82	0.83
	Dinosterola Index 2	0.00	0.00

Company: Colorado State University Client ID: 517-3 Country: Project #: BH-79239 Basin: Lab ID: 6121806262 Lease: Sample Type: Core Block: Sampling Point: Formation: Field: Formation: Edeologic Age: Latitude: Top Depth: 3065	
Well Name: Nonesuch Formation Core Samples Geologic Age: Latitude: Top Depth: 3065	
ILatitude: Top Depth: 3065	
Longitude: Bottom Depth:	
Preparation: MPLC GUNS Method: M15A	
m/z 253: Monoaromatic steroids M6160710.D RATIOS (on Areas) ¹ Ap Mono- (MAS) and Triaromatic Steroids (TAS)	ppl ^z TEV ³
(C20+C21)/2 TAS 0.55	M 1.0 (1.3%
TAS #1 20/20+27 0.70	M
TAS #2 21/21+28 0.82	M
%26 TAS 32.3	D
9627 TAS 51.5	D
%29 TAS 0.0	D
C28/C26 20S TAS 0.98	-
C28/C27 20R TAS 1.16	
Dia/Regular C27 MAS	
%27 MAS	D
m/z 231: Triaromatic steroids M6160710.D %28 MAS	D
%29 MAS	D
(C21+C22)/2 MAS	M 1.0 (1.3%
TAS/(MAS+TAS) 1.00	M
TA28/(TA28+MA29) 1.00	M 1.0 (0.8%
Triaromatic Methylsteroids	
Dinosteroid Index	A
C4/C3+C4 Mester	A
Phenapthrapes, Naphthalepes, and Dihenzothic	nhones
MPI-1 0.87	M
Rc(a) if Ro < 1.3 (Ro%) 0.89	М
m/z 245 Triaromatic Methylsteroids M6160710.D Rc(b) if Ro > 1.3 (Ro%) 1.78	М
MPI-2 1.03	М
DNR-1 5.79	М
DNR-2 2.32	М
TNR1 0.90	М
TDE-1 1.83	M
Munday Man and An and An	M
MDR 3.61	M
Rm (Ro%) 0.78	M
MDR23 0.94	M
DBT/Phenanthrene 0.13	D

¹Definition and utility of the ratios can be found on our website www.brilabs.com

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

²A=Source Age; D=Depositional environment; M= Maturity

Com Well Dept	pany: Name: h:	Colorado State University Nonesuch Formation Core Samples 3065.00 -		Client ID: Project #: Lab ID:	517-3 BH-79239 61218062	62	
Sam	pling Point:			File Name:	M6160710).D	
	Poak	Compound	Pot			nnm	nnm
lon	lahel	Name	Time	Area	Height	(Area)	(Haht)
230	OTP	Ortho-tembenyl (internal standard)	34 217	209638	71273	300.0	300.0
128	NAPH	Nanhthalene	04.217	200000	11215	000.0	500.0
134	ISOR	Isorenieratane					
142	2MN	2-Methylnaphthalene	17,722	360	117	0.5	0.5
142	1MN	1-Methylnaphthalene	18,206	234	67	0.3	0.3
154	BP	Biphenyl	20.131	103	35	0.1	0.1
156	2EN	2-Ethylnaphthalene	20.733	62	19	0.1	0.1
156	1EN	1-Ethylnaphthalene	20.787	12	9	0.0	0.0
156	26DMN	2.6-Dimethylnaphthalene	21.077	392	106	0.6	0.4
156	27DMN	2,7-Dimethylnaphthalene	21.131	268	113	0.4	0.5
156	1317DMN	1.3 & 1.7-Dimethylnaphthalenes	21.518	692	223	1.0	0.9
156	16DMN	1,6-Dimethylnaphthalene	21.625	488	159	0.7	0.7
156	2314DMN	2,3 & 1,4-Dimethylnaphthalenes	22.109	285	75	0.4	0.3
156	15DMN	1,5-Dimethylnaphthalene	22.174	114	45	0.2	0.2
156	12DMN	1,2-Dimethylnaphthalene	22.539	95	31	0.1	0.1
168	2MBP	2-Methylbiphenyl					
168	DPM	Diphenylmethane					
168	3MBP	3-Methylbiphenyl	23.314	1933	623	2.8	2.6
168	4MBP	4-Methylbiphenyl	23.582	985	333	1.4	1.4
168	DBF	Dibenzofuran	24.314	387	112	0.6	0.5
170	BB_EMN	Ethyl-methyl-Naphthalene	24.077	434	122	0.6	0.5
170	AB_EMN	Ethyl-methyl-Naphthalene	24.561	228	81	0.3	0.3
170	137TMN	1,3,7-Trimethylnaphthalene	24.712	897	285	1.3	1.2
170	136TMN	1,3,6-TrimethyInaphthalene	24.873	1267	416	1.8	1.8
170	146135T	(1,4,6+1,3,5)-Trimethylnaphthalenes	25.303	1152	326	1.6	1.4
170	236TMN	2,3,6-Trimethylnaphthalene	25.432	1040	345	1.5	1.5
170	127TMN	1,2,7-Trimethylnaphthalene	25.744	206	77	0.3	0.3
170	167126T	(1,6,7+1,2,6)-Trimethylnaphthalenes	25.819	1254	300	1.8	1.3
170	124TMN	1,2,4-Trimethylnaphthalene	26.249	191	58	0.3	0.2
170	125TMN	1,2,5-Trimethylnaphthalene	26.464	349	112	0.5	0.5
178	PHEN	Phenanthrene	31.540	7242	2206	10.4	9.3
178	ANTH	Anthracene	31.809	322	87	0.5	0.4
184	1357	1,3,5,7-Tetramethylnaphthalene	28.239	720	187	1.0	0.8
184	1367	1,3,6,7-Tetramethylnaphthalene	28.884	1232	409	1.8	1.7
184	1247	(1,2,4,7+1,2,4,6+1,4,6,7)-Tetramethylnaphthalenes	29.292	849	282	1.2	1.2
184	1257	1,2,5,7-Tetramethylnaphthalene	29.400	316	94	0.5	0.4
184	2367	2,3,6,7-Tetramethylnaphthalene	29.626	377	117	0.5	0.5
184	1267	1,2,6,7-Tetramethylnaphthalene	29.862	305	95	0.4	0.4
184	1237	1,2,3,7-Tetramethylnaphthalene	29.970	183	52	0.3	0.2
184	1236	1,2,3,6-Tetramethylnaphthalene	30.131	350	89	0.5	0.4
184	1256	1,2,5,6-Tetramethyinaphthalene	30.540	366	91	0.5	0.4
184	DBT	Dibenzothiophene	30.798	943	272	1.3	1.1
191	BH32	C32 Benzohopane					
191	BH33	C33 Benzohopane					
191	BH34	C35 Reprohesene					
100	3MD	2 Methylohenanthrone	24 500	2045	1110	5.0	47
192	SMP	3- Methylphenanthrene	34.529	5040	1116	5.2	4.7
192	2MP 9MD	2-Methylphenanthrene	34.008	0103	1509	7.4	0.0
192		Methylphenanthrene	35.121	4900	1008	1.1	0.3
192	1 10/11**	-менургенанителе	55.250	2933	003	4.2	3.1

Com Well Dent	pany: Name: h·	Colorado State University Nonesuch Formation Core Samples 3065.00 -		Client ID: Project #:	517-3 BH-79239 61218062	62	
Sam	n. pling Point:			File Name:	M6160710).D	
_							
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
198	CAD	Cadalene	28.959	110	31	0.2	0.1
198	12467PMN	1,2,4,6,7-PentamethyInaphthalene	33.045	261	81	0.4	0.3
198	12357PMN	1,2,3,5,7-Pentamethylnaphthalene	33.260	74	22	0.1	0.1
198	4MDBT	4 Methyl Dibenzothiophene	33.497	1182	349	1.7	1.5
198	12367PMN	1,2,3,6,7-PentamethyInaphthalene	33.895	140	42	0.2	0.2
198	23MDBT	2 & 3 Methyl Dibenzothiophenes	33.981	885	264	1.3	1.1
198	12356PMN	1,2,3,5,6-PentamethyInaphthalene	34.389	71	24	0.1	0.1
198	1MDBT	1 Methyl Dibenzothiophene	34.529	327	101	0.5	0.4
206	36DMP	3,6-Dimethylphenanthrene	37.306	1106	354	1.6	1.5
206	26DMP	2,6-Dimethylphenanthrene	37.489	3034	933	4.3	3.9
206	27DMP	2,7-Dimethylphenanthrene	37.569	2197	686	3.1	2.9
206	39DMP	(3,9+3,10+2,10+1,3)-Dimethylphenanthrenes	37.912	8336	2324	11.9	9.8
206	29DMP	(2,9+1,6)-Dimethylphenanthrenes	38.061	4431	1017	6.3	4.3
206	17DMP	1,7-Dimethylphenanthrene	38.175	3103	951	4.4	4.0
206	23DMP	2,3-Dimethylphenanthrene	38.358	1649	492	2.4	2.1
206	19DMP	1,9-Dimethylphenanthrene	38.450	1450	427	2.1	1.8
206	18DMP	1,8-Dimethylphenanthrene	38.759	614	192	0.9	0.8
206	12DMP	1,2-Dimethylphenanthrene	39.113	284	101	0.4	0.4
219	RET	Retene	42.110	206	60	0.3	0.3
231	231A20	C20 Triaromatic Steroid	46.595	294	68	0.4	0.3
231	231B21	C21 Triaromatic	48.379	643	124	0.9	0.5
231	231C26	C26 20S Triaromatic	55.140	128	31	0.2	0.1
231	231D26	C27 20S & C26 20R Triaromatic	56.272	245	55	0.4	0.2
231	231E28	C28 20S Triaromatic	57.211	126	35	0.2	0.1
231	231F27	C27 20R Triaromatic	57.657	124	38	0.2	0.2
231	C29TA1	C29 Triaromatic					
231	C29TA2	C29 Triaromatic					
231	231G28	C28 20R Triaromatic	58.778	144	39	0.2	0.2
231	DINO	Triaromatic Dinosteroid					
231	TA_OL	Triaromatic Oleanoid					
231	C29TA3	C29 Triaromatic					
245	C3S	C27 20S 3-Methyl Triaromatic Steroid					
245	C4S	C27 20S 4-Methyl Triaromatic Steroid					
245	E2S	C28 20S 2-Methyl Triaromatic Steroid					
245	E3SC3R	C28 20S 3-Methyl & C27 20R 3-Methyl TAS					
245	E4SC4R	C28 20S 4-Methyl & C27 20R 4-Methyl TAS					
245	S2S	C29 20S 2-Methyl Triaromatic Steroid					
245	DA	Triaromatic Dinosteroid a					
245	S3S	C29 20S 3-Methyl Triaromatic Steroid					
245	DB	Triaromatic Dinosteroid b					
245	S4SE2R	C29 20S 4-Methyl & C28 20R 2-Methyl TAS					
245	E3R	C28 20R 3-Methyl Triaromatic Steroid					
245	E4R	C28 20R 4-Methyl Triaromatic Steroid					
245	DC	Triaromatic Dinosteroid c					
245	DD	Triaromatic Dinosteroid d					
245	S2R	C29 20R 2-Methyl Triaromatic Steroid					
245	S3R	C29 20R 3-Methyl Triaromatic Steroid					
245	DE	Triaromatic Dinosteroid e					
245	S4R	C29 20R 4-Methyl Triaromatic Steroid					
245	DF	Triaromatic Dinosteroid f					

Com Well Dept	ipany: Name: th:	Colorado State University Nonesuch Formation Core Samples 3065.00 -		Client ID: Project #: Lab ID:	517-3 BH-79239 612180626	2	
Sam	pling Point:			File Name:	M6160710	D	
	Poak	Compound	Pot		_	nnm	nnm
Ion	Label	Name	Time	Area	Height	(Area)	(Haht)
253	S253A	C21 Ring-C Monoaromatic Steroid					(
253	S253B	C22 Monoaromatic steroid					
253	S253C	C27 Reg 56(H), 106(CH3) 20S					
253	S253D	C27 Dia 106(H),56(CH3) 20S					
253	S253E	C27 Dia106H,56CH3 20R+Reg56H,106CH3 20R					
253	S253F	C27 Reg 5α(H),10β(CH3) 20S					
253	S253G	C28 Dia 10αH,5αCH3 20s+Reg5βH,10βCH3 20S					
253	S253H	C27 Reg 5α(H),10β(CH3) 20R					
253	S253I	C28 Reg 5α(H),10β(CH3) 20S					
253	S253J	C28 Dia 10αH,5αCH3 20R+Reg5βH,10βCH3 20R					
253	S253K	C29 Dia 106H,56CH3 20S+Reg56H,106CH3 20S					
253	S253L	C29 Reg 5α(H),10β(CH3) 20S					
253	S253M	C28 Reg 5α(H),10β(CH3) 20R					
253	S253N	C29 Dia 106H,56CH3 20R+Reg56H,106CH3 20R					
253	PERYLENE	Perylene					
253	S253O	C29 Reg 5α(H),10β(CH3) 20R					
342	OHTMP	C26 Octahydrotetramethylpicene - Oleanane isomer					
342	OHTMP_U	C26 Octahydrotetramethylpicene - Ursane isomer					
342	OHTMP_L	C26 Octahydrotetramethylpicene - Lupane isomer					
365	SH29	C29 8,14-secohopanoids	55.209	103	32	0.1	0.1
365	SH30	C30 8,14-secohopanoids	56.627	76	24	0.1	0.1
_							
							-
							-
							-
							-
-							

Company: Well Name: Depth: Sampling Point:	Colorado State University Nonesuch Formation Core Samples 3065.00 -	Client ID: Project #: Lab ID: File Name:	517-3 BH-79239 6121806262 M6160710.D
	Miscellaneous Ratios	By Areas	By Heights
	Triaromatic Steroids m/z 231		
	(C20+C21)/E TAS	0.55	0.49
	TAS #1 20/20+27	0.70	0.64
	TAS #2 21/21+28	0.82	0.76
	%26TAS	32.3	28.7
	%27TAS	31.3	35.2
	%28TAS	36.4	36.1
	%29TAS	0.0	0.0
	C28/C26 20S TAS	0.98	1.13
	C28/C27 20R TAS	1.16	1.03
	Monoaromatic Steroids m/z 253		
	Dia/Regular C27 MAS		
	%27 MAS		
	%28 MAS		
	%29 MAS		
	(C21+C22)/2 MAS		
	TAS/(MAS+TAS)	1.00	1.00
	TA28/(TA28+MA29)	1.00	1.00
	Triaromatic Methylsteroids m/z 245		
	Dinosteroid Index		
	C4/C3+C4 Mester		
	Phenanthrenes and Naphthalenes		
	MPI-1	0.87	0.89
	MPI-2	1.03	1.05
	Rc(a) if Ro < 1.3 (Ro%)	0.89	0.90
	Rc(b) if Ro > 1.3 (Ro%)	1.78	1.77
	DNR-1	5 79	4.87
	DNR-2	2.32	2.92
	TNR1	0.90	1.06
	TDE-1	1.83	1.93
	TDE-2	0.16	0.26
	MDR	3.61	346
	Rm (Ro%)	0.78	0.77
	MDR23	0.94	0.97
	MDR1	0.35	0.37
	DBT/Phenanthrene	0.13	0.12
	New Ratios		
	PNR	0.79	0.77
	MDPNR	0.81	0.81
	Dinosteroid Index 2	0.00	0.00

Weatherford [®]				AROMATIC BIO	AROMATIC BIOMARKERS			
Company: Colorado State University Country: Basin: Lease: Block: Field: Well Name: Colorado State University Samples		Clie Proj Lab San San Fori	nt ID: ect #: ID: pple Type: ppling Point: mation:	523-1 BH-79915 6121836322 Core				
Well Name:	Colorado State University Samples	Geo	logic Age:					
Latitude:		Тор	Depth:	2815				
Longitude:		Bot	om Depth:					
Preparation:	MPLC	GCI	/IS Method:	M15A				
<i>m/z</i> 253: Mo	noaromatic steroids M11604	164.D	RATIOS (on Mono- (MAS) a	Areas) ¹ nd Triaromatic Steroids (T	Appl ^z `AS)	TEV3		
			(C20+C21)/2 TA	s	M	1.0 (1.3%)		
	1		TAS #1 20/20+2	27	M			
			TAS #2 21/21+2	8				
			%20 TAS		D			
			%28 TAS		D			
	1.1.14		%29 TAS		D			
		habirt	C28/C26 20S T/	AS				
	hall have been a second with	A Shower a	C28/C27 20R T	AS				
have been been and the	have a special services of the second s		Dia/Regular C27	7 MAS				
			%27 MAS		D			
m/z 231: Tria	aromatic steroids M11604	464.D	%28 MAS		D			
			%29 MAS		D			
			(C21+C22)/∑ M/	AS	M	1.0 (1.3%)		
			TAS/(MAS+TAS	3)	M			
1			TA28/(TA28+M/	A29)	M	1.0 (0.8%)		
L INALI IA	1.1	Manda	Triaromatic Me	thylsteroids	٨			
ANA M	when a file a fly and be all the stand when the party of the	ad Alai Ma	Dinosteroid Inde	ex	A			
	AND ANALYMAN AND ANALYMAN ANT THE ANALYMAN AND		C4/C3+C4 Mest	ei	~			
MAN T.Y.	h i e it h a e a le		Phenanthrenes	Naphthalenes, and Diber	nzothiophen	es		
N.			MPI-1	(0.67 M			
			Rc(a) if Ro < 1.3	3 (Ro%) (0.77 M			
m/z 245 Tria	romatic Methylsteroids M11604	64.D	Rc(b) if Ro > 1.3	3 (Ro%) 1	1.90 M			
			MPI-2	(0.78 M			
			DNR-1	5	5.27 M			
	20 J. 10 J. 10 P.		DNR-2	1	1.90 M			
	we do not the as the where the book to be a set	al a han	TNR1	1	1.20 M			
Ind	W. The WAY MANNA & MANA A MANA A MANA AND A MANA MANA	AMMAN	TDE-1	2	2.46 IVI			
MANNEN	MA IMMAA MAANA A	1.11	NDP	(5.40 M			
			Rm (Ro%)		1.01 M			
			MDR23	(0.46 M			
			MDR1	(0.15 M			
			DBT/Phenanthr	ene (0.08 D			

¹Definition and utility of the ratios can be found on our website www.brilabs.com

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

²A=Source Age; D=Depositional environment; M= Maturity

Com	pany:	Colorado State University		Client ID:	523-1		
Well	Name:	Colorado State University Samples		Project #:	BH-79915		
Dept	n: nling Boint:	2814.70 -		Lab ID:	61218363	22	
Sam	ping Point.			File Name.	1/11 100404	i.D	
	Peak	Compound	Ret.			ppm	maa
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
230	OTP	Ortho-terphenyl (internal standard)	34.302	137914	43946	300.0	300.0
128	NAPH	Naphthalene					
134	ISOR	Isorenieratane					
142	2MN	2-Methylnaphthalene	17.712	138	39	0.3	0.3
142	1MN	1-Methylnaphthalene	18.200	109	39	0.2	0.3
154	BP	Biphenyl	20.135	899	237	2.0	1.6
156	2EN	2-Ethylnaphthalene	20.744	210	60	0.5	0.4
156	1EN	1-Ethylnaphthalene	20.797	110	40	0.2	0.3
156	26DMN	2,6-Dimethylnaphthalene	21.093	1063	308	2.3	2.1
156	27DMN	2,7-Dimethylnaphthalene	21.163	950	318	2.1	2.2
156	1317DMN	1,3 & 1,7-Dimethylnaphthalenes	21.546	1983	618	4.3	4.2
156	16DMN	1,6-Dimethylnaphthalene	21.651	1633	503	3.6	3.4
156	2314DMN	2,3 & 1,4-Dimethylnaphthalenes	22.139	1057	254	2.3	1.7
156	15DMN	1,5-Dimethylnaphthalene	22.208	382	160	0.8	1.1
156	12DMN	1,2-Dimethylnaphthalene	22.574	354	119	0.8	0.8
168	2MBP	2-Methylbiphenyl	20.797	326	96	0.7	0.7
168	DPM	Diphenylmethane	21.668	120	32	0.3	0.2
168	3MBP	3-Methylbiphenyl	23.358	5849	1773	12.7	12.1
168	4MBP	4-Methylbiphenyl	23.637	3325	1004	7.2	6.9
168	DBF	Dibenzofuran	24.369	665	191	1.4	1.3
170	BB_EMN	Ethyl-methyl-Naphthalene	24.125	1424	393	3.1	2.7
170	AB_EMN	Ethyl-methyl-Naphthalene	24.613	576	197	1.3	1.3
170	13/ IMN	1,3,7-Trimethylnaphthalene	24.770	2238	/15	4.9	4.9
170	1361MN	1,3,6-Trimethyinaphthalene	24.927	3240	1008	7.0	6.9
170	1461351	(1,4,6+1,3,5)-Inmethylnaphthalenes	25.363	2405	654	5.2	4.5
170	236 TMIN	2,3,6-Trimetryinaphthalene	25.502	2894	883	6.3	6.0
170	127 TMIN	(1.6.7+1.2.6) Trimethylaephthelepec	20.816	2762	200	1.5	1.4
170	10/1201	(1,0,7+1,2,0)- minemyinaphthalene	20.000	2762	618	0.0	4.2
170	124 TMIN	1.2.5 Trimethylnaphthalene	20.321	906	255	1.9	1.7
178		Phenanthrene	20.000	7819	200	1.0	14.5
178		Anthracene	31.030	316	2121	0.7	0.4
184	1357	1 3 5 7-Tetramethylaanhthalene	28 325	1210	341	26	23
184	1367	1 3 6 7-Tetramethylnaphthalene	28.970	2182	665	4.7	4.5
184	1247	(1 2 4 7+1 2 4 6+1 4 6 7). Tetramethylnanhthalenes	20.070	1025	302	22	2.1
184	1257	1 2 5 7-Tetramethyloaphthalene	29.493	504	155	11	11
184	2367	2 3 6 7-Tetramethylnaphthalene	29 702	593	182	13	12
184	1267	1 2 6 7-Tetramethylnaphthalene	29.946	535	174	12	12
184	1237	1.2.3.7-Tetramethylnaphthalene	30.050	272	78	0.6	0.5
184	1236	1.2.3.6-Tetramethylnaphthalene	30.207	357	87	0.8	0.6
184	1256	1.2.5.6-Tetramethvinaphthalene	30.643	495	108	1.1	0.7
184	DBT	Dibenzothiophene	30.904	660	171	1.4	1.2
191	BH32	C32 Benzohopane					
191	BH33	C33 Benzohopane					
191	BH34	C34 Benzohopane					
191	BH35	C35 Benzohopane					
192	3MP	3-Methylphenanthrene	34.651	2520	725	5.5	4.9
192	2MP	2-Methylphenanthrene	34.773	3513	960	7.6	6.6
192	9MP	9-Methylphenanthrene	35.244	3577	976	7.8	6.7
192	1MP	1-Methylphenanthrene	35.365	2104	651	4.6	4.4

