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ABSTRACT

SOME TOPICS ON MODEL-BASED CLUSTERING

Cluster analysis is widely applied in various areas. Model-based clustering, which as-
sumes a mixture model, is one of the most useful approaches in clustering. Using model-
based clustering, we can make statistical inferences and obtain uncertainty estimates for
parameters or clustering assignments. Traditional model-based clustering methods often
assume a Gaussian mixture model which may not perform well in real applications such
as data with heavy tails. Several non- or semi-parametric mixture models, which assume
that the variables are independent to ensure parameter identifiability, have been studied
in past years. In this dissertation, we propose two new methods for model-based cluster-
ing. The first method, semiparametric model-based clustering (SPM-clust), is based on a
nonparanormal distribution for each cluster. The method accounts for correlations between
variables while maintaining parameter identifiability under mild assumptions. By model-
ing the dependence between variables and relaxing the normality assumption, the proposed
method is shown via simulations to have better performance than commonly used methods
in clustering, especially for clustering non-Gaussian data.

The second method is particularly useful for clustering high-dimensional data. The classi-
cal mixture model approach cannot cluster high-dimensional data due to the curse of dimen-
sionality. Moreover, identifying important variables for separating unlabeled observations
into homogeneous groups plays a critical role in dimension reduction and modeling data
with complex structures. This problem is directly related to selecting informative variables
in cluster analysis, where a small fraction of variables is identified for separating observed
variable vectors X; € RP, ¢ = 1,...,n, into K possible classes. Utilizing the framework
of model-based clustering, we introduce the PAirwise Reciprocal fuSE (PARSE) procedure

based on a new class of penalization functions that imposes infinite penalties on variables
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with small differences across clusters. PARSE effectively avoids selecting an overly dense
set of variables for separating observations into clusters. We establish the consistency of the
proposed procedure for identifying informative variables for cluster analysis. The PARSE
procedure is shown to enjoy certain optimality properties as well. We develop a backward se-
lection algorithm, in conjunction with the EM algorithm, to implement PARSE. Simulation
studies show that PARSE has competitive performance compared to other popular model-
based clustering methods. PARSE is shown to select a sparse set of variables and produce
accurate clustering results. We apply PARSE to microarray data on human asthma disease
and discuss the biological implications of the results. We develop an R package PARSE
which is available in CRAN for implementing regularization methods in model-based clus-

tering including PARSE.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Overview

Cluster analysis was first discussed in 1932 by Driver and Kroeber (Driver and Kroeber,
1932). In that dissertation, they introduced cluster analysis in anthropology which clusters
tribes into several groups based on the similarities in culture elements (or traits). They used
geometric means of shared traits as the statistics and aimed to find groups that maximized
the intergroup means.

Traditional cluster analysis is an unsupervised method. It groups objects that are sim-
ilar or contiguous and separates objects that are different or dispersed without any prior
information about clusters.Lately, concepts of semi-supervised clustering have been devel-
oped to solve real problems. In semi-supervised clustering (Grira et al., 2004; Jain, 2010),
there are constraints such as some objects should always be in the same cluster, or some
cluster assignments are known. These constraints can be obtained by a similarity-adapting
method that changes the distance measurement to satisfy the constraints, or a search-based
method that modifies the clustering algorithm. Supervised clustering, which is usually called
as classification, uses the class labels from training data to predict the class labels of new
data (Dettling and Biihlmann, 2002; Qu and Xu, 2004; Finley and Joachims, 2005). In this
dissertation, we focus on cluster analysis without any prior knowledge of clustering labels.
However, when the number of clusters is known, most methods show improved performance.

Clustering is applied in many fields such as genetic studies, data mining, marketing
analyses, social networks, bioinformatics and more. There are a large number of cluster-

ing methods that are grouped into two categories — algorithm-based methods and model-



based clustering. The most common algorithm-based methods focus on finding the smallest
within-cluster distances or dissimilarities, such as the widely used k-means algorithm and the
hierarchical agglomerate clustering (Friedman et al., 2001). The k-means algorithm firstly
assumes that there are K clusters, and the initial cluster means are ,uf)), cee uﬁ‘?. The

algorithm proceeds as follows:

1. Assign objects x; to the nearest clusters Cj, which is equivalent to minimizing the

overall with-in cluster sum of squares Zszl > xiecy, [1Xi — ,u,(:) ||2.

2. Update cluster means by u,(fﬂ) = ﬁ ineok X;.

3. Repeat step 1 and 2 until the convergence criterion is satisfied, for example, the cluster

assignments do not change anymore.

The number of clusters (K) can be determined based on some statistics, such as the average
silhouette width (ASW) (Rousseeuw, 1987) and the gap statistic (Tibshirani et al., 2001).
Euclidean distance is used in the k-means algorithm to measure the dissimilarity. In contrast,
the k-medoids algorithm uses arbitrary measurements of dissimilarity and chooses the cluster
centers from the data. Compared to the k-means algorithm, the hierarchical agglomerate
clustering does not assume a fixed number of clusters at first. It starts by treating each
individual x; as a cluster and combines the closest or the most similar pair of clusters in
each step. Among many different measurements of dissimilarities between clusters, three
are widely used in practice: single linkage, complete linkage and average linkage. The single
linkage measures the distance between the closest pair of data points from two clusters.
Conversely, the complete linkage measures the distance between the furthest pair. The
average linkage is the average of all pairwise distance between data points from two clusters.
Different linkages may lead to different clustering results.

Recently, researches of spectral clustering develop quickly, especially in application fields
such as image segmentation, social networks and protein sequences (Jain, 2010). Spectral

clustering uses eigenvectors of the graph Laplacian computed from a similarity matrix to



perform dimension reduction before clustering. The goal of clustering is equivalent to par-
titioning the graph or cutting the edges in the graph to minimize the total edge weights
between two clusters. The sum of edge weights is called cut capacity which measures the
similarity between clusters. An algorithm with the normalized cut capacity criterion pro-
posed by Shi and Malik (2000) is widely used to obtain a balanced partition that the total
edge weights in each cluster are similar or balanced. This avoids the tendency of obtaining
clusters with very small size. Compared to the k-means algorithm, the spectral clustering
produces clusters which are not necessarily convex sets.

The above clustering methods are more heuristic and algorithm-based. They are easy to
implement and understand if a researcher only needs the clustering results, but statistical
inferences of the clustering results are hard to obtain through these clustering methods.
In this dissertation, we focus on model-based clustering proposed by Banfield and Raftery
(1993) which is essentially a mixture model (McLachlan and Peel, 2004). It assumes that each
cluster is distributed from one component of the mixture model. Each cluster proportion is
determined by the corresponding mixing weight. We could extend this model by including a
noise term in the mixture model which describes the background noise in some applications
such as image analysis (Fraley and Raftery, 1998). Under the framework of mixture models,
hypothesis tests can be used to test if there exists more than one cluster or not (Liu et al.,
2012).

Due to the curse of dimensionality, model-based clustering cannot obtain reasonable clus-
tering results in a high-dimensional setting. In practice, such as genetic studies, it is typical
that only a few variables contain clustering information. These variables are considered as
informative in clustering. The majority non-informative variables could mask the clustering
structure that we are interested in. The definition of informative variables is given in Sec-
tion 3.1. Therefore, variable selection is important in cluster analysis. Most methods for
high-dimensional clustering fall into two categories — reducing dimensions before clustering,

and simultaneously performing clustering and variable selection. We discuss these methods



in details in Chapter 3. A thorough review is also given by Bouveyron and Brunet-Saumard
(2014).

Parameter estimation is crucial in cluster analysis with a probabilistic framework. Both
the Expectation-Maximization (EM) algorithm and the Markov Chain Monte Carlo (MCMC)
can be used to estimate parameters (Fraley and Raftery, 1998, 2002; Oh and Raftery, 2007;
Handcock et al., 2007). Cluster assignments are treated as the incomplete data in the EM
algorithm for mixture likelihood approaches. Parameters such as cluster means and mixing
proportions are estimated in the Maximization step. Based on these parameter estimates,
objects are assigned to the cluster (hard-clustering) with the largest posterior clustering
probability (soft-clustering) computed in the Expectation step. For classification likelihood
approaches, we can use the hierarchical agglomerate clustering method which combines two
clusters to maximize the likelihood in each step. However, compared to the EM algorithm,
this method is computationally intensive. Classification EM algorithm (CEM) was derived
by Celeux and Govaert (1992) to estimate cluster assignments within each iteration instead
of assigning objects to the cluster with the largest posterior clustering probability in the last
step. The stochastic version of CEM (SEM) was developed to solve the problem that the EM
algorithm is sensitive to initial values. Celeux and Govaert (1992) showed via simulations
that SEM efficiently solves this problem in most cases with an acceptable number of clusters
and sample size. Moreover, CEM and SEM can be applied in both the mixture likelihood
and the classification likelihood approaches, while it is not appropriate to use the regular
EM algorithm in a classification likelihood approach. MCMC can also be used in parame-
ter estimation for obtaining uncertainty estimates and statistical inferences from posterior
simulations. But compared to the EM algorithm, MCMC is time-consuming. Moreover,
the cluster assignments are not identifiable since the labels of clusters can be mutually ex-
changed. It is difficult to find the most frequently assigned cluster for each object from the
posterior simulations with changing labels. A relabeling procedure is necessary to solve this

problem. For latent position models (Oh and Raftery, 2007; Handcock et al., 2007) which



project the observed data to a latent Euclidean space before using a mixture model for clus-
tering, the latent positions in the Euclidean space are also non-identifiable. For example,
the relative relationship or distance between objects remains the same when all the latent
locations are clockwise rotated 30 degrees or moved to the right with one unit. This can
be solved by using a Procrustes transformation or minimizing the Bayes risk related to the
Kullback-Leibler loss (Handcock et al., 2007), but it is time-consuming.

Classical model-based clustering assumes that the data are distributed from a mixture of
known distributions with some unknown parameters. If the data cannot satisfy the distribu-
tion assumptions, the clustering will be inaccurate. The way to figure out which distribution
the data come from is unknown. Thus, many non- or semiparametric estimation methods
for a mixture model without distribution assumptions have been studied (Hall and Zhou,
2003; Hall et al., 2005; Bordes et al., 2006; Benaglia et al., 2009a; Levine et al., 2011). In
terms of cluster analysis, some extensions of the mixture model using non-Gaussian distri-
butions such as the Student’s t distribution (Peel and McLachlan, 2000), the skew-normal
(Lee and McLachlan, 2013) and the skew-t distributions (Lin, 2010) have been proposed
for robust clustering when the data have heavy tails or asymmetric clusters. Kosmidis and
Karlis (2015) proposed a mixture model of copulas for clustering to handle the mixed-type
data such as continuous and binary data, and heavy-tailed data under an appropriate choice
of copulas.

As we mentioned before, clustering is an unsupervised learning which has no preliminary
knowledge of clustering labels or the number of clusters. In general, there are many statistics
for finding the number of clusters such as the Davies and Bouldin index (Davies and Bouldin,
1979), ASW (Rousseeuw, 1987), the gap statistic (Tibshirani et al., 2001) and the Caliinski
and Harabasz (CH) index (Hennig and Liao, 2013). These are considered to be internal
evaluation statistics and usually perform well for methods that group data with high simi-
larity and separate data with low similarity. We can select the number of clusters based on

these methods. However, these methods cannot be used to determine whether a clustering



method has more accurate clustering results than others. In contrast to the internal evalua-
tion statistics, external evaluation statistics which require the true clustering labels, can be
used to determine which clustering method has better clustering results. Examples include
the Rand Index (Rand, 1971) and the Hamming distance (Hamming, 1950). For model-
based clustering, we can also treat choosing the number of clusters as model selection and
use criteria such as the Bayesian information criterion (BIC) (Schwarz et al., 1978; Wang
et al., 2007) and the generalized information criterion (GIC) proposed by Fan and Tang
(2013). Reversible Jump MCMC (RJMCMC), which automatically estimates the number
of clusters, has also been studied by Tadesse et al. (2005) particularly for high-dimensional

clustering.

1.2 Outline

In this dissertation, we focus on model-based clustering and variable identification. Since
in real applications, we have no information about which distribution the data come from,
assuming a specific distribution such as a Gaussian distribution could mis-specify the model
and produce inaccurate clustering results. Instead of using purely non-parametric methods,
which require the independence between variables to ensure identifiability, we propose a
semiparametric model in Chapter 2. The semiparamtric model-based clustering (SPM-clust)
assumes that the data can be transformed to a set of normal distributions via a set of
unknown monotone functions. Relaxing the assumption of known distribution families in
the mixture model, the proposed method outperforms some popular clustering methods such
as the k-means algorithm, the nonparametric mixture model and the classical model-based
clustering. Under some assumptions, the proposed semiparametric model is shown to be
identifiable. As the development of technology, many applications contain large numbers
of variables but have limited samples, such as genetic studies. However, it is typical that
not all the information is useful in clustering. In Chapter 3, we propose the PAirwise

Reciprocal fuSE (PARSE) penalty under the framework of model-based clustering which



can consistently identify the true informative variables for clustering, especially in a high-
dimensional setting. With correctly identified variables, we can filter out noisy information
and produce more accurate clustering results. Moreover, interpretation could become easier
or clearer with selected informative variables. Two main theoretical results of consistency
and optimality in variable identification are stated in Chapter 3. The details of proofs are
given in Chapter 4. A short summary and discussion of future work are listed in Chapter 5.

Additional data analyses are given in the Appendix A.1.



CHAPTER 2

CLUSTERING VIA A SEMIPARAMETRIC MIXTURE
MODEL

2.1 Introduction

Cluster analysis groups data with similar attributes into homogeneous groups based on
either dissimilarities or modeling. Various methods have already been studied and applied
in many fields. The most commonly used methods include the K-means algorithm (Hartigan
and Wong, 1979), the hierarchical clustering (Ward Jr, 1963) and the model-based clustering
(Fraley and Raftery, 2002) which relies on a mixture model.

Let x be p-dimensional data. Model-based clustering assumes that the data follow a

mixture distribution

F) = Aeful(x),

where A\ is the unknown clustering proportion for the kth cluster, for £ = 1,..., K and
Z?Zl A = 1. fi is an unknown density function or a known density function with unknown
parameters. Conditional on the unknown clustering labels, each cluster is distributed from
one component fi. The most commonly used distribution family is the normal (Gaussian)
distribution because parameter estimation, interpretation and statistical inferences are easy
based on the normality assumption. If the data come from a non-Gaussian distribution,
Gaussian model-based clustering may be inaccurate. For example, we add some random
errors which are distributed from a x?(v) distribution to 20 randomly selected observations
in the well-known iris data (Friedman et al., 2001). The original iris data has 4 variables and

3 classes. Adding noises to some observations makes the classes be overlapped and contains



some extreme values. As the degree of freedoms v in the y? distribution increases, the data
have more extreme values. From Figure 2.1, we find that the accuracy is small using the
traditional model-based clustering (Mclust). The accuracy is 1 minus the Hamming distance
that is defined further below. Using the k-means algorithm (Kmeans) or the nonparamet-
ric mixture model (Nonparametric) which assumes that variables are independent and have
different marginal distributions, we obtain higher accuracy. However, the proposed semi-
parametric model-based clustering (SPM-clust) gives more accurate clustering results than
the other methods. Another example is a dataset for occupancy detection of an office room
based on the measurements of temperature, humidity, light and Carbon dioxide (COs) in
the room (Candanedo and Feldheim, 2016). The occupancy status is a binary variable. The
data are non-Gaussian and have 8143 observations. The classification results in Candanedo
and Feldheim (2016) show that COy and light are the most important variables. Figure 2.2a
and Figure 2.2b are the scatterplot of COq versus light (the most important variables) using
SPM-clust and k-means. The data are normalized by each variable before clustering. The
k-means algorithm fails to detect some occupancy status with a accuracy 90%. The accu-
racy using SPM-clust is 98%. Using the classical model-based clustering from the R package
mclust (Fraley et al., 2012) we have a 51% accuracy thus the scatterplot is not shown here.
These real applications show that both the classical model-based clustering and the k-means
algorithm are not adequate for non-Gaussian data.

To extend the mixture model, Peel and McLachlan (2000) developed a mixture of t-
distributions which performs better than the Gaussian mixture model in the presence of
heavy-tailed or atypical observations. Other extensions include Normal inverse Gaussian
distributions (Karlis and Santourian, 2009) which are normal mixture models with the latent
classification variable being distributed from an inverse Gaussian distribution instead of a
multinomial distribution in classical mixture models, skew-normal and skew-t distributions
(Lin, 2010; Lee and McLachlan, 2013) which deal with the asymmetric clusters and heavy-

tailed distributions with different marginal tailweight (Forbes and Wraith, 2014). In addition
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tering (Mclust) and k-means (Kmeans) for the iris data plus x?(v) random errors.
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10



to the various distribution families, copula-based clustering (Kosmidis and Karlis, 2015) was
developed in consideration of clusters with irregular shape which is much more flexible than
Gaussian mixture models. However, the approach to select the distribution family or copula
is not clear.

Various non-parametric estimation methods for the mixture model without assuming a
known distribution family have been developed (Hall and Zhou, 2003; Bordes et al., 2006;
Benaglia et al., 2009a; Levine et al., 2011). To ensure identifiability, these nonparametric
clustering approaches require the assumption that the variables are independent. Theoret-
ical results (Hall and Zhou, 2003; Allman et al., 2009) show that under the condition of
independence, when the number of variables is greater than 3, the mixture model is non-
parametrically identifiable in general. However, independence is a strong assumption in many
cases. For example, the original iris data (Friedman et al., 2001) has high correlation between
the petal length and the petal width variables. For the original iris data, using the mixture
of normal distributions, classical model-based clustering assuming independence has a 90%
clustering accuracy, but classical model-based clustering without this assumption has a 96%
clustering accuracy. Thus, the assumption of independence is too strong for the iris data.
Taking into consideration of the correlations, we propose a semiparametric model-based clus-
tering (SPM-clust) approach which combines the advantages of model-based clustering via
a semiparametric model that allows for identifiable parameter estimation and dependence
between variables.

We propose a method to perform SPM-clust based on a mixture of nonparanormal dis-
tributions — a kind of semiparametric Gaussian copula model. The nonparanormal model
is proposed by Xue and Zou (2012) for graphical models, which assumes that there exist p
monotone increasing functions g;(-) such that (¢1(X1),- - , g,(X,)) follows a normal distribu-
tion with mean 0 and covariance ¥ with unit variance, where Xy, - -- X, are observed. Since
gj(+) is unknown, the correlation 3 can be estimated by Kendall’s 7 (Xue and Zou, 2012).

As a graphical model, the nonparanormal model performs well in estimating the covariance

11



structure, and is much more flexible than the normal model. Our proposed method assumes
that (¢1(X1), -, gp(X,)) follows a mixture of normal distributions. Under this model, the
correlation structure in the data can be characterized by the covariance of g;(X;). A non-
parametric estimation approach based on the empirical distributions is used to estimate the
unknown transformations g;(-) and the ECM algorithm (Meng and Rubin, 1993) is used
to estimate the unknown parameters in the mixture of normal distributions. Simulations
show that SPM-clust works well for data without requiring knowledge of the underlying
distributions, especially for data generated from heavy-tailed distributions.

This chapter is organized as follows. A review of model-based clustering using mixture
models of copulas is given in Section 2.2.1. Then we propose our model which is a semipara-
metric model. In Section 2.2.3, we discuss the estimation algorithm in detail. In Section 2.3,
we show that SPM-clust is identifiable. Simulation results are shown in Section 2.4 which
compares SPM-clust to other methods including the nonparametric mixture models, the clas-
sical model-based clustering and the k-means algorithm. In the end of this chapter, existing

questions and future work are discussed.

2.1.1 Notation

Before proceeding to methodology, we introduce some notation. Let X and Y be p-
dimensional random vectors. We denote X to be the observation space of X and {x;; :
i=1,---,n;j = 1,--- ,p} to be an observed sample from X, where n is the number of
observations. Let p be a p-dimensional vector, 3 be a p-dimensional matrix and || X||r be
the Frobenius norm of 3. We define g(x) = (g1(z1),--- , gp(x,)) as a vector of p functions,
where x is a p-dimensional vector and g¢;(z;) is the jth function of x; on the jth dimension.
Let 0 be a p-dimensional vector of 0 and M be the space of p by p symmetric positive

definite matrices.
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2.2 Methodology
2.2.1 Gaussian Copula Mixture Model

In model-based clustering, Gaussian mixture model is often used due to its simplicity of
statistical inferences. However, restrictions of the normality assumption have been studied
in many literatures. To improve flexibility, mixture models of Gaussian copulas (Vrac et al.,

2012; Marbac et al., 2014; Kosmidis and Karlis, 2015) have been proposed.

