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A COMPUTER STUDY OF TRANSITION OF WALL BOUNDARY LAYERS 

A direct solution by computer of the governing equations for the 

mean and fluctuating motions in incompressible, two dimensional fluid 

flow has been obtained using an invariant modelling technique for the 

triple and higher order velocity correlation terms. This provides a 

reasonably satisfactory data-generating procedure for predicting general 

two dimensional wall boundary layer data (laminar through transitidrt to 

turbulent flows) for a wide variety of wall and free stream condition~j 

often impossible to model in wind tunnels. 

It has also been shown that differential methods of wall boundary 

layer prediction, utilizing the eddy viscosity concept, and integral 

relation methods, can be adapted through an implicit transition or 

intermittency function to provide a continuous prediction of general 

two dimensional wall boundary layers from laminar through transition to 

the turbulent regime. Such a transition function has been evaluated and 

tested in this work. 

From a force-field theory developed in this work, the phenomena 

of laminar instability and laminar to turbulent transition have been 

reexamined with satisfactory predictions. of incipient laminar insta­

bility, transition and non-linear disturbance amplification character· 

istics. The force-field theory emphasizes a dynamic fluid property 

which defines the fluid cohesiveness or ability to resist perturbations. 

This property, it appears, solely determines the flow characteristics. 

The force-field theory derives, in addition, a simple non-linear flow 

transfer function which provides a very simple procedure for the 

ii 



continuous prediction of simple two dimensional wall boundary 

layers. 

Finally, by assuming that conceptual fluid particles in a boundary 

layer fluid would be arranged in continuous mean energy levels, a 

statistical collision theory has been initiated to describe and predict 

turbulence characteristics in wall boundary layers. All preliminary 

results are satisfactory and justify continued pursuance of the methods 

demonstrated in this work. 

iii 



TABLE OF CONTENTS 

Chapter 

ABSTRACT 

LIST OF FIGURES 

NOMENCLATURE . 

1 INTRODUCTION . . . 

2 A BRIEF SURVEY OF CURRENT WALL BOUNDARY LAYER THEORIES . 

2.1 Laminar Boundary Layer Research 
2.2 Transitional Boundary Layer Research 
2.3 Turbulent Boundary Layer Research 

3 THE NUMERICAL EXPERIMENTAL TECHNIQUE . . • . • . 

Page 

ii 

vi 

vii 

1 

7 

8 
13 
16 

21 

3.1 The Analytical Model. . . . . . . 22 
3.2 Reduction of the Governing Equations of Motion.. 26 
3.3 The Numerical Method. • . . 34 
3.4 The Computer Program . . 41 

4 FLOW INSTABILITY AND TRANSITION 

4.1 
4.2 
4.3 
4.4 

The Force Field Concept 
An Energy Method . . . • 
A Flow Describing Function 
Use of a Describing Function Method for 
Continuous Solution of the Wall Boundary Layer 

5. A TRANSITION FUNCTION MEmOD FOR CONTINUOUS SOLtrrION OF THE 

44 

44 
55 
75 

84 

WALL BOUNDARY LAYER . . . · . · · • · . · · · · 88 

5.1 The Form of the Transition Function 
5.2 A Differential Method .••• 
5.3 An Integral Relation Method 

6 A STATISTICAL ENERGY THEORY OF TURBULENCE 

6.1 The Conceptual Energy-Surface Structure of 
Wall Bounded Flows . . . . • • • • 

6.2 A Statistical "Collision" Theory 

7 A DISCUSSION OF PRESENT RESULTS 

8 CONCLUDING REMARKS 

9 REFERENCES..... 

iv 

89 
95 
97 

101 

101 
104 

115 

119 

124 



TABLE OF CONTENTS (Continued) 

Chapter 

APPENDICES 

A. THE METHOD OF INVARIANT KlDELLING 
B. APPENDIX TO CHAPTER III OF TEXT . . 
C. DERIVATION AND SOLlJfION OF EQUATION 

mE TEXT. . . . . . • . . . . . . . 
D. THE COMPlJfER PROGRAM FOR TURBULENCE 

CLOSURE .. 

FIGURES 

v 

(4.39) IN 

FIELD 

. . 

Page 

. . 129 

130 
. 138 

147 

. 154 

172 



LIST OF FIGURES 

Figure 

1 Schema of the Conventional Wall Boundary Layer 
Regimes . • • 

2 Orthogonal Curvilinear Coordinate System 

3 Schema of Boundary Layer Sections 

4 Schema of Force Field/Stability Number 
Relationship • . . . . . . . • • • . • • • • • 

5 Functional Relation Between (Ulo*/vl)ci 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

and the Shape Factor, H • • • • • • • • • • • • 

Herring-Mellor Coordinate System for Difference­
Differential Method • . • . . . • . . • 

Sketch of Force Field Coordinate System . 

Schema of Conceptual Energy-Volumes on a Flat 
Plate Boundary Layer . . . . . • • • . • 

Effect of Initial Turbulence Intensity on 
(SN t - SN .) • • • • • • • • • • • • • • 

C Cl 

Continuous Predictions of Boundary Layer 
Thicknesses . • . • • • • • . • • • • • • . . . . . . 
Continuous Predictions of Mean Velocity Profiles 

Continuous Predictions of Skin Friction 

Statistical Theory Prediction of Turbulence 
Distribution . . . . . . . . . . • . • • • 

Turbulence Energy Production and Dissipation Rates 
in Wall Region . . . . • • • . • • • . • • • • • 

Turbulence Energy Production and Dissipation Away 
from Wall . . . . . • • . . • . • • • . • . . • • 

Typical Streamwise Variation of Maximum Amplification 
Factor · . .. . · . . . . . . . . . .. . . . . . 

The Describing Function Coefficient~ 

vi 

173 

174 

175 

176 

177 

178 

4S 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 



Symbol 

(A, B, .•. Z) 

(a,b, ... z) 

i.l* 

c p 

c v 

d 

e,(E) 

f' 

F 

f 
P 

Ga 

H 

I 

i ,j, k 

K 

k. (i=1,2,3) 
1 

NOMENCLATURE 

Definition 

Constants or function, as defined in text 

Transpiration Number, 

Amplification factor, or disturbance 
amplitude. 

Wall curvature, l/r ,(co*) o 

Skin fri cti on 

Specific heat at constant pressure 

Specific heat at constant volume 

!J.x, x-spacing 

Kinetic energy (or Eckert Number) 

tvlean velocity defect, (1 - u/Ul ) 
\) dU l Pressure gradient parameter, ---
U2 dx 

Disturbance frequency 1 

Gtsrtler Number 

Grashof Number 

Gravitational constant 

Velocity profile shape factor, 0*/6 

Local total turbulence intensity, 

~ A (~2 + v,2 + w,2 ) 
Ul 3 

Initial free stream total turbulence intensity 

Indices 

Total disturbance kinetic energy 

Double velocity correlations, (u'u', v'v', w'w') 

vii 



Symbol 

k 

k s 

L 

Mini C·) 

p 

Pr 

q 

q' 

r 

Ra 

ReL 

RL 

S c 

SN 

SND 

T 

-Ta 

Ul 

u 

v 

w 

x 

y 

z 

NO~~NCLATURE (Continued) 

Definition 

Coefficient of thermal conductivity 

Wall roughness height 

Characteristic length 

Minimum value of (.) 

Local mean pressure 

Prandt 1 Number, l!C /k 
P 

Local total energy, (kinetic or thermal) 

Mean temperature defect, (T-Tl)/(To-Tl ) 

Local radius of curvature 

Rayleigh Number, [Cp(To-Tl)gL3/VlTlk] 

Section Reynolds Number, UlL/vl 

Local Reynolds Number, UlL/v 

Sutherland's constant, (= 110oK, for air) 

Section stability number 

[SN(x+6x) - SN(x)]/SN(x+6x) 

Local temperature, (OK) 

Taylor Number, (2C Ret) 

Free stream velocity 

Local streamwise velocity 

Local transverse velocity 

Local lateral velocity 

Streamwise coordinate 

Transverse coordinate 

Lateral coordinate 

viii 



Symbol 

ex,6,y 

f(.) 

0* 

£ 

e 

A, (1\) 

K 

p 

a 

T 

w 

NOMENCLATURE (Continued) 

Definition 

Constants or functions, as defined in text 

Gamma function, or scalar variable 

Modified boundary layer thickness, 
10 

[ = 0* 10- 2. 34tanh(Hl - 4)] 

Boundary layer physical thickness (y ) u= 0.995U1 
Boundary layer displacement thickness, 

00 

J (l-u/Ul)/(l-Cy) dy 
o 

Flow transport coefficient (e.g., viscosity) 

Boundary layer momentum thickness, 
00 

J u u / - (1 - U) (1 - cy) dy 
o Ul 1 

Local disturbance characteristic length 

Von Karman's constant 

Local fluid density 

Dimensionless height from wall, y/o*, y/~, y/6 

Double velocity cross correlation, (-u'v') 

Local vorticity, or function, as defined 

Molecular viscosity 

Kinematic viscosity, (eddy viscosity) 

Local shear stress, or characteristic period of 
disturbance 

Ratio of maximum total disturbance kinetic energy 
to same at point of neutral stability K/K. , 
(also, force field phase angle) C1 

Ratio ~f stability number at point of neutral 
stability to local value, SN ./SN C1 

ix 



Symbol 

::: } 
x 

( ) ci 

( ) ct 

( ) 1 

( )max 

{ )0 

( )' 

NOMENCLATURE (Continued) 

Definition 

Functions as defined in text 

Pressure Gradient function, (10 _ 4) 
H 

Value at point of neutral stability 

Value at point of incipient transition 

Value at free stream 

Maximum value 

Value at the wall 

Differentiation with respect to appropriate 
independent variable, or fluctuating quantity 

Value at end of transition region 

Equilibrium value 

x 



Chapter I 

1. INTRODUCTION 

In the study of wall boundary layers one is dealing with those 

shear layers whose structure is directly influenced by the presence of 

a solid boundary. A variety of such boundary layers exists depending on 

the nature and configuration of the boundary. The present study is 

restricted to consideration of the incompressible flow over a rigid 

curved wall with heat and mass transfer across the wall. Attention is 

focussed on the structure and characteristics of the relatively thin 

shear layer along the surface of the wall outside of which is the undis­

turbed free stream. The main flow is considered two dimensional but all 

disturbances in the boundary layer are assumed to be three-dimensional. 

An arbitrariness in the pressure distribution and mass transfer over the 

boundary is allowed but only cases involving the transfer of the 

same material as in the main flow, across the boundary, have been studied. 

Extension of the results to more arbitrary transfer can be made by suit­

able choice of transfer parameters. 

The wall boundary layer as defined above is encountered, in one 

form or the other, in many practical flows and has therefore received 

a great deal of attention both experimentally and theoretically. So 

far, however, the boundary layer has been studied only in such obvious 

regimes as the laminar, the transitional, the turbulent, and the 

separated wall boundary layer. The laminar regime is almost completely 

understood both analytically and experimentally. Such however, is not 

the case with the transitional, the turbulent or the separated regime. 

By analogy with the laminar boundary layer, however, it has been 
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possible to formulate plausible mathematical models (which give 

reasonable practical results) for the isolated fully turbulent boundary 

layer. It is very disconcerting to note, however, that quite often, 

because of the unsound understanding of turbulence, very wrong physical 

reasoning can lead to models of the turbulent regime which give answers 

in fair agreement with some experimental results. The observation is 

often made that turbulence is so turbulent that it draws from every 

source, sound and unsound. That is, almost any reasoning which satisfies 

the boundary conditions of the flow yields answers close to some experi­

mental results. Much less success, however, is evident for the transi­

tional regime. It has been common practice to assume that the turbulent 

regime starts where the laminar regime ends. Experimental studies, 

notably those of Dryden, Schubauer, Skramstad, and Klebanoff, (1947; 

1948, 1955), clearly show that oscillations in the laminar regime may 

cause transition to the turbulent regime and that there exists a usually 

well-defined finite zone between the laminar and the turbulent regimes 

where the boundary layer is intermittently laminar and turbulent. The 

importance of the knowledge of the correct position of the transition 

point may be appreciated when it is noted that in airfoil design, for 

example, a small inaccuracy in the choice of the transition point can 

cause an error of as great as 30% to 40% in the theoretical calculation 

of the drag of an airfoil. In fact, in turbines and compressors, the 

transitional boundary layer often extends over 80% or more of the blade 

surfaces. Mathematical analysis of the transitional boundary layer has 

been difficult because of the near complete ignorance of the nature of 

boundary layer oscillations. 
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The simplification of boundary layer study by dividing it into 

conceptually obvious regimes, the conventional approach, has indeed 

been most helpful especially in gross experimental understanding of the 

general boundary layer. It has however apparently led to a difficult 

direction for the mathematical description of the general boundary 

layer. The conventional approach to boundary layer study implies that 

flows in nature should be laminar but that certain events have taken 

place in these laminar flows which have made them turbulent. The em­

phasis is then on the origin, growth and consequent effects of these 

events on the laminar flow. But nature around us is beset with turbu­

lence, laminarity or order among diversity being particularly very rare. 

"Indeed, I can excuse turbulence in flows because that seems to be what 

has been around us for time immemorial. What I cannot understand is 

how laminar flows can exist, with all those 'particles' so nicely and 

orderly arraigned." By the conventional approach to boundary layer 

study one may not hope to achieve much more than have already been 

achieved. Universal theories and laws, it seems, must continue to be 

inexact and incompletely universal. A nel. .. - and vt.ysically more sound 

approach is needed if further advances are to be made in bO\.Ul.dary layer 

studies, because, as it stands now, the boundary layer has become one 

very difficult mathematical problem, which must wait for the advancement 

of the proper mathematical tools, for its solution. 

The Navier-Stokes equations, which have been accepted as the govern­

ing equations for fluid flow were derived from the basic concept that the 

product of a mass in motion and its acceleration must balance the net 

force on the mass. This same basic theory contains the force-field 

concept, namely, that the dynamic characteristics of any body in motion 
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are determined by and only by the forces acting on the body. The force 

field concept, however, has the advantage over the Navier-Stokes equa­

tions of allowing more room for a philosophical pursuance of the flow 

problem using physical analogies. Such an approach should lead to a 

greater insight for the physical explanation of some previously baffling 

flow phenomena such as flow instability and transition, and turbulence 

characteristics. Further, the force-field concept treats the flow 

problem as the continuous problem it is. 

The approach suggested herein is based on the following fundamental 

hypotheses: 

i) All particles in nature are essentially similar in their 

reactions to the force field (external and internal) in 

which they find themselves. Each will tend to go its own 

way. It requires a finite and continuous directional 

force above a certain minimum magnitude to produce order 

among any group of particles. The magnitude of this 

directional force depends essentially on how much .progres~ 

the individual particles have made in executing their 

separate motions, that is, on the degree of the existing 

chaos. 

ii) The basic particles of any system in nature tend to be 

arranged in continuous (or discrete) energy levels according 

to their statistical energy content. Transfer from one energy 

level to another is possible in any direction, although, under 

certain circumstances, one direction may be preferred over 

another. Each transfer involves a finite work (positive or 

negative) which is due to the local force field. 
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The first hypothesis implies that all particles in nature including 

human beings fall into one of two classes, passive particles which 

produce no iilternal force and active particles (the class of human beings 

and other animals) which produce varying degrees of internal force. The 

second hypothesis implies among other things that the boundary layer can 

be considered as a conglomeration of non-intersecting closed energy 

'volumes' in which the particles in nature execute their separate 

motions. Collisions among the particles in any 'volume' are possible 

and such collisions may result in energy loss or gain and consequently 

in particle transfer from one energy volume to another. Thus, the 

structure of a natural system is essentially the same, on a large scale, 

as the structure of the atom. Turbulence is then a measure of the 

rate of particle transfer within and among the energy volumes, or more 

generally the distribution of the rate of collision of particles. The 

above ideas are by no means novel. They have been proved and used in 

science for decades before now. Their application to the study of fluid 

flow and to the consequent explanation of laminar and turbulent flows 

is what is new, because that has been overlooked before now. It is clear 

that the implication of this new approach, unlike the conventional 

approach, is that flows in nature should indeed be turbulent and that 

laminar flows are the ones which require certain events to effect. 

Furthermore, energy in a statistical sense, is made the primary quantity 

of interest. G. I. Taylor apparently sensed this approach when in his 

statistical theories of turbulence he introduced the concepts of 

velocity correlations and spectral densities. In the new approach, 

these quantities are explicitly called statistical energies because 

that is what they really are. 
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With these ideas, it is hoped to initiate a continuous model for 

two dimensional wall boundary layers. TIle problem of the structure 

and characteristics of the fully laminar regime will be assumed to be 

completely known, but the stability of the laminar regime to external 

and internal disturbances will be studied in detail by means of the 

statistical energy method described later in this work. A method of 

describing function which assumes the boundary layer to be a non-linear 

system with a specific transfer function will then be developed as a 

method of continuous solution of at least the simple zero pressure 

gradient boundary layer. Modifications to existing methods of boundary 

layer computation for the laminar and turbulent boundary layers will be 

presented and coupled through a transition function to provide a con­

tinuous solution of the general boundary layer. 

The methods presented in this work are valid up to the point of 

separation of the boundary layer from the wall. Beyond this point, 

further assumptions have to be made for continuity, than are considered 

in this work. 
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Chapter II 

2. A BRIEF SURVEY OF CURRENT WALL BOUNDARY LAYER TIIEORIES 

The history of the developments in boundary layer theory since its 

conception by Prandtl in 1904, is a long one full of many frustrations 

and sparks of genius. Comprehensive and sometimes detailed accounts of 

these developments are available in so much of the common literature on 

boundary layer theory that it seems unwise to repeat that "long history 

in this work. Rather, this section of this work will discuss 

briefly some of the more recent theories and analytical methods in 

boundary layer research. 

Earlie~ in the introduction to this work, it was pOinted out that 

boundary layer research, experimental and analytical, has hitherto been 

carried out separately for either the laminar, transitional or turbulent 

boundary layer. New theories for each of these boundary layer regimes 

appear in print with such regularity that it would seem a difficult 

task to try to document them. Fortunately, however, all these theories, 

past and present, seem to fall into one of a few basic theories. That 

is, they differ mostly in their method of practical application rather 

than in their fundamental. Some of these basic theories are discussed 

in this chapter. Physical experimental techniques are not considered 

although their results are invaluable in judging any analytical theories. 

The conventional boundary layer is schematically presented in Figure (1) 

where the various sections that have been isolated and studied are 

shown. The research efforts in these isolated boundary layer regimes 

will now be discussed. 
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2.1 Laminar Boundary Layer Research 

As initiated by Prandtl the laminar boundary layer theory assumed 

that in the case of small coefficients of viscosity the action of 

viscosity on the flow past a solid body is confined to a thin layer of 

fluid close to the boundary; the motion outside the boundary layer being 

of inviscid flow type. This assumption is used to simplify the dynamic 

equations (the Navier-Stokes equations) of fluid motion to yield the 

so-called boundary layer equations. For steady two-dimensional incom-

pressible main flow, these equations are: 

(2.1) 

u au + v au = _ 1 ~ + a ( au) 
ax ay p dx dr- v ay 

The mathematical problem is thus to find the motion in the boundary 

layer, given the appropriate boundary conditions. This problem redounds 

to finding closed solutions for the above equations (2.1). Such 

analytical solutions have been found for most laminar boundary layer 

flows in an exact or approximate form, and have been discussed at 

length by Schlichting (1968), Wa1z (1969), Meksyn (1961) and others. 

