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ABSTRACT

SOME TOPICS ON MODEL-BASED CLUSTERING

Cluster analysis is widely applied in various areas. Model-based clustering, which as-

sumes a mixture model, is one of the most useful approaches in clustering. Using model-

based clustering, we can make statistical inferences and obtain uncertainty estimates for

parameters or clustering assignments. Traditional model-based clustering methods often

assume a Gaussian mixture model which may not perform well in real applications such

as data with heavy tails. Several non- or semi-parametric mixture models, which assume

that the variables are independent to ensure parameter identifiability, have been studied

in past years. In this dissertation, we propose two new methods for model-based cluster-

ing. The first method, semiparametric model-based clustering (SPM-clust), is based on a

nonparanormal distribution for each cluster. The method accounts for correlations between

variables while maintaining parameter identifiability under mild assumptions. By model-

ing the dependence between variables and relaxing the normality assumption, the proposed

method is shown via simulations to have better performance than commonly used methods

in clustering, especially for clustering non-Gaussian data.

The second method is particularly useful for clustering high-dimensional data. The classi-

cal mixture model approach cannot cluster high-dimensional data due to the curse of dimen-

sionality. Moreover, identifying important variables for separating unlabeled observations

into homogeneous groups plays a critical role in dimension reduction and modeling data

with complex structures. This problem is directly related to selecting informative variables

in cluster analysis, where a small fraction of variables is identified for separating observed

variable vectors Xi ∈ Rp, i = 1, . . . , n, into K possible classes. Utilizing the framework

of model-based clustering, we introduce the PAirwise Reciprocal fuSE (PARSE) procedure

based on a new class of penalization functions that imposes infinite penalties on variables
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with small differences across clusters. PARSE effectively avoids selecting an overly dense

set of variables for separating observations into clusters. We establish the consistency of the

proposed procedure for identifying informative variables for cluster analysis. The PARSE

procedure is shown to enjoy certain optimality properties as well. We develop a backward se-

lection algorithm, in conjunction with the EM algorithm, to implement PARSE. Simulation

studies show that PARSE has competitive performance compared to other popular model-

based clustering methods. PARSE is shown to select a sparse set of variables and produce

accurate clustering results. We apply PARSE to microarray data on human asthma disease

and discuss the biological implications of the results. We develop an R package PARSE

which is available in CRAN for implementing regularization methods in model-based clus-

tering including PARSE.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Overview

Cluster analysis was first discussed in 1932 by Driver and Kroeber (Driver and Kroeber,

1932). In that dissertation, they introduced cluster analysis in anthropology which clusters

tribes into several groups based on the similarities in culture elements (or traits). They used

geometric means of shared traits as the statistics and aimed to find groups that maximized

the intergroup means.

Traditional cluster analysis is an unsupervised method. It groups objects that are sim-

ilar or contiguous and separates objects that are different or dispersed without any prior

information about clusters.Lately, concepts of semi-supervised clustering have been devel-

oped to solve real problems. In semi-supervised clustering (Grira et al., 2004; Jain, 2010),

there are constraints such as some objects should always be in the same cluster, or some

cluster assignments are known. These constraints can be obtained by a similarity-adapting

method that changes the distance measurement to satisfy the constraints, or a search-based

method that modifies the clustering algorithm. Supervised clustering, which is usually called

as classification, uses the class labels from training data to predict the class labels of new

data (Dettling and Bühlmann, 2002; Qu and Xu, 2004; Finley and Joachims, 2005). In this

dissertation, we focus on cluster analysis without any prior knowledge of clustering labels.

However, when the number of clusters is known, most methods show improved performance.

Clustering is applied in many fields such as genetic studies, data mining, marketing

analyses, social networks, bioinformatics and more. There are a large number of cluster-

ing methods that are grouped into two categories — algorithm-based methods and model-
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based clustering. The most common algorithm-based methods focus on finding the smallest

within-cluster distances or dissimilarities, such as the widely used k-means algorithm and the

hierarchical agglomerate clustering (Friedman et al., 2001). The k-means algorithm firstly

assumes that there are K clusters, and the initial cluster means are µ
(0)
1 , . . . ,µ

(0)
K . The

algorithm proceeds as follows:

1. Assign objects xi to the nearest clusters Ck, which is equivalent to minimizing the

overall with-in cluster sum of squares
∑K

k=1

∑

xi∈Ck
||xi − µ

(t)
k ||2.

2. Update cluster means by µ
(t+1)
k = 1

|Ck|
∑

xi∈Ck
xi.

3. Repeat step 1 and 2 until the convergence criterion is satisfied, for example, the cluster

assignments do not change anymore.

The number of clusters (K) can be determined based on some statistics, such as the average

silhouette width (ASW) (Rousseeuw, 1987) and the gap statistic (Tibshirani et al., 2001).

Euclidean distance is used in the k-means algorithm to measure the dissimilarity. In contrast,

the k-medoids algorithm uses arbitrary measurements of dissimilarity and chooses the cluster

centers from the data. Compared to the k-means algorithm, the hierarchical agglomerate

clustering does not assume a fixed number of clusters at first. It starts by treating each

individual xi as a cluster and combines the closest or the most similar pair of clusters in

each step. Among many different measurements of dissimilarities between clusters, three

are widely used in practice: single linkage, complete linkage and average linkage. The single

linkage measures the distance between the closest pair of data points from two clusters.

Conversely, the complete linkage measures the distance between the furthest pair. The

average linkage is the average of all pairwise distance between data points from two clusters.

Different linkages may lead to different clustering results.

Recently, researches of spectral clustering develop quickly, especially in application fields

such as image segmentation, social networks and protein sequences (Jain, 2010). Spectral

clustering uses eigenvectors of the graph Laplacian computed from a similarity matrix to
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perform dimension reduction before clustering. The goal of clustering is equivalent to par-

titioning the graph or cutting the edges in the graph to minimize the total edge weights

between two clusters. The sum of edge weights is called cut capacity which measures the

similarity between clusters. An algorithm with the normalized cut capacity criterion pro-

posed by Shi and Malik (2000) is widely used to obtain a balanced partition that the total

edge weights in each cluster are similar or balanced. This avoids the tendency of obtaining

clusters with very small size. Compared to the k-means algorithm, the spectral clustering

produces clusters which are not necessarily convex sets.

The above clustering methods are more heuristic and algorithm-based. They are easy to

implement and understand if a researcher only needs the clustering results, but statistical

inferences of the clustering results are hard to obtain through these clustering methods.

In this dissertation, we focus on model-based clustering proposed by Banfield and Raftery

(1993) which is essentially a mixture model (McLachlan and Peel, 2004). It assumes that each

cluster is distributed from one component of the mixture model. Each cluster proportion is

determined by the corresponding mixing weight. We could extend this model by including a

noise term in the mixture model which describes the background noise in some applications

such as image analysis (Fraley and Raftery, 1998). Under the framework of mixture models,

hypothesis tests can be used to test if there exists more than one cluster or not (Liu et al.,

2012).

Due to the curse of dimensionality, model-based clustering cannot obtain reasonable clus-

tering results in a high-dimensional setting. In practice, such as genetic studies, it is typical

that only a few variables contain clustering information. These variables are considered as

informative in clustering. The majority non-informative variables could mask the clustering

structure that we are interested in. The definition of informative variables is given in Sec-

tion 3.1. Therefore, variable selection is important in cluster analysis. Most methods for

high-dimensional clustering fall into two categories — reducing dimensions before clustering,

and simultaneously performing clustering and variable selection. We discuss these methods
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in details in Chapter 3. A thorough review is also given by Bouveyron and Brunet-Saumard

(2014).

Parameter estimation is crucial in cluster analysis with a probabilistic framework. Both

the Expectation-Maximization (EM) algorithm and the Markov Chain Monte Carlo (MCMC)

can be used to estimate parameters (Fraley and Raftery, 1998, 2002; Oh and Raftery, 2007;

Handcock et al., 2007). Cluster assignments are treated as the incomplete data in the EM

algorithm for mixture likelihood approaches. Parameters such as cluster means and mixing

proportions are estimated in the Maximization step. Based on these parameter estimates,

objects are assigned to the cluster (hard-clustering) with the largest posterior clustering

probability (soft-clustering) computed in the Expectation step. For classification likelihood

approaches, we can use the hierarchical agglomerate clustering method which combines two

clusters to maximize the likelihood in each step. However, compared to the EM algorithm,

this method is computationally intensive. Classification EM algorithm (CEM) was derived

by Celeux and Govaert (1992) to estimate cluster assignments within each iteration instead

of assigning objects to the cluster with the largest posterior clustering probability in the last

step. The stochastic version of CEM (SEM) was developed to solve the problem that the EM

algorithm is sensitive to initial values. Celeux and Govaert (1992) showed via simulations

that SEM efficiently solves this problem in most cases with an acceptable number of clusters

and sample size. Moreover, CEM and SEM can be applied in both the mixture likelihood

and the classification likelihood approaches, while it is not appropriate to use the regular

EM algorithm in a classification likelihood approach. MCMC can also be used in parame-

ter estimation for obtaining uncertainty estimates and statistical inferences from posterior

simulations. But compared to the EM algorithm, MCMC is time-consuming. Moreover,

the cluster assignments are not identifiable since the labels of clusters can be mutually ex-

changed. It is difficult to find the most frequently assigned cluster for each object from the

posterior simulations with changing labels. A relabeling procedure is necessary to solve this

problem. For latent position models (Oh and Raftery, 2007; Handcock et al., 2007) which
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project the observed data to a latent Euclidean space before using a mixture model for clus-

tering, the latent positions in the Euclidean space are also non-identifiable. For example,

the relative relationship or distance between objects remains the same when all the latent

locations are clockwise rotated 30 degrees or moved to the right with one unit. This can

be solved by using a Procrustes transformation or minimizing the Bayes risk related to the

Kullback-Leibler loss (Handcock et al., 2007), but it is time-consuming.

Classical model-based clustering assumes that the data are distributed from a mixture of

known distributions with some unknown parameters. If the data cannot satisfy the distribu-

tion assumptions, the clustering will be inaccurate. The way to figure out which distribution

the data come from is unknown. Thus, many non- or semiparametric estimation methods

for a mixture model without distribution assumptions have been studied (Hall and Zhou,

2003; Hall et al., 2005; Bordes et al., 2006; Benaglia et al., 2009a; Levine et al., 2011). In

terms of cluster analysis, some extensions of the mixture model using non-Gaussian distri-

butions such as the Student’s t distribution (Peel and McLachlan, 2000), the skew-normal

(Lee and McLachlan, 2013) and the skew-t distributions (Lin, 2010) have been proposed

for robust clustering when the data have heavy tails or asymmetric clusters. Kosmidis and

Karlis (2015) proposed a mixture model of copulas for clustering to handle the mixed-type

data such as continuous and binary data, and heavy-tailed data under an appropriate choice

of copulas.

As we mentioned before, clustering is an unsupervised learning which has no preliminary

knowledge of clustering labels or the number of clusters. In general, there are many statistics

for finding the number of clusters such as the Davies and Bouldin index (Davies and Bouldin,

1979), ASW (Rousseeuw, 1987), the gap statistic (Tibshirani et al., 2001) and the Caliinski

and Harabasz (CH) index (Hennig and Liao, 2013). These are considered to be internal

evaluation statistics and usually perform well for methods that group data with high simi-

larity and separate data with low similarity. We can select the number of clusters based on

these methods. However, these methods cannot be used to determine whether a clustering
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method has more accurate clustering results than others. In contrast to the internal evalua-

tion statistics, external evaluation statistics which require the true clustering labels, can be

used to determine which clustering method has better clustering results. Examples include

the Rand Index (Rand, 1971) and the Hamming distance (Hamming, 1950). For model-

based clustering, we can also treat choosing the number of clusters as model selection and

use criteria such as the Bayesian information criterion (BIC) (Schwarz et al., 1978; Wang

et al., 2007) and the generalized information criterion (GIC) proposed by Fan and Tang

(2013). Reversible Jump MCMC (RJMCMC), which automatically estimates the number

of clusters, has also been studied by Tadesse et al. (2005) particularly for high-dimensional

clustering.

1.2 Outline

In this dissertation, we focus on model-based clustering and variable identification. Since

in real applications, we have no information about which distribution the data come from,

assuming a specific distribution such as a Gaussian distribution could mis-specify the model

and produce inaccurate clustering results. Instead of using purely non-parametric methods,

which require the independence between variables to ensure identifiability, we propose a

semiparametric model in Chapter 2. The semiparamtric model-based clustering (SPM-clust)

assumes that the data can be transformed to a set of normal distributions via a set of

unknown monotone functions. Relaxing the assumption of known distribution families in

the mixture model, the proposed method outperforms some popular clustering methods such

as the k-means algorithm, the nonparametric mixture model and the classical model-based

clustering. Under some assumptions, the proposed semiparametric model is shown to be

identifiable. As the development of technology, many applications contain large numbers

of variables but have limited samples, such as genetic studies. However, it is typical that

not all the information is useful in clustering. In Chapter 3, we propose the PAirwise

Reciprocal fuSE (PARSE) penalty under the framework of model-based clustering which
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can consistently identify the true informative variables for clustering, especially in a high-

dimensional setting. With correctly identified variables, we can filter out noisy information

and produce more accurate clustering results. Moreover, interpretation could become easier

or clearer with selected informative variables. Two main theoretical results of consistency

and optimality in variable identification are stated in Chapter 3. The details of proofs are

given in Chapter 4. A short summary and discussion of future work are listed in Chapter 5.

Additional data analyses are given in the Appendix A.1.
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CHAPTER 2

CLUSTERING VIA A SEMIPARAMETRIC MIXTURE

MODEL

2.1 Introduction

Cluster analysis groups data with similar attributes into homogeneous groups based on

either dissimilarities or modeling. Various methods have already been studied and applied

in many fields. The most commonly used methods include the K-means algorithm (Hartigan

and Wong, 1979), the hierarchical clustering (Ward Jr, 1963) and the model-based clustering

(Fraley and Raftery, 2002) which relies on a mixture model.

Let x be p-dimensional data. Model-based clustering assumes that the data follow a

mixture distribution

f(x) =
K
∑

k=1

λkfk(x),

where λk is the unknown clustering proportion for the kth cluster, for k = 1, ..., K and
∑K

k=1 λk = 1. fk is an unknown density function or a known density function with unknown

parameters. Conditional on the unknown clustering labels, each cluster is distributed from

one component fk. The most commonly used distribution family is the normal (Gaussian)

distribution because parameter estimation, interpretation and statistical inferences are easy

based on the normality assumption. If the data come from a non-Gaussian distribution,

Gaussian model-based clustering may be inaccurate. For example, we add some random

errors which are distributed from a χ2(ν) distribution to 20 randomly selected observations

in the well-known iris data (Friedman et al., 2001). The original iris data has 4 variables and

3 classes. Adding noises to some observations makes the classes be overlapped and contains

8



some extreme values. As the degree of freedoms ν in the χ2 distribution increases, the data

have more extreme values. From Figure 2.1, we find that the accuracy is small using the

traditional model-based clustering (Mclust). The accuracy is 1 minus the Hamming distance

that is defined further below. Using the k-means algorithm (Kmeans) or the nonparamet-

ric mixture model (Nonparametric) which assumes that variables are independent and have

different marginal distributions, we obtain higher accuracy. However, the proposed semi-

parametric model-based clustering (SPM-clust) gives more accurate clustering results than

the other methods. Another example is a dataset for occupancy detection of an office room

based on the measurements of temperature, humidity, light and Carbon dioxide (CO2) in

the room (Candanedo and Feldheim, 2016). The occupancy status is a binary variable. The

data are non-Gaussian and have 8143 observations. The classification results in Candanedo

and Feldheim (2016) show that CO2 and light are the most important variables. Figure 2.2a

and Figure 2.2b are the scatterplot of CO2 versus light (the most important variables) using

SPM-clust and k-means. The data are normalized by each variable before clustering. The

k-means algorithm fails to detect some occupancy status with a accuracy 90%. The accu-

racy using SPM-clust is 98%. Using the classical model-based clustering from the R package

mclust (Fraley et al., 2012) we have a 51% accuracy thus the scatterplot is not shown here.

These real applications show that both the classical model-based clustering and the k-means

algorithm are not adequate for non-Gaussian data.

To extend the mixture model, Peel and McLachlan (2000) developed a mixture of t-

distributions which performs better than the Gaussian mixture model in the presence of

heavy-tailed or atypical observations. Other extensions include Normal inverse Gaussian

distributions (Karlis and Santourian, 2009) which are normal mixture models with the latent

classification variable being distributed from an inverse Gaussian distribution instead of a

multinomial distribution in classical mixture models, skew-normal and skew-t distributions

(Lin, 2010; Lee and McLachlan, 2013) which deal with the asymmetric clusters and heavy-

tailed distributions with different marginal tailweight (Forbes and Wraith, 2014). In addition
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Figure 2.2: Comparison of clustering results using the proposed method (SPM-clust) and
k-means for the occupancy data. In figure (a) and (b), the true occupancy status is labeled
by ‘◦’ and ‘+’ shape, the clustering results are labeled by different colors.
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to the various distribution families, copula-based clustering (Kosmidis and Karlis, 2015) was

developed in consideration of clusters with irregular shape which is much more flexible than

Gaussian mixture models. However, the approach to select the distribution family or copula

is not clear.

Various non-parametric estimation methods for the mixture model without assuming a

known distribution family have been developed (Hall and Zhou, 2003; Bordes et al., 2006;

Benaglia et al., 2009a; Levine et al., 2011). To ensure identifiability, these nonparametric

clustering approaches require the assumption that the variables are independent. Theoret-

ical results (Hall and Zhou, 2003; Allman et al., 2009) show that under the condition of

independence, when the number of variables is greater than 3, the mixture model is non-

parametrically identifiable in general. However, independence is a strong assumption in many

cases. For example, the original iris data (Friedman et al., 2001) has high correlation between

the petal length and the petal width variables. For the original iris data, using the mixture

of normal distributions, classical model-based clustering assuming independence has a 90%

clustering accuracy, but classical model-based clustering without this assumption has a 96%

clustering accuracy. Thus, the assumption of independence is too strong for the iris data.

Taking into consideration of the correlations, we propose a semiparametric model-based clus-

tering (SPM-clust) approach which combines the advantages of model-based clustering via

a semiparametric model that allows for identifiable parameter estimation and dependence

between variables.

We propose a method to perform SPM-clust based on a mixture of nonparanormal dis-

tributions — a kind of semiparametric Gaussian copula model. The nonparanormal model

is proposed by Xue and Zou (2012) for graphical models, which assumes that there exist p

monotone increasing functions gj(·) such that (g1(X1), · · · , gp(Xp)) follows a normal distribu-

tion with mean 0 and covariance Σ with unit variance, where X1, · · ·Xp are observed. Since

gj(·) is unknown, the correlation Σ can be estimated by Kendall’s τ (Xue and Zou, 2012).

As a graphical model, the nonparanormal model performs well in estimating the covariance
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structure, and is much more flexible than the normal model. Our proposed method assumes

that (g1(X1), · · · , gp(Xp)) follows a mixture of normal distributions. Under this model, the

correlation structure in the data can be characterized by the covariance of gj(Xj). A non-

parametric estimation approach based on the empirical distributions is used to estimate the

unknown transformations gj(·) and the ECM algorithm (Meng and Rubin, 1993) is used

to estimate the unknown parameters in the mixture of normal distributions. Simulations

show that SPM-clust works well for data without requiring knowledge of the underlying

distributions, especially for data generated from heavy-tailed distributions.

This chapter is organized as follows. A review of model-based clustering using mixture

models of copulas is given in Section 2.2.1. Then we propose our model which is a semipara-

metric model. In Section 2.2.3, we discuss the estimation algorithm in detail. In Section 2.3,

we show that SPM-clust is identifiable. Simulation results are shown in Section 2.4 which

compares SPM-clust to other methods including the nonparametric mixture models, the clas-

sical model-based clustering and the k-means algorithm. In the end of this chapter, existing

questions and future work are discussed.

2.1.1 Notation

Before proceeding to methodology, we introduce some notation. Let X and Y be p-

dimensional random vectors. We denote X to be the observation space of X and {xij :

i = 1, · · · , n; j = 1, · · · , p} to be an observed sample from X, where n is the number of

observations. Let µ be a p-dimensional vector, Σ be a p-dimensional matrix and ‖Σ‖F be

the Frobenius norm of Σ. We define g(x) = (g1(x1), · · · , gp(xp)) as a vector of p functions,

where x is a p-dimensional vector and gj(xj) is the jth function of xj on the jth dimension.

Let 0 be a p-dimensional vector of 0 and M be the space of p by p symmetric positive

definite matrices.
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2.2 Methodology

2.2.1 Gaussian Copula Mixture Model

In model-based clustering, Gaussian mixture model is often used due to its simplicity of

statistical inferences. However, restrictions of the normality assumption have been studied

in many literatures. To improve flexibility, mixture models of Gaussian copulas (Vrac et al.,

2012; Marbac et al., 2014; Kosmidis and Karlis, 2015) have been proposed.

Definition 2.1. (Mixture model of Gaussian copulas). A random vector X = (X1, · · · ,

Xp) is sampled from a mixture model of Gaussian copulas if its cumulative distribution

function (CDF) is

F (x|θ1, · · · , θK) =
∑

k

λkΦp

(

Φ−1
1 (P1(x1|γk1)), · · · ,Φ−1

1 (Pp(xp|γkp))|Ωk

)

, (2.1)

where θk = (λk,Ωk,γk1, · · · ,γkp) is a set of parameters in the kth component of the mixture

model. λk ∈ (0, 1) is the proportion (weight) of the kth component and
∑

k λk = 1. Ωk

is a correlation matrix and Φp(·|Ωk) is the CDF of a p-variate Gaussian distribution with

mean 0 and covariance Ωk. Φ1 is the CDF of a univariate standard Gaussian distribution

and Pj(·|γkj) is the CDF of a univariate conventional distribution with parameters γkj.

Assuming a conventional distribution for Pj(·|γkj), the parameters in the mixture model

of Gaussian copula can be estimated by using the EM algorithm (Kosmidis and Karlis,

2015) or the Markov chain Monte Carlo (Marbac et al., 2014) in the Bayesian context. The

Gaussian copula in the mixture model (2.1) can be replaced by other copulas such as the

Clayton copula and the Gumbel copula (Vrac et al., 2012).

2.2.2 Semiparametric Model for Clustering

Definition 2.2. (Semiparametric Gaussian mixture model). A random vector X is

distributed from a semiparametric Gaussian mixture model if and only if there exists a set
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of p monotone increasing functions (g1, · · · , gp) such that (g1(X1), · · · , gp(Xp)) is distributed

from a Gaussian mixture distribution
∑K

k=1 λkNp(µk,Σ) with a common covariance Σ for

each cluster, where λk ∈ (0, 1) is the proportion of the kth cluster,
∑

k λk = 1 and µk

is the mean of the kth Gaussian distribution. Furthermore, the cluster means {µk}Kk=1

and marginal variances {σ2
j}pj=1 which are the diagonal elements of Σ satisfy constraints

∑K
k=1 λkµk = 0 and σ2

j +
∑K

k=1 λkµ
2
kj = c for any j ∈ {1, · · · , p} and some positive constant

c.

We define g(X) = (g1(X1), · · · , gp(Xp)), then the density function of this model is given

by

f(x|µ1, · · · ,µK ,Σ) =
K
∑

k=1

λkφ (g(x)|µk,Σ) , (2.2)

where φ(·|µk,Σ) is the density function of the kth p-variate normal distribution with mean

µk and variance Σ.

Note that E(g(X)) =
∑

k λkµk and Var(g(X)) =
∑

k λkµkµ
′
k +Σ, thus the constraints

∑

k λkµk = 0 and σ2
j +

∑

k λkµ
2
kj = c in the Definition 2.2 mean that g(X) is centered and

marginally scaled to have constant variances, which ensure the semiparametric identifiability

shown in Section 2.3.1. If X belongs to the kthe cluster, then g(X) is in the kth cluster.

Let Ck be the kth cluster. Given that X ∈ Ck, g(X) is distributed from a semiparametric

Gaussian copula model proposed by Xue and Zou (2012) with mean µk and variance Σ.

2.2.3 Estimation

Let Z = (Z1, · · · , ZK) be a binary vector indicating the cluster assignment of X (and

g(X)), the mixture model (2.2) can be written as follows:

g(X)|Zk = 1 ∼ Np(µk,Σ),

(Z1, · · · , ZK) ∼ Multinomial (1, (λ1, · · · , λK)).

14



We estimate the parameters in the model (2.2) by using an iterative algorithm. Firstly,

we marginally estimate the unknown monotone increasing functions g1(·), · · · , gp(·) given

that other parameters are known. Since the marginal distribution of gj(Xj) given that X

belongs to the kth cluster is a univariate normal distribution with mean µkj and variance

σ2
j , for any x ∈ X , where X is the observation space of X, we have,

P (Xj ≤ x|X ∈ Ck) = P (gj(Xj) ≤ gj(x)|g(X) ∈ Ck) = Φ

(

gj(x)− µkj

σj

)

,

where Φ is the CDF of a univariate standard normal distribution. Then for any j = 1, · · · , p

and k = 1, · · · , K we have,

gj(x) = µkj + σjΦ
−1 (P (Xj ≤ y|X ∈ Ck)) .

Because of the constraint
∑

k λkµk = 0 in the model (2.2) and
∑

k λk = 1, we have

gj(x) = σj

K
∑

k=1

λkΦ
−1 (P (Xj ≤ x|X ∈ Ck)) . (2.3)

Let ψjk(x) = P (Xj ≤ x|Xj ∈ Ck), then the probabilities can be estimated by the empirical

distribution as follows,

ψ̃jk(x) =

∑n
i=1 I(xij ≤ x, ẑik = 1)
∑n

i=1 I(ẑik = 1)
,

where ẑik, i = 1, · · · , n and k = 1, · · · , K are estimates of cluster assignments. Since Φ−1(t)

goes to −∞ and +∞ as t goes to 0 and 1 respectively, we ψjk(x) by the Winsorized estimator
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(Lafferty et al., 2012), which is

ψ̂jk(x) =































δn if ψ̃jk(x) ≤ δn or
∑n

i=1 I(ẑik = 1) = 0

ψ̃jk(x) if δn ≤ ψ̃jk(x) ≤ 1− δn

1− δn if ψ̃jk(x) ≥ 1− δn

, (2.4)

where 0 < δn < 0.5 is a truncation parameter.