Definition 2.1. (Mixture model of Gaussian copulas). A random vector X = (Xy,--- ,
X,) is sampled from a mixture model of Gaussian copulas if its cumulative distribution

function (CDF) is

F(@lf1,---,0x) =Y APy (D7 (Pr(alyin)) - T (Bolmplyip)I%) . (2.1)
k
where 0 = (Mg, @k, Ye15 5 Vip) 18 @ set of parameters in the kth component of the mixture

model. A, € (0,1) is the proportion (weight) of the kth component and >, A\ = 1. €4
is a correlation matrix and ®,(-|€2;) is the CDF of a p-variate Gaussian distribution with
mean 0 and covariance ;. ®; is the CDF of a univariate standard Gaussian distribution

and Pj(-|vy;) is the CDF of a univariate conventional distribution with parameters ;.

Assuming a conventional distribution for P;(-|v;;), the parameters in the mixture model
of Gaussian copula can be estimated by using the EM algorithm (Kosmidis and Karlis,
2015) or the Markov chain Monte Carlo (Marbac et al., 2014) in the Bayesian context. The
Gaussian copula in the mixture model (2.1) can be replaced by other copulas such as the

Clayton copula and the Gumbel copula (Vrac et al., 2012).

2.2.2 Semiparametric Model for Clustering

Definition 2.2. (Semiparametric Gaussian mixture model). A random vector X is

distributed from a semiparametric Gaussian mixture model if and only if there exists a set
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of p monotone increasing functions (gy,- - - , g,) such that (¢1(X1),- -, g,(X,)) is distributed
from a Gaussian mixture distribution S5 AN, (pty, &) with a common covariance 3 for
each cluster, where \; € (0,1) is the proportion of the kth cluster, > , Ay = 1 and p,
is the mean of the kth Gaussian distribution. Furthermore, the cluster means {p,}*,
and marginal variances {o7}/_, which are the diagonal elements of X satisfy constraints
Zszl Akpy, = 0 and o7 + Zszl Aipi; = ¢ for any j € {1,---,p} and some positive constant

C.

We define g(X) = (¢1(X1), -, 9p(X})), then the density function of this model is given
by

F&lpy e B) = M (8(x) 1y, ) (2:2)

where ¢(-|py, X) is the density function of the kth p-variate normal distribution with mean
wu;, and variance 3.

Note that E(g(X)) = >, Aepy, and Var(g(X)) = >, Aupppey, + X, thus the constraints
>k Akbty = 0 and o3 + 7, \ppi; = c in the Definition 2.2 mean that g(X) is centered and
marginally scaled to have constant variances, which ensure the semiparametric identifiability
shown in Section 2.3.1. If X belongs to the kthe cluster, then g(X) is in the kth cluster.
Let Cj be the kth cluster. Given that X € Cj, g(X) is distributed from a semiparametric

Gaussian copula model proposed by Xue and Zou (2012) with mean g, and variance X.

2.2.3 Estimation

Let Z = (Zy,--+,Zk) be a binary vector indicating the cluster assignment of X (and

g(X)), the mixture model (2.2) can be written as follows:

g(X)|Zk =1 ~ Np(p,, 33),

(Z1,-++,Zk) ~ Multinomial (1, (A, ,Ax)).
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We estimate the parameters in the model (2.2) by using an iterative algorithm. Firstly,
we marginally estimate the unknown monotone increasing functions gy(-), -, g,(-) given
that other parameters are known. Since the marginal distribution of ¢;(X;) given that X
belongs to the kth cluster is a univariate normal distribution with mean p; and variance

a?, for any x € X, where X’ is the observation space of X, we have,

P(X; < a[X € Cy) = P(g;(X;) < g;(2)[g(X) € Ci) = @ (M) |

9j

where ® is the CDF of a univariate standard normal distribution. Then for any j =1,--- ,p

and k=1,---, K we have,
95(x) = py + 0,07 (P (X; < y[X € C)).
Because of the constraint ), A\ypt;, = 0 in the model (2.2) and >, A\yx = 1, we have

gi(r) =0; Y MOTH(P(X; <2|X €Cy)). (2.3)

-

Let ¢;(z) = P(X; < z|X; € Cf), then the probabilities can be estimated by the empirical

distribution as follows,

Doy Wy <o, 2 = 1)
> I =1) 7

Yjl(x) =

where Zi,, i = 1,--+- ,n and k = 1,--- , K are estimates of cluster assighments. Since ®~1(t)

goes to —oo and +o0o as t goes to 0 and 1 respectively, we 15 (x) by the Winsorized estimator
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(Lafferty et al., 2012), which is

;

O if () < 6, or S0 T(2, =1) =0

Vin() = § d(x) i 6, < jp(x) <1 -6, : (2.4)

16, ifu(z)>1-4,

\

where 0 < §,, < 0.5 is a truncation parameter.

Given the estimates §;(x;;) of gj(x;;) for any observation z;;, where ¢ = 1,--- ,n and
j=1,---p, estimating parameters p,;, Ay and X is the same as maximizing the following

likelihood of the Gaussian mixture model for §;(z;;),

n K
(l’l’k7>\k72|g] Qf” HZ)\kfk’ XZ |,'l’k7 ) (25)
i=1 k=1
where g(x;.) = (G1(zi), -, gp(xip)). As in the classical model-based clustering, parame-

ters can be estimated by using the Expectation-Conditional Maxmization (ECM) algorithm
(Meng and Rubin, 1993). Since §;(z;;) depends on f,, Ay and 3, the iterative estimation
procedure is as follows.

Starting with initial parameters 21.(,8), A0 — iéi(,g) and &j(o) =1 at the (£+41)th iteration,

1. Foreachi=1,--- ;nand j=1,---,p, from (2.3) and (2.4) we have
§§t+1) (i) = waA ( x”-)>.

2. Because of the constraints Var(g;(X;)) = ¢ and S Aur; = 0, without loss of

generality, we let ¢ = 1 and normalize g(.t“

: )(a:ij) for each j, that is, for any i €

{1,--- ,n} we have,

~(t+1 ~(t+1
) g wy) = g @)
K sd{a\"™ (x,)}

Y
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~(t+1)

where §i'™ )(x”) is the Winsorized estimator, g; () is the normalized estimator

J

and

Zz (g](Hl)(Iw) - Zz gj(‘tﬂ)(xij)/n)Q

n—1

sd{g" ™V (x)} =

is the standard deviation of g](f“)(x.j).

. Given Q(tﬂ

: )(xij), we use the following EM-algorithm to estimate parameters in the

mixture model (2.5). With initial values ) = ;l,(f), 5\,(;)) = S\S) and £ = ﬁ](t), at the

(s + 1)th iteration,

(a) E-step: estimate the posterior probability &), (s+-1) by

(s . 1 N 1 ~(s) &(s)
)\é)fk (g%” )(%1), ce agz(>t+ )(%p)luéj)7 D) )

(s ~ 1 1 (s)
S (0 @) o P )l =)

T(s+1) ~(s+1)
AL = Z Q.

=1

~(s+1) o
Qi =

When ¢ = 0, we have S\,EO) =>. 2§2), ﬂ,(f) =>. zf,g)gj (x”)//\ and

1 n K ,
~ (0 ~ (0
LS () (50 )

i=1 k=1

(b) M-step: estimate the cluster mean [1,,(:“) by

~(s+1) ~(t+1
~(s+1) Zia’gk )g](‘ )(xij)
Hij = 5\(s+1)
k

. . = 1 . .
(c) M-step: estimate the covariance E(S+ ) by using the sample covariance,

/
$2(s+1) ZZ (s+1) ( (t+1) (Xz) _ ﬁ](fsﬂ)) (g(t—i—l)(xi') _ ﬂ/](cs—l-l)) '

zlkl
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(d) Continue to step 4 when the stopping criterion is satisfied. The stopping criterion
is
s+1 s+1 = (s+1) (s+1
ol A TS RS>
(s+1) (s+1)
= il e 1=+

Fo Z ‘)\(s—i-l

< &p.

Suppose the stopping criterion is satisfied at the (s + 1)th iteration, then

500 ( (1) 5 GEHD g £ k) GRS (GO
s ~ 1 = (s
ﬂ](f—&-l) :ﬁ’(c +1)’ 2(t+ ) _ 2( +1)_
4. Stop the estimation procedure when the stopping criterion is satisfied. The stopping

criterion is

t+1 Y )

t+1) A t

< €g.

— W S
Sl = il |2

k=1 ||P'k i +e€ ||Z ||F—i-€

In cluster analysis, the number of clusters K is unknown. For SPM-clust, we use the

Bayesian information criterion (BIC) to select the number of clusters K.

BIC = —21og <L (gk, s 2|gj(xij))) + blog(n)

where b = (K — 1) + Kp + p(p + 1)/2 is the number of parameters in the model and n is

sample size.

2.2.4 Implementations

Since we are using the traditional likelihood-based EM-algorithm to estimate parameters

wu;, and 3, the estimation does not perform well in a high-dimensional setting. One approach

is that we could apply the marginal variable selection based on the work of Jin and Wang

A(t+1) . . . . A(t+1) .
(2016) for g; " (zi;) in each iteration, then estimate p,), and 3 of g; () with only the
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selected important variables. This could reduce the computation time and increase the
estimation accuracy as we exclude many variables which are not important for clustering.

~(t+1)

The selected variables of g; "’ (z;;) could be different from the selected variables of QJ(.t) (xi5),

thus we can using the stopping criterion based on Hamming distance (¢(+1 e®) < &,

(t) A(t))

where ¢ = (&}”,--- ,¢&,’) and 61@ => kiz(,? is the cluster assignments in the tth iteration.

The Hamming distance is defined as (2.23) in Section 2.4. Another way is to apply some
regularization methods such as L; (Pan and Shen, 2007), L., (Wang and Zhu, 2008) or
PARSE (Wang et al., 2016a) penalty on cluster means.

To improve the estimation, some adjustments could be applied in the algorithm,

1. The truncation parameter d,, can be selected by BIC or the generalized information

criterion (GIC) (Fan and Tang, 2013) for high dimension data.

2. For high-dimensional data, estimation of variance 3 could be improved by using the
Kendall’s 7 (Xue and Zou, 2012), banding methods (Bickel and Levina, 2008b) or
thresholding methods (Bickel and Levina, 2008a).

2.3 Theoretical Properties

In the section, we show that the estimator (2.3) of g;(-) is a monotone increasing function

and the model (2.2) is semiparametrically identifiable.

Lemma 1. The estimate g;j(x) based on (2.3) and (2.4), which is

—O—JZA,@ (danl@)

18 a monotone increasing piecewise constant function with jumps only at the order statistics

Ty, s T(n), Of Xj, for each j € {1,---  p}.

Proof. Let Z(;  be the estimated cluster assignments corresponding to x(;) ;. For any ay, as

such that x(1); < a1 < as < 3,
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1. If there exists an index m such that both a; and a, are in the interval [:L‘(m)d, T(mt1),5)

then we have for any k,

1;'14(0«1) :Z?:l (26 < a1, 2p)k = 1) _ 2111 I(Z4 % =1)
] 2 i 10 = 1) o 02 =1
(
I

qz.k(@) :E;'l:l ]I(Jﬁ(i)j < ag, Zi)k = 1) _ 221 I(Z4) . =
: 2 i 1z = 1) 2

Thus 1, (a1) = ¥;x(az). With the same truncation parameter 6,,, we have the truncated

estimators @k(al) = @jk(az)- Thus, g;(a1) = g;(az)

2. Let x(;41),) = oo (or the upper bound in X'). If there exist indices 1 <m <1 < n

such that a1 € [T(m)j, T(m+1),;) and as € 2, T41),5), then we have for any &

N : =1 R k=D _ -
Yip(ar) = S TGa = 1) < Yji(az) S 0 = 1) Yjr(az).

Since there exists a k such that ¥;.(a;) < ¥ (az), with a sufficiently small truncation
parameter d,, we have the truncated estimators tj(a;) < T/A)jk<a2). Thus, gj(a1) <

gj(az). Therefore the jumps in §;(z) can only appear at the order statistics.

2.3.1 Identifiability

Definition 2.3. (Semiparametric identifiability). A mixture model with the density
function (2.2) is semiparametrically identifiable if and only if f uniquely determines param-
eters {g, y, Ak, 2,k =1,--- , K} up to label switching. That is, for any different sets of pa-
rameters {g, ., Ak, 2,k = 1,--+ , K} and {g, fi,, M, B k=1, , K}, we have f(x) # f(x)
for some x € X, where f(x) = 3, Md(&(x)|fty,, 2).

Theorem 1. The model defined by the definition 2.2 in Section 2.2.2 is semiparametrically
identifiable.
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Proof. Without loss of generality, we only show the identifiability when K = 2. Thus the

density can be written as

f(x) = Ao(g(x) [, ) + (1 = Ao (g(x) 1o, %) (2.6)

Suppose that there exist two different sets of parameters {g, g, A\, %, & = 1,2} and
{g, i, M, B, k= 1,2} such that f = f, to show the identifiability, we need to find con-
tradictions. For simplicity, we denote ¢, and ¢, to be abbreviations of ¢(g(x)|u;, X) and
O(&(x)|fy,, ) respectively. We first show that f = f is equivalent to the component-wise
equalities, {\¢1 = Ay and (1—A)pg = (1—=N)s} or {A¢y = (1= )¢y and (1—N)py = Ay }.
Let Z and Z be independent random variables distributed from Bernoulli distributions
with probabilities A and \ respectively. We define W = Z¢; + (1 — Z)¢py and W = Z¢, +
(1 — Z)¢o. Then we have f(x) = Ex(W) and f(x) = Ex(W). Thus f = f implies that
f WdA = f W dA, where A and A are probability measures corresponding to Z and Z.
Then we have
/Z¢1 + (1= 2Z)pgdA = / (Z(Zsl +(1- Z)QEZ) Z—]A\ dA (2.7)
Because Z and Z are Bernoulli random variables, A is finite. Also ¢, and ék are density
functions which are nonnegative, then (2.7) is true if and only if Z¢; + (1 — Z) ¢y = Zoy +
(1-Z7 )(ﬁg Moreover, since Z and Z only take values 0 or 1 and

dR R - R
dh ~ N(1— )

where z,Z € {0,1}, we have

Aoy = Apy and (1 — Ny = (1 — Ny (2.8)
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or {\¢1 = (1 = X)py and (1 — X)py = A¢y }. Since we consider the identifiability up to label
switching, without loss of generality, we only need to show that the first case (2.8) does not
exist for any different sets of parameters. Similarly, the second case does not exist either.

For the jth variable, let ¢;; be the marginal densitiy of the p-variate normal distribution
¢y, for any k£ = 1,2. Obviously, ¢;; is the density function of a univariate normal distribution
with mean fpy,; and variance 0]2-. Then Ap; = Ay and (1 — A = (1 — N imply that
Ap1j = Adyj and (1= N)g; = (1 = N)ghy; for any j =1,--+ ,p

Suppose that {g;, tix;, Ak, 055 k = 1,2} and {g;, i, e, 63k = 1,2}, which are the subsets

of two different parameter sets for the jth variable, are different. Then we have,

Lexp {_(gj(-’fj) _ ﬂlj)Q} A exp {_(f]j(%); /11]')2} (2.9)

2 j \/ 27T5']2-

27r0j

and

_ ,mj)?} IEED I {_(%(%) - /123')2}‘ (2.10)

Since A\, A € (0,1), there exists a constant a > 0 such that A = a\. Without loss of
generality, we assume A <1 — A ie, A <0.5. Then from (2.9) we have §;(z;) = £A + [iy;

and from (2.10) we have g;(z;) = £B + [ip;, where

A:\/Q&JZ{(gj(ij)a_Q“ 6P 4 1o <U—jz> + log(a )} (2.11)
B :\/25—]2. { <gj(xj2)a_2 B2)° | og (?2) + log (T_“;) } (2.12)

Obviously, one of the following four cases should be true.

A+ i =B + fizy, (2.13)
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—A+ [ = — B+ [z,
A+ fnj = — B+ [iz;,

—A+ ;=B + [iz;.

Since the four cases are symmetric, we only need to find contradictions based on the first case.
Other cases can be derived similarly. Since A+ fi1; = B+ [iz;, we have A? = (B4 [io; — fi1;)*.
From the constraint ), App;, = 0 in the model, we have pi5; = Ay /(A — 1). Similarly, we

also have fig; = Aii;/(A — 1). Solving the equation (2.13) with respect to B we have

B =

57(ar = 1) {(}\,Uljgj (1 —2\)u; log (a(l — )\)) e

2.14
[ — o7 2(A—1)%0; 1—a\ * 153 (aX — 1)2} (2.14)

Then plug in (2.12) on the left-hand side of (2.14) we have

2

gi(ax —1)? { P59 (1—2)\)ui; +log (a(l - A)) . i3 }

i3 (A=1)o7  2(A—1)c7 1 —a\ 153 (aX — 1)?

o f (g5 — 2y)* o; 1—a)
=20 {%—Hog (~—2 + log ( T

which can be simplified as

Alg? + Blgj + D1 == 0, (215)
where

_(ar— %367 1
| = ! B
G-

_(a)\ —1)*(1 - 2)\)M§j ~]2' " 2M1j532'(a)‘ —1)? og (G(l — /\)) 1 n 2495

| = _ . bk SV I
(A =1)343,075 305 (A —1) 1 —a\ (A=1)o?  o?

p, L@~ 17 {(1 —2\)pi3, ¢ log (M) - ﬂ—gj}

i 2(\ — 1)%0? 1—ak ) 262(ar—1)?

o? 1—a\ 143
_ A I _
log <62) 210g( 1_/\) =

J J
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Clearly, (2.15) is a polynomial equation for g; with degree 2 unless A; =0, 8; = 0 and
Dy = 0, thus it has at most 2 constant roots. Since we assume that g; is not a degenerate
function, there exists some x € X such that Alg?(x) + Bigj(x)+ Dy # 0, that is, the equality
(2.15) is not true, which implies that f; # fj for any different sets of parameters.

If Ay =0,B; =0 and D; =0, then from A; = 0 we have

o T (2.16)

Substituting fif;/57 in By = 0 by (2.16) gives

21— 20, 200 —1) . [a(l—\)
=B, = ! 1 :
0 ! (A=1)o? * [ el -an

Simplifying this equation we have,

2 2
—0]2 = log . (2.17)

(1 —2X\) a(l—\)

Since we assume that A < 0.5, we have

1—a\
1 _ ] >
on () 2
which means a > 1, i.e., 2>\

Substitute fif;/67 in Dy = 0 by (2.16) we have

(A —1)%? a(l — \) VR o? 1—a\\ 13
—D—— 9] — J —log (=% ] —21 -
0=Dy u3 Bl o (A —1)%03 &\ 52 DY o?

15

J

a(l=X)\ (A—=1)%? a(l =2\’ 1—a\ o?

——2\log (o) + 8 0 Jjpg (22 b —21 —log [ 2.
Og(l—a)\>+ i’z Bl BTN ) \E
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From the constraint Var(g;(X;)) = c in the model (Definition 2.2) we have &; + /N\,&%j +(1-—

A)ji3; = ¢, which implies that 62 = ¢ — a\ji3;/(aX — 1). Plug this into (2.16) and solve the
equation with respect to [ﬁj we have

2 claX — 1)2,“%]'
M5 = N 1202 —an(aeh — )2,

Plug this into (2.16) we have

ci _ (A =1)%07 — aX(aX — 1)#%]" (2.19)
c(A—1)2

Substitute o7/u7; and o3 /57 in (2.18) by (2.17) and (2.19), we have

o () v (25) s

:log{a(l_)\)' (1—X\)? (A —1)? }

L—aX (1—-a))? (A=1)207 —aX(al = 1)u3;
Since 0% = ¢ — A\u?; /(A — 1) from the constraint Var(g;(X;)) = ¢, we have
J 15 I\

c(1—N)? _q
a(l —ad){c(1 = N2+ AXX = Dpd; — aX(ah — )i}

which means

9 c(1=XN{1=X—a(l—aN}
M 0@ —an DO — 1) —ar(ar — 1)}
(=N
T a(l—aM)A

< 0.

This contradicts to that /ﬁj is always nonnegative, thus A;, By and D; cannot equal to 0

simultaneously. Thus we have \¢y; # :\gglj or (1 —MN)gpg; # (1 — ;\)gz;gj.
Since for any different sets of parameters {g, p,, \e, }i_, and {g, [y, e, 2}%:1, there

exists at least one dimension j such that the subsets of these parameter sets on the jth
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dimension, {gj,ukj,)\k,ajz;k = 1,2} and {gj,ﬂkj,S\k,&JZ;k = 1,2} are different. Thus,
there exists at least one j such that the equality between marginal distributions {A¢;; =
5\q~51j and (1 — N)¢pq; # (1 — S\)gggj} does not exist, which implies that the joint multivariate
distributions not different, that is, Ady # Ay or (1 — X)dy # (1 — X)¢ho. Therefore, we have

f# f, which means that f uniquely determines the unknown parameters.