Company: Well Name: Depth:		Colorado State UniversityClient ID:523-1Colorado State University SamplesProject #:BH-799152814.70 -Lab ID:6121836322			22		
Sam	pling Point:			File Name:	M1160464	4.D	
_	Deele						
Ion	Label	Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
198	CAD	Cadalene	29.040	220	55	0.5	0.4
198	12467PMN	1,2,4,6,7-Pentamethyinaphthalene	33.135	237	60	0.5	0.4
198	12357 PMN	1,2,3,5,7-Pentamethylnaphthalene	33.361	104	29	0.2	0.2
198	4MDBT	4 Methyl Dibenzothiophene	33.623	545	142	1.2	1.0
198	12367 PMN	1,2,3,6,7-PentamethyInaphthalene	34.006	170	51	0.4	0.3
198	23MDBT	2 & 3 Methyl Dibenzothiophenes	34.093	303	71	0.7	0.5
198	12356PMN	1,2,3,5,6-Pentamethylnaphthalene	34.494	140	38	0.3	0.3
198	1MDBT	1 Methyl Dibenzothiophene	34.651	101	34	0.2	0.2
206	36DMP	3,6-Dimethylphenanthrene	37.416	875	239	1.9	1.6
206	26DMP	2,6-Dimethylphenanthrene	37.615	1949	583	4.2	4.0
206	27DMP	2,7-Dimethylphenanthrene	37.706	1547	414	3.4	2.8
206	39DMP	(3,9+3,10+2,10+1,3)-Dimethylphenanthrenes	38.031	7227	1862	15.7	12.7
206	29DMP	(2,9+1,6)-Dimethylphenanthrenes	38.194	3504	740	7.6	5.1
206	17DMP	1,7-Dimethylphenanthrene	38.303	2161	578	4.7	3.9
206	23DMP	2,3-Dimethylphenanthrene	38.484	1661	391	3.6	2.7
206	19DMP	1,9-Dimethylphenanthrene	38.574	1112	330	2.4	2.3
206	18DMP	1,8-Dimethylphenanthrene	38.882	614	155	1.3	1.1
206	12DMP	1,2-Dimethylphenanthrene	39.244	268	76	0.6	0.5
219	RET	Retene	42.230	345	82	0.8	0.6
231	231A20	C20 Triaromatic Steroid					
231	231B21	C21 Triaromatic					
231	231C26	C26 20S Triaromatic					
231	231D26	C27 20S & C26 20R Triaromatic					
231	231E28	C28 20S Triaromatic					
231	231F27	C27 20R Triaromatic					
231	C29TA1	C29 Triaromatic					
231	C29TA2	C29 Triaromatic					
231	231G28	C28 20R Triaromatic					
231	DINO	Triaromatic Dinosteroid					
231	TA_OL	Triaromatic Oleanoid					
231	C29TA3	C29 Triaromatic					
245	C3S	C27 20S 3-Methyl Triaromatic Steroid					
245	C4S	C27 20S 4-Methyl Triaromatic Steroid					
245	E2S	C28 20S 2-Methyl Triaromatic Steroid					
245	E3SC3R	C28 20S 3-Methyl & C27 20R 3-Methyl TAS					
245	E4SC4R	C28 20S 4-Methyl & C27 20R 4-Methyl TAS					
245	S2S	C29 20S 2-Methyl Triaromatic Steroid					
245	DA	Triaromatic Dinosteroid a					
245	S3S	C29 20S 3-Methyl Triaromatic Steroid					
245	DB	Triaromatic Dinosteroid b					
245	S4SE2R	C29 20S 4-Methyl & C28 20R 2-Methyl TAS					
245	E3R	C28 20R 3-Methyl Triaromatic Steroid					
245	E4R	C28 20R 4-Methyl Triaromatic Steroid					
245	DC	Triaromatic Dinosteroid c					
245	DD	Triaromatic Dinosteroid d					
245	S2R	C29 20R 2-Methyl Triaromatic Steroid					
245	S3R	C29 20R 3-Methyl Triaromatic Steroid					
245	DE	Triaromatic Dinosteroid e					
245	S4R	C29 20R 4-Methyl Triaromatic Steroid					
245	DF	Triaromatic Dinosteroid f					

Com Well Dept	ipany: Name: th:	Colorado State University Colorado State University Samples 2814.70 -		Client ID: Project #: Lab ID:	523-1 BH-79915 612183632	2	
Sam	pling Point:			File Name:	M1160464.	D	
	Poak	Compound	Pot	_	_	nnm	nnm
lon	Label	Name	Time	Area	Height	(Area)	(Haht)
253	S253A	C21 Ring-C Monoaromatic Steroid			3		
253	S253B	C22 Monoaromatic steroid					
253	S253C	C27 Reg 5 _β (H),10 _β (CH3) 20S					
253	S253D	C27 Dia 10β(H),5β(CH3) 20S					
253	S253E	C27 Dia106H,56CH3 20R+Reg56H,106CH3 20R					
253	S253F	C27 Reg 5α(H),10β(CH3) 20S					
253	S253G	C28 Dia 10αH,5αCH3 20s+Reg5βH,10βCH3 20S					
253	S253H	C27 Reg 5α(H),10β(CH3) 20R					
253	S253I	C28 Reg 5α(H),10β(CH3) 20S					
253	S253J	C28 Dia 10αH,5αCH3 20R+Reg5βH,10βCH3 20R					
253	S253K	C29 Dia 10рн,5рСН3 20S+Reg5рн,10рСН3 20S					
253	S253L	C29 Reg 5α(H),10β(CH3) 20S					
253	S253M	C28 Reg 5α(H),10β(CH3) 20R					
253	S253N	C29 Dia 10рн,5рСН3 20R+Reg5рн,10рСН3 20R					
253	PERYLENE	Perylene					
253	S253O	C29 Reg 5α(H),10β(CH3) 20R					
342	OHTMP	C26 Octahydrotetramethylpicene - Oleanane isomer					
342	OHTMP_U	C26 Octahydrotetramethylpicene - Ursane isomer					
342	OHTMP_L	C26 Octahydrotetramethylpicene - Lupane isomer					
365	SH29	C29 8,14-secohopanoids	55.351	103	26	0.2	0.2
365	SH30	C30 8,14-secohopanoids	56.763	86	25	0.2	0.2
							-
							-

Company: Well Name: Depth:	Colorado State University Colorado State University Samples 2814.70 -	Client ID: Project #: Lab ID:	523-1 BH-79915 6121836322
Sampling Point:		File Name:	M1160464.D
	Miscellaneous Ratios	By Areas	By Heights
	Triaromatic Steroids m/z 231		
	(C20+C21)/E TAS		
	TAS #1 20/20+27		
	TAS #2 21/21+28		
	%26TAS		
	%27TAS		
	%28TAS		
	%29TAS		
	C28/C26 20S TAS		
	C28/C27 20R TAS		
	Monoaromatic Steroids m/z 253		
	Dia/Regular C27 MAS		
	%27 MAS		
	%28 MAS		
	%29 MAS		
	(C21+C22)/2 MAS		
	(2AT+2AM/2AT		
	TA28/(TA28+MA29)		
	17 20(17 20 Hit 20)		
	Triaromatic Methylsteroids m/z 245		
	Dinosteroid Index		
	C4/C3+C4 Mester		
	Phononthropos and Nonhthalonas		
	MDL1	0.67	0.67
	MPI-2	0.78	0.07
	Rc(a) if Ro < 1.3 (Ro%)	0.77	0.77
	Rc(b) if Ro > 1.3 (Ro%)	1.90	1.90
	DNR-1	5.27	3.91
	DNR-2	1.90	2.46
	TNR1	1.20	1.35
	TDE-1	2.46	2.45
	TDE-2	0.21	0.32
	MDR	5 40	4 18
	Rm (Ro%)	1.01	0.81
		057.6	
	MDR23	0.46	0.42
	MDR1	0.15	0.20
	DBT/Phenanthrene	0.08	0.08
	New Ratios		
	PNR	0.63	0.61
		0.59	0.58
	Dinosterola index 2		

Weathe	rford [®] ories			AROMATIC BIO	MARKE	RS
Company: Country: Basin: Lease: Block: Field:	Colorado State University	Jniversity Client ID: Project #: Lab ID: Sample Type: Sampling Poin Formation:		523-3 BH-79915 6121836326 Core		
Well Name:	Colorado State University Samples	Geo	ogic Age:			
Latitude:		Тор	Depth:	2819		
Longitude:		Bott	om Depth:	10000		
Preparation:	MPLC	GCN	IS Method:	M15A		
<i>m/z</i> 253: Mon	oaromatic steroids M1160	465.D	RATIOS (on Mono- (MAS) at	Areas) ¹ nd Triaromatic Steroids (Appl ² TASI	TEV3
			(C20+C21)/2 TA	S	М	1.0 (1.3%)
	Ť.		TAS #1 20/20+2	7	М	
	1		TAS #2 21/21+2	8	М	
			%26 TAS		D	
			%27 TAS		D	
			%28 TAS		D	
	1.1		%29 TAS		D	
			C28/C26 20S T/	AS		
		Amma	C28/C27 20R T/	AS		
	Marilan Mandan and the North Strate	·	Dia/Regular C2/	MAS		
m/z 224. Trio	romatia atoraida	405.0	%27 MAS		D	
111/2 231. That	Million Million	0465.D	%20 MAS		D	
			7029 WIAS	AC	M	10(13%)
			TAS/(MAS+TAS	10	M	1.0 (1.3%)
05			TA28/(TA28+MA	A29)	M	1.0 (0.8%)
			Triaromatic Mo	thuletoroide		
l diki n			Dinosteroid Inde	w	Α	
			C4/C3+C4 Mest	er	A	
L IMPANIANA	Vilaberra I will be				0.000	
MAN I Y M	I A MAAR MA A MININ MARKAN MARKAN		Phenanthrenes	, Naphthalenes, and Dibe	nzothiophen	ies
W	an alandinthandow	monumen	MPI-1		0.73 M	
			Rc(a) if Ro < 1.3	3 (Ro%)	0.81 M	
m/z 245 Triar	omatic Methylsteroids M1160	0465.D	Rc(b) if Ro > 1.3	3 (Ro%)	1.86 M	
			MPI-2		0.87 M	
			DNR-1		0.05 IVI	
			TNP1		2.31 IVI 1.21 M	
			TDE-1		243 M	
MILINA	N		TDE-2		0.19 M	
N Martala N.	Alle A		MDR		8.29 M	
A ALLAN AN	V Karman John M. M. un I		Rm (Ro%)		2.69 M	
	and a con my way a man band		MDR23		0.43 M	
	1 W WWW	whyphy	MDR1		0.10 M	
			DBT/Phenanthre	ene	0.12 D	

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well	pany: Name: h:	Colorado State University Colorado State University Samples 2819 00 -		Client ID: Project #:	523-3 BH-79915	26	
Sam	pling Point:	2010.00 -		File Name:	M1160465	5.D	
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
230	OTP	Ortho-terphenyl (internal standard)	34.302	140782	45345	300.0	300.0
128	NAPH	Naphthalene					
134	ISOR	Isorenieratane					
142	2MN	2-Methylnaphthalene	17.695	6859	2139	14.6	14.2
142	1MN	1-Methylnaphthalene	18.200	5499	1657	11.7	11.0
154	BP	Biphenyl	20.134	27197	9070	58.0	60.0
156	2EN	2-Ethylnaphthalene	20.744	4800	1504	10.2	10.0
156	1EN	1-Ethylnaphthalene	20.797	1641	680	3.5	4.5
156	26DMN	2,6-Dimethylnaphthalene	21.093	20558	6065	43.8	40.1
156	27DMN	2,7-Dimethylnaphthalene	21.145	15189	5736	32.4	37.9
156	1317DMN	1,3 & 1,7-Dimethylnaphthalenes	21.546	31306	10238	66.7	67.7
156	16DMN	1,6-Dimethylnaphthalene	21.650	24950	8267	53.2	54.7
156	2314DMN	2,3 & 1,4-Dimethylnaphthalenes	22.138	15485	3867	33.0	25.6
156	15DMN	1,5-Dimethylnaphthalene	22.208	5378	2406	11.5	15.9
156	12DMN	1,2-Dimethylnaphthalene	22.574	5333	1647	11.4	10.9
168	2MBP	2-Methylbiphenyl	20.797	5697	2004	12.1	13.3
168	DPM	Diphenylmethane	21.668	1576	521	3.4	3.4
168	3MBP	3-Methylbiphenyl	23.358	61546	19544	131.2	129.3
168	4MBP	4-Methylbiphenyl	23.637	34469	10760	73.5	71.2
168	DBF	Dibenzofuran	24.352	4504	1336	9.6	8.8
170	BB_EMN	Ethyl-methyl-Naphthalene	24.125	13403	3708	28.6	24.5
170	AB_EMN	Ethyl-methyl-Naphthalene	24.613	5181	1749	11.0	11.6
170	13/TMN	1,3,7-Trimethylnaphthalene	24.770	15639	4848	33.3	32.1
170	1361MN	1,3,6-Trimethyinaphthalene	24.927	21573	6968	46.0	46.1
170	1461351	(1,4,6+1,3,5)- I nmethylnaphthalenes	25.362	17229	4959	36.7	32.8
170	2361MN	2,3,6-Trimetnyinaphthalene	25.502	20815	6037	44.4	43.2
170	12/ IMIN	(1.6.7+1.2.6) Trimethylaephthelepes	20.810	10924	1242	42.2	21.9
170	10/1201	(1,6,7+1,2,6)- minethylnaphthalenes	20.000	19024	4609	42.2	31.0
170	12411010	1.2.5 Trimethylnaphthalene	20.321	2015	1627	4.5	4.1
170	DUEN	Depenthrene	20.000	4904	10600	120.6	10.0
178		Anthracene	31.030	1716	401	3.7	2.7
184	1357	1 3 5 7-Tetramethyloanhthalene	28 325	7407	1738	15.8	11.5
184	1367	1 3 6 7-Tetramethylnaphthalene	28.970	10937	3441	23.3	22.8
184	1247	(1 2 4 7+1 2 4 6+1 4 6 7). Tetramethylnanhthalenes	20.070	5192	1579	11 1	10.4
184	1257	1 2 5 7-Tetramethylnaphthalene	29.475	2316	701	4 9	4.6
184	2367	2 3 6 7-Tetramethylnaphthalene	29 702	3223	947	6.9	6.3
184	1267	1 2 6 7-Tetramethylnaphthalene	29.946	3052	935	6.5	6.2
184	1237	1.2.3.7-Tetramethylnaphthalene	30.050	1098	304	2.3	2.0
184	1236	1.2.3.6-Tetramethylnaphthalene	30.207	1761	434	3.8	2.9
184	1256	1.2.5.6-Tetramethylnaphthalene	30.625	2471	519	5.3	3.4
184	DBT	Dibenzothiophene	30,904	8123	2403	17.3	15.9
191	BH32	C32 Benzohopane					
191	BH33	C33 Benzohopane					
191	BH34	C34 Benzohopane					
191	BH35	C35 Benzohopane					
192	3MP	3-Methylphenanthrene	34.651	23856	7182	50.8	47.5
192	2MP	2-Methylphenanthrene	34.773	34444	10334	73.4	68.4
192	9MP	9-Methylphenanthrene	35.243	34643	10298	73.8	68.1
192	1MP	1-Methylphenanthrene	35.365	18869	5821	40.2	38.5

Con Well Dept	npany: Name: th:	Colorado State University Colorado State University Samples 2819.00 -		Client ID: Project #: Lab ID:	523-3 BH-79915 61218363	26	
Sam	pling Point:			File Name:	M116046	5.D	
	Peak	Compound	Ret	_	_	nnm	nnm
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
198	CAD	Cadalene	29.022	798	200	1.7	1.3
198	12467PMN	1,2,4,6,7-Pentamethylnaphthalene	33.135	1659	437	3.5	2.9
198	12357 PMN	1,2,3,5,7-PentamethyInaphthalene	33.344	626	181	1.3	1.2
198	4MDBT	4 Methyl Dibenzothiophene	33.605	6872	1969	14.6	13.0
198	12367 PMN	1,2,3,6,7-PentamethyInaphthalene	34.006	1123	246	2.4	1.6
198	23MDBT	2 & 3 Methyl Dibenzothiophenes	34.093	3522	1031	7.5	6.8
198	12356PMN	1,2,3,5,6-PentamethyInaphthalene	34.494	419	113	0.9	0.7
198	1MDBT	1 Methyl Dibenzothiophene	34.633	829	240	1.8	1.6
206	36DMP	3,6-Dimethylphenanthrene	37.417	6339	2165	13.5	14.3
206	26DMP	2,6-Dimethylphenanthrene	37.616	17730	5194	37.8	34.4
206	27DMP	2,7-Dimethylphenanthrene	37.688	12914	3728	27.5	24.7
206	39DMP	(3,9+3,10+2,10+1,3)-Dimethylphenanthrenes	38.032	59209	15647	126.2	103.5
206	29DMP	(2,9+1,6)-Dimethylphenanthrenes	38.195	31297	7238	66.7	47.9
206	17DMP	1,7-Dimethylphenanthrene	38.303	16873	4992	36.0	33.0
206	23DMP	2,3-Dimethylphenanthrene	38.484	10838	2981	23.1	19.7
206	19DMP	1,9-Dimethylphenanthrene	38.575	9762	2806	20.8	18.6
206	18DMP	1,8-Dimethylphenanthrene	38.882	4096	1126	8.7	7.5
206	12DMP	1,2-Dimethylphenanthrene	39.244	1653	485	3.5	3.2
219	RET	Retene	42.231	2505	438	5.3	2.9
231	231A20	C20 Triaromatic Steroid					
231	231B21	C21 Triaromatic					
231	231C26	C26 20S Triaromatic					
231	231D26	C27 20S & C26 20R Triaromatic					
231	231E28	C28 20S Triaromatic					
231	231F27	C27 20R Triaromatic					
231	C29TA1	C29 Triaromatic					
231	C29TA2	C29 Triaromatic					
231	231G28	C28 20R Triaromatic					
231	DINO	Triaromatic Dinosteroid					
231	TA OL	Triaromatic Oleanoid					
231	C29TA3	C29 Triaromatic					
245	C3S	C27 20S 3-Methyl Triaromatic Steroid					
245	C4S	C27 20S 4-Methyl Triaromatic Steroid					
245	E2S	C28 20S 2-Methyl Triaromatic Steroid					
245	E3SC3R	C28 20S 3-Methyl & C27 20R 3-Methyl TAS					
245	E4SC4R	C28 20S 4-Methyl & C27 20R 4-Methyl TAS					
245	S2S	C29 20S 2-Methyl Triaromatic Steroid					
245	DA	Triaromatic Dinosteroid a					
245	S3S	C29 20S 3-Methyl Triaromatic Steroid					
245	DB	Triaromatic Dinosteroid b					
245	S4SE2R	C29 20S 4-Methyl & C28 20R 2-Methyl TAS					
245	E3R	C28 20R 3-Methyl Triaromatic Steroid					
245	E4R	C28 20R 4-Methyl Triaromatic Steroid					
245	DC	Triaromatic Dinosteroid c					
245	DD	Triaromatic Dinosteroid d					
245	S2R	C29 20R 2-Methyl Triaromatic Steroid					
245	S3R	C29 20R 3-Methyl Triaromatic Steroid					
245	DE	Triaromatic Dinosteroid e					
245	S4R	C29 20R 4-Methyl Triaromatic Steroid					
245	DF	Triaromatic Dinosteroid f					

Com Well Dept	ipany: Name: th:	Colorado State University Colorado State University Samples 2819.00 -		Client ID: Project #: Lab ID:	523-3 BH-79915 612183632	6	
Sam	pling Point:			File Name:	M1160465	D	
	Peak	Compound	Ret			nnm	nnm
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
253	S253A	C21 Ring-C Monoaromatic Steroid					
253	S253B	C22 Monoaromatic steroid					
253	S253C	C27 Reg 5β(H),10β(CH3) 20S					
253	S253D	C27 Dia 10β(H),5β(CH3) 20S					
253	S253E	C27 Dia10βH,5βCH3 20R+Reg5βH,10βCH3 20R					
253	S253F	C27 Reg 5α(H),10β(CH3) 20S					
253	S253G	C28 Dia 10αH,5αCH3 20s+Reg5βH,10βCH3 20S					
253	S253H	C27 Reg 5α(H),10β(CH3) 20R					
253	S253I	C28 Reg 5α(H),10β(CH3) 20S					
253	S253J	C28 Dia 10αH,5αCH3 20R+Reg5βH,10βCH3 20R					
253	S253K	C29 Dia 106H,56CH3 20S+Reg56H,106CH3 20S					
253	S253L	C29 Reg 5α(H),10β(CH3) 20S					
253	S253M	C28 Reg 5α(H),10β(CH3) 20R					
253	S253N	С29 Dia 10рн,5рСН3 20R+Reg5рн,10рСН3 20R					
253	PERYLENE	Perylene					
253	S253O	C29 Reg 5α(H),10β(CH3) 20R					
342	OHTMP	C26 Octahydrotetramethylpicene - Oleanane isomer					
342	OHTMP_U	C26 Octahydrotetramethylpicene - Ursane isomer					_
342	OHTMP_L	C26 Octanydrotetrametnyipicene - Lupane isomer	55.054	245	101	0.7	0.7
365	SH29	C29 8,14-seconopanoids	55.351	315	104	0.7	0.7
365	SH30	C30 8,14-seconopanoids	56.781	2/4	70	0.6	0.5
							-
							-
							-
							-

Company: Well Name: Depth:	Colorado State University Colorado State University Samples 2819.00 -	Client ID: Project #: Lab ID:	523-3 BH-79915 6121836326
Sampling Point:		File Name:	M1160465.D
	Miscellaneous Ratios	By Areas	By Heights
	Triaromatic Steroids m/z 231		
	(C20+C21)/2 TAS		
	TAS #1 20/20+27		
	TAS #2 21/21+28		
	%26TAS		
	%27TAS		
	%28TAS		
	%29TAS		
	C28/C26 20S TAS		
	C28/C27 20R TAS		
	Monoaromatic Steroids m/z 253		
	Dia/Regular C27 MAS		
	%27 MAS		
	%28 MAS		
	%29 MAS		
	(C21+C22)/∑ MAS		
	TAS/(MAS+TAS)		
	TA28/(TA28+MA29)		
	1120(1120 111 20)		
	Triaromatic Methylsteroids m/z 245		
	Dinosteroid Index		
	C4/C3+C4 Mester		
	Phenanthrenes and Naphthalenes	0.70	
	MPI-1	0.73	0.74
		0.87	0.87
	Rc(a) if $Ro > 1.3$ (R0%)	0.81	0.81
	RC(D) II RO > 1.3 (RO%)	1.00	1.00
	DNR-1	6.65	4.90
	DNR-2	2.31	3.05
	TNR1	1.21	1.32
	TDE-1	2.43	2.64
	TDE-2	0.19	0.26
	MDR	8.29	8.20
	Rm (Ro%)	2.69	2.61
	MDR23	0.43	0.43
		0.10	0.10
	UB I/Prienanthrene	0.12	0.12
	New Ratios		
	PNR	0.80	0.79
	MDPNR	0.75	0.77
	Dinosteroid Index 2		