The exact solutions reduce to essentially two methods, the method of 

power series expansion and the method of asymptotic expansions. The 

relative merits and demerits of these methods are extensively discussed 

by Meksyn (1961). The approximate methods involve the solution of either 

a difference-differential or an integral equation obtained from 

equation (2.1) using plausible assumptions. One of the best known 
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approximate methods is that due originally to Pohlhausen (1921) in which 

the Karman integral equation was solved with an assumed polynomial 

velocity profile. This method was later modified and made more accurate 

by Thwaites (1949). The problem of singularity at the leading edge or 

entrance region of the laminar boundary layer has been partially 

resolved notably by Iglisch (1944) and Carrier and C. C. Lin (1948). 

Extensions of the two-dimensional laminar boundary layer theories to 

treat three-dimensional and axi-symmetric flows and also to the study 

of heat and mass transfer in the laminar boundary layer have been very 

successful. Such results have been documented, for example, by MOore 

(1964) and Rosenhead (1963). 

The basic boundary layer theory was developed for the laminar 

boundary layer. Observations in nature however showed that most 

boundary layers are turbulent. For continuity in the boundary layer 

research, it has been assumed that disturbances, from within or without, 

enter the laminar boundary layer and may cause it to become unstable 

and go turbulent. The problem of the stability of the laminar boundary 

layer has therefore been extensively studied. Historically, the study 

of the stability of laminar flows started with the classical paper 

of Rayleigh (1892) in which he introduced the method of small perturba­

tions. Heisenberg (1924), Tollmien (1929), Schlichting (1933) and 

C. C. Lin (1945) advanced Rayleigh's work to the current classical 

stability theory for infinitessimal disturbances (the so-called Tollmien­

Schlichting waves). Taylor (1923) and G6rtler (1940), on the other hand, 

studied the stability of laminar flows in the presence of longitudinal 

(so-called Taylor-GHrtler) vortices. These two modes of instability, 

Tollmien-Schlichting waves and Taylor-GHrtler vortices are, for 
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mathematical simplicity, usually considered the principal modes for 

stability investigations. Anyone mode plays the more dominant role if 

the body forces on the flow are such as to excite disturbances of that 

particular type. Classical stability theory explains rationally, at 

least, the nonoccurrence of laminar flow under certain combinations of 

the flow parameters. At present, the achievement of the stability 

theory are mainly limited to the description of the initial breakdown of 

the laminar flow due to the disturbances mentioned above. Fundamental 

aspects of the stability theory have been summarized in a monograph by 

C. C. Lin (1955). Some of the applications of this theory to problems 

of technical interest have been considered by Shen (1964). However 

limited, the results of stability theory are of great practical signifi-

cance especially when nothing better appears available. 

A second theory on the possible mechanism of transition which 

offered an opposing school of thought to classical stability theory was 

that due to Taylor (1936). Taylor assumed that transition to turbulence 

originated from momentary separation produced by fluctuating pressure 

gradients accompanying the free stream turbulence. According to this 

theory, the Reynolds number at transition is a function of (u' lUll 

(i/L)1/5 where ~ is the reference length used in defining the Reynolds 

number and L is the scale length of the turbulence. The conflict 

between stability theory and the Taylor theory was resolved principally 

by the extensive experiments of Dryden and his colleagues Schubauer, 

Skramstad, and Klebanoff (1947, 1948, 1955). The current understanding 

is that the Taylor theory explains the origin of turbulence when the 

free stream turbulence intensity is greater than 0.2 percent, while tur-

bulence originates in the manner suggested by stability theory, from 
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amplification of small disturbances which takes place when the Reynolds 

number exceeds a certain critical value, when the free stream turbulence 

is less than 0.2 percent. A very comprehensive survey of up-to-date 

theories on transition mechanisms (particularly for compressible flows) 

with very extensive references was published by Morkovin (1968). 

The growth or decay of the energy of the disturbances certainly 

should be a more significant parameter for determining the stability of 

laminar flows. Such energy methods, unfortunately, have not been ex-

ploited very much since Rayleigh's early failure with an energy method. 

It can be shown that the time rate of change of the kinetic energy of 

disturbances in a flow is given by: 

where 

aE 
~= 

E = 

pM - ~N 

f f~ p(u,2 + v t2) 

pM = -f fputv t du 
~~ 

~ = f f~;f2 dx dy 

dxdy 

(2.2) 

\ 

l (2.3) 

J 

and ;' is the fluctuating vorticity. Equation (2.2) suggests a way to 

estimate the minimum critical Reynolds number, since neutral stability 

may be defined to occur when aE/at = O. In dimensionless form, at 

neutral stability 
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(2.4) 

The minimum critical Reynolds number is then given by minimizing the 

quotient N/M with respect to all possible disturbance modes u', v'. 

The principal objection to the energy method is that it gave very low 

predictions of the minimum critical Reynolds number, in practical 

applications. The explanation for the low predictions was that the 

energy method usually included all possible modes of disturbances 

whether or not they are present in the case being investigated. Stuart's 

(1958) partial success with the energy method appears to have dispelled 

this criticism. Apparently what has been the problem with the energy 

method is that without sufficient knowledge of the proper distributions 

of u t and v' etc., the trial disturbance functions assumed in the 

solution of the integral equations (2.3) were too inaccurate. Stuart 

obtained the disturbance modes from classical stability theory and as 

these would certainly be very good approximations of the actual modes 

present, his results were very impressive. With caution, Stuart's 

success with the energy method could be extended to a wide class of flow 

stability problems. Shen (1964; pages 839-843) discusses the energy 

method in some detail. The advantage of the energy method is that it 

is not restricted to just the region of laminar instability since dis-

turbuances of any magnitude may be considered. The energy method pre­

dicts the linear and non-linear amplification rates of the disturbances 

and the final equilibrium amplitude. 

These theories on the stability of laminar boundary layers have had 

quite some success with the two-dimensional boundary layers. Their 
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extension to more general types of boundary layer flows with appreciable 

boundary influences have not been very impressive. Laminar boundary 

layer stability theories, in short, still remain far from being tmiversal. 

2.2 Transitional Boundary Layer Research 

Theories on the stability of laminar boundary layers predict the 

qualitative effectiveness of the various parameters in promoting or 

supressing stability. These predictions appear to have a direct cor­

relation with the role of the same parameters in promoting or suppressing 

transition, as evidenced by comparison with available experimental in~ 

vestigations. Research in the transitional boundary layer has been 

very much experimental; mathematical theories in this area being rather 

very difficult to formulate. These experiments, notably those of 

Schubauer and Skramstad (1948), Schubauer and Klebanoff (1955), and 

Elder (1960), and Emmons (1951), for the incompressible boundary layer, 

have nevertheless remarkably defined certain very important general 

characteristics of the transitional boundary layer, which then make it 

possible to formulate some plausible analytical theories or models for 

the transitional boundary layer. The following characteristics of the 

transitional boundary layer may be stated: 

i) Downstream of the laminar instability is a point of initial 

breakdown in the laminar flow, at which turbulence spots 

begin to form (Emmons (1951)). This transition point of 

initial breakdown of the laminar flow is rarely, if ever, 

seen in a transition experiment, which implies (Schubauer 

and Skramstad (1948)) that the probability of having a 

probe at the point where the event occurred is very small. 
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This is evidence that laminar breakdown is point1ike as 

opposed to a simultaneous breakdown along a line or over 

a considerable area. Furthermore, a point1ike breakdown 

would support the existence of an opportunity for lateral 

growth of the turbulence spots as has been amply evidenced 

by experiment. The possibility that conditions for break­

down may be met simultaneously over a region of some extent 

cannot be ruled out; cases may differ in this respect. 

ii) Throughout the transitional boundary layer, the mean 

characteristics of the boundary layer change gradually 

from those characterising fully laminar flow to those 

characterising fully turbulent flow, such that the transi­

tional boundary layer appears to be intermittently laminar 

and turbulent. An intermittency factor (proportion of flow 

that is fully turbulent) can be defined and varies from a 

value of zero for fully laminar flow to a value of unity 

for the fully turbulent regime. 

iii) The transitional boundary layer is universally statistically 

similar, whether long or short, and whether the disturbances 

are strong or weak and irrespective of whether they are 

introduced from the free stream or from the solid boundary 

(Schubauer and Klebanoff (1955)). 

iv) The quantitative distribution of the intermittency factor 

in the transitional boundary layer is a function of the 

flow environment characterised chiefly by the pressure 

gradients, wall conditions and free stream turbulence. 



15 

v) The qualitative distribution of the intermittency factor 

in the transitional boundary layer is independent of the 

flow. Its close resemblance to a Gaussian integral curve 

seems to confirm the earlier notion that transition in a 

boundary layer depends on random perturbations superimposed 

on nearly regular pattern of amplified oscillations present 

in the boundary layer. 

These experimental conclusions on the transitional boundary layer point 

to the model of the wall boundary layer sketched in Figure (1). Pertur­

bations in the boundary layer, basically three dimensional amplify to a 

threshold magnitude necessary for the formation of turbulence spots. 

Elder (1960) showed in his experimental work that the condition for the 

formation of turbulence spots is IU l2/ul ~ 0.18. This breakdown in 

the laminar flow moves downstream and spreads like a wedge as it 

occurs. Turbulence spots act basically as arrestors to infinite 

amplification. By virtue of turbulence spot formation the boundary layer 

is able to adjust the fluctuations in it to the stable state found in 

fully turbulent boundary layer. The transitional boundary layer re­

presents therefore the region of readjustment of the fluctuating motion, 

to a stable configuration, that is, the region of the developing tur­

bulent boundary layer. It seems clear from all the above discussion on 

the transitional boundary layer that a realistic analytical model of 

the transitional boundary layer must necessarily be statistical. The 

fractional time that any portion of the transitional boundary layer is 

fully turbulent can be discussed meaningfully only in terms of probabili­

ties that turbulence spots formed upstream pass over the point. Emmons 

(1951) initiated such a model and has successfully applied it to quite a 
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wide class of flows. McCormick (1968) also has formulated a slightly 

different model from Emmons'. It seems that these statistical models 

are indeed the correct representation of the actual transition of wall 

boundary layer. The major problem in closing the conventional approach 

from laminar through transitional to turbulent flows seems to lie just 

in the proper understanding of laminar boundary layer perturbations, 

their amplification and the conditions for the formation of turbulence 

spots. If these are properly understood the conventional approach to 

boundary layer study can give a continuous closed solution at least for 

simple cases, of the entire boundary layer. The present author is of 

the opinion that these unresolved difficulties will be more easily and 

finally resolved if flows are considered as basically turbulent; laminar 

flows being only special and unstable cases. Hence the primary justifi­

cation for the present attempt to follow the natural process of moving 

from stable to unstable that is, from turbulent flows to laminar flowst 

2.3 Turbulent Boundary Layer Research 

Physical experimental observations indicate that fluid motion may 

be considered to be made up of a mean part and a fluctuating part such 

that any physical quantity g, say, may be written as 

g = g + gt , 

where g is the average value of g and gt is the instantaneous 

fluctuation whose average is zero. If the physical quantities in the 

boundary layer equation (2.1) are replaced by their mean and fluctuating 
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components and Reynolds time averages taken, one obtains the classical 

equations for the turbulent boundary layer. For the steady incompress-

ible two-dimensional main flow over a smooth flat plate these equations 

are 

au av 
-+ -= 0 ax ay 

- au - au 1 an 2 - au,2 au'v' au'w' 
u - + v -- = - -~ +~V u - (---- + + ) ax ay p ax ax ay az 

av av _1 an + 2- au'v' aVTZ av'w' 
u - + v - = - ...:.L. vV V - ( + -- + ) ax ay p ay ax ay az (2.5) 

Equations (2.5) are identical with similar equations for the laminar 

boundary layer except for the presence of correlation terms, u'v' etc. 

of the fluctuating quantities. Once again, the problem redounds to that 

of obtaining closed solutions for the physical quantities (u(x,y), for 

example) in the boundary layer, given the free-stream velocity, Ul(x). 

The difficulty in obtaining closed solutions to these equations results 

from the scarcely understood turbulence correlation terms present in 

the equations. Further assumptions and theories must be made in order 

to close the turbulent boundary layer equations. Until recently, the 

basic approach has been to make explicit or implicit assumptions con-

cerning the local turbulence correlation. In the explicit method the 

equation of motion is reduced to the same form as for laminar boundary 

layer with the molecular viscosity replaced by an effective viscosity 

which incorporates the turbulence correlation term as an apparent or 

turbulent shear stress. That is, 
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v 
e = v + E (2.6) 

(Effective Viscosity) (Kinematic Viscosity) (Eddy Visco5ity) 

where v is the effective viscosity whose form can explicitly be e 

deduced for example in the manner suggested in reference (3). 

Although the theory behind this effective viscosity (or mixing length) 

method appears to be physically unsound, the method nevertheless gives 

satisfactory answers in some cases. 

The implicit method attributable to Dorodnitsyn was originally 

developed as a tool for systematically reducing partial differential 

equations to a few coupled ordinary differential equations of the initial 

value type. Again the turbulence velocity correlation terms are treated 

as apparent shear stresses but in this case, rather than make explicit 

statements about the effective viscosity, an integral equation is 

obtained from the resulting equation in the same manner as the Karman 

integral equations were obtained for the laminar boundary layer. The 

chief virtue of the integral relation method lies thus in the implicit 

and global manner in which the effect of turbulence is incorporated. It 

must however be noted that it is not easy to extend the integral methods 

to a wide class of flows without making explicit assumptions about the 

local turbulence. Most integral methods require some assumption about 

the velocity profile to permit the effects of non-uniformity in mass 

and momentum flux across the boundary layer to be considered in the 

governing integral equations. Apparently the velocity profile need not 

be very precise to allow adequate considerat~on of these non-uniformities. 
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It seems, in fact, that a simple profile which adequately fits the 

outer region and scales on the outer region parameters (Ul,o) sui· 

fices for this purpose. However, a very accurate velocity profile whieh 

must be scaled on the wall region parameters (UT,v) is essential for 

accurate calculation of wall shear stress from the Newtonian constitutive 

equation, The Stanford Conference (1968), on turbulent 

boundary layer prediction produced a remarkable source of both experi­

mental data and the most recent analytical methods in turbulent boundary 

layer research. Its forecast for future lines of attack appear to have 

been fruitfully heeded. 

The more recent approach to the solution of the turbulent boundary 

layer equations is to utilize the raw power of modern automatic computina 

machines in solving directly the partial differential equations. 

Equations can be derived for the second order correlations found in the 

basic equations of turbulent motion. These latter equations will not b. 

closed, however, for their non-linear nature causes correlations of 

order (n + 1) to appear in the equations for the nth. order correla-

tions. An infinite system of such equations could however be written 

but no method is known yet for solving such infinite systems. Alterna-

tively, the system of equations is terminated after the third or fourth 

order correlations by modelling these higher order correlations in terms 

of lower order correlations. It is in this latter approach that the 

turbulence theories of Taylor (1936), Karman and Howarth (1938), 

Kolmogoroff (1941) and Heisenberg (1948) to name but a few, are very 

useful in providing c10sure theories. The efforts of Glushko (1965), 

Bradshaw et ale (1967) and most recently Donaldson (1971) are remarkable 

examples of the power of this latter method of turbulence closure. 



20 

Other approaches to the turbulence problem based on the stochastic 

nature of turbulence have resulted in promisingly outstanding turbulen~e 

theories such as those of Kraichnan (1968), Burgers (1964), Hopf (1962); 

etc. These theories yield reasonable answers in most of their applica­

tions but there is not a single one of them which has overall acceptabil­

ity or compatibility with the physical world. 

The extensions of the turbulence theories and analytical methods 

to the study of heat and mass transfer in turbulent boundary layers 

have been about as successfully approximate as for the momentum transfer 

studies. 

In conclusion, it can safely be said that turbulence is yet 

poorly understood. 
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Chapter III 

3. THE NUMERICAL EXPERIMENTAL TECHNIQUE 

A number of boundary layer Researchers, for example, Morkovin (1968), 

and Donaldson (1970), have pointed out that the influence of the par­

ticular physical environment upon the phenomenon of boundary layer 

laminar to turbulent transition, is so important that every observed 

case of such a transition should in itself be a unique case. In this 

respect, an exhaustive experimental study of boundary layer transitions 

would be practically very tasking since it would involve the repetition 

of a large number of identical experiments but over a well controlled 

variation of the experimental environment. This idealization is 

certainly an impossible task for anyone laboratory and the delicacy 

of such experimentation would restrict the amount of useful generalizing 

conclusions that can be drawn from studies made in different laboratories. 

An alternative way to physical experimentation must therefore be sought. 

The next best method that suggests itself is numerical experimentation 

utilizing the power of modern automatic computing machines. The major 

demerit with numerical experimentation is the great difficulty of 

establishing satisfactory mathematical models for the physical phenomena. 

In any situation, however, where such models can be satisfactorily 

formulated, numerical experimentation shows great superiority and 

desirability, over physical experimentation. Not only can numerical 

experimentation be faster and often more accurate than physical experi­

mentation, it is also usually much less expensive and is much more 

easily reproducible permitting similar studies to be made in a wide 

variety of conditions without any doubt as to their similarity. 
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The experiment discussed in this chapter is a numerical experimental 

study of the wall boundary layer for general types of flows, involving 

the mathematical modelling of wall boundary layers and their environ-

ment and the numerical solution of the resulting mathematical equations 

with an automatic computing machine. 

3.1 The Analytical Model 

In tensor notation, the basic equations governing the flow of fluid 

are as follows: 

Conservation of mass: 

ap 
-+ at 

Conservation of momentum: 

au. 
1 

P -- + at puj u .. 
1,J 

Conservation of energy: 

where 

L •• = ll(U. • + u. .) + g.. Auk ,k 
IJ I,J J,1 IJ 

j i. 
T. u ,J 

1 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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i,j,k = 1,2,3 • 

If the fluid motion is considered to be made up of a mean part and a 

fluctuating part such that any physical quantity, q, may be written 

as q = q + q' where q is the average value of q and q' is the 

instantaneous fluctuation whose average is zero, then equations may be 

written for both the mean and fluctuating portions of the fluid motion. 

For the case of steady state flow, such equations have been derived, and 

it will suffice to discuss briefly only the basic approach. 

Physical quantities in the basic equations of motion are replaced 

by their mean and fluctuating components to obtain generalized flow 

equations. Taking the time average of these generalized equations yields 

the equations for the mean motion. Subtracting the equations for the 

mean motion from the appropriate generalized equations yield the equa­

tions for the fluctuations. 

In the equations of motion thus obtained one always finds terms 

representing the correlations of the fluctuating quantities (usually 

the second and third order correlations in this case). Equations may 

be obtained for the second order correlations by multiplying the 

equations of motion for the fluctuations by appropriate fluctuation 

quantities and averaging in time. These equations, however, will not 

be closed, for their non-linear nature causes correlations of order 

(n + 1) to appear in equations for the nth. order correlations. 
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Donaldson et al. (1970] developed a "method of invariant modelling" 

which enables one to obtain a closed system of equations. In this 

method, a closure of the set of equations for the mean flow quantities 

and the second-order velocity correlations was achieved through a 

modelling of the higher order and pressure correlation term5 in these 

equations using the second-order correlations themselves and two scalar 

lengths, A (microscale) and A (macroscale) which are related to the 

microscale and integral scale of the velocity fluctuations. A brief 

discussion of the method of invariant modelling is given in Appendix A 

together with the relevant equations of motion for the general incom­

pressible boundary layer. 

The equations obtained by the invariant modelling technique 

discussed above contain two unknown constants a and b in addition 

to the length scales A and A. If one examines the equations of 

motion given in Appendix A, it becomes clear that A is of importance 

only in the outer boundary region while A is important in the wall 

region. This is not surprising since A and A are essentially the 

length scales of the disturbances, or more practically, represent the 

sizes of the eddying motion. The length scales A and A will be 

assumed to be linearly proportional to y, the vertical distance from 

the wall. This assumption is not a good one, especially for the 

microscale, A, and should not be misconstrued as implying that 

A = A. The relation between A and A has been discussed by 

Donaldson et al. (1968) and Glushko (1965). The assumption of A = Y 

and A = Y is used only to simplify the disturbance kinetic energy 

equations. 