Given the estimates ĝj(xij) of gj(xij) for any observation xij, where i = 1, · · · , n and

j = 1, · · · , p, estimating parameters µk, λk and Σ is the same as maximizing the following

likelihood of the Gaussian mixture model for ĝj(xij),

L(µk, λk,Σ|ĝj(xij)) =
n
∏

i=1

K
∑

k=1

λkfk (ĝ(xi·)|µk,Σ) , (2.5)

where ĝ(xi·) = (ĝ1(xi1), · · · , ĝp(xip)). As in the classical model-based clustering, parame-

ters can be estimated by using the Expectation-Conditional Maxmization (ECM) algorithm

(Meng and Rubin, 1993). Since ĝj(xij) depends on µ̂k, λ̂k and Σ̂, the iterative estimation

procedure is as follows.

Starting with initial parameters ẑ
(0)
ik , λ̂(0) =

∑

i ẑ
(0)
ik and σ̂

(0)
j = 1 at the (t+1)th iteration,

1. For each i = 1, · · · , n and j = 1, · · · , p, from (2.3) and (2.4) we have

g̃
(t+1)
j (xij) = σ̂

(t)
j

∑

k

λ̂
(t)
k Φ−1

(

ψ̂
(t)
jk (xij)

)

.

2. Because of the constraints Var(gj(Xj)) = c and
∑K

k=1 λkµkj = 0, without loss of

generality, we let c = 1 and normalize g̃
(t+1)
j (xij) for each j, that is, for any i ∈

{1, · · · , n} we have,

ĝ
(t+1)
j (xij) =

g̃
(t+1)
j (xij)−

∑

i g̃
(t+1)
j (xij)/n

sd{g̃(t+1)
j (x·j)}

,
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where g̃
(t+1)
j (xij) is the Winsorized estimator, ĝ

(t+1)
j (xij) is the normalized estimator

and

sd{g̃(t+1)
j (x·j)} =

√

√

√

√

∑

i

(

g̃
(t+1)
j (xij)−

∑

i g̃
(t+1)
j (xij)/n

)2

n− 1

is the standard deviation of g̃
(t+1)
j (x·j).

3. Given ĝ
(t+1)
j (xij), we use the following EM-algorithm to estimate parameters in the

mixture model (2.5). With initial values µ̃
(0)
k = µ̂

(t)
k , λ̃

(0)
k = λ̂

(t)
k and Σ̃

(0)
= Σ̂

(t)
, at the

(s+ 1)th iteration,

(a) E-step: estimate the posterior probability α̃
(s+1)
ik by

α̃
(s+1)
ik =

λ̃
(s)
k fk

(

ĝ
(t+1)
1 (xi1), · · · , ĝ(t+1)

p (xip)|µ̃(s)
kj , Σ̃

(s)
)

∑

k λ̃
(s)
k fk

(

ĝ
(t+1)
1 (xi1), · · · , ĝ(t+1)

p (xip)|µ̃(s)
kj , Σ̃

(s)
) ,

λ̃
(s+1)
k =

n
∑

i=1

α̃
(s+1)
ik .

When t = 0, we have λ̂
(0)
k =

∑

i ẑ
(0)
ik , µ̂

(0)
k =

∑

i ẑ
(0)
ik ĝ

(1)
j (xij)/λ̂

(0)
k and

Σ̂(0) =
1

n

n
∑

i=1

K
∑

k=1

ẑ
(0)
ik

(

ĝ(1)(xi·)− µ̂
(0)
k

)(

ĝ(1)(xi·)− µ̂
(0)
k

)′
.

(b) M-step: estimate the cluster mean µ̃
(s+1)
k by

µ̃
(s+1)
kj =

∑

i α̃
(s+1)
ik ĝ

(t+1)
j (xij)

λ̃
(s+1)
k

(c) M-step: estimate the covariance Σ̃
(s+1)

by using the sample covariance,

Σ̃(s+1) =
1

n

n
∑

i=1

K
∑

k=1

α̃
(s+1)
ik

(

ĝ(t+1)(xi·)− µ̃
(s+1)
k

)(

ĝ(t+1)(xi·)− µ̃
(s+1)
k

)′
.
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(d) Continue to step 4 when the stopping criterion is satisfied. The stopping criterion

is

K
∑

k=1

‖µ̃(s+1)
k − µ̃

(s+1)
k ‖1

‖µ̃(s+1)
k ‖1 + ǫ

+
‖Σ̃(s+1) − Σ̃

(s+1)‖F
‖Σ̃(s+1)‖F + ǫ

+
K
∑

k=1

∣

∣

∣λ̃
(s+1)
k − λ̃

(s)
k

∣

∣

∣ < ε0.

Suppose the stopping criterion is satisfied at the (s+ 1)th iteration, then

ẑ
(t+1)
ik =I

(

α̃
(s+1)
ik ≥ α̃

(s+1)
ik′ , ∀ k′ 6= k

)

, λ̂
(t+1)
k = λ̃

(s+1)
k ,

µ̂
(t+1)
k =µ̃

(s+1)
k , Σ̂

(t+1)
= Σ̃

(s+1)
.

4. Stop the estimation procedure when the stopping criterion is satisfied. The stopping

criterion is

K
∑

k=1

‖µ̂(t+1)
k − µ̂

(t)
k ‖1

‖µ̂(t)
k ‖1 + ǫ

+
‖Σ̂(t+1) − Σ̂

(t)‖F
‖Σ̂(t)‖F + ǫ

+
K
∑

k=1

∣

∣

∣
λ̂
(t+1)
k − λ̂

(t)
k

∣

∣

∣
< ε0.

In cluster analysis, the number of clusters K is unknown. For SPM-clust, we use the

Bayesian information criterion (BIC) to select the number of clusters K.

BIC = −2 log
(

L
(

µ̂k, λ̂k, Σ̂|ĝj(xij)
))

+ b log(n)

where b = (K − 1) + Kp + p(p + 1)/2 is the number of parameters in the model and n is

sample size.

2.2.4 Implementations

Since we are using the traditional likelihood-based EM-algorithm to estimate parameters

µk and Σ, the estimation does not perform well in a high-dimensional setting. One approach

is that we could apply the marginal variable selection based on the work of Jin and Wang

(2016) for ĝ
(t+1)
j (xij) in each iteration, then estimate µk and Σ of ĝ

(t+1)
j (xij) with only the
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selected important variables. This could reduce the computation time and increase the

estimation accuracy as we exclude many variables which are not important for clustering.

The selected variables of ĝ
(t+1)
j (xij) could be different from the selected variables of ĝ

(t)
j (xij),

thus we can using the stopping criterion based on Hamming distance (ĉ(t+1), ĉ(t)) < ε0,

where ĉ(t) = (ĉ
(t)
1 , · · · , ĉ(t)n ) and ĉ

(t)
i =

∑

k kẑ
(t)
ik is the cluster assignments in the tth iteration.

The Hamming distance is defined as (2.23) in Section 2.4. Another way is to apply some

regularization methods such as L1 (Pan and Shen, 2007), L∞ (Wang and Zhu, 2008) or

PARSE (Wang et al., 2016a) penalty on cluster means.

To improve the estimation, some adjustments could be applied in the algorithm,

1. The truncation parameter δn can be selected by BIC or the generalized information

criterion (GIC) (Fan and Tang, 2013) for high dimension data.

2. For high-dimensional data, estimation of variance Σ could be improved by using the

Kendall’s τ (Xue and Zou, 2012), banding methods (Bickel and Levina, 2008b) or

thresholding methods (Bickel and Levina, 2008a).

2.3 Theoretical Properties

In the section, we show that the estimator (2.3) of gj(·) is a monotone increasing function

and the model (2.2) is semiparametrically identifiable.

Lemma 1. The estimate gj(x) based on (2.3) and (2.4), which is

ĝj(x) = σ̂j
∑

k

λ̂kΦ
−1
(

ψ̂jk(x)
)

,

is a monotone increasing piecewise constant function with jumps only at the order statistics

x(1),j, · · · , x(n),j of Xj, for each j ∈ {1, · · · , p}.

Proof. Let ẑ(i),k be the estimated cluster assignments corresponding to x(i),j. For any a1, a2

such that x(1),j ≤ a1 < a2 ≤ x(n),j,
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1. If there exists an index m such that both a1 and a2 are in the interval [x(m),j, x(m+1),j),

then we have for any k,

ψ̃jk(a1) =

∑n
i=1 I(x(i)j ≤ a1, ẑ(i),k = 1)
∑n

i=1 I(ẑik = 1)
=

∑m
i=1 I(ẑ(i),k = 1)
∑n

i=1 I(ẑik = 1)
,

ψ̃jk(a2) =

∑n
i=1 I(x(i)j ≤ a2, ẑ(i),k = 1)
∑n

i=1 I(ẑik = 1)
=

∑m
i=1 I(ẑ(i),k = 1)
∑n

i=1 I(ẑik = 1)
.

Thus ψ̃jk(a1) = ψ̃jk(a2). With the same truncation parameter δn, we have the truncated

estimators ψ̂jk(a1) = ψ̂jk(a2). Thus, ĝj(a1) = ĝj(a2)

2. Let x(n+1),j) = ∞ (or the upper bound in X ). If there exist indices 1 ≤ m < l ≤ n

such that a1 ∈ [x(m),j, x(m+1),j) and a2 ∈ [x(l),j, x(l+1),j), then we have for any k

ψ̃jk(a1) =

∑m
i=1 I(ẑ(i),k = 1)
∑n

i=1 I(ẑik = 1)
≤ ψ̃jk(a2) =

∑l
i=1 I(ẑ(i),k = 1)
∑n

i=1 I(ẑik = 1)
= ψ̃jk(a2).

Since there exists a k such that ψ̃jk(a1) < ψ̃jk(a2), with a sufficiently small truncation

parameter δn, we have the truncated estimators ψ̂jk(a1) < ψ̂jk(a2). Thus, ĝj(a1) <

ĝj(a2). Therefore the jumps in ĝj(x) can only appear at the order statistics.

2.3.1 Identifiability

Definition 2.3. (Semiparametric identifiability). A mixture model with the density

function (2.2) is semiparametrically identifiable if and only if f uniquely determines param-

eters {g,µk, λk,Σ, k = 1, · · · , K} up to label switching. That is, for any different sets of pa-

rameters {g,µk, λk,Σ, k = 1, · · · , K} and {g̃, µ̃k, λ̃k, Σ̃, k = 1, · · · , K}, we have f(x) 6= f̃(x)

for some x ∈ X , where f̃(x) =
∑

k λ̃kφ(g̃(x)|µ̃k, Σ̃).

Theorem 1. The model defined by the definition 2.2 in Section 2.2.2 is semiparametrically

identifiable.
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Proof. Without loss of generality, we only show the identifiability when K = 2. Thus the

density can be written as

f(x) = λφ(g(x)|µ1,Σ) + (1− λ)φ(g(x)|µ2,Σ) (2.6)

Suppose that there exist two different sets of parameters {g,µk, λk,Σ, k = 1, 2} and

{g̃, µ̃k, λ̃k, Σ̃, k = 1, 2} such that f = f̃ , to show the identifiability, we need to find con-

tradictions. For simplicity, we denote φk and φ̃k to be abbreviations of φ(g(x)|µk,Σ) and

φ(g̃(x)|µ̃k, Σ̃) respectively. We first show that f = f̃ is equivalent to the component-wise

equalities, {λφ1 = λ̃φ̃1 and (1−λ)φ2 = (1− λ̃)φ̃2} or {λφ1 = (1− λ̃)φ̃2 and (1−λ)φ2 = λ̃φ̃1}.

Let Z and Z̃ be independent random variables distributed from Bernoulli distributions

with probabilities λ and λ̃ respectively. We define W = Zφ1 + (1 − Z)φ2 and W̃ = Z̃φ̃1 +

(1 − Z̃)φ̃2. Then we have f(x) = Eλ(W ) and f̃(x) = Eλ̃(W̃ ). Thus f = f̃ implies that
∫

W dΛ =
∫

W̃ dΛ̃, where Λ and Λ̃ are probability measures corresponding to Z and Z̃.

Then we have

∫

Zφ1 + (1− Z)φ2 dΛ =

∫

(

Z̃φ̃1 + (1− Z̃)φ̃2

) dΛ̃

dΛ
dΛ (2.7)

Because Z and Z̃ are Bernoulli random variables, Λ is finite. Also φk and φ̃k are density

functions which are nonnegative, then (2.7) is true if and only if Zφ1 + (1− Z)φ2
a.e.
= Z̃φ̃1 +

(1− Z̃)φ̃2. Moreover, since Z and Z̃ only take values 0 or 1 and

dΛ̃

dΛ
=
λ̃z̃(1− λ̃)1−z̃

λz(1− λ)1−z

where z, z̃ ∈ {0, 1}, we have

λφ1 = λ̃φ̃1 and (1− λ)φ2 = (1− λ̃)φ̃2 (2.8)
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or {λφ1 = (1− λ̃)φ̃2 and (1− λ)φ2 = λ̃φ̃1}. Since we consider the identifiability up to label

switching, without loss of generality, we only need to show that the first case (2.8) does not

exist for any different sets of parameters. Similarly, the second case does not exist either.

For the jth variable, let φkj be the marginal densitiy of the p-variate normal distribution

φk for any k = 1, 2. Obviously, φkj is the density function of a univariate normal distribution

with mean µkj and variance σ2
j . Then λφ1 = λ̃φ̃1 and (1 − λ)φ2 = (1 − λ̃)φ̃2 imply that

λφ1j = λ̃φ̃1j and (1− λ)φ2j = (1− λ̃)φ̃2j for any j = 1, · · · , p.

Suppose that {gj, µkj, λk, σ
2
j ; k = 1, 2} and {g̃j, µ̃kj, λ̃k, σ̃

2
j ; k = 1, 2}, which are the subsets

of two different parameter sets for the jth variable, are different. Then we have,

λ
√

2πσ2
j

exp

{

−(gj(xj)− µ1j)
2

σ2
j

}

=
λ̃

√

2πσ̃2
j

exp

{

−(g̃j(xj)− µ̃1j)
2

σ̃2
j

}

(2.9)

and

1− λ
√

2πσ2
j

exp

{

−(gj(xj)− µ2j)
2

σ2
j

}

=
1− λ̃
√

2πσ̃2
j

exp

{

−(g̃j(xj)− µ̃2j)
2

σ̃2
j

}

. (2.10)

Since λ, λ̃ ∈ (0, 1), there exists a constant a > 0 such that λ̃ = aλ. Without loss of

generality, we assume λ ≤ 1− λ, i.e., λ ≤ 0.5. Then from (2.9) we have g̃j(xj) = ±A + µ̃1j

and from (2.10) we have g̃j(xj) = ±B + µ̃2j, where

A =

√

2σ̃2
j

{

(gj(xj)− µ1j)2

2σ2
+ log

(

σ2
j

σ̃2
j

)

+ log(a)

}

(2.11)

B =

√

2σ̃2
j

{

(gj(xj)− µ2j)2

2σ2
+ log

(

σ2
j

σ̃2
j

)

+ log

(

1− aλ

1− λ

)}

. (2.12)

Obviously, one of the following four cases should be true.

A+ µ̃1j =B + µ̃2j, (2.13)
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−A+ µ̃1j =− B + µ̃2j,

A+ µ̃1j =− B + µ̃2j,

−A+ µ̃1j =B + µ̃2j.

Since the four cases are symmetric, we only need to find contradictions based on the first case.

Other cases can be derived similarly. Since A+ µ̃1j = B+ µ̃2j, we have A
2 = (B+ µ̃2j− µ̃1j)

2.

From the constraint
∑

k λkµk = 0 in the model, we have µ2j = λµ1j/(λ − 1). Similarly, we

also have µ̃2j = λ̃µ̃1j/(λ̃− 1). Solving the equation (2.13) with respect to B we have

B =
σ̃2
j (aλ− 1)

µ̃1j

{

µ1jgj
(λ− 1)σ2

j

+
(1− 2λ)µ2

1j

2(λ− 1)2σ2
j

+ log

(

a(1− λ)

1− aλ

)

+
µ̃2
1j

1σ̃2
j (aλ− 1)2

}

(2.14)

Then plug in (2.12) on the left-hand side of (2.14) we have

σ̃4
j (aλ− 1)2

µ̃2
1j

{

µ1jgj
(λ− 1)σ2

j

+
(1− 2λ)µ2

1j

2(λ− 1)2σ2
j

+ log

(

a(1− λ)

1− aλ

)

+
µ̃2
1j

1σ̃2
j (aλ− 1)2

}2

=2σ̃2
j

{

(gj − µ2j)
2

2σ2
+ log

(

σ2
j

σ̃2
j

)

+ log

(

1− aλ

1− λ

)}

which can be simplified as

A1g
2
j +B1gj +D1 = 0, (2.15)

where

A1 =
(aλ− 1)2µ2

1jσ̃
2
j

(λ− 1)2µ̃2
1jσ

4
j

− 1

σ2
j

B1 =
(aλ− 1)2(1− 2λ)µ3

1jσ̃
2
j

(λ− 1)3µ̃2
1jσ

4
j

+
2µ1jσ̃

2
j (aλ− 1)2

µ̃2
1jσ

2
j (λ− 1)

log

(

a(1− λ)

1− aλ

)

− µ1j

(λ− 1)σ2
j

+
2µ2j

σ2
j

D1 =
σ̃2
j (aλ− 1)2

µ̃2
1j

{

(1− 2λ)µ2
1j

2(λ− 1)2σ2
j

+ log

(

a(1− λ)

1− aλ

)

− µ̃2
1j

2σ̃2
j (aλ− 1)2

}

− log

(

σ2
j

σ̃2
j

)

− 2 log

(

1− aλ

1− λ

)

− µ2
2j

σ2
j
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Clearly, (2.15) is a polynomial equation for gj with degree 2 unless A1 = 0, B1 = 0 and

D1 = 0, thus it has at most 2 constant roots. Since we assume that gj is not a degenerate

function, there exists some x ∈ X such that A1g
2
j (x)+B1gj(x)+D1 6= 0, that is, the equality

(2.15) is not true, which implies that fj 6= f̃j for any different sets of parameters.

If A1 = 0, B1 = 0 and D1 = 0, then from A1 = 0 we have

µ̃2
1j

σ̃2
j

=
(aλ− 1)2µ2

1j

(λ− 1)2σ2
j

. (2.16)

Substituting µ̃2
1j/σ̃

2
j in B1 = 0 by (2.16) gives

0 = B1 =
2(1− 2λ)µ1j

(λ− 1)σ2
j

+
2(λ− 1)

µ1j

log

(

a(1− λ)

1− aλ

)

.

Simplifying this equation we have,

µ2
1j

σ2
j

=
(1− λ)2

(1− 2λ)
log

(

1− aλ

a(1− λ)

)

. (2.17)

Since we assume that λ ≤ 0.5, we have

log

(

1− aλ

a(1− λ)

)

≥ 0,

which means a ≥ 1, i.e., λ̃ > λ.

Substitute µ̃2
1j/σ̃

2
j in D1 = 0 by (2.16) we have

0 =D1

(λ− 1)2σ2
j

µ2
1j

{

log

(

a(1− λ)

1− aλ

)

− λµ2
1j

(λ− 1)2σ2
j

}2

− log

(

σ2
j

σ̃2
j

)

− 2 log

(

1− aλ

1− λ

)

− µ2
2j

σ2
j

=− 2λ log

(

a(1− λ)

1− aλ

)

+
(λ− 1)2σ2

j

µ2
1j

{

log

(

a(1− λ)

1− aλ

)}2

− 2 log

(

1− aλ

1− λ

)

− log

(

σ2
j

σ̃2
j

.

)

(2.18)
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From the constraint Var(gj(Xj)) = c in the model (Definition 2.2) we have σ̃j + λ̃µ̃2
1j + (1−

λ̃)µ̃2
2j = c, which implies that σ̃2

j = c − aλµ̃2
1j/(aλ − 1). Plug this into (2.16) and solve the

equation with respect to µ̃2
1j we have

µ̃2
1j =

c(aλ− 1)2µ2
1j

(λ− 1)2σ2
j − aλ(aλ− 1)µ2

1j

.

Plug this into (2.16) we have

σ2
j

σ̃2
j

=
(λ− 1)2σ2

j − aλ(aλ− 1)µ2
1j

c(λ− 1)2
. (2.19)

Substitute σ2
j/µ

2
1j and σ

2
j/σ̃

2
j in (2.18) by (2.17) and (2.19), we have

0 = log

(

a(1− λ)

1− aλ

)

− 2 log

(

1− aλ

1− λ

)

− log

{

(λ− 1)2σ2
j − aλ(aλ− 1)µ2

1j

c(λ− 1)2

}

= log

{

a(1− λ)

1− aλ
· (1− λ)2

(1− aλ)2
· c(λ− 1)2

(λ− 1)2σ2
j − aλ(aλ− 1)µ2

1j

}

.

Since σ2
j = c− λµ2

1j/(λ− 1) from the constraint Var(gj(Xj)) = c, we have

c(1− λ)3

a(1− aλ){c(1− λ)2 + λ(λ− 1)µ2
1j − aλ(aλ− 1)µ2

1j}
= 1

which means

µ2
1j =

c(1− λ)2{1− λ− a(1− aλ)}
a(1− aλ){λ(λ− 1)− aλ(aλ− 1)}

=− c(1− λ)2

a(1− aλ)λ
< 0.

This contradicts to that µ2
1j is always nonnegative, thus A1, B1 and D1 cannot equal to 0

simultaneously. Thus we have λφ1j 6= λ̃φ̃1j or (1− λ)φ2j 6= (1− λ̃)φ̃2j.

Since for any different sets of parameters {g,µk, λk,Σ}2k=1 and {g̃, µ̃k, λ̃k, Σ̃}2k=1, there

exists at least one dimension j such that the subsets of these parameter sets on the jth
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dimension, {gj, µkj, λk, σ
2
j ; k = 1, 2} and {g̃j, µ̃kj, λ̃k, σ̃

2
j ; k = 1, 2} are different. Thus,

there exists at least one j such that the equality between marginal distributions {λφ1j =

λ̃φ̃1j and (1 − λ)φ2j 6= (1 − λ̃)φ̃2j} does not exist, which implies that the joint multivariate

distributions not different, that is, λφ1 6= λ̃φ̃1 or (1− λ)φ2 6= (1− λ̃)φ̃2. Therefore, we have

f 6= f̃ , which means that f uniquely determines the unknown parameters.

2.4 Simulation

In this section, we investigate the performance of the proposed method (SPM-clust)

and compare it to the k-means algorithm, the classical model-based clustering (Fraley and

Raftery, 2002) assuming a common covariance for each cluster or using the optimal covari-

ance structure which is selected through BIC and the nonparametric estimation method

(Benaglia et al., 2009a) assuming that variables are independent and have different distribu-

tions or using the true blocks of variables. Variables within the same block are independently

and identically distributed from the same distribution. Thus assuming that variables are in-

dependent and have different distributions means that each variable forms a block, that is,

there are p blocks in the variables. For SPM-clust, we also compare the performance of

using a banding estimator (Bickel and Levina, 2008b) to the maximum likelihood estimator

(MLE) for the covariance in each iteration of the inner EM algorithm. First we assume that

the number of clusters K is known and investigate the changes in clustering accuracy as

the separation between clusters increases, that is, increasing the separation between cluster

means when the covariance is fixed. Then we investigate the performance of SPM-clust,

k-means and the classical model-based clustering (Mclust) when K is unknown.

For SPM-clust, although the inner EM-algorithm in the estimation procedure in Sec-

tion 2.2 stops when the stoping criterion is met, we find that with a good starting point

the EM-algorithm converges quickly. Thus in simulations we only use one step for the

inner EM-algorithm. We also use a fixed truncation parameter δn = 1/(4n1/4
√
π log n) pro-
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posed by Lafferty et al. (2012) for consistent estimation of Σ in the nonparanormal graphical

model, which performs reasonable well in most cases. To implement Benaglia et al. (2009a)’s

method, the k-means algorithm and the classical model-based clustering, we use R packages

mixtools (Benaglia et al., 2009b) and mclust (Fraley et al., 2012), and ‘kmeans’ function in

stats (R Core Team, 2016) respectively. To determine the number of clusters K, SPM-clust

and the classical model-based clustering (Mclust) use BIC discussed in Section 2.2. We

use gap statistic proposed by Tibshirani et al. (2001) for the k-means algorithm from the

‘clusGap’ function in the R package cluster (Maechler et al., 2016).

We consider data with four clusters under three data settings. For each data setting,

first we generate data Y = {y1, · · · ,yn} from four p-dimensional normal distributions with

means µk’s and a common covariance Σ, where p = 10 or 50. Then a monotone increasing

transformation function was applied on each dimension of the data. For each data setting,

we also investigate three different covariance structures for the normal distributions: inde-

pendence, AR(1) and block AR(1) covariance. The three data settings (transformations)

and their parameters µk’s and Σ are described in detail below.

1. Polynomial: |y|2.5sgn(y)/10,

(a) Cluster means: for both p = 10 and 50, only the first and sixth variables have

different values across clusters, all of the others equal to 0. Let µij be the cluster

mean for the ith cluster on the jth variable and

µ11 = γ, µ21 = −γ, µ31 = γ, µ41 = 0

µ16 = γ, µ26 = −γ, µ36 = −γ, µ46 = 0, (2.20)
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where γ ∈ {2.5, 3, 3.5, 4, 4.5, 5} is defined as the separation between clusters as

follow

γ = max
j∈{1,··· ,p}

min
1≤k<k′≤K

|µkj − µk′j|I (µkj 6= µk′j) (2.21)

(b) Three covariance structures:

i. Independence:

• p = 10: Σ = diag{0.64, 0.64, 1, 1, 0.81, 0.81, 2.25, 2.25, 0.49, 0.49}.