Parameter	Formula
Mono- (MAS) and Triaror	natic Steroids (TAS)
(C20+C21)/E TAS	(231A20+231B21)/(231A20+231B21+231C26+231D26+231E28+231E27+231G28+C29TA3)
TAS #1 20/20+27	(231A20)/(231A20+231F27)
TAS #2 21/21+28	(231B21)/(231B21+231G28)
%26 TAS	100*(231C26)/(231C26+231F27+231G28+C29TA3)
%27 TAS	100*(231F27)/(231C26+231F27+231G28+C29TA3)
%28 TAS	100*(231G28)/(231C26+231F27+231G28+C29TA3)
%29 TAS	100*(C29TA3)/(231C26+231F27+231G28+C29TA3)
C28/C26 20S TAS	(231E28)/(231C26)
C28/C27 20R TAS	(231G28)/(231F27)
Dia/Regular C27 MAS	(S253D)/(S253C)
%27 MAS	100*(S253C+S253D+S253E+S253F+S253H)/(S253C+S253D+S253E+S253F+S253G+S253H+S253I+ S253J+S253K+S253L+S253M+S253N+S253O)
%28 MAS	100*(S253G+S253I+S253J+S253M)/(S253C+S253D+S253E+S253F+S253G+S253H+S253I+S253J+ S253K+S253L+S253M+S253N+S253O)
%29 MAS	100*(S253K+S253L+S253N+S253O)/(S253C+S253D+S253E+S253F+S253G+S253H+S253I+S253J+ S253K+S253L+S253M+S253N+S253O)
(C21+C22)/2 MAS	(S253A+S253B)/(S253A+S253B+S253C+S253D+S253E+S253F+S253G+S253H+S253I+S253J+S253K+ S253L+S253M+S253N+S253O)
TAS/(MAS+TAS)	(231A20+231B21+231C26+231D26+231E28+231F27+231G28+C29TA3)/((231A20+231B21+231C26+ 231D26+231E28+231F27+231G28+C29TA3)+(S253A+S253B+S253C+S253D+S253E+S253F+S253G+ S253H+S2531+S2531+S253K+S2531+S253M+S253N+S253O))
TA28/(TA28+MA29)	(231E28+231G28)/(231E28+231G28+S253K+S253L+S253N+S253O)
Triaromatic Methylsteroi	ds
Dinosteroid Index	(DA+DB+DC+DD+DE+DF)/(C3S+C4S+E2S+E3SC3R+E4SC4R+S2S+DA+S3S+DB+S4SE2R+E3R+E4R+DC+ DD+S2R+S3R+DE+S4R+DF)
C4/C3+C4 Mester	(C4S+E4R+S4R)/(C3S+C4S+E3R+E4R+S3R+S4R)
Phenanthrenes, Naphtha	lenes, and Dibenzothiophenes
MPI-1	(1.5*(3MP+2MP))/(PHEN+9MP+1MP)
Rc(a) if Ro < 1.3 (Ro%)	(((.6)*(1.5*(2MP+3MP))/(PHEN+9MP+1MP))+.37)
Rc(b) if Ro > 1.3 (Ro%)	(((6)*(1.5*(2MP+3MP))/(PHEN+9MP+1MP))+2.3)
MPI-2	(3*(2MP))/(PHEN+9MP+1MP)
DNR-1	(26DMN+27DMN)/(15DMN)
DNR-2	(26DMN+27DMN)/(2314DMN)
TNR1	(236TMN)/(146135T)
TDE-1	(125TMN)/(124TMN)
TDE-2	(127TMN)/(167126T)
MDR	(4MDBT)/(1MDBT)
Rm (Ro%)	(0.40+0.30*(4MDBT/1MDBT)-0.094*(4MDBT/1MDBT)*(4MDBT/1MDBT)+ 0.011*(4MDBT/1MDBT)*(4MDBT/1MDBT)*(4MDBT/1MDBT))
MDR23	(23MDBT)/(DBT)
MDR1	(1MDBT)/(DBT)
DBT/Phenanthrene	(DBT)/(PHEN)
New Ratios	
PNR	(12467PMN)/(12467PMN+12356PMN)
MDPNR	(4+23+1MDBT)/(4+23+1MDBT+12467+12357+12367+12356PMN)
Dinosteroid Index 2	(DINO)/(DINO+231G28)

Parameter	Formula
Mono- (MAS) and Triaror	natic Steroids (TAS)
(C20+C21)/E TAS	(231A20+231B21)/(231A20+231B21+231C26+231D26+231E28+231E27+231G28+C29TA3)
TAS #1 20/20+27	(231A20)/(231A20+231F27)
TAS #2 21/21+28	(231B21)/(231B21+231G28)
%26 TAS	100*(231C26)/(231C26+231F27+231G28+C29TA3)
%27 TAS	100*(231F27)/(231C26+231F27+231G28+C29TA3)
%28 TAS	100*(231G28)/(231C26+231F27+231G28+C29TA3)
%29 TAS	100*(C29TA3)/(231C26+231F27+231G28+C29TA3)
C28/C26 20S TAS	(231E28)/(231C26)
C28/C27 20R TAS	(231G28)/(231F27)
Dia/Regular C27 MAS	(S253D)/(S253C)
%27 MAS	100*(S253C+S253D+S253E+S253F+S253H)/(S253C+S253D+S253E+S253F+S253G+S253H+S253I+ S253J+S253K+S253L+S253M+S253N+S253O)
%28 MAS	100*(S253G+S253I+S253J+S253M)/(S253C+S253D+S253E+S253F+S253G+S253H+S253I+S253J+ S253K+S253L+S253M+S253N+S253O)
%29 MAS	100*(S253K+S253L+S253N+S253O)/(S253C+S253D+S253E+S253F+S253G+S253H+S253I+S253J+ S253K+S253L+S253M+S253N+S253O)
(C21+C22)/2 MAS	(S253A+S253B)/(S253A+S253B+S253C+S253D+S253E+S253F+S253G+S253H+S253I+S253J+S253K+ S253L+S253M+S253N+S253O)
TAS/(MAS+TAS)	(231A20+231B21+231C26+231D26+231E28+231F27+231G28+C29TA3)/((231A20+231B21+231C26+ 231D26+231E28+231F27+231G28+C29TA3)+(S253A+S253B+S253C+S253D+S253E+S253F+S253G+ S253H+S2531+S2531+S253K+S2531+S253M+S253N+S253O))
TA28/(TA28+MA29)	(231E28+231G28)/(231E28+231G28+S253K+S253L+S253N+S253O)
Triaromatic Methylsteroi	ds
Dinosteroid Index	(DA+DB+DC+DD+DE+DF)/(C3S+C4S+E2S+E3SC3R+E4SC4R+S2S+DA+S3S+DB+S4SE2R+E3R+E4R+DC+ DD+S2R+S3R+DE+S4R+DF)
C4/C3+C4 Mester	(C4S+E4R+S4R)/(C3S+C4S+E3R+E4R+S3R+S4R)
Phenanthrenes, Naphtha	lenes, and Dibenzothiophenes
MPI-1	(1.5*(3MP+2MP))/(PHEN+9MP+1MP)
Rc(a) if Ro < 1.3 (Ro%)	(((.6)*(1.5*(2MP+3MP))/(PHEN+9MP+1MP))+.37)
Rc(b) if Ro > 1.3 (Ro%)	(((6)*(1.5*(2MP+3MP))/(PHEN+9MP+1MP))+2.3)
MPI-2	(3*(2MP))/(PHEN+9MP+1MP)
DNR-1	(26DMN+27DMN)/(15DMN)
DNR-2	(26DMN+27DMN)/(2314DMN)
TNR1	(236TMN)/(146135T)
TDE-1	(125TMN)/(124TMN)
TDE-2	(127TMN)/(167126T)
MDR	(4MDBT)/(1MDBT)
Rm (Ro%)	(0.40+0.30*(4MDBT/1MDBT)-0.094*(4MDBT/1MDBT)*(4MDBT/1MDBT)+ 0.011*(4MDBT/1MDBT)*(4MDBT/1MDBT)*(4MDBT/1MDBT))
MDR23	(23MDBT)/(DBT)
MDR1	(1MDBT)/(DBT)
DBT/Phenanthrene	(DBT)/(PHEN)
New Ratios	
PNR	(12467PMN)/(12467PMN+12356PMN)
MDPNR	(4+23+1MDBT)/(4+23+1MDBT+12467+12357+12367+12356PMN)
Dinosteroid Index 2	(DINO)/(DINO+231G28)

Appendix F3: Saturate Gas Chromatography-Mass Spectroscopy Data Definitions on page 413.

SATURATE GCMS

VYGALIIGI IUI U LABORATORIES			3	ATON		901013
Company: Colorado State University Country: Basin: Lease: Block: Field:	Clier Proje Lab Sam Sam	nt ID: ect #: ID: ple Type: pling Point: nation:	WPB1-1 BH-79915 6121836392 Core			
Well Name: Colorado State University Samples	Geo	logic Age:				
Latitude:	Тор	Depth:	518.10			
Preparation:	GCN	om Deptn: IS Method:	M60A			
			1			1
m/z 191: Tri- and Pentacyclics M2160403	Ð.D	RATIOS (on Steranes (m/z 2	Areas)'		Appl*	TEV
		%C ₂₇ α86S (218)	35.8	D	
		%C a gBBS (218)	28.8	D	
		%C ₂₈ αββS (218)	35.4	D	
		%C aga P (217))	23.1	D	
		%C aga P (217) \\	12.8	D	
		%C aga P (217)))	34.1	D	
T		S/(S+B) (C am	/ ~) (217)	0.37	M	0.55 (0.8%)
		BBS//BBStard	(C29) (217)	0.37	M	0.33 (0.0%)
		pp5/(pp5+0.0.K)	(029)(217)	0.41	IVI	0.70 (0.5%)
		$C_{21}C_{22}/C_{22}/(C_{27}+C_{22})$	28+029) (217) 218)	1.01	D	
tentententet at her mander hand and a surder and a later the the the test of the state of the second s		Cos/Cos (aBBS) (218)	0.81	D	
m/z 217: Storanos		Diaster/www.Star	(C) (217)	1 22	MD	1 00 /1 494)
M2160403		Diaster/aaa Ster	(C ₂₇) (217)	1.52	NI/D	1.00 (1.4%)
		C30 CppS Stera	a laday (218)	6.44	D	
		Terpapes (m/r	1 01)	0.44	U	
1		Oleanane/Honor		_	D/A	
		Commonorono/	lenane	0.04	D	
		Norhonane/Hone	lopane	1.44	D	
		Risport opene /U		1.44	U	
		Dishenene/Hene	opane		MO	
I I I I I I I I I I I I I I I I I I I		Maratana (Hanan	ine	0.44	M	0.05 (0.794)
a sector water and a sector of the sector of	4	25 por hopene/h		0.41	D	0.05 (0.7%)
Malorena Malan Malera, il M. M. a	hastal	Tel/Te+Tm) trien	orbonanes	0.09	M/D	1 00 /1 496)
	. Hole.	C29Ts/C29 Hop	ane	0.03	M	1.00 (1.470)
m/z 218: 88 Storanes		U22 C// P+C) U2	mohonenes	0.50	M	0.60 (0.6%)
		H35/H34 Homoh	lopanes	0.55	D	0.00 (0.070)
		C24 Tetramolia	Honono	0.00	D	
		C24 Tetracyclic/	C26 Tricyclice	2.13	D	
		C23/C24 Triousli	c temanes	1.94	D	
		C19/C23 Trieveli	c ternanes	0.74	D	
		C26/C25 Trioveli	c ternanes	1.01	D	
		(C28+C29 Triour	lics)/Ts	1.66	4	
	1	Various (m/z 1	91: 217)	1.00	A	
		Steranes/Hopan	es	0.13	D	
I I I A AND A AND A AND A A AND A A AN ALL IN ALL .		Tricyclic ternane	s/Hopanes	0.29	M	1.00 (1.4%)
therefore where a rest of the state of a second of the second	1 Willy	Tricyclic terpane	s/Steranes	2.16	M/D	1.00 (1.4%)
ų				2.10		

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity; B=Possible Biodegradation

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well Dept	pany: Name: th: pling Point:	Colorado State University Colorado State University Samples 518.10 -	C P L	Client ID: Project #: .ab ID: Sile Name:	WPB1-1 BH-79915 61218363 M2160409	; 92 9 D	
0	philig i sint			ile mariler	IVIA I COTO	7.67	
	Peak	Compound	Ret.			ppm	ppm
Ion	Label	Name	Time	Area	Height	(Area)	(Hght)
217	CHOL	5 β cholane (internal standard)	42.229	30420	5040	100.0	100.0
123	LABD	labdane					
123	RIMU	rimuane					
123	PIM	pimarane					
123	ENTBEY	ent-beyerane					
123	ISOPIM	isopimarane					
123	B_PHYLLO	β-phyllocladane					
123	B_KAUR	β-kaurane					
123	A_PHYLLO	α-phyllocladane					
125	BCAROT	β-carotane					
187	4MDIAM	4-methyldiamantane	9.204	2055	766	6.8	15.2
187	1 MDIAM	1-methyldiamantane	9.814	1195	439	3.9	8.7
187	3MDIAM	3-methyldiamantane	10.198	976	318	3.2	6.3
188	DIAM	diamantane	9.047	1133	374	3.7	7.4
191	TR19	C19 tricyclic terpane	18.824	8475	1894	27.9	37.6
191	TR20	C20 tricyclic terpane	21.664	13787	2724	45.3	54.0
191	TR21	C21 tricyclic terpane	25.010	11995	2126	39.4	42.2
191	TR22	C22 tricyclic terpane	28.409	2797	434	9.2	8.6
191	TR23	C23 tricyclic terpane	32.657	11438	1941	37.6	38.5
191	TR24	C24 tricyclic terpane	35.081	6229	1044	20.5	20.7
191	DESAOL	des-A-oleanane					
191	DESALU	des-A-lupane					
191	TR25A	C25 tricyclic terpane (a)	40.154	1770	376	5.8	7.5
191	TR25B	C25 tricyclic terpane (b)	40.276	2552	354	8.4	7.0
191	DESEHOP	des-E-hopane	43.415	11132	1734	36.6	34.4
191	TR26A	C26 tricyclic terpane (a)	44.042	2450	362	8.1	7.2
191	TR26B	C26 tricyclic terpane (b)	44.356	1934	312	6.4	6.2
191	TR28A	C28 tricyclic terpane (a)	52.952	1521	222	5.0	4.4
191	TR28B	C28 tricyclic terpane (b)	53.579	2294	314	7.5	6.2
191	TR29A	C29 tricyclic terpane (a)	55.532	1120	160	3.7	3.2
191	TR29B	C29 tricyclic terpane (b)	56.282	1027	172	3.4	3.4
191	TR30A	C30 tricyclic terpane (a)	60.588	2165	272	7.1	5.4
191	TR30B	C30 tricyclic terpane (b)	61.303	2358	303	7.8	6.0
191	TS	Ts 18α(H)-trisnorhopane	57.677	3594	516	11.8	10.2
191	тм	Tm 17α(H)-trisnorhopane	59.333	35762	5949	117.6	118.0
191	H28	C28 17α18α21β(H)-bisn orhopane					
191	NOR25H	C29 Nor-25-hopane					
191	H29	C29 Tm 17α(H)21β(H)-norhopane	65.121	83099	12780	273.2	253.6
191	C29TS	C29 Ts 18α(H)-norneohopane	65.348	2728	384	9.0	7.6
191	DH30	C30 17a(H)-diahopane					
191	M29	C29 normoretane	67.109	13570	2035	44.6	40.4
191	OL	oleanane					
191	H30	C30 17a(H)-hopane	68.591	57598	8527	189.3	169.2
191	M30	C30 moretane	70.160	23766	3446	78.1	68.4

Com Well Depti	pany: Name: h:	Colorado State University Colorado State University Samples 518.10 -		Client ID: Project #: Lab ID:	WPB1-1 BH-79915 612183639	2	
Sam	oling Point:			File Name:	M2160409.	D	
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Habt)
191	H31S	C31 22S 17a(H) hopane	72.653	25466	3856	83.7	76.5
191	H31R	C31 22R 17a(H) hopane	73,141	18682	2655	61.4	52.7
191	GAM	gammacerane	73.612	2063	262	6.8	5.2
191	H32S	C32 22S 17α(H) hopane	75.896	10369	1465	34.1	29.1
191	H32R	C32 22R 17a(H) hopane	76.576	7208	1052	23.7	20.9
191	H33S	C33 22S 17α(H) hopane	79.627	4380	616	14.4	12.2
191	H33R	C33 22R 17a(H) hopane	80.569	3100	426	10.2	8.5
191	H34S	C34 22S 17a(H) hopane	83.480	2136	294	7.0	5.8
191	H34R	C34 22R 17a(H) hopane	84.614	1091	157	3.6	3.1
191	H35S	C35 22S 17a(H) hopane	87.229	1147	172	3.8	3.4
191	H35R	C35 22R 17a(H) hopane	88.502	980	161	3.2	3.2
205	H31_2ME	C31- 2a-methylhopane	68.957	639	101	2.1	2.0
205	H31S_205	C31 22S 17α(H) hopane	72.653	8120	1174	26.7	23.3
205	H31R_205	C31 22R 17a(H) hopane	73.141	5978	870	19.7	17.3
205	H31_3ME	C31 3β-methylhopane					
217	S21	C21 sterane	28.984	4663	605	15.3	12.0
217	S22	C22 sterane	33.721	2103	319	6.9	6.3
217	DIA27S	C27 βα 20S diasterane	48.419	2416	350	7.9	6.9
217	DIA27R	C27 βα 20R diasterane	49.970	1617	278	5.3	5.5
217	DIA28SA	C28 βα 20S diasterane a	52.237	1251	142	4.1	2.8
217	DIA28SB	C28 βα 20S diasterane b	52.498	1353	161	4.4	3.2
217	DIA28RA	C28 βα 20R diasterane a	53.945	691	119	2.3	2.4
217	DIA28RB	C28 βα 20R diasterane b	54.137	821	96	2.7	1.9
217	C27S	C27 aa 20S sterane	55.131	1418	173	4.7	3.4
217	BB_D29S	C27 ββ 20R + C29 dia20S	55.689	2880	233	9.5	4.6
217	C27BBS	C27 ββ 20S sterane	56.020	2459	2/2	8.1	5.4
217	C2/R	C27 aa 20R sterane	56.944	1626	210	5.3	4.2
217	DIA29R	C29 pa 20R diasterane	57.502	2380	233	1.0	4.0
217	C283	C28 & 208 sterane	09.333	1500	169	4.9	3.4
217	CZOBBR	C28 pp 20R sterane	59.673	1630	100	3.4	3.5
217	C20BB3	C20 pp 203 sterane	61 300	3011	206	4.5	3.0
217	C298	C20 aa 20K sterane	62 785	1427	139	9.9	4.1
217	C29888	C29 88 208 sterane(+5 8gg)	63 570	2219	190	7.3	3.8
217	C29BBS	C29 BB 20S sterane	63 901	1674	179	5.5	3.6
217	C298	C29 gg 200 sterane	65 313	2397	301	7.9	6.0
218	C27ABBR	C27 BB 20R sterane	55.619	2378	269	7.8	5.3
218	C27ABBS	C27 BB 20S sterane	56.055	2046	283	6.7	5.6
218	C28ABBR	C28 BB 20R sterane	59.961	1592	188	5.2	3.7
218	C28ABBS	C28 BB 20S sterane	60.362	1642	211	5.4	4.2
218	C29ABBR	C29 BB 20R sterane	63.570	2167	281	7.1	5.6
218	C29ABBS	C29 BB 20S sterane	63.883	2020	263	6.6	5.2
218	C30ABBR	C30 BB 20R sterane	66.621	391	54	1.3	1.1
218	C30ABBS	C30 ββ 20S sterane	66.847	424	52	1.4	1.0

Corr Well Dept Sam	npany: Name: th: pling Point	Colorado State University Colorado State University Samples 518.10 - ::		Client ID: Project #: Lab ID: File Name:	WPB1-1 BH-79915 612183639 M2160409.	2 D	
_							
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Habt)
259	D27S	C27 Ba 20S diasterane	48,401	1458	202	4.8	4.0
259	D27R	C27 βα 20R diasterane	49.970	991	154	3.3	3.1
259	D28SA	C28 βα 20S diasterane a	52.202	507	73	1.7	1.4
259	D28SB	C28 βα 20S diasterane b	52.498	536	104	1.8	2.1
259	D28RA	C28 βα 20R diasterane a	53.928	348	62	1.1	1.2
259	D28RB	C28 βα 20R diasterane b	54.120	249	49	0.8	1.0
259	D29S	C29 βα 20S diasterane	55.776	1032	97	3.4	1.9
259	D29R	C29 βα 20R diasterane	57.502	697	75	2.3	1.5
259	C30TP1	C30 tetracyclic polyprenoid	67.091	434	86	1.4	1.7
259	C30TP2	C30 tetracyclic polyprenoid	67.248	339	57	1.1	1.1
1							