25 

The two parameters a, and b occurring in the disturbance 

equations have been obtained by Donaldson et al. based on the following 

reasoning. 

i) a, and b must be such that results obtained by using the 

disturbance equations satisfy the classical stability 

critical Reynolds numbers (Ro*~ 420 or Ro ~ 1200) for 

incompressible flows. 

ii) The modal shape of the pro.file for K( =kl + k2 + 1(3) 

and the decay rate of disturbances should have the 

general characteristics of the same profile as calculated 

by classical stability theory. (Here the overbars indicate 

dimensionless quantities.) 

Donaldson et ale (1970) obtained after many calculations that a 

satisfactory choice of parameters would be a = 50 and b = 0.01. The 

small value of b was largely due to the requirement that the dis­

turbance profile shape, K(y), should be peaked in the neighborhood of 

y/o = 0.5 , which seems to be the case in actual boundary layers. 

Further, Donaldson et al. found that for such small values of 

the parameter, b, the terms in the disturbance equations, containing 

b become insignificant, that is, b ~ O. These results of Donaldson 

et ale for the values of a and b will not be checked in the present 

work. Nevertheless, their use in preliminary computations yielded 

answers reasonably in accord with experimental results. In the present 

work, therefore, the parameters will be adopted as 

a = SO) b = o. 
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3.2 Reduction of the Governing Equations of Motion 

With the assumptions discussed in (3.1) and the values of the 

disturbance parameters and length scales thus obtained, the governing 

equations of motion for an incompressible, two dimensional boundary 

layer, with three dimensional velocity perturbations, are as given in 

Appendix A, in the orthogonal coordinate system of parallel curves 

(Figure 2). 

The present analyses are desired to cover the following range of 

principal parameters: 

c 

Re* 
0 

L 
r 

0 

dc 
dx 

= 

= 

= 

= 

0* 
r o 

U 0* 
1 

VI 

from 0 to 0.01, that is, to about 

100 times the boundary layer dis-

placement thickness. 

from about 50 to 00 • 

Characteristic Length t radius of 

curvature from 0 to 10. 

Streamwise curvature gradient from 

o to 200. 

If the system of equations of Appendix A are made dimensionless 

and the relative magnitudes of their terms examined, in the manner 

suggested by A.M.O. Smith (1953), it is easy to see that some terms 

are-very small, in order of magnitude, compared to other terms. These 

smallest terms will be neglected in comparison with other terms because 

at no time will they ever approach dominance in the boundary layer. 
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Terms in (1/r)2 and higher order will be neglected too. 
o 

The following simplification will also be made: 

a ( 1) 0 
ay l-cy - since 

and 2. (_1_)= c(= l/r ) 
ay l-cy 0 

which for the range of curvatures of 

interest is of magnitude from zero to (0.01/0*). That is, only for 

(3.5) 

extremely accelerated flows for which 6* becomes very small, will 

a I ay(l-cy) be appreciable. In such extreme cases, however, the inertial 

terms are usually very dominant so that terms in will still 

be small compared to most other terms in the equation. 

The simplified equations of motion for the boundary layer, for the 

case where the molecular viscosity is temperature dependent now become 

in dimensional form: 

Continuity: 

1 au av cv 
-+--~-~ ax ay (l-cy) = 0 . (3.6) (l-cy) 

Combined momentum (or vorticity transport): 

u a au av a au av 
(l-cy) ax Cay -ax] + v ay ray - ax] 

cu au cv au 
(l-cy) ax - (l-cy) ay 

a vc 
ay ((I-cy) 

au) (1 ) ao ay - -cy ay 

(3.7) 
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Energy: 

c [u aT + v aT] 
p (l-cy) ax ay 

a2 T =c 0.--+ V 

P ay2 

Streamwise velocity correlation: u'u' = kl 

u akl akl au 2kl 
(l-cy) ax- + v ay = 20 ay - (l-cy) 

neglected in 
the early 
transitional 
regime. 

2 
+~-.."..... 

(l-cy) 

a2k 
av ao + 50 au [! _ k ] + v 1 
ay ax ay 3 1 ay2 

Transverse velocity correlation: v'v' = k2 

u ak2 
-::"( -=-l_-c-yO:::-) -ax- + 

ak2 ak 
v _ = _ 2k av + __ 2_ 

ay 2 ay ay2 

Lateral velocity correlations: w'w' = k 

2vk 2 

3 

(3.18) 

(3.9) 

(3.10) 

u ak3 av a K K a2k3 2vk3 
v - = - - [2k - -] + 50(- - k ) au + v -- -(l-cy) ay ay ay 3 3 3 3 ay ay2 y2 

(3.11) 
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Cross-correlation: u'v' = -0 

u 
(l-cy) 

ao ao 3 ~ ao k au ax + v ay = ay ay + 2 ay 
au 2vo 

- 500 
ay y2 

(3.12) 

To facilitate further analysis of the system of equations (3.6 - 3.12), 

it is convenient to define a new set of variables. 

The following transformations are therefore used: (Overbars, here denote 

dimensionless quantities). 

u = U
l 

(1 - f') 

y = no* 

ki = U1
2k

i 

o = U2 0 
1 

K = U2 K 1 

co* = C 

Vo = U1 Vo 

i.e. f'(x,n) = 1 - u/Ul 

i = 1,2,3 

L = any suitable characteristic length in the x-direction 

x = xL 

0* = 6*L 
dU

l 
FU2 

vI dUl 1 where the pressure dx = F =- dx ' gradient parameter. 
vI U2 

1 T-T 
T = T [q'(l T lITo) + T1 /Tol where q' 1 

= 
0 T -T . 

o 1 
It follows from the above transformation that: 

ak. U2 ak. 
1 1 1 

i 1,2,3 = = ay L6* an 

u2 
ao ~ 1 = ay L 0* 
aT) 



au 
dy 

dU 
ax 

aT 
ay 

aT 
ax 
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ak. FU 3 

1 + 2 _1 k. 
ax vI 1 

U 
_1_ f" 

L8* 

= (1 - f') 

T 
o q" 

- -L - (1 - TIlT) 
6* 0 

,aT T dq' 
= ~ ~ + ~ (1 - TI/To) where it is assumed 

L ax L dx 

that 

zero. 
T +S 

v (!..-)3 / 2( 1 c) = 
1 TI T +S 

c 

= vl[q' (To/Tl - 1) 

where 

dT Idx may be different from o 

S 0 air. = 110 K for c 

+ 1]3/ 2 { 
1 + Sc/TI 

1 + q' (To/T 1 - 1) + Sc/T I 
} . 

Further, it will be assumed that from the continuity equation 

1 au av ax --a-y (3.13) (I-cy) 

That is, 

U 8* 
v = U (f - n)[U d6* + FU R] 1 df 

Ivo + (I-Cn) 1 - 1 6* + (I-Cn) 
dx dx 

(3.14) 
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+ 6* df }] 
dx 

The equations for the fluid motion can now be written in a dimensionless 

form as follows: 

Combined momentum (or Vorticity Transport): 

[2 a (_1_) 
(l+Cn) an Ro* 

v o 
(l+Cn) 

d6* 
(F-n)(- + F Reo*)]f", 

dx 

cV-o d6* d6* 1 
+ [~(-l+~C-n~) + C(f-n) dx + (l-f') dx + (C(f-n)-l)F Reo* + (l+Cn) (_1_)] fff 

Ro* 

+ [ (2 - f' ) C F Re 0 * + Fff F Re 0 *] f' = (f I I '6* Cft' 6*) df C(l-f') 6* df' 

- dfff 46* 
+ (l-f') 0* - + F Re 0* [C - (l+Cn) dx 

+ 1 [a 2a _ caa 
(l+Cn) an2 an 

- - dF 20' Re;:* 0* -] 
U d"X 

ao 

ax 
6F Reo* 
(l+Cn) 

dx dx 

(3.15) 
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Energy: 

[ 1 ] q'" _ [Vo (f) d6* 
Pr Re~*(l+Cn) (l+Cn) + -n - + (f-n) F Re 8*]q" 

u dx 

T 
_ [(l-f')( 1 ) 6* ~ (T IT )]q' T -T - 0 1 o 1 dx 

E 
. = - Reo* 

(f") 2 

(l+Cn) + q"8* df 
-+ 
dx 

( 1-f' ) (5* dq , 

dX 

Streamwise correlation: u'u' = k1 

[1 {2 ~ (_1_) 
(l+Cn) an R6* 

v } 
o 

+ [2(f'-1) {2 + Cn} F Re
6
* + 50f" _ 2 ] k 

R8*n 2 (l+Cn) 

ak
1 

-
= 6*(1-f') - + 20 fit + 6* k' df 

ax (l+Cn) 1 dx 

- 2 k1 6* ddxf' + 1 [~ C_l_ ~ + 50 f"K] . 
3(1+Cn) an R6* an 

Transverse correlation: v'v' = k2 

[ 1 {4 .-l (_1_) } -
(l+Cr)- ~ R - Vo - (f-n) (8x* + F Re~*)]-k2' 

I on 8* v 

[ 
2 k2 

+ 2Cf'-1)(1+Cn) F Re + 50f" - ] 
0* R6*n2 (l+Cn) 

ak
2 = "8*(l-f') - + 6* k' df 

2 dx ax 

(3.16) 

(3.17) 
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Lateral Correlations: w'w' = k 3 

( 1 lk" + [ 1 {2 2. ( 1_) - v} - (f-n)C6"* + F Re.l'*)]k3' 
Ro*(l+Cn) 3 (I+Cn) an R6* 0 x u 

2 
+ [2(f'-1)(I+Cn)F Re.l'* + sO~' - R 2 

u o*n 

ak 
= 6*(I-f' )_3 + 6* k' df 

ax 3 dx 

+ 1 [SO~' K + ~ (_1_) aK] 
3(1+Cn) an Ro* an 

Cross correlation: u'v' = - 0 

2 a + [2(f'-I)(I+Cn)F Re.l'* + sOf" - ] 
u 2 (I+CnJ 

Ro*n 

do df k2 
= 6* (l-f') - + "6* a' dx + f' , . 

di (I+Cn) 

The boundary conditions are: 

f(x,O) = 0 

f'(x,O) = 1 

k. (x,O) = 0 
1 

a(x,O) = 0 

Lim f(i ) = 1 n~ ,n 

Lim f' (- ) = 0 ~ x,n 

Lim 
f"(x,n) = ° 

n~ 

(3.18) 

(3.19) 

(3.20) 
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q'(x,O) I Lim q' (x, n) = 0 = n-lo-OO 

Lim - - 0 k. (x, n) = n-lo-OO 1 

Lim o(x,n) = 0 n-lo-OO 

L\*(x) = {X> [(T-T1)/(To-T1) (l-y/ro)]dy 
0 

foo u Sex) fOO u 
o*(x) = [(1- TIf)/(1-y/r )]dy; = [U

I 
(l-u/UI)/(l-y/ro)]dy 

0 1 0 0 

In these analyses, primes denote differentiation with respect to nand 

subscript x denotes differentiation with respect to x. Over bars 

denote, up to this point, non-dimensional variables. 

3.3 The Numerical Method 

The dimensionless equations for the mean and fluctuating motion in 

the boundary layer (equations 3.15 through 3.20) constitute a system 

of six non-linear partial differential equations in the six variables 

f , q', kl ' k2 ' k3 ' and cr, and hence can be solved. In this work, 

a numerical method is used which computes solutions for the boundary 

layer equations in a downstream march from prescribed conditions and 

profiles at an initial x-position. At this point, it would be useful 

to convert the system of equations to a set of ordinary differential 

equations by using finite differences in the x-derivatives. An 

implicit type method which is essentially an adaptation of the Crank-

Nicholson (1947) scheme will be used. The method is always stable and 

the error is of second order in the x-step size. 

First the sys tern of equat ions (3.15-3.20) are re\vri tten in terms 

of average functions at a point half way between the x-posi tion of the 
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known profiles x. 1 1-
and that of the profiles to be calculated 

Then using the relation: 

- 1 
g = 2"[gi + gi-1] 

x .. 
1 

(3.21) 

where the bar over g denotes averaging, the system of equations can be 

written in terms of functions at position x .. 
1 

From this point, bars 

over a quantity denote averaging in the above sense. All variables are 

now dimensionless and overbars previously denoting that are considered 

superfluous. The combined momentum equation (3.15), for example, 

becomes: 

f. 1) 
1-

(f' f' ) + a7 (f'l"' - f" ) + 2a8 a6 i - i-I i-I 

(3.22) 

The variable coefficients, a l - a34 ' are as defined in Appendix B. 

The final form in which the equations will be solved is as follows: 

Momentum: 

where 

(3.23) 



36 

Energy: 

where 

D(2)i_l 

(3.24) 

Streamwise velocity correlation: 

where 

(3.25) 

Transverse velocity correlations: 

where 

D(4)i_l = [-a17k2 - a25ki - (a26 + a7)k2]i_l - a27(fi-fi_l) + 2a24 · 

(3.26) 



37 

Lateral velocity correlation: 

where 

(3.27) 

Cross correlation: 

where 

(3.28) 

All the equations in their final form, except the combined 

momentum equation, can be expressed in the following finite difference 

form: 

[-A. u. 1 + B.u. 
J J + J J 

C. u. 1]· = [D.]. I 
] ]- 1 ] 1-

(3.29a) 

The system of equation (3.29a) from j = I to J has the tridiagonal 

matrix form, and so can be solved very easily by the simplified direct 
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inversion method as explained, for example, by Stiefel (1956). The 

solutions have the form 

(3.29b) 

The boundary conditions at the wall determine El and Fl , and Ej 

and F. (j > 1) can be determined in a general form so that the family 
J 

of solutions given by equations (3.29a) and (3.29b) are the same. To 

achieve this, u. 1 is replaced by (E. 1 u. + F. 1) 
J- J- J J-

in equation 

(3.29a). The result of this operation is a relation between u. and 
J 

u. 1 which can be written as 
J+ 

A. 
u. = ___ ...:.J __ _ 

J (B. - C.E. 1) 
J J J-

D. + C.F. 1 
J J J-u. 1 + 

J + (B. - C. E. 1) 
J J J-

(3.30) 

If the right hand sides of equations (3.29b) and (3.30) are equated, and 

if it is recalled that the result must hold for a one-parameter set of 

values of u. 1 ,then E. and F. can be identified as follows: 
J+ J J 

E. = 
J 

F. = 
J 

A. 
J 

(B. - C.E. 1) 
J J J-

for j > 2 

D. + C.F. 1 
J J J-

B. - C.E. 1 
J J J-

(3.31) 
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From these equations, together with the boundary conditions at the 

wall and free stream, 

order of increasing 

E. and F. can be calculated inductively in 
) ) 

j(j = 2,3, ... ,J-I). Now, u. I is given for 
J+ 

(J-I) by the outer region boundary condition. Therefore all the u. 
J 

can now be calculated inductively from equation (3.29b) in order of 

decreasing j(j = J-I, J-2, ... ,2). This completes the calculation. 

The direct inversion method definitely is simpler and faster than any 

iterative techniques. Moreover, for the tridiagonal case, Wilkinson 

(1961) has shown that the direct method is extremely stable with respect 

to the growth of rounding errors. 

In finite difference form, the system of equations corresponding 

to the combined momentum equation (3.23) has the five-diagonal matrix 

form. Direct inversion methods for solving such matrix equations suffer 

from serious round-off errors and may not always converge to the true 

solutions. Standard iterative techniques have been ruled out for 

the solution of equation (3.23) in view of the very large number of 

computations that must be made, in this study, in order to draw general 

conclusions on wall boundary layers. The alternative that suggests 

itself and the one adopted for the present study is to solve equations 

(3.23) for £". By a simple integration f' is computed from f" and 

similarly f from f' Apart from increasing slightly the number of 

iterations required for simultaneous convergence on f, f' and ~', 

this method has shown no serious inferiority to alternative methods. 

A. , B. , C. and D. have been computed for the six sets of 
J J ) J 

equations (3.23 through 3.28) and are as tabulated in Appendix B. 

At j = I , the boundary conditions for equations (3.25 through 3.28) 
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yield that El = Fl = o. For equations (3.23) and (3.24), El and 

Fl are a bit more difficult to determine. In the present analyses, 

they are determined as follows: 

(3.32) 

Since is not much different from ul ' it is assumed that 

(3.33) 

Hence, for equations (3.23) and (3.24), and f' , , 
1 

must be 

found, in some way, before the beginning of each iteration. For the 

combined momentum equation, f' , , 
1 

, is roughly estimated as follows: 

fl , , 
1 

-2 = F Re 8* + fi' [ -C R ( a (_~) )] + e~* Vo - -
u an Ro* 1 

The quantity :P' 
1 is taken as the same from the previous iteration 

while ql is estimated as 

ql = -0.332 3rpr Iffeo* 6*/x 

Then: 

El = 1 Energy and momentum I 
I 

Fl = -q" (n - n ) Energy , 1 2 1 

Fl = - f'" (112 - nl ) Momentum 1 / 

(3.34) 
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3.4 The Computer Program 

The computer program listing is presented in the Appendix D. It 

indicates two main parts for the main program, and four subroutines. 

The first part of the main program accepts the input data and prepares 

the appropriate mean flow and perturbation profiles and associated 

parameters for the initial x-station. The first few instructions read in 

all the input data required, according to the formats as listed below. 

Then all flow parameters for the initial x-station profiles are computed. 

This is the end of the initialization portion of the program. 

The forward motion part of the main program consists of a loop 

which cycles for each x-station calculation. The loop begins by moving 

the known profiles into storage for the profile at the x-station before 

the one to be calculated. This is followed by the iterative loop to 

calculate a new set of profiles at the new x-station. Within this loop, 

there is an inner loop to iterate for the mean flow profiles When these 

calculations have simultaneously converged, the perturbation profiles 

and integral parameters for that station are calculated, and the integral 

test for accuracy is printed out. This process continues until profiles 

have been calculated at all x-stations. Finally, for convenience, a 

summary of the parameters of the flow is printed out. The input to the 

initialization section is, in order, as follows: 

i) Fixed input data in FPS units. 

a) JD, ID, EPS 

b) CP (BTU/lbmok), PR, SC, VKC 

ii) Label describing the Program Title 

(first 72 columns of first data card) 
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iii) Total actual numbers of profile data points 

Y, Fl, Ql, AKl, AK2, AK3, SIG 

(Format 712) 

iv) Initialization parameters 

TIR, DT(l), CHL 

(Format FB.B, 5x, FB.4, 5x, FlO.3, 5x) 

v) Fixed flow parameters 

RHO, GC, TE, VEE, L 

(Format FlO.9, FIO.3, FlO.B, FIO.9, lOx, II) 

vi) Initial Profiles data points 

Y, FI, Ql, AKI, AK~, AK3, SIG 

(Format 10F B.B (4)) i.e., 10 per data card (in the order listed 

above) . 

vii) x-Stations and primary descriptive parameters 

x ( I); UE ( I); TW ( I); VW ( I); CW ( I); RUF ( I) 

(ft) (fps) (oK) (fps) (ft) (ft) 

(Format 6FIO.3) 

10000. (serves as end card for the input). 

Subroutine PR0FYL: computes all thy profiles for the mean flow and 

perturbations by a direct inversion method as discussed in section (3.3). 

Subroutine INTEG: performs a simple trapezoidal quadrature. 

Subroutine DIVIDE: subdivides the interval between the values which 

define a function using a linear interpolation. L defines the number of 

subdivisions required. It is suggested that for very small x-step size, 

smaller spacing should be used throughout the layer. x-spacings of about 
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ten times the displacement thickness are usually adequate for most 

computations. 

Since, most often, the initial input profiles are inaccurate, it 

has been found necessary, for reduction in the number of iterations 

required for the convergence of subsequent solutions, to smooth these 

initial curves before they are subjected to any operations. 