• p = 50: The first 10 variables have the same variances as in the case of

p = 10. All of the variances for the last 40 variables are 1.

ii. AR(1) with autoregression coefficient ρ = 0.5. The marginal variances are

the same as the above independent covariance and the correlation is ρ|j−l|.

iii. Block AR(1) and the same autoregression coefficient ρ = 0.5.

• p = 10: The marginal variances are the same as the above independent

covariance. Σ has 3 blocks with block sizes being 3, 3 and 4. If 1 ≤ j ≤

l ≤ 3, 4 ≤ j ≤ l ≤ 6 or 7 ≤ j ≤ l ≤ 10, then Corr(Xj, Xl) = ρ|j−l|;

otherwise the correlation is zero.

• p = 50: The marginal variances the are the same as the above independent

covariance. Σ has 11 blocks. The first 10 variables contain 3 blocks which

are the same as the blocks in the case of p = 10. The other 40 variables

contain 8 blocks with the same block size equal to 5.

2. Inverse cumulative distribution function (CDF): F−1(y/max |y|), where F−1 is the

inverse CDF of t distribution with degrees of freedom 3. The parameter settings are

the same as the ‘polynomial’ case.

3. Log-normal distribution: exp(y),
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(a) Cluster means: for both p = 10 and 50, only the first and sixth variables have

different values across clusters as follows, all of the others equal to 0.

µ11 = γ, µ21 = 0, µ31 = γ, µ41 = 0

µ16 = 0, µ26 = γ, µ36 = γ, µ46 = 0, (2.22)

where γ ∈ {log(2.5), log(3), log(3.5), log(4), log(4.5), log(5)}. Since the variance

of the log-normal distribution is too large if γ ∈ [2.5, 5], here we use smaller γ

so that the cluster variances of the observed data (log-normal data) are on the

similar scales.

(b) Three covariance structures:

i. Independence: Σ = 0.16I for both p = 10 and 50,

ii. AR(1) and block AR(1) have the same correlation matrix as in the ‘polyno-

mial’ case and the same marginal variances as in the independent covariance.

We compare the methods based on the clustering accuracy, which is defined as 1 minus

the Hamming distance. Let H be a n by n binary, upper triangle adjacency matrix of

clustering labels. If xi and xm, i < m are in the same cluster, then Him = 1; otherwise,

Him = 0. The Hamming distance (Hamming, 1950) between two upper-triangle adjacency

matrices is,

2
∑

i<m |Ĥim −H∗
im|

n(n− 1)
, (2.23)

where Ĥ and H∗ are the adjacency matrices of estimated clustering label and true clustering

label respectively. For real applications in cluster analysis, we cannot evaluate this statistic

since the true clustering labels are unknown.

We first look at the impact of the separation between clusters (γ (2.21)) on the clustering

accuracy when K is known and Σ is fixed. For balanced data, there are 60 observations in
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each cluster. For unbalanced data, the cluster sizes are 20, 60, 60 and 100 for the ‘polynomial’

and ‘inverse CDF’ cases; and 30, 50, 60, 100 for the ‘log-normal’ case.

The band width in the banding estimator (Bickel and Levina, 2008b) is the true band

widths for the independent and block AR(1) covariance structures, which are 0 and 3 for

p = 10 (4 for p = 50) respectively. For the AR(1) covariance, we use the band width which

gives the smallest difference between the banding estimate and the true covariance. Here

we use 6 as the band width for all the transformation functions when p = 10. For p = 50,

we use 6 for the polynomial transformation and 10 for the inverse CDF and the log-normal

distribution.

As γ increases, with a fixed covariance, the signal increases, thus the clustering accuracy

also increases. As in Figure 2.3, the SPM-clust has uniformly better clustering accuracy than

the other methods. Moreover, for the balanced data, the performance of SPM-clust when

the variables are independent (Figure 2.3c) is slightly worse than the case with the AR(1)

covariance (Figure 2.3a) because the autoregression coefficient ρ is positive, thus the signal is

stronger in the AR(1) simulation than in the independent case. The overall performance of

methods in Figure 2.4 for the inverse CDF transformation and Figure 2.5 for the log-normal

distribution is similar to Figure 2.3. However, in the cases of the inverse CDF transformation

and the log-normal distribution, the differences of clustering accuracy between SPM-clust

and other methods for the unbalanced data (Figure 2.6b and Figure 2.6c) are smaller than

the results for the balanced data (Figure 2.4c and Figure 2.5c). This is reasonable, since

for the unbalanced data, small clusters may be absorbed by large clusters. Comparing the

banding estimator to MLE for estimating covariance, we can find that using the banding

estimator improves the clustering accuracy, especially when p = 50 in Figure 2.7, Figure 2.8

and Figure 2.9 with low signal. For p = 10 in Figure 2.3, Figure 2.4 and Figure 2.5, the

banding estimator and MLE are almost the same because MLE also performance well when

the dimension is small.
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The number of clusters is unknown in cluster analysis. Here we compare the performance

of selection of K using the proposed SPM-clust, the k-means algorithm, and the classical

model-based clustering. In Table 2.1, we can find that ‘SPM-clust’ is much better than other

methods in selecting K except the ‘log-normal’ transformation with independent covariance.

One reason may be the value of the truncation parameter δn in (2.4) which could be tuned

by using BIC.
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(b) Balanced, block AR(1)
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(c) Balanced, independence

Figure 2.3: The data are balanced and have 10 variables with the polynomial transfor-
mation. Each cluster has 60 observations. “—◦—” (solid line) is SPM-clust using MLE for
estimating covariance; “—+—” is SPM-clust using a banding estimator; “- -×- -” is k-means;
“· · ·△ · · · ” is the nonparametric mixture model with p blocks of variables; “· · ·▽ · · · ” is the
nonparametric mixture model with the true blocks of variables; “−·−�−·−” is Mclust with
the optimal covariance structure; “− · −⋄− · −” is Mclust assuming a common covariance
for each cluster.

2.5 Discussion

In this chapter, we proposed a semiparametric model-based clustering method (SPM-

clust), which performs well in clustering especially for non-Gaussian data with heavy tails.

Simulations showed that SPM-clust is better than other popular methods including the k-

means algorithm, the nonparametric mixture model and the classical model-based clustering

in most cases under three data settings — the polynomial transformation, the inverse CDF

transformation and the log-normal distribution. We found that the estimation of SPM-clust

31



●

●
● ● ● ●

2.5 3.0 3.5 4.0 4.5 5.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γ

A
cc

ur
ac

y

(a) Balanced, AR(1)
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(b) Balanced, block AR(1)
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(c) Balanced, independence

Figure 2.4: The data have 10 variables with the inverse CDF of t(3) transformation. Each
cluster has 60 observations. “—◦—” (solid line) is SPM-clust using MLE for estimating co-
variance; “—+—” is SPM-clust using a banding estimator; “- -×- -” is k-means; “· · ·△ · · · ”
is the nonparametric mixture model with p blocks of variables; “· · ·▽ · · · ” is the nonpara-
metric mixture model with the true blocks of variables; “− · −� − ·−” is Mclust with the
optimal covariance structure; “− · −⋄− · −” is Mclust assuming a common covariance for
each cluster.
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(a) Balanced, AR(1)

●

●

●

●
●

●

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γ

A
cc

ur
ac

y

0.9 1.1 1.3 1.4 1.5 1.6

(b) Balanced, block AR(1)
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(c) Balanced, independence

Figure 2.5: The data have 10 variables distributed from the mixture of log-normal distri-
bution. Each cluster has 60 observations. “—◦—” (solid line) is SPM-clust using MLE for
estimating covariance; “—+—” is SPM-clust using a banding estimator; “- -×- -” is k-means;
“· · ·△ · · · ” is the nonparametric mixture model with p blocks of variables; “· · ·▽ · · · ” is the
nonparametric mixture model with the true blocks of variables; “−·−�−·−” is Mclust with
the optimal covariance structure; “− · −⋄− · −” is Mclust assuming a common covariance
for each cluster.
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(a) Polynomial
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(b) Inverse CDF
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(c) Log-normal

Figure 2.6: The data are unbalanced and have 10 variables with the independent covariance.
The cluster sizes are 20, 60, 60 and 100 for the polynomial and inverse CDF transformations,
and 30, 50, 60 and 100 for the log-normal distribution. “—◦—” (solid line) is SPM-clust
using MLE for estimating covariance; “—+—” is SPM-clust using a banding estimator; “-
-×- -” is k-means; “· · ·△ · · · ” is the nonparametric mixture model with p blocks of variables;
“· · ·▽ · · · ” is the nonparametric mixture model with the true blocks of variables; “− ·−�−
·−” is Mclust with the optimal covariance structure; “− · −⋄− · −” is Mclust assuming a
common covariance for each cluster.
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(a) AR(1)
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(b) Block AR(1)
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(c) Independence

Figure 2.7: The data have 50 variables with the polynomial transformation. Each cluster
has 60 observations. “—◦—” (solid line) is SPM-clust using MLE for estimating covariance;
“—+—” is SPM-clust using a banding estimator; “- -×- -” is k-means; “· · ·△ · · · ” is the
nonparametric mixture model with p blocks of variables; “· · ·▽ · · · ” is the nonparametric
mixture model with the true blocks of variables; “− · −�− ·−” is Mclust with the optimal
covariance structure; “−·−⋄−·−” is Mclust assuming a common covariance for each cluster.
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Table 2.1: Estimated K and mis-clustering error(%) for data with p = 10 and 60 observation in
each cluster.

Data Data Method K̂ mis-clustering (%)
(g(·)) (Σ)

Polynomial

Independence

SPM-clust 4.00 (0.00) 1.95 (1.32)
K-means 4.13 (0.34) 5.76 (1.75)
Mclust (same Σ) 2.92 (1.13) 45.6 (26.6)
Mclust (optimal Σk) 4.77 (0.45) 28.8 (2.80)

AR(1)

SPM-clust 4.00 (0.00) 0.29 (0.39)
K-means 4.03 (0.17) 5.79 (1.72)
Mclust (same Σ) 3.56 (1.29) 30.3 (30.8)
Mclust (optimal Σk) 4.73 (0.47) 30.3 (2.59)

Inverse CDF

Independence

SPM-clust 4.01 (0.10) 1.56 (1.06)
K-means 3.34 (0.59) 9.97 (7.94)
Mclust (same Σ) 3.56 (0.95) 18.0 (12.1)
Mclust (optimal Σk) 4.97 (0.17) 4.82 (2.26)

AR(1)

SPM-clust 4.05 (0.26) 0.48 (1.33)
K-means 3.30 (0.92) 17.8 (10.5)
Mclust (same Σ) 4.35 (0.74) 9.39 (7.95)
Mclust (optimal Σk) 4.85 (0.52) 6.08 (10.2)

Log-normal

Independence

SPM-clust 2.56 (0.90) 23.7 (9.43)
K-means 3.16 (0.68) 39.8 (5.81)
Mclust (same Σ) 2.54 (0.76) 49.1 (10.9)
Mclust (optimal Σk) 3.46 (0.74) 27.0 (6.49)

AR(1)

SPM-clust 3.82 (0.58) 6.61 (6.77)
K-means 3.24 (0.74) 29.5 (5.67)
Mclust (same Σ) 2.91 (0.97) 45.6 (11.6)
Mclust (optimal Σk) 3.18 (0.95) 35.2 (11.3)
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(a) AR(1)
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(b) Block AR(1)
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(c) Independence

Figure 2.8: The data have 50 variables with the inverse CDF of t(3) transformation. Each
cluster has 60 observations. “—◦—” (solid line) is SPM-clust using MLE for estimating co-
variance; “—+—” is SPM-clust using a banding estimator; “- -×- -” is k-means; “· · ·△ · · · ”
is the nonparametric mixture model with p blocks of variables; “· · ·▽ · · · ” is the nonpara-
metric mixture model with the true blocks of variables; “− · −� − ·−” is Mclust with the
optimal covariance structure; “− · −⋄− · −” is Mclust assuming a common covariance for
each cluster.
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(b) Block AR(1)
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(c) Independence

Figure 2.9: The data have 50 variables distributed from the mixture of log-normal distri-
bution. Each cluster has 60 observations. “—◦—” (solid line) is SPM-clust using MLE for
estimating covariance; “—+—” is SPM-clust using a banding estimator; “- -×- -” is k-means;
“· · ·△ · · · ” is the nonparametric mixture model with p blocks of variables; “· · ·▽ · · · ” is the
nonparametric mixture model with the true blocks of variables; “−·−�−·−” is Mclust with
the optimal covariance structure; “− · −⋄− · −” is Mclust assuming a common covariance
for each cluster.
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could be improved in multiple ways. For example, we could use the ‘optimal’ truncation

parameter δn chosen by BIC in the Winsorized estimator for g(x). We can also replace the

estimator for Σ by a robust estimator such as the Kendall’s τ and the banding estimator.

In this chapter, we only investigate data with low dimensions, that is, p < n, it would be

interesting to apply this method in a high-dimensional setting. Other theoretical results such

as the consistency in estimating the clustering assignments and the boundary of the signal

for detecting clusters are also worth to investigate in future.
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CHAPTER 3

IDENTIFICATION OF PAIRWISE INFORMATIVE

VARIABLES FOR CLUSTERING DATA

3.1 Introduction

Clustering is one of the most popular topics in statistics, which separates objects into

subgroups with similar properties. It is widely applied in various fields such as genetic stud-

ies, marketing research, investigating social networks and more. Generally speaking, there

are two categories of clustering methods; one is mostly based on heuristic algorithms or

dissimilarities among objects such as the k-means algorithm (Hartigan and Wong, 1979);

the other is based on statistical models such as model-based clustering (Fraley and Raftery,

2002). Traditional clustering methods use all the variables in the data for clustering. How-

ever, in practice it is typical that only a small fraction of variables can distinguish clusters.

For example, in genetic studies, there may be only a few of genes that determine subtypes

of a disease or separate patients into subgroups. Thus identifying these genes is important.

Moreover, excluding non-informative variables may also help detecting the clustering struc-

ture in the data. The definition of “informative” and “non-informative” is stated later. One

straightforward way is to use a dimension reduction procedure such as principal component

analysis before clustering (Yeung and Ruzzo, 2001). However, Yeung and Ruzzo (2001)

concluded that only using a few principal components cannot capture the original cluster-

ing structure thus cannot improve clustering results. Chang (1983) mathematically proved

that using principal components of the data to reduce the dimension before clustering may

not maintain the information of original clustering in general. To simultaneously identify

important variables as well as cluster the data, Friedman and Meulman (2004) introduced
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a procedure to cluster objects on subsets of attributes (COSA) which defines the distance

between two objects as a sum of weighted distances on each variable. By optimizing over

the cluster assignments and the nonnegative weights that equal zero for non-informative

variables, it obtains the clustering on an estimated subset of variables. Parsons et al. (2004)

provided a review of other promising subspace clustering algorithms. These methods are

mostly heuristic but flexible in terms of being free of statistical assumptions. Since COSA

does not provide a sparse solution of variable selection when the dimension is high, Witten

and Tibshirani (2012) extended COSA and proposed a general framework of sparse cluster-

ing which effectively eliminates non-informative variables and can be implemented in a wide

range of clustering methods such as k-means and hierarchical clustering. Sparse clustering

also introduces a nonnegative weight for each dimension and performs a constrained opti-

mization over the clustering assignments and weights. The constraints include that the L1

norm of the weights is no more than a certain number which is selected by a permutation

algorithm and the L2 norm of the weights is no more than one. These constraints can be

treated as two penalty terms in the clustering criteria. Thus, with the L1 penalty, sparse

clustering can produce a sparse solution on variable selection.

As model-based clustering has been studied and widely applied in various fields, many

methods for identifying variables under the framework of the model-based clustering have

been proposed. Tadesse et al. (2005) employed a Gaussian mixture model and the Re-

versible Jump Markov Chain Monte Carlo (RJMCMC) algorithm to search across spaces

of variables and clusters with different dimensions. Raftery and Dean (2006) treated vari-

able identification in model-based clustering as model selection via the approximated Bayes

factor. Hoff et al. (2006) proposed a mixture model of Dirichlet processes which employs

the Polya urn model for shifted cluster means. Recently, regularization methods were em-

ployed in model-based clustering to simultaneously cluster the data and identify important

variables, especially when the dimension is high and the sample size is relatively small. Bou-

veyron and Brunet-Saumard (2014) provided a thorough review in recent developments of
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high-dimensional model-based clustering including some subspace clustering algorithms and

regularization methods. Pan and Shen (2007) proposed a model-based clustering method

with an L1 penalty for each cluster mean in the likelihood. Similar to Lasso (Tibshirani,

1996), it shrinks cluster means towards zero for standardized data and produces a sparse set

of variables. Since cluster means associated with the same variable form a natural group of

parameters which should be penalized differently from cluster means on the other variable,

Wang and Zhu (2008) introduced an adaptive L∞ penalty for the cluster mean vectors on

each variable. The adaptive parameters were used to reduce the bias of estimation using the

penalty functions.

When the dimension p increases, which could be faster than the increment of sample size

n, assuming an unstructured covariance matrix results in a vast number of unknown pa-

rameters which is infeasible to estimate without any assumptions. Researchers (Tibshirani

et al., 2003; Bickel and Levina, 2004) have shown that a diagonal covariance may produce

better estimation with smaller risk than a non-diagonal covariance in the context of clas-

sification. Thus, it is common to assume the same diagonal covariance for each cluster in

high-dimensional model-based clustering as in Pan and Shen (2007) and Wang and Zhu

(2008). In some cases, using a common diagonal covariance may not be enough in separat-

ing clusters. Xie et al. (2008) assumed different diagonal covariances for each cluster and

employed the L1 penalty for cluster means. Xu et al. (2012) assumed a common, sparse and

unstructured covariance in the discriminant analysis and proposed L1 penalties for both the

covariance and the cluster means. Since we are focusing on the effect of cluster means in

clustering in our method, we assume a common diagonal covariance matrix in this chapter.

The model-based clustering methods listed above only consider individual cluster means

or individual variables. However, the definition of “informative” in a clustering context is

different from that in a regression context, since the goal of clustering is to discriminate

between objects. As far as the equivalence of “informative” and separation of clusters is

considered, it is natural to consider pairwise differences among cluster means instead of
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individual cluster means. Jin and Wang (2016) defined that a variable is a “useful feature”

if there exists a pair of cluster means associated with this variable is different. We define

“globally informative variables” and “pairwise informative variables” in the same way.

Definition 3.1. Let µkj be the mean of the kth cluster on the jth variable. Then the jth

variable is said to be “globally informative” if there exists at least a pair of clusters which

have different means on the jth variable, that is, there exists at least one pair of k 6= k′ such

that µkj 6= µk′j. The jth variable is said to be “pairwise informative” for separating cluster

k and k′ if µkj 6= µk′j.

Guo et al. (2010) proposed the adaptive pairwise fusion penalty (APFP) which can

effectively exclude more non-informative variables compared to L1 and L∞ methods. At the

same time, it also provides information about the relative informativeness of each variable

in terms of the degree of separation of a specific pair of clusters in each dimension.

The Lasso-type penalties were shown to be biased in identifying important variables

unless a strong and non-trivial condition is satisfied (Zou, 2006; Zhao and Yu, 2006). Thus

it often produces an overfitted model with some small non-zero parameter estimates which

are meaningless. Song and Liang (2015) proposed the Reciprocal Lasso penalty function for

linear regression models that puts large penalties on small non-zero parameter values and

provides consistent results in variable identification and parameter estimation. Inspired from

these, we develop the PAirwise Reciprocal fuSE (PARSE) penalty, which aims to consistently

find the pairwise informative variables for clustering. The theory of clustering methods such

as consistency and optimality has not been fully studied yet. Jin et al. (2015) derived the

statistical and computational bounds for clustering and the precise regions of possibility and

impossibility of clustering or variable selection, i.e., phase transition using their proposed

influential features PCA (IF-PCA) method. Azizyan et al. (2013) derived the minimax

bounds for clustering loss which is defined by comparing the clustering to the Bayes optimal

classification given that there exist two clusters. Verzelen and Arias-Castro (2014) showed
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the minimax rate for detection of clustering as well as important variables under the mixture

model of two Gaussian distributions.

This chapter is organized as follows. In Section 3.2, we briefly review the model-based

clustering, some popular regularization methods and propose the model with PARSE penalty.

Then we show its consistency as well as optimality in identifying globally and pairwise in-

formative variables under certain reasonable assumptions in Section 3.3. In Section 3.2.1,

we provide the estimation procedure using a backward selection algorithm for estimating

the cluster means embedded in the EM algorithm. Section 3.5 provides simulations com-

paring PARSE to two popular regularization methods under four data settings. We further

demonstrate the usefulness of our method in Section 3.6 on microarray gene expression data

to identify important genes for asthma disease. The last section discusses several possible

extensions of our method. Proofs of the theoretical results and additional details of the data

analysis are provided in Chapter 4 and Appendix A.1.

3.2 Methodology

In this chapter, we assume that there areK clusters and the kth cluster follows a location-

scale distribution Fk with mean µk and scale parameter Σk. Then, let y be p-dimensional

data from one of the location-scale distributions {F1, . . . , Fk}. Let z = (z1, · · · , zK)′ be

a binary vector which indicates which cluster y is distributed from. If y comes from the

kth cluster, then zk = 1, and zk′ = 0 for any k′ 6= k. Furthermore, we assume that

the proportion of the kth cluster in the population is πk, which implies that z follows a

multinomial distribution with probability vector (π1, · · · , πK)′ and one trial. Since here

we focus on mean effects on cluster separations and Bickel and Levina (2004) have shown

that a diagonal covariance may produce better estimation with smaller risk than a non-

diagonal covariance in the context of classification, we assume a common diagonal variance
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Σ = diag{σ2
1, · · · , σ2

p} for each cluster. Then we consider the following clustering model,

y|{z : zk = 1} ∼ Fk(µk,Σ), (3.1)

z ∼ Multinomial (1, (π1, · · · , πK)′),

where µ1, · · · ,µK ,Σ, π1, · · · , πK are unknown parameters, z is a latent variable. As is

common practice in model-based clustering, we assume that F1, · · · , FK are p-dimensional

normal distributions. Since clustering is an unsupervised learning, the number of clusters

(K) is unknown. Generally speaking, we first use a pre-defined K and estimate the model,

then use a criterion to select an optimal K (see Section 3.2.1 and Section 3.4.1).

The parameters µk,Σ and πk in (3.1) are estimated by maximizing the log-likelihood,

argmax
πk,µk,Σ

{

log

{

n
∏

i=1

K
∏

k=1

(πkfk(yi|µk,Σ))zik

}}

, (3.2)

where n is the sample size, zi is a K-dimensional binary vector with zik = 1 and zik′ = 0

for any k′ 6= k, if yi is distributed from the kth cluster; fk is the density of the kth normal

distribution with mean µk and variance Σ. From now on, let U = (µ1, · · · ,µK)
′ be a K by

p matrix of cluster means, where µkj is the mean of the jth variable in the kth cluster.

As we mentioned in Section 3.1, the L1 type penalties may not be consistent under

trivial conditions and tends to overfit the model under the regression framework especially

when p is much greater than n. This is because the penalties for small parameters are

nearly zero, which results in nonzero but small parameter estimates which are still treated

as informative variables and remain in the model. Moreover, non-informative variables may

cover the information we are interested in, which leads to an inaccurate estimation. Song

and Liang (2015) proposed the reciprocal lasso (rLasso) penalty which puts large penalties

on small values and leads to much smaller but not overly sparse model.
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To improve estimation in model-based clustering and identify the pairwise informative

variables, we propose the PAirwise Reciprocal fuSE (PARSE) penalty motivated by both

the work of Guo et al. (2010) and Song and Liang (2015). The PARSE penalty gives large

penalties for very small differences between cluster means as below.

Pλn
(U) = λn

p
∑

j=1

∑

k<k′

1

|µkj − µk′j|
I(|µkj − µk′j| 6= 0) (3.3)

The parameters U, πk,Σ are estimated by maximizing the log-likelihood with the penalty

function,

argmax
U,πk,Σ

{

n
∑

i=1

K
∑

k=1

zik log (πkfk(yi|µk,Σ))− Pλn
(U)

}

(3.4)

The likelihood in (3.2) is the joint distribution of y and z in model (3.1). The marginal

density of y is the same as the likelihood of finite mixture models in Pan and Shen (2007)

and Guo et al. (2010), which is,

f(y) =
K
∑

k=1

πkfk(y|µk,Σ).

3.2.1 Estimation of Gaussian Parameters

To estimate the unknown parameters in the clustering model (3.1) given a fixed number

(K) of clusters and a fixed tuning parameter (λn), we first let {z1, · · · , zn} in (3.4) be the

incomplete data and apply the EM algorithm to estimate U, πk,Σ. Then the clustering

labels zi, i ∈ {1, · · · , n} are estimated based on the estimates Û, π̂k, Σ̂. Given the complete

data w = (y, z), maximizing the log-likelihood in (3.4) is equivalent to,

argmax
U,πk,Σ

Lλn
(U, πk,Σ|w) = argmax

U,πk,Σ

{

n
∑

i=1

K
∑

k=1

zik log (πkfk(yi|µk,Σ))− Pλn
(U)

}

.
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The EM algorithm at the (t+ 1)th iteration is as follows.

• In the E-step, we compute the Q-function which is defined as the expectation of the

log-likelihood of wi given the observed data yi and parameter estimates from the tth

step.