Company: Well Name: Depth: Sampling Point:	Colorado State University Colorado State University Samples 518.10 -	Client ID: Project #: Lab ID: File Name:	WPB1-1 BH-79915 6121836392 M2160409.D
	Miscellaneous Ratios	By Areas	By Heights
	Steroids		
	%C27 αββS (218)	35.8	37.4
	%C28 αββS (218)	28.8	27.9
	%C29 αββS (218)	35.4	34.7
	C30 αββS Sterane Index (218)	6.9	6.4
	C30 S+R Sterane Index (218)	6.4	6.6
	C ₂₇ /C ₂₉ (αββS) (218)	1.01	1.08
	C ₂₉ /C ₂₉ (αββS) (218)	0.81	0.80
	$C_{28}/C_{27} (\alpha\beta\beta S) (218)$	0.99	0.93
	%C27 αααR (217)	23.1	29.3
	%C28 αααR (217)	42.8	28.7
	%C29 αααR (217)	34.1	42.0
	S/R (C ₂₉ aaa) (217)	0.60	0.46
	S/(S+R) (C ₂₉ aaa) (217)	0.37	0.32
	ββ/(αα+ββ) (C ₂₈) (217)	0.50	0.46
	αββS/αααR (C ₂₉) (217)	0.70	0.59
	$(C_{21}+C_{22})/(C_{27}+C_{28}+C_{29})$ (217)	0.20	0.24
	Diaster/aaa Ster (C ₂₇) (217)	1.32	1.64
	Terpenoids		
	C19/C23 Tricyclic terpanes	0.74	0.98
	C23/C24 Tricyclic terpanes	1.84	1.86
	C26/C25 Tricyclic terpanes	1.01	0.92
	C24 Tetracyclic/C26 Tricyclics	2.54	2.57
	C24 Tetracyclic/Hopane	0.19	0.20
	Ts/Tm trisnorhopanes	0.10	0.09
	Ts/(Ts+Tm) trisnorhopanes	0.09	0.08
	C29Ts/C29 Hopane	0.03	0.03
	Bisnorhopane/Hopane		
	Norhopane/Hopane	1.44	1.50
	Diahopane/Hopane		
	Oleanane/Hopane		
	Gammacerane/Hopane	0.04	0.03
	Moretane/(Moretane+Hopane)	0.29	0.29
	H32 S/(STR) Homohopanes	0.59	0.56
	H35/H34 Homonopanes	0.00	0.74
	[Steranes]/[Hopanes]	0.13	0.10
	[Tricyclic terpanes]/[Hopanes]	0.29	0.33
	[Tricyclic terpanes]/[Steranes]	2.16	3.43

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity; B=Possible Biodegradation

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Company: Well Name: Depth: Sompling Boint:		Colorado State University Nonesuch Formation Core Samples 461.50 -		Client ID: Project #: Lab ID:	WPB1-3 BH-79239 61218062	86	
Sam	pling Point:			File Name:	M5160278	3.D	
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Haht)
217	CHOL	5 β cholane (internal standard)	42.182	18655	3221	100.0	100.0
123	LABD	labdane					
123	RIMU	rimuane					
123	PIM	pimarane					
123	ENTBEY	ent-beyerane					
123	ISOPIM	isopimarane					
123	B_PHYLLO	β-phyllocladane					
123	B_KAUR	β-kaurane					
123	A_PHYLLO	α-phyllocladane					
125	BCAROT	β-carotane					
187	4MDIAM	4-methyldiamantane	9.250	1108	514	5.9	16.0
187	1MDIAM	1-methyldiamantane	9.863	398	163	2.1	5.1
187	3MDIAM	3-methyldiamantane	10.239	267	99	1.4	3.1
188	DIAM	diamantane	9.099	343	153	1.8	4.8
191	TR19	C19 tricyclic terpane	18.833	2044	519	11.0	16.1
191	TR20	C20 tricyclic terpane	21.661	8578	1658	46.0	51.5
191	TR21	C21 tricyclic terpane	24.995	4931	1039	26.4	32.3
191	1R22	C22 tricyclic terpane	28.373	1167	218	6.3	6.8
191	TR23	C23 tricyclic terpane	32.626	6015	1100	32.2	30.9
191	TR24	des A despanse	30.028	3144	614	16.9	19.1
101	DESAUL	des A lupane					1
191	TP25A	C25 triouclic tempere (a)	40 103	1249	214	67	6.6
191	TR25R	C25 tricyclic terpane (b)	40.103	1054	198	5.7	6.1
101	DESEUOD	des-E-honane	40.221	3184	572	17.1	17.8
191	TR264	C26 tricyclic temane (a)	43.982	986	195	53	6.1
191	TR26R	C26 tricyclic terpane (b)	44 283	970	177	5.2	5.5
191	TR28A	C28 tricyclic terpane (a)	52 892	826	150	4.4	4.7
191	TR28B	C28 tricyclic terpane (b)	53,506	962	156	5.2	4.8
191	TR29A	C29 tricyclic terpane (a)	55.457	751	154	4.0	4.8
191	TR29B	C29 tricyclic terpane (b)	56,189	885	138	4.7	4.3
191	TR30A	C30 tricyclic terpane (a)	60.381	651	107	3.5	3.3
191	TR30B	C30 tricyclic terpane (b)	61.210	823	138	4.4	4.3
191	TS	Ts 18α(H)-trisnorhopane	57.655	1539	259	8.3	8.0
191	тм	Tm 17α(H)-trisnorhopane	59.314	7240	1203	38.8	37.3
191	H28	C28 17α18α21β(H)-bisnorhopane	63.268	485	62	2.6	1.9
191	NOR25H	C29 Nor-25-hopane	63.904	555	93	3.0	2.9
191	H29	C29 Tm 17α(H)21β(H)-norhopane	65.057	15574	2449	83.5	76.0
191	C29TS	C29 Ts 18α(H)-norneohopane	65.315	1393	187	7.5	5.8
191	DH30	C30 17a(H)-diahopane	66.059	519	82	2.8	2.5
191	M29	C29 normoretane	67.061	2746	400	14.7	12.4
191	OL	oleanane					
191	H30	C30 17a(H)-hopane	68.515	13890	2083	74.5	64.7
191	M30	C30 moretane	70.099	4917	732	26.4	22.7

Com Well	pany: Name:	Colorado State University Nonesuch Formation Core Samples		Client ID: Project #:	WPB1-3 BH-79239		
Sam	n. pling Point:	461.50 -		File Name:	M5160278	.D	
_							
lon	Peak Label	Compound Nam e	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
191	H31S	C31 22S 17a(H) hopane	72.588	4085	624	21.9	19.4
191	H31R	C31 22R 17a(H) hopane	73.084	3311	488	17.7	15.2
191	GAM	gammacerane	73.525	862	145	4.6	4.5
191	H32S	C32 22S 17α(H) hopane	75.788	2034	302	10.9	9.4
191	H32R	C32 22R 17a(H) hopane	76.478	1398	227	7.5	7.0
191	H33S	C33 22S 17α(H) hopane	79.527	883	152	4.7	4.7
191	H33R	C33 22R 17α(H) hopane	80.453	731	114	3.9	3.5
191	H34S	C34 22S 17α(H) hopane	83.362	615	102	3.3	3.2
191	H34R	C34 22R 17a(H) hopane	84.494	601	78	3.2	2.4
191	H35S	C35 22S 17a(H) hopane	87.090	625	93	3.4	2.9
191	H35R	C35 22R 17a(H) hopane	88.373	407	72	2.2	2.2
205	H31_2ME	C31- 2a-methylhopane	68.849	230	40	1.2	1.2
205	H31S_205	C31 22S 17a(H) hopane	72.577	1300	186	7.0	5.8
205	H31R_205	C31 22R 17α(H) hopane	73.084	978	152	5.2	4.7
205	H31_3ME	C31 3β-methylhopane					
21/	821	C21 sterane	28.964	1686	294	9.0	9.1
217	S22	C22 sterane	33.703	/62	138	4.1	4.3
217	DIA27S	C27 βα 208 diasterane	48.355	1213	189	6.5	5.9
217	DIA2/R	C27 pa 20k diasterane	49.908	157	74	4.1	3.7
217	DIA203A	C28 Par 205 diasterane b	52.100	4/6	74	2.0	2.3
217	DIA203B	C28 Par 20B diasterane a	52 972	335	70	1.7	1.7
217	DIA28RR	C28 Ba 20R diasterane b	54.024	317	48	1.7	1.7
217	C275	C27 gg 20S sterape	55.090	793	119	4.3	3.7
217	BB D295	C27 88 20R + C29 dia 20S	55 607	1636	148	8.8	4.6
217	C27BBS	C27 BB 20S sterane	55.985	1013	129	5.4	4.0
217	C27R	C27 gg 20R sterane	56.868	988	163	5.3	5.1
217	DIA29R	C29 Ba 20R diasterane	57.482	1075	125	5.8	3.9
217	C28S	C28 aa 20S sterane	59.152	314	49	1.7	1.5
217	C28BBR	C28 66 20R sterane(+5 6aa)	59.885	696	75	3.7	2.3
217	C28BBS	C28 BB 20S sterane	60.294	689	95	3.7	2.9
217	C28R	C28 aa 20R sterane	61.447	1003	102	5.4	3.2
217	C29S	C29 aa 20S sterane	62.697	606	82	3.2	2.5
217	C29BBR	C29 ββ 20R sterane(+5 βαα)	63.494	1203	137	6.4	4.3
217	C29BBS	C29 ββ 20S sterane	63.796	811	118	4.3	3.7
217	C29R	C29 aa 20R sterane	65.229	1473	191	7.9	5.9
218	C27ABBR	C27 ββ 20R sterane	55.564	1329	194	7.1	6.0
218	C27ABBS	C27 ββ 20S sterane	55.985	1155	177	6.2	5.5
218	C28ABBR	C28 ββ 20R sterane	59.885	814	106	4.4	3.3
218	C28ABBS	C28 ββ 20S sterane	60.305	943	130	5.1	4.0
218	C29ABBR	C29 ββ 20R sterane	63.494	1518	202	8.1	6.3
218	C29ABBS	C29 ββ 20S sterane	63.807	1294	192	6.9	6.0
218	C30ABBR	C30 ββ 20R sterane	66.500	201	31	1.1	1.0
218	C30ABBS	C30 ββ 20S sterane	66.737	229	36	1.2	1.1

Com Well Dept	pany: Name: h:	Colorado State University Nonesuch Formation Core Samples 461.50 -		Client ID: Project #: Lab ID: File Name:	WPB1-3 BH-79239 612180628 ME160278	6	
Sam	ping Point			File Name.	100278.		
Ion	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
259	D27S	C27 βα 20S diasterane	48.356	662	110	3.5	3.4
259	D27R	C27 βα 20R diasterane	49.919	449	71	2.4	2.2
259	D28SA	C28 βα 20S diasterane a	52.170	293	41	1.6	1.3
259	D28SB	C28 βα 20S diasterane b	52.429	331	48	1.8	1.5
259	D28RA	C28 βα 20R diasterane a	53.840	270	37	1.4	1.1
259	D28RB	C28 βα 20R diasterane b	54.034	219	44	1.2	1.4
259	D29S	C29 βα 20S diasterane	55.661	835	71	4.5	2.2
259	D29R	C29 βα 20R diasterane	57.471	447	48	2.4	1.5
259	C30TP1	C30 tetracyclic polyprenoid	67.007	286	44	1.5	1.4
259	C30TP2	C30 tetracyclic polyprenoid	67.158	261	49	1.4	1.5

Company: Well Name: Depth: Sampling Point:	Colorado State University Nonesuch Formation Core Samples 461.50 -	Client ID: Project #: Lab ID: File Name:	WPB1-3 BH-79239 6121806286 M5160278.D
	Miscellaneous Ratios	By Areas	By Heights
	Steroids		
	%C27 αββS (218)	34.1	35.5
	%C28 αββS (218)	27.8	26.1
	%C29 αββS (218)	38.1	38.5
	C30 αββS Sterane Index (218)	6.3	6.7
	C30 S+R Sterane Index (218)	5.7	6.3
	C ₂₇ /C ₂₉ (αββS) (218)	0.89	0.92
	C ₂₉ /C ₂₉ (αββS) (218)	0.73	0.68
	C ₂₈ /C ₂₇ (αββS) (218)	1.12	1.08
	%C27 aaaR (217)	28.5	35.7
	%C28 αααR (217)	29.0	22.4
	%C29 aaaR (217)	42.5	41.9
	S/R (C ₂₈ α.αα) (217)	0.41	0.43
	S/(S+R) (C29 aaa) (217)	0.29	0.30
	ββ/(αα+ββ) (C ₂₉) (217)	0.49	0.48
	αββS/αααR (C ₂₉) (217)	0.55	0.62
	(C ₂₁ +C ₂₂)/(C ₂₇ +C ₂₈ +C ₂₉) (217)	0.15	0.21
	Diaster/aaa Ster (C27) (217)	1.11	1.09
	Terpenoids		
	C19/C23 Tricyclic terpanes	0.34	0.45
	C23/C24 Tricyclic terpanes	1.91	1.88
	C26/C25 Tricyclic terpanes	0.85	0.90
	C24 Tetracyclic/C26 Tricyclics	1.63	1.54
	C24 Tetracyclic/Honane	0.23	0.27
		0.20	0.27
	Ts/Tm trisnorhopanes	0.21	0.22
	Ts/(Ts+Tm) trisnorhopanes	0.18	0.18
	C29Ts/C29 Hopane	0.09	0.08
	Bisportionane/Honane	0.03	0.03
	Norhopane/Hopane	1.12	1.18
	Diahopane/Hopane	0.04	0.04
	Oleanane/Hopane		
	Gammacerane/Hopane	0.06	0.07
	Moretane/(Moretane+Hopane)	0.26	0.26
	H32 S/(S+R) Homohopanes	0.59	0.57
	H35/H34 Homohopanes	0.85	0.92
	[Steranes]/[Honanes]	0.20	0.24
	[Tricyclic terpanes]	0.63	0.24
	[Tricyclic terpanes]/[Steranes]	2.20	3.26

Weatherford [®]				SATUR	ATE	GCMS
Company: Colorado State University Country: Basin: Lease: Slock: Sield: State University Samples Colorado State University Samples		nt ID: ect #: ID: ple Type: pling Point: nation: logic Age: Denth:	BIR-13 BH-79915 612184450 Outcrop	9		
Longitude:	Bott	om Depth:				
Preparation:	GCI	IS Method:	M60A			
m/z 191: Tri- and Pentacyclics M216041	0.D	RATIOS (on Steranes (m/z 2	Areas) ¹ (17; 218)	į.	Appl	TEV3
		%C ₂₇ αββS (218)	44.3	D	
E CONTRACTOR OF CONTRACTOR OFO		%C28 αββS (218)	30.1	D	
		%C29 αββS (218)	25.6	D	
		%C ₂₇ αααR (217)	36.2	D	
		%C ₂₈ αααR (217	")	32.0	D	
		%C ₂₉ αααR (217)	31.8	D	
		S/(S+R) (C29 aaa	a) (217)	0.25	М	0.55 (0.8%)
		ββS/(ββS+ααR)	(C29) (217)	0.26	М	0.70 (0.9%)
		(C ₂₁ +C ₂₂)/(C ₂₇ +C	C ₂₈ +C ₂₉) (217)	0.69		
and a second of the second of		$C_{27}/C_{28} (\alpha \beta \beta S) (2)$	218)	1.73	D	
m/z 217: Storonos	0.0	C28/C29 (upp5) ((0) (017)	1.10	MD	1.00/1.40/1
Miz ZIT. Steralies	0.0	C30 aBBS Stera	(C ₂₇) (217)	1.70	D	1.00 (1.4%)
		C30 S+R Steran	e Index (218)	0.00	D	
		Terpanes (m/z 1	191)	0.00	U	9
		Oleanane/Hopan	e	0.12	D/A	
		Gammacerane/H	lopane	0.09	D	
		Norhopane/Hopa	ine	0.98	D	
		Bisnorhopane/Ho	opane	0.20		
		Diahopane/Hopa	ne	0.05	M/D	
		Moretane/Hopan	e	0.17	М	0.05 (0.7%)
Industry Man Tool MAN A MUNICA & MAR. A & A. A.		25-nor-hopane/h	opane	0.25	в	
and the will prote with the are many how my allow my	-	Ts/(Ts+Tm) trisn	orhopanes	0.47	M/D	1.00 (1.4%)
		C29Ts/C29 Hopa	ane	0.23	М	
m/z 218: ββ Steranes M216041	0.D	H32 S/(R+S) Hor	mohopanes	0.59	М	0.60 (0.6%)
		H35/H34 Homoh	opanes		D	
		C24 Tetracyclic/	Hopane	0.52	D	
1		C24 Tetracyclic/C	C26 Tricyclics	0.60	D	
		C23/C24 Tricycli	c terpanes	1.79	D	
		C19/C23 Tricycli	c terpanes	0.04	D	
		(C28/C25 Tricycli	c terpanes	0.66	0	
1 1 i i i i i i i i i i i i i i i i i		Various (m/z 4)	91. 217)	1.27	A	_
		Steranes/Hopen	AC	1.05	D	
HUR WARD AND AND AND AND AND AND AND AND AND AN		Tricyclic terpane	s/Hopanes	2 37	M	1 00 (1 4%)
and the second of the second of the many of the prover of the second of	Angen	Tricyclic terpane:	s/Steranes	2.26	M/D	1.00 (1.4%)

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity; B=Possible Biodegradation ³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well Dept Sam	pany: Name: h: pling Point:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID: File Name:	BIR-13 BH-79915 612184450 M2160410	9 .D	
	Peak	Compound	Ret			nnm	nnm
Ion	Label	Name	Time	Area	Heiaht	(Area)	(Haht)
217	CHOL	5 β cholane (internal standard)	42.229	31835	5484	100.0	100.0
123	LABD	labdane					
123	RIMU	rimuane					
123	PIM	pimarane					
123	ENTBEY	ent-beyerane					
123	ISOPIM	isopimarane					
123	B_PHYLLO	β-phyllocladane					
123	B_KAUR	β-kaurane					
123	A_PHYLLO	α-phyllocladane					
125	BCAROT	β-carotane					
187	4MDIAM	4-methyldiamantane	9.226	10452	3641	32.8	66.4
187	1MDIAM	1-methyldiamantane	9.836	6049	1684	19.0	30.7
187	3MDIAM	3-methyldiamantane	10.220	3597	828	11.3	15.1
188	DIAM	diamantane	9.070	4467	1458	14.0	26.6
191	1819	C19 tricyclic terpane	18.811	891	222	2.8	4.0
191	TR20	C20 tricyclic terpane	21.652	12442	1294	20.6	23.6
101	TR21	C21 tricyclic terpane	25.015	12413	2416	39.0	44.1
101	TP23	C22 tricyclic terpane	20.413	21991	320	69.1	9.0
191	TP24	C24 tricyclic terpane	35.080	17316	2120	38.7	38.7
191	DESAOL	des-A-cleanane	35.080	12510	2120	30.7	30.7
191	DESAUL	des-A-lunane					-
191	TR25A	C25 tricyclic temane (a)	40 154	5384	866	16.9	15.8
191	TR25B	C25 tricyclic terpane (b)	40.293	4782	841	15.0	15.3
191	DESEHOP	des-E-hopane	43.397	4000	674	12.6	12.3
191	TR26A	C26 tricyclic terpane (a)	44.042	3270	523	10.3	9.5
191	TR26B	C26 tricyclic terpane (b)	44.373	3449	542	10.8	9.9
191	TR28A	C28 tricyclic terpane (a)	52.969	1530	245	4.8	4.5
191	TR28B	C28 tricyclic terpane (b)	53.579	1324	229	4.2	4.2
191	TR29A	C29 tricyclic terpane (a)	55.549	1252	209	3.9	3.8
191	TR29B	C29 tricyclic terpane (b)	56.281	1097	189	3.4	3.4
191	TR30A	C30 tricyclic terpane (a)	60.466	1212	179	3.8	3.3
191	TR30B	C30 tricyclic terpane (b)	61.285	582	121	1.8	2.2
191	TS	Ts 18α(H)-trisnorhopane	57.676	4097	641	12.9	11.7
191	тм	Tm 17α(H)-trisnorhopane	59.315	4711	779	14.8	14.2
191	H28	C28 17α18α21β(H)-bisn orh opane	63.308	1521	143	4.8	2.6
191	NOR25H	C29 Nor-25-hopane	63.953	1955	289	6.1	5.3
191	H29	C29 Tm 17α(H)21β(H)-norhopane	65.086	7584	1119	23.8	20.4
191	C29TS	C29 Ts 18α(H)-norneohopane	65.347	1725	242	5.4	4.4
191	DH30	C30 17a(H)-diahopane	66.132	410	83	1.3	1.5
191	M29	C29 normoretane	67.108	1159	185	3.6	3.4
191	OL	oleanane	67.980	901	90	2.8	1.6
191	H30	C30 17 a(H)-hopane	68.573	1/32	119/	24.3	21.8
191	M30	C30 moretane	70.142	1285	195	4.0	3.6

Com Well	pany: Name:	Colorado State University Colorado State University Samples		Client ID: Project #:	BIR-13 BH-79915	09	
Sam	n. pling Point:			File Name:	M2160410).D	
_			_				
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Haht)
191	H31S	C31 22S 17a(H) hopane	72.653	1780	296	5.6	5.4
191	H31R	C31 22R 17a(H) hopane	73.141	1635	201	5.1	3.7
191	GAM	gammacerane	73.594	698	106	2.2	1.9
191	H32S	C32 22S 17a(H) hopane	75.913	1094	148	3.4	2.7
191	H32R	C32 22R 17a(H) hopane	76.576	770	121	2.4	2.2
191	H33S	C33 22S 17a(H) hopane	79.609	704	98	2.2	1.8
191	H33R	C33 22R 17a(H) hopane	80.568	520	106	1.6	1.9
191	H34S	C34 22S 17α(H) hopane					
191	H34R	C34 22R 17a(H) hopane					
191	H35S	C35 22S 17a(H) hopane					
191	H35R	C35 22R 17a(H) hopane					
205	H31_2ME	C31- 2a-methylhopane	68.957	381	50	1.2	0.9
205	H31S_205	C31 22S 17a(H) hopane	72.670	631	87	2.0	1.6
205	H31R_205	C31 22R 17a(H) hopane	73.141	554	66	1.7	1.2
205	H31_3ME	C31 3β-methylhopane					
217	S21	C21 sterane	29.006	16537	2135	51.9	38.9
217	S22	C22 sterane	33.738	8155	1319	25.6	24.1
217	DIA27S	C27 βα 20S diasterane	48.418	4748	706	14.9	12.9
217	DIA27R	C27 βα 20R diasterane	49.970	2798	414	8.8	7.5
217	DIA28SA	C28 $\beta \alpha$ 20S diasterane a	52.219	1939	248	6.1	4.5
217	DIA28SB	C28 βα 20S diasterane b	52.498	2254	247	7.1	4.5
217	DIA28RA	C28 βα 20R diasterane a	53.945	1301	203	4.1	3.7
217	DIA28RB	C28 βα 20R diasterane b	54.119	1007	152	3.2	2.8
217	C27S	C27 aa 20S sterane	55.131	2129	288	6.7	5.3
217	BB_D29S	C27 ββ 20R + C29 dia20S	55.636	2961	241	9.3	4.4
217	C27BBS	C27 ββ 20S sterane	56.037	1898	240	6.0	4.4
217	C27R	C27 aa 20R sterane	56.909	2310	342	7.3	6.2
217	DIA29R	C29 βα 20R diasterane	57.502	2373	213	7.5	3.9
217	C28S	C28 aa 20S sterane	59.263	931	125	2.9	2.3
217	C28BBR	C28 ββ 20R sterane(+5 βαα)	59.925	1227	139	3.9	2.5
217	C28BBS	C28 ββ 20S sterane	60.361	1190	159	3.7	2.9
217	C28R	C28 aa 20R sterane	61.529	2045	188	6.4	3.4
217	C29S	C29 aa 20S sterane	62.802	689	84	2.2	1.5
217	C29BBR	C29 ββ 20R sterane(+5 βαα)	63.674	1370	142	4.3	2.6
217	C29BBS	C29 ββ 20S sterane	63.866	723	85	2.3	1.6
217	C29R	C29 aa 20R sterane	65.313	2029	252	6.4	4.6
218	C27ABBR	C27 ββ 20R sterane	55.636	2314	324	7.3	5.9
218	C27ABBS	C27 ββ 20S sterane	56.037	1966	289	6.2	5.3
218	C28ABBR	C28 ββ 20R sterane	59.995	1430	176	4.5	3.2
218	C28ABBS	C28 ββ 20S sterane	60.361	1338	175	4.2	3.2
218	C29ABBR	C29 ββ 20R sterane	63.569	1202	150	3.8	2.7
218	C29ABBS	C29 ββ 20S sterane	63.883	1134	155	3.6	2.8
218	C30ABBR	C30 ββ 20R sterane					
218	C30ABBS	C30 ββ 20S sterane					