Subroutine SM~TH: performs this smoothing by fitting the desired 

degree polynomiaJ through the data points. 

Subscripts are, as far as possible, the same thoughout the program. 

Additional subroutines may readily be incorporated to facilitate any 

specific detailed studies. 
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Chapter IV 

4. FLOW INSTABILITY AND TRANSITION 

The philosophy' promulgated in this work about flow instability 

is that flows are generally turbulent except when the turbulence is 

"locked-in" by a strong force field. Such constrained flows are the 

so-called laminar flows. Reversion to the more normal turbulent 

situation, through tne so-called laminar instability and transition, 

occurs when the constraining force becomes overwhelmed by other forces 

in the flow field. 

The force field concept will be introduced in greater detail now, 

and the instability characteristics of laminar flows deduced by an 

energy method very similar, in some ways, to the method used by Stuart 

(1958). An implication of the force field concept namely that the fluid 

flow may be considered as a non-linear system with an explicit response 

function from which the stability or instability characteristics of the 

flow may be deduced, is discussed. In fact, an attempt is made to de-

duce the functional form of this flow describing function, for the simple 

flow with zero pressure gradient and no heat or mass transfer at the 

wall. 

4.1 The Force Field Concept 

Essentially, the force field philosophy implies that, given an 

elemental volume as in Figure (3a) , what happens to a flow quantity 

between the locations A to B (the shaded area) depends only on the 

force field within that volume. This implies the conservation of such 

invariant flow quantities as mass, momentum and energy. 

i.e. q = B ~[qA ' Local force field] (4.1) 
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where q is any invariant flow variable. Let the force (per unit 

volume) in an elemental fluid volume be identified by the notation of 

Figure (7), below 

YF 

Flow direction XF 

ZF ::: 

"Figure 7. 

The streamwise driving force is essentially the algebraic sum of 

(a) An x-pressure force. 

(b) A viscous force of scale 

(c) A force proportional to the momentum inbalance due to mass 

transfer. 

The vertical driving force is essentially the algebraic sum of 

Ca) A bouyancy force. 

(b) A centrifugal force. 

(c) A shear force of scale p2/pL3 or, for a bouyant system, 

~ 
C L3 
P 

(d) A force proportional to the momentum imbalance due to mass 

transfer. 

If it is desired to bring the fluid to rest, within a distance 

commensurate with the flow velocity, it will be necessary to apply a 

force, FP, proportional to the vector sum of XF, YF and ZF 

i.e. FP «XF + YF + ZF (4.2) 
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The direction, 0, and gradient, 6FP, of this force are given by: 

~ 

6FP« V.FP 

Thus, IFPI, Q, and 6FP describe the force field of the flow 

problem, and equation (4.1) implies that: 

q(x + 6x) = t[q(x), IFPI , n, 6FP] 

(4.3) 

(4.4) 

(4.5) 

Obviously, the direct use of these force quantities is not feasible. 

One would want to represent the force field with some characteristic 

dimensionless force quantity. Such dimensionless quantities will now 

be sought. Consider the two simple one-dimensional boundary layer 

problems sketched in Figures (3b, 3c). In Figure (3b), the force field 

is quantitatively determined by the inertial force and the resistive 

force (which in this case is essentially viscous force). Hence the 

descriptive force quantity is the function: 

~1 [Inertial force, Viscous force]. 

The most appropriate dimensionless quantity derivable from the above 

function is the Reynolds number, RL ' based on a characteristic vertical 

length, L, in the boundary layer and on a characteristic local velocity, 

(i.e., RL = UrL/v). If the influence of mass transfer across the solid 

boundary is considered, the appropriate dimensionless force quantity in 
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the x-direction is given by the sum of the Reynolds number and a 
U L v 

transpiration (or aspiration) parameter A = (~) ~ Thus, for 
tx vI Ur 

such a general one dimensional flow, the appropriate dimensionless force 

quantity is given by: 

Force Quantity = 

In the second case, Figure (3c), consider first the case where there 

are no centrifugal forces. The force field is quantitatively described 

by the bouyancy and viscous forces. Thus, the descriptive force quantity 

is the function: 

~2 [Bouyancy force, Viscous force] . 

The appropriate dimensionless quantity is the Rayleigh number, 

3 Ra ( = Cpg(To-Tl)L /vTlk = Grashof number x Prandtl number). If there 

is no bouyancy force but rather centrifugal force, the descriptive force 

quantity is the function: 

~3 [Centrifugal force, Viscous force]. 

The appropriate dimensionless quantity is then the Taylor number, 

Ta ( = 2 C*Rt). The G6rtler number, Ga, which is essentially the 

square root of the Taylor number is quite commonly used. 

If, in Figure (3c), centrifugal and bouyancy forces are sirnulta-

neously present, the appropriate dimensionless quantity would be, simply, 

a function of the Rayleigh and Taylor numbers. If the bouyancy and 

centrifugal forces are locally in line, then the appropriate dimension-

less force quantity is the algebraic sum, (Ra + Ta). In some cases, 
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however, these two forces are not locally aligned, as the bouyancy force 

must act only in the natural or geographic vertical direction and the 

centrifugal force is perpendicular to the curved boundary. This latter 

situation occurs usually in flows with very severely curved boundaries, 

which are quite rare. In most such cases, however, the influence of 

one of the forces may usually be neglected in comparison with that of 

the other. If one includes the effect of the force due to mass transfer 

across the boundary, then one may state that in the case of no mean 

flow parallel to the wall, the appropriate dimensionless force quantity 

is given by: 

Force Quantity = (Ra + Ta + At) = RY, 

where At is a dimensionless transpiration (or aspiration) parameter 

for the vertical direction and is defined as 

A = (v L/v )2 
t 0 1 (4.6) 

In the more general two-dimensional boundary layer problem, the force 

field is more complicated. For the case of the present study, the 

viscous and roughness forces are the principal resistive forces. It 

will be assumed that these forces are very similar in their influence 

on the boundary layer so that their effective sum may simply be called 

a viscous force, without loss of meaning. The other forces acting are 

the x-inertial force, the bouyancy force, some centrifugal force and 

the force due to transpiration or aspiration. The descriptive 

dimensionless force quantity is the ratio of the net driving force to 

the net resistive force. 
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At first glance, one may be tempted to define this force quantity 

as follows: 

Force Quantity 
XF 2 = [---

F 2+ F 2 
x Y 

+ 
YF 2 1/2 

F 2+ F ! 
x y 

(4.7a) 

which is the ratio of the vector sums of the appropriate forces, with 

F and x as the resistive forces in the x and y-directions 

respectively and XP and YP as the corresponding driving forces. 

Examination of the equation (4.7a) shows immediately that such a force 

quantity does not differentiate between positively and negatively 

directed YF. It requires a statement of the direction of the net 

force for completeness. If however one redefines a vertical force 

term, YF, which is taken to act in the positive y-direction but which 

responds directly to the directional sign of YP, and a similar term 

F for P, then y y 

yp2 RY = Punction ( --"""'P= 2, sgn Q). 
F 2 +-p2 x 
x y (1 + 

p2 

(4.7b) 

Y 

where sgnQ indicates the direction of the force YF and is positive 

when YF is directed in the positive y-direction. This new force 

ratio, YF2/(p2 + f2), is the more appropriate force quantity to use for x y 

the vertical direction because in the physical boundary layer, the 

instability modes are sensitive to the direction of YF, and it does not 

suffice to define this direction separately from YF. A function of 

two variables can usually be expressed in powers of the one variable 

with functional coefficients of the other variable. That is 



so 

+.. . ...• 

where the a's are functions of (sgnQ) and 1/ (1 
F2 . 
x )1 + - • Hence, the 

p2 
Y 

appropriate dimensionless force quantity for the two dimensional 

boundary layer considered above is: 

Force Quantity (4.7c) 

p2 
where b = (1 + py ) - 1, since f2/F2 = 0(1/R2). If one terminates y x L 

x 
the above series after the first term, then al must be a positive 

constant in order for the truncated series to express the proper physical 

and mathematical meaning of the complete series. It is not obvious that 

such a truncation 

argue that, since 

is valid in 
F2 
.2 = 0(R2) 
f2 L 

Y 

this particular case. One may, however, 

, a. -+ 0 
1 

as i becomes large. This 

reasoning is strongly supported by the results of D. Joseph (1966) in 

which he deduced the form of the appropriate force quantity for a plane 

Couette flow heated from below, by a variational method on the appropriate 

energy equations. 

Since the total characteristics of the general two dimensional 

boundary layer are determined exclusively by the above force quantity, 

(4.7c), one may define that force quantity as the boundary layer 

stability number, SN. That is, 

SN = [R
2 
L (4.7d) 
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where, 

Ur = Some characteristic velocity, conventionally Ul · 

C* = ~/r , the curvature parameter 
0 

RL IX I~ ( Local Inertial Force ) dy dx = Viscous Force Local 
0 0 

- U L/v • (4.8) r r 

For Equation (4.8) to define the proper Reynolds number for a section 

perpendicular to the flow direction, the characteristic vertical length, 

L , and the characteristic velocity, U , must both be flow-history 
r 

oriented. Conventionally, the free stream velocity, UI , is used for 

Ur ' and the momentum or displacement thickness used for L. In this 

work, it is necessary to keep as close to conventional practice as 

possible, for the sake of comparison. The boundary layer displacement 

thickness will therefore be used as the fundamental characteristic 

vertical length scale. For any chosen characteristic length, however, 

the corresponding characteristic velocity by inspection from equation 

(4.8) should be given by: 

y 
U L - W( I u dy) r o 

(4.9) 

where y = ylu - U · 
- 1 

This implies that if the free stream velocity, 

UI ' is used as the characteristic velocity, an appropriate character­

istic length should be related to (& - &*). 

i.e. L ~ (&-&*). (4.10) 
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This characteristic length has been noticed before now as an appropriate 

length in boundary layer research, for example by Head (1958) in his 

entrainment theory. 

If the conventional Reynolds number, Ulo*/vl , is used, boundary 

layer characteristics are observed to depend not only on the Reynolds 

number but also on the initial velocity profile. By the dimensional 

argument presented above, boundary layer characteristics should depend 

only on the appropriate force quantity. Hence, the desire to redefine 

a Reynolds number which implicitly contains the influence of the 

velocity profile. The length scale, (0-0*), contains this desirable 

trait, as it may be written, for instance as, 

(0-0*) o 1 
- (0*(6 • H - 1)) (4.lla) 

If one examines the data for critical Reynolds numbers based on the 

displacement thickness, 0*, as shown in Figure (5), it is seen that a 

best fit curve may easily be obtained if the shape factor parameter used 

is (l~ - 4). With this parameter one obtains from Figure (5) that: 

UlO* 
10glO(--) . - 3 + 2.34 tanh (X) VI Cl 

(4.llb) 

U 0* 
i.e. _1 ___ 10-2. 34 tanh (X) · 103 , at the point of instability 

VI 

where X = (l~ - 4) and H = ~* , the velocity profile shape factor. 

Thus, if a new length scale, 6 = 0*[10- 2•34 tanh (X)] , is defined, a 

universal constant value, 103 , is obtained for the critical Reynolds 
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number, U1~/v1' at the point of incipient laminar instability. This 

value, 103 , should then define the critical value of SN in equation 

(4. 7d). That is, for the more general boundary layer, SN . = 1000, 
C1 

and this value becomes the universal value of the critical stability 

number for laminar instability, for the new length scale, ~, The 

conclusion one draws from the above discussion is that the Reynolds 

nlDDber, U L/v , is meaningful for any case under consideration, 
r r 

if and only if the velocity, U , length, 
r 

L , and viscosity, 

are correspondingly chosen to describe the appropriate ratio: 

RL = (Inertial Force/Viscous Force). 

v 
r 

Explicitly, the force field concept emphasizes the fluid "tenacitytl 

or "cohesiveness" or the ability of the fluid to resist perturbations. 

That is, the degree of the bonding among the fluid particles. A high 

"cohesivenesslt is taken to correspond to a large force field and implies 

that the fluid particles are strongly bonded so that external perturba-

tions or fluctuational motions of the particles can be completely 

resisted or damped. A zero force field would then be analogous to a 

critical "cohesiveness" for which the fluid could resonate to certain 

types of disturbances present in it. Since a negative "cohesiveness" 

is physically meaningless, a fluid will readjust to increase its 

"cohesiveness" if this property tends to disappear. This is precisely 

what happens in the transition from laminar to turbulent flow. The fluid 

undergoes a phase change. Thus, the laminar, transitional, turbulent and 

re1aminarized flows represent different phases of the same fluid, at 

least with respect to the fluid cohesive property. This situation is 
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observed on a more severe scale in the phase change from liquid to gas 

or vice versa. 

The force field of a fluid is a function of only the local forces 

on the fluid, 

i.e. Force Field = Function [Local Resistance, Local Drive]. 

In dimensionless form: 

Force Field = Function [section Driving Force ,n*J 
Section Resisting Force 

= Function (Stability Number, n*) 

That is, the force field is completely defined by a function of the 

section stability number, SN, and the local position. So equation 

(4.5) can further be written as: 

q(x + ~x) = ~[q(x), n* , SN] 

where n* = y/~. This author represents the quantitative relation 

between the force field and the stability number as sketched in 

(4.12) 

Figure (4). It will certainly require the analysis of many experiments 

and further experimentation to conclusively define the force-field 

theory. Nevertheless, the hypothetical behaviour shown in Figure 

(4), portrays some trends that are quite familiar in boundary layer 

research, for instance, the presence of a weak dependence on Reynolds 

number of fully turbulent boundary layer characteristics, and the 

typical non-linear hysteresis loop of relaminarization. The separation 

characteristics of wall boundary layers cannot be deduced easily from 

Figure (4). One must necessarily use the phase angle characteristic of 

the force field, the form of which is not clear at this stage of the 

theory. 
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4.2 An Energy Method 

An attempt will now be made to deduce the stability (or instability) 

and transitional characteristics for laminar flows in the conventional 

sense, by considering the energy of the disturbances. The principal 

characteristics of interest are: 

(i) the point of incipient laminar instability 

(ii) the most favored disturbance frequency 

(iii) the amplification characteristics (amplification factor and 

rate) 

(iv) the point of incipient transition. 

These will now be considered in that order. 

(i) Consider a two-dimensional laminar flow in which, somehow,. a 

perturbation has entered such that the velocity components can be ' 

represented by a mean portion and a fluctuating portion, whose mean is 

zero. That is: 

u = u + u' 

-v = v + v' (4.13) 

w = 0 + w' • 

Consider~ further, a control volume whose dimensions are proportional 

to the dimensions of the local perturbation length scale, A. If the 

local amplitude of the perturbation in the control volume are, in the 

relevant Cartesian coordinate system, u', v', and w' which may be 

finite or infinitessimal, the stability prob~em now reduces to that of 

finding the conditions under which these amplitudes will be sustained 

and amplified or damped out. 

The characteristic local fluctuational velocity scale within the 

above control volume is related to the local 'r.m.s. velocity~ 
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Also~ the characteristic period which specifies the order of magnitude 

of the time required for the occurrence of the fluctuation~ is related 

to )"/J. 

The energy of the fluctuation in the control volume mentioned above 

is derived from the main flow, through some mechanism~ and manifests 

itself as primarily kinetic energy. When this fluctuation occurs~ the 

energy of the fluctuation~ per unit mass~ is of the order of magnitude 

2 of J • Thus~ one may write that when the fluctuation occurs, the 

amount of energy which goes over from the main flow to the fluctuation 

in the control volume, per unit time and mass, is equal in order of 

magnitude to: 

J2 J 
T 

Ideally, one would like to deduce the above result from some appropriate 

turbulence energy production terms in the equations of motion. For a 

very simple boundary layer flow with no influence of heat or m!ss 
au. 

transfer, such a turbulence energy production term is u!u! ___ 1 per 
1 J ax. 

J 
unit time and mass. One may then apply the mixing length concept of 

au. 
Prandtl to show that __ 1_ is given in order of magnitude by the ratio ax. 

J 
J/)". Thus~ that the turbulence energy production per unit mass and 

time, is given in order of magnitude by J3/).. , as obtained before. 

However~ for more general flows with heat transfer~ for instance, the 
au. 

turbulence energy production is represented~ in addition to u!u! 
1 J 

1 

ax. ' 
J 

by terms due to the heat transfer. It becomes difficult, therefore, 

to show that, generally, the turbulence energy production is of order 
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of magnitude J3/ A , without making unacceptable assumptions about the 

order of magnitude of the influence of the heat transfer. Obtaining 

the order of magnitude of the production term from the magnitude of the 

initial fluctuation in the manner demonstrated above, gives a global 

estimate and circumvents any assumptions concerning the influence of the 

flow conditions. 

The fluctuational energy dissipation in an incompressible flow 

with velocity fluctuations is given generally, per unit mass and time, 

in the Cartesian tensor notation by: 

au! au! au! 
€: = V (_1._ + _J_) 1. 

ax. ax. ax. 
J 1. J 

If_it is assumed that the local velocity gradients of the fluctuations, 
au! 

1. 
(~ , etc), are given by the ratio, J/A, of the local characteristic ox. 

J 
values, J and A of velocity and length respectively, then the energy 

loss by fluctuations in the control volume per unit time per unit mass 

is equal in order of magnitude to: 

If all other perturbations on the energy of the main flow in the 

control volume are small compared to those mentioned above, then the 

fluctuation in the fluid will be sustained only if the net energy is 

positive. That is, if the production quantity is greater in magnitude 

than the dissipation quantity. Growth of the fluctuation implies, in 

the conventional sense, instability of the flow. Hence the flow in the 

control volume is unstable if: 
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(4.14) 

The instability criterion, (4.14), will now be reduced to a more 

conventional form. Let vertical distances be non-dimensionalized with 

the characteristic length, fJ.. and all velocities be non-dimensionalized 

with the free stream velocity, Ul . Then expression (4.14) is reduced 

to the following dimensionless form: 
U1fJ. 

1 for flow instability -- > I A/ fJ. ' \I 
(4.15) 

where I is the local dis turbance intensity defined as 

The inequality (4.15) indicates that for the fluctuation in a laminar 

flow to be sustained, that is, for laminar flow instability, the 

appropriate dimensionless force quantity for the flow must be greater 

than some function of the local disturbance intensity, I, and the 

local dimensionless disturbance length scale, (A/fJ.). If it may be 

assumed that the characteristic disturbance length scale, A , is 

approximately proportional to the distance, y, from the solid boundary 

in a wall boundary layer, then the inequality (4.15) suggests that in 

general, 

SN > ~(I,n*), for laminar flow instability ( 4.16) 

where n* = y/fJ.. 

The local disturbance intensity, I, depends on the initial free 

stream disturbance intensity and the relative local force field. As the 
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force field is completely defined by the stability number, SN " and 

the local position, n*, it is clear that 

SN > ~3(n*, SN, II) , for laminar flow instability ( 4.17) 

The problem now is to define what exactly is ~3. The present author 

believes that ~3 is simply the integrated effect of a single general 

distribution profile of the total disturbance kinetic energy, across 

the boundary layer. The determination of such a function is quite a 

task. Although an attempt will be made to deduce it later in this work, 

an equation may still be given for the critical Reynolds number for 

laminar flow instability without an explicit derivation of ~3. 