2.4 Simulation

In this section, we investigate the performance of the proposed method (SPM-clust)
and compare it to the k-means algorithm, the classical model-based clustering (Fraley and
Raftery, 2002) assuming a common covariance for each cluster or using the optimal covari-
ance structure which is selected through BIC and the nonparametric estimation method
(Benaglia et al., 2009a) assuming that variables are independent and have different distribu-
tions or using the true blocks of variables. Variables within the same block are independently
and identically distributed from the same distribution. Thus assuming that variables are in-
dependent and have different distributions means that each variable forms a block, that is,
there are p blocks in the variables. For SPM-clust, we also compare the performance of
using a banding estimator (Bickel and Levina, 2008b) to the maximum likelihood estimator
(MLE) for the covariance in each iteration of the inner EM algorithm. First we assume that
the number of clusters K is known and investigate the changes in clustering accuracy as
the separation between clusters increases, that is, increasing the separation between cluster
means when the covariance is fixed. Then we investigate the performance of SPM-clust,
k-means and the classical model-based clustering (Mclust) when K is unknown.

For SPM-clust, although the inner EM-algorithm in the estimation procedure in Sec-
tion 2.2 stops when the stoping criterion is met, we find that with a good starting point
the EM-algorithm converges quickly. Thus in simulations we only use one step for the

inner EM-algorithm. We also use a fixed truncation parameter 8, = 1/(4n'/*\/7logn) pro-
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posed by Lafferty et al. (2012) for consistent estimation of 3 in the nonparanormal graphical
model, which performs reasonable well in most cases. To implement Benaglia et al. (2009a)’s
method, the k-means algorithm and the classical model-based clustering, we use R packages
mixtools (Benaglia et al., 2009b) and mclust (Fraley et al., 2012), and ‘kmeans’ function in
stats (R Core Team, 2016) respectively. To determine the number of clusters K, SPM-clust
and the classical model-based clustering (Mclust) use BIC discussed in Section 2.2. We
use gap statistic proposed by Tibshirani et al. (2001) for the k-means algorithm from the
‘clusGap’ function in the R package cluster (Maechler et al., 2016).

We consider data with four clusters under three data settings. For each data setting,
first we generate data Y = {y1,---,yn} from four p-dimensional normal distributions with
means p;’s and a common covariance 3, where p = 10 or 50. Then a monotone increasing
transformation function was applied on each dimension of the data. For each data setting,
we also investigate three different covariance structures for the normal distributions: inde-
pendence, AR(1) and block AR(1) covariance. The three data settings (transformations)

and their parameters p;’s and 3 are described in detail below.
1. Polynomial: |y|*®sgn(y)/10,

(a) Cluster means: for both p = 10 and 50, only the first and sixth variables have
different values across clusters, all of the others equal to 0. Let j;; be the cluster

mean for the ith cluster on the jth variable and

11 =Y, Mot = —7, 31 =Y, par =0

M6 = Vs Hoe = =7, M3e = —7, fae = 0, (2.20)
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where v € {2.5, 3, 3.5, 4, 4.5, 5} is defined as the separation between clusters as

follow

T ey 1<k K |t — pone 1 Cpas 7 ) (2.21)

(b) Three covariance structures:

i. Independence:
e p=10: ¥ = diag{0.64, 0.64, 1, 1, 0.81, 0.81, 2.25, 2.25, 0.49, 0.49}.
e p = 50: The first 10 variables have the same variances as in the case of
p = 10. All of the variances for the last 40 variables are 1.

ii. AR(1) with autoregression coefficient p = 0.5. The marginal variances are

the same as the above independent covariance and the correlation is pli=!.
iii. Block AR(1) and the same autoregression coefficient p = 0.5.

e p = 10: The marginal variances are the same as the above independent
covariance. X has 3 blocks with block sizes being 3, 3 and 4. If 1 < j <
1<3,4<j<1<6or7<j<I<10, then Corr(X;,X;) = pli-l;
otherwise the correlation is zero.

e p = 50: The marginal variances the are the same as the above independent
covariance. X has 11 blocks. The first 10 variables contain 3 blocks which
are the same as the blocks in the case of p = 10. The other 40 variables

contain 8 blocks with the same block size equal to 5.

. Inverse cumulative distribution function (CDF): F~!(y/max|y|), where F~! is the
inverse CDF of t distribution with degrees of freedom 3. The parameter settings are

the same as the ‘polynomial’ case.

. Log-normal distribution: exp(y),
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(a) Cluster means: for both p = 10 and 50, only the first and sixth variables have

different values across clusters as follows, all of the others equal to 0.

pir =, p21 = 0, 3y =7, pa1 =0

tae = 0, fiog =7y, fi36 =Y, prag = 0, (2.22)

where v € {log(2.5), log(3), log(3.5), log(4), log(4.5), log(5)}. Since the variance
of the log-normal distribution is too large if v € [2.5,5], here we use smaller ~y
so that the cluster variances of the observed data (log-normal data) are on the

similar scales.
(b) Three covariance structures:

i. Independence: ¥ = 0.161 for both p = 10 and 50,

ii. AR(1) and block AR(1) have the same correlation matrix as in the ‘polyno-

mial’ case and the same marginal variances as in the independent covariance.

We compare the methods based on the clustering accuracy, which is defined as 1 minus
the Hamming distance. Let H be a n by n binary, upper triangle adjacency matrix of
clustering labels. If x; and x,,, ¢ < m are in the same cluster, then H;,, = 1; otherwise,
H;, = 0. The Hamming distance (Hamming, 1950) between two upper-triangle adjacency
matrices is,

n(n —1) ’

(2.23)

where H and H* are the adjacency matrices of estimated clustering label and true clustering
label respectively. For real applications in cluster analysis, we cannot evaluate this statistic
since the true clustering labels are unknown.

We first look at the impact of the separation between clusters (v (2.21)) on the clustering

accuracy when K is known and X is fixed. For balanced data, there are 60 observations in
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each cluster. For unbalanced data, the cluster sizes are 20, 60, 60 and 100 for the ‘polynomial’
and ‘inverse CDF’ cases; and 30, 50, 60, 100 for the ‘log-normal’ case.

The band width in the banding estimator (Bickel and Levina, 2008b) is the true band
widths for the independent and block AR(1) covariance structures, which are 0 and 3 for
p =10 (4 for p = 50) respectively. For the AR(1) covariance, we use the band width which
gives the smallest difference between the banding estimate and the true covariance. Here
we use 6 as the band width for all the transformation functions when p = 10. For p = 50,
we use 6 for the polynomial transformation and 10 for the inverse CDF and the log-normal
distribution.

As v increases, with a fixed covariance, the signal increases, thus the clustering accuracy
also increases. As in Figure 2.3, the SPM-clust has uniformly better clustering accuracy than
the other methods. Moreover, for the balanced data, the performance of SPM-clust when
the variables are independent (Figure 2.3c) is slightly worse than the case with the AR(1)
covariance (Figure 2.3a) because the autoregression coefficient p is positive, thus the signal is
stronger in the AR(1) simulation than in the independent case. The overall performance of
methods in Figure 2.4 for the inverse CDF transformation and Figure 2.5 for the log-normal
distribution is similar to Figure 2.3. However, in the cases of the inverse CDF transformation
and the log-normal distribution, the differences of clustering accuracy between SPM-clust
and other methods for the unbalanced data (Figure 2.6b and Figure 2.6¢) are smaller than
the results for the balanced data (Figure 2.4c and Figure 2.5¢). This is reasonable, since
for the unbalanced data, small clusters may be absorbed by large clusters. Comparing the
banding estimator to MLE for estimating covariance, we can find that using the banding
estimator improves the clustering accuracy, especially when p = 50 in Figure 2.7, Figure 2.8
and Figure 2.9 with low signal. For p = 10 in Figure 2.3, Figure 2.4 and Figure 2.5, the
banding estimator and MLE are almost the same because MLE also performance well when

the dimension is small.
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The number of clusters is unknown in cluster analysis. Here we compare the performance
of selection of K using the proposed SPM-clust, the k-means algorithm, and the classical
model-based clustering. In Table 2.1, we can find that ‘SPM-clust’ is much better than other
methods in selecting K except the ‘log-normal’ transformation with independent covariance.

One reason may be the value of the truncation parameter d,, in (2.4) which could be tuned

by using BIC.

(a) Balanced, AR(1)

Y

Y

(b) Balanced, block AR(1)
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Figure 2.3: The data are balanced and have 10 variables with the polynomial transfor-
mation. Each cluster has 60 observations. “—o—" (solid line) is SPM-clust using MLE for
estimating covariance; “—+—"is SPM-clust using a banding estimator;
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- -x--"is k-means;

“../A-..7 is the nonparametric mixture model with p blocks of variables; “--- VvV ---” is the
nonparametric mixture model with the true blocks of variables; “—-—[J—-—" is Mclust with
the optimal covariance structure; “— - —<O— - =" is Mclust assuming a common covariance

for each cluster.

2.5 Discussion

In this chapter, we proposed a semiparametric model-based clustering method (SPM-
clust), which performs well in clustering especially for non-Gaussian data with heavy tails.
Simulations showed that SPM-clust is better than other popular methods including the k-
means algorithm, the nonparametric mixture model and the classical model-based clustering
in most cases under three data settings — the polynomial transformation, the inverse CDF

transformation and the log-normal distribution. We found that the estimation of SPM-clust
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Figure 2.4: The data have 10 variables with the inverse CDF of t(3) transformation. Each
cluster has 60 observations. “—o—" (solid line) is SPM-clust using MLE for estimating co-
variance; “—+—" is SPM-clust using a banding estimator; “- -x--” is k-means; “--A--.”
is the nonparametric mixture model with p blocks of variables; “- .-V ...” is the nonpara-
metric mixture model with the true blocks of variables; “— - —[J — -—” is Mclust with the
optimal covariance structure; “— - —O— - =" is Mclust assuming a common covariance for

each cluster.
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Figure 2.5: The data have 10 variables distributed from the mixture of log-normal distri-
bution. Each cluster has 60 observations. “—o—" (solid line) is SPM-clust using MLE for
estimating covariance; “—+—"is SPM-clust using a banding estimator; “- -x--" is k-means;
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“../A--.7 is the nonparametric mixture model with p blocks of variables; “--- VvV --.” is the
nonparametric mixture model with the true blocks of variables; “—-—[]—-—" is Mclust with
the optimal covariance structure; “— - —<O— - =" is Mclust assuming a common covariance

for each cluster.
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Figure 2.6: The data are unbalanced and have 10 variables with the independent covariance.
The cluster sizes are 20, 60, 60 and 100 for the polynomial and inverse CDF transformations,
and 30, 50, 60 and 100 for the log-normal distribution. “—o—" (solid line) is SPM-clust

using MLE for estimating covariance; “—+—" is SPM-clust using a banding estimator; “-
-x--"is k-means; “--- A ---” is the nonparametric mixture model with p blocks of variables;
“...V--.7 is the nonparametric mixture model with the true blocks of variables; “— - —[1—
-—"is Mclust with the optimal covariance structure; “— - —0— - =" is Mclust assuming a

common covariance for each cluster.
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Figure 2.7: The data have 50 variables with the polynomial transformation. Each cluster
has 60 observations. “—o—" (solid line) is SPM-clust using MLE for estimating covariance;
“—+—" is SPM-clust using a banding estimator; “- -x- -7 is k-means; “--A---” is the
nonparametric mixture model with p blocks of variables; “---V---” is the nonparametric
mixture model with the true blocks of variables; “— - —[1 — -—" is Mclust with the optimal
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covariance structure; “—-—<0—-—" is Mclust assuming a common covariance for each cluster.
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Table 2.1: Estimated K and mis-clustering error(%) for data with p = 10 and 60 observation in
each cluster.

~

Data Data Method K mis-clustering (%)
(g(-)) (%)
SPM-clust 4.00 (0.00) 1.95 (1.32)
Indenenden K-means 4.13 (0.34) 5.76 (1.75)
PERECICE NMelust (same 2) 2.92 (1.13) 45.6 (26.6)
Polynomial Mclust (optimal ;) 4.77 (0.45) 28.8 (2.80)
SPM-clust 4.00 (0.00) 0.29 (0.39)
AR(1) K-means 4.03 (0.17) 5.79 (1.72)
Meclust (same X) 3.56 (1.29) 30.3 (30.8)
Meclust (optimal X) 4.73 (0.47) 30.3 (2.59)
SPM-clust 4.01 (0.10) 1.56 (1.06)
mdependen K-means 3.34 (0.59) 9.97 (7.94)
CPEREEREE Melust (same %) 3.56 (0.95) 18.0 (12.1)
Iverse CDF Mclust (optimal ;) 4.97 (0.17)  4.82 (2.26)
SPM-clust 4.05 (0.26) 0.48 (1.33)
AR(1) K-means 3.30 (0.92) 17.8 (10.5)
Mclust (same X2) 4.35 (0.74) 9.39 (7.95)
Meclust (optimal ¥j) 4.85 (0.52) 6.08 (10.2)
SPM-clust 2.56 (0.90)  23.7 (9.43)
e denendence Kmeans 3.16 (0.68) 39.8 (5.81)
HACPERACHCE 1 elust (same 37) 2.54 (0.76) 49.1 (10.9)
Log-normal Mclust (optimal ;) 3.46 (0.74) 27.0 (6.49)
SPM-clust 3.82 (0.58)  6.61 (6.77)
AR(1) K-means 3.24 (0.74) 29.5 (5.67)
Mclust (same 33) 2.91 (0.97) 45.6 (11.6)
Mclust (optimal ;) 3.18 (0.95) 35.2 (11.3)
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Figure 2.8: The data have 50 variables with the inverse CDF of t(3) transformation. Each
cluster has 60 observations. “—o—" (solid line) is SPM-clust using MLE for estimating co-
variance; “—+—" is SPM-clust using a banding estimator; “- -x--” is k-means; “--A--.”
is the nonparametric mixture model with p blocks of variables; “- .-V ...” is the nonpara-
metric mixture model with the true blocks of variables; “— - —[J — -—” is Mclust with the
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optimal covariance structure; “— - —O— - =" is Mclust assuming a common covariance for
each cluster.
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Figure 2.9: The data have 50 variables distributed from the mixture of log-normal distri-
bution. Each cluster has 60 observations. “—o—" (solid line) is SPM-clust using MLE for
estimating covariance; “—+—"is SPM-clust using a banding estimator; “- -x--" is k-means;
“../A--.7 is the nonparametric mixture model with p blocks of variables; “--- VvV --.” is the
nonparametric mixture model with the true blocks of variables; “—-—[]—-—" is Mclust with
the optimal covariance structure; “— - —<O— - =" is Mclust assuming a common covariance
for each cluster.
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could be improved in multiple ways. For example, we could use the ‘optimal’ truncation
parameter ¢,, chosen by BIC in the Winsorized estimator for g(x). We can also replace the
estimator for 3 by a robust estimator such as the Kendall’s 7 and the banding estimator.
In this chapter, we only investigate data with low dimensions, that is, p < n, it would be
interesting to apply this method in a high-dimensional setting. Other theoretical results such
as the consistency in estimating the clustering assignments and the boundary of the signal

for detecting clusters are also worth to investigate in future.
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CHAPTER 3

IDENTIFICATION OF PAIRWISE INFORMATIVE
VARIABLES FOR CLUSTERING DATA

3.1 Introduction

Clustering is one of the most popular topics in statistics, which separates objects into
subgroups with similar properties. It is widely applied in various fields such as genetic stud-
ies, marketing research, investigating social networks and more. Generally speaking, there
are two categories of clustering methods; one is mostly based on heuristic algorithms or
dissimilarities among objects such as the k-means algorithm (Hartigan and Wong, 1979);
the other is based on statistical models such as model-based clustering (Fraley and Raftery,
2002). Traditional clustering methods use all the variables in the data for clustering. How-
ever, in practice it is typical that only a small fraction of variables can distinguish clusters.
For example, in genetic studies, there may be only a few of genes that determine subtypes
of a disease or separate patients into subgroups. Thus identifying these genes is important.
Moreover, excluding non-informative variables may also help detecting the clustering struc-
ture in the data. The definition of “informative” and “non-informative” is stated later. One
straightforward way is to use a dimension reduction procedure such as principal component
analysis before clustering (Yeung and Ruzzo, 2001). However, Yeung and Ruzzo (2001)
concluded that only using a few principal components cannot capture the original cluster-
ing structure thus cannot improve clustering results. Chang (1983) mathematically proved
that using principal components of the data to reduce the dimension before clustering may
not maintain the information of original clustering in general. To simultaneously identify

important variables as well as cluster the data, Friedman and Meulman (2004) introduced
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a procedure to cluster objects on subsets of attributes (COSA) which defines the distance
between two objects as a sum of weighted distances on each variable. By optimizing over
the cluster assignments and the nonnegative weights that equal zero for non-informative
variables, it obtains the clustering on an estimated subset of variables. Parsons et al. (2004)
provided a review of other promising subspace clustering algorithms. These methods are
mostly heuristic but flexible in terms of being free of statistical assumptions. Since COSA
does not provide a sparse solution of variable selection when the dimension is high, Witten
and Tibshirani (2012) extended COSA and proposed a general framework of sparse cluster-
ing which effectively eliminates non-informative variables and can be implemented in a wide
range of clustering methods such as k-means and hierarchical clustering. Sparse clustering
also introduces a nonnegative weight for each dimension and performs a constrained opti-
mization over the clustering assignments and weights. The constraints include that the L,
norm of the weights is no more than a certain number which is selected by a permutation
algorithm and the L, norm of the weights is no more than one. These constraints can be
treated as two penalty terms in the clustering criteria. Thus, with the L; penalty, sparse
clustering can produce a sparse solution on variable selection.

As model-based clustering has been studied and widely applied in various fields, many
methods for identifying variables under the framework of the model-based clustering have
been proposed. Tadesse et al. (2005) employed a Gaussian mixture model and the Re-
versible Jump Markov Chain Monte Carlo (RJIMCMC) algorithm to search across spaces
of variables and clusters with different dimensions. Raftery and Dean (2006) treated vari-
able identification in model-based clustering as model selection via the approximated Bayes
factor. Hoff et al. (2006) proposed a mixture model of Dirichlet processes which employs
the Polya urn model for shifted cluster means. Recently, regularization methods were em-
ployed in model-based clustering to simultaneously cluster the data and identify important
variables, especially when the dimension is high and the sample size is relatively small. Bou-

veyron and Brunet-Saumard (2014) provided a thorough review in recent developments of
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high-dimensional model-based clustering including some subspace clustering algorithms and
regularization methods. Pan and Shen (2007) proposed a model-based clustering method
with an L; penalty for each cluster mean in the likelihood. Similar to Lasso (Tibshirani,
1996), it shrinks cluster means towards zero for standardized data and produces a sparse set
of variables. Since cluster means associated with the same variable form a natural group of
parameters which should be penalized differently from cluster means on the other variable,
Wang and Zhu (2008) introduced an adaptive Lo, penalty for the cluster mean vectors on
each variable. The adaptive parameters were used to reduce the bias of estimation using the
penalty functions.

When the dimension p increases, which could be faster than the increment of sample size
n, assuming an unstructured covariance matrix results in a vast number of unknown pa-
rameters which is infeasible to estimate without any assumptions. Researchers (Tibshirani
et al., 2003; Bickel and Levina, 2004) have shown that a diagonal covariance may produce
better estimation with smaller risk than a non-diagonal covariance in the context of clas-
sification. Thus, it is common to assume the same diagonal covariance for each cluster in
high-dimensional model-based clustering as in Pan and Shen (2007) and Wang and Zhu
(2008). In some cases, using a common diagonal covariance may not be enough in separat-
ing clusters. Xie et al. (2008) assumed different diagonal covariances for each cluster and
employed the L; penalty for cluster means. Xu et al. (2012) assumed a common, sparse and
unstructured covariance in the discriminant analysis and proposed L; penalties for both the
covariance and the cluster means. Since we are focusing on the effect of cluster means in
clustering in our method, we assume a common diagonal covariance matrix in this chapter.

The model-based clustering methods listed above only consider individual cluster means
or individual variables. However, the definition of “informative” in a clustering context is
different from that in a regression context, since the goal of clustering is to discriminate
between objects. As far as the equivalence of “informative” and separation of clusters is

considered, it is natural to consider pairwise differences among cluster means instead of
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individual cluster means. Jin and Wang (2016) defined that a variable is a “useful feature”
if there exists a pair of cluster means associated with this variable is different. We define

“globally informative variables” and “pairwise informative variables” in the same way.