Com Well Dept	ipany: Name: th:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID:	BIR-13 BH-79915 61218445	09	
Sam	pling Point:			File Name:	M2160410).D	
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
259	D27S	C27 βα 20S diasterane	48.401	2669	422	8.4	7.7
259	D27R	C27 βα 20R diasterane	49.952	1628	252	5.1	4.6
259	D28SA	C28 $\beta \alpha$ 20S diasterane a	52.219	895	169	2.8	3.1
259	D28SB	C28 βα 20S diasterane b	52.498	982	147	3.1	2.7
259	D28RA	C28 $\beta \alpha$ 20R diasterane a	53.928	640	94	2.0	1.7
259	D28RB	C28 $\beta \alpha$ 20R diasterane b	54.102	602	81	1.9	1.5
259	D29S	C29 βα 20S diasterane	55.741	1209	113	3.8	2.1
259	D29R	C29 βα 20R diasterane	57.519	561	65	1.8	1.2
259	C30TP1	C30 tetracyclic polyprenoid	67.056	418	70	1.3	1.3
259	C30TP2	C30 tetracyclic polyprenoid	67.213	338	59	1.1	1.1
_							
-							

Company: Well Name: Depth: Sampling Point:	Colorado State University Colorado State University Samples -	Client ID: Project #: Lab ID: File Name:	BIR-13 BH-79915 6121844509 M2160410.D
	Miscellaneous Ratios	By Areas	By Heights
	Steroids		
	%C27 αββS (218)	44.3	46.7
	%C28 αββS (218)	30.1	28.3
	%C29 αββS (218)	25.6	25.0
	C30 αββS Sterane Index (218)	0.0	0.0
	C30 S+R Sterane Index (218)	0.0	0.0
	C ₂₇ /C ₂₉ (αββS) (218)	1.73	1.86
	C ₂₉ /C ₂₉ (αββS) (218)	1.18	1.13
	C ₂₈ /C ₂₇ (αββS) (218)	0.58	0.54
	%C27 aaaR (217)	36.2	43.7
	%C28 αααR (217)	32.0	24.0
	%C29 aaaR (217)	31.8	32.2
	S/R (C ₂₈ aaa) (217)	0.34	0.33
	S/(S+R) (C29 aaa) (217)	0.25	0.25
	ββ/(αα+ββ) (C ₂₉) (217)	0.44	0.40
	αββS/αααR (C29) (217)	0.36	0.34
	(C21+C22)/(C27+C28+C28) (217)	0.69	0.77
	Diaster/aaa Ster (C27) (217)	1.70	1.78
	Ternenoide		
	C19/C23 Trigolia terpanas	0.04	0.06
	C13/C23 Tricyclic terpanes	1 79	1.80
	C25/C25 Tricyclic terpanes	0.66	0.62
	C20/C23 mcyclic terpanes	0.00	0.02
	C24 Tetracyclic/C26 Tricyclics	0.60	0.63
	C24 Tetracyclic/Hopane	0.52	0.56
	Tc/Tm trisportionanes	0.87	0.82
	Ts/Ts+Tm) trisport opanes	0.47	0.02
	C29Ts/C29 Hopane	0.23	0.45
		0.20	V.22
	Bisnorhopane/Hopane	0.20	0.12
	Norhopane/Hopane	0.98	0.93
	Diahopane/Hopane	0.05	0.07
	Oleanane/Hopane	0.12	0.08
	Gammacerane/Hopane	0.09	0.09
	Moretane/(Moretane+Hopane)	0.14	0.14
	H32 S/(S+R) Homohopanes	0.59	0.55
	H35/H34 Homohopanes		
	[Steranes]/[Honanes]	1.05	0.86
	[Tricyclic ternanes]/[Honanes]	2 27	277
	[Tricyclic terpanes]/[Steranes]	2.26	3.21
	1		

Weatherford [®]		SATUR	ATE	GCMS
Company: Colorado State University Country: Basin: Lease: Block: Field: Well Name: Colorado State University Samples Latitude: Longitude: Preparation:	Client ID: BIR Project #: BH Lab ID: 612 Sample Type: Our Sampling Point: Formation: Geologic Age: Top Depth: Bottom Depth: GCMS Method: M6	-15 -79915 1844513 tcrop		
m/z 191: Tri- and Pentacyclics M21604	11.D RATIOS (on Area	s) ¹	Appl	TEV3
	Steranes (m/z 217; 21	8)		
	%C ₂₇ αββS (218)	42.4	D	
	%C ₂₈ αββS (218)	32.2	D	
	%C ₂₉ αββS (218)	25.4	D	
	%C ₂₇ αααR (217)	40.2	D	
	%C ₂₈ αααR (217)	31.4	D	
	%C29 αααR (217)	28.4	D	
	S/(S+R) (C29 aaa) (217) 0.31	М	0.55 (0.8%)
	ββS/(ββS+ααR) (C29)	(217) 0.35	м	0.70 (0.9%)
	(C21+C22)/(C27+C28+C28	0.24		
for an hard with the the the share and the share and the set of the share and the set of	C ₂₇ /C ₂₈ (αββS) (218)	1.67	D	
	C ₂₈ /C ₂₉ (αββS) (218)	1.27	D	
m/z 217: Steranes M21604	11.D Diaster/aaa Ster (C27)	217) 1.44	M/D	1.00 (1.4%)
	C30 αββS Sterane Inde	ex (218) 4.80	D	and the later of the
	C30 S+R Sterane Index	(218) 3.95	D	
7	Terpanes (<i>m/z</i> 191)			
	Oleanane/Hopane	0.15	D/A	
	Gammacerane/Hopane	0.05	D	
	Norhopane/Hopane	0.84	D	
	Bisnorhopane/Hopane	0.10		
	Diahopane/Hopane	0.05	M/D	
	Moretane/Hopane	0.14	M	0.05 (0.7%)
Landry Nam And Mind & MUM IA & MAL I & M	25-nor-hopane/hopane	0.23	В	(
and a source with the state when a first from the second	Ts/(Ts+Tm) trisnorhopa	nes 0.54	M/D	1.00 (1.4%)
	C29Ts/C29 Hopane	0.34	М	
m/z 218: ββ Steranes M21604	11.D H32 S/(R+S) Homohop	anes 0.58	м	0.60 (0.6%)
	H35/H34 Homohopane	5 0.00	D	
	C24 Tetracyclic/Hopan	e 0.34	D	
	C24 Tetracyclic/C26 Tr	cyclics 1.17	D	
	C23/C24 Tricyclic terpa	nes 1.69	D	
	C19/C23 Tricyclic terpa	nes 0.05	D	
	C26/C25 Tricyclic terps	nes 0.78	D	
	(C28+C29 Tricyclics)/T	s 0.62	А	
	Various (<i>m/z</i> 191; 21)	7)		
I . I KAAMAANA MANI MA KULA II K	Steranes/Hopanes	0.65	D	
An a second of the second of the	Tricyclic terpanes/Hopa	nes 0.71	м	1.00 (1.4%)
The second secon	Tricyclic terpanes/Stera	nes 1.09	M/D	1.00 (1.4%)

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity; B=Possible Biodegradation

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached
Com Well Dept Sam	pany: Name: h: pling Point:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID: File Name:	BIR-15 BH-79915 612184451 M2160411.	3 .D	
_							
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
217	CHOL	5 β cholane (internal standard)	42.246	32329	5410	100.0	100.0
123	LABD	labdane					
123	RIMU	rimuane					
123	PIM	pimarane					
123	ENTBEY	ent-beyerane					
123	ISOPIM	isopimarane					
123	B_PHYLLO	β-phyllocladane					
123	B_KAUR	β-kaurane					
123	A_PHYLLO	α-phyllocladane					
125	BCAROT	β-carotane	0.400	0100	0.405	40.0	10.4
187	4MDIAM	4-methyldiamantane	9.188	6406	2495	19.8	46.1
187	1 MDIAM	1-methyldiamantane	9.798	4/39	1810	14./	33.5
187	SMDIAM	3-methyldiamantane	10.181	3900	1382	12.1	25.5
101	DIAM TR10	ciamantane	10 075	26/6	1051	8.3	19.4
101	TR19	C19 tricyclic terpane	21 666	1048	236	13.0	4.4
101	TR20	C20 tricyclic terpane	21.000	7904	1354	24.4	25.0
101	TR21	C21 tricyclic terpane	23.012	3120	490	9.7	25.0
191	TR23	C23 tricyclic terpane	32 674	20424	3300	63.2	61.0
191	TR24	C24 tricyclic terpane	35 115	12118	1958	37.5	36.2
191	DESAOL	des-A-gleanane	00.110	12110	1000	07.0	00.2
191	DESALU	des-A-lupane					-
191	TR25A	C25 tricyclic terpane (a)	40,171	5511	907	17.0	16.8
191	TR25B	C25 tricyclic terpane (b)	40.311	5373	943	16.6	17.4
191	DESEHOP	des-E-hopane	43.431	9923	1568	30.7	29.0
191	TR26A	C26 tricyclic terpane (a)	44.059	4220	694	13.1	12.8
191	TR26B	C26 tricyclic terpane (b)	44.373	4260	695	13.2	12.8
191	TR28A	C28 tricyclic terpane (a)	52.986	2654	410	8.2	7.6
191	TR28B	C28 tricyclic terpane (b)	53.596	2484	379	7.7	7.0
191	TR29A	C29 tricyclic terpane (a)	55.549	1961	319	6.1	5.9
191	TR29B	C29 tricyclic terpane (b)	56.298	2547	346	7.9	6.4
191	TR30A	C30 tricyclic terpane (a)	60.640	1048	212	3.2	3.9
191	TR30B	C30 tricyclic terpane (b)	61.320	1539	196	4.8	3.6
191	TS	Ts 18α(H)-trisnorhopane	57.676	15478	2449	47.9	45.3
191	тм	Tm 17α(H)-trisnorhopane	59.332	13404	2184	41.5	40.4
191	H28	C28 17α18α21β(H)-bisnorhopane	63.307	2978	300	9.2	5.5
191	NOR25H	C29 Nor-25-hopane	63.970	6745	1033	20.9	19.1
191	H29	C29 Tm 17α(H)21β(H)-norhopane	65.103	24844	4026	76.8	74.4
191	C29TS	C29 Ts 18α(H)-norneohopane	65.365	8348	1144	25.8	21.1
191	DH30	C30 17 a(H)-diahopane	66.114	1546	243	4.8	4.5
191	M29	C29 normoretane	67.108	4076	611	12.6	11.3
191	OL	oleanane	67.962	4277	375	13.2	6.9
191	H30	C30 17a(H)-hopane	68.573	29436	4521	91.1	83.6
191	M30	C30 moretane	70.142	4078	604	12.6	11.2

Com Well	pany: Name: h:	Colorado State University Colorado State University Samples		Client ID: Project #:	BIR-15 BH-79915	13	
Sam	ning Point:			File Name:	M2160411	.D	
	Book	Compound	Bot				
lon	Label	Name	Time	Area	Height	(Area)	(Haht)
191	H31S	C31 22S 17α(H) hopane	72.652	5434	841	16.8	15.5
191	H31R	C31 22R 17a(H) hopane	73.141	4061	592	12.6	10.9
191	GAM	gammacerane	73.594	1427	236	4.4	4.4
191	H32S	C32 22S 17a(H) hopane	75.895	2652	382	8.2	7.1
191	H32R	C32 22R 17a(H) hopane	76.575	1894	257	5.9	4.8
191	H33S	C33 22S 17a(H) hopane	79.609	1120	173	3.5	3.2
191	H33R	C33 22R 17a(H) hopane	80.585	826	113	2.6	2.1
191	H34S	C34 22S 17a(H) hopane	83.497	578	80	1.8	1.5
191	H34R	C34 22R 17a(H) hopane	84.613	521	83	1.6	1.5
191	H35S	C35 22S 17a(H) hopane					
191	H35R	C35 22R 17a(H) hopane					
205	H31_2ME	C31- 2α-methylhopane	68.921	1091	155	3.4	2.9
205	H31S_205	C31 22S 17a(H) hopane	72.652	1824	285	5.6	5.3
205	H31R_205	C31 22R 17a(H) hopane	73.158	1198	182	3.7	3.4
205	H31_3ME	C31 3β-methylhopane					
217	S21	C21 sterane	29.020	11119	1411	34.4	26.1
217	S22	C22 sterane	33.755	6558	991	20.3	18.3
217	DIA27S	C27 βα 20S diasterane	48.418	8107	1199	25.1	22.2
217	DIA27R	C27 βα 20R diasterane	49.987	5383	/88	16.7	14.6
217	DIA28SA	C28 βα 20S diasterane a	52.236	3548	464	11.0	8.6
217	DIA285B	C28 βα 20S diasterane b	52.515	4127	4/4	12.8	8.8
217	DIA28RA	C28 βα 20R diasterane a	53.962	2660	366	8.2	1.2
217	COTE	C27 pg 20R diasterane	54.119	2397	204	11.4	10.1
217	C2/3	$C_{27} = 200 \pm C_{20} = 100 \pm C_{2$	55 636	6301	502	10.8	0.3
217	C27BBS	C27 88 20S sterane	56.054	3711	447	11.5	9.5
217	C27865	C27 pp 203 sterane	56.034	5641	803	17.4	14.8
217	DIA29R	C29 Br 20R diasterane	57 536	5165	375	16.0	6.9
217	C285	C28 gg 208 sterane	59 245	2181	283	67	5.2
217	C28BBR	C28 BB 20R sterane(+5 Bara)	59 977	2948	320	9.1	5.9
217	C28BBS	C28 BB 20S sterane	60.361	2888	338	8.9	6.2
217	C28R	C28 aa 20R sterane	61.546	4401	375	13.6	6.9
217	C29S	C29 aa 20S sterane	62.784	1785	189	5.5	3.5
217	C29BBR	C29 ββ 20R sterane(+5 βαα)	63.604	2707	250	8.4	4.6
217	C29BBS	C29 ββ 20S sterane	63.883	2118	266	6.6	4.9
217	C29R	C29 aa 20R sterane	65.347	3977	419	12.3	7.7
218	C27ABBR	C27 ββ 20R sterane	55.636	4941	639	15.3	11.8
218	C27ABBS	C27 ββ 20S sterane	56.037	4089	541	12.6	10.0
218	C28ABBR	C28 ββ 20R sterane	59.960	2807	336	8.7	6.2
218	C28ABBS	C28 ββ 20S sterane	60.378	3105	411	9.6	7.6
218	C29ABBR	C29 ββ 20R sterane	63.586	2682	332	8.3	6.1
218	C29ABBS	C29 ββ 20S sterane	63.883	2453	265	7.6	4.9
218	C30ABBR	C30 ββ 20R sterane	66.603	339	42	1.0	0.8
218	C30ABBS	C30 ββ 20S sterane	66.864	486	46	1.5	0.9

Com Well Dept Sam	ipany: Name: th: pling Point:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID: File Name:	BIR-15 BH-79915 612184451 M2160411.	3 D	
-							
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Haht)
259	D27S	C27 Bg 20S diasterane	48 435	4366	704	13.5	13.0
259	D27R	C27 Ba 20R diasterane	49.970	2930	429	9.1	7.9
259	D28SA	C28 Ba 20S diasterane a	52 236	1673	258	5.2	4.8
259	D28SB	C28 βα 20S diasterane b	52,515	1751	240	5.4	4.4
259	D28RA	C28 Ba 20R diasterane a	53,910	1495	185	4.6	3.4
259	D28RB	C28 βα 20R diasterane b	54.119	1114	167	3.4	3.1
259	D29S	C29 βα 20S diasterane	55.775	2476	207	7.7	3.8
259	D29R	C29 βα 20R diasterane	57.571	1515	141	4.7	2.6
259	C30TP1	C30 tetracyclic polyprenoid	67.091	841	121	2.6	2.2
259	C30TP2	C30 tetracyclic polyprenoid	67.230	648	114	2.0	2.1
1							

Company: Well Name: Depth: Sampling Point:	Colorado State University Colorado State University Samples -	Client ID: Project #: Lab ID: File Name:	BIR-15 BH-79915 6121844513 M2160411.D
	Miscellaneous Ratios	By Areas	By Heights
	Steroids		
	%C27 αββS (218)	42.4	44.5
	%C28 αββS (218)	32.2	33.8
	%C29 αββS (218)	25.4	21.8
	C30 αββS Sterane Index (218)	4.8	3.6
	C30 S+R Sterane Index (218)	3.9	3.4
	C ₂₇ /C ₂₉ (αββS) (218)	1.67	2.04
	C ₂₈ /C ₂₉ (αββS) (218)	1.27	1.55
	C ₂₉ /C ₂₇ (αββS) (218)	0.60	0.49
	%C27 aaaR (217)	40.2	50.3
	%C28 αααR (217)	31.4	23.5
	%C29 αααR (217)	28.4	26.2
	S/R (C ₂₉ aaa) (217)	0.45	0.45
	S/(S+R) (C29 aaa) (217)	0.31	0.31
	ββ/(αα+ββ) (C ₂₈) (217)	0.46	0.46
	αββS/αααR (C29) (217)	0.53	0.63
	(C ₂₁ +C ₂₂)/(C ₂₇ +C ₂₈ +C ₂₈) (217)	0.24	0.28
	Diaster/ααα Ster (C ₂₇) (217)	1.44	1.47
	Terpenoids		
	C19/C23 Tricyclic terpanes	0.05	0.07
	C23/C24 Tricyclic terpanes	1.69	1.69
	C26/C25 Tricyclic terpanes	0.78	0.75
	C24 Tetracyclic/C26 Tricyclics	1.17	1.13
	C24 Tetracyclic/Hopane	0.34	0.35
	Ts/Tm trisnorbonanes	1 15	112
	Ts/(Ts+Tm) trisnorhopanes	0.54	0.53
	C29Ts/C29 Hopane	0.34	0.28
	Bisnorhopane/Hopane	0.10	0.07
	Norhopane/Hopane	0.84	0.89
	Diahopane/Hopane	0.05	0.05
	Oleanane/Hopane	0.15	0.08
	Gammacerane/Hopane	0.05	0.05
	Moretane/(Moretane+Hopane)	0.12	0.12
	H32 S/(S+R) Homohopanes	0.58	0.60
	H35/H34 Homohopanes	0.00	0.00
	[Steranes]/[Hopanes]	0.65	0.50
	[Tricyclic terpanes]/[Hopanes]	0.71	0.76
	[Tricyclic terpanes]/[Steranes]	1.09	1.53

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity; B=Possible Biodegradation

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well Dept Sam	pany: Name: h: pling Point:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID: File Name:	BIR-16 BH-79915 61218445 M2160412	15 2.D	
_	Deale		-		_		
lon	Peak	Compound Name	Ket. Time	Area	Height	ppm (Area)	ppm (Habt)
217	CHOL	5.6 cholane (internal standard)	42 246	36191	5859	100.0	100.0
123	LARD	labdane	42.240	50101	5055	100.0	100.0
123	RIMU	rimuane					
123	PIM	pimarane					
123	ENTBEY	ent-beyerane					
123	ISOPIM	isopimarane					
123	B_PHYLLO	β-phyllocladane					
123	B_KAUR	β-kaurane					
123	A_PHYLLO	α-phyllocladane					
125	BCAROT	β-carotane					
187	4MDIAM	4-methyldiamantane	9.205	9996	3595	27.6	61.4
187	1MDIAM	1-methyldiamantane	9.815	6854	2200	18.9	37.5
187	3MDIAM	3-methyldiamantane	10.198	5939	1800	16.4	30.7
188	DIAM	diamantane	9.048	4636	1535	12.8	26.2
191	TR19	C19 tricyclic terpane					
191	TR20	C20 tricyclic terpane	21.683	1751	326	4.8	5.6
191	TR21	C21 tricyclic terpane	25.029	2736	452	7.6	7.7
191	TR22	C22 tricyclic terpane	28.444	817	119	2.3	2.0
191	TR23	C23 tricyclic terpane	32.691	3743	639	10.3	10.9
191	TR24	C24 tricyclic terpane	35.115	2154	330	6.0	5.6
191	DESAOL	des-A-oleanane					
191	DESALU	des-A-lupane					
191	TR25A	C25 tricyclic terpane (a)	40.189	1006	155	2.8	2.6
191	TR25B	C25 tricyclic terpane (b)	40.328	804	137	2.2	2.3
191	DESEROP	des-E-nopane	43.431	1051	1/0	2.9	2.9
191	TRZOA	C26 tricyclic terpane (a)	44.077	723	117	2.0	2.0
191	TR26B	C28 tricyclic terpane (b)	44.3/3	/6/	114	2.1	1.9
101	TR20A	C28 tricyclic terpane (a)					
191	TP294	C28 tricyclic terpane (b)					
191	TR29A	C29 tricyclic terpane (a)					
191	TR30A	C30 tricyclic terpane (a)					
191	TR30B	C30 tricyclic terpane (b)					
191	TS	Ts 18α(H)-trisportopane	57 693	831	121	23	21
191	ТМ	Tm 17a(H)-trisnorhopane	59.367	924	130	2.6	2.2
191	H28	C28 17a18a21B(H)-bisn orhopane					
191	NOR25H	C29 Nor-25-hopane					
191	H29	C29 Tm 17α(H)21β(H)-norhopane	65.103	1949	294	5.4	5.0
191	C29TS	C29 Ts 18a(H)-norneohopane	65.347	619	81	1.7	1.4
191	DH30	C30 17 a(H)-diahopane					
191	M29	C29 normoretane					
191	OL	oleanane					
191	H30	C30 17a(H)-hopane	68.573	2348	363	6.5	6.2
191	M30	C30 moretane					