It was obtained earlier that the critical stability number SN . , 
C1 

for laminar flow instability according to the definition of the length 

scale ~, is 103 . This derivation was made for the cases where II was 

of such a magnitude as not to appreciably affect the value of SN. . 
C1 

If the expression (4.17) may be written as: 

(4.18) 

then 

(4.19) 

In a more conventional manner, it may be stated that for laminar flow 

instability the critical Reynolds number, Ulo*/vl , is given by: 
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~(Il){1-a2(Ra + Ta + At)}1/2 

(1 + vo/Ul ) 

10 10{3+2.34 tanh(j[ - 4)} 

where a2 is a numerical constant. The function ~(Il) has been 

empirically estimated by examination of the data of Schubauer and 

Skramstad (1948) to be of the form 

(4.20) 

(4.21) 

The constant a2 may be fixed from the results of the critical 

Reynolds number for suction profiles, for example as calculated by 

c. C. Lin (1946). For zero suction on a flat plate, C. C. Lin obtained 

that (Ulo*/vl)ci = 465, which is slightly higher than the accepted 

value of 420. Otherwise, Lin's results agree reasonably with experi-

mental results. With this slight discrepancy in mind, the constant a2 

is obtained as follows: From equation (4.20), for a flat plate flow 

with suction and no heat transfer at the boundary: 

(4.22) 

if the effect of free stream turbulence is neglected. Applying the result 
v Ulx 

of c. c. Lin (1946) for the case when UO 
( ) = 0.5, corresponding 

1 vI 
to H ~ 2.25 and (voo*/vl ) ~ 0.6, one obtains that approximately, 

Re * = 0.667 x 104 • This yields that a2 = 0.012. o ci 
With this value of a2 , one obtains that for small and zero 

Reynolds number parallel flows with heating at the wall, the 
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critical Rayleigh number based on the depth of the unstable layer is in 

the neighborhood of 140. No experimental data appear to be available 

for this type of flow~ with which to compare the present result. Some 

numerical results~ nevertheless, have been obtained by other workers, 

for the related case of penetrative cellular perturbations in a horizontal 

layer of fluid composed of a lower layer of unstable density gradient 

above which is a layer of stable density gradient. For the classical 

rigid-free boundary solution corresponding to the limiting case of 

infinite stability on top of the unstable layer, Chandrasekhar (1961) 

gives a critical Rayleigh number based on the depth of the layer of 

about 1100. In reality, of course, the convective cells do penetrate 

the unstable layer. Rintel, (1967) and Stix, (1970) have shown that for 

small stability on top of the unstable layer, the critical Rayleigh 

number is much smaller than that obtained by not taking penetration 

into account. For various degrees of such penetrative cellular pertur-

bations close to the limiting case of infinite penetration, Stix (1970) 

and Rintel (1967) obtained critical Rayleigh numbers based on the depth 

of the layer of 225 and 172, respectively. These results indicate that 

the present estimate of 140 is very good. 
v 0* o Further, for the asymptotic suction profile (----- = 1; H = 2), one 

vI 
obtains by the present method, a critical Reynolds number, (Ulo*/vl ) = 
63 x 103 • Estimates for this number, C. C. Lin (1946), are accepted as 

close to 70 x 103 which is quite close to the present estimate. 

For flow over a concavely curved boundary~ the present method 

predicts that if the curvature is appreciable, the influence of the 

Taylor number dominates over the Reynolds number. For this situation, 

the GHrtler number, Re If]: ,is given by the constant value, 0.45, 
e ro 
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for all Rea. This estimate compares very well with the values 0.34 

and 0.58 given respectively by A. M. o. Smith (1953) and G6rtler (1940). 

The final form of equation (4.20) is presented as: 

As a check, it is noted that for the Blasius profile (H = 2.6), equation 

(4.23) gives that Re o*.= 438 , which is quite close to the generally 
C1 

accepted value of 420. 

(ii) The time scale of a fluctuation' wave in the elemental volume 

so far considered is: 

T - (4.24) 

u 

where u is the local characteristic group velocity of the wave. 

The period, Tp, of a characteristic oscillation within this con­

trol volume should be expected to be related to this time scale. 

Obviously, the most favored oscillatory motion within the control volume 

is the one with a period closest to the characteristic local time scale. 

That is, the frequency of the most favored local perturbation may be 

written as: 
UI fp ~ X- ' if u is taken to be proportional to UI . (4.25) 

Although no conclusive statement can be made at this point concern-

ing the functional form of fp' the following form is suggested from 

the observed data of Schubauer and Skramstad (1948), and the assumption 



of a linear relation, 

u2 
1 1 

fp - 0.016 --*. ---R vn e6 

63 

(4.26) 

(iii) The amplification characteristics of the boundary layer for 

a fixed frequency of disturbance would be a function of only the relative 

local force field. Considering the case of the most favored frequency, 

which corresponds tD maximum amplification characteristics, or more 

generally, for a given n* layer, the local amplification rate should be 

a function of a quantity which indicates by how much the local force 

field has fallen below the critical value, 

i.e. Amplification rate = ~l(l - SN ./SN) = a~o* (for exponential 
C1 1 

type disturbances). 

The above result, however, is not limited to any particular mode of 

disturbance. Also, the local amplification factor defined as 

A 
a* - ~ -- A . 

C1 

(Amplitude at x-station 
Amplitude at point of neutral stability) 

should be a function of the local force field relative to the critical 

minimum force field for stability, 

i.e., 

where 6x = (x - x .)/L(x) and the subscript (ci) denotes quantity 
C1 

at the point of neutral stability. 
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If a linear theory is assumed, that is, if the functions ~l and 

~2 are assumed to be linear functions, one obtains then that: 

a* = [1 + b(a~o* n x)] 
1 

(4.27) 

where b,d are numerical constants and the condition that a* = 1 when 

nx = 0, has been applied. For small values of the argument, the relation 

for the amplification factor could be written as: 

(4.28) 

where b l is a numerical constant. 

By assuming that a single harmonic, the fundamental harmonic 

(a = 1), regarded as the dominant term in the disturbance, and an 

equilibrium perturbation function, ul(y) , may be used throughout the 

growth period of disturbances in a boundary layer, Stuart (1958) 

obtained by an energy method that: 

(i) Amplification rate, in linear theory, is 

Y2 Re . 
[1 -~] = a.~o* 

1 a - Re Yl 

(ii) Amplification factor according to linear theory is 

Y2 x 
a* = exp[ ~2 - (1 - Re ·/Re) - ] 

Yl Cl 0* 

(4.29) 

(4.30) 
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(iii) Equilibrium amplitude is 

Y2 K == - [( Re - Re .) /Re2 ) • e aY3 C1 
(4.31) 

where the critical Reynolds number for instability is given by: 

and 

a ::: 1 

Yl 
z 2.05146 for Poiseuille flow between 

Y2 
:::: 0.040192 parallel planes. 

Y3 
z 0.002308 

Y4 
:::: 247.62 

These results agree with the deductions made from the force-field 

concept if the conventional Reynolds number is replaced by the Stability 

number. 

Applying the same assumptions but without the restriction of 

linearity, Stuart (1958) showed that for a disturbed basic flow, the 

square of the amplitude, a*, of the disturbance could be given by: 

where 61 = aY2/Yl 

62 = Y 4/Yl Re 

63 = a2 Re Y3/Yl 

(4.32) 
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and Cl is a constant which is probably related to the initial dis­

turbance amplitude. Equation (4.32) gives a qualitatively plausible 

description of the linear and non-linear effects, depending on the value 

of the time, t. This equation may be re-written for spatial rather 

than time amplitudes if the approximation is made that: 

A • U1 
t :: (x/u) 6* 

(dimensionless time) 

where u is the disturbance group velocity taken to be approximately 

directly proportional to U1 . One then obtains the following: 

. C1 exp (~) 

1 + C1 m . exp(~) 
(4.33) 

where 
Y2 x 

~ = a - [1 - Re .1 Re ] ~ * A Y1 C1 \J Ll 

Y3 
m = (a Re -) I (1 - Re ./Re). 

Y2 C1 

Equation (4.33) implies that for a given location, the amplitude 

of a disturbance is a function of only the location, the deviation of 

its dimensionless force quantity (in this case the Reynolds number) 

from its critical value, and the initial amplitude of the disturbance. 

This implication is basically the same as that deduced from the force-

field theory. Moreover, the force-field theory implies that the dis-

turbance field may be represented by a generalized function, ~3(I1,Y/~, 

SN) which was a basic assumption of Stuart's. Stuart (1958) in fact, 

represented his disturbance field as, K Re u'(y,t) ,which is 
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fundamentally related to the function, <1>3. Relative to the force 

field theory, the limitations in Stuart's analyses stem only from the 

incompleteness of his dimensionless force quantity, Re, and his 

disturbance field. For boundary layers with mean velocity profiles 

very close to the Blasius profile, these errors will be very small. 

Hence the slight deviations of Stuart's predictions from experimental 

measurements. Stuart's analyses proved excellent when he extended them 

to flows with curved boundaries, using the appropriate dimensionless 

force quantities. 

It should now be possible to obtain the general disturbance 

characteristics for more general boundary layer flows by a method very 

similar to that used by Stuart (1958) for plane Poiseuille flow. The 

method used here involves partial derivation of the generalized dis-

turbance profile discussed earlier in this section. 

An equation for the total kinetic energy of three dimensional 

disturbance in a t\V'o-dimensional basic flow may be obtained by sununing 

equations (3.24), (3.25) and (3.26) of section (3.3), where 

k2 + k3 · One obtains: 

K = k + 1 

= (-a20 - a27 + a30)[fi - f i _l ] + (a2S-a21)(fi-fi_l) 

(4.34) 

where the quantities are as defined in Chapter 3. The solution of 

equation (4.34) requires an input profile of K(n*, SN) at a given up-

stream position (i-I) for a profile at a downstream postion (i). If 
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the upstream position (i-I) is taken constantly as the point of 

neutral stability in the laminar boundary layer, one may then calculate 

the disturbance characteristics downstream of the point of neutral 

stability in parameters that are relative to the characteristics at 

the point of neutral stability. It is true that as such a calculation 

progresses downstream, that is, the x-spacing is increasing, the com­

putational error gets larger. However, the Crank-Nicholson scheme used 

in obtaining equation (4.34) is always stable so that resulting profiles 

will be similar, at least in shape, to the exact solutions. In fact, 

if one leaves constants arbitrarily until the final form of the required 

solution is obtained, these constants may be evaluated empirically to 

eliminate most of the quantitative numerical error. Another point of 

dispute in the method being introduced now, is that a general solution 

thus obtained should be valid only downstream of the point of neutral 

stability. This however should not be the case. By making Ax negative 

in a Crank-Nicholson scheme one may, under certain circumstances, retrace 

the upstream flows from a given (i-I) position. Such a retrace is 

unstable if numerical computation methods are used to evaluate the 

final result. If, however, a pure analytical result is obtained for 

the K(n*,SN) distribution, say, such a result is certainly not limited 

to only downstream of the instability point. Its only restrictions 

may be those imposed by the basic boundary layer equations from which 

it is derived. 

Equation (4.34) may now be written as: 
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(4.35) 

where n = K/K. (and is always >1). 
Cl 

With this apology, the following assumptions will now be made to 

facilitate the solution of equation (4.34). 

(i) Upstream of the point of neutral stability all 

disturbance in the basic flow are damped with a damping 

factor which decreases with increasing distance from the 

leading edge. The total energy of the disturbance at the 

point of neutral stability is the minimum value with a 

distribution across the boundary layer given approximately 

by the following curve: 

(4.36) 

The form of the equation (4.36) is obtained empirically from 

the necessary boundary conditions and the requirement that 

K .(n*) has a maximum in the neighborhood of n*: 1.0 , 
Cl 

(or y/o ~ 0.3). A is some function of II ' the 

free stream turbulence. 

(ii) The mean velocity profile is given approximately by a Blasius 

profile distorted by the disturbance. In the region of the 

critical layer of the wall boundary layer, the simplified 

distorted profile will be represented as follows: 
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u -u == b 1 n * + b2 SN . K 
1 

Stuart (1958) obtained in a similar manner, that for steady plane 

Poiseuille flow 

u 
-U- · 

max 
2 1 - (y/d) + Re 

y/d 
J dey/d) 
o 

(4.37) 

(4.38) 

where d is the distance between the plates, y is measured from the 

centerline, and Re is a characteristic Reynolds number. 

If substitutions are made for the a's and for K. in equation 
Cl 

(4.35) from equations (4.36) and (4.37), one obtains after some algebraic 

manipulation and simplification that for the region of the boundary layer 

in the neighborhood of the critical layer equation (4.38) reduces to the 

following: 

d Al/2SN3/ 2 
1 2 nIt + ~~<""" Q' 2_ d SN(l-w)Q' - ----",~-

(l+Q) 1 (1 +Q) 1/2 

(d Al/2 
4 

+ d ~/2). 1 
s (l+Q) 

where w = SN ./SN. 
Cl 

= 0 J 

Equation (4.39) has the following general form 

Y" + Fl (y)y,2 + F2(Y)Y' + F3(Y) = 0 , 

(4.39) 

(4.40) 

which is the classical polynomial class non-linear differential equation 

of the second order. Notable examples of this type of equation include 

the Volterra equation for the problem of the prey and predator, 

Rayleigh's (1883) equation for sound motion and the Van der Pol equation. 

These analogies are interesting because the equations mentioned above 
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were derived for systems in which "energy" is taken from a basic supply, 

a situation which is quite typical in the wall boundary layer. Hence, 

although equation (4.39) was obtained after a series of assumptions and 

approximations, its solution should contain most of the qualitative 

disturbance characteristics observable in the physical wall boundary 

layer. Rayleigh (1883) noted that equations of the type (4.39) will 

usually attain some steady state or equilibrium solution after an 

initial non-linear instability. This behavior is quite in accord with 

the physical situation in a wall boundary layer. 

If one makes the following transformations 

Y' = P(Y) = l/U(Y) (4.41) 

equation (4.40) reduces further to the following form: 

(4.42) 

Equation (4.42) is the classical Abel equation which has been solved 

explicitly only in a few special cases. The derivation and approximate 

solution of equation (4.39) have been presented in some more detail in 

Appendix C. The following solution is stated: 

where 

n = 
1/2 

MB2w exp (~2) 

1 + M(l-w) exp (~2) 

M = B A 1 

(4.43) 
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S2 = B.SN(l-w) 

B2 = Function of SN(ZB4/(A.SN:(2)) 

Bl , B, B4 are numerical constants. 

The above analysis was performed for a laminar flow with some 

initial disturbance (finite or infinitesimal) in the subcritical region, 

even up to the point of neutral stability. If a situation arises 

where the initial disturbance is completely damped prior to the point 

of neutral stability and no further disturbances arise until downstream 

of the critical point, that is in the supercritical region, it is obvious 

that the result (4.43) must be modified. This latter case is identical 

to the one studied by Stuart (1958) and for which the following 

differential equation was given: 

dy _ 
dT- (4.44) 

Stuart quoted that Landau (1944) gave a general solution for (4.44) but 

without stating what approximations were used or how the final solution 

was obtained. Landau's solution is 

(4.45) 

where y represents the square of the amplitude of the velocity 

fluctuation in a disturbed plane Porseuille flow. The similarity 

between Stuart's (1958) solution for supercritical disturbances (4.44 

and 4.45) and the present solution for subcritical disturbances is 
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quite interesting and suggests that more generally, the present solution 

(4.43) may be stated as: 

Then the amplification factor becomes: 

= a*2 
~MB2wl/2 exp(~2)] 

(K(X)) 
Ko max ~[l + M(l-w) exp(~2)] 

(4.46a) 

(4.46b) 

where K is the value of K at the initial point of interest. In 
o 

subcritical cases, K = K . , but in supercritical cases, K corres-o Cl 0 

ponds to the value of the input supercritical disturbance kinetic energy. 

In the region very close to the point of neutral stability (i.e., 

w ~ 1) the solution (4.46b) reduces to: 

(4.47) 

exp(~2) , for the constants as defined below. 

This is the linearized solution given in equation (4.28). Far away 

from the point of neutral stability equation (4.46a) reduces to the fol-

lowing steady or equilibrium state 

(4.48) 

which is independent of the initial free stream disturbance. 

By a bounding value argument in which it is demanded that in a flat 

plate case, the linearized form of equation (4.46b) give a value in the 
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12 neighborhood of e J the constants in equation (4.43) have been 

estimated as follows: 

81 :: 0.33 

8 == 0.003 

B == 90 4 

(iv) The next critical point of interest is the transition point 

corresponding to SNct • The force field hypothesis indicates that 

transition is incipient when the magnitude of Kct ' the total kinetic 

energy of the disturbance reaches a certain critical value. For both 

subcritica1 and supercritica1 disturbances it has been noted above that 

. B184w~ exp (t2) 
l.e., Kct « (1 + M(l-w) exp (~ ) )ct ' at incipient transition 

(Constant) 2 

The relation (4.49) may be reduced to the following form 

~ 
Kct SNct 

81 11 SN~i 

(4.49) 

(4.50) 

where 81 :: 8184 • Except for nearly zero initial free stream turbulence, 

Kct(SNct - SNci)/ (84 SNci ) is «1. Hence, from (4.50), 

(4.51a) 
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Since SNct is large, 3 
> 10 , ~n SNct is approximately constant for 

all SNct . Substituting for the numerical constants in (4.5la) with 

Kct ~ 0.3, one obtains that: 

(SN t - SN .) · -1.3 x 103 {~n (33 II)} . c C1 
(4.5lb) 

Equation (4.5lb) thus gives a simple relation between the stability 

number for incipient transition and that for incipient laminar flow 

instability. This relationship is compared against flat plate 

experimental results in Figure (9) and the agreement is very good. 

Obviously the logarithmic form for the function (SN t - SN.) is c C1 

valid only for values of 11 2 0.03, since a negative CSNct - SNci) 

is physically meaningless. For 11 > 0.03, the points of instability 

and transition are virtually coincident, so that, physically, negative 

(SN t - SN.) may be equated to zero. c C1 

The above discrepancy was anticipated, for in the solution of the 

equations of Appendix C, complicated functions were always replaced by 

much simpler functions which behaved functionally similarly in the 

region of interest. Hence, the solutions (4.46 - 4.51) represent only 

the simplest functional approximations of the appropriate exact 

solutions, in the region in which they are physically meaningful. 

4.3 A Flow Describing Function 

A major implication of the force field hypothesis is that there 

exists an explicit non linear (or linear) transfer function for all 

flows. It was obtained early in section (4.1) that with reference to 

Figure (3a), a flow variable at a section 8 downstream of a section A 

is given by the following function: 
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(4.52) 

where SND = (SN
B 

- SNA)/SN
B

• The function ~ is the non-linear (or 

linear) transfer (or describing) function for the flow. In attempting 

to derive an analytical formulation for ~, one may resort to the 

indications of experimental results and intuition. Such an effort 

may, however, be fruitless since it would require an ingenius 

interpretation of a very large collection of experimental results to 

avoid the frustrating conclusion that fluid flow constitutes a very 

complicated non-linear system the mathematical formulation of which had 

better be avoided. Alternatively one may attempt to derive ~ directly 

from the differential equations of fluid flow. This latter approach 

would practically involve the analytical solution of the boundary layer 

equations which would make the present discussion superfluous. In view 

of these difficulties, it is obvious that a meaningful and useable flow 

describing function can be derived only semi-empirically using plausible 

physical assumptions and some conclusions from the differential equations 

of fluid flow. 

Let ~ be assumed to be of the following form: 

00 

~ = '2 Gi (n*, SND) q~ 
i=O 

(4.53) 

The transferable quantity, q, must be an invariant quantity (a scalar 

or second order tensor) for equation (4.53) to be both mathematically 

and physically meaningful. Since in the force field_ hypothesis, energy 

is a primary variable, q will always represent some total energy. In 
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the present case, q = u.u. , the total kinetic energy_ 
1 1 

If one defines 

a dimensionless q(=q/q < 1) then the infinite series of equations max -

(4.53) must converge. That is, 

where N is some finite integer. (4.54) 

Obviously, Go represents the energy sources and/or sinks between 

the positions A and B. 

The boundary conditions are 

At n* = 0 q = 0 

n*-+ 00 q -+ 1 (4.55) 

n • 1, 2, ... 00 

where the tilde denote dimensionless mean quantities. 