Q(πk,U,Σ|π̂(t)
k , Û(t), Σ̂

(t)
) =E{logL(πk,U,Σ|w)|y, π̂(t)

k , Û(t), Σ̂
(t)}

=
n
∑

i=1

K
∑

k=1

[

E
(

zik|y, π̂(t)
k , Û(t), Σ̂

(t)
)

× {πk + log fk(yi|µk,Σ)}
]

− Pλn
(U) (3.5)

Assuming that the data yi, i = 1, · · · , n are independent and zi, i = 1, · · · , n are inde-

pendently and identically distributed from a multinomial distribution with probability

vector (π1, · · · , πK)′ and one trial, from the model (3.1), the density of the complete

data wi is given by

f (wi|πk,U,Σ) =
K
∏

k=1

{fk(yi|πk,µk,Σ)πk}zik .

Then, the marginal density of yi is

f(yi|πk,U,Σ) =
∑

zi

f (wi|πk,U,Σ) =
K
∑

k=1

fk(yi|µk,Σ)πk,

where fk(·|µk,Σ) is the densify function of Np(µk,Σ). This implies that the conditional

density of zi given yi is

f(zi|yi, πk,U,Σ) =
K
∏

k=1

(fk(yi|µk,Σ)πk)
zik

∑K
j=1 fj(yi|µj,Σ)πj

.
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Thus given yi and parameter estimates π̂
(t)
k , Û(t), Σ̂

(t)
from the tth step, zi is distributed

from the following multinomial distribution,

zi|yi, π̂
(t)
k , Û(t), Σ̂

(t) ∼ Multinomial

{

1,
(

α̂
(t+1)
i1 , · · · , α̂(t+1)

iK

)′
}

,

where,

α̂
(t+1)
ik = E

(

zik|y, π̂(t)
k , Û(t), Σ̂

(t)
)

=
π̂
(t)
k fk(yi|µ̂(t)

k , Σ̂
(t)
)

∑K
j=1 π̂

(t)
j fj(yi|µ̂(t)

j , Σ̂
(t)
)
. (3.6)

Therefore, the Q-function (3.5) is given by

Q(πk,U,Σ|π̂(t)
k , Û(t), Σ̂

(t)
) =

n
∑

i=1

K
∑

k=1

α̂
(t+1)
ik {log fk (yi|µk,Σ) + πk} − Pλn

(U).

• In the M-step, we maximize the Q-function with respect to U,Σ, π. Since there is

no closed form for parameter estimates, we can conditionally estimate each parameter

given the other parameters equaling to the most recent estimates, that is,

π̂
(t+1)
k =

1

n

n
∑

i=1

α̂
(t+1)
ik , k = 1, . . . , K.

[σ̂2
j ]

(t+1) =
1

n

n
∑

i=1

K
∑

k=1

α̂
(t+1)
ik (yij − µ̂

(t)
ij )

2, j = 1, . . . , p.

Then given π̂
(t+1)
k , [σ̂2

j ]
(t+1), Û(t+1) maximizes

l(U) = Q
(

U,Σ(t+1), π(t+1)|U(t),Σ(t), π(t)
)

. (3.7)

Because the objective function (3.7) is nonconvex and non-differentiable at origin, we

estimate U(t+1) by checking subsets of the parameter space of U. Since this procedure

is similar to the backward variable selection under regression framework, we name it
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as a “backward selection algorithm”. Given U belongs to a subset M , let ŨM be the

maximizer of l(U|U ∈ M), where M = {U : AU = 0} is a set of U that satisfies

a given constraint. For example, A = ((1,−1, 0, · · · , 0)′, (1, 0,−1, 0, · · · , 0)′)′ means

µ1 = µ2 = µ3 which implies that there are K−2 unknown parameters. The algorithm

searches subspaces in a decreasing pattern, that is, the subspace in the current step is

a subset of the parameter space including the maximizer in the previous step. Thus,

the algorithm starts with the full model which contains K unknown cluster means.

Step 0. Estimate ŨM0 given the full modelM0 (A = 0), that is, there are K unknown

parameters need to be estimated. Let l0 = l(ŨM0).

Step 1. Consider subspaces whose elements contain K − 1 parameters, that is, there

exists exactly one pair of µk that are the same. There are K choose 2 sub-

spaces in this step. Let them be M(1,i), where i = 1, · · · ,
(

K
2

)

.

(a) Estimate ŨM(1,i) for each subspace M(1,i). Let l
(max)
1 = maxi{l(ŨM(1,i))}

be the overall maximum objective value in these subspaces and M
(max)
1

be the corresponding subspace.

(b) If l
(max)
1 < l0 then the algorithm stops. Furthermore, ŨM0 from the full

model is the maximizer of (3.7), i.e., Û(t+1) = ŨM0 . Otherwise, the

algorithm continues.

Step b. Starting with b = 2, we check subspaces of M
(max)
b−1 whose elements contain

K − b unknown parameters, i.e., M(b,i) ⊂M
(max)
b−1 where i = 1, · · · ,

(

K−b+1
2

)

.

(a) Estimate ŨM(b,i) for each subspace. Let l
(max)
b = maxi{l(ŨM(b,i))} be the

overall maximum objective value in these subspaces and M
(max)
b be the

corresponding subspace.

(b) If l
(max)
b < l

(max)
b−1 then the algorithm stops and Û(t+1) = ŨM

(max)
b−1 . Other-

wise, the algorithm continues.
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Repeat step b until b = K − 1. If the algorithm continues till b = K − 1, then the

maximizer with the constraint that all cluster means are equal is Û(t+1).

• Repeat the E-step and the M-step until the parameter estimates satisfy

K
∑

k=1

∥

∥

∥µ
(t+1)
k − µ

(t)
k

∥

∥

∥

1
∥

∥

∥µ
(t)
k

∥

∥

∥

1
+ ǫ

+

∑p
j=1

∣

∣

∣

∣

(

σ
(t+1)
j

)2

−
(

σ
(t)
j

)2
∣

∣

∣

∣

∑p
j=1

∣

∣

∣

∣

(

σ
(t)
j

)2
∣

∣

∣

∣

+ ǫ

+
K
∑

k=1

∣

∣

∣
π
(t+1)
k − π

(t)
k

∣

∣

∣
< ε0, (3.8)

where ǫ is a positive small number which avoids the case that the ratio goes to infinity

when the denominator is zero and ε0 is a positive small number for stopping criterion.

• The last step is to predict clustering labels zi as below.

ẑi = em, m = argmax
k

α̂
(t+1)
ik ,

where α̂
(t+1)
ik is (3.6) in the last EM-step, which can be interpreted as the posterior

probability of yi belonging to Ck; em is a K-dimensional unit vector which equals to 1

for the mth element and 0 everywhere else.

The estimation of µk is hard and time consuming using regular optimization methods in-

cluding some global optimization methods such as the generalized simulate annealing. Using

above algorithm, we could find the maximizer within reasonable time. Using a personal

computer with a 2.7GHz Intel Core i5 processor and 8 GB memory, estimating parameters

of (3.4) for one dataset which contains well separated clusters given a specific K and λn

takes about 24 seconds to reach the stopping criterion (3.8) for EM-algorithm. Notice that

the computation time will be much longer if clusters are highly overlapped with each other.
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3.3 Theoretical Results

Theorem 2 shows the oracle property that if the clustering labels zik ∈ {0, 1} and variance

Σ is known, then variable selection using PARSE is consistent. Since zik and Σ are unknown

in practice, we replace zik in the model (3.4) by a surrogate αik ∈ [0, 1] which is essentially

the expectation of zik given other parameters and the observed data, and replace Σ by its

consistent estimator. Theorem 3 shows that under certain conditions of αik, PARSE can

consistently select the true model. Cai et al. (2010) showed that the diagonal covariance

matrix can be consistently estimated. Thus, without loss of generality, in Theorem 3 we

assume σ2
j = 1, that is, Σ̂

p−→ Ip. If σ
2
j 6= 1, we could scale the data by yij/σj. Furthermore,

Theorem 4 states that PARSE is optimal for model selection within a specific parameter

space of cluster means. Given zik and Σ are known, estimating U in (3.4) is independent of

πk and is equivalent to minimizing the following objective function with respect to U,

Lλn
(U) =

p
∑

j=1

K
∑

k=1

n
∑

i=1

zik
2σ2

j

(yij − µkj)
2 + λn

p
∑

j=1

∑

k<k′

1

|µkj − µk′j|
I(|µkj − µk′j| 6= 0).

Throughout this chapter, let Ck = {yi : yi ∈ kth cluster, i = 1, · · · , n} be the kth cluster,

ξ(U) = {(k, k′, j) : µkj 6= µk′j, k, k
′ ∈ {1, · · · , K}, j = 1, · · · , p} be the set of triplets of cluster

labels and dimensions which have nonzero pairwise mean difference. In the other words,

ξ(U) represents a model which specifies pairwise informative and non-informative variables.

Denote S(U) = |ξ(U)| as the cardinality of ξ(U) which specifies the size of the model in

terms of pairwise mean differences. Let umin = mink,k′,j{|µkj − µk′j|I(|µkj − µk′j| 6= 0)} and

umax = maxk,k′,j{|µkj − µk′j|I(|µkj − µk′j| 6= 0)} be the minimum and maximum of nonzero

pairwise mean differences and U∗ be the true cluster means. Thus, ξ(U∗) is the true model.
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Theorem 2. Assuming a fixed number of clusters K, tuning parameter λn, known zik =

I(yi ∈ Ck) and known variance Σ = Ip, the estimates of U using PARSE minimize

Lλn
(U) =

p
∑

j=1

K
∑

k=1

n
∑

i=1

zik
2
(yij − µkj)

2 + λn

p
∑

j=1

∑

k<k′

1

|µkj − µk′j|
I(|µkj − µk′j| 6= 0). (3.9)

With the following assumptions, we can show that supU∗∈Θ P{ξ(Û) 6= ξ(U∗)} → 0 as n→ ∞,

where Θ = {U : S(U) = o(n/ log(p)), umin ≥ ǫ0} is a parameter space of U and ǫ0 =

(
√

2/maxk{πk}+ o(1))
√

log(p)/n.

(A1) Assume that K = O(1) is a constant, log(p) = O(nα), where 0 < α < 1, λn =

O(log(p)(log(p)/n)γ) with 0 < γ < 1/2, nk = O(n), for any k = 1, · · · , K, where

nk = |Ck| and S(U∗) = o(n/ log(p)).

(A2) There exists bλn
> 0 and aλn

> 0 such that λn/bλn
≤ aλn

, where aλn
= O(log(p)

(log(p)/n)γ−1/2).

(A3) For any ε1 ≥ 0,we assume that bλn
≤ u∗min −

√

4 log(S(U∗)/ε1)/n as n → ∞, where

u∗min is the minimum of nonzero pairwise mean differences in U∗.

Theorem 3. Assuming that Σ = Ip can be estimated consistently and zik in (3.9) is replaced

by a surrogate αik ∈ [0, 1] which is essentially the expectation of zik given other parameters

and the observed data, then U is estimated by minimizing

Lλn
(U) =

p
∑

j=1

K
∑

k=1

n
∑

i=1

αik

2
(yij − µkj)

2 + λn

p
∑

j=1

∑

k<k′

1

|µkj − µk′j|
I (|µkj − µk′j| 6= 0) . (3.10)

Given assumptions (A1) and (A2) and the following assumptions which are similar to as-

sumptions in Theorem 2, model (3.1) with the PARSE penalty can consistently select the

true model, that is, as n→ ∞,

sup
U∗∈Θ

P{ξ(Û) 6= ξ(U∗)} → 0.
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(B1) Assumptions for αik, for any k ∈ {1, · · · , K}.

(B1.a) there exists at least one αik 6= 0, i = 1, · · · , n, i.e., ∑k
i=1 αik 6= 0.

(B1.b)
∑n

i=1 αik = O(n).

(B1.c) the following conditions hold,

αik =











1 + o(rn/u
∗
max), if yi ∈ Ck

o(rn/u
∗
max), otherwise

where rn = (log(p)/n)3/2/u∗max and u∗max is the maximum of nonzero pairwise

mean differences in U∗.

(B2) For any ε1 > 0, we assume that bλn
≤ u∗min + ε0 −

√

4 log(S(U∗)/ε1)/n, where u
∗
min is

the minimum of nonzero pairwise mean differences in U∗, ε0 = o(rnu
∗
max).

Theorem 4. Assuming that cluster means U should satisfy umin ≥ ǫ0 and S(U) = s, where

ǫ0 = (
√

2/maxk{πk}+ o(1))
√

log(p)/n and s = o(n/ log(p)) is a pre-specified sparsity level,

let Θ = {U : S(U) = s, umin ≥ ǫ0} be a parameter space containing all possible values of U

that satisfy the above two assumptions. Then we have the lower bound of the maximum risk

of variable selection is

R∗ = inf
Ûn

sup
U∈Θ

EU

[

EÛn|U

{

I(ξ(Ûn) 6= ξ(U))
}]

≥ η, (3.11)

where 0 < η = o(1).

Remark 1. (1) Assumption (A1) defines the order of the dimension p, the tuning parameter

λn and the sparsity S(U∗). The order of p is log(p) = O(nα) with 0 < α < 1 and the

order of λn is O(log(p)(log(p)/n)γ) with 0 < γ < 1/2, which means that if α < γ/(γ+1)

that is p is small, λn will go to 0 as n goes to ∞, otherwise λn goes to ∞.
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(2) When the cluster mean difference is large, the penalty is small and vice versa. As-

sumption (A2) specifies the upper bound which bounds the penalty term by a large

number aλn
. If the difference is zero, the penalty will be zero because of the indicator

function I(|µkj−µk′j| 6= 0). Moreover, From Assumption (A1) and (A2), we know that

bλn
= O(

√

log(p)/n).

(3) Assumption (B1.a) ensures that there is no empty cluster in the data. Assumption

(B1.b) means that the cluster size has the same order as n. Therefore, there is no

extremely large or small cluster. Assumption (B1.c) assumes that αik is a consistent

estimator of zik which is the indicator of yi being distributed from the kth cluster. The

order of the consistency depends on u∗max, the maximum of cluster mean differences

for true means U∗. In fact, rn = o(u∗min/(|t|u∗max)) = o((log(p)/n)3/2/u∗max). As u∗min

decreases, rn decreases which means we need more accurate estimates for αik. As u
∗
max

increases, rn decreases because for well-separated clusters, less accurate estimate for

αik, i.e., higher probability of wrong clustering leads to larger value in the loss function.

As |t| increases, the true model is less sparse so we need more accurate αik to identify

the true informative variables, that is, smaller rn.

(4) Assumption (B2) indicates the lower bound of the minimal cluster mean differences is

bλn
= O(

√

log(p)/n), which matches u∗min ≥ ǫ0 = (
√

2/maxk{πk}+ o(1))
√

log(p)/n =

O(
√

log(p)/n) in Theorem 4.

(5) In Section 3.2.1, we use the EM algorithm to estimate parameters. We can find that

the surrogate αik matches the posterior probability of belonging to the kth cluster.

(6) Theorem 3 and Theorem 4 implies that PARSE is the optimal method for variable

selection in the parameter space Θ.
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3.4 Practical Implementation

3.4.1 Choice of the Number of Clusters and Tuning Parameters

Based on Fan and Tang (2013), we use the generalized information criterion (GIC) to

select the number of clusters and the tuning parameters as below.

GIC(λn,K) =− 2Lλn
(Û, Σ̂, π̂, ẑi|y) + log{log(n)} log(K − 1 + p+ c

Û
)(K − 1 + p+ c

Û
) (3.12)

where cÛ =
∑p

j=1 cµ̂·j
and cµ̂

·j
is the number of different nonzero values on the jth dimension,

which is a integer in [0, K]; Lλn
(Û, Σ̂, π̂, ẑi|y) is the log-likelihood in (3.2) with estimates

Û, Σ̂, π̂ and predicted clustering labels ẑi using PARSE.

Other criteria can be used for choosing K and λn, such as BIC proposed by (Guo et al.,

2010; Xu et al., 2012; Wang et al., 2007) as below.

BIC(λn, K) =− 2Lλn
(Û, Σ̂, π̂, ẑi|y) + log(n)(K − 1 + p+ cÛ). (3.13)

3.4.2 Guideline of Searching Tuning Parameter λn

This section follows the similar arguments as in Song and Liang (2015). The idea is to

find the range of potential tuning parameters λn for the model with PARSE penalty. Notice

that the null model is that all clusters have the same cluster means, i.e., all pairwise mean

differences are zero. Moreover, as λn → ∞, for any k, k′ ∈ {1, · · · , K} and j = 1, · · · , p,

|µkj − µk′j| → 0. Obviously, the largest estimated mean differences will be the last ones

(there may be multiple pairs with same mean difference) to be shrunk towards zero. So

the upper bound (λmax
n ) of λn to be checked is the smallest value that makes the largest

estimated mean differences be zero using PARSE.

Firstly, we consider the special case K = 2. Let the pair of means with the largest (non-

zero) difference to be µ1m and µ2m on themth dimension. Then, with known zik = I(yi ∈ Ck),

where Ck represents the kth cluster and σ2
m (variance of the mth variable), from the log-
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likelihood in (3.4), we have,

n
∑

i=1

2
∑

k=1

zik
2σ2

m

(µ̃km − yim)
2 + λmax

n

1

|µ̃1m − µ̃2m|
=

n
∑

i=1

(yim − ȳ·m)

2σ2
m

, (3.14)

where ȳ·m =
∑n

i=1 yim/n is the sample mean of the mth variable, µ̃1m and µ̃2m are estimates

with tuning parameter λmax
n .

Since µ̃1m and µ̃2m in (3.14) need to maximize the penalized likelihood, that is, maximize

the left-hand side of (3.14) given zik, σ
2
m are known. Without loss of generality, we assume

µ̃1m > µ̃2m, then we have

∂

∂µ̃1m

=
∑

i:yi∈C1

µ̃1m − yim
σ2
m

− λmax
n

sgn(µ̃1m − µ̃2m)

|µ̃1m − µ̃2m|2
,

∂

∂µ̃2m

=
∑

i:yi∈C2

µ̃2m − yim
σ2
m

− λmax
n

sgn(µ̃2m − µ̃1m)

|µ̃1m − µ̃2m|2
.

Solving these equations based on µ̃1m, µ̃2m and λmax
n , we have,

λmax
n =

16n2

27n2
1n

2
2σ

2
m

(

∑

i:yi∈C1

yim − n1ȳ·m

)3

,

where n1 = |C1|, n2 = |C2| and n = n1 + n2 is the sample size.

In reality we have no information about the true clustering labels. To approximately find

C1 and C2, we could let C1, C2 be the clustering results from the unpenalized model-based

clustering. Then, based on the estimated C1, C2, compute the mean difference between these

two clusters and find the variable (y·m) with largest mean difference.

Secondly, for general K > 2, assuming |µ̃1m − µ̃2m| is the largest and µ̃1m > µ̃2m, let

A1 = {k : |µ̃km − µ̃1m| ≤ |µ̃km − µ̃2m|} and A2 = {k′ : |µ̃k′m − µ̃1m| ≥ |µ̃k′m − µ̃2m|}. When

λn = λmax
n , we will have µ̃km = µ̃1m for any k ∈ A1 and µ̃k′m = µ̃2m for any k′ ∈ A2. It is

clear that k = 1 ∈ A1, k
′ = 2 ∈ A2 and |A1|+ |A2| = K. Thus, there will be |A1| · |A2| pairs

of differences having the same value as |µ̃1m − µ̃2m| when λn → λmax
n . Thus, similar to the
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special case K = 2, we have

λmax
n =

16n2

27|A1| · |A2|M2
1M

2
2σ

2
m

(

∑

i:yi∈Ck,k∈A1

yim − ȳ·m

)3

,

where M1 =
∑

k∈A1
|Ck| and M1 =

∑

k′∈A2
|C ′

k|. Section 4.4 provides computational details.

3.5 Simulations

In this section, we investigate the performance of the proposed method (PARSE) for iden-

tifying informative variables under the framework of model-based clustering. We compare

PARSE to the adaptive L1 penalty (Pan and Shen, 2007) and the adaptive pairwise fusion

penalty (Guo et al., 2010). Four models with different numbers of dimensions, sample sizes,

distributions and covariance structures are used to generate data. Each dataset contains

four clusters. The cluster mean values, variances and statistics for comparison follow the

simulation set-up used in Guo et al. (2010). We consider multiple sample sizes and different

signal-noise-ratio (SNR). For each model, we considered three settings:

1. Balanced cluster sizes with high SNR: Each cluster has 20 observations, i.e. total

sample size is n = 80, and the same covariance Σ = Ip.

2. Balanced cluster sizes with low SNR: Each cluster size has 20 observations and the

same covariance Σ = 4Ip.

3. Unbalanced cluster sizes with high SNR: There are 20 observations for each of the first

two clusters and 200 observations for the others. So the total sample size is n = 440.

Each cluster has the same covariance Σ = Ip.

The four models are as follows:

Model 1 (Independent Normal with lower dimension) Each cluster is generated from

a Normal distribution with dimension p = 220. Four cluster means for the first
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10 variables are 2.5, 0, 0 and −2.5; cluster means for the second 10 variables are

1.5, 1.5, −1.5 and −1.5; cluster means for all the other variables are 0. Hence,

the first 10 variables are informative to separate the first and fourth clusters; the

second 10 variables are informative to separate the first two clusters and the other

two clusters; all the other variables are non-informative to separate any pair of

clusters. All clusters have the same diagonal covariance matrix.

Model 2 (Normal with sparse covariance) Use the same cluster mean setting as in

Model 1. The correlation matrix is assumed to be sparse. For the off-diagonal

elements, there are 10 pairs of variables that have nonzero correlations, five of

them equal to 0.2 and others equal to -0.5. Here, we randomly select 10 pairs of

variables which ensure that the covariance matrix is positive definite.

Model 3 (Independent Normal with higher dimension) Compared to Model 1, this

model generate data with 550 dimensions and slightly higher signal in the sense

that cluster means for the first 25 variables are 2.5, 0, 0 and −2.5; and cluster

means for the second 25 variables are 1.5, 1.5, −1.5 and −1.5; all the other

variables are non-informative. All clusters have the same diagonal correlation

matrix.

Model 4 (Independent Normal and Uniform) Instead of sampling from a multivari-

ate Normal distribution with p = 220 as in Model 1, half of the variables are

generated independently from Normal distribution with 10 of them having cluster

means 2.5, 0, 0 and −2.5 and the other 100 variables with zero means which are

non-informative. The other half of the variables are generated independently from

Uniform distribution with 10 of them having cluster means 1.5, 1.5, −1.5 and −1.5

and the other 100 variables with zero means. To generate Uniform distributions

with a given mean values we can first find the minimal and maximal value based

on mean and variance. For example, Given that the mean and variance are 1.5
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and 1, the minimum and maximum of the Uniform distribution are (3− 2
√
3)/2

and (3 + 2
√
3)/2.

To evaluate the performance of methods for variable selection, we consider two sets of

measurements based on whether a variable is identified as globally informative or pairwise

informative. A variable is identified as globally informative for distinguishing clusters if

there exists at least one pair of cluster means that are different. The pairwise informative

is defined as informative to distinguish a pair of clusters. The first set of measurements

(Table 3.1) is based on the global informativeness, including percentages of informative

variables that are selected as informative (Info%) which is defined as the proportion of true

informative variables that are estimated as informative and percentages of non-informative

variables that are selected as informative (Noninfo%) which is defined as the proportion of

true non-informative variables that are estimated as globally informative. The second set of

measurements (Table 3.2) focuses on the pairwise informativeness of the globally informative

variables. For example, variables 1 – 10 are not informative for separating the second and

the third clusters, so we investigate the proportion of these variables that are estimated to

be informative for separating cluster 2 and cluster 3 using each method.

Since the clustering labels are known in simulation studies, the mis-clustering error (Ta-

ble 3.1) defined by Hamming distance is also evaluated for each method. Let H be a n by

n binary, upper triangle adjacency matrix of clustering labels. If yi and yj are in the same

cluster, then Hij = 1; otherwise, Hij = 0. Then the mis-clustering error is the Hamming

distance between two upper-triangle adjacency matrices as below.

2
∑

i<j |Ĥij −H∗
ij|

n(n− 1)
,

where Ĥ and H∗ are adjacency matrices of the estimated clustering labels and the true

clustering labels respectively. For real applications in cluster analysis, we cannot evaluate

this statistic since the true clustering labels are unknown.
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The EM-algorithm was used for estimation. All estimates converge within 500 iterations.

Since the EM algorithm guarantees local optimization and depends on a good starting point,

we use the clustering results from K-means clustering with 100 random starts as the starting

values. For computational stability, we set the lower bound of cluster mean differences to be

10−5, that is, if the difference between µkj and µk′j is less than 10−5, then the jth variable

is non-informative for distinguishing cluster k and k′. The optimal number of clusters and

tuning parameters are selected based on GIC described in Section 3.4.1.

In general, the method with a low Noninfo% while have similar or higher Info% is pre-

ferred. From Table 3.1, all the three methods perform well for data with higher SNR. For

unbalanced data, three methods have similar or slightly better results compared to balanced

data with high SNR. In some cases, unbalanced data have better results than balanced data

because the sample size for unbalanced data is 440 which is much greater than 80, the sam-

ple size of balanced data. Additionally, because Model 3 has 30 more globally informative

variables than Model 1, all three methods perform better for Model 3 which has 550 dimen-

sions than Model 1 with 220 dimensions, especially for mis-clustering errors. Apparently,

all methods perform when we only increase the dimension size while remaining the same

level of information. Thus, simulations with Model 3 show that if we slightly increase the

signal while increasing the dimensions, PARSE can still perform well. Model 4 is a mixed

data with variables generated from Normal distribution and Uniform distribution which is

bounded. Both Table 3.1 and Table 3.2 indicate that PARSE works well for data generated

from Model 4 which implies that without normality assumption, PARSE can also identifying

informative variables for a bounded distribution.

It also can be seen that three methods have similar Info%, which can be interpreted

as having similar power for identifying the informative variables. However, PARSE has

the smallest Noninfo% for every simulation. APL1 performs worst for filtering out non-

informative variables. For data with high SNR, all the methods have similar mis-clustering

errors. However, for data with low SNR, the mis-clustering error using PARSE is almost half
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of using APL1 or APFP. The main reason is that excluding more non-informative variables

reduces noises in the data for clustering.