Com Well Dept	pany: Name: h:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID:	BIR-16 BH-79915 61218445	15	
Sam	pling Point:			File Name:	M2160412	2.D	
	Deels	O	Det	_	_		
Ion	Label	Name	Time	Area	Height	(Area)	(Haht)
191	H31S	C31 22S 17a(H) hopane	72.653	649	119	1.8	2.0
191	H31R	C31 22R 17a(H) hopane	73.158	856	109	2.4	1.9
191	GAM	gammacerane					
191	H32S	C32 22S 17a(H) hopane	75.878	536	81	1.5	1.4
191	H32R	C32 22R 17a(H) hopane	76.575	348	62	1.0	1.1
191	H33S	C33 22S 17α(H) hopane					
191	H33R	C33 22R 17a(H) hopane					
191	H34S	C34 22S 17α(H) hopane					
191	H34R	C34 22R 17α(H) hopane					
191	H35S	C35 22S 17a(H) hopane					
191	H35R	C35 22R 17a(H) hopane					
205	H31_2ME	C31- 2a-methylhopane					
205	H31S_205	C31 22S 17α(H) hopane					
205	H31R_205	C31 22R 17a(H) hopane					
205	H31_3ME	C31 3β-methylhopane	00.040	0400	222	0.7	5.0
21/	S21	C21 sterane	29.019	2409	330	6.7	5.6
217	522	C22 sterane	33./00	1136	140	3.1	2.4
217	DIA27S	C27 pa 208 diasterane	40.433	923	133	2.0	2.3
217	DIA27R	C28 Br 20S diasterane a	52 236	122	57	13	1.7
217	DIA28SR	C28 Bg 205 diasterane b	52 515	400	75	1.5	1.0
217	DIA288A	C28 Br 200 diasterane a	52.515	013	75	1.7	1.5
217	DIA28RB	C28 Bg 20R diasterane b					
217	C27S	C27 aa 20S sterane					
217	BB D29S	C27 66 20R + C29 dia20S					
217	C27BBS	C27 ββ 20S sterane					
217	C27R	C27 aa 20R sterane	56.944	501	85	1.4	1.5
217	DIA29R	C29 βα 20R diasterane	57.501	1020	137	2.8	2.3
217	C28S	C28 aa 20S sterane					
217	C28BBR	C28 ββ 20R sterane(+5 βαα)	59.942	536	71	1.5	1.2
217	C28BBS	C28 ββ 20S sterane					
217	C28R	C28 aa 20R sterane	61.564	1060	94	2.9	1.6
217	C29S	C29 aa 20S sterane					
217	C29BBR	C29 ββ 20R sterane(+5 βαα)	63.656	703	60	1.9	1.0
217	C29BBS	C29 ββ 20S sterane	63.883	337	60	0.9	1.0
217	C29R	C29 aa 20R sterane	65.330	1154	171	3.2	2.9
218	C27ABBR	C27 ββ 20R sterane	55.653	616	98	1.7	1.7
218	C27ABBS	C27 ββ 20S sterane	56.037	530	95	1.5	1.6
218	C28ABBR	C28 ββ 20R sterane	59.942	397	51	1.1	0.9
218	C28ABBS	C28 ββ 20S sterane	60.396	466	71	1.3	1.2
218	C29ABBR	C29 ββ 20R sterane	63.586	493	57	1.4	1.0
218	C29ABBS	C29 ββ 20S sterane	63.918	445	68	1.2	1.2
218	C30ABBR	C30 ββ 20R sterane					
218	C3UABBS	Cou pp 20S sterane					

Com Well Dept	pany: Name: h:	Colorado State University Colorado State University Samples -		Client ID: Project #: Lab ID:	BIR-16 BH-79915 612184451	15	
Sam	pling Point	•		File Name:	M2160412	.D	
	Peak	Compound	Ret			nnm	nnm
Ion	Label	Name	Time	Area	Height	(Area)	(Hght)
259	D27S	C27 βα 20S diasterane	48.453	727	111	2.0	1.9
259	D27R	C27 βα 20R diasterane	49.970	433	60	1.2	1.0
259	D28SA	C28 βα 20S diasterane a	52.288	344	41	1.0	0.7
259	D28SB	C28 βα 20S diasterane b	52.533	333	42	0.9	0.7
259	D28RA	C28 $\beta \alpha$ 20R diasterane a	53.910	217	33	0.6	0.6
259	D28RB	C28 βα 20R diasterane b	54.154	186	43	0.5	0.7
259	D29S	C29 βα 20S diasterane					
259	D29R	C29 βα 20R diasterane					
259	C30TP1	C30 tetracyclic polyprenoid	67.091	250	34	0.7	0.6
259	C301P2	C30 tetracyclic polyprenoid	67.248	203	42	0.6	0.7
_							

Company: Well Name: Depth: Sampling Point:	Colorado State University Colorado State University Samples -	Client ID: Project #: Lab ID: File Name:	BIR-16 BH-79915 6121844515 M2160412 D
Sampling Point.		File Marile.	M2100412.D
	Miscellaneous Ratios	By Areas	By Heights
	Steroids		
	%C27 αββS (218)	36.8	40.6
	%C28 αββS (218)	32.3	30.3
	%C29 αββS (218)	30.9	29.1
	C30 αββS Sterane Index (218)	0.0	0.0
	C30 S+R Sterane Index (218)	0.0	0.0
	C ₂₇ /C ₂₉ (αββS) (218)	1.19	1.40
	C ₂₈ /C ₂₉ (αββS) (218)	1.05	1.04
	C ₂₉ /C ₂₇ (αββS) (218)	0.84	0.72
-			
	%C27 aaaR (217)	18.5	24.3
	%C28 αααR (217)	39.0	26.9
	%C29 aaaR (217)	42.5	48.9
	S/R (C ₂₉ daa) (217)		
	S/(S+R) (C ₂₉ aaa) (217)	0.47	
	$pp(\alpha\alpha + pp)(C_{20})(217)$	0.47	0.41
	$appS/aaaR(C_{29})(217)$	0.29	0.35
	$(C_{21}+C_{22})(C_{27}+C_{28}+C_{29})(217)$	0.44	0.45
	Diaster/add Ster (C ₂₇) (217)	3.28	2.74
	Terpenoids		
	C19/C23 Tricyclic terpanes		
	C23/C24 Tricyclic terpanes	1.74	1.94
	C26/C25 Tricyclic terpanes	0.82	0.79
	C24 Tetracyclic/C26 Tricyclics	0.71	0.74
	C24 Tetracyclic/Hopane	0.45	0.47
	Ts/Tm trisnorhopanes	0.90	0.93
	Ts/(Ts+Tm) trisnorhopanes	0.47	0.48
	C29Ts/C29 Hopane	0.32	0.28
	Bisnorhopane/Hopane		
	Norhopane/Hopane	0.83	0.81
	Diahopane/Hopane		
	Oleanane/Hopane		
	Gammacerane/Hopane		
	Moretane/(Moretane+Hopane)	12.22	
	H32 S/(S+R) Homohopanes	0.61	0.57
	H35/H34 Homonopanes		
	[Steranes]/[Hopanes]	0.89	0.77
	[Tricyclic terpanes]/[Hopanes]	1.60	1.76
	[Tricyclic terpanes]/[Steranes]	1.81	2.29
	na na na mana na mana na	200 BD10	

Weatherford [®]				SATUR	ATE	GCMS
Company: Colorado State University	Clien	t ID:	517-2.5			
Country:	Proje	ct #:	BH-79239			
Basin:	Lab I	D:	612180626	D		
Lease:	Samp	ole Type:	Core			
Block:	Samp	oling Point:				
Field:	Form	ation:				
vell Name: Nonesuch Formation Core Samples	Geol	ogic Age:	2074 60			
	Top I	Jeptn:	3074.60			
	Βοπο	m Deptn:				
Preparation:	GCIM	S Method:	MIGUA			
m/z 191: Tri- and Pentacyclics M51602	76 D	RATIOS (on	Areas) ¹		Appl ²	TEV
	10.0	Steranes (m/z 2	17: 218)		r (pp)	
		%C ₂₇ αββS (218)	34.0	P	
		%C20 0665 (218)	33.2	D	
		%C29 αββS (218)	32.8	D	
		%C27 αααR (217)	39.8	D	
r 1		%C28 αααR (217)	27.1	D	
		%C29 αααR (217)	33.1	D	
3.1		S/(S+R) (C29 aaa	x) (217)	0.37	М	0.55 (0.8%)
		ββS/(ββS+ααR)	(C29) (217)	0.48	м	0.70 (0.9%)
	Markely Markel	(C21+C22)/(C27+C	28+C29) (217)	0.13		
and a start a star		C ₂₇ /C ₂₈ (αββS) (2	218)	1.03	D	
		C ₂₈ /C ₂₉ (αββS) (2	218)	1.01	D	
m/z 217: Steranes M51602	76.D	Diaster/aaa Ster	(C ₂₇) (217)	0.91	M/D	1.00 (1.4%)
		C30 αββS Sterar	ne Index (218)	11.26	D	
		C30 S+R Steran	e Index (218)	9.76	D	
		Terpanes (m/z 1	191)			
		Oleanane/Hopan	e		D/A	
		Gammacerane/H	lopane	0.15	D	
		Norhopane/Hopa	ine	0.68	D	
ne reachte de die lande All Me the Miller die beste in Alberthe alse Albert die 18	a	Bisnorhopane/Ho	opane	0.08		
unangangkara kalah jula raka i ku aku aku aku aku aku aku aku aku aka aka	Million	Diahopane/Hopa	ne		M/D	
	at. Abold	Moretane/Hopan	e	0.15	M	0.05 (0.7%)
		25-nor-nopane/h	opane	0.14	B	1.00 /4.40/1
		C20Te/C20 Line	onopanes	0.36	M/D	1.00 (1.4%)
m/z 219: 08 Storanos	76.0	U23 5/023 Hops	mehananaa	0.50	IVI NA	0.00 (0.00)
Monou Monouz	10.0	H35/H3/ Homes	opanes	0.39	D	0.00 (0.0%)
		C24 Tetracualia	donane	0.73	D	
		C24 Tetracyclic/	226 Tricyclics	0.10	D	
		C23/C24 Tricyclin	c terpanes	1.80	P	
		C19/C23 Tricycli	c terpanes	0.09	P	
l i li		C26/C25 Tricycli	c terpanes	1.02	D	
		(C28+C29 Tricvo	lics)/Ts	4.23	A	
		Various (m/z 1	91; 217)			
		Steranes/Hopan	es	0.40	D	
المتحاصل والمعالية المحاطية المحاطية المحاطية والمحاط المحاطية المحاطية المحاطية المحاطية المحاطية المحاصية المحاطية والمحاطية وا	HAN MARINE	Tricyclic terpane:	s/Hopanes	0.73	м	1.00 (1.4%)
latakan dan kanala latakan sala sana saka di sana saka di sana saka sana saka sana saka sana saka sana saka sa	de Lake	Tricyclic terpane:	s/Steranes	1.83	M/D	1.00 (1.4%)

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity; B=Possible Biodegradation

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well Dept	pany: Name: h:	Colorado State University Nonesuch Formation Core Samples 3074.60 -		Client ID: Project #: Lab ID:	517-2.5 BH-79239 61218062	60	
Sam	pling Point:			File Name:	M5160276	6.D	
	Peak	Compound	Ret.			maa	maa
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
217	CHOL	5 β cholane (internal standard)	42.204	25890	4482	100.0	100.0
123	LABD	labdane					
123	RIMU	rimuane					
123	PIM	pimarane					
123	ENTBEY	ent-beyerane					
123	ISOPIM	isopimarane					
123	B_PHYLLO	β-phyllocladane					
123	B_KAUR	β-kaurane					
123	A_PHYLLO	α-phyliocladane					
125	BCAROT	β-carotane	0.250	5000	20220	22.6	59.0
107		4-methyldiamantane	9.200	2002	2030	22.0	20.9
107		1-methyldiamantane	9.852	4298	1725	16.5	38.5
107	DIAM	dismontone	0.000	4322	1290	10.7	20.7
100	TR19	C19 triovolic teroane	18 843	2000	1290	13	20.0
191	TR20	C20 tricyclic terpane	21 661	1305	271	5.0	6.0
191	TR21	C21 tricyclic terpane	25.017	1756	370	6.8	83
191	TR22	C22 tricyclic terpane	28 405	687	121	27	2.7
191	TR23	C23 tricyclic terpane	32.647	3765	660	14.5	14.7
191	TR24	C24 tricvclic terpane	35.050	2089	386	8.1	8.6
191	DESAOL	des-A-oleanane					2.5.5.5
191	DESALU	des-A-lupane					
191	TR25A	C25 tricyclic terpane (a)	40.125	846	145	3.3	3.2
191	TR25B	C25 tricyclic terpane (b)	40.243	801	143	3.1	3.2
191	DESEHOP	des-E-hopane	43.400	651	99	2.5	2.2
191	TR26A	C26 tricyclic terpane (a)	43.993	883	157	3.4	3.5
191	TR26B	C26 tricyclic terpane (b)	44.316	804	155	3.1	3.5
191	TR28A	C28 tricyclic terpane (a)	52.914	831	138	3.2	3.1
191	TR28B	C28 tricyclic terpane (b)	53.517	855	144	3.3	3.2
191	TR29A	C29 tricyclic terpane (a)	55.467	723	137	2.8	3.1
191	TR29B	C29 tricyclic terpane (b)	56.222	787	144	3.0	3.2
191	TR30A	C30 tricyclic terpane (a)	60.413	699	125	2.7	2.8
191	TR30B	C30 tricyclic terpane (b)	61.221	657	114	2.5	2.5
191	TS	Ts 18α(H)-trisnorhopane	57.687	756	134	2.9	3.0
191	тм	Tm 17α(H)-trisnorhopane	59.335	1356	226	5.2	5.0
191	H28	C28 17α18α21β(H)-bisnorhopane	63.333	559	73	2.2	1.6
191	NOR25H	C29 Nor-25-hopane	63.915	935	164	3.6	3.7
191	H29	C29 Im 1/α(H)21β(H)-nomopane	65.078	4610	6/2	17.8	15.0
101	042915	C29 15 180(H)-homeoropane					
191	M29	C30 17 a(H)-dianopane	67.093	761	0.8	2.0	2.2
101	0	oleanane	01.035	701	50	2.5	2.2
191	H30	C30 17g(H)-bonane	68 537	6732	1058	26.0	23.6
191	M30	C30 moretane	70.110	990	159	3.8	3.5
						0.0	0.0

Com Well	pany: Name:	Colorado State University Nonesuch Formation Core Samples		Client ID: Project #:	517-2.5 BH-79239	0	
Sam	n. pling Point:	3074.00 -		File Name:	M5160276.	D	
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
191	H31S	C31 22S 17a(H) hopane	72.599	2031	320	7.8	7.1
191	H31R	C31 22R 17α(H) hopane	73.116	1923	261	7.4	5.8
191	GAM	gammacerane	73.536	994	141	3.8	3.1
191	H32S	C32 22S 17α(H) hopane	75.820	1340	209	5.2	4.7
191	H32R	C32 22R 17α(H) hopane	76.521	915	147	3.5	3.3
191	H33S	C33 22S 17a(H) hopane	79.538	1009	155	3.9	3.5
191	H33R	C33 22R 17a(H) hopane	80.453	678	102	2.6	2.3
191	H34S	C34 22S 17α(H) hopane	83.384	768	110	3.0	2.5
191	H34R	C34 22R 17a(H) hopane	84.548	585	80	2.3	1.8
191	H35S	C35 22S 17a(H) hopane	87.101	577	105	2.2	2.3
191	H35R	C35 22R 17a(H) hopane	88.416	413	88	1.6	2.0
205	H31_2ME	C31- 2a-methylhopane	68.882	300	52	1.2	1.2
205	H31S_205	C31 22S 17α(H) hopane	72.610	639	94	2.5	2.1
205	H31R_205	C31 22R 17α(H) hopane	73.105	422	70	1.6	1.6
205	H31_3ME	C31 3β-methylhopane					
217	S21	C21 sterane	29.018	008	138	3.3	3.1
217	S22	C22 sterane	33.735	385	63	1.5	1.4
217	DIA27S	C27 βα 20S diasterane	48.367	665	107	2.6	2.4
217	DIA2/R	C27 pa 20R diasterane	49.908	464	/1	1.8	1.6
217	DIA28SA	C28 βα 20S diasterane a	52.138	2/0	51	1.0	1.1
217	DIA205B	C28 pa 205 diasterane b	52.401	319	55	1.2	1.2
217	DIA28RA	C28 Ba 20R diasterane a	53.916	203	44	0.8	1.0
217	DIA28RB	C28 pa 20R diasterane b	55 112	200	39	1.0	0.9
217	C2/3		55.112	976	110	1.5	2.2
217	C2788S	C27 pp 20R + C29 dia208	55 995	675	03	2.4	2.5
217	C27BB3	C27 pp 205 sterane	56.969	744	119	2.4	2.1
217	DIACOR	C20 Re 20P diactorana	57.403	906	108	2.5	2.0
217	C285	C28 mm 20S sterane	59 195	316	46	12	1.0
217	C28BBR	C28 88 20R sterane(+5 8gg)	59 928	534	68	2.1	1.5
217	C28BBS	C28 BB 20S sterane	60 294	534	77	2.1	1.5
217	C28R	C28 nm 20R sterane	61 458	506	51	2.0	1.1
217	C298	C29 gg 20S sterane	62 719	364	50	14	1.1
217	C29BBR	C29 BB 20R sterane(+5 $\beta\alpha\alpha$)	63 548	604	79	2.3	1.8
217	C29BBS	C29 BB 20S sterane	63.818	580	69	2.2	1.5
217	C29R	C29 aa 20R sterane	65.251	619	76	2.4	1.7
218	C27ABBR	C27 BB 20R sterane	55.597	844	141	3.3	3.1
218	C27ABBS	C27 BB 20S sterane	55,985	701	114	2.7	2.5
218	C28ABBR	C28 ββ 20R sterane	59.928	648	96	2.5	2.1
218	C28ABBS	C28 ββ 20S sterane	60.316	685	106	2.6	2.4
218	C29ABBR	C29 ββ 20R sterane	63.516	736	104	2.8	2.3
218	C29ABBS	C29 ββ 20S sterane	63.818	678	95	2.6	2.1
218	C30ABBR	C30 ββ 20R sterane	66.500	202	33	0.8	0.7
218	C30ABBS	C30 ββ 20S sterane	66.759	262	32	1.0	0.7

Com Well Dept	ipany: Name: th:	Colorado State University Nonesuch Formation Core Samples 3074.60 -		Client ID: Project #: Lab ID:	517-2.5 BH-79239 612180626		
Sam	pling Point			File Name:	1015160276	.U	
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
259	D27S	C27 βα 20S diasterane	48.356	427	79	1.6	1.8
259	D27R	C27 βα 20R diasterane	49.919	324	52	1.3	1.2
259	D28SA	C28 βα 20S diasterane a	52.192	213	33	0.8	0.7
259	D28SB	C28 βα 20S diasterane b	52.451	166	27	0.6	0.6
259	D28RA	C28 $\beta \alpha$ 20R diasterane a	53.905	172	34	0.7	0.8
259	D28RB	C28 βα 20R diasterane b	54.056	145	28	0.6	0.6
259	D29S	C29 βα 20S diasterane	55.737	317	40	1.2	0.9
259	D29R	C29 βα 20R diasterane	57.461	248	33	1.0	0.7
259	C30TP1	C30 tetracyclic polyprenoid	67.028	461	80	1.8	1.8
259	C30TP2	C30 tetracyclic polyprenoid	67.168	467	68	1.8	1.5

Company: Well Name: Depth: Sampling Point:	Colorado State University Nonesuch Formation Core Samples 3074.60 -	Client ID: Project #: Lab ID: File Name:	517-2.5 BH-79239 6121806260 M5160276.D
	Miscellaneous Ratios	By Areas	By Heights
	Steroids		
	%C27 αββS (218)	34.0	36.2
	%C28 αββS (218)	33.2	33.7
	%C29 αββS (218)	32.8	30.2
-	C30 αββS Sterane Index (218)	11.3	9.2
	C30 S+R Sterane Index (218)	9.8	9.0
	C ₂₇ /C ₂₉ (αββS) (218)	1.03	1.20
	C ₂₈ /C ₂₉ (αββS) (218)	1.01	1.12
	C ₂₉ /C ₂₇ (αββS) (218)	0.97	0.83
	%C27 αααR (217)	39.8	48.2
	%C28 αααR (217)	27.1	20.8
	%C29 αααR (217)	33.1	31.0
	S/R (C ₂₉ ααα) (217)	0.59	0.66
	S/(S+R) (C ₂₉ aaa) (217)	0.37	0.40
	ββ/(αα+ββ) (C ₂₉) (217)	0.55	0.54
	αββS/αααR (C ₂₉) (217)	0.94	0.91
	$(C_{21}+C_{22})/(C_{27}+C_{28}+C_{29})$ (217)	0.13	0.14
	Diaster/aaa Ster (C ₂₇) (217)	0.91	0.82
	Terpenoids		
	C19/C23 Tricyclic terpanes	0.09	0.13
	C23/C24 Tricyclic terpanes	1.80	1.71
	C26/C25 Tricyclic terpanes	1.02	1.08
	C24 Tetracyclic/C26 Tricyclics	0.39	0.32
	C24 Tetracyclic/Hopane	0.10	0.09
	To/Tm trisportionanes	0.56	0.59
	Ts/Ts+Tm) trisport opanes	0.36	0.35
	C29Ts/C29 Hopane	0.00	0.57
	Bisnorhopane/Hopane	0.08	0.07
	Norhopane/Hopane	0.68	0.64
	Diahopane/Hopane		
	Oleanane/Hopane		
	Gammacerane/Hopane	0.15	0.13
	Moretane/(Moretane+Hopane)	0.13	0.13
	H32 S/(S+R) Homohopanes	0.59	0.59
	H35/H34 Homohopanes	0.73	1.02
	[Steranes]/[Hopanes]	0.40	0.38
	[Tricyclic terpanes]/[Hopanes]	0.73	0.88
	[Tricyclic terpanes]/[Steranes]	1.83	2.34