The governing equation for the convection of a transferable 

scalar quantity in a steady flow is written as follows: (Hinze, 1959 

p. 296) 

u. ~ = _a_ (E: ~) + F 
1 ax.' ax. ax. y 

1. 1. 1 

where r is the scalar quantity to be transfered, 

E: is a transfer coefficient which may be a constant or some 

function of n * 

F is the driving force or source term. y 

(4.56) 
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For two-dimensional incompressible steady flow, equation (4.56) after 

discretizing in the x-direction according to the Crank-Nicholson 

method discussed in Chapter III, becomes approximately: 

(4.57) 

where v, u are half way point dimensionless local mean velocities, 

d is the dimensionless x-increment and F is some dimensionless 

function of the sources and u, d, etc. 

One may now quasi-linearize equation (4.57) by making the following 

assumptions: 

(i) 

f. = A(x+d) n*N(x+d) 
1 

f. 1 = A(x) n*N(x) 
1-

(ii) N(x) is a slowly varying function of x such that 

d2 (N) ~ 
dx2 o. 

(iii) d, the x-spacing is small enough for terms in d2 and 

higher order to be negligible in comparison to other terms. 

Equation (4.57) then reduces to the following: 

r. = f. 1 
1 1- [ 

2 '" ] 2 - £d.N/(n* u) _ I 

(1 doN(:'-;) _ N2~:) 
n*u n* u 

+ F* 
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where F* comprises all the non-linear and source terms. The 

coefficient of f. 1 in equation (4.58) goes from 0 ~ 1 as the 
1-

parameter n*/SND goes from 0 ~~. As a first approximation, this 

coefficient will be represented by the hyperbolic tangent of an*/SND • 

i.e., fi = f i _l Tanh (a n*/SND) + F* (4.59) 

where a, is a numerical constant 

(4.60) 

Equation (4.60) implies correctly that the force field is inversely 

proportional to the boundary layer relative stability number for small 

arguments of tanh (.). 

Equation (4.54) now becomes 

(4.61) 

where N is a finite integer. Since in fully developed laminar and 

turbulent boundary layers similarity solutions, which signify a linear 

transfer, are usually possible, it should be obvious that the terms 

N 
L 

i=2 

-i 
GiqA in equation (4.61) are substantially different from zero 

only in developing boundary layers, such as the entrance region and 

transitional boundary layers, where the complete Navier-Stokes equations 
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must replace the boundary layer equations as the deductive tool. 

Further, physical reasoning dictates that if qA is negative, qB 

must also be negative so long as the incremental distance 6x is 

taken reasonably small. TIlis reasoning implies in the absence of a 

source/sink term, G , o that $ is an odd function in qA. Since, 

however, G is not always negligible, one must not jump to the above o 

conclusion. Nevertheless, it seems that if q is normalized with its 

maximum value as herein, $ may be approximated by the following 

simple polynominal: 

(4.62) 

Substituting in the unsimplified equation for the transport of scalar 

quantities (4.56) and repeating the procedure used to obtain Gl ' one 

finds that the coefficients G2 ruld G3 satisfy the following equations: 

(4.63) 

(4.64) 

where fl and f2 behave functionally as 

and f3 and f4 differ from fl and f2 respectively only by constant 
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i.e. f 3 = gl fl 

f4 = -g2 f 2 

81 

(gl < 1) 

(g2 = 0(1)). 

and b, d and h are numerical constants. If the following trans-

formations are made 

x = exp (- bn*/SNO) 

G
3 

= Vex) 

equation (4.64) may be expressed as follows: 

xY" + (b - rnx) Y' - d Y = 0 
1 1 

(4.65) 

where bl(>l) and dl are numerical constants. 

Equation (4.65) is identical to Kummer's equation. The general 

solution of Kummer's equation is given in terms of confluent hyper-

geometric functions. For detailed consideration of this type of equations, 

the reader is referred to Abramowitz M. and Stegun, A. I. (1965). Kamke 

(1948) lists the following solution: 

1/2b -2dl + mb l 
Y = x - exp (1/2 Hx) y( -2m - rnx) 

where y (A; B; X) 
00 • i 

1 + I A(A+l) .... (A+l-l)X 
i=l B(B+l) .... (B+i-l)i! (4.66) 
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which is Kummer's function M(a,b,z) and in the present problem is 

absolutely convergent since 0 < Imxl < 1, 

(A B X) reB) exnj .. (X) XA- B [1 + ocl xl-I)] y ;; ::: rCA) 

for real X > 0, where r (. ) is the Gamma function and 0 C.) is 

"order of (.)". Therefore G
3 

is given as follows: 

where 

rCI/2b l - 1/2) 

b
l 

rCalSNo - 2) 

exp 

and the a's are numerical constants. For reasonably short steps 

(4.67) 

(i.e., SNO::: 0(0.1), the constants in equation (4.67) have been 

roughly estimated by inspection to yield the following form of the G3 

function: 

G3 : 8 exp(20 SNO) [exp(-4.5 n*/SNo) - 0.26 exp (-5 n*/SNo)] . (4.68) 

The solution of equation (4.63) is identical to that for equation (4.64) 

except for the values of the constants. Thus, one obtains by arguments 

similar to those used above that: 
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G2 - 2 exp (S SNn) [exp(-4.S n*/SNn) - 1.3 exp (-4 n*/SNn)]. 

(4.69) 

For the zero pressure gradient case with no heat or mass transfer at the 
dU. 

wall, the source/sink term G is proportional to T* :: £ (_1)2 , for 
0 dX. 

J 
incompressible flows. If one applies this approximation to the transfer 

equation (4.S6) and analyses the equation in the manner discussed 

earlier in this section,. it is easy to come to the conclusion that for 

kinetic energy 

G ::: 
o 

G may be represented fUnctionally as: 
o 

(4. 70) 

where a and A are numerical constants, and SN = (SN(x) + SN(x+d))/2. 

The functions G2 and G
3 

which are the coefficients of the non­

linear terms of ~ are evidently not very simple functions. In the 

region of the wall boundary layer where the boundary layer character-

istics are not changing very fast, SNn ~ 0, and the transfer function 

~ is approximately a linear function. 

In summary, it is noted that a fluid transfer function may be defined 

as follows for scalar quantities, q(-q/q ). max . 

where the coefficients Go' Gl ' G2 and G3 appear to have the 

following forms: 

Go = -A exp (- an*/SNn) , (a - 1, and A::: 0.001 for kinetic energy) 
SN 



84 

Gl • Tanh (a n*/SND) , (a = 0.07) 

G
3 

- 8 exp(20 SN
D

)[exp(-4.Sn*/SND)-0.26 exp(-Sn*/SND)] 

and the quantities are as defined earlier in this section. It must be 

noted that Go' Gl ' G2 and G3 as written above represent only a 

first approximation. Figure (17) shows the approximate functional 

forms of these coefficients, across a wall boundary layer, for fully-

developed flows. 

4.4 Use of a Describing Function Method for Continuous Solution of the 
Wall Boundary Layer 

By virtue of the force field hypothesis it was possible to deduce 

a simplified flow transfer or describing function, ~, with which 

invariant flow quantities could be transferred from an upstream to a 

downstream position. An attempt will now be made to demonstrate how 

this elementary transfer function could be used to ease the com-

putation of at least the simple zero pressure gradient two-dimensional 

wall boundary layer. 

The appropriate governing equations for the two-dimensional 

incompressible flow reduce to just two, the continuity equation and 

the quasi-invariant transfer equation, namely: 

au av 
-+ -= 0 ax ay 

q(x+d) 

(4. 71) 

(4. 72) 
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where d = ~x, Go' Gl , G2 and G3 are as defined in section (4.3). 

Equation (4.72) has essentially combined the boundary layer momentum 

and kinetic energy equations in a form which makes it unnecessary to 

make any explicit statements concerning the turbulence action. 

It must be noted that q in (4.72) is a total dimensionless 

quantity (e.g., 
2 2 -2 -2 -2 -2 

u + v - u + u' + v + v' ). In terms of mean and 

fluctuating quantities the continuity equation may be split into two, 

and the transfer equation expanded to include the influence of the 

fluctuating quantity at the upstream position, as follows: 

au 
-+ ax 

au' -+ ax 

av 
ay 

av' 
ay 

= o 

= o 

q(x+d) = Go + Gl [q(x) + q'(x)] + G2 [q2(x) + 2q(x)q'(x) + q,2(x)] 

3 2 2 3 
+ G3 [q (x) + 3q (x) q' (x) + 3q(x) q' (x) + q' (x)] 

where d = (~x). 

(4.73a) 

(4.73b) 

(4.73c) 

To make computations by the describing function method one must 

know an upstream position exactly or at least closely. These demands 

are no different from those basically required by conventional prediction 

methods. One may then set up the prediction problem downstream of the 

given position as follows: 

(i) Assume that 
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SN(x+d) - SN(x) + ~x (SN(x)).d 

i.e. SNO ~x (SN(x)).d/ SN(x+d) 

(ii) Compute q(x+d) and q'(x+d) from equation (4.73c). 

(iii) By definition, for the kinetic energy 

"'2 "'2 q(x+d) = u + v = Q, (4.74) 

where the tilde denote dimensionless mean qurultities. From equation 

(4.73a) \vhen normalized by scaling length !J. one obtains that: 

I:. au + uF ReA oX u 

ov 
+ - = 0 

on* 

where F 

From equations (4.74) and (4.75) one obtains that: 

where 

- au 
u an* 

f = (1 oQ _ ~ ~(x) Ql/2) . 
3 2 on* d 

(4.75) 

(4.76) 
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Equation (4. 76) has the following solution for n* 1 0: - (Kamke (1948) 

Abel's equation of the second type). 

u = 

Then 

[Q _ ~ Ql/2 
d 

n* 
f u(x) dn* + f2 
o 

n* 
J Ql/4 dn*]1/2 (4. 77) 
o 

(4. 78) 

(iv) Sn(x+d) may now be computed from the velocity profiles at 

the (x+d) position. 

(v) SNO = 1 - SN(x)/SN(x+d) is computed and (ii) through (v) 

repeated until convergent solution is obtained. 

No explicit convergence analysis has been made yet, as a rigid proof 

of the convergence of the above scheme. Convergence is accepted, 

a posteriori, on the basis of examples tried. Indeed, the marching 

scheme used here is no different from that used in most conventional 

numerical schemes. 

Starting from the same initial input profiles and specification, 

the Schubauer and Klebanoff (1955) bOWldary layer has been computed. 

The results are displayed in Figures (10) through (12), and are reason-

ably good, for the fully laminar and fully turbulent regimes. However, 

the describing function method as presented in this work is much too 

simple and does not predict the transitional boundary layer, satisfactor-

ily. 
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Chapter V 

~. A TRANSITION FUNCTION METHOD FOR CONTINUOUS SOLUTION OF THE 
WALL BOUNDARY LAYER 

Differential and integral methods of mean velocity field closure 

used to calculate laminar and turbulent boundary layers give very good 

results for some practical cases. Quite a lot of work has gone into 

developing efficient computer programs for such calculations. Although 

the more recent methods of boundary computation, for instance, the 

method of invariant modelling discussed in Appendix A of this work, 

are undoubtedly superior to the differential and integral methods of 

mean velocity field closure, the latter methods should not be completely 

forgotten especially where computational facilities are limited. One 

major advantage of the method of invariant modelling, say, over the 

older methods is that the former is not restricted in its basic form to 

any special regime of the boundary layer, laminar or turbulent, that is. 

Hence the method of invariant modelling can be used for continuous 

computation of the complete boundary layer, laminar through transitional 

to turbulent, without additional assumptions or modifications. With the 

older computational methods, however, the user has to know precisely 

where to stop using the laminar flow assumptions and start using the 

turbulent flow assumptions. Moreover, since a finite length of transi-

tional (neither exactly laminar nor exactly turbulent) boundary layer 

may exist between the laminar and the turbulent boundary layers, a third 

set of assumptions are needed if one wishes to calculate a boundary 

layer from laminar through transition to turbulent flow, as in airfoil 

design. Persh (1957) has suggested a method of calculating through the 
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transitional boundary layer which could be applied to provide the 

desired continuous solution of the boundary layer. 

In this section, an attempt will be made to evaluate and use an 

intermittency factor (or transition function) which is zero for fully 

laminar flows and wlity for fully turbulent flows, to link the laminar 

and turbulent boundary layers. Implicit in the concept of the inter­

mittency factor is the experimentally confirmed supposition that the 

transitional boundary layer is a simple mixture of a laminar and a 

turbulent boundary layer. Such an intermittency factor had been 

mentioned by Herring and Mellor (1970) and partially evaluated by Emmons 

(1951), Schubauer and Klebanoff (1955). The function evaluated in 

the present work is thought, however, to be more general and more useful. 

The ways in which this intermittency function may be used in 

differential and integral relation methods of boundary layer computation 

are discussed in principle, below. The actual application of this 

linking mechanism, however, is tested only for the differential method. 

The results, as shown in Figures (10) through (12), are very good. 

5.1 The Form of the Transition Function 

A derivation of an intermittency factor (the transition function) 

which describes quantitatively the transition process will now be 

presented. Once again, the function derived here is not necessarily 

the exact description of the transition process but is considered a 

sufficient description, for general cases. 

It was pointed out in the review of boundary layer research, 

Chapter 2, that the transitional boundary layer appears to be 

statistically similar for all cases irrespective of the cause of 



90 

transition. On the basis of this statistical similarity, Emmons (1951) 

and McCormick (1968) established the nature of the intermittency in the 

transitional boundary layer, which qualitatively describes the probability 

that a spatial point in the transitional boundary layer is turbulent. 

Emmons' derivation is preferred for the purpose of the present work. 

According to Emmons (1951), if a function g(x,y,t) of position (on 

the surface) and time is defined to specify the rate of turbulent spot 

production per unit area, in a boundary layer, then the fraction f(x) 

of the time during which a point distance x from the leading edge is 

turbulent is given by 

where 

C1 = 0.
2 At/S 

a = Tan(1/2 propagation angle) 

S = Velocity of center of spot 
Free stream velocity, Ul 

= Area of spot 
At Square of half-width 

and 

g = g(x,y,t) as defined earlier. 

(5.1) 

(5.2) 

The spot characteristic, cr, can be estimated from empirically deduced 

values of a, S and At and appears to be independent of the process 

leading to the spot formation. Emmons (1951) evaluated cr to be 

approximately 0.1. This value will be temporarily retained in the 

present work and equation (5.1) may then be rewritten as 
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(5.3) 

The function g(x,y,t) will now be derived. For stead} ~ean flow as 

considered in this study, g will be independent of time 

According to one of the basic philosophies carried thI Igh in this 

work, there is a critical minimum force necessary to sustain ' laminar 

flow. If the flow force field falls below this critical level, the 

'locked-in' turbulence begins to manifest itself and, when the con­

straining force is overwhelmed, burst out. This outburst serves to 

arrest the tendency for the constraining force to completely disappear, 

by creatiIl~ r nE;\\ force field through the so-called Reynolds shear 

forces. This behavior represents a phase change of the fluid with respect 

to its constraining force potential or the fluid cohesive property. 

That is, through the outburst of the previously constrained turbulence, 

a fluid of vanishing cohesiveness begins the process of a phase change 

to a fluid of some finite cohesiveness. The transitional boundary layer 

represents therefore the region of this phase change. 

The rate of turbulence manifestation which corresponds to the 

conventional amplification rate of disturbances should therefore depend 

on only by how much the force field has fallen below the critical value 

for laminar flow. This argument was used in Chapter IV to deduce the 

amplification characteristics of unstable laminar flows. The quantity 

of interest in this section is the rate at which the outbursts of tur­

bulence occur. This will be deduced later in this section. 

An implication of the above force field description of boundary 

layer laminar to turbulent transition is that there must exist a finite 
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critical intensity of the manifested turbulence at which turbulence 

outbursts begin to occur. This latter implication is considerably 

supported by experimental results, for example, of Elder (1960), 

Klebanoff et al., (1962), Kovasnay et al., (1962) and Tani and Komoda 

(1962). These fluid dynamics researchers obtained that turbulence spots 

begin to form at distance from the wall of about y/o = 0.3 , if the 

local turbulence intensity l'u t2 /Ul > 18 + 2.5%. Such high levels of 

turbulence are generally not found in the free stream and are of the 

order of magnitude of those encountered in fully turbulent boundary 

layers. That is, there must exist a powerful amplification process in 

the laminar boundary layer which contributes substantially to the 

intensity build-up before local transition takes place. It is interesting 

to note that Elder (1960), etc., observed that the critical value of 

the turbulence intensity for the formation of turbulence spots depended 

on the Reynolds number (U1o*/v) and the profile shape factor, H, 

(0*/6) • The stability number as defined in Chapter IV is a function of 

If, as discussed above, outbursts of turbulence are the arrestor 

to vanishing fluid cohesiveness, then as with every other natural system, 

the occurrence of outbursts should lead to a stable configuration, 

ultimately. This stable configuration for fluid flow appears to be 

attained in the fully developed turbulent flow. Hence, soon after the 

initial bursts of turbulence occur the rate of production of turbulence 

should tend to some constant value for the flow. With respect to the 

rate of production of turbulence spots, therefore, the situation is 

virtually identical to the current in a transient electrical inductive 

circuit. In this latter case, if a circuit containing resistance, R, 
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and inductance, L*, in series, is connected across a steady voltage E, 

the voltage E must supply the iR drop in the circuit and at the 

same time overcome the emf of self induction. The solution of the 

governing differential equation is: 

i = (E/R)[I - exp(- Rt/L*)] (5.4) 

and (L*/R) is the circuit time constant. 

In the fluid flow case, soon after the force field falls below the 

critical level, bursts of turbulence appear. Each burst, however, 

opposes the production of further bursts, so that as the number of 

bursts increases, the rate of production of bursts tends toward a finite 

constant level. That is, the turbulence becomes self-regenerative. By 

analogy with the electrical system, one may represent the flow situation 

as follows: 

By the force fi eld concept, the steady rate of production of tur-

bulence spots will depend only on the relative stability number between 

the initial stable position and the position of incipient transition. 

i.e., g = G[SNet - SNct ]/L2 , per unit time 
(steady state) 

(5.5) 

where 

SNet = Stability number at the beginning of the stable state which 

corresponds approximately to the end of the transition 

region. 

SNct = Stability number at the position of incipient transition. 

L = Some appropriate length scale. 
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The characteristic time scale for the analogous fluid system is 

The characteristic length scale is vl/Ul • If it is assumed that the 

stability number SN(x) is proportional to the dimensionless force 

quantity, Ulx/vl , then: 

UIAXt U x-x 
g = F[ ] (~)2 [1 - exp{ - a ( ct)}] , per unit time 

vI vI t Ul 

l5.6) 

where AXt = (xet - xct ) ,and at is the flow time constant which will 

be assumed in this work to be proportional to Ul(x-xct)/vl . 

As discussed in Chapter II of this work, the experimental results 

of Schubauer and Klebanoff (1955) and Schubauer and Skramstad (1948) 

indicate that whether long or short and independent of the cause of 

transition, the transitional boundary layer appears to be statistically 

similar. An extended implication of this behavior would be that the 

function F[UlAXt/vl] is, on the average, a constant independent of the 

particular flow. That is, the extent or length AXt of the transitional 

boundary layer depends on the unit Reynolds number, Ul/vl. Such an 

influence is supported by experimental evidence and has been discussed 

by Morkovin (1968). Thus: 

U x-x 
g = 8t (~)2 [1 - exp{ - a ( ct)}], per unit time 

vI t U
l 

(5.7a) 
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where 6t is a generalized constant for flows. By examining the 

experimental results of Schubauer and K1ebanoff (1955), the following 

form for the rate of production of turbulence spots is quoted: 

(5.7b) 

1 , per unit time. 
2 

L 

Dhawan and Narasimha (1958) and Chen and Thyson (1971) obtained equations 

similar to (5.7b) through different arguments. 