Definition 3.1. Let p;; be the mean of the kth cluster on the jth variable. Then the jth
variable is said to be “globally informative” if there exists at least a pair of clusters which
have different means on the jth variable, that is, there exists at least one pair of k # £’ such

that pu; # puej. The jth variable is said to be “pairwise informative” for separating cluster

k and k' if M5 7é K-

Guo et al. (2010) proposed the adaptive pairwise fusion penalty (APFP) which can
effectively exclude more non-informative variables compared to L; and L., methods. At the
same time, it also provides information about the relative informativeness of each variable
in terms of the degree of separation of a specific pair of clusters in each dimension.

The Lasso-type penalties were shown to be biased in identifying important variables
unless a strong and non-trivial condition is satisfied (Zou, 2006; Zhao and Yu, 2006). Thus
it often produces an overfitted model with some small non-zero parameter estimates which
are meaningless. Song and Liang (2015) proposed the Reciprocal Lasso penalty function for
linear regression models that puts large penalties on small non-zero parameter values and
provides consistent results in variable identification and parameter estimation. Inspired from
these, we develop the PAirwise Reciprocal fuSE (PARSE) penalty, which aims to consistently
find the pairwise informative variables for clustering. The theory of clustering methods such
as consistency and optimality has not been fully studied yet. Jin et al. (2015) derived the
statistical and computational bounds for clustering and the precise regions of possibility and
impossibility of clustering or variable selection, i.e., phase transition using their proposed
influential features PCA (IF-PCA) method. Azizyan et al. (2013) derived the minimax
bounds for clustering loss which is defined by comparing the clustering to the Bayes optimal

classification given that there exist two clusters. Verzelen and Arias-Castro (2014) showed
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the minimax rate for detection of clustering as well as important variables under the mixture
model of two Gaussian distributions.

This chapter is organized as follows. In Section 3.2, we briefly review the model-based
clustering, some popular regularization methods and propose the model with PARSE penalty.
Then we show its consistency as well as optimality in identifying globally and pairwise in-
formative variables under certain reasonable assumptions in Section 3.3. In Section 3.2.1,
we provide the estimation procedure using a backward selection algorithm for estimating
the cluster means embedded in the EM algorithm. Section 3.5 provides simulations com-
paring PARSE to two popular regularization methods under four data settings. We further
demonstrate the usefulness of our method in Section 3.6 on microarray gene expression data
to identify important genes for asthma disease. The last section discusses several possible
extensions of our method. Proofs of the theoretical results and additional details of the data

analysis are provided in Chapter 4 and Appendix A.1.

3.2 Methodology

In this chapter, we assume that there are K clusters and the kth cluster follows a location-
scale distribution F} with mean p, and scale parameter 3. Then, let y be p-dimensional
data from one of the location-scale distributions {Fi,..., F.}. Let z = (z1,---,2K) be
a binary vector which indicates which cluster y is distributed from. If y comes from the
kth cluster, then 2z, = 1, and zp = 0 for any k¥ # k. Furthermore, we assume that
the proportion of the kth cluster in the population is 7, which implies that z follows a

" and one trial. Since here

multinomial distribution with probability vector (my,--- , 7g)
we focus on mean effects on cluster separations and Bickel and Levina (2004) have shown
that a diagonal covariance may produce better estimation with smaller risk than a non-

diagonal covariance in the context of classification, we assume a common diagonal variance
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Y = diag{o?, - ,012,} for each cluster. Then we consider the following clustering model,

Y|{Z C Rk = 1} ~ Fk(”’k? E)v (31)
z ~ Multinomial (1, (7, - ,7x)’),
where py, -, g, X, 7, -+ , T are unknown parameters, z is a latent variable. As is
common practice in model-based clustering, we assume that Fi,---, Fx are p-dimensional

normal distributions. Since clustering is an unsupervised learning, the number of clusters
(K) is unknown. Generally speaking, we first use a pre-defined K and estimate the model,
then use a criterion to select an optimal K (see Section 3.2.1 and Section 3.4.1).

The parameters p;, ¥ and 7 in (3.1) are estimated by maximizing the log-likelihood,

n K
arg max {log {H

ﬂk’/"'k’z i=1k

(kak:(yiLuka E))Zlk}} ) (32)

1

where n is the sample size, z; is a K-dimensional binary vector with z;; = 1 and z;» = 0
for any k' # k, if y; is distributed from the kth cluster; fj is the density of the Ath normal
distribution with mean p, and variance ¥. From now on, let U = (p,, -+, puy) be a K by
p matrix of cluster means, where fu; is the mean of the jth variable in the kth cluster.

As we mentioned in Section 3.1, the L; type penalties may not be consistent under
trivial conditions and tends to overfit the model under the regression framework especially
when p is much greater than n. This is because the penalties for small parameters are
nearly zero, which results in nonzero but small parameter estimates which are still treated
as informative variables and remain in the model. Moreover, non-informative variables may
cover the information we are interested in, which leads to an inaccurate estimation. Song
and Liang (2015) proposed the reciprocal lasso (rLasso) penalty which puts large penalties

on small values and leads to much smaller but not overly sparse model.
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To improve estimation in model-based clustering and identify the pairwise informative
variables, we propose the PAirwise Reciprocal fuSE (PARSE) penalty motivated by both
the work of Guo et al. (2010) and Song and Liang (2015). The PARSE penalty gives large

penalties for very small differences between cluster means as below.

PoU) = 0SS (g — s £0) (3.3)

= = g — sl

The parameters U, 7y, 32 are estimated by maximizing the log-likelihood with the penalty

function,

UmeX =1 k=1

arg max {Z Z zir log (mx fr(¥il i, 2)) — P, (U)} (3.4)

The likelihood in (3.2) is the joint distribution of y and z in model (3.1). The marginal
density of y is the same as the likelihood of finite mixture models in Pan and Shen (2007)
and Guo et al. (2010), which is,

F) = mfelyl, ).
k=1

3.2.1 Estimation of Gaussian Parameters

To estimate the unknown parameters in the clustering model (3.1) given a fixed number
(K) of clusters and a fixed tuning parameter (\,), we first let {zy,--- ,z,} in (3.4) be the
incomplete data and apply the EM algorithm to estimate U, m;, 3. Then the clustering
labels z;, i € {1,--- ,n} are estimated based on the estimates ﬂ, Ths 3. Given the complete

data w = (y, z), maximizing the log-likelihood in (3.4) is equivalent to,

n K
argmax Ly, (U, 7, ¥|w) = arg max {ZZzzk log (7 fr (yi| s, X)) — P,\n(U)} :

U,mg, % U, 2 i=1 k=1
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The EM algorithm at the (¢ + 1)th iteration is as follows.

e In the E-step, we compute the Q-function which is defined as the expectation of the

log-likelihood of w; given the observed data y; and parameter estimates from the tth

step.
Q(me, U, |70, 00, 8 =E{log L(m, U, Sjw)ly, 7, 00, 5}
n K ®
—3 3 [E (auly 20 00,5
i=1 k=1
X {m+log fulyili, D)} | - P (U)  (35)
Assuming that the data y;,72 = 1,--- ,n are independent and z;,7 = 1,--- ,n are inde-

pendently and identically distributed from a multinomial distribution with probability
vector (7, -+ ,7g) and one trial, from the model (3.1), the density of the complete

data w; is given by

K
f(wilm, U, 2) = [ ilmes s B)med ™
k=1

Then, the marginal density of y; is

=

f(yi‘ﬂ'k?Uv E) = Zf (Wi‘ﬂ-k’Uv E) = ka(Yi‘H'k? 2)7‘%7

k=1
where fi(-|p),, X) is the densify function of N, (g, 2). This implies that the conditional
density of z; given y; is

K

(fr(yil oy, X)) %o
iy, me, U, X)) = ’
f(Z |y Tk ) IH Zszl fj(}’i“”j? E)?Tj
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Thus given y; and parameter estimates frlit), U(t), ﬁ](t) from the tth step, z; is distributed

from the following multinomial distribution,
S /
zily, 70, 00, 5" NMultinomial{1,< Gy ’@Z(?l)) }

where,

. 0 f (a0
ay = E<Z’k|y’7rl(e)vU(t)a2(t)> T K <y1“‘k , (t) >(t)
ZJ 1 Ty fJ(Yz‘ K DY )

(3.6)
Therefore, the Q-function (3.5) is given by

() T (t)
QU U, SI50, 00, %) = 373 6l {log f (vl ) + 1) — Py (V).
i=1 k=1
In the M-step, we maximize the Q-function with respect to U, X, w. Since there is
no closed form for parameter estimates, we can conditionally estimate each parameter

given the other parameters equaling to the most recent estimates, that is,

n

1
A0 — ﬁng,’fj”, k=1,... K.

i=1

e ZZON“ v ADP, i=1...»p

zlkl

(t+1)’ [62)4+1), U maximizes

Then given 7

(U)=Q (U, EDICRI §(0) <t>) (3.7)

Because the objective function (3.7) is nonconvex and non-differentiable at origin, we
estimate Ut by checking subsets of the parameter space of U. Since this procedure

is similar to the backward variable selection under regression framework, we name it
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as a “backward selection algorithm”. Given U belongs to a subset M, let UM be the
maximizer of [((U|U € M), where M = {U : AU = 0} is a set of U that satisfies
a given constraint. For example, A = ((1,-1,0,---,0),(1,0,—1,0,---,0)")" means
M, = py = ps which implies that there are K —2 unknown parameters. The algorithm
searches subspaces in a decreasing pattern, that is, the subspace in the current step is
a subset of the parameter space including the maximizer in the previous step. Thus,

the algorithm starts with the full model which contains K unknown cluster means.

Step 0. Estimate UMo given the full model My (A = 0), that is, there are K unknown

parameters need to be estimated. Let [, = [(UMo),

Step 1. Consider subspaces whose elements contain K — 1 parameters, that is, there
exists exactly one pair of p, that are the same. There are K choose 2 sub-

spaces in this step. Let them be M ;), where ¢ =1,--- | (12()

(a) Estimate UMao for each subspace M. Let 1™ = max,{I(UMa.0)}
be the overall maximum objective value in these subspaces and Ml(max)

be the corresponding subspace.

(b) If ™) < [y then the algorithm stops. Furthermore, UM from the full
model is the maximizer of (3.7), i.e., Ut = UM Otherwise, the
algorithm continues.

Step b. Starting with b = 2, we check subspaces of leinla ) whose elements contain

K—b+1) )

K — b unknown parameters, i.e., M, ;) C leflla") where i =1,-- -, ( ;

(a) Estimate UMeo for each subspace. Let I{™ = max; {{(UMe0)} be the
overall maximum objective value in these subspaces and Mb(max) be the

corresponding subspace.
max max . = =~ (max)
(b) If ll() ) < lé_l ) then the algorithm stops and UtT) = UM Other-

wise, the algorithm continues.

46



Repeat step b until b = K — 1. If the algorithm continues till b = K — 1, then the

maximizer with the constraint that all cluster means are equal is UG,

e Repeat the E-step and the M-step until the parameter estimates satisfy

2 2
(t+1) (t)
K HI“I’](ft—i_l) - I’l’l(ﬂt) 521 <UJ ) B <UJ > K (t+1) (t)
> . +y ‘wk a0 <2, (38)
k=1 H'u’“ e j=1 <O§t)) te =1

where € is a positive small number which avoids the case that the ratio goes to infinity

when the denominator is zero and g¢ is a positive small number for stopping criterion.

e The last step is to predict clustering labels z; as below.

L . ~ (t+1)
Z; = €,, m =argmax &, ,
k

where dgfjl) is (3.6) in the last EM-step, which can be interpreted as the posterior

probability of y; belonging to C; e,, is a K-dimensional unit vector which equals to 1

for the mth element and 0 everywhere else.

The estimation of u,; is hard and time consuming using regular optimization methods in-
cluding some global optimization methods such as the generalized simulate annealing. Using
above algorithm, we could find the maximizer within reasonable time. Using a personal
computer with a 2.7GHz Intel Core i5 processor and 8 GB memory, estimating parameters
of (3.4) for one dataset which contains well separated clusters given a specific K and A,
takes about 24 seconds to reach the stopping criterion (3.8) for EM-algorithm. Notice that

the computation time will be much longer if clusters are highly overlapped with each other.
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3.3 Theoretical Results

Theorem 2 shows the oracle property that if the clustering labels z;, € {0, 1} and variance
3 is known, then variable selection using PARSE is consistent. Since z;, and 3 are unknown
in practice, we replace zy, in the model (3.4) by a surrogate ;. € [0, 1] which is essentially
the expectation of z; given other parameters and the observed data, and replace ¥ by its
consistent estimator. Theorem 3 shows that under certain conditions of «;,, PARSE can
consistently select the true model. Cai et al. (2010) showed that the diagonal covariance
matrix can be consistently estimated. Thus, without loss of generality, in Theorem 3 we
assume 0]2- =1, that is, )N I If O'JZ # 1, we could scale the data by y;;/0;. Furthermore,
Theorem 4 states that PARSE is optimal for model selection within a specific parameter
space of cluster means. Given z;; and 3 are known, estimating U in (3.4) is independent of

7, and is equivalent to minimizing the following objective function with respect to U,

ZZZ'Z”“ )

| (|uk] prrj| # 0).
J=1 k=1 i=1 31k<k/“’”

Throughout this chapter, let Cy, = {y; : y; € kth cluster,i = 1,--- ,n} be the kth cluster,
EWU) ={(k,K,j): pj # prj ke, K € {1,--- K}, j=1,---,p} be the set of triplets of cluster
labels and dimensions which have nonzero pairwise mean difference. In the other words,
&(U) represents a model which specifies pairwise informative and non-informative variables.
Denote S(U) = [¢(U)| as the cardinality of £(U) which specifies the size of the model in
terms of pairwise mean differences. Let iy = ming g j{|pe; — powr | L (|pw; — pwr ;] # 0)} and
Umax = Maxy i {|pe; — pori | L (|pr; — | # 0)} be the minimum and maximum of nonzero

pairwise mean differences and U* be the true cluster means. Thus, {(U*) is the true model.
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Theorem 2. Assuming a fized number of clusters K, tuning parameter \,, known z; =

I(y; € Cx) and known variance ¥ =1, the estimates of U using PARSE minimize

Lo (U ZZZZ”“ T RN D D

=1 k=1 i=1 31k<k/|“k’f

Il s = s # 0). - (3.9)

With the following assumptions, we can show that supy.ce P{E(U) # £(U*)} = 0 asn — oo,

where © = {U : S(U) = o(n/log(p)), umin > €} is a parameter space of U and €y =

(v2/ maxi{m.} + o(1))\/log(p)/n.

(A1) Assume that K = O(1) is a constant, log(p) = O(n®), where 0 < o < 1, A\, =
O(log(p)(log(p)/n)?) with 0 < v < 1/2, ng, = O(n), for any k = 1,--- | K, where
i = |Cil and S(U*) = o(n/ log(p)).

(A2) There exists by, > 0 and ay, > 0 such that \,/by, < ay,, where a,, = O(log(p)

(log(p)/n)"~"/2).

(A3) For any &; > 0,we assume that by, < ul;, — /4log(S(U*)/e1)/n as n — oo, where

ur o is the minimum of nonzero pairwise mean differences in U*.

Theorem 3. Assuming that ¥ = 1, can be estimated consistently and z, in (3.9) is replaced
by a surrogate oy, € [0, 1] which is essentially the expectation of zy given other parameters

and the observed data, then U 1s estimated by minimizing

Ly, (

W ZZZ” N ) D

(g — sl £0). (310)
J=1 k=1 i=1 ]1k<k/’uk]

Given assumptions (Al) and (A2) and the following assumptions which are similar to as-
sumptions in Theorem 2, model (3.1) with the PARSE penalty can consistently select the

true model, that is, as n — oo,

sup P{(U) # (U} — 0.

U*co
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(B1) Assumptions for g, for any k € {1,--- | K}.

(Bl.a) there exists at least one ay, # 0,7 =1,--- ,n, i.e., Zle ik # 0.
(BL.b) >0, s = O(n).
(Bl.c) the following conditions hold,

1 + O(rn/ufnax>7 lf Yi € Ck

Qi =
0T /U o) otherwise

where r, = (log(p)/n)*?/u’,, and u

max max

is the maximum of nonzero pairwise

mean differences in U*.

(B2) For any £; > 0, we assume that by, < uly + o — 1/41log(S(U*)/e1)/n, where u, is

% .
min 1

the minimum of nonzero pairwise mean differences in U*, gg = o(rpul ,.)-

Theorem 4. Assuming that cluster means U should satisfy umin > €0 and S(U) = s, where
€0 = (\/2/ maxg{mc} + 0(1))\/log(p)/n and s = o(n/log(p)) is a pre-specified sparsity level,
let © ={U : S(U) = S, Umin > €0} be a parameter space containing all possible values of U

that satisfy the above two assumptions. Then we have the lower bound of the maximum risk

of variable selection is

R* = inf sup By |Eg, i {I(E(0n) £ W) ] > (3.11)

where 0 < n = o(1).

Remark 1. (1) Assumption (A1) defines the order of the dimension p, the tuning parameter
An and the sparsity S(U*). The order of p is log(p) = O(n®) with 0 < a < 1 and the
order of A, is O(log(p)(log(p)/n)") with 0 < v < 1/2, which means that if a < v/(y+1)

that is p is small, A, will go to 0 as n goes to oo, otherwise A, goes to co.
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(2)

When the cluster mean difference is large, the penalty is small and vice versa. As-
sumption (A2) specifies the upper bound which bounds the penalty term by a large
number ay,. If the difference is zero, the penalty will be zero because of the indicator

function I(|gy; — pur;| # 0). Moreover, From Assumption (A1) and (A2), we know that

by, = O(y/1og(p)/n).

Assumption (Bl.a) ensures that there is no empty cluster in the data. Assumption
(B1.b) means that the cluster size has the same order as n. Therefore, there is no
extremely large or small cluster. Assumption (Bl.c) assumes that oy is a consistent
estimator of z;; which is the indicator of y; being distributed from the kth cluster. The

order of the consistency depends on wu’ ., the maximum of cluster mean differences

max’

for true means U*. In fact, r, = o(u’;, /(|t|ut..)) = o((log(p)/n)*?/u’..). As ul,.
decreases, 7, decreases which means we need more accurate estimates for a;;. As u ..
increases, r, decreases because for well-separated clusters, less accurate estimate for
ik, 1.e., higher probability of wrong clustering leads to larger value in the loss function.
As [t| increases, the true model is less sparse so we need more accurate ;. to identify

the true informative variables, that is, smaller r,,.

Assumption (B2) indicates the lower bound of the minimal cluster mean differences is
by, = O(y/log(p)/n), which matches u’ .. > €y = (\/2/ maxg{m} + o(1))\/log(p)/n =
O(4/log(p)/n) in Theorem 4.

In Section 3.2.1, we use the EM algorithm to estimate parameters. We can find that

the surrogate oy, matches the posterior probability of belonging to the kth cluster.

Theorem 3 and Theorem 4 implies that PARSE is the optimal method for variable

selection in the parameter space ©.
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3.4 Practical Implementation

3.4.1 Choice of the Number of Clusters and Tuning Parameters

Based on Fan and Tang (2013), we use the generalized information criterion (GIC) to

select the number of clusters and the tuning parameters as below.
GIC(M\, K) = — 2Ly, (U, X, #,2]y) + log{log(n)} log(K — 1+ p+cg)(K —1+p+cy) (3.12)

where ¢y = Z?:l ¢i,; and ¢p  is the number of different nonzero values on the jth dimension,
which is a integer in [0, K]; Ly, (U, 3, #, 2]|y) is the log-likelihood in (3.2) with estimates
Ij, 3 7 and predicted clustering labels z; using PARSE.

Other criteria can be used for choosing K and \,, such as BIC proposed by (Guo et al.,

2010; Xu et al., 2012; Wang et al., 2007) as below.
BIC(\y, K) = — 2Ly, (U, 2, 7, z;|y) + log(n) (K — 1+ p+ cp). (3.13)

3.4.2 Guideline of Searching Tuning Parameter )\,

This section follows the similar arguments as in Song and Liang (2015). The idea is to
find the range of potential tuning parameters A, for the model with PARSE penalty. Notice
that the null model is that all clusters have the same cluster means, i.e., all pairwise mean
differences are zero. Moreover, as A\, — oo, for any k, k' € {1,--- K} and j =1,--- p,
\pk; — turil — 0. Obviously, the largest estimated mean differences will be the last ones
(there may be multiple pairs with same mean difference) to be shrunk towards zero. So
the upper bound (AM*) of A, to be checked is the smallest value that makes the largest
estimated mean differences be zero using PARSE.