Although in Table 3.1, the differences between PARSE and APFP are relatively small,

PARSE performs better as expected. Furthermore, as we mentioned before, a globally

informative variable is not necessary to be informative for separating every pair of clusters.

If we focus on a specific pair of clusters, the performance of selecting pairwise informative

variables is needed. Model 1, 2 and 4 has 220 variables while only the first 20 variables

are globally informative. Model 3 has 550 dimensions with only the first 50 variables being

globally informative. In each model, the first half of the globally informative variables

are non-informative for separating cluster 2 and 3, the second half are non-informative for

separating cluster 1 versus 2, and cluster 3 versus 4. Therefore, Table 3.2 shows the Noninfo%

for each pair of clusters. From the results, PARSE performs much better than the other two

methods in all the simulation settings. There are 36 comparisons of Noninfo% in total,

while only 3 out of them are greater than 5% by using PARSE. As expected, APL1 cannot

identify informative or non-informative variables for each pair of clusters, since the penalty

function only penalizes individual mean values instead of pairwise mean differences. APFP

performs well for data with high SNR, but for all the data with low SNR, the average

Noninfo% is around 10% which is much greater than using PARSE. Therefore, both Table 3.1

and Table 3.2 depict that PARSE performs well in identifying both globally and pairwise

informative variables. Moreover, as a by-product, PARSE also returns smaller mis-clustering

error, especially for data with low SNR.

3.6 Genetic Mechanisms of Asthma

Asthma is a long-term chronic inflammatory disease involving narrow and swollen air-

ways in the lungs and causing airways to produce extra mucus which triggers coughing and

dyspnea (shortness of breath). There approximately 235 million people worldwide who suf-

fer from asthma and 300,000 asthma-related deaths per year (World Health Organization,

58



Table 3.1: Comparison of clustering and variable identification under each of the four model settings,
Model 1 (Independent Normal with lower dimension), Model 2 (Normal with sparse covariance), Model 3
(Independent Normal with higher dimension), and Model 4 (Independent Normal and Uniform). Info%
is the proportion of true informative variables which is estimated as globally informative, so larger values
are better. Non-info% is the proportion of true non-informative variables which is estimated as globally
informative, so smaller values are better.

Model Data Method Optimal K Info% Non-info%
Mis-clustering

error %

Balanced & High SNR
APL1 4.0(0.0) 100.0(0.00) 2.730(1.35) 0.000(0.00)
APFP 4.0(0.0) 100.0(0.00) 0.180(0.93) 0.000(0.00)
PARSE 4.0(0.0) 100.0(0.00) 0.000(0.00) 0.012(0.12)

Model 1 Balanced & Low SNR
APL1 3.4(0.6) 98.40(3.62) 4.880(1.91) 18.24(5.53)
APFP 3.4(0.5) 99.45(2.12) 0.600(0.69) 14.95(7.94)
PARSE 3.7(0.4) 99.10(2.50) 0.390(0.53) 8.211(6.26)

Unbalanced & High SNR
APL1 4.0(0.0) 100.0(0.00) 1.095(0.92) 0.021(0.09)
APFP 4.0(0.0) 100.0(0.00) 0.150(0.39) 0.021(0.09)
PARSE 4.0(0.0) 100.0(0.00) 0.040(0.14) 0.017(0.08)

Balanced & High SNR
APL1 4.0(0.0) 100.0(0.00) 1.230(0.95) 0.012(0.12)
APFP 4.0(0.0) 100.0(0.00) 0.100(0.25) 0.000(0.00)
PARSE 4.0(0.0) 100.0(0.00) 0.040(0.15) 0.012(0.12)

Model 2 Balanced & Low SNR
APL1 3.3(1.5) 99.40(3.28) 2.135(1.15) 18.81(6.15)
APFP 3.4(0.6) 99.05(2.43) 0.530(0.55) 17.25(7.69)
PARSE 3.8(0.5) 99.25(2.29) 0.375(0.44) 9.416(6.17)

Unbalanced & High SNR
APL1 4.0(0.0) 100.0(0.00) 2.300(1.26) 0.009(0.06)
APFP 4.0(0.0) 100.0(0.00) 0.070(0.19) 0.091(0.79)
PARSE 4.0(0.0) 100.0(0.00) 0.000(0.00) 0.004(0.04)

Balanced & High SNR
APL1 4.0(0.0) 100.0(0.00) 1.144(0.60) 0.000(0.00)
APFP 4.0(0.0) 100.0(0.00) 0.092(0.19) 0.000(0.00)
PARSE 4.0(0.0) 100.0(0.00) 0.026(0.10) 0.000(0.00)

Model 3 Balanced & Low SNR
APL1 3.9(0.3) 96.96(7.25) 2.480(1.37) 1.987(4.01)
APFP 3.9(0.6) 99.48(1.16) 0.360(0.44) 3.901(5.92)
PARSE 4.0(0.0) 99.36(1.39) 0.184(0.24) 0.271(0.57)

Unbalanced & High SNR
APL1 4.0(0.0) 100.0(0.00) 2.118(0.75) 0.000(0.00)
APFP 4.0(0.0) 100.0(0.00) 0.108(0.24) 0.000(0.00)
PARSE 4.0(0.0) 100.0(0.00) 0.006(0.03) 0.000(0.00)

Balanced & High SNR
APL1 4.0(0.0) 100.0(0.00) 1.530(1.16) 0.000(0.00)
APFP 4.0(0.0) 100.0(0.00) 0.095(0.25) 0.000(0.00)
PARSE 4.0(0.0) 100.0(0.00) 0.070(0.19) 0.000(0.00)

Model 4 Balanced & Low SNR
APL1 3.3(0.5) 99.15(3.10) 2.505(1.61) 17.81(5.45)
APFP 3.6(0.6) 98.90(3.73) 0.455(0.60) 16.40(9.22)
PARSE 3.8(0.4) 99.10(2.50) 0.350(0.42) 7.969(5.80)

Unbalanced & High SNR
APL1 4.0(0.0) 100.0(0.00) 2.365(1.33) 0.010(0.07)
APFP 4.0(0.0) 100.0(0.00) 0.075(0.18) 0.010(0.07)
PARSE 4.0(0.0) 100.0(0.00) 0.005(0.05) 0.010(0.07)
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Table 3.2: Under each model setting, for each subset of the globally informative variables and each pair of clusters, the numbers in the table
represent the proportions of true pairwise non-informative variables being estimated as pairwise informative. Smaller values in the table indicate
better variable identification. The results are only based on replicates which choose the number of clusters K = 4.

Cluster pairs Variable
APL1 % APFP % RF %

Variable
APL1 % APFP % RF %

Model 1 (Normal p=220) Model 2 (Normal & sparse Σ)

High SNR

C2 vs C3 1–10 2.30(4.89) 7.80(9.17) 0.40(1.97) 1–10 0.10(1.00) 8.20(9.47) 0.90(2.88)

C1 vs C2 11–20
100 (0.00) 4.00(7.91) 0.00(0.00)

11–20
100(0.00) 2.80(6.37) 0.60(2.39)

C3 vs C4 100 (0.00) 3.40(6.39) 0.20(1.41) 100(0.00) 2.40(5.34) 1.10(3.14)

Low SNR

C2 vs C3 1–10 4.29(5.35) 9.27(9.59) 5.54(11.6) 1–10 2.22(4.41) 12.8(10.8) 6.71(8.12)

C1 vs C2 11–20
80.0(11.5) 9.76(7.90) 4.32(8.61)

11–20
97.8(4.41) 14.7(10.2) 4.67(6.95)

C3 vs C4 74.3(9.76) 10.2(11.3) 4.19(12.4) 96.7(5.00) 16.3(11.6) 3.43(6.34)

Unbalanced

C2 vs C3 1–10 0.90(2.88) 4.90(7.98) 0.30(1.71) 1–10 100 (0.00) 6.87(8.41) 0.10(1.00)

C1 vs C2 11–20
100 (0.00) 5.60(7.70) 0.30(1.71)

11–20
100 (0.00) 7.17(9.15) 0.40(1.97)

C3 vs C4 100 (0.00) 4.60(7.03) 0.00(0.00) 100 (0.00) 4.65(7.18) 0.10(1.00)

Model 3 (Normal p=550) Model 4 (Normal & Uniform)

High SNR

C2 vs C3 1–25 0.60(1.44) 7.43(7.09) 0.72(1.54) 1–10 0.40(1.97) 9.00(13.4) 0.40(1.97)

C1 vs C2 26–50
100 (0.00) 2.91(4.38) 0.84(1.64)

11–20
100 (0.00) 3.90(7.51) 1.10(3.45)

C3 vs C4 100 (0.00) 2.83(4.40) 1.16(1.91) 100 (0.00) 3.60(6.12) 0.70(2.56)

Low SNR

C2 vs C3 1–25 1.26(1.96) 12.6(8.48) 2.44(2.89) 1–10 0.90(3.02) 15.7(15.2) 5.77(7.12)

C1 vs C2 26–50
97.1(5.12) 5.62(5.77) 2.04(2.70)

11–20
99.1(3.02) 7.71(9.10) 2.31(4.54)

C3 vs C4 97.1(5.12) 4.91(4.80) 2.20(2.44) 99.1(3.02) 10.0(10.6) 3.59(6.24)

Unbalanced

C2 vs C3 1–25 100 (0.00) 3.84(5.36) 0.00(0.00) 1–10 100 (0.00) 4.60(8.0) 0.10(1.00)

C1 vs C2 26–50
100 (0.00) 3.36(4.75) 0.44(1.49)

11–20
100 (0.00) 5.80(7.8) 0.40(1.97)

C3 vs C4 100 (0.00) 4.76(7.07) 0.00(0.00) 100 (0.00) 2.60(6.5) 0.10(1.00)
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2013). Asthma is thought to be caused by a complex combination of genetic and environ-

mental factors whose mechanism and regulatory pathways are not completely understood.

Identification of the key genes which control the disease is of keen interest to researchers.

We perform cluster analysis with the PARSE penalty on microarray gene expression

data from NCBI’s Gene Expression Omnibus database (Gene Expression Omnibus Series

accession number GSE43696). The data consist of 108 samples consisting of 20 healthy,

50 moderate asthma, and 38 severe asthma patients. As a structured vocabulary of terms,

the aim of the Gene Ontology (GO) system is to unify the representation of gene product

characteristics. GO defines “GO terms” which group gene sets with the same biological

functions (Ashburner et al., 2000). For clarification, we can think of each GO term as a

dataset consisting of a set of genes upon which we perform cluster analysis. At the time we

accessed the data, there were 11,494 GO terms consisting of 24,521 genes in the database,

which is after preliminary screening for gene-filtering using the approach in Gentleman et al.

(2006). The number of genes contained in each GO term ranges from 1 to 8069.

Currently, there is no accurate diagnostic test for asthma. The diagnosis of moderate

or severe asthma is based on a patient’s pattern of symptoms and responses after therapy.

Thus, it is important to identify the genes that are informative for causing and distinguishing

different asthma symptom levels. We focus on only the moderate and severe asthma patients.

We consider GO terms containing the IFN-γ (Interferon-γ) gene as it has been shown to be

one of the critical immune agents (Voraphani et al., 2014). Additionally, we only consider

the 16 GO terms with the number of genes between 50 and 500. In our data there are 1,941

unique genes in total, of which 370 genes are shared by at least two of the 16 GO terms and

93 genes are shared by at least 3 GO terms. One gene (Interferon-β-1, fibroblast) is shared

by 5 GO terms, one gene (Interleukin-6) is shared by 6 GO terms, and no genes are shared

by more than 6 GO terms except the IFN-γ which defines this class of GO terms.

For each GO term, we apply model-based clustering with the PARSE penalty (3.3). We

use GIC as described in Section 3.4.1 to select both the number of clusters K and the tuning
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parameter λn. Since the data are noisy, we focus on identifying the global informative genes.

A summary of the identified informative genes for each GO term is shown in Table 3.3.

Overall, about 50% of genes are identified as informative.

We found that 174 genes are informative in at least two GO terms. Among these genes,

24 genes are informative in 3 GO terms and 24 genes are informative in 4 GO terms. The

genes that are shared and informative in 4 GO terms belong to the Major Histocompat-

ibility Complex (MHC) Class I and three protein coding genes, promyelocytic leukemia,

β-2-Microglobulin and interferon induced transmembrane protein-1. Both of IFNB1 and IL6

were not selected as informative. IFN-γ was selected as informative in all the 16 GO terms

which indicates that it is an important gene for asthma. Therefore, there are 25 informative

genes shared by at least 4 GO terms which indicates that we could focus on these genes for

further investigation of the pathology of asthma.

Some pairs of GO terms share a large number of genes. For instance, GO:0060333

(IFN-γ mediated signaling pathway) which contains 130 genes is a subset of GO:0019221

(cytokine mediated signaling pathway) with 270 genes. Cluster analyses of both GO terms

show that the cluster assignments and identified informative genes are slightly different. In

GO term 0060333, there are 95 informative genes; eleven of these genes were not identified

as informative in GO term 0019221. In the cluster analysis results, GO:0060333 contains

6 clusters while GO:0019221 only contains 5 clusters. However the difference between the

cluster assignments estimated in the two GO terms is small, e.g., the Hamming distance

between the cluster assignments in GO:0019221 and GO:0060333 is 10.7%. Moreover, the

results from both of these GO terms include a cluster that contains only one observation

(patient # 69 who has severe asthma). The clustering results suggest that this patient

is quite different from other patients. Further investigation of this patient is needed and

analysis comparing patient # 69’s health and demographic information with that of other

patients may be fruitful. The above results indicate that these 11 genes can further separate
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asthma patients into finer groups which may be treated as a biomarker for GO term 0060333,

i.e., the IFN-γ mediated signaling pathway.

GO:0042493 (the response to the drug) contains more than 400 genes, but only 17% of

genes were found to be informative (Table 3.3). Figure 3.1 shows a heatmap of the cluster re-

sults for a set of 30 randomly selected informative and 30 randomly selected non-informative

genes. There are three vertical color stratifications which indicate a clear separation between

clusters. However, there is little evidence showing the clustering based on the non-informative

genes. Therefore, the heatmap indicates that the estimated informative genes include the

majority information of the data for clustering. Thus, researchers may focus on exploring

these informative genes for future analyses.

Table 3.3: The summary of 16 GO terms containing IFN-γ, including the number of genes (p),
the percentage of globally informative genes (Info%), the estimated number of clusters (K) and the
biological meaning for each GO term

Datasets p Info% K Biological meaning

GO:0006959 50 76.00 6 humoral immune response
GO:0002053 55 78.18 7 positive regulation of mesenchymal cell proliferation
GO:0019882 64 64.06 5 antigen processing and presentation
GO:0042742 82 52.44 7 defense response to bacterium
GO:0045666 83 43.37 7 positive regulation of neuron differentiation
GO:0040008 93 74.19 5 regulation of growth
GO:0050796 101 69.31 5 regulation of insulin secretion
GO:0050776 123 78.05 7 regulation of immune response
GO:0060333 130 73.08 6 IFN-γ mediated signaling pathway
GO:0006928 162 51.23 4 cellular component movement
GO:0005125 197 51.78 5 cytokine activity
GO:0009615 197 58.89 5 response to virus
GO:0007050 209 62.68 5 cell cycle arrest
GO:0007166 239 33.89 4 cell surface receptor linked signaling pathway
GO:0019221 270 53.70 5 cytokine mediated signaling pathway
GO:0042493 405 17.04 3 response to the drug
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Figure 3.1: Heatmap of GO:0042493 (the response to the drug) with randomly selected 30
informative genes and 30 non-informative genes. Each row represents a patient with the
original index labeled on the right, the first 30 columns represent the informative genes and
the last 30 columns represent the non-informative genes. These two groups of genes are
separated by a vertical “white” line. The data are scaled and centered by each variable, and
ordered by clusters. For example, patients with indexes 24, 54, 58, 69, 72 and 76 are in the
first cluster. Moreover, the clusters are separated by horizontal “white” lines. The color in
each grid of the heatmap ranges from “white” to “black” indicating the smallest value to
the largest value of the scaled data.
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3.7 Discussion

In this chapter, under the framework of model-based clustering, we developed the pair-

wise reciprocal fuse penalty, which gives large penalties to small cluster mean differences.

Theoretically, we showed that PARSE can consistently identify the true informative vari-

ables for each pair of clusters. We also proved that the risk of the variable identification is

o(1), thus PARSE which produces consistent variable identification is optimal under certain

conditions. We also assumed a common diagonal covariance for each cluster in this method.

This assumption is based on the conclusion of Bickel and Levina (2004) which shows that

using a diagonal matrix may obtain better results than using a non-diagonal matrix when

the dimension of the data is high. In Section 3.5, simulations with Model 3 (Normal with

sparse covariance) showed that for data with a sparse and non-diagonal covariance, PARSE

still performs well by assuming a diagonal covariance. Overall speaking, PARSE outperforms

other regularization methods in model-based clustering. Simulations and the study of the

microarray data on asthma disease showed some interesting findings in both statistics and

biology.

In the model-based clustering, we also assumed normal distributions for clusters. Simu-

lations showed that PARSE works for sub-Gaussian data. We also studied the performance

of the adaptive L1 penalty, APFP and PARSE on heavy-tail distributions and found that all

the methods failed when the tail shape is very different from the normal distribution. In fact,

all the methods tended to treat observations generated from the tail as an additional cluster

with very small cluster size. Thus, for data generated from distributions with very heavy

tails, we could assume heavy-tailed distributions or use non- or semiparametric methods

discussed in Chapter 2 instead of normal distributions in the model.

Since PARSE is non-convex, non-differentiable and not continuous at the origin, we de-

veloped a backward selection algorithm embedded in the EM-algorithm for estimation. The
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drawback of this algorithm is the computation time when the clusters are not well separated.

In future studies, we could develop a better algorithm which shortens the computation time.

The R package PARSE developed by Wang et al. (2016b) is available in CRAN.
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CHAPTER 4

PROOF OF THEOREMS IN CHAPTER 3

4.1 Details of Proof of Theorem 3

Since Theorem 2 can be treated as a special case of Theorem 3. Here we only include

the proof of Theorem 3. For simplicity, let t be the true model, i.e. t = ξ(U∗), where U∗ is

the true mean.

Proof. Assuming that αik and σ2
j = 1 are known, as in (3.10) the loss function is

Lλn
(U) =

1

2

p
∑

j=1

K
∑

k=1

n
∑

i=1

αik(yij − µkj)
2 + λn

p
∑

j=1

∑

k<k′

1

|µkj − µk′j|
I (|µkj − µk′j| 6= 0) . (4.1)

Hereinafter we let Û be the minimizer of the loss function and

R =
1

2

p
∑

j=1

n
∑

i=1

K
∑

k=1

αik (yij − µ̂kj)
2 , (4.2)

be the corresponding sum of squared residuals which is the first part of the loss function.

We also let Ũ(t,w) be the minimizer of the sum of squared residuals which is a weighted

least square (WLS) estimator given the true model t and R̃t be the corresponding sum of

squared residuals.

Since the minimal loss function can be either equal to or less than the minimal loss

function given the true model, we have,

P

{

min
U:t=ξ(µ)

{Lλn
(U)} = min

U
{Lλn

(U)}
}

+ P

{

min
U:t=ξ(µ)

{Lλn
(U)} > min

U
{Lλn

(U)}
}

=P

{

min
U:t=ξ(µ)

{Lλn
(U)} = min

U
{Lλn

(U)}
}

+ P

{

min
U:t 6=ξ(µ)

{Lλn
(U)} = min

U
{Lλn

(U)}
}
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=P
{

ξ
(

Û
)

= t
}

+ P
{

ξ
(

Û
)

6= t
}

= 1.

Then,

P
{

ξ
(

Û
)

= t
}

≥P

{

min
U:t=ξ(U)

{Lλn
(U)} < R̃t + |t|aλn

, ξ
(

Û
)

= t

}

≥P

{

min
U:t=ξ(U)

{Lλn
(U)} < R̃t + |t|aλn

}

−P

{

min
U:t=ξ(U)

{Lλn
(U)} < R̃t + |t|aλn

, ξ
(

Û
)

6= t

}

.

Because ξ
(

Û
)

6= t and min
U:t=ξ(U)

{Lλn
(U)} < R̃t + |t|aλn

imply that min
U:t 6=ξ(U)

{Lλn
(U)} <

R̃t + |t|aλn
, and min

U:t=ξ(U)
{Lλn

(U)} ≤ Lλn

(

Ũ(t,w)
)

, we have,

P

{

min
U:t=ξ(U)

{Lλn
(U)} < R̃t + |t|aλn

, ξ
(

Û

)

6= t

}

≤ P

{

min
U:t 6=ξ(U)

{Lλn
(U)} < R̃t + |t|aλn

}

and

P

{

min
U:t=ξ(U)

{Lλn
(U)} < R̃t + |t|aλn

}

≥ P
{

Lλn

(

Ũ(t,w)
)

< R̃t + |t|aλn

}

.

Thus,

P
{

ξ
(

Û
)

= t
}

≥P
{

Lλn

(

Ũ(t,w)
)

< R̃t + |t|aλn

}

−P

{

min
U:t 6=ξ(U)

{Lλn
(U)} < R̃t + |t|aλn

}

≥P
{

Lλn

(

Ũ(t,w)
)

< R̃t + |t|aλn

}

(4.3)

−P

{

min
U:t⊂ξ(U),t 6=ξ

{Lλn
(U)} < R̃t + |t|aλn

}

(4.4)

−P

{

min
U:t*ξ(U)

{Lλn
(U)} < R̃t + |t|aλn

}

. (4.5)
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Therefore, we will show that as the sample size n goes to infinity, given the true model the

probability (4.3) goes to 1, given the model that contains the true model but is different from

the true model the probability (4.4) goes to 0 and given the model that does not contain the

true model the probability (4.5) goes to 0.

Firstly, for (4.3), let ∆kj = {m : m ∈ {1, · · · , K} and (m, k, j) /∈ t} be the set of cluster

labels that have the same cluster means, i.e., for any m ∈ ∆kj, we have µ∗
mj = µ∗

kj. Then

given the true model, the cluster means are estimated as,

µ̃
(t,w)
kj =

∑n
i=1

∑K
m=1 αimyijI (m ∈ ∆kj)

∑n
i=1

∑K
m=1 αimI (m ∈ ∆kj)

= γ
(j)′

k y·j,

γ
(j)′

k =

{ ∑

m α1mI (m ∈ ∆kj)
∑

i

∑

m αimI (m ∈ ∆kj)
, · · · ,

∑

m αnmI (m ∈ ∆kj)
∑

i

∑

m αimI (m ∈ ∆kj)

}

,

and the corresponding loss function is,

Lλn

(

Ũ(t,w)
)

= R̃t +

p
∑

j=1

Pλn

(

µ̃
(t,w)
·j

)

,

where Pλn
(µ̃

(t,w)
·j ) = λn

∑

k<k′ |µ̃
(t,w)
kj − µ̃

(t,w)
k′j |−1I(µ̃(t,w)

kj 6= µ̃
(t,w)
k′j ).

Assuming the data are independent across dimensions, without loss of generality, we also

assume that the data are centered for each dimension and then ordered by each cluster.

Thus for any k, we have
∣

∣µ∗
kj

∣

∣ ≤ u∗max = max(k,k′,j)∈t
{∣

∣µ∗
kj − µ∗

k′j

∣

∣

}

. For any (k, k′, j) ∈ t,

i.e., µ∗
kj 6= µ∗

k′j, we have ∆kj ∩∆k′j = ∅ and

µ̃
(t,w)
kj − µ̃

(t,w)
k′j ∼ N

(

(

γ
(j)
k − γ

(j)
k′

)′
E(y·j),

(

γ
(j)
k − γ

(j)
k′

)′
Var(y·j)

(

γ
(j)
k − γ

(j)
k′

)

)

.

Since αik is a known surrogate of zik, we have E(yij) =
∑

k αikµ
∗
kj and Var(yij) =

∑

k α
2
ik. In

the proof of the probability (4.3), we use Ekk′j and Vkk′j to represent the mean and variance

of µ̃
(t,w)
kj − µ̃

(t,w)
k′j . Let Bkk′j = {|µ̃(t,w)

kj − µ̃
(t,w)
k′j |−1 < aλn

/λn} and Z ∼ N(0, 1), then
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P
{

Lλn

(

Ũ(t,w)
)

< R̃t + |t|aλn

}

=P

{

p
∑

j=1

Pλn
(µ̃

(t,w)
·j ) < |t|aλn

}

≥P

{

∣

∣

∣
µ̃
(t,w)
kj − µ̃

(t,w)
k′j

∣

∣

∣

−1

<
aλn

λn
, ∀ (k, k′, j) ∈ t

}

≥1−
∑

(k,k′,j)∈t
P(Bc

kk′j)

≥1− 2
∑

(k,k′,j)∈t
P

{

Z <
λna

−1
λn

− Ekk′j
√

Vkk′j

}

≥1− 2
∑

(k,k′,j)∈t
P

{

Z <
λna

−1
λn

−min(k,k′,j)∈t{Ekk′j}
max(k,k′,j)∈t

{√

Vkk′j
}

}

≥1− 2
∑

(k,k′,j)∈t
P{Z < −

√

2 log(|t|/ε1)} (4.6)

≥1− 2
∑

(k,k′,j)∈t

ε1
|t| = 1− 2ε1.