The significance of this definition of g(x,y) must be made clear. 

Equation (5.7b) does not imply that turbulence spots are continuously 

being formed downstream of the point of initial breakdown. On the 

contrary, turbulence spots are formed only in the transient region of 

equation (5.7b). Beyond this region, g(x,y) may be interpreted as 

being proportional to the production of turbulence, without necessarily 

formation of discrete turbulence spots. 

5.2 A Differential Method 

The differential method reduces the partial differential equations 

of motion to boundary-valued ordinary differential equations with an 

explicit assumption for the turbulence. Two approaches to closure, the 

mean velocity field and the turbulence field methods, may be discerned 

in this method, depending on the treatment of the Reynolds stress terms. 

The mean velocity field closure method uses the eddy-viscosity and/or 

the mixing length concept, while the turbulence field closure method 

relates the Reynolds stress to the turbulence and hence requires the 
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simultaneous calculation of some aspects of the turbulence field. The 

advantage of the turbulence field closure over the mean velocity field 

closure is that the latter cannot explicitly include the effects of 

turbulence history. However, although the turbulence field closure 

method can follow the turbulence evolution, it cannot be described as a 

simple analytical method and often requires so~histicated state assump-

tions for which experimental justification hardly exists. The method 

to be described in this section employs mean velocity field closure. A 

turbulence field method is discussed by Donaldson (1971) and was used 

in this work to study wall boundary layer transition and growth. 

The differential method discussed below is essentially that 

suggested by G. Mellor and J. Herring (1970) but with an improved eddy-

viscosity model, discussed in Ref. (3)~ and a defined transition func-

tion, T. The coordinate system used is shown in Figure (6). 

The governing equations involve the double correlations u'v' and 

v'h'. For closure, the following assumptions were made concerning the 

double correlations: 

~g ah v'h' = ( T ) ah v ay - v g + g v gt ay = 
ah 

v -eg ay . 

where equations (5.8) are valid for all the regimes of the boundary 

layer if the transition functions T and T are defined. 
g The 

(5.8) 

functional forms of ~ and ~g are respectively as given by Anyiwo and 

Meroney (1971) and Herring and Mellor (1970). The detailed consideration 
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of the reduction and solution of the governing equations have already 

been given by Herring and Mellor (1970). 

5.3 An Integral Relation Method 

By integrating the boundary layer momentum equation, it becomes 

possible to avoid the need to make explicit assumptions about the local 

Reynolds stress. The turbulence terms do not contribute explicitly to 

the resulting integral equation, but one must now relate the resulting 

integral parameters, 8, 0* , and the skin friction, Cf/2, through 

some global assumption about the implicit effects of the turbulence or 

through further equations. Most integral methods currently used employ 

the momentum integral equation and a wall friction relation and then 

anyone of the following equations: 

i) The energy integral equation; 

ii) The entrainment equation; or 

iii) The momentum of momentum equation. 

If (i) or (iii) is used one must make further assumptions about 

the turbulent shear stress integral, whereas the choice of (ii) requires 

some assumption about the entrainment function. Lewkowictz et al. (1970) 

compared a variety of integral methods and suggested that for flows 

with adverse pressure gradients the use of the entrainment equation 

gives the best agreement. For equilibrium and relaxing boundary layers 

however, the dissipation integral ·equation or the moment of momentum 

equation gives better results. In the present study it is aimed to 

avoid as much as possible any assumptions concerning the turbulent 

shear stress. The entrainment equation is therefore used in a way 

which, it is hoped, would not limit it to just adverse pressure gradient 
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flows. Further, the wall skin friction and boundary layer physical 

thicknesses are calculated from a velocity profile which is made valid 

for both laminar and turbulent boundary layers. This velocity profile 

could be obtained by linking a laminar profile to a turbulent profile 

with a transition function. 

The governing equations for the two-dimensional incompressible 

boundary layer as used in the momentum integral method are: 

Momentum integral equation 

de 
-+ 
dx 

1 dUl 1 dr 
a[(2+H) - -- + --] U

l 
dx r dx 

where r is the wall radius of curvature. 

The velocity profile 

The entrainment equation: 

1 d (UI(o-o*)] Ul dx 
Vo 

= -- + E (the entrainment function). Ul 

The boundary layer thicknesses are defined as: 

6 

(5.9) 

(5.10) 

(5.11) 

6* = I ((1 - ~ )/(l-y/ro)]dy displacement equation 
o 1 

(5.12) 
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6 
e = J [ ~ (1 - ~)/(l - y/r )]dy momentum thickness. 

o Ul Ul 0 

The skin friction is calculated from the velocity profile as: 

Cf v au 
2 = U2 [ay]y:o 

1 
The entrainment equation (5.11) is simply the integral equation of 

continuity, namely: 

1 d - - [U (6-6*)] Ul dx 1 

v 
= (d6 _ -1.) 

dx Ul 

(5.13) 

(5.14) 

The function 
v 

[d6 _ _1] -_ E h t' t fi t· th teen ra1nmen unc 10n, represents e 
dx Ul ' 

momentum imbalance due to turbulence action, and was modelled by Head 

(1958), as E(H
6

_
6
*). 

Vo 
The term U is the momentum imbalance due to 

1 
transpiration. One reason, and perhaps the major one, for the limitation 

of the entrainment method as cited by Lewkowictz et al. (1970) is 

that Head's formulation for the entrainment function does not adequately 

represent the actual function, E, as defined above (equation (5.14)). 

When Hirst and Reynolds (1968) used a slightly different but more 

encompassing formulation for E, they obtained good results over a wider 

class of flows than Head's formulation could predict. As pointed out 

by Thompson (1965) the function E is not dependent on H6_6* only, 

as Head assumed but depends also on the Reynolds number. In this 

respect, it will be noted that away from the entrance region of the 
v 

b d 1 h f . E -_ [ d6 - _1] . . 1 oun ary ayer, t e unct10n 1S proport10na to dx Ul 

Ul (6-6*) 
[ ----] , only_ 

\) 
which is, in fact, a function of This last 
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quantity is virtually identical to the stability number defined in 

Chapter 4. Hence, E is some simple function of (l/SN). 

With a generalized mean velocity profile as suggested in equation 

(5.10) the integral relation method using the entrainment equation, 

easily becomes a continuous method of predicting the general wall boundary 

layer. 
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Chapter VI 

6.. A STATISTICAL ENERGY THEORY OF TURBULENCE 

Let it be assumed that any natural system consists of basic particles 

the combined characteristics of which determine the general characteristics 

of the system. For continuum flow system, it will be assumed that the 

basic particle is a conceptual fluid particle defined as a small volume 

of fluid which behaves as a continuum. With these suppositions, and the 

force field concept, one may reason that any natural system can be con­

sidered as a conglomeration of non-intersecting closed energy volumes in 

which the basic system particles (active and passive) execute 'chaotic' 

motions in the absence of a strong enough force field. Turbulence is 

then viewed as a measure of the instantaneous rate of translocation of 

particles within and among these energy volumes. It is necessary to use 

statistical mathematics to describe turbulence since the natural force 

fields and the subsequent motions of particles are usually only 

probabilistically deterministic. The remainder of this chapter is 

devoted to adapting the concept of energy volumes to the boundary layer 

flow and suggesting preliminary theories that may be used to understand 

and describe natural flows. 

6.1 The Conceptual Energy-Surface Structure of Wall Bounded Flows 

It is hypothe~ized that just as conceptual non-intersecting 

streamlines are a plausible assumption in conventional two dimensional 

laminar boundary layer theories so are conceptual non-intersecting 

energy volumes in a general boundary layer. If this fundamental 

assumption is acceptable then the following statements may be made 

concerning the energy volumes. 
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i) An energy volume is a finite or infinitesimal volume containing 

particles of identical mean energy. Since in wall boundary 

layers the contribution of potential energy may usually be 

neglected, the average energy in an energy volume is determined 

by the magnitude of the local mean velocity field, that is, 

is purely kinetic energy. The thickness of the energy 

volume is directly proportional to the magnitude of the 

energy excursions about the mean energy level due to 

random motion of the particles. 

ii) The motion of the conceptual fluid particles in an energy 

volume is determined only by the prevelant force field. 

The passive particles will execute chaotic motion in the 

absence of a directional external force field, but in the 

presence of a directional external force-field will exhibit 

organized motion. 

iii) Turbulence may be defined as proportional to the fluctuational 

displacement of the particles in the energy volumes, due 

particle translocation within and among the energy volumes. 

A schematic drawing of the conceptual energy volumes in a boundary 

layer is shown in Figure (8a). Before proceeding further, it is necessary 

to re-examine the present model of turbulence in the light of certain 

known characteristics of turbulence, namely: 

(i) Turbulence can be sustained only in the presence of a force 

gradient, as in shear flows. 

(ii) Turbulence is a dissipative three dimensional random process 

which exists only in rotational flows. 

(iii) Turbulence is a non-linear phenomenon. 
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(iv) Turbulence is highly diffusive. 

(v) Turbulence is characterized by a time and space scale. That 

is, the definition of turbulence depends very much on the 

time and length scales of the flow. 

(vi) Turbulence is a continuum problem. 

(vii) A turbulent flow is mathematically, an indeterminate flow 

problem. 

It is easy to show that the present model of turbulence does not 

contradict any of the above characteristics. If there is no local shear 

in a flow, the mean velocity would be unchanged at all levels so that the 

whole flow constitutes a single energy volume. The definition of 

turbulence given in the present model implies that turbulence can exist 

only in the presence of at least two distinct energy volumes. Trans­

location of particles in an isolated energy volume are purely enhanced 

molecular diffusion. If shear exists so that mean velocities at points 

may be different, definite energy volumes may be distinguished, each 

containing the particles of identical mean energy. In the wall boundary 

layer there is a continuous gradient of the mean velocities across the 

boundary layer. The energy volumes are therefore closely-packed 

volumes, of thicknesses varying across the boundary layer in accordance 

with the local magnitude of the permissible fluctuational energy 

excursion about the local mean energy level. Within each such conceptual 

energy volume, conceptual fluid particles exhibit varying random motions 

until some external factor causes a translocation of particles between 

any two energy volumes. Such translocations cause regenerative 

collisions and physical collisions are generally dissipative. Hence 

turbulence can exist only in shear flows, and such turbulence must be 
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regenerative as well as dissipative (ii). Whether or not the turbulence 

is sustained depends on whether or not the regenerative process is 

dominant over the dissipative process. The three dimensionality of 

such a process is not in doubt (ii). It is further obvious that the 

prediction of the process is only probabilistic, that is, the turbulence 

process is a random process (ii, vi). Relative to molecular diffusion, 

turbulence, as defined here, will be highly diffusive (iv). Further, 

the scale of the motion required to induce the regenerative turbulence 

process must be relative to the time and length scales of the parti­

cular situation in question (vi), that is, to the scales of the 

thickness of the conceptual energy volumes. 

Having now ascertained that the present model of turbulence shows 

no obvious contradiction to established characteristics of turbulence, 

it should be safe to try to apply the model to determine for instance 

the distribution of turbulence in a wall boundary layer. 

6.2 A Statistical "Collision" Theory 

An attempt will now be made to apply a stochastic model to the 

concept of energy volumes in order to study the turbulence character­

istics of wall boundary layer flows. First, a more detailed description 

of the concepts involved is given by the following statements: 

i) Energy volumes or states extend across the boundary layer 

from a zero state at the wall to the maximum at the free 

stream. At each energy state there exist secondary states or 

energy levels which represent the fluctuations about the 

mean kinetic energy at that position, in time and space. 

ii) The size of a fluid particle is relative to the local 

length scale and must therefore vary across the boundary 
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layer being smaller in the lower energy states. Since, 

in the absence of large temperature gradients, the mass 

density of the fluid must be the same throughout the fluid, 

it follows that the relative number density \\lith respect 

to the fluid particles varies across the boundary layer, 

being larger in the lower energy states. 

iii) Fluid particles at every energy state execute fluctuational 

motions in all directions and suffer collisions among 

themselves. Such collisions will generally result in 

energy loss or gain for at least one of the colliding 

particles. However, there are only a few collisions 

which are energetic enough to cause a particle to acquire 

or lose sufficient energy to break through its current 

state energy barrier into a higher or lower energy state. 

Such energetic collisions will usually involve those 

particles in the fringe energy levels of the state. Let 

the particles in the higher fringe levels be called "hot" 

particles and those in the lower fringe levels, "cold" 

particles. 

iv) In the absence of shear, the distribution of fluid particles 

among the energy levels of a given energy state is assumed to 

be Gaussian. In this respect, the number of "cold" particles 

is equal to the number of "hot" particles. Shear introduces 

a skewness in the distribution, such that there is a finite 

difference between the numbers of "hot" and "cold" particles 

in a given energy state. 
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v) The probability of an energetic collision among the "hot" 

particles is a function of (NH - NC)NH ' where NH and NC 

are respectively the average number of hot and cold particles. 

Similarly, the probability of an energetic collision 

among the "cold" particles is a function of (NH - NC)NC 

vi) If a particle leaves an energy state enough particles must 

enter that energy state to maintain a constant average number 

density of particles in that state. Particles corning from 

a higher energy state are larger than the required size for 

their new energy state and must break down to the appropriate 

size. Such a process is dissipative in energy. On the other 

hand, particles arriving from a lower energy state must fuse 

and release energy thereby. Hence, the rate of production 

of turbulent energy at an energy state is proportional to 

the rate of inflow of particles from the lower energy state. 

Similarly, the rate of dissipation of energy at the state is 

proportional to the rate of inflow of particles from the 

higher energy state and the rate of occurrence of energetic 

collisions within the state, since such collisions must be 

relatively substantially dissipative. 

A schematic drawing of some of the processes discussed above is 

given in Figure (Bb) for a unit volume at an energy state. Let the 

difference between the average number of "hot" and "cold" particles 

at time t = 0 be N~ , and at time t, be N~. Also let P1Ct) 

and P2(t) be the rates respectively of occurrence of energetic 

collisions and of influx of neighboring state particles. A detailed 

balance yields that: 
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dP 
d~ = P2(no - n + 1) Pn_l(t) + Pl(n + 1) Pn+l(t) - [p2(no-n) + Pln]Pn(t) 

(6.1) 

Equation (6.1) assumes that the probability of transition from energy 

+ 2 state x to (x-I) in interval (t,t+~t) is px~t + O(~t) and the 

probability of a transition (x) ~ (x±j), j > 1 in the interval 

(t,t+~t) is at most O(~t). Pn(t) = Prob(Nt = n). The validity of 

transport equations such as (6.1) has been discussed in some detail 

by Van Hove (1957), for example. By means of the generating function 

of Pn(t), namely 

00 

F(s,t) = L 
n=O 

P (t)sn 
n lsi < I (6.2) 

equation (6.1) may be transformed into a partial differential equation 

as follows: 

(6.3) 

Equation (6.3) is similar to equations considered by Ishida (1960) for 

which the following solution is stated: 

where 

F(s,t) = [ Aexp(-kt)(s-l) + 
A 

t 
A = J PI dt/ 

o 

t 
f P2 dt 
o 

(6.4) 



t 

k = t I (PI + pz) dt 
o 
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Equation (6.4) gives the mean and variance of Nt as follows: 

where 

Var[Nt ] = [N~ 00/(1 +A)](l = 00/(1 + A)) 

t 
00 = A exp (- I (Pl+pz)dt) + 1. 

o 

1 
+­

t 

t 

I P2dt } 
o 

(6.Sa) 

This provides the transfer equation for (NH - NC) if time is replaced 

by an appropriate spatial scale. Replacing t by the approximate 

quantity x/Ul ,E(Nt) may be rewritten as follows for transfer in the 

x-direction: 

x 

- I P2(x, n*)(l - F RexJ/ul dx} (6.Sb) 
x o 

where 



x = (x-x ) . o 
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Pl(i,n*) = Rate of translocation of particles in current energy 

state. 

= Rate of occurrence of energetic collisions ("hot" and 

"cold") in the energy state. 

P2(x,n*) = Rate of inflow of out-of-state particles into current 

energy state. 

= Collision rate of "cold" particles at (n* + 6n*) x 

Probability of energetic "cold" collision at (n * + 6n*). 

+ Collision rate of "hot" collisions at (n* - 6n*). 

In the absence of any shear the numbers of "hot" and "cold" particles 

are equal and if one assumes that the particles are Gaussian distributed 

within the single energy state, one obtains that if the fringe particles 

are defined as those outside the range of the standard deviation: 

(6.6) 

where NT = Local number density of particles. 

If shear exists, one may argue that the modifications of NH and 

NC are proportional to the local shear, for example as follows: 

(6.7) 
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where ~ is a characteristic local shear quantity (e.g., 

and bl and b2 are numerical constants. From equations (6.7) one 

obtains that: 

where b4 is a numerical constant. 

The rate quantities PI and P2 may now be written as follows: 

(6.9) 

where fC and fH are the local probabilities of energetic collisions, 

Z = The local collision rate ::: 2N2d2(nkT/m) 1/2 

N = The local number of particles involved 

d = The local diameter of particles (ex: (n*+ a)~) 

m = The local mass of particles 

a is proportional to the diameter of the smallest volume of fluid 

that may be considered a continuum, non-dimensionalized by ~. 

(Approximately, a is equal to O.002~, for air) 
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2 - 2 (TIkT)1/2 
Z - A N (n* + a) m 

Therefore, 

2 kT 1/2 2 2 
PI - A1NT (~) 6 (n* + a) ~[1 - b5~] exp 3(b1~ -1) m 

(6.10) 

2 kT 1/2 2 * - 2 
P2 - A2NT (~) 6 (n + a) ~[1 - b5~] exp 3(b1~ -1) m 

NT (=p/m) is the total number of particles per local unit volume, 

( kT/) . . 1 h 11th t NT2(~kT/m)1/2 TI m 1S proport10na to t e oca pressure so a " 

2 - 2 6 (n* + a) may be written as proportional to U1/(6( * + a) ). 
The local rate per unit volume of production of turbulence kinetic 

energy, Zp' is proportional to the rate of inflow of particles from 

the lower energy state, 

Z 
i.e., ~ ~ ZH (n* - 6n*)fH - Al 

pUf (n*+a) 
(6.11) 

But at the wall which corresponds to the relative zero energy state, 

there is no inflow of particles from a lower energy state. Hence, 

turbulence production rate must be zero at the wall. That is, equation 

(6.11) is valid for all but the relative zero energy state (i.e., 

for n*.:. a) . 3 The formulation of Zp/pUl for n* < a is at the moment 

uncertain. By comparison with some measurements of Klebanoff (1954) 

it seems t~at A ::: 2 
1 

and bl ::: 1.2 . 
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The local rate per Wlit volume of dissipation of turbulence 

kinetic energy Zo' is proportional to the local rate of inflow of 

particles from the higher energy state plus the local rate of energetic 

collisions 

i. e. , a: Z Cn* C <P 

(n*+a) 
exp 3(b6 <P -1) (6.12) 

Unlike the situation with turbulence production, inflow of particles 

from a higher energy state is quite possible at the wall state. Hence, 

there is no bounding condition that 3 ZO/pUl be zero at the wall. 

Equation (6.12) is therefore valid for all n*. Again by comparison 

with measurements of Klebanoff (1954) it seems that A2 is about the 

order of magnitude of 10 and b6 of magnitude about 1.2. Some plots 

of equations (6.11) and (6.12) are shown in Figures (14) and (15). 