Firstly, we consider the special case K = 2. Let the pair of means with the largest (non-
zero) difference to be pi1,, and fia,, on the mth dimension. Then, with known zy, = I(y; € Cy),

where C}, represents the kth cluster and o2 (variance of the mth variable), from the log-
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likelihood in (3.4), we have,

n 2

Rik o~ 2 max 1 - (yzm B gm)
Hem — Yim +)\n P = — Q=5 3.14
11;272” ' ) |t — o] 121 207, 1

where 9., = Z?:l Yim/m is the sample mean of the mth variable, fi;,, and fis,, are estimates
with tuning parameter A\'**.

Since i1, and fig,, in (3.14) need to maximize the penalized likelihood, that is, maximize
the left-hand side of (3.14) given zj, 02, are known. Without loss of generality, we assume

fm > flam, then we have

a Z ,ulm yzm )\max Sgn(,ulm /]Qm)

~ 2 )
8,Ulm iyieCh |fiim — fi2m|
8 m m S n m (i m
— S B2m — Yim y _ ymax %|f (fi2 m‘?)_
Hom iy €Co Him — ,U/2m

Solving these equations based on fiy,, fla,, and A\2'**, we have,

3
A = im )
" 27n1n202 ( Z Yim = 111y )

yi€Ch

where ny = |Cy|,ny = |C| and n = ny + ny is the sample size.

In reality we have no information about the true clustering labels. To approximately find
Ch and Cy, we could let ', Cy be the clustering results from the unpenalized model-based
clustering. Then, based on the estimated C7, Cs, compute the mean difference between these
two clusters and find the variable (y.,,) with largest mean difference.

Secondly, for general K > 2, assuming |fiy,, — fiam| is the largest and fiy,,, > figm, let
Ar = {k ¢ ik — fism| < |fikm — fom|} and Ay = {k" ¢ | — fam| > |figrm — fizm|}. When
Ap = A we will have fig, = fir, for any k& € Ay and fig, = fio, for any k' € Ay, It is
clear that k =1 € Ay, k' =2 € Ay and |A;| + |A2| = K. Thus, there will be |A;] - |As| pairs

of differences having the same value as |fi1,, — figm| when A, — A2**. Thus, similar to the
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special case K = 2, we have

3
16n?
Ay = im — Yom )
" 27|Alr-|A2|M%M§azn< 2, y)

11y €Ck k€A1

where My =), 4 |G| and My =7, 4 |Ch]. Section 4.4 provides computational details.

3.5 Simulations

In this section, we investigate the performance of the proposed method (PARSE) for iden-
tifying informative variables under the framework of model-based clustering. We compare
PARSE to the adaptive L; penalty (Pan and Shen, 2007) and the adaptive pairwise fusion
penalty (Guo et al., 2010). Four models with different numbers of dimensions, sample sizes,
distributions and covariance structures are used to generate data. Each dataset contains
four clusters. The cluster mean values, variances and statistics for comparison follow the
simulation set-up used in Guo et al. (2010). We consider multiple sample sizes and different

signal-noise-ratio (SNR). For each model, we considered three settings:

1. Balanced cluster sizes with high SNR: Each cluster has 20 observations, i.e. total

sample size is n = 80, and the same covariance ¥ = L,.

2. Balanced cluster sizes with low SNR: Each cluster size has 20 observations and the

same covariance > = 4L,

3. Unbalanced cluster sizes with high SNR: There are 20 observations for each of the first
two clusters and 200 observations for the others. So the total sample size is n = 440.

Each cluster has the same covariance ¥ = I,,.
The four models are as follows:
Model 1 (Independent Normal with lower dimension) Each cluster is generated from

a Normal distribution with dimension p = 220. Four cluster means for the first

o4



Model 2

Model 3

Model 4

10 variables are 2.5, 0, 0 and —2.5; cluster means for the second 10 variables are
1.5, 1.5, —1.5 and —1.5; cluster means for all the other variables are 0. Hence,
the first 10 variables are informative to separate the first and fourth clusters; the
second 10 variables are informative to separate the first two clusters and the other
two clusters; all the other variables are non-informative to separate any pair of

clusters. All clusters have the same diagonal covariance matrix.

(Normal with sparse covariance) Use the same cluster mean setting as in
Model 1. The correlation matrix is assumed to be sparse. For the off-diagonal
elements, there are 10 pairs of variables that have nonzero correlations, five of
them equal to 0.2 and others equal to -0.5. Here, we randomly select 10 pairs of

variables which ensure that the covariance matrix is positive definite.

(Independent Normal with higher dimension) Compared to Model 1, this
model generate data with 550 dimensions and slightly higher signal in the sense
that cluster means for the first 25 variables are 2.5, 0, 0 and —2.5; and cluster
means for the second 25 variables are 1.5, 1.5, —1.5 and —1.5; all the other
variables are non-informative. All clusters have the same diagonal correlation

matrix.

(Independent Normal and Uniform) Instead of sampling from a multivari-
ate Normal distribution with p = 220 as in Model 1, half of the variables are
generated independently from Normal distribution with 10 of them having cluster
means 2.5, 0, 0 and —2.5 and the other 100 variables with zero means which are
non-informative. The other half of the variables are generated independently from
Uniform distribution with 10 of them having cluster means 1.5, 1.5, —1.5 and —1.5
and the other 100 variables with zero means. To generate Uniform distributions
with a given mean values we can first find the minimal and maximal value based

on mean and variance. For example, Given that the mean and variance are 1.5
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and 1, the minimum and maximum of the Uniform distribution are (3 — 2v/3)/2

and (3 + 2v/3)/2.

To evaluate the performance of methods for variable selection, we consider two sets of
measurements based on whether a variable is identified as globally informative or pairwise
informative. A variable is identified as globally informative for distinguishing clusters if
there exists at least one pair of cluster means that are different. The pairwise informative
is defined as informative to distinguish a pair of clusters. The first set of measurements
(Table 3.1) is based on the global informativeness, including percentages of informative
variables that are selected as informative (Info%) which is defined as the proportion of true
informative variables that are estimated as informative and percentages of non-informative
variables that are selected as informative (Noninfo%) which is defined as the proportion of
true non-informative variables that are estimated as globally informative. The second set of
measurements (Table 3.2) focuses on the pairwise informativeness of the globally informative
variables. For example, variables 1 — 10 are not informative for separating the second and
the third clusters, so we investigate the proportion of these variables that are estimated to
be informative for separating cluster 2 and cluster 3 using each method.

Since the clustering labels are known in simulation studies, the mis-clustering error (Ta-
ble 3.1) defined by Hamming distance is also evaluated for each method. Let H be a n by
n binary, upper triangle adjacency matrix of clustering labels. If y; and y; are in the same
cluster, then H;; = 1; otherwise, H;; = 0. Then the mis-clustering error is the Hamming
distance between two upper-triangle adjacency matrices as below.

2 Zi<j ‘Hij - H:]‘
n(n —1) ’

where H and H* are adjacency matrices of the estimated clustering labels and the true
clustering labels respectively. For real applications in cluster analysis, we cannot evaluate

this statistic since the true clustering labels are unknown.
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The EM-algorithm was used for estimation. All estimates converge within 500 iterations.
Since the EM algorithm guarantees local optimization and depends on a good starting point,
we use the clustering results from K-means clustering with 100 random starts as the starting
values. For computational stability, we set the lower bound of cluster mean differences to be
1077, that is, if the difference between py; and py; is less than 107°, then the jth variable
is non-informative for distinguishing cluster & and k’. The optimal number of clusters and
tuning parameters are selected based on GIC described in Section 3.4.1.

In general, the method with a low Noninfo% while have similar or higher Info% is pre-
ferred. From Table 3.1, all the three methods perform well for data with higher SNR. For
unbalanced data, three methods have similar or slightly better results compared to balanced
data with high SNR. In some cases, unbalanced data have better results than balanced data
because the sample size for unbalanced data is 440 which is much greater than 80, the sam-
ple size of balanced data. Additionally, because Model 3 has 30 more globally informative
variables than Model 1, all three methods perform better for Model 3 which has 550 dimen-
sions than Model 1 with 220 dimensions, especially for mis-clustering errors. Apparently,
all methods perform when we only increase the dimension size while remaining the same
level of information. Thus, simulations with Model 3 show that if we slightly increase the
signal while increasing the dimensions, PARSE can still perform well. Model 4 is a mixed
data with variables generated from Normal distribution and Uniform distribution which is
bounded. Both Table 3.1 and Table 3.2 indicate that PARSE works well for data generated
from Model 4 which implies that without normality assumption, PARSE can also identifying
informative variables for a bounded distribution.

It also can be seen that three methods have similar Info%, which can be interpreted
as having similar power for identifying the informative variables. However, PARSE has
the smallest Noninfo% for every simulation. APL1 performs worst for filtering out non-
informative variables. For data with high SNR, all the methods have similar mis-clustering

errors. However, for data with low SNR, the mis-clustering error using PARSE is almost half
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of using APL1 or APFP. The main reason is that excluding more non-informative variables
reduces noises in the data for clustering.

Although in Table 3.1, the differences between PARSE and APFP are relatively small,
PARSE performs better as expected. Furthermore, as we mentioned before, a globally
informative variable is not necessary to be informative for separating every pair of clusters.
If we focus on a specific pair of clusters, the performance of selecting pairwise informative
variables is needed. Model 1, 2 and 4 has 220 variables while only the first 20 variables
are globally informative. Model 3 has 550 dimensions with only the first 50 variables being
globally informative. In each model, the first half of the globally informative variables
are non-informative for separating cluster 2 and 3, the second half are non-informative for
separating cluster 1 versus 2, and cluster 3 versus 4. Therefore, Table 3.2 shows the Noninfo%
for each pair of clusters. From the results, PARSE performs much better than the other two
methods in all the simulation settings. There are 36 comparisons of Noninfo% in total,
while only 3 out of them are greater than 5% by using PARSE. As expected, APL1 cannot
identify informative or non-informative variables for each pair of clusters, since the penalty
function only penalizes individual mean values instead of pairwise mean differences. APFP
performs well for data with high SNR, but for all the data with low SNR, the average
Noninfo% is around 10% which is much greater than using PARSE. Therefore, both Table 3.1
and Table 3.2 depict that PARSE performs well in identifying both globally and pairwise
informative variables. Moreover, as a by-product, PARSE also returns smaller mis-clustering

error, especially for data with low SNR.

3.6 Genetic Mechanisms of Asthma

Asthma is a long-term chronic inflammatory disease involving narrow and swollen air-
ways in the lungs and causing airways to produce extra mucus which triggers coughing and
dyspnea (shortness of breath). There approximately 235 million people worldwide who suf-

fer from asthma and 300,000 asthma-related deaths per year (World Health Organization,
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Table 3.1: Comparison of clustering and variable identification under each of the four model settings,
Model 1 (Independent Normal with lower dimension), Model 2 (Normal with sparse covariance), Model 3
(Independent Normal with higher dimension), and Model 4 (Independent Normal and Uniform). Info%
is the proportion of true informative variables which is estimated as globally informative, so larger values
are better. Non-info% is the proportion of true non-informative variables which is estimated as globally

informative, so smaller values are better.

Mis-clustering

Model Data Method Optimal K Info% Non-info%
error %
APL1 4.0(0.0)  100.0(0.00) 2.730(1.35)  0.000(0.00)
Balanced & High SNR ~ APFP  4.0(0.0)  100.0(0.00) 0.180(0.93)  0.000(0.00)
PARSE  4.0(0.0)  100.0(0.00) 0.000(0.00)  0.012(0.12)
APL1 3.4(0.6)  98.40(3.62) 4.880(1.91)  18.24(5.53)
Model 1 Balanced & Low SNR ~ APFP  3.4(0.5)  99.45(2.12) 0.600(0.69)  14.95(7.94)
PARSE  3.7(0.4)  99.10(2.50) 0.390(0.53)  8.211(6.26)
APL1 4.0(0.0)  100.0(0.00) 1.095(0.92)  0.021(0.09)
Unbalanced & High SNR APFP  4.0(0.0)  100.0(0.00) 0.150(0.39)  0.021(0.09)
PARSE  4.0(0.0)  100.0(0.00) 0.040(0.14)  0.017(0.08)
APL1 40(0.0)  100.0(0.00) 1.230(0.95)  0.012(0.12)
Balanced & High SNR ~ APFP  4.0(0.0)  100.0(0.00) 0.100(0.25)  0.000(0.00)
PARSE  4.0(0.0)  100.0(0.00) 0.040(0.15)  0.012(0.12)
APL1 3.3(1.5)  99.40(3.28) 2.135(1.15)  18.81(6.15)
Model 2 Balanced & Low SNR ~ APFP  3.4(0.6)  99.05(2.43) 0.530(0.55)  17.25(7.69)
PARSE  3.8(0.5)  99.25(2.29) 0.375(0.44)  9.416(6.17)
APL1 4.0(0.0)  100.0(0.00) 2.300(1.26)  0.009(0.06)
Unbalanced & High SNR APFP  4.0(0.0)  100.0(0.00) 0.070(0.19)  0.091(0.79)
PARSE  4.0(0.0)  100.0(0.00) 0.000(0.00)  0.004(0.04)
APL1 4.0(0.0)  100.0(0.00) 1.144(0.60)  0.000(0.00)
Balanced & High SNR ~ APFP  4.0(0.0)  100.0(0.00) 0.092(0.19)  0.000(0.00)
PARSE  4.0(0.0)  100.0(0.00) 0.026(0.10)  0.000(0.00)
APL1 3.9(0.3)  96.96(7.25) 2.480(1.37)  1.987(4.01)
Model 3  Balanced & Low SNR APFP 3.9(0.6) 99.48(1.16)  0.360(0.44) 3.901(5.92)
PARSE  4.0(0.0)  99.36(1.39) 0.184(0.24)  0.271(0.57)
APL1 4.0(0.0)  100.0(0.00) 2.118(0.75)  0.000(0.00)
Unbalanced & High SNR APFP  4.0(0.0)  100.0(0.00) 0.108(0.24)  0.000(0.00)
PARSE  4.0(0.0)  100.0(0.00) 0.006(0.03)  0.000(0.00)
APL1 4.0(0.0)  100.0(0.00) 1.530(1.16)  0.000(0.00)
Balanced & High SNR ~ APFP  4.0(0.0)  100.0(0.00) 0.095(0.25)  0.000(0.00)
PARSE 4.0(0.0) 100.0(0.00)  0.070(0.19) 0.000(0.00)
APL1 3.3(0.5)  99.15(3.10) 2.505(1.61)  17.81(5.45)
Model 4 Balanced & Low SNR ~ APFP  3.6(0.6)  98.90(3.73) 0.455(0.60)  16.40(9.22)
PARSE  3.8(0.4)  99.10(2.50) 0.350(0.42)  7.969(5.80)
APL1 4.0(0.0)  100.0(0.00) 2.365(1.33)  0.010(0.07)
Unbalanced & High SNR APFP  4.0(0.0)  100.0(0.00) 0.075(0.18)  0.010(0.07)
PARSE  4.0(0.0)  100.0(0.00) 0.005(0.05)  0.010(0.07)
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Table 3.2: Under each model setting, for each subset of the globally informative variables and each pair of clusters, the numbers in the table
represent the proportions of true pairwise non-informative variables being estimated as pairwise informative. Smaller values in the table indicate
better variable identification. The results are only based on replicates which choose the number of clusters K = 4.

Cluster pairs Variable APLL% APFPY% RF% 0\ APLLY% APFP % RF %
Model 1 (Normal p=220) Model 2 (Normal & sparse X)
Cy vs Cs 110 230(4.89) 7.80(9.17) 0.40(1.97) 110  0.10(1.00) 8.20(9.47) 0.90(2.88)
High SNR— 0 os 0 1o 100(0.00) 400(7.91) 0.00(0.00) | . 100(0.00) 2.80(6.37) 0.60(2.39)
Cy vs Cy 100 (0.00) 3.40(6.39) 0.20(1.41) 100(0.00)  2.40(5.34) 1.10(3.14)
Cy vs Cs 110 4.29(5.35) 9.27(9.59) 5.54(11.6) 110  2.22(441) 12.8(10.8) 6.71(8.12)
Low SNR 0 s 1oy S00(IL5) 976(7.90) 432(8.61) | o 97TS(A4l) 147(10.2) 4.67(6.95)
Cy vs Cy 743(9.76) 10.2(11.3) 4.19(12.4) 96.7(5.00) 16.3(11.6) 3.43(6.34)
Cy vs Cs 110 0.90(2.88) 4.90(7.98) 0.30(L.71) 110 100 (0.00) 6.87(8.41) 0.10(1.00)
Unbalanced = " o Lo 100 (000) 560(7.70) 030(71) L o 100 (0.00) T.17(9.15) 0.40(197)
Cy vs Cy 100 (0.00) 4.60(7.03) 0.00(0.00) 100 (0.00) 4.65(7.18) 0.10(1.00)
Model 3 (Normal p=>550) Model 4 (Normal & Uniform)
Cy vs Cs 125  0.60(1.44) 7.43(7.09) 0.72(L54) 110  0.40(1.97) 9.00(13.4) 0.40(1.97)
High SNR— 0 os soso  100(000) 291(438) 0.84(164) | o 100 (0.00) 390(751) 1.10(3.45)
Cy vs Cy 100 (0.00) 2.83(4.40) 1.16(1.91) 100 (0.00) 3.60(6.12) 0.70(2.56)
Cy vs C 125  1.26(1.96) 12.6(848) 2.44(2.89) 110  0.90(3.02) 15.7(15.2) 5.77(7.12)
Low SNR s 6 sosg  OT1612) 562(6.77) 204270) o 99.1(3.02) 7.71(9.10) 2.31(454)
Cy vs Ci 07.1(5.12) 4.91(4.80) 2.20(2.44) 09.1(3.02) 10.0(10.6) 3.59(6.24)
Cy vs Cs 125 100 (0.00) 3.84(5.36) 0.00(0.00) 110 100 (0.00) 4.60(8.0)  0.10(1.00)
Unbalanced = " o soso  100(0.00) 336(475) 044(149) L o 100 (0.00) 580(7.8) 0.40(197)
Cy vs Cy 100 (0.00) 4.76(7.07) 0.00(0.00) 100 (0.00) 2.60(6.5)  0.10(1.00)




2013). Asthma is thought to be caused by a complex combination of genetic and environ-
mental factors whose mechanism and regulatory pathways are not completely understood.
Identification of the key genes which control the disease is of keen interest to researchers.

We perform cluster analysis with the PARSE penalty on microarray gene expression
data from NCBI's Gene Expression Omnibus database (Gene Expression Omnibus Series
accession number GSE43696). The data consist of 108 samples consisting of 20 healthy,
50 moderate asthma, and 38 severe asthma patients. As a structured vocabulary of terms,
the aim of the Gene Ontology (GO) system is to unify the representation of gene product
characteristics. GO defines “GO terms” which group gene sets with the same biological
functions (Ashburner et al., 2000). For clarification, we can think of each GO term as a
dataset consisting of a set of genes upon which we perform cluster analysis. At the time we
accessed the data, there were 11,494 GO terms consisting of 24,521 genes in the database,
which is after preliminary screening for gene-filtering using the approach in Gentleman et al.
(2006). The number of genes contained in each GO term ranges from 1 to 8069.

Currently, there is no accurate diagnostic test for asthma. The diagnosis of moderate
or severe asthma is based on a patient’s pattern of symptoms and responses after therapy.
Thus, it is important to identify the genes that are informative for causing and distinguishing
different asthma symptom levels. We focus on only the moderate and severe asthma patients.
We consider GO terms containing the IFN-~ (Interferon-) gene as it has been shown to be
one of the critical immune agents (Voraphani et al., 2014). Additionally, we only consider
the 16 GO terms with the number of genes between 50 and 500. In our data there are 1,941
unique genes in total, of which 370 genes are shared by at least two of the 16 GO terms and
93 genes are shared by at least 3 GO terms. One gene (Interferon-$3-1, fibroblast) is shared
by 5 GO terms, one gene (Interleukin-6) is shared by 6 GO terms, and no genes are shared
by more than 6 GO terms except the IFN-+ which defines this class of GO terms.

For each GO term, we apply model-based clustering with the PARSE penalty (3.3). We

use GIC as described in Section 3.4.1 to select both the number of clusters K and the tuning
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parameter \,. Since the data are noisy, we focus on identifying the global informative genes.
A summary of the identified informative genes for each GO term is shown in Table 3.3.
Overall, about 50% of genes are identified as informative.