Com Well Dept	pany: Name: h:	Colorado State University Nonesuch Formation Core Samples 3065.00 -		Client ID: Project #: Lab ID:	517-3 BH-79239 61218062	62	
Sam	pling Point:			File Name:	M5160277	7.D	
	Poak	Compound	Pot	_		0.000	nnm
lon	Label	Name	Time	Area	Height	(Area)	(Haht)
217	CHOL	5 β cholane (internal standard)	42.204	20564	3474	100.0	100.0
123	LABD	labdane					
123	RIMU	rimuane					
123	PIM	pimarane					
123	ENTBEY	ent-beyerane					
123	ISOPIM	isopimarane					
123	B_PHYLLO	β-phyllocladane					
123	B_KAUR	β-kaurane					
123	A_PHYLLO	α-phyllocladane					
125	BCAROT	β-carotane					
187	4MDIAM	4-methyldiamantane	9.250	1443	604	7.0	17.4
187	1MDIAM	1-methyldiamantane	9.852	1121	434	5.5	12.5
187	3MDIAM	3-methyldiamantane	10.228	1202	497	5.8	14.3
188	DIAM	diamantane	9.099	693	285	3.4	8.2
191	TR19	C19 tricyclic terpane					
191	TR20	C20 tricyclic terpane	21.693	426	67	2.1	1.9
191	TR21	C21 tricyclic terpane	25.017	362	83	1.8	2.4
191	TR22	C22 tricyclic terpane					
191	TR23	C23 tricyclic terpane	32.636	716	128	3.5	3.7
191	TR24	C24 tricyclic terpane	35.050	443	76	2.2	2.2
191	DESAOL	des-A-oleanane					
191	DESALU	des-A-lupane	10.105	017			
191	TRZOA	C25 tricyclic terpane (a)	40.135	217	31	1.1	0.9
101	TR25B	C25 tricyclic terpane (b)	40.232	152	40	0.7	1.2
101	TRICA	C26 triovalia tempana (a)					
101	TRZOA	C26 tricyclic terpane (b)					
101	TP284	C28 tricyclic terpane (a)					
191	TR28R	C28 tricyclic terpane (b)					
191	TR294	C29 tricyclic terpane (a)					
191	TR29B	C29 tricyclic terpane (b)					
191	TR30A	C30 tricyclic terpane (a)					
191	TR30B	C30 tricyclic terpane (b)					
191	TS	Ts 18α(H)-trisnorhopane					
191	ТМ	Tm 17α(H)-trisnorhopane					
191	H28	C28 17a18a21B(H)-bisnorhopane					
191	NOR25H	C29 Nor-25-hopane					
191	H29	C29 Tm 17α(H)21β(H)-norhopane	65.078	671	103	3.3	3.0
191	C29TS	C29 Ts 18α(H)-norneohopane					
191	DH30	C30 17a(H)-diahopane					
191	M29	C29 normoretane					
191	OL	oleanane					
191	H30	C30 17a(H)-hopane	68.537	943	132	4.6	3.8
191	M30	C30 moretane					

Com Well Dept	pany: Name: h:	Colorado State University Nonesuch Formation Core Samples 3065.00 -		Client ID: Project #: Lab ID:	517-3 BH-79239 61218062	62	
Sam	pling Point:			File Name:	M5160277	'.D	
_	Deals	0	Det		_		-
lon	l abel	Name	Time	Area	Height	(Area)	(Haht)
191	H31S	C31 22S 17a(H) hopane	72.577	395	63	1.9	1.8
191	H31R	C31 22R 17 α (H) hopping	73.094	282	52	1.4	1.5
191	GAM	gammacerane					
191	H32S	C32 22S 17α(H) hopane					
191	H32R	C32 22R 17a(H) hopane					
191	H33S	C33 22S 17a(H) hopane					
191	H33R	C33 22R 17a(H) hopane					
191	H34S	C34 22S 17α(H) hopane					
191	H34R	C34 22R 17a(H) hopane					
191	H35S	C35 22S 17a(H) hopane					
191	H35R	C35 22R 17a(H) hopane					
205	H31_2ME	C31- 2α-methylhopane					
205	H31S_205	C31 22S 17α(H) hopane					
205	H31R_205	C31 22R 17a(H) hopane					
205	H31_3ME	C31 3β-methylhopane					
217	S21	C21 sterane					
217	S22	C22 sterane					
217	DIA27S	C27 βα 20S diasterane					
217	DIA27R	C27 βa 20R diasterane					
217	DIA28SA	C28 βα 20S diasterane a					
217	DIA28SB	C28 βα 20S diasterane b					
217	DIA28RA	C28 βα 20R diasterane a					
217	DIA28RB	C28 βα 20R diasterane b					
217	C27S	C27 αα 20S sterane					
217	BB_D29S	C27 ββ 20R + C29 dia20S					
217	C27BBS	C27 pp 20S sterane					
217	C2/R	C27 αα 20R sterane	67.604	42.0	70	2.4	2.0
217	CORS	C29 βα 20R diasterane	57.504	438	70	2.1	2.0
217	C283	C28 aa 208 sterane					
217	CZOBBR	C28 ββ 20R sterane(+5 βαα)					
217	C288	C28 are 20B sterane					
217	C288	C20 aa 20K sterane					
217	C29BBR	C29 BB 20R sterane(+5 Bgg)					
217	C29BBS	C29 BB 20S sterane					
217	C298	C29 gg 200 sterane					
218	C27ABBR	C27 BB 20R sterane	55.607	189	23	0.9	0.7
218	C27ABBS	C27 BB 20S sterane	56.028	140	23	0.7	0.7
218	C28ABBR	C28 ββ 20R sterane	59.906	129	22	0.6	0.6
218	C28ABBS	C28 ββ 20S sterane	60.294	170	27	0.8	0.8
218	C29ABBR	C29 ββ 20R sterane	63.494	217	27	1.1	0.8
218	C29ABBS	C29 ββ 20S sterane	63.785	202	23	1.0	0.7
218	C30ABBR	C30 ββ 20R sterane					
218	C30ABBS	C30 ββ 20S sterane					

Com Well Dept	pany: Name: th:	Colorado State University Nonesuch Formation Core Samples 3065.00 -		Client ID: Project #: Lab ID: File Name:	517-3 BH-79239 612180626 M5160277	52 D	
loan	ping rome.			The Hume.	110100217		- 7
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hqht)
259	D27S	C27 βα 20S diasterane					
259	D27R	C27 βα 20R diasterane					
259	D28SA	C28 βα 20S diasterane a					
259	D28SB	C28 βα 20S diasterane b					
259	D28RA	C28 βα 20R diasterane a					
259	D28RB	C28 βα 20R diasterane b					
259	D29S	C29 βα 20S diasterane					
259	D29R	C29 βα 20R diasterane					
259	C30TP1	C30 tetracyclic polyprenoid					
259	C30TP2	C30 tetracyclic polyprenoid					

Company: Well Name: Depth: Sampling Point:	Colorado State University Nonesuch Formation Core Samples 3065.00 -	Client ID: Project #: Lab ID: File Name:	517-3 BH-79239 6121806262 M5160277.D
	Miscellaneous Ratios	By Areas	By Heights
	Steroids		
	%C27 αββS (218)	27.3	31.5
	%C28 αββS (218)	33.2	37.0
	%C29 αββS (218)	39.5	31.5
	C30 αββS Sterane Index (218)	0.0	0.0
	C30 S+R Sterane Index (218)	0.0	0.0
	C ₂₇ /C ₂₉ (αββS) (218)	0.69	1.00
	C ₂₉ /C ₂₉ (αββS) (218)	0.84	1.17
	C ₂₀ /C ₂₇ (αββS) (218)	1.44	1.00
	%C27 aaaR (217)		
	%C28 aaaR (217)		
	%C29 aaaR (217)		
	S/R (C29 aaa) (217)		
	S/(S+R) (C29 aaa) (217)		
	ββ/(αα+ββ) (C ₂₉) (217)		
	αββS/αααR (C23) (217)		
	(C ₂₁ +C ₂₂)/(C ₂₇ +C ₂₈ +C ₂₉) (217)	0.00	0.00
	Diaster/aaa Ster (C27) (217)		
	Terpenoids		
	C19/C23 Tricyclic terpanes		
	C23/C24 Tricyclic terpanes	1.62	1.68
	C26/C25 Tricyclic terpanes	0.00	0.00
	C24 Tetracyclic/C26 Tricyclics		
	C24 Tetracyclic/Hopane		
	Ts/Tm trisnorhopanes		
	Ts/(Ts+Tm) trisnorhopanes		
	C29Ts/C29 Hopane		
	Bisnorhopane/Hopane		
	Norhopane/Hopane	0.71	0.78
	Diahopane/Hopane	20.29A	
	Oleanane/Hopane		
	Gammacerane/Hopane		
	Moretane/(Moretane+Hopane)		
	H32 S/(S+R) Homohopanes		
	H35/H34 Homohopanes		
	[Steranes]/Honanes]	0.10	0.20
	[Tricyclic ternanes]/[Honanes]	1.01	1.21
	[Tricyclic terpanes]/[Steranes]	5.29	6.07

*					
Weatherford [®]			SATUR	ATE	GCMS
Company: Colorado State University Country: Basin: Lease: Block: Field: Well Name: Colorado State University Samples Latitude: Longitude: Preparation:	Client ID: Project #: Lab ID: Sample Type: Sampling Point: Formation: Geologic Age: Top Depth: Bottom Depth: GCMS Method:	523-1 BH-79915 612183632 Core 2814.70 M60A	2		
m/z 191: Tri- and Pentacyclics M216040	7.D RATIOS (on A	Areas) ¹			TEV3
	Steranes (m/z 2	17: 218)		Pr Pr	
	%C ₂₇ αββS (218)		36,8	D	
	%C ₂₈ αββS (218)		31.0	D	
	%C ₂₉ αββS (218)		32.3	D	
	%C ₂₇ αααR (217)			D	
	%C28 aaaR (217)		47.4	D	
الاست. () ا	%C ₂₉ aaaR (217)		52.6	D	
	S/(S+R) (C29 aaa) (217)		М	0.55 (0.8%)
The second state of the se	ββS/(ββS+ααR) (C29) (217)	0.00	м	0.70 (0.9%)
ى مى ئى مەركە جەركە بايە بۇيەرلە ۋىلەرلىغۇر ئەيغۇر ئەر كىغا بايەرا بايەر بىر مەر مەر	(C21+C22)/(C27+C2	(217) (217)	0.00		
	C ₂₇ /C ₂₈ (αββS) (2	18)	1.14	D	
	C ₂₈ /C ₂₉ (αββS) (2	18)	0.96	D	
m/z 217: Steranes M216040	7.D Diaster/aaa Ster	(C ₂₇) (217)		M/D	1.00 (1.4%)
	C30 αββS Steran	e Index (218)		D	
	C30 S+R Sterane	Index (218)	0.00	D	
	Terpanes (m/z 1	91)			
	Oleanane/Hopane	9		D/A	
ll i da l'i tilli dal dal da i i da da l	Gammacerane/H	opane		D	
WAR and Bline Ward with a literin intersection (1997) and in a state of the state of the second state of the	Norhopane/Hopan	ne	0.82	D	
lik, terakan kulondari kulondari kulondari a kulon. Walikawa jiwiki kulonda uwika wakikawa	Bisnorhopane/Ho	pane			
L	Diahopane/Hopar	ne		M/D	0.05 (0.70/)
	Moretane/Hopane	;		M	0.05 (0.7%)
	Te//Te+Tm) trienc	vhonanes		M/D	1.00 (1.4%)
<u>[.</u>	C29Ts/C29 Hopa	ne		M	
m/z 218: BB Steranes M216040	7.D H32 S/(R+S) Hon	nohopanes		M	0.60 (0.6%)
malouto malouto	H35/H34 Homoho	panes		D	0.00 (0.070)
	C24 Tetracyclic/H	opane	0.00	D	
	C24 Tetracyclic/C	26 Tricyclics		D	
	C23/C24 Tricyclic	terpanes	1.85	D	
	C19/C23 Tricyclic	terpanes		D	
hader tersel, we filt der der an verhallte state Helle Alle alle Verhallte der Merchen und Kaller einer sind se	C26/C25 Tricyclic	terpanes		D	
PRIMA THE CAMPACTURE PRIMA THE WAY AND THE PARTY AND AND A THE AND A DECEMBER OF THE ADDRESS OF THE ADDRESS OF	(C28+C29 Tricycl	ics)/Ts		А	
an na tha an a baile a baile and a state a state of the stat	Various (m/z 19	1; 217)			
	Steranes/Hopane	s	0.66	D	
	Tricyclic terpanes	/Hopanes	1.02	М	1.00 (1.4%)
	Tricyclic terpanes	/Steranes	1.55	M/D	1.00 (1.4%)

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity; B=Possible Biodegradation ³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well Dept Sam	pany: Name: h: pling Point:	Colorado State University Colorado State University Samples 2814.70 -		Client ID: Project #: Lab ID: File Name:	523-1 BH-79915 61218363 M2160407	22 .D	
_	56 - 57 						
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
217	CHOL	5 β cholane (internal standard)	42.280	34552	5045	100.0	100.0
123	LABD	labdane					
123	RIMU	rimuane					
123	PIM	pimarane					
123	ENTBEY	ent-beyerane					
123	ISOPIM	isopimarane					
123	B_PHYLLO	β-phyllocladane					
123	B_KAUR	β-kaurane					
123	A_PHYLLO	α-phyllocladane					
125	BCAROT	β-carotane					
187	4MDIAM	4-methyldiamantane	9.222	3599	1079	10.4	21.4
187	1MDIAM	1-methyldiamantane	9.815	2309	641	6.7	12.7
187	3MDIAM	3-methyldiamantane	10.198	1881	491	5.4	9.7
188	DIAM	diamantane	9.065	1725	541	5.0	10.7
191	TR19	C19 tricyclic terpane	04 005			2.0	0.0
191	TR20	C20 tricyclic terpane	21.665	1149	142	3.3	2.8
101	TR21	C21 tricyclic terpane	20.046	1147	103	3.3	3.0
101	TP23	C22 tricyclic terpane	20.490	1775	241	5.1	1.4
101	TR23	C25 tricyclic terpane	35.167	059	143	2.9	4.0
191	DESAOL	des-A-desnane	33.107	333	145	2.0	2.0
191	DESALLI	des-A-lunane					
191	TR25A	C25 tricyclic temane (a)					
191	TR25B	C25 tricyclic terpane (b)					
191	DESEHOP	des-E-hopane					
191	TR26A	C26 tricyclic terpane (a)					
191	TR26B	C26 tricyclic terpane (b)					
191	TR28A	C28 tricyclic terpane (a)					
191	TR28B	C28 tricyclic terpane (b)					
191	TR29A	C29 tricyclic terpane (a)					
191	TR29B	C29 tricyclic terpane (b)					
191	TR30A	C30 tricyclic terpane (a)					
191	TR30B	C30 tricyclic terpane (b)					
191	TS	Ts 18α(H)-trisnorhopane					
191	тм	Tm 17α(H)-trisnorhopane					
191	H28	C28 17 α 18 α 21 β (H)-bisn orhopane					
191	NOR25H	C29 Nor-25-hopane					
191	H29	C29 Tm 17α(H)21β(H)-norhopane	65.155	1613	215	4.7	4.3
191	C29TS	C29 Ts 18a(H)-norneohopane					
191	DH30	C30 17a(H)-diahopane					
191	M29	C29 normoretane					
191	OL	oleanane					
191	H30	C30 17α(H)-hopane	68.625	1971	267	5.7	5.3
191	M30	C30 moretane					

Com Well Dept	pany: Name: h:	Colorado State University Colorado State University Samples 2814.70 -		Client ID: Project #: Lab ID:	523-1 BH-79915 612183632	22	
Sam	pling Point:			File Name:	M2160407	.D	
	Peak	Compound	Ret.			ppm	maa
lon	Label	Name	Time	Area	Height	(Area)	(Hght)
191	H31S	C31 22S 17α(H) hopane	72.670	946	137	2.7	2.7
191	H31R	C31 22R 17a(H) hopane	73.193	698	125	2.0	2.5
191	GAM	gammacerane					
191	H32S	C32 22S 17α(H) hopane					
191	H32R	C32 22R 17a(H) hopane					
191	H33S	C33 22S 17α(H) hopane					
191	H33R	C33 22R 17a(H) hopane					
191	H34S	C34 22S 17a(H) hopane					
191	H34R	C34 22R 17a(H) hopane					
191	H35S	C35 22S 17a(H) hopane					
191	H35R	C35 22R 17a(H) hopane					
205	H31_2ME	C31- 2α-methylhopane					
205	H31S_205	C31 22S 17α(H) hopane					
205	H31R_205	C31 22R 17a(H) hopane					
205	H31_3ME	C31 3β-methylhopane					
217	S21	C21 sterane					
217	S22	C22 sterane					1212
217	DIA27S	C27 βα 20S diasterane	48.435	856	102	2.5	2.0
217	DIA2/R	C27 βα 20R diasterane	49.987	539	11	1.6	1.5
217	DIA28SA	C28 βα 20S diasterane a					
217	DIA28SB	C28 βα 20S diasterane b					
217	DIA28RA	C28 βα 20R diasterane a					
217	COZE	C28 pa 20R diasterane b					
217	C2/3	C27 44 205 stelane					
217	C2788S	C27 pp 20R + C29 dia208					
217	C27863	C27 pp 203 sterane					
217	DIA29P	C29 Br 20R dissterane	57 553	878	97	24	19
217	C28S	C28 gg 208 sterane	51.555	020	51	2.4	1.5
217	C28BBR	C28 88 208 sterane(+5 8gg)					
217	C28BBS	C28 BB 20S sterane					
217	C28R	C28 gg 208 sterane	61,563	573	73	1.7	1.4
217	C29S	C29 aa 20S sterane	01.000	0,0	,,,		
217	C29BBR	C29 ββ 20R sterane(+5 βαα)					
217	C29BBS	C29 ββ 20S sterane					
217	C29R	C29 aa 20R sterane	65.347	637	82	1.8	1.6
218	C27ABBR	C27 ββ 20R sterane	55.688	668	55	1.9	1.1
218	C27ABBS	C27 ββ 20S sterane	56.089	451	60	1.3	1.2
218	C28ABBR	C28 ββ 20R sterane	60.012	401	45	1.2	0.9
218	C28ABBS	C28 ββ 20S sterane	60.378	380	41	1.1	0.8
218	C29ABBR	C29 ββ 20R sterane	63.603	499	48	1.4	1.0
218	C29ABBS	C29 ββ 20S sterane	63.917	396	52	1.1	1.0
218	C30ABBR	C30 ββ 20R sterane					
218	C30ABBS	C30 ββ 20S sterane					

Com Well Dept	pany: Name: th:	Colorado State University Colorado State University Samples 2814.70 -		Client ID: Project #: Lab ID: File Name:	523-1 BH-79915 612183632 M2160407	2	
Joann	ping rome.			The Name.	11/2 100407.	<u> </u>	
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
259	D27S	C27 βα 20S diasterane	48.470	276	53	0.8	1.1
259	D27R	C27 βα 20R diasterane	50.039	207	42	0.6	0.8
259	D28SA	C28 βα 20S diasterane a					
259	D28SB	C28 βα 20S diasterane b					
259	D28RA	C28 βα 20R diasterane a					
259	D28RB	C28 βα 20R diasterane b					
259	D29S	C29 βα 20S diasterane					
259	D29R	C29 βα 20R diasterane					
259	C30TP1	C30 tetracyclic polyprenoid					
259	C30TP2	C30 tetracyclic polyprenoid					
_							
1							

Company: Well Name: Depth:	Colorado State University Colorado State University Samples 2814.70 -	Client ID: Project #: Lab ID:	523-1 BH-79915 6121836322
Sampling Point:		File Name:	M2160407.D
	Miscellaneous Ratios	By Areas	By Heights
	Steroids		
	%C27 αββS (218)	36.8	39.2
	%C28 αββS (218)	31.0	26.8
	%C29 αββS (218)	32.3	34.0
	C30 αββS Sterane Index (218)	0.0	0.0
	C30 S+R Sterane Index (218)	0.0	0.0
	C ₂₇ /C ₂₉ (αββS) (218)	1.14	1.15
	C ₂₈ /C ₂₉ (αββS) (218)	0.96	0.79
	C ₂₉ /C ₂₇ (αββS) (218)	0.88	0.87
	9(-027		
	%C27 aaaR (217)	47.4	47.4
	%C20 aaaR (217)	47.4	47.1 52.0
	S/R (C agg) (217)	52.0	52.5
	S/(S+R) (C ggg) (217)		
	$BB/(aa+BB)(C_{aa})(217)$	0.00	0.00
	abbS/agaR (Con) (217)	0.00	0.00
	$(C_{24}+C_{22})/(C_{22}+C_{22}+C_{22})$ (217)	0.00	0.00
	Diaster/ aaa . Ster (C ₂₂) (217)	0.00	0.00
	Terpenoids		
	C19/C23 Tricyclic terpanes		
	C23/C24 Tricyclic terpanes	1.85	1.69
	C26/C25 Tricyclic terpanes		
	C24 Tetracyclic/C26 Tricyclics		
	C24 Tetracyclic/Hopane		
	Ts/Tm trisnorhopanes		
	Ts/(Ts+Tm) trisnorhopanes		
	C29Ts/C29 Hopane		
	Bisnorhopane/Hopane		
	Norhopane/Hopane	0.82	0.81
	Diahopane/Hopane		
	Oleanane/Hopane		
	Gammacerane/Hopane		
	Moretane/(Moretane+Hopane)		
	H32 S/(S+R) Homohopanes		
	H35/H34 Homohopanes		
	[Steranes]/[Hopanes]	0.66	0.58
	[Incyclic terpanes]/[Hopanes]	1.02	1.01
	[Incyclic terpanes]/[Steranes]	1.55	1./4
L			

¹Definition and utility of the ratios can be found on our website www.brilabs.com

²A=Source Age; D=Depositional environment; M= Maturity; B=Possible Biodegradation

³Thermal equilibrium value of the biomarker ratio and in brackets the approximate VR value at which this value is reached