The last inequality is from Theorem 2.1 in Inglot (2010). Inequality (4.6) is derived from

the following arguments based on Assumption (A2), (B1.a), (B1.b), (B1.c), and (B2). For

any k, k′ and j such that µ∗
kj 6= µ∗

k′j, we have

Ekk′j =
n
∑

i=1

γ
(j)
ik

(

K
∑

m=1

αimµ
∗
mj

)

−
n
∑

i=1

γ
(j)
ik′

(

K
∑

m=1

αimµ
∗
mj

)

with

n
∑

i=1

γ
(j)
ik

(

K
∑

m=1

αimµ
∗
mj

)

=

(

∑

i′

∑

s∈∆k

αi′s

)−1{
∑

i∈Cm,m∈∆k

(

∑

s∈∆k

αis

)(

K
∑

l=1

αilµ
∗
lj

)

+
∑

i∈Cm,m/∈∆k

(

∑

s∈∆k

αis

)(

K
∑

l=1

αilµ
∗
lj

)







.
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Because αik = zik+ǫik, where zik = I(yi ∈ Ck) and ǫik = o(rn) with rn = ((log p)/n)3/2/u∗max,

then the first part of the numerator is,

∑

i∈Cm,m∈∆k

(

∑

s∈∆k

αis

)(

K
∑

l=1

αilµ
∗
lj

)

=
∑

i∈Cm,m∈∆k

{(

∑

s∈∆k

zis

)(

K
∑

l=1

zilµ
∗
lj

)

+

(

∑

s∈∆k

zis

)(

K
∑

l=1

ǫilµ
∗
lj

)

+

(

∑

s∈∆k

ǫis

)(

K
∑

l=1

zilµ
∗
lj

)

+

(

∑

s∈∆k

ǫis

)(

K
∑

l=1

ǫilµ
∗
lj

)}

=Nkµ
∗
kj +

∑

i∈Cm,m∈∆k

{

K
∑

l=1

ǫilµ
∗
lj + µ∗

kj

∑

s∈∆k

ǫis +

(

∑

s∈∆k

ǫis

)(

K
∑

l=1

ǫilµ
∗
lj

)}

, (4.7)

where Nk =
∑

m∈∆k
nm and nm is the cluster size of Cm. Also, the second part of the

numerator is

∑

i∈Cm,m/∈∆k

(

∑

s∈∆k

αis

)(

K
∑

l=1

αilµ
∗
lj

)

=
∑

i∈Cm,m/∈∆k

{

µ∗
mj

∑

s∈∆k

ǫis +

(

∑

s∈∆k

ǫis

)(

K
∑

l=1

ǫilµ
∗
lj

)}

,

and the denominator is

n
∑

i=1

∑

s∈∆k

αis =
n
∑

i=1

∑

s∈∆k

zis +
n
∑

i=1

∑

s∈∆k

ǫis = Nk +
∑

i

∑

s∈∆k

ǫis. (4.8)

Thus,

n
∑

i=1

γ
(j)
ik

(

K
∑

m=1

αimµ
∗
mj

)

=

(

Nk +
∑

i

∑

s∈∆k

ǫis

)−1{

µ∗
kjNk + µ∗

kj

∑

i

∑

s∈∆k

ǫis − µ∗
kj

∑

i

∑

s∈∆k

ǫis

+
∑

i∈Cm,m∈∆k

µ∗
lj

(

K
∑

l=1

ǫil

)

+
K
∑

m=1

∑

i∈Cm

µ∗
mj

(

∑

s∈∆k

ǫis

)

+
∑

i

(

∑

s∈∆k

ǫis

)(

K
∑

l=1

ǫilµ
∗
lj

)}

=µ∗
kj + o(rnu

∗
max).
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Similarly, we can show that

n
∑

i=1

γ
(j)
ik′

(

K
∑

m=1

αimµ
∗
mj

)

= µ∗
k′j + o(rnu

∗
max).

Thus, Ekk′j = µ∗
kj − µ∗

k′j + o(rnu
∗
max). Since

∑K
m=1 α

2
im ≤ 1 and

∑

i

(

γ
(j)
ik

)2

=

∑

i

(
∑

m∈∆k
αim

)2

(
∑

i

∑

m∈∆k
αim

)2 ≤ 1,

we have

Vkk′j =
∑

i

{

(

γ
(j)
ik − γ

(j)
ik′

)2
(

K
∑

m=1

α2
im

)}

≤
n
∑

i=1

{

(

γ
(j)
ik

)2

+
(

γ
(j)
ik

)2
}

≤ 2.

Thus, from Assumption (B2), we have

bλn
− min

(k,k′,j)∈t
{|Ekk′j|} ≤ bλn

− u∗min − ε0 < −
√

4 log(|t|/ε1),

where ε0 = o(rnu
∗
max). This implies

P

(

Z <
bλn

−min(k,k′,j)∈t {|Ekk′j|}
max(k,k′,j)∈t

{√

Vkk′j
}

)

<P

(

Z <
bλn

− u∗min − ε0√
2

)

<P
{

Z < −
√

2 log(|t|/ε1)
}

.

Thus,

P
{

Lλn

(

Ũ(t,w)
)

< R̃t + |t|aλn

}

≥ 1−
∑

(k,k′,j)∈t
P
(

Bc
kk′j

)

> 1− 2ε1. (4.9)

Secondly, for the probability (4.4), given a model ξ such that t ⊂ ξ and t 6= ξ, let Û(ξ)

be the penalized estimates based on the loss function (4.1) given the model ξ and Rξ be the

corresponding sum of squared residuals. Similar to the previous arguments, let Ũ(t,w) and
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Ũ(ξ,w)be the WLS estimators minimizing the sum of squared residuals given the true model

and the model ξ respectively. Let R̃ξ be the corresponding sum of squared residuals of Ũ(ξ,w).

Since we assume that the data are independent across dimension and Ũ(ξ,w) minimizes the

sum of squared residuals given then model ξ, we have R
(j)
ξ ≥ R̃

(j)
ξ for each dimension j,

where R
(j)
ξ =

∑

i

∑

k αik(yij − µ̂
(ξ)
kj )

2/2 and R̃
(j)
ξ =

∑

i

∑

k αik(yij − µ̃
(ξ,w)
kj )2/2.

Without loss of generality, we check the loss function in the jth dimension first,

L
(j)
λn

(

Û(ξ)
)

=
1

2

K
∑

k=1

n
∑

i=1

αik

(

yij − µ̂
(ξ)
kj

)2
+ Pλn

(

µ̂
(ξ)
·j

)

=R̃
(j)
t +

(

R
(j)
ξ − R̃

(j)
t

)

+ Pλn

(

µ̂
(ξ)
·j

)

=R̃
(j)
t +

1

2

∑

k

∑

i

αikδ̂
2
kj +

∑

k

{

δ̂kj
∑

i

αik

(

yij − µ̃
(t,w)
kj

)

}

+ Pλn

(

µ̂
(ξ)
·j

)

(4.10)

where δ̂·j = µ̃
(t,w)
·j − µ̂

(ξ)
·j . Since R

(j)
ξ ≥ R̃

(j)
ξ , from (4.10) we have

L
(j)
λn

(

Û(ξ)
)

≥R̃(j)
t +

(

R̃
(j)
ξ − R̃

(j)
t

)

+ Pλn

(

µ̂
(ξ)
·j

)

=R̃
(j)
t +

1

2

∑

k

∑

i

αik

(

δ̃
(w)
kj

)2
+
∑

k

{

δ̃
(w)
kj

∑

i

αik

(

yij − µ̃
(t,w)
kj

)

}

+ Pλn

(

µ̂
(ξ)
·j

)

(4.11)

where δ̃
(w)

·j = µ̃
(t,w)
·j − µ̃

(ξ,w)
·j .

Let tj = {(k, k′) : µ∗
kj 6= µ∗

k′j}, then |t| = ∑

j |tj|. Similarly, we define ξj as the set of

pairs of clusters on that has different cluster means on the jth dimension. Because of t ⊂ ξ

and t 6= ξ, we have |t| < |ξ| and for any j, tj ⊂ ξj. Thus |tj| ≤ |ξj| for any j, and there exist

at least one dimension j such that |tj| < |ξj|. Let dξ = |{j : |ξj| > 0}| and dξ = |{j : tj > 0}|

be the number of globally informative variables in the model ξ and t respectively. Obviously,

dξ ≤ |ξ| and dt ≤ |t|. Then for (4.10), we considered the following cases.
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1. If

1

2

∑

k

∑

i

αikδ̂
2
kj +

∑

k

{

δ̂kj
∑

i

αik

(

yij − µ̃
(t,w)
kj

)

}

≥ |t|
p
aλn

, (4.12)

then we have

L
(j)
λn

(

Û(ξ)
)

≥ R̃
(j)
t + |t|aλn

/p. (4.13)

If inequality (4.12) is true for any dimension j, then Lλn
(Û(ξ)) ≥ R̃t + |t|aλn

.

2. If

1

2

∑

k

∑

i

αikδ̂
2
kj +

∑

k

{

δ̂kj
∑

i

αik

(

yij − µ̃
(t,w)
kj

)

}

<
|t|
p
aλn

, (4.14)

then we have the following cases.

(1) If |ξj| = 0, then |tj| = 0 and L
(j)
λn
(Û(ξ)) = R

(j)
ξ = R̃

(j)
ξ = R̃

(j)
t .

(2) If |ξj| > 0, then because
∑

i αik(yij − µ̃
(t,w)
kj ) is a linear combination of yij, it

follows a Normal distribution with mean E
(j)
k and variance V

(j)
k which will be

defined later. Based on Theorem 2.1 in Inglot (2010), for any j such that ξj > 0,

we have for any ε2 > 0,

P

{∣

∣

∣

∣

∣

∑

i

αik

(

yij − µ̃
(t,w)
kj

)

− E
(j)
k

∣

∣

∣

∣

∣

≤
√

2V
(j)
k log(Kdξ/ε2), k = 1, · · · , K

}

≥ 1−
K
∑

k=1

P

{∣

∣

∣

∣

∣

∑

i

αik

(

yij − µ̃
(t,w)
kj

)

− E
(j)
k

∣

∣

∣

∣

∣

>

√

2V
(j)
k log(Kdξ/ε2)

}

≥ 1− 2ε2/dξ.

Let ρk =
∑

i αik and W
(j)
k =

∣

∣

∣
E

(j)
k

∣

∣

∣
+

√

2V
(j)
k log(Kdξ/ε2), then with probability

greater than 1− 2ε2/dξ, we have

K
∑

k=1

(

ρkδ̂
2
kj − 2|δ̂kj|W (j)

k

)

≤
K
∑

k=1

{

ρkδ̂
2
kj + 2δ̂kj

∑

i

αik

(

yij − µ̃
(t,w)
kj

)

}

.
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Then (4.14) implies that with probability greater than 1− 2ε2/dξ,

K
∑

k=1

(

ρkδ̂
2
kj − 2|δ̂kj|W (j)

k

)

<
2|t|aλn

p
.

Adding
∑

k ρk

(

W
(j)
k /ρk

)2

on both sides of the inequality, we have

∑

k

ρk

(

|δ̂kj| −
W

(j)
k

ρk

)2

<
2|t|aλn

p
+
∑

k

(

W
(j)
k

)2

ρk
.

Then setting τk = |δ̂kj| −W
(j)
k /ρk, by Jensen’s Inequality we have,

(

∑

k

ρk
n
|τk|
)2

<
2|t|aλn

np
+
∑

k

(

W
(j)
k

)2

nρk
,

which implies that
∑

k |τk| < D
(j)
1 , where

D
(j)
1 =

n

mink ρk

√

√

√

√

√

2|t|aλn

np
+

K
∑

k=1

(

W
(j)
k

)2

nρk
.

Thus, with probability greater than 1− 2ε2/dξ, we have

∑

k

|δ̂kj| < D
(j)
1 +

∑

k

W
(j)
k

ρk
. (4.15)

Similar to the previous contexts, for each k = 1, · · · , K we define the sets of clusters with

the same means as Ck give the true model and the model ξ be,

∆kj =
{

m : m ∈ {1, · · · , K} and (m, k, j) /∈ t, i.e. µ∗
mj = µ∗

kj

}

,

Ωkj = {m : m ∈ {1, · · · , K} and (m, k, j) /∈ ξ} .
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Since tj ⊂ ξj, if (k, k
′) ∈ tj i.e., µkj 6= µk′j then we have (k, k′) ∈ ξ. Thus if m ∈ Ωkj i.e.,

µmj = µkj, then m ∈ ∆kj which implies that Ωkj ⊂ ∆kj. Then the WLS estimates in (4.11)

are,

µ̃
(ξ,w)
kj =

∑

i

∑K
s=1 αisyijI (s ∈ Ωkj)

∑

i

∑K
s=1 αisI (s ∈ Ωkj)

, µ̃
(t,w)
kj =

∑

i

∑K
s=1 αisyijI (s ∈ ∆kj)

∑

i

∑K
s=1 αisI (s ∈ ∆kj)

.

Because αik = zik + ǫik with ǫik = o(rn) for any i and k, based on (4.7), (4.8), ρk =
∑

i αik = O(n) and Nk =
∑

m nmI(m ∈ ∆kj) = O(n), the expectation of
∑

i αik(yij − µ̃
(t,w)
kj )

is

E
(j)
k =E

{

∑

i

αik

(

yij − µ̃
(t,w)
kj

)

}

=
∑

i∈Ck

αik

(

µ∗kj +
K
∑

s=1

ǫisµ
∗
sj

)

+
∑

i/∈Ck

ǫik

(

∑

s

αisµ
∗
sj

)

− ρk



Nkµ
∗
kj +

∑

m∈∆kj

∑

i∈Cm

{

K
∑

l=1

ǫilµ
∗
lj

+µ∗kj
∑

s∈∆kj

ǫis +





∑

s∈∆kj

ǫis





(

K
∑

l=1

ǫilµ
∗
lj

)













Nk +

n
∑

i=1

∑

s∈∆kj

ǫis





−1

=
∑

i∈Ck

αik

(

µ∗kj +
K
∑

s=1

ǫisµ
∗
sj

)

+
∑

i/∈Ck

ǫik

(

∑

s

αisµ
∗
sj

)

− ρkµ
∗
kj − E1

=
∑

i∈Ck

(1 + ǫik)

(

∑

s

ǫisµ
∗
sj

)

+
∑

i/∈Ck

ǫik

(

∑

s

αisµ
∗
sj

)

−
∑

i/∈Ck

ǫikµ
∗
kj − E1

=o (nrnu
∗
max) I(nk < Nkj), (4.16)

where

E1 =ρk





∑

i∈Cm

∑

m∈∆kj







K
∑

l=1

ǫilµ
∗
lj +





∑

s∈∆kj

ǫis





(

K
∑

l=1

ǫilµ
∗
lj

)







−µ∗
kj





∑

m/∈∆kj

∑

i∈Cm

∑

s∈∆kj

ǫis











Nk +
n
∑

i=1

∑

s∈∆kj

ǫis





−1

=o (nrnu
∗
max) .
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Since Var (
∑

i αikyij) =
∑

i α
2
ik(
∑K

m=1 α
2
im),

Var

(

∑

i

αikµ̃
(t,w)
kj

)

=
ρ2k
∑

i

(

∑

s∈∆kj
αis

)2 (
∑K

m=1 α
2
im

)

(

∑

i

∑

s∈∆kj
αis

)2 ,

Cov

(

∑

i

αikyij, ρkµ̃
(t,w)
kj

)

=
ρk
∑

i αik

(

∑

s∈∆kj
αis

)2 (
∑K

m=1 α
2
im

)

(

∑

i

∑

s∈∆kj
αis

)2 ,

and
∑

m α
2
im = 1 + 2

∑

m zimǫim +
∑

m ǫ
2
im, the variance of

∑

i αik

(

yij − µ̃
(t,w)
kj

)

is

V
(j)
k =Var

{

∑

i

αik

(

yij − µ̃
(t,w)
kj

)

}

=nk +
Nkρ

2
k

(

∑

i

∑

s∈∆kj
αis

)2 − 2nkρk
∑

i

∑

s∈∆kj
αis

+
∑

i∈Ck

(

1− 2ρk
∑

i

∑

s∈∆kj
αis

)(

2ǫik +
∑

m

ǫ2im

)

+
∑

s∈∆kj

∑

i∈Cs

ρ2k
(

2ǫis +
∑

m ǫ
2
im

)

(

∑

i

∑

s∈∆kj
αis

)2 + 2
∑

i∈Ck

(

ǫik −
ρk
∑

s∈∆kj
ǫis

∑

i

∑

s∈∆kj
αis

)(

∑

m

α2
im

)

+ 2
∑

s∈∆kj

∑

i∈Ck







ρ2k
∑

m∈∆kj
ǫim

(

∑

i

∑

s∈∆kj
αis

)2 − ρkǫik
∑

i

∑

s∈∆kj
αis







(

∑

m

α2
im

)

+
n
∑

i=1











ǫ2ik +
ρ2k

(

∑

s∈∆kj
ǫis

)2

(

∑

i

∑

s∈∆kj
αis

)2 −
2ρkǫik

(

∑

s∈∆kj
ǫis

)

∑

i

∑

s∈∆kj
αis











(

∑

m

α2
im

)

=
nkN

2
kj +Nkjn

2
k − 2n2kNkj

(

Nk +
∑

i

∑

s∈∆kj
ǫis

)2 + V1

=O(n)I(nk < Nkj) + o(nrn)I(nk < Nkj)

where V1 = o(nrn)I(nk < Nkj). If nk = Nkj, then for any m 6= k on the j − th dimension

µ∗
kj 6= µ∗

mj. Thus µ̃
(t,w)
kj = (

∑

i αikyij)/ρk and
∑

i αikµ̃
(t,w)
kj = 0 which implies that E

(j)
k =

V
(j)
k = 0.
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For any j such that |ξj| > |tj|, there exists at least one pair of clusters k, k′ such that

µ∗
kj = µk′j. Thus W

(j)
k = E

(j)
k +

√

2V
(j)
k log(Kdξ/ε2) = o(nrnu

∗
max) + O(

√

2n log(dξ)) and

D
(j)
1 = o(

√

1/p) + o(rnu
∗
max) +O(

√

log(dξ)/n).

Then with probability greater than 1− 2ε2/dξ, under the condition of (4.14), we have

R
(j)
ξ − R̃

(j)
t >R̃

(j)
ξ − R̃

(j)
t

=
1

2

∑

k







δ̃
(w)
kj

√
ρk +

∑

i αik

(

yij − µ̃
(t,w)
kj

)

√
ρk







2

− 1

2

∑

k

{

∑

ik αik

(

yij − µ̃
(t,w)
kj

)}2

ρk

>
1

2

∑

k







δ̃
(w)
kj

√
ρk +

∑

i αik

(

yij − µ̃
(t,w)
kj

)

√
ρk







2

− 1

2

∑

k







|E(j)
K |√
ρk

+

√

2V
(j)
K

ρk
log(Kp/ε2)







2

=
1

2

∑

k







δ̃
(w)
kj

√
ρk +

∑

i αik

(

yij − µ̃
(t,w)
kj

)

√
ρk







2

− o
(

n (rnu
∗
max)

2
)

− o

(

√

n log(dξ)rnumax

)

−O(log(dξ)). (4.17)

For any j such that 0 < |tj| = |ξj|, we have

Pλn

(

µ̂
(ξ)
·j

)

=
∑

{(k,k′):(k,k′,j)∈ξ}

λn

|µ̂(ξ)
kj − µ̂

(ξ)
k′j|

I(|µ̂(ξ)
kj − µ̂

(ξ)
k′j| 6= 0)

≥ 0.

For any j such that |tj| < |ξj| and the inequality (4.14) is true, with probability greater than

1− 2ε2/dξ we have,

Pλn

(

µ̂
(ξ)
·j

)

=
∑

{(k,k′):(k,k′,j)∈ξ}

λn

|µ̂(ξ)
kj − µ̂

(ξ)
k′j|

≥
∑

{(k,k′):(k,k′,j)∈t}

λn

|µ̃(t,w)
kj − µ̃

(t,w)
k′j + δ̂k′j − δ̂kj|

+
∑

{(k,k′):(k,k′,j)∈ξ−t}

λn

|δ̂k′j − δ̂kj|

≥0 +
∑

{(k,k′):(k,k′,j)∈ξ−t}

λn

|δ̂k′j − δ̂kj|
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≥
∑

{(k,k′):(k,k′,j)∈ξ−t}

λn

|δ̂k′j|+ |δ̂kj|

≥
∑

{(k,k′):(k,k′,j)∈ξ−t}
λn

(

D
(j)
1 +

K
∑

k=1

W
(j)
k

ρk

)−1

≥(|ξj| − |tj|)λn
(

D
(j)
1 +

K
∑

k=1

W
(j)
k

ρk

)−1

(4.18)

Based on the assumptions (A1), (A2), (B1.b) and (B1.c), that is,

K = O(1), |t| = o

(

n

log(p)

)

, λn = O

({

log(p)

n

}γ

log(p)

)

, aλn
= O

(

log(p)

{

log(p)

n

}γ− 1
2

)

rn =
1

u∗max

{

log(p)

n

}3/2

, αik = I(yi ∈ Ck) + o(rn), ρk =
∑

i

αik = O(n),

where 0 < γ < 1/2, if there exists at least one dimension j such that (4.14) is true, with

probability greater than 1 − 2ε2/dξ, we have the order of the penalty term is greater than

R̃
(j)
ξ − R̃

(j)
t if it is negative from (4.17), that is

Pλn

(

µ̂
(ξ)
·j

)

≍
(

log p

n

)γ

log(p)

{

o
(

√

1/p
)

+ o(rnu
∗
max) +

√

log(dξ)/n

}−1

≻o
(

n (rnu
∗
max)

2)+ o

(

√

n log(dξ)rnumax

)

+ log(dξ).

Since
∑

j:|ξj |>|tj | = O(|ξ| − |t|), with probability greater than 1− 2ε2,

Pλn

(

Û(ξ)
)

=
∑

j:|ξj |>|tj |
(|ξj| − |tj|)λn

(

D1 +
K
∑

k=1

Wk

ρk

)−1

≥
∑

j:|ξj |>|tj |
λn

(

D1 +
K
∑

k=1

Wk

ρk

)−1

≻|t|aλn
,
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because

∑

j:|ξj |>|tj |
λn

(

D1 +
K
∑

k=1

Wk

ρk

)−1

≍ log(p)

{

log(p)

n

}γ







∑

j:|ξj |>|tj |
(|ξj| − |tj|)







{

o
(

√

1/p
)

+o(rnu
∗
max) +

√

log(dξ)/n

}

≻|t|aλn
= o

(

n log(p)

(

log p

n

)γ− 1
2

)

,

If (4.12) is true for any j, we have Rξ − R̃t ≥ |t|aλn
.

Therefore, when t ⊂ ξ and t 6= ξ

P

{

min
U:t⊂ξ(U),t 6=ξ

Lλn
(U) ≥ R̃t + |t|aλn

}

≥ 1− 2ε2. (4.19)

Thirdly, consider (4.5) given t * ξ. Obviously, t 6= Ø since Ø is a subset of any model,

where Ø means that µkj = µk′j for any k, k
′, j; and ξ cannot be the full model since the full

model means µkj 6= µk′j, for any k, k
′, j which contains the true model t.

Similar to the previous contexts, for each k = 1, · · · , K and j = 1, · · · , p we define the

sets of clusters with the same means as Ck give the true model and the model ξ be,

∆kj =
{

m : m ∈ {1, · · · , K} and (m, k, j) /∈ t, i.e. µ∗
mj = µ∗

kj

}

,

Ωkj = {m : m ∈ {1, · · · , K} and (m, k, j) /∈ ξ} .

Also we define the WLS estimates in (4.11) as

µ̃
(ξ,w)
kj =

∑

i

∑K
s=1 αisyijI (s ∈ Ωkj)

∑

i

∑K
s=1 αisI (s ∈ Ωkj)

, µ̃
(t,w)
kj =

∑

i

∑K
s=1 αisyijI (s ∈ ∆kj)

∑

i

∑K
s=1 αisI (s ∈ ∆kj)

.

Let ρk =
∑n

i=1 αik as before. For any j such that tj ⊆ ξj, we could follow the similar

argument in the second case. For any j such that tj * ξj, we have ξj 6= {(k, k′, j) : µkj 6=
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µk′j, ∀ k, k′, j}, i.e., |ξj| < K(K − 1)/2 and

R
(j)
ξ − R̃

(j)
t ≥R̃(j)

ξ − R̃
(j)
t

=
1

2

K
∑

k=1

n
∑

i=1

αik(yij − µ̃
(ξ,w)
kj )2 − 1

2

K
∑

k=1

n
∑

i=1

αik(yij − µ̃
(t,w)
kj )2

=
1

2

K
∑

k=1

{

∑n
i=1 αik

(

yij − µ̃
(ξ,w)
kj

)}2

ρk
− 1

2

K
∑

k=1

{

∑n
i=1 αik

(

yij − µ̃
(t,w)
kj

)}2

ρk
. (4.20)

Let Akj = {∑n
i=1 αik(yij − µ̃

(ξ,w)
kj )}/√ρk and Bkj = {∑n

i=1 αik(yij − µ̃
(t,w)
kj )}/√ρk. Previously

we showed that E{∑n
i=1 αik(yij − µ̃

(t,w)
kj )} = o(nrnumax) and Var{∑n

i=1 αik(yij − µ̃
(t,w)
kj )} =

O(n).