We found that 174 genes are informative in at least two GO terms. Among these genes,
24 genes are informative in 3 GO terms and 24 genes are informative in 4 GO terms. The
genes that are shared and informative in 4 GO terms belong to the Major Histocompat-
ibility Complex (MHC) Class I and three protein coding genes, promyelocytic leukemia,
[B-2-Microglobulin and interferon induced transmembrane protein-1. Both of IFNB1 and IL6
were not selected as informative. IFN-v was selected as informative in all the 16 GO terms
which indicates that it is an important gene for asthma. Therefore, there are 25 informative
genes shared by at least 4 GO terms which indicates that we could focus on these genes for
further investigation of the pathology of asthma.

Some pairs of GO terms share a large number of genes. For instance, GO:0060333
(IFN-v mediated signaling pathway) which contains 130 genes is a subset of GO:0019221
(cytokine mediated signaling pathway) with 270 genes. Cluster analyses of both GO terms
show that the cluster assignments and identified informative genes are slightly different. In
GO term 0060333, there are 95 informative genes; eleven of these genes were not identified
as informative in GO term 0019221. In the cluster analysis results, GO:0060333 contains
6 clusters while GO:0019221 only contains 5 clusters. However the difference between the
cluster assignments estimated in the two GO terms is small, e.g., the Hamming distance
between the cluster assignments in GO:0019221 and GO:0060333 is 10.7%. Moreover, the
results from both of these GO terms include a cluster that contains only one observation
(patient # 69 who has severe asthma). The clustering results suggest that this patient
is quite different from other patients. Further investigation of this patient is needed and
analysis comparing patient # 69’s health and demographic information with that of other

patients may be fruitful. The above results indicate that these 11 genes can further separate
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asthma patients into finer groups which may be treated as a biomarker for GO term 0060333,
i.e., the IFN-v mediated signaling pathway.

G0:0042493 (the response to the drug) contains more than 400 genes, but only 17% of
genes were found to be informative (Table 3.3). Figure 3.1 shows a heatmap of the cluster re-
sults for a set of 30 randomly selected informative and 30 randomly selected non-informative
genes. There are three vertical color stratifications which indicate a clear separation between
clusters. However, there is little evidence showing the clustering based on the non-informative
genes. Therefore, the heatmap indicates that the estimated informative genes include the
majority information of the data for clustering. Thus, researchers may focus on exploring

these informative genes for future analyses.

Table 3.3: The summary of 16 GO terms containing IFN-v, including the number of genes (p),
the percentage of globally informative genes (Info%), the estimated number of clusters (K) and the
biological meaning for each GO term

Datasets p Info% K Biological meaning
GO:0006959 50 76.00 6 humoral immune response
GO:0002053 55 78.18 7 positive regulation of mesenchymal cell proliferation
GO:0019882 64 64.06 5 antigen processing and presentation
GO:0042742 82 52.44 7 defense response to bacterium
GO:0045666 83 43.37 7 positive regulation of neuron differentiation
GO:0040008 93 74.19 5 regulation of growth
GO:0050796 101 69.31 5 regulation of insulin secretion
GO:0050776 123 78.05 7 regulation of immune response
GO:0060333 130 73.08 6 IFN-v mediated signaling pathway
GO:0006928 162 51.23 4 cellular component movement
GO:0005125 197 51.78 5 cytokine activity
GO:0009615 197 58.89 5 response to virus
GO:0007050 209 62.68 5 cell cycle arrest
GO:0007166 239 33.89 4 cell surface receptor linked signaling pathway
GO0O:0019221 270 53.70 5 cytokine mediated signaling pathway
GO:0042493 405 17.04 3 response to the drug
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Figure 3.1: Heatmap of GO:0042493 (the response to the drug) with randomly selected 30
informative genes and 30 non-informative genes. Each row represents a patient with the
original index labeled on the right, the first 30 columns represent the informative genes and
the last 30 columns represent the non-informative genes. These two groups of genes are
separated by a vertical “white” line. The data are scaled and centered by each variable, and
ordered by clusters. For example, patients with indexes 24, 54, 58, 69, 72 and 76 are in the
first cluster. Moreover, the clusters are separated by horizontal “white” lines. The color in
each grid of the heatmap ranges from “white” to “black” indicating the smallest value to
the largest value of the scaled data.
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3.7 Discussion

In this chapter, under the framework of model-based clustering, we developed the pair-
wise reciprocal fuse penalty, which gives large penalties to small cluster mean differences.
Theoretically, we showed that PARSE can consistently identify the true informative vari-
ables for each pair of clusters. We also proved that the risk of the variable identification is
o(1), thus PARSE which produces consistent variable identification is optimal under certain
conditions. We also assumed a common diagonal covariance for each cluster in this method.
This assumption is based on the conclusion of Bickel and Levina (2004) which shows that
using a diagonal matrix may obtain better results than using a non-diagonal matrix when
the dimension of the data is high. In Section 3.5, simulations with Model 3 (Normal with
sparse covariance) showed that for data with a sparse and non-diagonal covariance, PARSE
still performs well by assuming a diagonal covariance. Overall speaking, PARSE outperforms
other regularization methods in model-based clustering. Simulations and the study of the
microarray data on asthma disease showed some interesting findings in both statistics and
biology.

In the model-based clustering, we also assumed normal distributions for clusters. Simu-
lations showed that PARSE works for sub-Gaussian data. We also studied the performance
of the adaptive L; penalty, APFP and PARSE on heavy-tail distributions and found that all
the methods failed when the tail shape is very different from the normal distribution. In fact,
all the methods tended to treat observations generated from the tail as an additional cluster
with very small cluster size. Thus, for data generated from distributions with very heavy
tails, we could assume heavy-tailed distributions or use non- or semiparametric methods
discussed in Chapter 2 instead of normal distributions in the model.

Since PARSE is non-convex, non-differentiable and not continuous at the origin, we de-

veloped a backward selection algorithm embedded in the EM-algorithm for estimation. The
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drawback of this algorithm is the computation time when the clusters are not well separated.
In future studies, we could develop a better algorithm which shortens the computation time.

The R package PARSE developed by Wang et al. (2016b) is available in CRAN.
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CHAPTER 4

PROOF OF THEOREMS IN CHAPTER 3

4.1 Details of Proof of Theorem 3

Since Theorem 2 can be treated as a special case of Theorem 3. Here we only include
the proof of Theorem 3. For simplicity, let ¢ be the true model, i.e. ¢t = £(U*), where U* is

the true mean.

Proof. Assuming that oy and o3 = 1 are known, as in (3.10) the loss function is

L(lg = s #0) - (41)

Ly, (U ZZZ%% Y Y

311@1@1 glk<k’|’uk7

Hereinafter we let U be the minimizer of the loss function and

= % Z Z Z air, (Yij — fug)” (4.2)

j=1 i=1 k=1

be the corresponding sum of squared residuals which is the first part of the loss function.
We also let U®) be the minimizer of the sum of squared residuals which is a weighted
least square (WLS) estimator given the true model ¢ and R, be the corresponding sum of
squared residuals.
Since the minimal loss function can be either equal to or less than the minimal loss

function given the true model, we have,

Ust=¢(p) Uit=¢(u)

B{ min (2. (0)) = g (L0 (O} + 2 { iy (0, (U)) > min {20, (0]}
:]P{ min {LA( )}:m&n{LM(U)}}—i—P{ min {L/\( )}Imt}n{LAn(U)}}

Uit=£(p Uit (p)
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= {e(0) =t} w2 {e(U) 21} -

p{e(0) =t} 2P { min (0,0} < Re+ an, () =]

U:t=£(U

>P L 2
> {U{mg(l {L,, (U )}<Rt+|t|axn}

_p{ min_ {Ly (U )}<Rt—|—|t\aAn,§<U>7ét}.

U:t=£(U)

B (ﬂ)td'LU B, + [tlay imply that min {L, (U
ecause { # 1 an U:gglgr(lU){ Mm(U)} < Ry + [tlay, imply tha U;g?g?m{ (U} <

R, + |tlay,, and min {L, (U)} < Ly, (U(t’w)), we have,
U:t=£(U)

P {U{mg(lU){L)‘” U)} < Ry + [t]ay,, € (U) # t} <P {UglgnU){L)‘ U)} < R+ ]t!a,\n}

and

~ () ~
P{U?ng(l {L)\ ( )} < Rt + |t|a>\n} Z P{L}m (U ) < Rt + |t|a,\n} .

Thus,

IP{§< ) } P LM< )<Rt+|t|%}

. .
Ugléln {L,,(U)} < Rt+|t|a,\n}

{

{
P {LM ( ) <R+ |t|aAn} (4.3)
{

{

—P

v

_P mln t#{LM( )} < Ry + |t|a,\n} (4.4)

U:tC

—P< min {L)\ U)} < R, + |t|a,\n} : (4.5)

U:tg¢(U
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Therefore, we will show that as the sample size n goes to infinity, given the true model the
probability (4.3) goes to 1, given the model that contains the true model but is different from
the true model the probability (4.4) goes to 0 and given the model that does not contain the
true model the probability (4.5) goes to 0.

Firstly, for (4.3), let Ay; = {m:m € {1,--- , K} and (m,k,j) ¢ t} be the set of cluster
labels that have the same cluster means, i.e., for any m € Ay;, we have p;, = ;- Then

given the true model, the cluster means are estimated as,

) Doty Yo @im¥igl (M € Ay) gy
Y Y I (me Ay) Y
B Yo aml(m € Ay;) Dol (m € Ay;j)
e {Zizm%mﬂ(m < Akj)’.” ’ Zizmaimﬂ(m < Akj)} ’

and the corresponding loss function is,

Ly, (T¢) = Rt—l—ZPAn< ).

~ (t,w ~ ~(t,w
where Py, (™) = A 3oy o 1" — e 170G # i)
Assuming the data are independent across dimensions, without loss of generality, we also

assume that the data are centered for each dimension and then ordered by each cluster.

*

Thus for any k, we have |uj;

< Uk = MaAX(p et {|,u;;j — M } For any (k,k',j) € t,

i.e., fy; # My, we have Ap; N Apy = () and
. . !/
g = b ~ N <(v§§) —42) Blys), (v~ 42 Var(y) (v - 75?)) -

Since ay, is a known surrogate of z;;, we have E(y;;) = >, i fiy; and Var(y;;) = >, 2. In
the proof of the probability (4.3), we use Eyy; and Vi, to represent the mean and variance

of i) — it Let By = {5 — it ! < ax,/An} and Z ~ N(0,1), then
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P{LM (fjw)) <R+ |t|aAn} {Z Py, (p;") < |t|aM}

>p{

(tw) "'(7

—1
< Do vk K ) et}

k'j )\n
Z P(Bf;)
(kK j
nCL)\ — By
(kK j kk'j

nail — mln ! E /5
Z]. -2 Z P {Z < An (k,k 7])@5{ kkj}
(kI et max i jyer 4/ Viw's }
>1-2 Y P{Z < —/2log(t]/e1)} (4.6)

(k,k' j)Et

>1—2 Z —1—251.

(kK5

The last inequality is from Theorem 2.1 in Inglot (2010). Inequality (4.6) is derived from
the following arguments based on Assumption (A2), (Bl.a), (Bl.b), (Bl.c), and (B2). For

any k, k" and j such that py; # 3, we have

n K n K
By =3 (z) Sy (z )
=1 m=1 =1 m=1

with

St (Soen) - (£2) {2 (57 ()

i s€EAg 1€CH,MEAL \sEA,
K

3

+ E § Qg E ail,ulj
i€Cm,mgA;, \SEAL =1
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Because o, = zix +€ix, where 2y = I(y; € Ci) and €5 = o(ry,) with r,, = ((logp)/n)%/2/u,,,,

then the first part of the numerator is,

s (55

z’ECm,mEAk SeAk

(50) () (2 ()

=Nepi; + Y {Z ety + phy > €is <Z Eis> <Z Eil,uzkj> } , (4.7)

1€ECH,mEA =1 SEA SEAL =1

where N, = Zme A, T and n,, is the cluster size of C,,. Also, the second part of the

numerator is

 (5)(E) 5 (o5 (50) )

iECm,m¢Ak SEAL iECnL,WQAk sEAL sEAY

and the denominator is

zn:Zais:zn:ZZiSJrzn:ZEiS:NkJFZZQS. (4.8)

=1 SEAk =1 SEAk =1 SEAk 7 SEAk

Thus,

g%k (Z azmﬂm]) = (Nk +Y Y %) {#ijk FU DY DD €

[ ISYANA i SEAL i SEAL
K K
*
DR DI D ID I DI
’LECm mEAk =1 m=1 ZECm SEAk
*
+ § ( 628) E Ezl,ulj>}
% SEAL =1

=k + O(Fntinax)-
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Similarly, we can show that

Z’yzk’ <Z O‘zm:umj) _luk’ +O(Tn max)‘
m=1

Thus, Eyrj = gy — i + 0(Tptia,). Since S a2, <1and

Y

L s

S0 () {0 () =2

Thus, from Assumption (B2), we have

br, = nin Byl } < by, = i, — 20 < —/Alog([tl/21),

This implies

where g9 = o(r,ul,..)-

P (Z < bxn - min(k,k’,j)et {|Ekk’3|}> <Pz < bAn — Uppin — €0

max gk’ j)et {\/ ka’j} \/5

<1P>{Z < 210g(]t|/51)}.

Thus,

P {LM (fj(t,w)) <R+ |t|aAn} >1- Y P(By,) >1-2e. (4.9)
(k,k’,j)€t

Secondly, for the probability (4.4), given a model & such that ¢ C £ and ¢t # &, let [8[3)
be the penalized estimates based on the loss function (4.1) given the model £ and R be the

corresponding sum of squared residuals. Similar to the previous arguments, let U®®) and
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U&»he the WLS estimators minimizing the sum of squared residuals given the true model
and the model & respectively. Let ]%5 be the corresponding sum of squared residuals of U&).
Since we assume that the data are independent across dimension and U&*) minimizes the
sum of squared residuals given then model &, we have Rg ) > R(j ) for each dimension 7,
where RY) = 3, 37, (s — i)?/2 and RY = 37, 50 cvliy — jigs™)?/2.

Without loss of generality, we check the loss function in the j*® dimension first,

1 (009) <L S5 o (s~ 9)’ + P (5)

k=11=1

_RY 4 (jo) ~RO) 4y, ()
=R + 3 ZZazkék] > {% > o (ui — i ))} +p, (A5) @)

where J. u(jt ) ;l(f) Since Ré Ré from (4.10) we have

L(Ai) (ﬂ(g)) >RV ¢ (Réj) _ jo)) P, (M(f))

where S(Jw) = [L(; w) ;L(f )

Let t; = {(k,K') : pj; # pi,}s then [t] = > [t Similarly, we define &; as the set of
pairs of clusters on that has different cluster means on the j* dimension. Because of t C ¢
and t # &, we have |t| < [{| and for any j, t; C &;. Thus |t;| < |¢;| for any j, and there exist
at least one dimension j such that |¢;]| < |&;|. Let de = |{j : |§;| > 0} and d¢ = |[{j : t; > 0}|

be the number of globally informative variables in the model ¢ and ¢ respectively. Obviously,

de < |¢] and d; < |t|. Then for (4.10), we considered the following cases.
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1 N A ~ w t
5 Z Z kO + Z {5kj Z Qik <yij - Mi(ft] )) } 2> %axm (4.12)
koo k i

then we have
19 (09) = BY + |tlas, /p. (4.13)

If inequality (4.12) is true for any dimension j, then Ly, (U®) > R, + |t|ay, .
2. If
1 . . tts t
3 Z Z Oéik(slzj + Z {5kj Z Qik (yij - MSJ )) } < %GAM (4.14)
koo k i
then we have the following cases.
(1) If |&] = 0, then |t;] = 0 and LY (0®) = RY) = RY) = RY.
(2) If |&| > 0, then because ), a(yi; — [L,(:]?w)) is a linear combination of y;;, it
follows a Normal distribution with mean E,gj ) and variance Vk(j ) which will be

defined later. Based on Theorem 2.1 in Inglot (2010), for any j such that &; > 0,

we have for any €9 > 0,

{ ZO&zk (yz] ,ukt]w))
>1- Z]P’{ P (s - ") — E

> 1-— 262/(15.

EV| < \/2V,§j> log(Kde/e3), k=1, ,K}

| > \/ 21 1og(Kd5/52)}

Let pp = 3, o and W) = ‘E,Fj) + \/ 2V log(K de/es), then with probability

greater than 1 — 2e5/de, we have

K K
Z (Pkéij - 2|(5kj|Wk(])> < Z {Pk@%j + 201 Z Qi <yz’j - ﬂz(;w)>} :

k=1 k=1
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Then (4.14) implies that with probability greater than 1 — 2e5/de,

K N 2ltla
> (Pkéﬁj - 2|5kj\Wk(j)) < TA"-

k=1

, 2
Adding ), px (W,ij)/ pk> on both sides of the inequality, we have

N @)
oW 2/t|ay, (Wk: )
S (- ) <o n
k k

Then setting 7, = ’51@]’ — Wk(j ) /pr, by Jensen’s Inequality we have,

. 2

2 ”/'(J)

Pk 2|t|ay, ( k )
—_ <— _
<§k n|m|> ” +§ ,

n
A Pk

which implies that >, |7 < DY ) where

A\ 2

(4)

; 2|t (Wk )
pi_ " [t]ay, oy

K
ming o\ np = Wk

1

Thus, with probability greater than 1 — 2e5/de, we have

. | W
> ol < DY+ ke (4.15)
. w Pk
Similar to the previous contexts, for each k = 1,--- , K we define the sets of clusters with

the same means as C}, give the true model and the model ¢ be,

Aka{mmE{l, 7_[(} and (m,k,])%t, 1.e. M:njzﬂzj}a

Qj={m:me{l,---,K}and (m,k,j) ¢ £}.
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Since t; C &, if (k, k') € t; i.e., uyj # pw; then we have (k, k') € £ Thus if m € Q; ie.,
fmj = fj, then m € Ay; which implies that €; C Ay;. Then the WLS estimates in (4.11)

are,

e — D5 S i (s € Q) ) _ 32 D il (s € Ayy)
! el (s € Qy) i Y sl (s € Ayy)

Because ar = zix + € with € = o(r,) for any i and k, based on (4.7), (4.8), pp =
Yo =0(n) and Ny = > n,l(m € Ay;) = O(n), the expectation of Y. ar(yi; — u,(fjw))

18
—E {Z (713 (yz] Mk:j )> }
K
ZGCk ’L%C}c mGAk]' i€Cmy =1
K n -1
+MZ]' Z €is T+ Z €is <Z 6il,uzkj> Nk + Z Z €is
SEAkj SEAkj =1 =1 sEAkj
Y an (M + z M> Y (z M> R
1€Cy l¢ck
Y e (z M> Y (z u) CS oy - B
i€Cy i¢Ch, igCl,
=0 (N Upay) I(ne < Nij), (4.16)
where

K
Ey =py, Z Z ZQ’ZM?}"’ eis)

1€Cm mEAk]‘ =1 SEAkj
*
_,ukj § § E €is Nk + €is
m¢AkJ 1€Cm, SeAkj i=1 SeAkj

=0 (nrpul,.) -
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Since Var (3, cipyij) =D, O%Zk(zr{iﬂ az,),

Y

2
( ~(t,w)> pi Zz (ZseAkj Oéis) <ETI;:1 a?m)
ar Z ozlk,ukj = 5
‘ (Zz ZSEAM Oéis)
2 e 9
Pk Zz ik (ZSEAk]' aiS) (Zmzl aim)
2
(Zz ZseAkj ai8>

9

Cov (Z s Pl >> _

and Y a2 =142>"  Zim€im + Y, €5, the variance of Y, az (yij - ﬁff;”) is

VY —Var {Z o (yw i w)) }
Ny p? 92 201
=ng + kP - > an:pk — I Z (1 B ZE;)Q) (251,6 N Z 2m>
(Zz ZSGAkj Oéi5> 7 SEAR; “is icCy SEAL s

2 2 } : .