Com Well Dept	pany: Name: h:	Colorado State University Colorado State University Samples 2819.00 -		Client ID: Project #: Lab ID:	523-3 BH-79915 61218363	26	
Sam	ping Font.			File Maille.	11/2 100400	0.0	
lon	Peak Label	Compound Name	Ret. Time	Area	Height	ppm (Area)	ppm (Hght)
217	CHOL	5β cholane (internal standard)	42.246	35562	6052	100.0	100.0
123	LABD	labdane					
123	RIMU	rimuane					
123	PIM	pimarane					
123	ENTBEY	ent-beyerane					
123	ISOPIM	isopimarane					
123	B_PHYLLO	β-phyllocladane					
123	B_KAUR	β-kaurane					
123	A_PHYLLO	α-phyllocladane					
125	BCAROT	β-carotane					
187	4MDIAM	4-methyldiamantane	9.205	9989	4055	28.1	67.0
187	1 MDIAM	1-methyldiamantane	9.815	6510	2071	18.3	34.2
187	3MDIAM	3-methyldiamantane	10.181	5560	1845	15.6	30.5
188	DIAM	diamantane	9.048	4633	1709	13.0	28.2
191	TR19	C19 tricyclic terpane					
191	TR20	C20 tricyclic terpane	21.683	1060	236	3.0	3.9
191	TR21	C21 tricyclic terpane	25.029	2046	343	5.8	5.7
191	TR22	C22 tricyclic terpane	28.427	590	145	1.7	2.4
191	TR23	C23 tricyclic terpane	32.692	3558	560	10.0	9.3
191	TR24	C24 tricyclic terpane	35.098	2087	348	5.9	5.8
191	DESAOL	des-A-oleanane					
191	DESALU	des-A-lupane					
191	TR25A	C25 tricyclic terpane (a)	40.172	993	160	2.8	2.6
191	TR25B	C25 tricyclic terpane (b)	40.276	1132	132	3.2	2.2
191	DESEHOP	des-E-hopane	43.415	1106	171	3.1	2.8
191	TR26A	C26 tricyclic terpane (a)	44.025	843	135	2.4	2.2
191	TR26B	C26 tricyclic terpane (b)	44.373	1012	166	2.8	2.7
191	TR28A	C28 tricyclic terpane (a)	52.951	991	139	2.8	2.3
191	TR28B	C28 tricyclic terpane (b)	53.597	792	115	2.2	1.9
191	TR29A	C29 tricyclic terpane (a)	55.567	851	121	2.4	2.0
191	TR29B	C29 tricyclic terpane (b)	56.264	670	106	1.9	1.8
191	TR30A	C30 tricyclic terpane (a)	60.483	648	101	1.8	1.7
191	TR30B	C30 tricyclic terpane (b)	61.303	638	94	1.8	1.6
191	TS	Ts 18α(H)-trisnorhopane	57.694	1102	173	3.1	2.9
191	тм	Tm 17α(H)-trisnorhopane	59.333	1236	204	3.5	3.4
191	H28	C28 17α18α21β(H)-bisnorhopane					
191	NOR25H	C29 Nor-25-hopane	63.953	843	132	2.4	2.2
191	H29	C29 Tm 17α(H)21β(H)-norhopane	65.104	4097	637	11.5	10.5
191	C29TS	C29 Ts 18α(H)-norneohopane	65.365	1093	151	3.1	2.5
191	DH30	C30 17a(H)-diahopane	66.150	291	101	0.8	1.7
191	M29	C29 normoretane	67.109	485	100	1.4	1.7
191	OL	oleanane					
191	H30	C30 17a(H)-hopane	68.591	5329	782	15.0	12.9
191	M30	C30 moretane	70.160	1024	128	2.9	2.1

Com Well Dept	pany: Name: h:	Colorado State University Colorado State University Samples 2819.00 -		Client ID: Project #: Lab ID:	523-3 BH-79915 612183632	26	
Sam	pling Point:			File Name:	M2160408	.D	
	Poak	Compound	Bot			0.000	nnm
lon	Label	Name	Time	Area	Height	(Area)	(Haht)
191	H31S	C31 22S 17a(H) hopane	72.688	2147	308	6.0	5.1
191	H31R	C31 22R 17a(H) hopane	73.193	1643	211	4.6	3.5
191	GAM	gammacerane	73.612	679	107	1.9	1.8
191	H32S	C32 22S 17a(H) hopane	75.878	1324	175	3.7	2.9
191	H32R	C32 22R 17a(H) hopane	76.576	1112	146	3.1	2.4
191	H33S	C33 22S 17α(H) hopane	79.644	813	157	2.3	2.6
191	H33R	C33 22R 17a(H) hopane	80.586	722	98	2.0	1.6
191	H34S	C34 22S 17α(H) hopane	83.498	523	100	1.5	1.7
191	H34R	C34 22R 17a(H) hopane	84.648	389	82	1.1	1.4
191	H35S	C35 22S 17a(H) hopane					
191	H35R	C35 22R 17a(H) hopane					
205	H31_2ME	C31- 2a-methylhopane	68.939	301	55	0.8	0.9
205	H31S_205	C31 22S 17a(H) hopane	72.653	565	86	1.6	1.4
205	H31R_205	C31 22R 17a(H) hopane	73.176	568	76	1.6	1.3
205	H31_3ME	C31 3β-methylhopane					
217	S21	C21 sterane	29.020	1556	204	4.4	3.4
217	S22	C22 sterane	33.773	665	111	1.9	1.8
217	DIA27S	C27 βα 20S diasterane	48.418	1429	205	4.0	3.4
217	DIA27R	C27 βα 20R diasterane	49.988	1010	156	2.8	2.6
217	DIA28SA	C28 βα 20S diasterane a	52.271	709	88	2.0	1.5
217	DIA28SB	C28 βα 20S diasterane b	52.498	675	91	1.9	1.5
217	DIA28RA	C28 βα 20R diasterane a	53.945	502	83	1.4	1.4
217	DIA28RB	C28 βα 20R diasterane b	54.137	638	78	1.8	1.3
217	C27S	C27 aa 20S sterane	55.166	665	111	1.9	1.8
217	BB_D29S	C27 ββ 20R + C29 dia20S	55.671	1720	174	4.8	2.9
217	C27BBS	C27 ββ 20S sterane	56.055	1046	124	2.9	2.0
217	C27R	C27 aa 20R sterane	56.944	955	129	2.7	2.1
217	DIA29R	C29 βα 20R diasterane	57.537	1822	185	5.1	3.1
217	C28S	C28 aa 20S sterane	59.298	665	74	1.9	1.2
217	C28BBR	C28 ββ 20R sterane(+5 βαα)	59.943	830	97	2.3	1.6
217	C28BBS	C28 ββ 20S sterane	60.379	822	106	2.3	1.8
217	C28R	C28 aa 20R sterane	61.564	1546	126	4.3	2.1
217	C29S	C29 aa 20S sterane	62.750	669	86	1.9	1.4
217	C29BBR	C29 ββ 20R sterane(+5 βαα)	63.604	1345	124	3.8	2.0
217	C29BBS	C29 ββ 20S sterane	63.918	898	90	2.5	1.5
217	C29R	C29 aa 20R sterane	65.348	1725	204	4.9	3.4
218	C27ABBR	C27 ββ 20R sterane	55.636	1114	162	3.1	2.7
218	C27ABBS	C27 ββ 20S sterane	56.072	924	146	2.6	2.4
218	C28ABBR	C28 ββ 20R sterane	60.013	840	106	2.4	1.8
218	C28ABBS	C28 ββ 20S sterane	60.361	819	107	2.3	1.8
218	C29ABBR	C29 ββ 20R sterane	63.604	1030	143	2.9	2.4
218	C29ABBS	C29 ββ 20S sterane	63.901	915	126	2.6	2.1
218	C30ABBR	C30 ββ 20R sterane					
218	C30ABBS	C30 ββ 20S sterane					

Com Well Dept Sam	pany: Name: h: pling Point	Colorado State University Colorado State University Samples 2819.00 - t:		Client ID: Project #: Lab ID: File Name:	523-3 BH-79915 612183632 M2160408.	6 D	
_						-	
lon	Peak Label	Compound Name	Ret. Time	Δrea	Height	ppm (Area)	ppm (Habt)
259	D27S	C27 Bg 20S diasterane	48 436	925	154	2.6	2.5
259	D27R	C27 βα 20R diasterane	49.988	651	102	1.8	1.7
259	D28SA	C28 βα 20S diasterane a	52.237	467	61	1.3	1.0
259	D28SB	C28 βα 20S diasterane b	52.550	437	55	1.2	0.9
259	D28RA	C28 βα 20R diasterane a	53.910	370	58	1.0	1.0
259	D28RB	C28 βα 20R diasterane b	54.154	276	45	0.8	0.7
259	D29S	C29 βα 20S diasterane	55.811	652	65	1.8	1.1
259	D29R	C29 βα 20R diasterane	57.519	389	56	1.1	0.9
259	C30TP1	C30 tetracyclic polyprenoid	67.144	235	42	0.7	0.7
259	C30TP2	C30 tetracyclic polyprenoid	67.266	281	48	0.8	0.8
_							

Company: Well Name: Depth: Sampling Point:	Colorado State University Colorado State University Samples 2819.00 -	Client ID: Project #: Lab ID: File Name:	523-3 BH-79915 6121836326 M2160408.D
	Miscellaneous Ratios	By Areas	By Heights
	Steroids		
	%C27 αββS (218)	34.8	38.5
	%C28 αββS (218)	30.8	28.2
	%C29 αββS (218)	34.4	33.2
	C30 αββS Sterane Index (218)	0.0	0.0
	C30 S+R Sterane Index (218)	0.0	0.0
	C ₂₇ /C ₂₉ (αββS) (218)	1.01	1.16
	C ₂₈ /C ₂₉ (αββS) (218)	0.90	0.85
	C ₂₈ /C ₂₇ (αββS) (218)	0.99	0.86
	%C27 aaaR (217)	22.6	28.1
	%C28 αααR (217)	36.6	27.5
	%C29 aaaR (217)	40.8	44.4
-	S/R (C ₂₉ α.αα) (217)	0.39	0.42
	S/(S+R) (C ₂₉ ααα) (217)	0.28	0.30
	ββ/(αα+ββ) (C ₂₈) (217)	0.48	0.42
	αββS/αααR (C ₂₉) (217)	0.52	0.44
	$(C_{21}+C_{22})/(C_{27}+C_{28}+C_{29})$ (217)	0.11	0.14
	Diaster/aaa Ster (C ₂₇) (217)	1.51	1.50
	Terpenoids		
	C19/C23 Tricyclic terpanes		
	C23/C24 Tricyclic terpanes	1.70	1.61
	C26/C25 Tricyclic terpanes	0.87	1.03
	C24 Tetracyclic/C26 Tricyclics	0.60	0.57
	C24 Tetracyclic/Hopane	0.21	0.22
	Ts/Tm trisnorhopanes	0.89	0.85
	Ts/(Ts+Tm) trisnorhopanes	0.47	0.46
	C29Ts/C29 Hopane	0.27	0.24
	Bisnorhopane/Hopane		
	Norhopane/Hopane	0.77	0.81
	Diahopane/Hopane	0.05	0.13
	Oleanane/Hopane		
	Gammacerane/Hopane	0.13	0.14
	Moretane/(Moretane+Hopane)	0.16	0.14
	H32 S/(S+R) Homohopanes	0.54	0.55
	H35/H34 Homohopanes	0.00	0.00
	[Steranes]/[Hopanes]	0.90	0.70
	[Tricyclic terpanes]/[Hopanes]	0.82	0.87
	[Tricyclic terpanes]/[Steranes]	0.91	1.24
1			

Parameter	Formula
Steranes (m/z 217; 218)	
%C ₂₇ αββS (218)	100*C27ABBS/(C27ABBS+C28ABBS+C29ABBS)
%C ₂₈ αββS (218)	100*C28ABBS/(C27ABBS+C28ABBS+C29ABBS)
%C ₂₉ αββS (218)	100*C29ABBS/(C27ABBS+C28ABBS+C29ABBS)
%C ₂₇ αααR (217)	100*C27R/(C27R+C28R+C29R)
%C ₂₈ αααR (217)	100*C28R/(C27R+C28R+C29R)
%C ₂₉ αααR (217)	100*C29R/(C27R+C28R+C29R)
S/R (C28 aaa) (217)	C29S/C29R
S/(S+R) (C28 aaa) (217)	C29S/(C29S+C29R)
ββS/(ααR+ββS) (C29) (217)	(C29BBS+C29BBS)/(C29R+C29BBS+C29BBS+C29R)
ββ/(αα+ββ) (C ₂₈) (217)	(C29BBR+C29BBS)/(C29S+C29BBR+C29BBS+C29R)
αββS/αααR (C29) (217)	C29BBS/C29R
(C ₂₁ +C ₂₂)/(C ₂₇ +C ₂₈ +C ₂₉) (217)	(S21+S22)/(DIA27S+DIA27R+DIA28SA+DIA28SB+DIA28RA+DIA28RB+C27S+BB_D29S+C27BBS+C27R+ DIA29R+C28S+C28BBR+C28BBS+C28R+C29S+C29BBR+C29BBS+C29R)
C ₂₇ /C ₂₉ (αββS) (218)	C27ABBS/C29ABBS
C ₂₈ /C ₂₉ (αββS) (218)	C28ABBS/C29ABBS
C ₂₉ /C ₂₇ (αββS) (218)	C29ABBS/C27ABBS
Diaster/aaa Ster (C27) (217)	(DIA27S+DIA27R)/(C27S+C27R)
C30 αββS Sterane Index (218)	100*(C30ABBS)/(C27ABBS+C28ABBS+C29ABBS+C30ABBS)
C30 S+R Sterane Index (218)	100*(C30ABBR+C30ABBS)/(C27ABBR+C27ABBS+C28ABBR+C28ABBS+C29ABBR+C29ABBS+ C30ABBR+C30ABBS)
Terpanes (m/z 191)	
Oleanane/Honane	OL/H30
Gammacerane/Hopane	GAM/H30
Norhopane/Hopane	H29/H30
Bisnorbooane/Honane	128/130
Dishonane/Honane	DH30/H30
Moretane/Honane	M30/H30
Moretane/(Moretane+Honane)	M30//M30+H30)
25-nor-honane/honane	Noc25H/H30
Ts/Tm trisporhopanes	Толи
Ts//Ts+Tm) trisportopanes	TS/(TS+TM)
C29Ts/C29 Hopane	C29TS/H29
H32 S/(R+S) Homohonanes	H328/H328+H328)
H35/H34 Homobonanes	(H35B+H35S)/(H34B+H34S)
C24 Tetracyclic/Hopane	(Desebon)/H30
C24 Tetracyclic/C26 Tricyclics	(Desehop)//TD264+TD26D)
C23/C24 Triavelic tempanes	(Descripp)(1R20A+1R20B)
C19/C23 Tricyclic terpanes	Tr19/Tr23
C26/C25 Tricyclic terpanes	(TD26A+TD26D)//TD25A+TD25D)
(C28+C29 Triovelice)/Te	(Tr28A+Tr28D+Tr20A+Tr20B)///
Various (m/z 191: 217)	(1120A+1120B+1120B)(10
valious (11/2 191, 211)	
[Steranes]/[Hopanes]	(DIA27S+DIA27R+DIA28SA+DIA28SB+DIA28RA+DIA28RB+C27S+BB_D29S+C27BBS+C27R+DIA29R+ C28S+C28BBR+C28BBS+C28R+C29S+C29BBR+C29BBS+C29R)/(TS+TM+H28+H29+C29TS+DH30+H30+ H31R+H31S+H32R+H32S+H33R+H33S+H34R+H34S+H35R+H35S)
[Tricyclic terpanes]/[Hopanes]	(TR19+TR20+TR21+TR22+TR23+TR24+TR25A+TR25B+TR26A+TR26B+TR28A+TR28B+TR29A+TR29B+ TR30A+TR30B)/(TS+TM+H28+H29+C29TS+DH30+H30+H31R+H31S+H32R+H32S+H33R+H33S+H34R+ H34S+H35R+H35S)
[Tricyclic terpanes]/[Steranes]	(TR19+TR20+TR21+TR22+TR23+TR24+TR25A+TR25B+TR26A+TR26B+TR28A+TR28B+TR29A+TR29B+ TR30A+TR30B)/(DIA27S+DIA27R+DIA28SA+DIA28SB+DIA28RA+DIA28RB+C27S+BB_D29S+C27BBS+ C27R+DIA29R+C28S+C28BBR+C28BBS+C28R+C29S+C29BBR+C29BBS+C29R)
50	

Parameter	Formula
Steranes (m/z 217; 218)	
%C ₂₇ αββS (218)	100*C27ABBS/(C27ABBS+C28ABBS+C29ABBS)
%C ₂₈ αββS (218)	100*C28ABBS/(C27ABBS+C28ABBS+C29ABBS)
%C ₂₉ αββS (218)	100*C29ABBS/(C27ABBS+C28ABBS+C29ABBS)
%C ₂₇ αααR (217)	100*C27R/(C27R+C28R+C29R)
%C ₂₈ αααR (217)	100*C28R/(C27R+C28R+C29R)
%C ₂₉ αααR (217)	100*C29R/(C27R+C28R+C29R)
S/R (C29 aaa) (217)	C295/C29R
S/(S+R) (C28 aaa) (217)	C29S/(C29S+C29R)
ββS/(ααR+ββS) (C29) (217)	(C29BBS+C29BBS)/(C29R+C29BBS+C29BBS+C29R)
ββ/(αα+ββ) (C ₂₉) (217)	(C29BBR+C29BBS)/(C29S+C29BBR+C29BBS+C29R)
αββS/αααR (C29) (217)	C29BBS/C29R
(C ₂₁ +C ₂₂)/(C ₂₇ +C ₂₈ +C ₂₉) (217)	(S21+S22)/(DIA27S+DIA27R+DIA28SA+DIA28SB+DIA28RA+DIA28RB+C27S+BB_D29S+C27BBS+C27R+ DIA29R+C28S+C28BBR+C28BBS+C28R+C29S+C29BBR+C29BBS+C29R)
C ₂₇ /C ₂₉ (αββS) (218)	C27ABBS/C29ABBS
C ₂₈ /C ₂₉ (αββS) (218)	C28ABBS/C29ABBS
C ₂₉ /C ₂₇ (αββS) (218)	C29ABBS/C27ABBS
Diaster/aaa Ster (C27) (217)	(DIA27S+DIA27R)/(C27S+C27R)
C30 αββS Sterane Index (218)	100*(C30ABBS)/(C27ABBS+C28ABBS+C29ABBS+C30ABBS)
C30 S+R Sterane Index (218)	100*(C30ABBR+C30ABBS)/(C27ABBR+C27ABBS+C28ABBR+C28ABBS+C29ABBR+C29ABBS+ C30ABBR+C30ABBS)
Terpanes (m/z 191)	
Oleanane/Hopane	OL/H30
Gammacerane/Hopane	GAM/H30
Norhopane/Hopane	H29/H30
Bisnorhopane/Hopane	H28/H30
Diahonane/Honane	DH30/H30
Moretane/Hopane	M30/H30
Moretane/(Moretane+Hopane)	M30/(M30+H30)
25-nor-hopane/hopane	Nor25H/H30
Ts/Tm trisnorhopanes	TS/TM
Ts/(Ts+Tm) trisnorhopanes	TS/(TS+TM)
C29Ts/C29 Hopane	C29TS/H29
H32 S/(R+S) Homohopanes	H32S/(H32R+H32S)
H35/H34 Homohopanes	(H35R+H35S)/(H34R+H34S)
C24 Tetracyclic/Hopane	(Desehop)/H30
C24 Tetracyclic/C26 Tricyclics	(Desehop)/(TR26A+TR26B)
C23/C24 Tricyclic terpanes	Tr23/Tr24
C19/C23 Tricyclic terpanes	Tr19/Tr23
C26/C25 Tricyclic terpanes	(TR26A+TR26B)/(TR25A+TR25B)
(C28+C29 Tricyclics)/Ts	(Tr28A+Tr28B+Tr29A+Tr29B)/TS
Various (m/z 191; 217)	
[Steranes]/[Hopanes]	(DIA27S+DIA27R+DIA28SA+DIA28SB+DIA28RA+DIA28RB+C27S+BB_D29S+C27BBS+C27R+DIA29R+ C28S+C28BBR+C28BBS+C28R+C29S+C29BBR+C29BBS+C29R)/(TS+TM+H28+H29+C29TS+DH30+H30+ H31R+H31S+H32R+H32S+H33R+H33S+H34R+H34S+H35R+H35S)
[Tricyclic terpanes]/[Hopanes]	(TR19+TR20+TR21+TR22+TR23+TR24+TR25A+TR25B+TR26A+TR26B+TR28A+TR28B+TR29A+TR29B+ TR30A+TR30B)/(TS+TM+H28+H29+C29TS+DH30+H30+H31R+H31S+H32R+H32S+H33R+H33S+H34R+ H34S+H35R+H35S)
[Tricyclic terpanes]/[Steranes]	(TR19+TR20+TR21+TR22+TR23+TR24+TR25A+TR25B+TR26A+TR26B+TR28A+TR28B+TR29A+TR29B+ TR30A+TR30B)/(DIA27S+DIA27R+DIA28SA+DIA28SB+DIA28RA+DIA28RB+C27S+BB_D29S+C27BBS+ C27R+DIA29R+C28S+C28BBR+C28BBS+C28R+C29S+C29BBR+C29BBS+C29R)

LIST OF ACRONYMS AND ABBREVIATIONS

BIR	Big Iron River
C _{carb}	carbonate carbon
CF	Copper Falls, Bad River, WI
c.g.	coarse grained
C _n	hydrocarbon containing <i>n</i> carbon atoms
Corr	organic carbon
DBF	dibenzofuran
DBT	dibenzothionhene
DMDBF	dimethyldibenzofuran
DMDBT	dimethyldibenzothionhene
DMDDT	dimethylaaphthalana
DNr	dimethylnaphthalene index
	= (1,3-DMN+1,6-DMN)/(1,4-DMN+1,5-DMN) [after Radke <i>et al.</i> , 1987]
EOM	extractable organic matter
f.g.	fine grained
FI	fluid inclusion
FL	fluorene
GC	gas chromatography
GC-MS	gas chromatography-mass spectroscopy
HC	hydrocarbon
HI	hydrogen index
LIR	Little Iron River
MDEO	Michigan Department of Environmental Quality
MDBF	methyldibenzofuran
MDBT	methyldibenzothiophene
MDR	methyldibenzothiophene ratio (per Radke <i>et al</i> 1986)
	= 4-MDBT/1-MDBT
methyldiamantane index	4-methyldiamantane/[4- + 1- + 3-methyldiamantanes] (after Fang <i>et al.</i> , 2016)
m.g.	medium grained
MP	methylphenanthrene
MPI1	methylphenanthrene index (per Radke et al., 1982)
	=1.5 (2-MP + 3-MP) / (P+1-MP+9-MP)
MS	mass spectrometry
MSD	mass selective detector
OI	oxygen index
OM	organic matter
P	phenanthrene
РАН	polycyclic aromatic hydrocarbon
РН	pyrolysis hydrous
Ph	nhytane
PIR	Presque Isle River
Pr	nristine
PPL	nlane nolarized light
RE or RE II	Rock-Eval II
DEEI	raflected light
SE	Savon Falls, Montreal River, MI
SI	stable isotone
51 C -	static isotope
32	Sanusione

SSC	sediment hosted stratiform copper
TAI	Thermal Alteration Index (after Jones and Edison, 1978)
TDS	total dissolved solids
TMN	trimethylnaphthalene
TNy	trimethylnaphthalene index
-	= (1,3,6-TMN+1,3,7-TMN)/(1,3,5-TMN+1,4,6-TMN) [after Radke <i>et al.</i> , 1987]
TSR	thermochemical sulfate reduction
UCM	unresolved complex mixture
VR	vitrinite reflectance
v.f.g.	very fine grained (likewise, v.c.g. means "very coarse grained")
VPDB	Vienna Pee Dee Belemnite
WP	White Pine, MI
XPL	cross polarized light