For the model ξ, there exist at least one j such that tj * ξj which means that on the jth

dimension there exist at least one cluster in the set Ωkj whose true cluster mean is not µ∗
kj

for some clusters k, then we have

E

{

n
∑

i=1

αik

(

yij − µ̃
(ξ,w)
kj

)

}

= E

(

∑

i

αikyij

)

− ρkE
(

µ̃
(ξ,w)
kj

)

=
∑

i

αik

(

K
∑

s=1

αisµ
∗
sj

)

−
ρk
∑

i

∑

s∈Ωk
αis

(

∑K
m=1 αimµ

∗
mj

)

∑

i

∑

s∈Ωk
αis

=
∑

i∈Ck







µ∗kj +
∑

i∈Ck

ǫikµ
∗
kj +

K
∑

s=1

∑

i∈Ck

ǫikµ
∗
kj +

∑

i

i ∈ Ckǫik

(

K
∑

s=1

ǫisµ
∗
sj

}

+
∑

i/∈Ck

ǫik

(

K
∑

s=1

αisµ
∗
sj

)







− nk +
∑

i ǫik
∑

s∈Ωk
ns +

∑

i

∑

s∈Ωk
ǫis

∑

q∈Ωk

∑

i∈Cq







µ∗qj + µ∗qj





∑

s∈Ωk

ǫis



+

K
∑

m=1

ǫimµ
∗
mj

+





∑

s∈Ωk

ǫis





(

K
∑

m=1

ǫimµ
∗
mj

)







+
∑

q /∈Ωk

∑

i∈Cq





∑

s∈Ωk

ǫis





(

K
∑

m=1

αimµ
∗
mj

)

=nkµ
∗
kj −

nk +
∑

i ǫik
∑

s∈Ωk
ns +

∑

i

∑

s∈Ωk
ǫis





∑

q∈Ωq

µ∗qj



+ o(nrnu
∗
max)

=





∑

s∈Ωk

ns +
∑

i

∑

s∈Ωk

ǫis





−1




nk
∑

s∈Ωk

nsµ
∗
kj − nk

∑

s∈Ωk

nsµ
∗
sj + nkµ

∗
kj

∑

i

∑

s∈Ω
ǫis
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−





∑

s∈Ωk

nsµ
∗
sj





(

∑

i

ǫik

)







+ o(nrnu
∗
max)

=O(nu∗max) + o(nrnu
∗
max).

Similarly, we could obtain Var{∑n
i=1 αik(yij − µ̃

(ξ,w)
kj )} = O(n). Let ψξkj = E(Akj), ψtkj =

E(Bkj), τ
2
ξkj = Var(Akj) and τ 2tkj = Var(Bkj). Because ρk = O(n) we have ψξkj =

O(
√
nu∗max) + o(

√
nrnu

∗
max), ψtkj = o(

√
nrnu

∗
max), τ

2
ξkj = O(1) and τ 2tkj = O(1). Since Akj

and Bkj are linear combinations of yij, they follow the normal distributions. Thus,

Akj ∼ N
(

ψξkj, τ
2
ξkj

)

, Bkj ∼ N
(

ψtkj, τ
2
tkj

)

(4.21)

and

A2
kj

τ 2ξkj
∼ χ2

(

df = 1, ncp =
ψ2
ξkj

τ 2ξkj

)

,

B2
kj

τ 2tkj
∼ χ2

(

df = 1, ncp =
ψ2
tkj

τ 2tkj

)

.

Thus, we have

E
(

R̃
(j)
ξ − R̃

(j)
t

)

=
1

2

K
∑

k=1

{

E
(

A2
k

)

− E
(

B2
k

)}

=
1

2

K
∑

k=1

{

ψ2
ξkj + τ 2ξkj − ψ2

tkj − τ 2tkj
}

=K
{

O(
√
nu∗max) + o(

√
nrnu

∗
max)

}2
+O(K)−K (o(nrnu

∗
max))

2 −O(K)

=O
(

n (u∗max)
2)+O(1) + o

(

nrn (u
∗
max)

2)+ o
(

n (rnu
∗
max)

2) .

Because u∗max ≥ u∗min �
√

log(p)/n and 0 < rn = (log(p)/n)3/2, we have

n (u∗max)
2 � log(p) � max

{

nrn (u
∗
max)

2 , n (rnu
∗
max)

2 , 1
}

,
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and

0 < ψ2
ξkj = O

(

n (u∗max)
2)+ o

(

nrn (u
∗
max)

2)+ o
(

n (rnu
∗
max)

2) ≻ O(1) + o
(

n (rnu
∗
max)

2) .

Thus we have,

E(R̃(j)
ξ − R̃

(j)
t ) = O(n(u∗max)

2) > 0. (4.22)

Because Var(A2
kj/τ

2
ξkj) = 2 + 4ψ2

ξkj/τ
2
ξkj and Var(B2

kj/τ
2
tkj) = 2 + 4ψ2

tkj/τ
2
tkj, we have

Var
(

A2
kj

)

=2τ 4ξkj + 4ψ2
ξkjτ

2
ξkj

=O(1) +
{

O
(√

nu∗max

)

+ o
(√

nrnu
∗
max

)}2

=O
(

n (u∗max)
2)+O(1) + o

(

nrn (u
∗
max)

2) ,

and

Var
(

B2
kj

)

= 2τ 4tkj + 4ψ2
tkjτ

2
tkj = O(1) + o

(

n (rnu
∗
max)

2) .

From the Cauchy-Schwarz inequality we have,

Cov
(

A2
kj, B

2
kj

)

≤
√

(

τ 4ξkj + 4ψ2
ξkjτ

2
ξkj

) (

τ 4ξkj + 4ψ2
ξkjτ

2
ξkj

)

=
√

{

O
(

n (u∗max)
2)+O(1) + o

(

nrn (u∗max)
2)} {O(1) + o

(

n (rnu∗max)
2)}

≤O
(√

nu∗max

)

+ o
(

nrn (u
∗
max)

2) .

Since n(u∗max)
2 ≻ √

nu∗max ≻ 1 ≻ nrn (u
∗
max)

2, we have

Var
(

A2
kj − B2

kj

)

= O
(

n (u∗max)
2) .
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Then based on the Cauchy-Schwarz inequality, for any k 6= k′,

Cov
(

A2
kj − B2

kj, A
2
k′j − B2

k′j

)

≤
√

Var
(

A2
kj − B2

kj

) (

A2
k′j − B2

k′j

)

= O
(

n (u∗max)
2) .

Since R̃
(j)
ξ − R̃

(j)
t 6= 0, the variance of R̃

(j)
ξ − R̃

(j)
t is,

Var
(

R̃
(j)
ξ − R̃

(j)
t

)

=Var

{

1

2

K
∑

k=1

(

A2
kj − B2

kj

)

}

=
1

4

{

K
∑

k=1

Var
(

A2
kj − B2

kj

)

+ 2
K
∑

k<k′

Cov(A2
kj − B2

kj, A
2
k′j − B2

k′j)

}

=O
(

n (u∗max)
2) . (4.23)

Because we assume that the data are independent across dimension, for any j 6= j′ such that

tj * ξj and tj′ * ξj′ we have

Cov
(

R̃
(j)
ξ − R̃

(j)
t , R̃

(j′)
ξ − R̃

(j′)
t

)

= 0

Let d
(1)
ξ =

∑

j I(tj ⊆ ξj) be the number of dimensions such that the true model is

contained in or equals to the model ξ on each of those dimensions and d
(2)
ξ =

∑

j I(j : tj * ξj})

be the number of dimensions such that the true model is not a subset the model ξ on each of

those dimensions. Then d
(1)
ξ + d

(2)
ξ = p, i.e., d

(2)
ξ = p− d

(1)
ξ . Since

∑

j:tj*ξj
(R̃

(j)
ξ − R̃

(j)
t ) 6= 0,

we have

E







∑

j:tj*ξj

(

R̃
(j)
ξ − R̃

(j)
t

)







=O
(

d
(2)
ξ n (u∗max)

2
)

Var







∑

j:tj*ξj

(

R̃
(j)
ξ − R̃

(j)
t

)







=O
(

d
(2)
ξ n (u∗max)

2
)

.
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When d
(2)
ξ = O(p) is large, then d

(2)
ξ n(u∗max)

2 ≍ pn(u∗max)
2. Based on Lemma 2, because

∑

j:tj*ξj

(

R̃
(j)
ξ − R̃

(j)
t

)

d
(2)
ξ n (u∗max)

2
= OP(1),

we have

∑

j:tj*ξj

(

R̃
(j)
ξ − R̃

(j)
t

)

= OP

(

np (u∗max)
2) ≻ |t|aλn

.

By Lemma 3, we also have P(
∑

j:tj*ξj
(R̃

(j)
ξ − R̃

(j)
t ) > 0) = 1 as n→ ∞, p→ ∞. Follows the

similar arguments in the proof of (4.4), with probability greater than 1− 2ε2, we have

∑

j:tj⊆ξj

{

(R
(j)
ξ − R̃

(j)
t ) + Pλn

(µ̂
(ξ)
·j )
}

> 0.

Then with probability greater than 1− 2ε2, we have

Lλn

(

Û(ξ)
)

=R̃t + (Rξ − R̃t) +

p
∑

j=1

Pλn
(µ̂

(ξ)
·j )

=R̃t +
∑

j:tj⊆ξj

{

(R
(j)
ξ − R̃

(j)
t ) + Pλn

(µ̂
(ξ)
·j )
}

+
∑

j:tj*ξj

{

(R
(j)
ξ − R̃

(j)
t ) + Pλn

(µ̂
(ξ)
·j )
}

≥R̃t +
∑

j:tj*ξj

{

(R̃
(j)
ξ − R̃

(j)
t ) + Pλn

(µ̂
(ξ)
·j )
}

>R̃t + |t|aλn
.

When d
(1)
ξ = O(p) is large and d

(2)
ξ = o(p) is small such as d

(2)
ξ = O(1), following the

similar arguments as in the proof of (4.4) we have

∑

j:tj⊆ξj

{

(R
(j)
ξ − R̃

(j)
t ) + Pλn

(µ̂
(ξ)
·j )
}

> |t|aλn
.
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From (4.21) and Theorem 2.1 in Inglot (2010), for any ε3 > 0, with probability greater than

1− 2ε3, we have

P

{

|Akj − ψξkj | ≤
√

2τ2ξkj log
(

2d
(2)
ξ K/ε3

)

, |Bkj − ψtkj | ≤
√

2τ2tkj log
(

2d
(2)
ξ K/ε3

)

,

for any k, j such that , k = 1, · · · ,K, tj * ξj} ≥ 1− 2ε3.

Thus with probability greater than 1− 2ε3, we have

|Akj| ≥ |ψξkj| −

√

√

√

√2τ 2ξkj log

(

2d
(2)
ξ K

ε3

)

, |Bkj| ≤ |ψtkj|+

√

√

√

√2τ 2tkj log

(

2d
(2)
ξ K

ε3

)

,

which implies that

|Akj|2 − |Bkj|2 ≥







|ψξkj| −

√

√

√

√2τ 2ξkj log

(

2d
(2)
ξ K

ε3

)







2

−







|ψtkj|+

√

√

√

√2τ 2tkj log

(

2d
(2)
ξ K

ε3

)







2

=(ψξkj)
2 − 2|ψξkj|

√

√

√

√2τ 2ξkj log

(

2d
(2)
ξ K

ε3

)

+ 2τ 2ξkj log

(

2d
(2)
ξ K

ε3

)

− (ψtkj)
2 + 2|ψtkj|

√

√

√

√2τ 2tkj log

(

2d
(2)
ξ K

ε3

)

− 2τ 2tkj log

(

2d
(2)
ξ K

ε3

)

Since ψξkj = O(
√
nu∗max), ψtkj = o(

√
nrnu

∗
max), τ

2
ξkj = O(1) and τ 2tkj = O(1), with probability

greater than 1− 2ε3, we have

A2
kj − B2

kj =O
(

n (u∗max)
2)− o

(

√

n log
(

d
(2)
ξ

)

u∗max

)

+O
(

log
(

d
(2)
ξ

))

− o
(

n (rnu
∗
max)

2)+ o

(

√

n log
(

d
(2)
ξ

)

rnu
∗
max

)

−O
(

log
(

d
(2)
ξ

))

.

Because u∗max ≥ u∗min = O(
√

log(p)/n) and here we consider the case that d
(2)
ξ = o(p), we

have n(u∗max)
2 ≻ log(d

(2)
ξ ) ≻

√

n log(d
(2)
ξ )u∗max ≻

√

n log(d
(2)
ξ )rnu

∗
max ≻ n(rnu

∗
max)

2. Since
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(ψξkj)
2 ≥ 0, we have

P







∑

j:tj*ξj

(

R̃
(j)
ξ − R̃

(j)
t

)

=≥ 0







≥ 1− 2ε3.

Thus when d
(1)
ξ = O(p) and d

(2)
ξ = o(p) is small, we could also obtain that

Lλn

(

Û(ξ)
)

≥R̃t +
∑

j:tj⊆ξj

{

(R
(j)
ξ − R̃

(j)
t ) + Pλn

(µ̂
(ξ)
·j )
}

+
∑

j:tj*ξj

{

(R̃
(j)
ξ − R̃

(j)
t ) + Pλn

(µ̂
(ξ)
·j )
}

≥R̃t +
∑

j:tj⊆ξj

{

(R
(j)
ξ − R̃

(j)
t ) + Pλn

(µ̂
(ξ)
·j )
}

≥R̃t + |t|aλn
.

Because d
(1)
ξ + d

(2)
ξ = p, the case of d

(1)
ξ = o(p) and d

(2)
ξ = o(p) does not exist, therefore,

for t * ξ, we have

Lλn

(

Û(ξ)
)

≥R̃t + |t|aλn
,

which completes the proof of (4.5).

Remark 2. To have the consistency, we need (4.18) ≻ (4.17), that is,

(|ξj| − |tj|)λn ≥ λn ≍
(

log p

n

)γ

log(p)

≻
{

o
(

n(rnu
∗
max)

2
)

+ log(dξ)
}

{

o
(

√

1/p
)

+o(rnu
∗
max) +

√

log(dξ)/n

}

. (4.24)

Thus with 0 < γ < 1/2, when dξ is small such that
√

log(dξ)/n ≺ rnu
∗
max, we need (4.24) =

o(n(rnu
∗
max)

3) ≺ log(p)(log(p)/n)γ, that is, rn < (log(p)/n)(1+γ)/3. When dξ is large such that

dξ = O(p), we need log(p)(log(p)/n)γ ≻ log(p)
√

log(p)/n. This is true since log(p)/n < 1

and we have
√

log(p)/n ≻ (log(p)/n)γ.
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If there exists at least one j such that (4.14) is true, then we need Pλn
(Û(ξ)) ≻ |t|aλn

.

Since (|ξ| − |t|)/K(K − 1)) ≤ ∑

j:|ξj |>|tj |(|ξj| − |tj|) ≤ |ξ| − |t| with K = O(1) and t =

o(n/ log(p)) we have
∑

j:|ξj |>|tj |(|ξj| − |tj|) = O(|ξ| − |t|). Thus,

∑

j:|ξj |>|tj |
(|ξj| − |tj|)λn

(

D1 +
K
∑

k=1

Wk

ρk

)−1

≥
∑

j:|ξj |>|tj |
λn

(

D1 +
K
∑

k=1

Wk

ρk

)−1

(4.25)

Thus we first show that

∑

j:|ξj |>|tj |
λn

(

D1 +
K
∑

k=1

Wk

ρk

)−1

≻ |t|aλn
.

This means that we need

log(p)

{

log(p)

n

}γ







∑

j:|ξj |>|tj |
(|ξj| − |tj|)







≻ o

(

n

(

log(p)

n

)γ− 1
2

)

{

o
(

√

1/p
)

+ o(rnu
∗
max) +

√

log(dξ)/n

}

When dξ is small such that
√

log(dξ)/n ≺ rn we need rnu
∗
max|t|aλn

≺ λn that is rnu
∗
max ≺

u∗min/|t|, thus rn = (log(p)/n)3/2/u∗max. When dξ is large such that dξ = O(p), we have
∑

j:|ξj |>|tj |(|ξj| − |tj|) = O(p) thus p log(p)(log(p)/n)γ ≻ n(log(p)/n)γ, so Pλn
(Û(ξ)) ≻ |t|aλn

is true.

Considering all the cases, we require the smallest rn which is(log(p)/n)3/2/u∗max.

4.2 Proof of Lemmas

Lemma 2. Let a sequence of random variables Ψn = (R̃ξ−R̃t)/(np(u
∗
max)

2), where R̃ξ−R̃t =
∑p

j=1(R̃
(j)
ξ − R̃(j)

t ) is in the form of (4.20). From the previous contexts, Ψn have finite means

µn = O(1) and variances σ2
n = O(1/

√
npu∗max), where u

∗
max ≥ O(

√

log(p)/n) and µn > 0 as

n→ ∞. Then we can show that Ψn = OP(µn).
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Proof. Based on Theorem 14.4-1 in Bishop et al. (2007), we have that Ψn − µn = OP(σn),

that is, for any ǫ > 0, there exists M > 0 and N > 0 such that for any n > N ,

P

(∣

∣

∣

∣

Ψn − µn

σn

∣

∣

∣

∣

> M

)

< ǫ

which is equivalent to

P

(∣

∣

∣

∣

Ψn − µn

µn

∣

∣

∣

∣

>
Mσn
µn

)

< ǫ.

This is same as

P

(

Ψn

µn

> 1 +
Mσn
µn

or
Ψn

σn
< 1− Mσn

µn

)

< ǫ

which implies that

P

(

Ψn

µn

> 1 +
Mσn
µn

or
Ψn

σn
< −1− Mσn

µn

)

< ǫ.

This is same as

P

(∣

∣

∣

∣

Ψn

µn

∣

∣

∣

∣

> M1

)

< ǫ

where M1 = 1 + (Mσn)/µn > 0. From µn = O(1) and σ2
n = O(1/

√
npu∗max), we have

limn→∞ σn/µn = 0. Thus for any ε > 0, there exists N > 0 and M1 > 0 such that for any

n > N , P(|Ψn/µn| > M1) < ǫ. Therefore, by definition, Ψn = OP(µn).

Lemma 3. Let Γnj = R̃
(j)
ξ − R̃

(j)
t as in (4.20) and Γ =

∑p
j=1 Γnj = R̃ξ − R̃t. Without loss

of generality, assuming that tj * ξj for any j, then we can show lim
n→∞,p→∞

P(Γ > 0) = 1.
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Proof. Let µnj = E(Γnj), σ
2
nj = Var(Γnj) = O(n(u∗max)

2) and Xnj = (Γnj − µnj)/(
√
nu∗max).

From the previous contexts, we have 0 < µnj = O(n(u∗max)
2) and σ2

nj = O(n(u∗max)
2). So

E(Xnj) = 0 and Var(Xnj) = E(X2
nj) = σ2

nj/(n(u
∗
max)

2) = O(1) <∞.

By Theorem 14.4-1 in Bishop et al. (2007), we have Γnj −µnj = OP(σnj) = OP(
√
nu∗max),

thus Xnj = OP(1) for any n ∈ N+, j = 1, · · · , p. From the assumption p = exp(Cnα) with

0 < α < 1, we know that as n→ ∞, p→ ∞.

Let s2p =
∑p

j=1 Var(Xnj) =
∑p

j=1 σ
2
nj/(n(u

∗
max)

2) = O(p). First, we show that the se-

quence of random variables {Xnj}, n ∈ N+, p = 1, · · · , p, satisfies the Lindeberg condition.

(Chapter 11 in Athreya and Lahiri (2006)), that is for any ǫ > 0,

lim
n→∞,p→∞

1

s2p

p
∑

j=1

E
{

X2
njI (|Xnj| > ǫsp)

}

= 0. (4.26)

By definition for any ǫ > 0 we have,

1

s2p

p
∑

j=1

E
{

X2
njI(|Xnj| > ǫsp)

}

=
1

s2p
E

{

p
∑

j=1

X2
njI(|Xnj| > ǫsp, ∀j)

}

=
1

s2p

∫ ∞

0

P

{

p
∑

j=1

X2
njI(|Xnj| > ǫsp, ∀j) > t

}

dt (4.27)

If ǫsp ≥
√

t/p, then

P

{

p
∑

j=1

X2
njI(|Xnj| > ǫsp, ∀j) > t

}

≤
p
∑

j=1

P {|Xnj| > ǫsp} ;

if ǫsp <
√

t/p, then

P

{

p
∑

j=1

X2
njI(|Xnj| > ǫsp, ∀j) > t

}

≤
p
∑

j=1

P
{

|Xnj| >
√

t/p
}

.
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Thus,

(4.27) =
1

s2p

∫ pǫ2s2p

0

P

{

p
∑

j=1

X2
njI(|Xnj| > ǫsp, ∀j) > t

}

dt

+
1

s2p

∫ ∞

pǫ2s2p

P

{

p
∑

j=1

X2
njI(|Xnj| > ǫsp, ∀j) > t

}

dt

≤ 1

s2p

p
∑

j=1

∫ pǫ2s2p

0

P {|Xnj| > ǫsp} dt+
1

s2p

p
∑

j=1

∫ ∞

pǫ2s2p

P
{

|Xnj| >
√

t/p
}

dt. (4.28)

From (4.20), we have ∀j = 1, · · · , p,

P {|Xnj | > ǫsp} =P

{

R̃
(j)
ξ − R̃

(j)
t − µnj√

nu∗max

> ǫsp

}

+ P

{

R̃
(j)
ξ − R̃

(j)
t − µnj√

nu∗max

< −ǫsp
}

=P

{

∑K

k=1A
2
kj −

∑K

k=1B
2
kj − 2µnj√

nu∗max

> ǫsp

}

+ P

{

∑K

k=1A
2
kj −

∑K

k=1B
2
kj − 2µnj√

nu∗max

< −ǫsp
}

≤P

{

K
∑

k=1

A2
kj > ǫsp

√
nu∗max + 2µnj

}

+ P

{

K
∑

k=1

B2
kj > ǫsp

√
nu∗max − 2µnj

}

≤
K
∑

k=1

P

{

A2
kj >

ǫsp
√
nu∗max + 2µnj

K

}

+

K
∑

k=1

P

{

B2
kj >

ǫsp
√
nu∗max − 2µnj

K

}

=
K
∑

k=1

[

P

{

Akj >

√

ǫsp
√
nu∗max + 2µnj

K

}

+

{

Akj < −
√

ǫsp
√
nu∗max + 2µnj

K

}

+P

{

Bkj >

√

ǫsp
√
nu∗max − 2µnj

K

}

+ P

{

Bkj < −
√

ǫsp
√
nu∗max − 2µnj

K

}]

. (4.29)

From (4.21), we have,

Akj ∼ N
(

ψξkj, τ
2
ξkj

)

, Bkj ∼ N
(

ψtkj, τ
2
tkj

)

,

where ψξkj = O(
√
nu∗max), ψtkj = o(

√
nrnu

∗
max), τ

2
ξkj = O(1) and τ 2tkj = O(1).

Let Z ∼ N(0, 1) then we have,

P {|Xnj| > ǫsp} ≤
K
∑

k=1

(

P

[

Z >
1

τξkj

{
√

ǫsp
√
nu∗max + 2µnj

K
− ψξkj

}]
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+ P

[

Z <
1

τξkj

{

−
√

ǫsp
√
nu∗max + 2µnj

K
− ψξkj

}]

+P

[

Z >
1

τtkj

{
√

ǫsp
√
nu∗max − 2µnj

K
− ψtkj

}]

+P

[

Z <
1

τtkj

{

−
√

ǫsp
√
nu∗max − 2µnj

K
− ψtkj

}])

For any k = 1, · · · , K, let

z1k =
1

τξkj

{
√

ǫsp
√
nu∗max + 2µnj

K
− ψξkj

}

, z2k =
1

τξkj

{
√

ǫsp
√
nu∗max + 2µnj

K
+ ψξkj

}

,

z3k =
1

τtkj

{
√

ǫsp
√
nu∗max − 2µnj

K
− ψtkj

}

, z4k =
1

τtkj

{
√

ǫsp
√
nu∗max − 2µnj

K
+ ψtkj

}

,

then zmk ≍ (np)1/4
√
u∗max ≻ {p log(p)}1/4 for any m = 1, · · · , 4, since u∗max ≥ u∗min =

O(
√

log(p)/n). Thus

P {|Xnj| > ǫsp} ≤
K
∑

k=1

4
∑

m=1

P (Z > zmk)

=
K
∑

k=1

4
∑

m=1

∫ +∞

zmk

exp(−z2/2√
2π

dz

≤
K
∑

k=1

4
∑

m=1

∫ +∞

zmk

{

exp(−z2/2)√
2π

+
exp(−z2/2)
z2
√
2π

}

dz

=
K
∑

k=1

4
∑

m=1

exp(−z2mk/2)

zmk

√
2π

.

Let θj =
∑K

k=1

∑4
m=1 exp(−z2mk/2)/(zmk

√
2π), then the first integral in (4.28) is,

1

s2p

p
∑

j=1

∫ pǫ2s2p

0

P {|Xnj| > ǫsp} dt ≤
1

s2p
pǫ2s2p

p
∑

j=1

θj

≤ p2ǫ2 max
j

{θj} (4.30)

→ 0,
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as n→ ∞, p→ ∞, because p = exp(Cnα) with 0 < α < 1 and for any j

p2θj = p2
K
∑

k=1

4
∑

m=1

exp(−z2mk/2)

zmk

√
2π

≍ p2 exp
{

−(np)1/2u∗max/2
}

(np)1/4
√
u∗max

converges to 0 as n→ ∞, p→ ∞.

For the second integral in (4.28), for any j we have,

P(|Xnj| >
√

t/p) ≤
K
∑

k=1

4
∑

m=1

exp(−z̃2mk/2)

z̃mk

√
2π

(4.31)

where

z̃1k =
1

τξkj







√

u∗max

√

nt/p+ 2µnj

K
− ψξkj







, z̃2k =
1

τξkj







√

u∗max

√

nt/p+ 2µnj

K
+ ψξkj







,

z̃3k =
1

τtkj







√

u∗max

√

nt/p− 2µnj

K
− ψtkj







, z̃4k =
1

τtkj







√

u∗max

√

nt/p− 2µnj

K
+ ψtkj







.