2€;5 + €; Pk A, Eis

+ 0D i (26is + 30, ””2) +2) <6ik—‘se"Jw> <§ :a§m>
s€Ay; 1€Cs (E i E SEAR; ais) i€Cy, Zz ZseAk]— 18 m

2

Pk ZmeA ; €im PLEik

+QZ Z - 2_2‘2 : o Oézzm
ey 10 \ (21 Sueay, is) i 2seiy Qs Zm

2

- 9 p% (ZSEAkj 6i5) 2pi€ik <256Ak]‘ 6is> 9

t Z €k T 2T TS o Z X,
=1 (Zi ZseAkj ais) @ Las€lg; S m

N + Nign — 20 Ny
B 2
(Nk + 2 2seny, %)

=O(n)I(ng < Nij) + o(nrn)I(ny, < Ny;)

+W

where Vi = o(nr,)[(ng, < Ng;). If ng = Ny, then for any m # k on the j — th dimension
Hij 7 Hong- Thus fi; b = = (2 auyiz)/pr and 37, az’kﬂ;(fjw) = 0 which implies that E,gj) =

VY =o.
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For any j such that |£;| > [t;], there exists at least one pair of clusters k, k" such that
pi; = . Thus W,Ej) = E,gj) - \/2V,§j> log(Kde/e2) = o(nrpul,.) + O(y/2nlog(de)) and
DY = o(\/1/p) + o(ratiye) + O(+/log(de) /).

Then with probability greater than 1 — 2e5/d,, under the condition of (4.14), we have

RY — Y >RY — RY)

{5(w aik (yzg ﬂ;(gt]w)) }

2

{ i Qi (yij — ﬂ;(fjw)> }2
2

Pk

N)\»a

NG

1 i Mk (yj — ﬂ](ct,w)) 2 1 E(J) \/2‘/(]) 2
(2 7 ] K
>= + = log(Kp/e
> {m\ﬁ N } 2;{ P p/Q)}
~(t,w 2
1 Oéik (yij - Il’l/](gj ))
k] f+ \//Tk

I (n (i) ) - <,/n10g(d5)rnumax> — O(log(de)). (4.17)

For any j such that 0 < |¢;]| = ||, we have

An
~ (&
P(i)= Y g PG © 9] £ 0)

{(k,k"): (kK )€€} |“ka‘ -

For any j such that |t;| < |¢;| and the inequality (4.14) is true, with probability greater than

1 — 2e5/de we have,

~ O _ An
Pr, (“"j ) - . 9 9]
{(kk"): (kK j)ee} 1HEj

An N
Z T P DRI
{(k,E"):(k,K 5)et} |lukj Mk/ + Oy — kjl {(k,k/):(k,k’,j)egft}| ki — k]‘
An
I
k) (e )ee—ty 10k5 — Ok
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> Y —

(s ety 10w ]+ 10k

> > (D(” +ZK:W]>1

{(kk): (kK G)eE—t} p—1 Pk

>(1&5] = [£51) A (”Jrz ) (4.18)

Based on the assumptions (A1), (A2), (B1l.b) and (Bl.c), that is,

K = O(1), |t = o (@) A =0 ({10%1(19) }Vlog(p)> Jay, =0 <log(p) {IOi(p) }7_

1 flog(p)*”
T {—} cai =1(y; € Cx) + 0(ra), pr = > _ g = O(n),

N

)

where 0 < v < 1/2, if there exists at least one dimension j such that (4.14) is true, with
probability greater than 1 — 2e9/de, we have the order of the penalty term is greater than

Réj ) — RY) if it is negative from (4.17), that is

P, ( ﬂg]g)) - <105p)710g(p) {0 (\/%) + (i) + y/10g(de) / "}_1

~o(n (rnufnax)Q) +o ( nlog(df)rnumax) + log(de).

Since Zj:|§,—\>\tj\ = O(|¢| — |t|), with probability greater than 1 — 2e,,

-1

P (09) = 3 (] = LA <D1+ZW’“)
JE 5]
-1
> > M <D1+ZW’“>
e h—1 Pk
Ht!a,\n,
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because

o, (Dﬁi%) <togt) { LSS (el -1 { {o (VITD)

, Pk .
J:1€5 1> 1t k=1 3:1&51>1¢51

+o(rpuy..) + \/log(dg)/n}
=|t|ay, = o <nlog(p) (loipy_;) ,

If (4.12) is true for any j, we have Re — R, > |t]as, .

Therefore, when ¢t C £ and ¢ # &

IP’{ min Ly, (U) > R, + |t|a,\n} > 1 — 26 (4.19)
U:tCe(U) t#4E

Thirdly, consider (4.5) given t ¢ £. Obviously, ¢ # O since @ is a subset of any model,
where ) means that p; = pg; for any k, k', j; and € cannot be the full model since the full
model means pu; # puj, for any k, k', j which contains the true model ¢.

Similar to the previous contexts, for each k = 1,--- , K and j = 1,--- ,p we define the

sets of clusters with the same means as C}, give the true model and the model £ be,

Akj = {m:mE {17 7K} and (makaj) ¢t7 Le. p“:z] :ILL;;j}’

Qy={m:me{l,--- K} and (m,k,j) ¢ £}.

Also we define the WLS estimates in (4.11) as

6w Do oy syl (s € Q) Al S il (s € Ayy)
kj - ) kq - .
’ SN ail(s € Q) ’ SR ail(s € Ay)

Let py = > .1, vy, as before. For any j such that ¢; C &;, we could follow the similar

argument in the second case. For any j such that t; € &;, we have & # {(k, ¥, j) : puw; #
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i, Vi E g} de, €] < K(K —1)/2 and

RY — B9 >RY) — Y
1 K o 1 K o»
5 Z ik y’Lj ,ukj - 5 Z Z Qi yz] Nligw))
k=1 i=1 k=1 i=1
1 & {Z?:l ik (?Jw i )} 1 & {Z?:l ik (yij - ﬂ;(fjw)> }2 p
2 ; Pk 2 kz:; Pk - 420

Let Ag; = {0 awlyis — ™)}/ v/r and Byy = {301, aun(yiy — ")}/ v/pr. Previously
we showed that E{> """ | cir(yi; — /,L,(:Jw))} = o(nrytmax) and Var{> " | cix(y;; — /],(W?w))} =
O(n).

For the model &, there exist at least one j such that t; € &; which means that on the ;™
dimension there exist at least one cluster in the set §2y; whose true cluster mean is not fuy;

for some clusters k, then we have

o) () )
D i Dseq, Yis Zﬁ: iml,
- Z‘aik (Z aisu:j) B : egiazsgﬂk Oéisl - ]>

5> { 5 a3 3 ot + X (S} 3 (S }

i€Cl 1eCy, s=1ieCy 1¢C

K
Nk Z‘eik N . .
ZSEQ Ng —+ E Z E s€Q €is Z Z {‘ qj qu E €is 5 fzmﬂm]
k (3 k

qeQy, i€Cy SEQ m=1

* ng + Zz €ik *
=Ny — Hgj | T 0O m“ um x)
J Zseﬂk Nns + Zl Eseﬂk €is (Z QJ> nlma

=2

1
= (Z ns + Z Z Ez‘s) {nk Z nsultj — N Z nsﬂ:j + nk///z]' Z Z €is

SEQ i SEQ SEQ SEQ i SEN
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_ (Z ns/ﬁzj) (Z €ik> } + o(nrnumax)
SEQ (

_O( max) + O(nrnumax)

Similarly, we could obtain Var{} " ; cx(y;; — ,ukj )} = O(n). Let ¢ep; = E(Akj), Y =
E(By;), 78; = Var(Ay) and 73, = Var(By;). Because p, = O(n) we have tg; =

O(\/ﬁu;knax) + O(ﬁrnu?nax)v djtk]’ = O(\/ﬁrnu:nax)? Tgk] = O(l) and thk] = O(l) Since Ak]

and By; are linear combinations of y;;, they follow the normal distributions. Thus,

A ~ N (¢§’€J7 Tfk]) Bk] ~ N (¢tk]a Ttkg) (421)

and

A2
=~ (df =1, ncp —%”)7
-

£kj Tekj
B2, W2,
#N dle,ncp:%kj .
Tikj Tikj

Thus, we have
P 1 &
E (R - R) =5 > {E(4}) —E(B))

K
1
=5 > Wk + Ty — iy — T )

=K {O(Vuln) + o(Vmritn) Y+ O(K) — K (o(nryufyy,))” — O(K)

= (TL( max) ) + O( ) (m“n (umax) ) + O( (Tnumax)Q) .
Because u¥,,. > u’; = 1/log(p)/n and 0 < r,, = (log(p)/n)*?, we have

1 (Upnae)” = Log(p) = max {7y (), 10 (Fttfyae)” 1}
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and
0< 77/J§k] =0 (n (ufnaX)Z) +o (nrn (ufnaX)Q) +o (n (TnufnaX)Q) = O0(1)+o (n (TnufnaX)Q) )
Thus we have,
E(RY — RY) = O(n(u,)?) > 0. (4.22)
Because Var(Ag;/74,) = 2 + 407, /74, and Var(B,/14,) = 2 + 47, /75,5, we have

Var (A};) =274 + 408,78,
=0(1) + {0 (Vtpne) + 0 (Viratiy) }

:O (n (u*max>2) + O<1) + 0 (m"n (u;knax)2) ?
and
Var (B,fj) = 27'3{]- + 4w?kj7't2kj =0(1)+o (n (rnufnax)2) )

From the Cauchy-Schwarz inequality we have,

Cov (A3, Bi) S\/ (e + 8 7ek;) (Tehy + AWE7E5)
:\/{O (n (ufnaX)Q) +0(1)+o (m’n (u;fnax)2)} {O(l) +o0 (n (rnul";lax)Q)}
<O (Vnug,.) + o (nry, (ufnaX)Q) :

Since n(uk,)? = Vnut,, = 1= nr, (uf,,)°, we have

max

Var (A7, — Bi;) = O (n (u} )2) .

max
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Then based on the Cauchy-Schwarz inequality, for any k # k',

Cov (A3, — By, AL — BY;) < \/Var (42, = BY) (A%, — B};) = 0 (n (15,,)°)

Since fig) — Rﬁj) # 0, the variance of Réj) — Rij) is,

Var (Réﬂ ) Rﬁf )> =Var {

S (3, - ng>}

k=1

N | —

A

K K
= {ZVar (A7, — Bi;) +2>  Cov(A}, — By, A} — B,i,j)}

k=1 k<k!

=0 (n (u;‘nax)2) : (4.23)

Because we assume that the data are independent across dimension, for any j # j’ such that

t; € & and t; € & we have
Cov (RS &P, R~ RY) =0

Let dg) = >_;I(t; € &) be the number of dimensions such that the true model is
contained in or equals to the model £ on each of those dimensions and déz) =53 RCERY Z &1
be the number of dimensions such that the true model is not a subset the model £ on each of
those dimensions. Then dél) + déQ) =p, i.e., déz) =p— dél). Since Zj:tjgfj (Réj) - jo)) #0,

we have

it L
Var Z (Réj) —jo)> =0 (d?)n(u:nax)2)
it L
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When df) = O(p) is large, then d?)n(u* )2 < pn(uf,,)? Based on Lemma 2, because

max max

S (B9~ RY
thgg.?( 3 i ) IOp(l),

we have

S° (BY ~ RY) = 06 (1 (1)%) = It
Jit; £E;

By Lemma 3, we also have P(Zj:tjgfj(‘ééj) - }?Ej)) >0)=1asn— oo,p— oco. Follows the

similar arguments in the proof of (4.4), with probability greater than 1 — 2e,, we have

> {RY -5+ P (59} > 0.

Jit; €&

Then with probability greater than 1 — 2e4, we have

P
Ly, (0©) =R+ (Re = Ro) + Y Py, (i)

j=1

—ie+ 3 B =B+ P D)+ Y {(RE - B+ P () )
Jit;CE; VEZL2S]

2+ Y {(B RO+ B (RS
Jit; ZE;

>Rt + ]t|a>\n.

When dél) = O(p) is large and déZ) = o(p) is small such as df) = O(1), following the

similar arguments as in the proof of (4.4) we have

> {BY = R+ P (D)} > s,

Jitj CE&
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From (4.21) and Theorem 2.1 in Inglot (2010), for any £3 > 0, with probability greater than

1 — 2e3, we have

P {‘Ak] — ¢£kj‘ < \/2T£2kj 10g (Qdf)K/gg), ’Bkj — wtkj’ < \/2Tt2kj log <2d§2)K/83),

for any k, j such that ,k=1,--- K, t; € &} > 1 — 2e3.

Thus with probability greater than 1 — 2e3, we have

20 K 20 K
|Agjl > |ers| — 4| 274 log < 23 >a|Bkj| < [urs] + | 277 log ( ),

€3

which implies that

2
) , ) 247 K ) 2dY K
[ Aj|” = [Bjl™ = 4 [ters| — 2T§kj log 3 — 4 [Vus] + 27—tkj log 5—3

2dP K 2d? K
2

€3
2) (2
2, 02 | 2d£K 502 1 2d5K
— (Very)” + 201bus Tikj 108 €3 = 2Ty 108 £s

Since er; = O(VNUyay), Yikg = (V10U ), Téy; = O(1) and 75, = O(1), with probability

greater than 1 — 2e3, we have

Aij — B,fj =0 (n (u;‘nax)2) -0 ( nlog (d?) maX) +0 <log (d )>>
—o(n (rnufnaX)Q) +o ( nlog (df))rnumw) -0 (log <d§2)>> :

Because uf . > u’, = O(y/log(p)/n) and here we consider the case that d(2) = o(p), we

have n(uf, )? = log( d? y/nlog(d2 US o \/nlog(d?))rnumax = n(rul,.)? Since
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(Yerj)* > 0, we have

Ly, (I]‘(f)) >R+ Y {(Réj)—ﬁiﬁj))JrP 1) }+ > { R(j)—Rﬁj))qLPAn(ﬂ.(f))}

Jit;C&; Jit; L&;
>R+ Y0 {(BY - B+ P

Jit; &
>Rt + |t‘(1)\

Because dél) + d§2) = p, the case of dg) = o(p) and df) = o(p) does not exist, therefore,
for t ¢ &, we have

b, (09) R+ o,

which completes the proof of (4.5). O

Remark 2. To have the consistency, we need (4.18) > (4.17), that is,

061 = 150 2 20 = (22) gty
= {0 (n(raie)?) +log(de)} {o (V1/p)

+o(rpul..) + log(dg)/n} . (4.24)

we need (4.24) =

ax’

Thus with 0 < v < 1/2, when d¢ is small such that \/log(d¢)/n < rpul,
o(n(rput,,.)?) < log(p)(log(p)/n)?, that is, r,, < (log(p)/n)1*+7/3. When d is large such that

de = O(p), we need log(p)(log(p)/n)” = log(p)+/log(p)/n. This is true since log(p)/n < 1

and we have y/log(p)/n = (log(p)/n)".
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If there exists at least one j such that (4.14) is true, then we need Py, (U©) = |t|a,, .
Since (16 — H)/K (K — 1)) < Sy, (6] — 15]) < ¢l — [t with K = O(1) and 1 =
ofn/ log(p)) we have Y516 (1]~ I11) = O(l] — 1) Thus,

> (g1 = 1D (D1+ZW’“> > > <D1+ZW’“> (4.25)

) Pk Pk
Ji1&51>1t51 k=1 Ji1&51>1t51 k=1

Thus we first show that

-1

S <D1+ZW’“> = |tlay, .

3:1&51>1¢51

This means that we need

log
log(p) { (ST 1))
32165 1>1t51
e

1

-0 <n (logn ) ) {0( 1/p) + ol i) + 10g(d§)/n}

When d; is small such that y/log(dg)/n < 7, we need r,uf, |t|ax, < A, that is rul, <
whi, /|t thus 7, = (log(p)/n)¥?/uk,,.. When d¢ is large such that d¢ = O(p), we have
S e (6] — I6]) = O(p) thus plog(p)(log(p)/n) = n(log(p)/n)", so o, () = tlay,
is true.

Considering all the cases, we require the smallest 7, which is(log(p)/n)>/?/u};

max*

4.2 Proof of Lemmas

Lemma 2. Let a sequence of random variables ¥,, = (Re — R,)/(np(uf,,.)?), where Re— R, =
?Zl(}?éj) —jo)) is in the form of (4.20). From the previous contexts, V,, have finite means
pn = O(1) and variances o2 = O(1/\/npu’,,.), where u%,.. > O(y/log(p)/n) and p, > 0 as

n — 0o. Then we can show that V,, = Op(u,).
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Proof. Based on Theorem 14.4-1 in Bishop et al. (2007), we have that ¥,, — p, = Op(0y,),

that is, for any € > 0, there exists M > 0 and N > 0 such that for any n > N,

\IITL - Mn
P (‘—M > M) < €
On
which is equivalent to
\Ijn - Mn M n
P (‘ H > c ) < €.
Hn M

This is same as

\I/n Mn an Mn
IP’(—>1+ i or —<1-— g><e
M M On M

which implies that

IF’(—>1—I— g or —<—1-— a)<e.
Hn Hn On Hn

This is same as

n

P(‘y

fn

>M1)<6

where M} = 1+ (Mo,)/u, > 0. From p, = O(1) and ¢ = O(1/,/npu},,.), we have
limy,, 00 0/, = 0. Thus for any e > 0, there exists N > 0 and M; > 0 such that for any

n> N, P(|W,/u,| > M) < e. Therefore, by definition, ¥,, = Op(py,). O

=1

Lemma 3. Let I',; = f{g) — RY s in (4.20) and T = Y*_, T; = Re — R,. Without loss

of generality, assuming that t; ¢ &; for any j, then we can show lim P(I' > 0) = 1.

n—00,p—00
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Proof. Let pin; = E(Ty;), 07; = Var(Ty;) = O(n(u},,,)?) and Xoj = (Tnj — fing)/ (V1) -
From the previous contexts, we have 0 < ji,; = O(n(u},,,)?) and o7; = O(n(uf,y)?). So
E(X,;) = 0 and Var(X,;) = E(X7;) = 07,/ (n(u},.)?) = O(1) < co.

By Theorem 14.4-1 in Bishop et al. (2007), we have I';; — f1,; = Op(04;) = Op(v/ Nt 0 )
thus X,,; = Op(1) for any n € N*,j = 1,---  p. From the assumption p = exp(C'n®) with

0 < a <1, we know that as n — oo, p — o0.

Let s; = >0 Var(X,;) = Y0 00,/ (n(uh,.)?) = O(p). First, we show that the se-
quence of random variables {X,,;},n € N*,p = 1,.-- | p, satisfies the Lindeberg condition.

(Chapter 11 in Athreya and Lahiri (2006)), that is for any € > 0,

naiérjlol%oo 52 ZE { |Xn]| = Esp)} =0. (426)

P j=1

By definition for any € > 0 we have,

Z]E{ I(|Xn;] > €5p)} = {Z 1(1X,| > sy, v])}

p j=1
{Z I(| X | > €sp, Vi) > t} dt (4.27)
If es, > \/t/p, then
{Z I(|1 X5 > €syp, Vj)>t} <ZIP’{\XM\ > €Sy}
7j=1

if €s, < \/t/p, then

{Z I(|Xns] > esp, Vj) >t} Zi: {|an|>\/t/_p}.
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Thus,

{Z I(| X5, > esp, Vi) > t} dt

{Z I(| Xoj] > €sp, Vi) > t} dt
/ |an| > \/T} dt. (4.28)

25

/ ]P’{|Xn]| > esp,}t dt +

From (4.20), we have Vj =1,--- | p,

R(]) R(]) i R(] _ REJ) — L
P{|X,,;| > esp} :IP{ T ! >esp}+IP’{ £ T ! <—esp}

C A2 K B2 9y
]P){Zkl kj D k=1 kj M]>esp}

AT

K
4P PRy Ai] Ek 1 Bij = 2in;
fumax

K K
Z Akj > espfurrlax + 2:“”] } +P {Z B2J > €Sp fu:nax Q:unj}
k=1

{ =1
K
<Z]P>{Aij > 6817\/ﬁumax + 2 J } + P{Bkj 6SP\/?umaux I ]}
k=1

—GSp

K
P {Akj > \/ESP\fumax + 2fin; } + {Akj 631’\/ﬁu;‘1}2’x + 2pin; }

+P{Bkj - \/esp\/ﬁun}zx Lnj } —HP’{B;C] \/espfun}?x Hng }] . (4.29)

From (4.21), we have,

Akj ~ N (wgkj, Tgkj) s Bk:j ~N (@Z)tkjv Ttij) ’

where ;= O(Vntifa), kg = o(v/nrntiay), 78 = O(1) and 73, = O(1).
Let Z ~ N(0,1) then we have,

\/ESP\/ﬁufnax + QMNj . ¢ .
Tekj K ékj
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+P

+P

For any k =1,--- | K, let

_Z < L {_\/esp\/ﬁu;knax —
i Ttk K

{ \/GSP\/_umax _'_ 2:“”]

i —ww}]
| { \/espf i~

2ing _ m}]
=)

ESP\/_umax+2/‘L"l] +¢§k}
7 (>

- wgkj} y B2k =

\/ESP \/_umax
K

then z,,, <

O(y/log(p)/n). Thus

P {[Xns] > €sp} S

MN ||F|/%N i Fnﬂw l MN

i

Let 0; —Zk IZm Lexp(—=z

L

_ \/ESP\/ﬁu:nax + 2“”]
21k =
Tgkj K

L — wtk]} ) R4k =

(np) /4t = {plog(p)}/* for any m = 1,--

1

)
{

6SP\/_umaLx 21“”1] + wtk }
7 )

,4, since ur . > Ups, =

i_IP’(Z > Zmk)

24:/ eXp 24z
i/+w{exp 22/2) engt/zQ_QW/Z)}dz
= exp(—22,/2)

ZmkV 2w .