Then for any k = 1, · · · , K we have,

p

s2p

∫ ∞

pǫ2s2p

exp(−z̃21k/2)
z̃1k

√
2π

dt =
4p2Kτξkj
ns2p(u

∗
max)

2

∫ ∞

z1k

exp(−z2/2)
z
√
2π

{

K (zτξkj + ψξkj)
3

−2µnj (zτξkj + ψξkj)} dz

=
4p2K2τ 4ξkj
ns2p(u

∗
max)

2

∫ ∞

z1k

z2 exp(−z2/2)√
2π

dz

+
12p2K2τ 3ξkjψξkj

ns2p(u
∗
max)

2

∫ ∞

z1k

z exp(−z2/2)√
2π

dz

+
4p2Kτ 2ξkj
ns2p(u

∗
max)

2

(

3Kψ2
ξkj − 2µnj

)

∫ ∞

z1k

exp(−z2/2)√
2π

dz

+
4p2Kτξkj
ns2p(u

∗
max)

3

(

Kψ2
ξkj − 2µnjψξkj

)

∫ ∞

z1k

exp(−z2/2)
z
√
2π

dz. (4.32)
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The first integral of (4.32) is,

4p2K2τ 4ξkj
ns2p(u

∗
max)

2

∫ ∞

z1k

z2 exp(−z2/2)√
2π

dz =
4p2K2τ 4ξkj

ns2p(u
∗
max)

2
√
2π

(

−ze−z2/2
∣

∣

∣

∞

z=z1k
+

∫ ∞

z1k

e−z2/2 dz

)

≤
4p2K2τ 4ξkj

ns2p(u
∗
max)

2
√
2π
z1ke

−z21k/2

+
4p2K2τ 4ξkj

ns2p(u
∗
max)

2
√
2π

∫ ∞

z1k

ze−z2/2 dz

=
4p2K2τ 4ξkj

ns2p(u
∗
max)

2
√
2π
z1ke

−z21k/2 +
4p2K2τ 4ξkj

ns2p(u
∗
max)

2
√
2π
e−z21k/2.

This converges to 0 as n → ∞, p → ∞. Similarly, with z > 1 we have 0 < exp(−z2/2) ≤

z exp(−z2/2) and 0 < exp(−z2/2)/z ≤ z exp(−z2/2), so the other three integrals in (4.32)

also converge to 0 as n → ∞, p → ∞. Moreover, the integral p
s2p

∫∞
pǫ2s2p

exp(−z̃2
mk

/2)

z̃mk

√
2π

dt also

converges to 0 for m = 2, 3, 4 as n→ ∞, p→ ∞.

Based on (4.31), the second integral of (4.28) is,

1

s2p

p
∑

j=1

∫ ∞

pǫ2s2p

P
{

|Xnj| >
√

t/p
}

dt ≤ 1

s2p

p
∑

j=1

∫ ∞

pǫ2s2p

K
∑

k=1

4
∑

m=1

exp(−z̃2mk/2)

z̃mk

√
2π

dt

≤ p

s2p
max

j

{

K
∑

k=1

4
∑

m=1

∫ ∞

pǫ2s2p

exp(−z̃2mk/2)

z̃mk

√
2π

dt

}

(4.33)

→ 0,

as n→ ∞, p→ ∞. Thus, from (4.28), (4.30) and (4.33), we have ∀ǫ > 0,

1

s2p

p
∑

j=1

E
{

X2
njI(|Xnj| > ǫsp)

}

=
1

s2p

∫ ∞

0

P

{

p
∑

j=1

X2
njI(|Xnj| > ǫsp, ∀j) > t

}

dt

≤ 1

s2p

p
∑

j=1

∫ pǫ2s2p

0

P {|Xnj| > ǫsp} dt

+
1

s2p

p
∑

j=1

∫ ∞

pǫ2s2p

P
{

|Xnj| >
√

t/p
}

dt.

→0,
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as n→ ∞, p→ ∞. Therefore, {Xnj} satisfies the Lindeberg condition (4.26).

Since E(Xnj) = 0, Var(Xnj) <∞, by Lindeberg Central Limit Theorem (Theorem 11.1.1

in Athreya and Lahiri (2006)), we have

∑p
j=1Xnj

sp

d−→ N(0, 1). (4.34)

Thus, for any ǫ > 0,

P (Γ ≤ ǫ) = P

{

1√
nu∗max

(

p
∑

j=1

Γnj −
p
∑

j=1

µnj

)

≤ 1√
nu∗max

(

ǫ−
p
∑

j=1

µnj

)}

= P

{

∑p
j=1Xnj

sp
≤ 1

sp
√
nu∗max

(

ǫ−
p
∑

j=1

µnj

)}

= Φ

{

1

sp
√
nu∗max

(

ǫ−
p
∑

j=1

µnj

)}

+ o(1)

→ Φ(−∞)

= 0,

as n→ ∞, p→ ∞.

Therefore, lim
n→∞,p→∞

P(Γ > 0) = 1, that is, lim
n→∞,p→∞

P(R̃ξ − R̃t > 0) = 1.

4.3 Proof of Lower Bound of Risk Theorem 4

Proof. The proof follows the techniques of proving Proposition 1 in (Zhang, 2007), which is

the proof of lower bound of the expectation of selection consistency for model selection in

regressions with minimax concave penalty (Zhang, 2010).

Firstly, we will consider a special case K = 2. From model (3.1), letting µ2 = 0, the

marginal density function of yi, i = 1, · · · , n is,

f(yi|µ1,µ2) = πf1(yi|µ1 = µ,Σ = Ip) + (1− π)f2(yi|µ2 = 0,Σ = Ip), (4.35)
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where 0 < π < 1 is a constant cluster proportion of the first cluster, f1 and f2 are densities

of Multivariate Normal distributions and µ = {µ1, · · · , µp}

With assumption µ2 = 0, ξ(U) can be simplified as ξ(µ) = {j : µj 6= 0, j = 1, · · · , p}

be the class of informative variables (dimensions) with nonzero mean differences. Let µ̂n be

any estimator of µ from the sample {y1, · · · ,yn}, then (3.11) equals to,

R∗ = inf
µ̂n

sup
umin≥ǫ0

(

p

s

)−1
∑

µ:S(µ)=s

Eµ{I(ξ(µ̂n) 6= ξ(µ))}

= inf
µ̂n

sup
umin≥ǫ0

(

p

s

)−1
∑

µ:S(µ)=s

Pµ{ξ(µ̂n) 6= ξ(µ)}. (4.36)

Define a class of probability measure M as follows. Let µ ∈ {µ : S(µ) = s, umin ≥ ǫ0},

a fixed j0 ∈ ξ(µ) with µj0 = umin, then for any j /∈ ξ(µ), let

w(j) = µ− uminej0 + uminej

M = {Pw(j) , j /∈ ξ(µ)},

where ej is a p-dimensional vector with value 1 for jth element and 0 for others.

Now consider the Kullbeck-Leibler divergence of Pw(j) and Pw(h) .

KL (Pw(j) , Pw(h) |Y ) =nEw(j)

{

log

(

dPw(j)

dPw(h)

)}

=n

∫

Rp

{πf1(y|w(j), Ip) + (1− π)f2(y|0, Ip)}

· log
{

πf1(y|w(j), Ip) + (1− π)f2(y|0, Ip)
πf1(y|w(h), Ip) + (1− π)f2(y|0, Ip)

}

dy

=n

∫

Rp

(2π)−
p

2

[

π exp{−1

2
(y −w(j))′(y −w(j))}+ (1− π) exp{−1

2
y′y}

]

· log
[

π exp{−1
2
(y −w(j))′(y −w(j))}+ (1− π) exp{−1

2
y′y}

π exp{−1
2
(y −w(h))′(y −w(h))}+ (1− π) exp{−1

2
y′y}

]

dy

(4.37)
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Since 0 < π < 1 and exponential function exp(·) > 0, by the log-sum inequality, we have,

(4.37) ≤n
∫

Rp

π(2π)−
p

2 exp{−1

2
(y −w(j))′(y −w(j))} log

[

π exp{−1
2
(y −w(j))′(y −w(j))}

π exp{−1
2
(y −w(h))′(y −w(h))}

]

+ (1− π)(2π)−
p

2 exp{−1

2
y′y} log

[

(1− π) exp{−1
2
y′y}

(1− π) exp{−1
2
y′y}

]

dy

=πnEw(j)

{

y′(w(j) −w(h)) +
1

2
(w(h))′(w(h))− 1

2
(w(j))′(w(j))

}

=
nπ

2
(w(j) −w(h))′(w(j) −w(h))

=nπu2min.

By Fano’s Lemma, we have

1

p− s

∑

j /∈ξ(µ)

Pw(j) {ξ(µ̂n) = ξ(µ)} ≤ 1

(p− s)2

∑

j,h/∈ξ(µ)

KL(Pw(j) , Pw(h)) + log 2

log(p− s− 1)

≤ 1

(p− s)2

(

p− s

2

)

πnu2min + log 2

log(p− s− 1)

=
(p− s− 1)(πnu2min + log 2)

2(p− s) log(p− s− 1)
,

=1− o(1),

thus, the lower bound of risk (4.36) is,

R∗ = inf
µ̂n

sup
umin≥ǫ0

(

p

s

)−1
∑

µ:S(µ)=s

Pµ{ξ(µ̂n) 6= ξ(µ)}

≥ inf
µ̂n

sup
π≥ǫ0

1

p− s

∑

j /∈ξ(µ)

Pw(j) {ξ(µ̂n) 6= ξ(µ)}

≥ 1− (p− s− 1)(πnǫ20 + log 2)

2(p− s) log(p− s− 1)
(4.38)

= o(1)

The last equation is because ǫ0 = (
√

2/maxk{πk}+ o(1))
√

log(p)/n and s = o(n/log(p))
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For any K > 2 and K = O(1), from model (3.1), the marginal density function of

yi, i = 1, · · · , n is,

f(yi|µ1, · · · ,µK) =
K
∑

k=1

πkfk (yi|µk,Σ = Ip) , (4.39)

where 0 < πk < 1 is the proportion of the cluster Ck in the population and
∑

k πk = 1, fk is

a density of p-dimensional multivariate normal distributions.

Assuming that µK = 0, we consider the lower bound of risk (3.11),

R∗ = inf
Ûn

sup
U∈Θ

EU

(

EÛn|U

[

I
{

ξ(Ûn) 6= ξ(U)
}])

,

where Θ = {U : S(U) = s; umin ≥ ǫ0} with s = o(n/ log(p) and ǫ0 = (
√

2/maxk{πk} +

o(1))
√

log(p)/n. If there does not exist µK = 0, we could shift the location of the data by

minus µK which does not affect the clustering and variable identifications.

For brevity, we use j ∈ ξ(U) represents that there exists at least one pair of clusters Ck

and Ck′ such that µkj 6= µk′j, which also indicates that jth variable (dimension) is globally

informative for distinguishing at least one pair of clusters.

In order to further bound R∗ from below, firstly we consider a parameter subspace Θ1 ⊂ Θ

where Θ1 = {U : S(U) = s; umin ≥ ǫ0; ∀j ∈ ξ(U), there exists exactly one k such that µkj 6=

µk′j, and µmj = µk′j, ∀m, k′ 6= k}. In other words, if U ∈ Θ1, then for each j ∈ ξ(U), there

are exactly K − 1 clusters having the same mean, i.e., there exists only one cluster mean

which is different from others. For brevity, we say that such µkj is a distinctive cluster mean

on the jth dimension. Thus, if the jth variable is globally informative, then there are K − 1

pairs with nonzero mean differences on the jth dimension. Otherwise, all of the pairwise

mean differences on the jth dimension are zero. So there are s/(K − 1) globally informative

variables in total.

Let U ∈ Θ1, given a fixed j0, k0 for any such that (k0,m, j0) ∈ ξ(U), i.e., µk0j0 6= µmj0 , if

k0 6= K then |µk0j0 − µKj0 | = |µk0j0 | = umin; otherwise if k0 = K, then µKj0 − µmj0 = umin
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for any m 6= K. We construct a new parameter subspace of Θ1 under the following two

scenarios,

1. For any j /∈ ξ(U), and k ∈ {1, · · · ,K} let

W (kj) = U− uminsgn(µk0j0)I(k0 6= K)ek0e
′
j0 + uminsgn(µ1j0)I(k0 = K)ek0e

′
j0 + umineke

′
j ;

2. if j = j0, for any m 6= k0, let

W (mj0) = U− uminsgn(µk0j0)I(k0 6= K)ek0e
′
j0 + uminsgn(µ1j0)I(k0 = K)ek0e

′
j0 + umineme′j0 ,

where ej is a p-dimensional vector with value 1 for jth element and 0 for others.

Let

Θ2 =
{

W (kj) : j /∈ ξ(U), U ∈ Θ1, j0 ∈ ξ(U)
}

∪
{

W (mj0) : m 6= k0, j0 ∈ ξ(U), U ∈ Θ1

}

.

Then Θ2 is a subspace of Θ1 and |Θ2| = (K − 1) + (p− ⌊ s
K−1

⌋)K. Next we check the pair-

wise Kullbeck-Leibler’s divergence between probability measures PW (kj) and PW (k′j′) , where

W (kj),W (k′j′) ∈ Θ2.

KL
(

W (kj),W (k′j′)|Y
)

= nEW (kj)

{

log

(

dPW (kj)

dPW (k′j′)

)}

= nEW (kj)



log







∑K
m=1 πmfm

(

y|w(kj)
m

)

∑K
m=1 πmfm

(

y|w(k′j′)
m

)











≤ n

K
∑

m=1

πmEw
(kj)
m



log







fm

(

y|w(kj)
m

)

fm

(

y|w(k′j′)
m

)











≤ n

2

K
∑

m=1

πm

(

w(kj)
m −w(k′j′)

m

)′ (
w(jk)

m −w(k′j′)
m

)

. (4.40)

In general for any W (kj),W (k′j′) ∈ Θ2, there are the following three cases.
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1. If j = j′, k 6= k′, there are N1 =
(

K−1
2

)

+ (p− ⌊ s
K−1

⌋)
(

K
2

)

pairs of W (kj),W (k′j′). Then

(4.40) implies that,

KL
(

W (kj),W (k′j)|Y
)

≤ πk + πk′

2
nu2min ≤ nu2min max

k
{πk}; (4.41)

2. if j 6= j′, k = k′, there are N2 =
(p−⌊ s

K−1
⌋

2

)

K+(p−⌊ s
K−1

⌋)(K−1) pairs ofW (kj),W (k′j′).

Then (4.40) implies that,

KL
(

W (kj),W (kj′)|Y
)

≤ πknu
2
min ≤ nu2min max

k
{πk}; (4.42)

3. if j 6= j′, k 6= k′, there are N3 =
(p−⌊ s

K−1
⌋

2

)

K(K − 1) + (p − ⌊ s
K−1

⌋)(K − 1)2 pairs of

W (kj),W (k′j′). Then (4.40) implies that,

KL
(

W (kj),W (k′j′)|Y
)

≤ πk + πk′

2
nu2min ≤ nu2min max

k
{πk}. (4.43)

Obviously,
(|Θ2|

2

)

= N1 +N2 +N3, where |Θ2| = (K − 1) + (p− ⌊ s
K−1

⌋)K = O(p).

Thus by Fano’s Lemma, (4.41), (4.42) and (4.43), we have,

EU∈Θ2

(

EÛn|U

[

I
{

ξ
(

Ûn

)

= ξ (U)
}])

=
1

|Θ2|
∑

W (kj)∈Θ2

PW (kj)

{

ξ
(

Ûn

)

= ξ
(

W (jk)
)

}

≤ 1

|Θ2|2
∑

(j,k) 6=(j′,k′)

KL (PW (kj) , PW (k′j′)) + log(2)

log(|Θ2| − 1)

≤(N1 +N2 +N3) {nu2min maxk{πk}+ log(2)}
|Θ2|2 log(|Θ2| − 1)

=
|Θ2|(|Θ2| − 1) {nu2min maxk{πk}+ log(2)}

2|Θ2|2 log(|Θ2| − 1)

=
(|Θ2| − 1){nu2min maxk{πk}+ log(2)}

2|Θ2| log(|Θ2| − 1)
.
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Therefore, we have the lower bound of the minimax risk (3.11) is,

R∗ = inf
Ûn

sup
U∈Θ

EU

(

EÛn|U

[

I
{

ξ(Ûn) 6= ξ(U)
}])

,

≥ inf
Ûn

sup
U∈Θ2

EU

(

EÛn|U

[

I
{

ξ(Ûn) 6= ξ(U)
}])

,

≥1− (|Θ2| − 1){nǫ20 maxk{πk}+ log(2)}
2|Θ2| log(|Θ2| − 1)

=1− (1− o(1))

=o(1),

because ǫ0 = (
√

2/maxk{πk}+ o(1))
√

log(p)/n and |Θ2| = O(p). This completes the proof

of Theorem 4.

4.4 Details of Guidelines for Tuning Parameter λn Selection

We only show the derivation for the special case K = 2. The general case K > 2 has

similar derivation. Let the pair of means with the largest difference to be µ̃1m and µ̃2m on

m-th dimension. With known zik = I(yi ∈ Ck), where Ck represents k-th cluster and σ2
m

(variance of m-th variable), from log-likelihood (3.4), we have

n
∑

i=1

2
∑

k=1

αik

2σ2
m

(µ̃km − yim)
2 + λmax

n

1

|µ̃1m − µ̃2m|
=

n
∑

i=1

(yim − ȳ·m)

2σ2
m

, (4.44)

where ȳ·m =
∑n

i=1 yim/n is the sample mean of m-th variable.

The first order partial derivatives of left-hand side equation in (4.44) with respect to µ̃1m

and µ̃2m are,

∂

∂µ̃1m

=
∑

i:yi∈C1

µ̃1m − yim
σ2
m

− λmax
n

sgn(µ̃1m − µ̃2m)

|µ̃1m − µ̃2m|2
, (4.45)

∂

∂µ̃2m

=
∑

i:yi∈C2

µ̃2m − yim
σ2
m

− λmax
n

sgn(µ̃2m − µ̃1m)

|µ̃1m − µ̃2m|2
. (4.46)
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Without loss of generality, we assume µ̃1m > µ̃2m and solve equations (4.44), (4.45) = 0

and (4.46) = 0 as follows,

λmax
n =

1

2σ2m







n
∑

i=1

(yim − ȳ·m)2 −
∑

i:yi∈C1

(yim − µ̃1m)2 −
∑

i:yi∈C2

(yim − µ̃2m)2







(µ̃1m − µ̃2m) (4.47)

=
1

σ2m

∑

i:yi∈C1

(µ̃1m − yim)(µ̃1m − µ̃2m)2 (4.48)

=
1

σ2m

∑

i:yi∈C2

(yim − µ̃2m)(µ̃1m − µ̃2m)2, (4.49)

From (4.48) = (4.49), we have,

∑

i:yi∈C1

(µ̃1m − yim) =
∑

i:yi∈C2

(yim − µ̃2m),

which implies that

µ̃2m =
nȳ·m − n1µ̃1m

n2

and µ̃1m − µ̃2m =
n

n2

(µ̃1m − ȳ·m).

Plug this into (4.47) = (4.48), we have,

3n1µ̃
2
1 −

(

4
∑

i:yi∈C1

yi + 2n1ȳ·m

)

µ̃1m + 4ȳ·m
∑

i:yi∈C1

yi − n1ȳ
2
·m = 0,

which implies that

µ̃1m =
1

3n1

(

4
∑

i:yi∈C1

yi − n1ȳ·m

)

(4.50)

or

µ̃1m = ȳ·m ⇒ λ = 0.
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Since we assume λmax
n > 0, the second case µ̃1m = ȳ·m is not considered. So based on the

first case (4.50), we have,

λmax
n =

16n2

27n2
1n

2
2σ

2
m

(

∑

i:yi∈C1

yim − n1ȳ·m

)3

,

where n1 = |C1|, n2 = |C2| and n1 + n2.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, we studied and extended model-based clustering to solve various

problems. In Chapter 2, we proposed a semiparametric model (SPM-clust) which performs

well in clustering without assuming the normality of the observed data. Through simula-

tions, SPM-clust is shown to perform well for clustering non-Gaussian data. Since this is a

semiparametric method, the theoretical results of the convergence of the proposed algorithm

are worth to studied. Currently, the semiparametric method is studied under a low dimen-

sional setting. For high-dimensional data, some regularization methods for cluster means

and covariances are required. In Chapter 3 and Chapter 4, we studied high-dimensional

model-based clustering and proposed a new regularization method “PARSE” which can con-

sistently select the true informative variables for separating each pair of clusters in clustering.

Simulations showed that PARSE outperforms other popular regularization methods. The-

oretically, we also showed the consistency as well as the optimality of identifying the true

model using PARSE under the assumption that the number of clusters is known. Theory in

cluster analysis such as consistently estimating the model and the cluster assignments is a

challenging problem and has not been fully understood yet. It would be interesting to further

investigate the consistency of PARSE in estimating clustering assignments especially when

the number of clusters is unknown. Through simulations in this dissertation, we found that

as the signal is strong enough, both SPM-clust and PARSE are uniformly better than other

commonly used methods. However, the lower bound of the signal-noise-ratio that guarantees

the performance of SPM-clust has not been fully studied and will be left as a future work.
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APPENDIX

A.1 More about PARSE Modeling of Asthma Data

In this section, we include the details of clustering results for the following three datasets:

GO:0019221 (cytokine mediated signaling pathway), GO:0042493 (the response to the drug)

and GO:0060333 (IFN-γ mediated signaling pathway).

PARSE selects 3 clusters for GO term 0042493. Figure A.1 is the heatmap of all the 69

globally informative genes. There is a clear separation between the clusters in the heatmap.

To further confirm that the globally informative genes contain the majority of information in

the data, we randomly select 60 non-informative genes and show the heatmap in Figure A.2.

Since the values (colors) of the three clusters are similar, there is little information for

clustering based on the non-informative genes. Moreover, from Figure A.3, we can figure

out which genes are pairwise informative for a specific pair of clusters. All the genes in the

Figure A.3 are globally informative.

GO:0060333 (IFN-γ mediated signaling pathway) which contains 130 genes is a subset

of GO:0019221 (cytokine mediated signaling pathway) with 270 genes. For the GO term

0060333, there are 95 globally informative genes. Figure A.4 shows that almost all the

variables are pairwise informative when we compare the 6th cluster to cluster 1, 2 or 3.

Investigating more about the clustering, we find that PARSE selects 6 clusters including a

singleton cluster (the 6th cluster). The 6th cluster only contains the 69th patient. Although

the singleton cluster could be an outlier or a cluster with values differ from the other clusters,

comparing the singleton cluster to the other cluster means may not be useful, because the

cluster mean of a singleton cluster is the observation itself. Thus, we take out the singleton

cluster and show the pairwise informative genes for the remaining clusters in Figure A.5.

The figure shows that there are 80 globally informative genes for these 5 clusters which
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mean that 15 genes are estimated as globally informative because these genes distinguish

the singleton cluster from the other clusters.

Similarly, for the GO term 0019221, PARSE selects 6 clusters including a singleton cluster

and there are 145 globally informative genes. Figure A.6 shows that almost all the variables

are pairwise informative when we compare the 5th cluster to the other 4 clusters. In fact,

the 5th cluster is a singleton cluster which also contains only the 69th patient. Figure A.5

shows the pairwise informative genes after deleting the singleton cluster. 103 of the globally

informative genes are informative for the remaining 4 clusters which means that 42 genes,

i.e., about one-third of the globally informative genes are determined by the singleton cluster.

Thus, it could be useful to further investigate the 69th patient to determine if this is a special

cluster in asthma disease.
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Figure A.3: Indicator map of the pairwise informative genes for GO:0042493 (the response
to the drug). Each column represents a pair of clusters. Each row represents a globally
informative gene. The “white” color represents pairwise non-informative and the black color
represents pairwise informative. For example, the first column and the first row being “white”
means that genes with label “A 23 P102471” is pairwise non-informative for separating the
first and second clusters.
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Figure A.4: Indicator map of the pairwise informative genes for GO:0060333 (IFN-γ mediated
signaling pathway). Cluster 6 (C6) is a singleton cluster.
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Figure A.5: Indicator map of the pairwise informative genes for GO:0060333 (IFN-γ mediated
signaling pathway) deleting the singleton cluster.
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Figure A.6: Indicator map of the pairwise informative genes for GO:0019221 (cytokine me-
diated signaling pathway). Cluster 5 (C5) is a singleton cluster.

118



C1−C2 C1−C3 C1−C4 C2−C3 C2−C4 C3−C4

A_32_P87697
A_32_P83256
A_32_P460973
A_32_P356316
A_32_P351968
A_32_P209960
A_32_P107372
A_24_P936272
A_24_P912382
A_24_P852756
A_24_P740662
A_24_P59667
A_24_P557479
A_24_P50245
A_24_P402222
A_24_P393230
A_24_P385611
A_24_P378019
A_24_P376483
A_24_P370472
A_24_P36898
A_24_P362317
A_24_P35905
A_24_P354800
A_24_P343929
A_24_P343233
A_24_P335305
A_24_P332981
A_24_P328492
A_24_P326082
A_24_P319354
A_24_P311926
A_24_P304071
A_24_P298409
A_24_P287043
A_24_P274270
A_24_P270460
A_24_P254933
A_24_P243528
A_24_P207139
A_24_P203000
A_24_P166443
A_24_P161933
A_24_P148717
A_24_P133542
A_24_P113674
A_23_P95917
A_23_P87545
A_23_P85693
A_23_P8108
A_23_P76090
A_23_P72737
A_23_P70539
A_23_P70095
A_23_P68031
A_23_P65442
A_23_P64828
A_23_P62890
A_23_P6263
A_23_P56630
A_23_P502470
A_23_P48513
A_23_P47955
A_23_P45099
A_23_P4286
A_23_P4283
A_23_P42306
A_23_P41765
A_23_P408353
A_23_P37441
A_23_P362659
A_23_P358944
A_23_P35412
A_23_P353478
A_23_P334664
A_23_P33384
A_23_P332190
A_23_P318039
A_23_P31006
A_23_P30927
A_23_P30913
A_23_P30848
A_23_P30736
A_23_P306148
A_23_P259561
A_23_P258769
A_23_P250629
A_23_P24004
A_23_P214360
A_23_P204087
A_23_P201459
A_23_P17663
A_23_P162300
A_23_P153311
A_23_P152782
A_23_P151851
A_23_P151294
A_23_P145264
A_23_P139786
A_23_P138680
A_23_P125107
A_23_P113716
A_23_P110791

Figure A.7: Indicator map of the pairwise informative genes for GO:0019221 (cytokine me-
diated signaling pathway) deleting the singleton cluster.
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