=1

3

221 /2)/(zmiV/27), then the first integral in (4.28) is,

p
IP’{|XW| > es,} dt < 2p6 siy 0
7j=1
< p?e* max{0;} (4.30)
J

— 0,
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as n — 00, p — 00, because p = exp(Cn®) with 0 < o < 1 and for any j

1/2 *

2 _ 2}
26 _ eXp mk/2 — p eXp { (’I’L max/
-7 ZmZ i/ 27 (0D) 7

converges to 0 as n — 0o, p — 00.

For the second integral in (4.28), for any j we have,

K 4

Xp mk/2
P(|X;| > V/t/p
where

z 1 max V nt + 2:“”,7 ~ 1 max V nt + 2:unj
21 = — Yerj ¢ 5 Zok =

Tekj Tekj
3 1 max V nt Qun] ~ 1 max\/ nt Q[I,n]
Zgp = — — Ukj s Pak = —

Ttkj Ttk

Then for any £ =1,--- , K we have,

© exp(—22,/2 A KTe; [ exp(—22/2
%/ Ii( %/ >dt 1; *ékJQ/ P /){K(zTgkj+¢§kj)3
Sp pe2s2 Z1kV 27 ns (umax) 21k 2
=24 (2Tens + Verj) } dz
4p2KzT$4kj * 22 exp(—2%/2) &
n82 (umax)2 Z1k V2T
12p°K? Tg’kjwﬁkj zexp( 2/2>

TlS2 (u:nax)2 21k \/

4P K18, ( ) exp(—22/2) &

SK Yz — 2
+ ns}%(u;lax)2 wgk‘] ILL J) Z1k V

4p2KT§kj 2 / exp( 2/2>
bR (2 2 e
n32 (u;knax) ( ¢§k] M ]¢§k]) 21k zZ\ 27T
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(4.31)

+¢]a

+ Yk

(4.32)



The first integral of (4.32) is,

2772, 4 0o 27724 0o
ks T €D PR 5. ¥ (_ze—zm S A dz)
nSQ(u’max)2 21k \/ n82(umax) vV 27 Z=21} 21k
2 72
< 4p K Tgkj 21k —23,/2
= 2 ()27
4p? K274, o0
+ b £k ze "2 dz
n82<u:nax) V27T 21k
2752, 4 2772, 4
= A7 R el zpe A2 R e e Fn/2,
ns%(ujnax)gx/Qﬂ nsf,(umax) 2

This converges to 0 as n — oo, p — oo. Similarly, with z > 1 we have 0 < exp(—2%/2) <
zexp(—2z%/2) and 0 < exp(—2?/2)/z < zexp(—2?/2), so the other three integrals in (4.32)

15 eP(—Z/D gt also

also converge to 0 as n — oo,p — oo. Moreover, the integral £ pe2s2  Z,/2m

52

converges to 0 for m =2,3,4 as n — oo, p — 00.

Based on (4.31), the second integral of (4.28) is,

K 4
exp(—Zp./2)
Xogl > i} di < / dt
P] 1/p€s ’ pjlpeszz \/27T

2 i moL Amk

< —maX{ZZ/OO exzmk\/"%m dt} (4.33)

— 0,

as n — 00, p — oo. Thus, from (4.28), (4.30) and (4.33), we have Ve > 0,

_ZE{ I(| X > esp) } = / {Z I(| X 5| > €sp, Vj) > t} dt

pes
<L Z/ P{| X, > es,} dt

+5 Z P{|Xu| > Vi/p} dt.

2
pjl pe?s2

—0,
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as n — 0o, p — 00. Therefore, {X,,;} satisfies the Lindeberg condition (4.26).
Since E(X,,;) = 0, Var(X,,;) < oo, by Lindeberg Central Limit Theorem (Theorem 11.1.1

in Athreya and Lahiri (2006)), we have

P:1 an d
== — — N(0,1). (4.34)
Sp
Thus, for any € > 0,
1 P p P
PIL<e)=P I, — ni | < n
(I'<e) NI ; j ;MJ S € ;ﬂj
Pi Xn 1 p
P ijl J < - c Z,un]
SP Sp\/ﬁumax j=1
1 p
=0 €= ) Hnj | p+o(l)
{SP\/ﬁufnax ( ; ]) }
— ®(—00)
0,
as n — 00, p — 0.
Therefore, lim P(I'>0) =1, thatis, lim P(R¢ — R, >0)=1. O
n—00,p—00 n—00,p—r00

4.3 Proof of Lower Bound of Risk Theorem 4

Proof. The proof follows the techniques of proving Proposition 1 in (Zhang, 2007), which is
the proof of lower bound of the expectation of selection consistency for model selection in
regressions with minimax concave penalty (Zhang, 2010).

Firstly, we will consider a special case K = 2. From model (3.1), letting p, = 0, the

marginal density function of y;,i =1,--- ,n is,

f(yilp, o) = mfiyilpy = p, 35 = 1) + (1 = 7) folyilp, = 0,2 = 1), (4.35)
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where 0 < 7 < 1 is a constant cluster proportion of the first cluster, f; and f, are densities
of Multivariate Normal distributions and g = {11, -+, i }

With assumption p, = 0, £(U) can be simplified as () = {j : p; # 0,5 = 1,--- ,p}
be the class of informative variables (dimensions) with nonzero mean differences. Let f1,, be

any estimator of p from the sample {y1, -+ ,y,}, then (3.11) equals to,

r=int s (V)X B # )

Hn uminze() [LS([L):S

—int s (7)Y Bl £ €00, (4.36)

Hn uminZGU MIS(IL):S
Define a class of probability measure M as follows. Let p € {p : S(p) = s, Umin > €0},

a fixed jo € {(p) with f1j, = Umin, then for any j ¢ (p), let

W(]) = K — Unmin®j, + Umin€;

M ={P,u,J ¢ &)},

where e; is a p-dimensional vector with value 1 for j® element and 0 for others.

Now consider the Kullbeck-Leibler divergence of Py and Pym).

dP, i
KL (Pyos Pyon [Y) =noyo) {log (defﬂ) ) }
w(h

=n | {mfi(y|wY, 1) + (1 — 7) fo(y]0, I,)}

log { 7Tf1(y|W(j), ]p) + (1 — W)f2<Y|07 ]p) } d
7TJCI(Y|VV(h)= Ip) + (1 - 7T)f2(y,07 ]P>

= [ @m0t [rexpl- 3ty = WOy = WO} + (1= mexpl-y'y)]

o | TP — WY (v W)} 4 (1 - ) exp{-—4y'y}
rexp{—3(y = w)(y = w®)} + (1 = ) exp{—1y'y}

(4.37)
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Since 0 < m < 1 and exponential function exp(-) > 0, by the log-sum inequality, we have,

(4.37) <n /R m(2m)~" eXp{—%(y —w)(y —w)} log [

1 —7)exp{—3 yy}}
1 —m)exp{—3y'y}

+ (1= men) Fexpl-gy'y)log |

; 1 1, ,
=mnE i) {y’(w(f) — W(h)) + 5(W(h))'(w(h)) — 5(W(J))/(W(a))}

:%(Wm — WMy (wl) — w®)

2

=N Uiy -

By Fano’s Lemma, we have

1 KL(PW(j) , Pw(h)) + log 2
s 2 P €l = )} S-9)7 2 log(p — s — 1)
J¢5 M) J,hg&(p)
< 1 p— s\ mnul,, +log?2
“(p—s)?\ 2 Jlog(p—s—1)

_(p—s—1)(mnud,, + log?2)
2(p—s)log(p—s—1)

=1 —o(1),
thus, the lower bound of risk (4.36) is,

R*=inf sup (p) S Pufé(in,) # €(w))

Hn umin >€o “-S(y,)—s
> inf sup Z wio) {6(,) 7 E(1) }
I"’n 7T>€O p
J¢£ )

(p — s — 1)(mned + log 2)
=1 2(p —s)log(p —s — 1)

= o(1)

(4.38)

The last equation is because €y = (1/2/ maxg{m} + 0(1))\/log(p)/n and s = o(n/log(p))
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For any K > 2 and K = O(1), from model (3.1), the marginal density function of

yi,t=1,--- . nis,

K
FOyilpa, - i) =Y et (yily, B =1,) | (4.39)
k=1

where 0 < 7, < 1 is the proportion of the cluster Cj in the population and ), m, = 1, f; is
a density of p-dimensional multivariate normal distributions.

Assuming that g, = 0, we consider the lower bound of risk (3.11),

R* = inf sup By (Eg, o [1{6(0,) #W)}]).

U, UcO

where © = {U : S(U) = $;Upin > €0} with s = o(n/log(p) and ¢y = (1/2/ maxp{m} +
0(1))+/log(p)/n. If there does not exist py = 0, we could shift the location of the data by
minus py which does not affect the clustering and variable identifications.

For brevity, we use j € £(U) represents that there exists at least one pair of clusters Cj
and Cy such that pg; # g, which also indicates that j™ variable (dimension) is globally
informative for distinguishing at least one pair of clusters.

In order to further bound R* from below, firstly we consider a parameter subspace ©; C ©
where ©1 = {U : S(U) = $; Umin > €0; V7 € £(U), there exists exactly one k such that py; #
firjs and f; = g, Ym, k' # k}. In other words, if U € ©4, then for each j € {(U), there
are exactly K — 1 clusters having the same mean, i.e., there exists only one cluster mean
which is different from others. For brevity, we say that such py; is a distinctive cluster mean
on the j* dimension. Thus, if the j** variable is globally informative, then there are K — 1
pairs with nonzero mean differences on the ;' dimension. Otherwise, all of the pairwise

mean differences on the j* dimension are zero. So there are s/(K — 1) globally informative

variables in total.
Let U € Oy, given a fixed jo, ko for any such that (ko,m, jo) € £(U), i.e., firgjo 7 Hmijos if

ko # K then |t ;o — trciol = |Hkojol = Umin; Otherwise if kg = K, then pixj, — fimj, = Umin
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for any m # K. We construct a new parameter subspace of ©; under the following two

scenarios,
1. For any j ¢ £(U), and k € {1,--- , K} let
wki) — U — UmninSEL (Lo o ) L (Ko # K)ekoe;-() + Uminsgn (1, )I1(ko = K)ekoego + umineke;-;
2. if j = jo, for any m # ko, let
Wmio) — U — UminSEN Lk jo )1 (Ko 7 K)ekoe;-0 + Uminsgn(p1j,)I(ko = K)ekoeg-o + uminemego,

where e; is a p-dimensional vector with value 1 for 4 element and 0 for others.

Let
Oy = {WH) : j ¢ £(U), U € Oy, jo € &U)} U{W™mo) im £ ky, jo € E(U), U e O}.

Then O, is a subspace of ©; and |0y = (K — 1) + (p — [ 5] ) K. Next we check the pair-

wise Kullbeck-Leibler’s divergence between probability measures Py ;) and Py, where

Wk, Wi e @,.

. ' d Py
KL <W(l~w)’ Wi )‘y> = By o) {log (ﬂ) }

k
<03 mE g |1 I (y1o”)
ny mmE o) |log o
m=1 fm <y| %]))
n K
<33 (s W) ().

In general for any W®*) W) € ©,, there are the following three cases.

99



1. If j =4,k # K, there are N; = (K2 1) + (- |75

(%) pairs of W& W&, Then

(4.40) implies that,

KL <W(kj), W(k/j)|Y) < Tk i T 2, < nuz,, mgx{wk}; (4.41)

2 mln

2. if j # j',k =K', there are N, = (piL?J)K—i-(p— |55 ) (K —1) pairs of WH) W+,

Then (4.40) implies that,

KL (W(kj), (k") |Y> < mpnuds < nuly mkax{wk}; (4.42)

3. if j # ',k # K, there are N3 = (p_LﬁJ)K(K — 1) + (p — |#z55)) (K — 1)? pairs of

2

W) W) Then (4.40) implies that,

T + T

KL (W(’“j), W<k’j’>|Y) < uy < nudy, max{m}. (4.43)

Obviously, (9) = Ny + Ny + N, where [05] = (K — 1) + (p — |

7)) = O(p).

Thus by Fano’s Lemma, (4.41), (4.42) and (4.43), we have,

Buse, (oo [1{e(0,) ~€}]) g7 3 Ruen {e(00) =e v}

W (ki) €@y
1 Z KL Py, Pyoy) +1og(2)
=19, |2 log(|©s] — 1
92 °8(182 ~ 1)

(N1 + Ny + N3) {nu?;, max{m} + log(2)}
©2[?log(|©2] — 1)

_10:[(192] — 1) {nupy, maxy{m} +log(2)}

B 2|02[?log(|©2] — 1)

_ (192] = D{nuj;, maxy{m;} + log(2)}

a 2|0, log(|Os] — 1) .

<
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Therefore, we have the lower bound of the minimax risk (3.11) is,

R =inf sup By (Eq, o [1{6(0,) # 60)}])

U, Uco

g 7 50 (o {00 £ O]
>1_ (|92] — 1){nei max; {m} +log(2)}
N 2|©s[ log(|©2] — 1)

—1—(1-0(1))

=o(1),

because €y = (/2/ maxg{m} + 0(1))\/log(p)/n and |©y] = O(p). This completes the proof
of Theorem 4. 0

4.4 Details of Guidelines for Tuning Parameter )\, Selection

We only show the derivation for the special case K = 2. The general case K > 2 has
similar derivation. Let the pair of means with the largest difference to be fi1,, and fis,;,, on
m-th dimension. With known z;, = I(y; € Cy), where C}, represents k-th cluster and afn

(variance of m-th variable), from log-likelihood (3.4), we have

n

2 _
ai ~ max 1 yzm - ym
5 (i — ) A = Won ), (4.44)

where §.,, = 1", Yim/n is the sample mean of m-th variable.
The first order partial derivatives of left-hand side equation in (4.44) with respect to fi1,,

and [io,, are,

a [t m — Yim [t m [l m
9 g _Aﬁaxsgrj(ul - uzz)’ (4.45)
Him iy €Ch Um |,u1m - ,u2m|
8 [ m — Yim [ m [t m
— — Z lu2 5 y _ )\maxsgrj<:u2 — /,612 ) (446)
8,“/2m i Um |,U/1m - ,u2m‘
Z'Y'LGCZ
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Without loss of generality, we assume fiy,, > fi2;, and solve equations (4.44), (4.45) =0

and (4.46) = 0 as follows,

AmSX — R {Z(yim — m)? — Z (Yim — firm)> — Z (Yim — ﬂQm)z} (fi1m — fl2m) (4.47)

2
202,

i=1 1y, €01 1y, €Co
1 _
= 5 Z :ulm yzm Nlm - /L2m)2 (448)
Tin 1y, €C1
1 -
=7 > Wim — fizm) (fiam — fizm)®, (4.49)
m i.yZECQ

From (4.48) = (4.49), we have,

Z (ﬂlm - yzm) - Z (yzm - /12m>7

1y, €C1 1y, €Co
which implies that

~ ngm - nllalm ~ ~ n. . —
N9 U

Plug this into (4.47) = (4.48), we have,

3ny it — (4 Z Yi + 2n1y.m> Pam + 4Y.m Z Yi — Y, =0,

’i:yiecl i:yieC’l

which implies that

foim = 3_711 ( Z Yi —n1y. ) (4.50)

i yzecl

or

102



Since we assume A\'** > 0, the second case fi1,, = ¥.,, is not considered. So based on the

first case (4.50), we have,

3
16n?
max __ . — 1
/\n - 2771%”%072”( E Yim n1y~m> ;

iy, €C1

where ny = |Cy|, ny = |Cs| and ny + no.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, we studied and extended model-based clustering to solve various
problems. In Chapter 2, we proposed a semiparametric model (SPM-clust) which performs
well in clustering without assuming the normality of the observed data. Through simula-
tions, SPM-clust is shown to perform well for clustering non-Gaussian data. Since this is a
semiparametric method, the theoretical results of the convergence of the proposed algorithm
are worth to studied. Currently, the semiparametric method is studied under a low dimen-
sional setting. For high-dimensional data, some regularization methods for cluster means
and covariances are required. In Chapter 3 and Chapter 4, we studied high-dimensional
model-based clustering and proposed a new regularization method “PARSE” which can con-
sistently select the true informative variables for separating each pair of clusters in clustering.
Simulations showed that PARSE outperforms other popular regularization methods. The-
oretically, we also showed the consistency as well as the optimality of identifying the true
model using PARSE under the assumption that the number of clusters is known. Theory in
cluster analysis such as consistently estimating the model and the cluster assignments is a
challenging problem and has not been fully understood yet. It would be interesting to further
investigate the consistency of PARSE in estimating clustering assignments especially when
the number of clusters is unknown. Through simulations in this dissertation, we found that
as the signal is strong enough, both SPM-clust and PARSE are uniformly better than other
commonly used methods. However, the lower bound of the signal-noise-ratio that guarantees

the performance of SPM-clust has not been fully studied and will be left as a future work.
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APPENDIX

A.1 More about PARSE Modeling of Asthma Data

In this section, we include the details of clustering results for the following three datasets:
GO:0019221 (cytokine mediated signaling pathway), G0:0042493 (the response to the drug)
and GO:0060333 (IFN-y mediated signaling pathway).

PARSE selects 3 clusters for GO term 0042493. Figure A.1 is the heatmap of all the 69
globally informative genes. There is a clear separation between the clusters in the heatmap.
To further confirm that the globally informative genes contain the majority of information in
the data, we randomly select 60 non-informative genes and show the heatmap in Figure A.2.
Since the values (colors) of the three clusters are similar, there is little information for
clustering based on the non-informative genes. Moreover, from Figure A.3, we can figure
out which genes are pairwise informative for a specific pair of clusters. All the genes in the
Figure A.3 are globally informative.

GO:0060333 (IFN-y mediated signaling pathway) which contains 130 genes is a subset
of GO:0019221 (cytokine mediated signaling pathway) with 270 genes. For the GO term
0060333, there are 95 globally informative genes. Figure A.4 shows that almost all the
variables are pairwise informative when we compare the 6th cluster to cluster 1, 2 or 3.
Investigating more about the clustering, we find that PARSE selects 6 clusters including a
singleton cluster (the 6th cluster). The 6th cluster only contains the 69th patient. Although
the singleton cluster could be an outlier or a cluster with values differ from the other clusters,
comparing the singleton cluster to the other cluster means may not be useful, because the
cluster mean of a singleton cluster is the observation itself. Thus, we take out the singleton
cluster and show the pairwise informative genes for the remaining clusters in Figure A.5.

The figure shows that there are 80 globally informative genes for these 5 clusters which
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mean that 15 genes are estimated as globally informative because these genes distinguish
the singleton cluster from the other clusters.

Similarly, for the GO term 0019221, PARSE selects 6 clusters including a singleton cluster
and there are 145 globally informative genes. Figure A.6 shows that almost all the variables
are pairwise informative when we compare the 5th cluster to the other 4 clusters. In fact,
the 5th cluster is a singleton cluster which also contains only the 69th patient. Figure A.5
shows the pairwise informative genes after deleting the singleton cluster. 103 of the globally
informative genes are informative for the remaining 4 clusters which means that 42 genes,
i.e., about one-third of the globally informative genes are determined by the singleton cluster.
Thus, it could be useful to further investigate the 69th patient to determine if this is a special

cluster in asthma disease.
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Figure A.3: Indicator map of the pairwise informative genes for GO:0042493 (the response
to the drug). Each column represents a pair of clusters. Each row represents a globally
informative gene. The “white” color represents pairwise non-informative and the black color
represents pairwise informative. For example, the first column and the first row being “white”
means that genes with label “A_23_P102471” is pairwise non-informative for separating the
first and second clusters.
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Figure A.4: Indicator map of the pairwise informative genes for GO:0060333 (IFN-v mediated
signaling pathway). Cluster 6 (C6) is a singleton cluster.
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Figure A.5: Indicator map of the pairwise informative genes for GO:0060333 (IFN-v mediated
signaling pathway) deleting the singleton cluster.
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Figure A.7: Indicator map of the pairwise informative genes for GO:0019221 (cytokine me-
diated signaling pathway) deleting the singleton cluster.
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