Although these plots cannot be directly compared with the experimental 

points of Klebanoff (1954) the trend is quite encouraging. 

where 

From equation (6.5b), 

* E [N-] 
x I (x) 

a: -_ = 
N* xo 

B2 

1(0) 

=--- J 
(n*+a) o 

z 

BI [1 + exp (F,:)] 
-2 

- a* 

lei) is the local turbulence intensity, 1(0) is the turbulence 

intensity at the initial point, x o 

(6.13) 
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are numerical constants. Equation (6.13) gives the local disturbance 

amplification factor relative to an initial position of interest, x 
o 

as well as the local intensity of the turbulence. The constants Bl , 

B2 ' and bS may be es timated from the following pI ausibi 1 i ty argu-

ment. As n* ~ 00 it is conventional to assume that I ~ O. In actual 

flows, I at n* ~ 00 is the free stream turbulence intensity which is 

observed not to change appreciably downstream. That is, I (x)/I(o) : 1 

as n* ~ 00. This boundary condition suggests that B1 = 0.5. The 

boundary condition at n* = 0 cannot be considered as equation (6.13) 

is valid for n* > a. In the upstream region of the boundary layer the 

argument of the integration is positive, decreasing in the downstream 

direction in line with the streamwise variation of the shear in boundary 

layers. This behavior is controlled by the function ~(l - bS~). Hence, 

bS must be of the order of (l/~) at the position of maximum amplifi­

cation. On the basis of this argument, transition data for flat plate 

flows were generated by the method discussed in Chapter III of this 

work, and bS has been estimated as about 660. Further, the requirement 

that for a flat plate boundary layer, natural transition from laminar 

to turbulent flow occurs when the amplification factor is of the order 

of e9 , yields that the constant B2 is of the order of 300. 

Hence, if one knows the distribution of the shear force in a flow 

problem, the collision theory gives through equations (6.11, 6.12, and 

6.13) the appropriate characteristics of the turbulence in the flow. 

The above requirement is tantamount to knowing the local mean velocity 

distribution in the flow. In the earlier chapters of this report a 

few techniques for computing mean velocity profiles were discussed. 

The difference-differential and the integral relation methods seem to 
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be very commonly used because of their relative simplicity. These 

latter methods however cannot describe the turbulence characteristics 

of the flow they predict. If however, the results of equations (6.11, 

6.12, and 6.13) are coupled to the difference-differential or the 

integral relation prediction technique, they supplement each other and 

provide a very powerful but simple technique for calculating both 

laminar and turbulent flows of the most general type. The results 

shown in Figures (13 through 15) are quite encouraging toward the 

adoption and improvement of the statistical "collision" theory. 
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Chapter VII 

7. A DISCUSSION OF PRESENT RESULTS 

Three basic techniques for predicting wall boundary layer flows 

have been presented in this work. The first technique is a differential 

method in which the boundary layer equations for the mean and perturba­

tion quantities are closed by the method of invariant modelling and 

solved directly by computer. The approximation in this method are those 

incurred in the modelling for third and higher order velocity correlations, 

and of course the boundary layer approximations used to simplify the 

equations. The assumption that the local disturbance length scales are 

proportional to the vertical distance from the wall, does not seem to 

introduce appreciable error in the results. The numerical method used 

to compute the results does, however, impose some limitations on the 

computer program. Small steps in x, of the order of 10 to 20 times 

the local boundary layer displacement thickness must be made if con­

vergence is to be ensured. This limitation arises from the fact that by 

solving for ~'at each x-step one must iterate on two functions, f' 

and f for simultaneous convergence. Moreover the higher derivatives 

f'" and fiv become important functions making the solutions very 

sensitive to inaccurracies in the numerical computation of f'" and 

fiv. Better alternatives to the current numerical method are being 

sought. The predictions are nevertheless, very good in the laminar, 

transitional and turbulent regimes. 

The second computational technique is another differential method 

but in which closure of the mean flow equations is attained through an 

eddy-viscosity concept. This method computes laminar and turbulent 
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boundary layers. By assuming that the transitional boundary layer is a 

simple mixture of a laminar and a turbulent boundary layer, an inter­

mittency factor was established to define what proportion of the time, 

a given location in the transitional boundary layer is turbulent. This 

linking mechanism ideally empowers this second computational ~echnique 

to predict the entire boundary layer from laminar through transitional 

to the turbulent regimes. The primary deficiency of this computational 

method include all the defects of the eddy viscosity concept as well as 

those of the assumption of a simple intermittency nature for the transi­

tional boundary layer. In most practical situations these defects, 

especially the latter, are not serious and as shown in Figures (10) 

through (12) the predictions are very good. This modified mean velocity 

field closure technique now has an advantage over the turbulence field 

closure discussed above, by being simpler and less demanding on Computer 

time. However, the mean velocity field closure method still has the 

major disadvantage of being unable to predict the turbulence character­

istics of the flow it computes. 

By suggesting that the transfer of any scalar variable in the 

boundary layer is governed solely by the fluid property of "cohesive­

ness" and by establishing that the cohesiveness of the fluid is deter­

mined solely by the flow stability number and the local position, it 

seems that fluid flow can be described as a non-linear system with an 

explicit transfer function. An attempt was made to evaluate this 

transfer function and to provide a simple step transfer of energy in 

the boundary layer streamwise direction. Predictions of simple two 

dimensional zero pressure gradient boundary layers made with this 

describing function method give satisfactory results in the fully 
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laminar and fully turbulent boundary layers but it seems that one must 

go to more complicated transfer functions in order to predict the 

transitional and more complicated boundary layers satisfactorily with 

this method. However, the present results using this method are quite 

gratifying especially with regard to the infancy of the describing 

function method. The important thing is to note that such a transfer 

function does exist and that the parameters of importance are n* and 

SN, only. At this stage, one cannot fairly compare the describing 

function method against other prediction methods in view of the former's 

present limitation to very simple flows. Nevertheless, the simplicity 

of the describing function method, at least for simple flows, gives 

reason for the optimism that it can soon be developed to provide a 

simpler and faster alternative to other prediction methods for two­

dimensional flows. 

Most theoretical work using a statistical formulation for 

turbulence have been done for spatially homogeneous or spatially homo­

geneous and isotropic turbulence. The practical problems however are 

neither spatially homogeneous nor isotropic. In this work a statistical 

collision theory which is not restricted to homogeneous or isotropic 

turbulence but which is valid for all types of shear flows has been 

developed to predict turbulence characteristics. This prediction 

technique requires prior knowledge of the local mean shear. Thus, 

coupled with a simple technique for predicting the mean flow shear, a 

simple iterative method could be developed to predict both the mean and 

the fluctuational characteristics of shear flows. This circumvents 

the necessity to solve complicated boundary layer equations for the 

fluctuational motion, with their inherent and often experimentally 
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uncomfirmed approximations. The results of the present work have been 

coupled to the second differential method discussed here, and predictions 

have been made of the turbulence characteristics of a flat plate flow. 

The results, Figures (13) through (15) exhibit the proper trends. With 

this latter modification of the mean velocity field closure method of 

boundary layer prediction, the method becomes preferable over turbulence 

field methods. It was noted in preliminary computations that at prac­

tically no extra expense in computational time, the modified mean velocity 

field closure method, coupled to the statistical collision theory re­

sults, predicts both the mean and fluctuational motions of two dimensional 

flows just as well as turbulence field methods. 

Extensions of the force field hypothesis have also yielded very 

good predictions of the points of incipient laminar instability and 

laminar to turbulent transition as well as the non-linear amplification 

characteristics of disturbances in a basic flow. Some of these pre­

dictions are shown in Figures (9) and (16). 
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Chapter VI I I 

8. CONCLUDING REMARKS 

This work consists of three main parts. In the first part, a 

numerical experimental technique has been developed to satisfactorily 

generate bowldary layer experimental results. The main advantages of 

this numerical data generating process lie in its capability to provide 

simulated physical experimental data at a fast rate and for a wide 

variety of combinations of desirable boundary conditions which may be 

impossible to attain in physical experimentation. Data generated by 

the numerical technique show no appreciable inferi~rity to equivalent 

physical experimental data. Moreover, there seems to be greater hope 

of improving mathematical models of physical phenomena than of improving 

measurement hardware and technique particularly for fluctuating flow 

variables. Also, a linking mechanism in the form of an intermittency 

factor (or transition function) has been developed to extend the 

power of differential and integral relation methods to the complete 

prediction of boundary layers from the laminar through the transitional 

to the turbulent regimes. 

The second part of this work is based on a force-field hypothesis, 

which emphasizes a dynamic fluid property called the "cohesiveness" or 

fluid "tenacity". This fluid property defines the ability of the fluid 

to resist perturbations, and appears to be the primary factor in the 

determination of flow characteristics. All the preliminary results 

derived on the basis of the force-field hypothesis show no significant 

deviation from reality. In fact, the incompleteness of some previous 

bowldary layer theories become very obvious in view of the force-field 
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idea. BOWldary layer phenomena and, indeed, general natural phenomena 

seem to follow exactly according to this force-field concept. A general 

force-field theory is therefore stated as follows: 

"Particles in any system in nature will tend to execute 

independent behavior or motions in accordance with their 

separate internal force fields except in as constrained by 

the prevelant external force-field. It requires a 

steady force field above a certain critical magnitude 

to establish 'order' among the particles. The magnitude 

of this critical force field is determined by the average 

internal force field of the particles. tt 

For the special case of wall boundary layers, the following conclusions 

are drawn on the basis of the force-field theory: 

(i) The laminar, transitional and turbulent boundary layers 

represent different phases of the basic boundary layer 

fluid at least with respect to the "cohesiveff fluid 

property. 

(ii) The general characteristics of the wall bOWldary layer 

may be described, completely, solely by the local 

"cohesi vetl fluid property which is a function of 

position and section stability number, only. The 

section stability number is given by the following 

relation: 
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(iii) The position of incipient laminar instability is 

given approximately by: 

SN. :: 1000. 
C1 

10 
for a length scale 6 _ 0* 10-2•34 tanh(j[ - 4) 

This corresponds to: 

1/2 

10 {3 + 2.34 tanh(l~_ - 4)} 

(iv) The frequency of the most favored local disturbance is given 

approximately by: 

U 
f ~ 0.016 __ 1 __ . 1 
P \) n * Re 6 

where 6 

1 

2 34 h (10 - 4) _ 0* 10-· tan H 

is a modified boundary layer thickness. 

(v) The position of incipient natural laminar to turbulent 

transition is given approximately by: 

i.e., 

~ SN . - 1.3 x 103 in(33I l ); 
C1 

= SN . 
C1 

otherwise 

= Re~* . - 674.2 
u C1 

o < 11 < 0.03 
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(vi) The amplitude, K, for supercritical and subcritical 

disturbances, of the total disturbance kinetic energy at 

the critical layer is given approximately by: 

30~1 exp[0.003(SN-SN .)] 
K(x) « Cl 

max 1 + 0.33 II (l-w) exp[0.003(SN-SNci)] 

and the maximum amplification factor is given by 

2 'Nih. exp[0.003(SN-SN .)] 
Cl 

a* = ----------------max 1 + 0.33 Il(l-w) exp[0.003(SN-SNci)] 

(vii) The rate of production of turbulence (spots) may be given 

approximately as: 

-5 2 {I - exp [- 5.34 x 10 (x-xct) Iv
l
]}. 

An intermittency factor· (or transition function) may then 

be defined to indicate what proportion, f, of the transitional 

boundary layer is turbulent at any instant. 

3 
f = 1 - exp[-0.04 g x lUI] 

(viii) A flow transfer function may be defined for a boundary layer 

scalar variable, q, such that: 



123 

o < q < 1 . 

The boundary layer does indeed behave closely to a linear system 

except in the developing regions such as the entrance region and the 

transitional boundary layer. Even in these developing regions, the 

non-linearity is not very strong except when the external and wall 

influences such as pressure gradient, heat and mass transfer and wall 

curvature, are appreciable. 

The third portion of this work assumes that conceptual fluid 

particles in a boundary layer fluid are arranged in continuous mean 

energy levels according to their mean energy content. The subsequent 

application of a statistical "collision theory" with these conceptual 

fluid particles as the basic particles has yielded qualitatively very 

good predictions of the characteristics of turbulence in the boundary 

layer, such as the rates of production and dissipation of turbulence 

energy, and the amplification characteristics of disturbances in shear 

flows. 
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Appendix A 

THE METHOD OF INVARIANT MODELLING 

This technique for general shear flow computation due to C. 

Donaldson et al. (1968) is essentially a method of closing the equations 

of the Reynolds stress tensor by means of physical models of the higher 

order terms in these equations such that the models satisfy the following 

criteria: 

i) They must exhibit all the tensor properties and properties of 

symmetry of the original terms. 

ii) They must be dimensionally correct. 

iii) They must be invariant under a Galilean transformation. 

iv) They must be such as to satisfy all the general conservation 

laws. 

When all these requirements are met, it is found that, if one wishes to 

consider the simplest models, the choice of models is not large. Details 

of the method of invariant modelling have been discussed by Donaldson 

et a1. (1968, 1970, 1971), and will not be reproduced in this work. 

It can only be discussed here briefly why the method of invariant 

modelling is necessary and what are the final results. 

The method of invariant modelling arose out of a desire to utilize 

the formidable power of modern computing machines by introducing more 

computation, if necessary, into a formulation for shear flows, just 

so as to get rid of some of the shortcomings of previous techniques 

while still retaining a method which will be useful for practical 

engineering problems. The eddy viscosity methods based on Prandtl's 

Ddxing length idea have been very useful in flow computation but because 
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they really do not consider the dynamics of the development of the 

various components of the Reynolds stress tensor, they are restricted 

to only some types of shear flows. The methods due to Glushko (1965) 

and Bradshaw et a1. (1967) which may be considered the forerunners of 

the method of invariant modelling attempt to keep track of the dynamics 

of the turbulence itself by computing the development of the local tur-

bulent kinetic energy per unit mass, 

1 
E=Z u!u~ 

1 J 

as a shear layer develops and relating the local Reynolds stress to this 

quantity. The shortcoming of these latter methods lies in the explicit 

assumption that must be made concerning the nature of the shear stress. 

The only assumptions of the method of invariant modelling are in the 

derivation of the models for the modelled terms. Donaldson and Rosen-

baum (1968) have suggested the following models: 

The velocity diffusion term: - p(utjui~)Jj 

(A-I) 

The tendency-toward-isotropy term: p'(u! + ~ .) 1,k ,1 

pi u,mut m u t u t 
m 

(gik 
m 

uit1 ) (A-2) - A 
3 



The dissipation term: mn 
1Jg 
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The pressure diffusion term: (p'u f
) • + (ptU!) k ,1. 1. ,k 

[n/u t mut A (u' .tu') ] 
I"" • n k m 1. ,JV , 

(A-3) 

(A-4) 

These models have been obtained using only the second-order correlations 

and two length scales A and A which are related as follows: 

A = A 

~a+bR 

where 
p /~,mu' (A-S) 

R = m A 
1J 

and a and b are numerical constants.. The quantities, a, b, A and 

A have been sufficiently discussed in Chapter 3 of this work. Using 

these results, the set of equations necessary to describe the character-

istics of the most general type of incompressible shear flow are: 

u1. = 0 ,J 

au -j-
P Tt + pu U •• 

{1 1., J 

(A-6) 

(A-7) 



pi u,mu' 
m 

+ -----=A,..----
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pu,j'1 

In these equations, 

and 

1".. = lJ (u. . + u. .) 
~J ~,J J,~ 

g.. is the metric tensor. 
~J 

u .. 
~,J ~,j 

(A-B) 

(A-9) 

For time-independent incompressible boundary layer flows with velocity 

components (u, v, 0) and (u', v', w') , the equations are, in the 

orthogonal curvilinear coordinate system (x,y,z) as shown below. 

Continuity: 

~_l--::- ~ u + ,\v _ cv = 0 
(l-cy) ~ by (l-cy) (A-lO) 



x-momentum: 

1 au 
-=-( -=-l--c-y~) a x 

au 
+ v­ay 
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cuv 
(l-cy) 

1 - - -.."...."....---..-

P (l-cy) 

+ v[V2u _ 2c av c au v dc/dx ] 
(1-cy)2 ax - (l-cy) ay - (1-cy)3 

acr ccr 1 akl 
+--~-~ ay (l-cy) (l-cy) ax 

y-momentum: 

u av av cu 2 1 ~ -+ v-+ = - -(l-cy) ax ay (l-cy) p ay 

2c au c2v c 

(A-II) 

v[V2v + av + u dc/dx] + ax - (l-cy) (l-cy) (1-cy)2 ay (l-cy) ,3 

Energy: 

where 

ocr ok2 
+ ----ax ay 

ck1 
(l-cy) 

u aT 
-:"'( l-=---c-y~) -ax + 

( au) 2 (av) 2 1 
+ {v ay + v ay + 2v[(1_cy) 

(A-12) 

au cv 2 
ax + (l-cy) ] }/Cp 

(A-13) 
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v2 = __ 1 __ 

(1-cy)2 

dc a 
y d"Xax 
(l-cy) 3 

a. = (the thermal diffusivity) 

Streamwise velocity correlation: u'u' = k 
1 

u ak l au 2kl 
-+ (l-cy) ax = 20 ay - (l-cy) 

au 
-+ ax 

2kl cv 

(l-cy) 

av a K 
+ - - [2k --] ay ay 1 3 

a2kl 2vkl +v-----+ 
ay2 y2 

2 a ao + --+ (l-cy) ay ax 
[SO au + IK ] (!. - k

l
) 

ay y 3 

1 a ylK 
(l-cy) ax [ (l-cy) 

2 If ao ] 
Y ay 

(A-14) 

Transverse velocity correlation: v'v' = k 
2 

u ak2 ak2 av 
-"I - + V - = - 2k2 "Iy + 
aX ay a (l-cy) 

a 2y/K ao ak2 au K K 
+ ay [ (l-cy) ax + yIK ay] + [SO ay + y ] (3 - k2) 

1 a [ yIK ak2] + ~..2. [4k K 
+ (l-cy) ax (l-cy) ax- ay ay 2 - 3] 

(A-IS) 
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Lateral velocity correlation: wfw' = k3 

u 
(l-cy) 

K 
[2k --] 3 3 

au IK K 
+ [50 - + - ] ( - - k ) + ay y 3 3 

a2k3 2vk3 v-----
ay2 y2 

1 a yIK ak3 a ak3 
+ (l-cy) ax [(l-CY) -ax-] + ay [ylK ay ] 

Cross correlation: u'v' = - 0' 

u aO' + v aO' = 3 ~ aO' k au 
(l-cy) ax ay ay ay + 2 ay 

a ylK akl 
+ ay [(l-cy) ax] 

a 20' 2vcr 
+v---

ay2 y2 

I 
+ ~(-=-l--c-y-=-) 

ak2 ylK aO' akl 
[ylK - - (l-cy) ax - ylK ay ] 

ay 

_ (50 au + IK) • 
ay y 

It would be desirable to eliminate the pressure terms in the 

(A-16) 

(A-17) 

momentum equations. This may be achieved by combining the x- and y-

momentum equations as follows: differentiate the x-momentum equation 

with respect to y and the y-momentum equation with respect to x 

and subtract. The combined momentum equation, the so-called vorticity 

equation is: 



a 
ay 

u au 
[(l-cY) ax] 
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a ~u a cuv a u av 
+ - [v-] ay [l-cy ] - ax [(l-cy) ax] ay )y 

a av a cu2 1 ~-!.~ [ 1 ~ 
ax [v ay] - ax[l-cy] = - (l-cy) ax ] p axay p ay 

+ a~ {v[V2u 
2c av c au v dc/dx]}+ a2

0 

Cl-cy)2 
ax - (l-cy) ay -

Cl-cy) 3 ay2 

a 2 2c au c2v c av 
- v - [V v + ax - (l-cy) ay ax (1-cy)2 (1-cy)2 

+ u dc/dx 

(1-cy)3 
] 

aT-Tl a co a 1 
- ax [g{--)] - ay [(l-cy) ] - ay [l-cy 

Tl 

(A-IS) 

To compute a given boundary layer flow, an initial boundary layer 

profile at some point in the flow (x = x ) o must be given together 

with the distributions of u'u', v'v', w'w' and u'v' , at this 

station. The pressure gradient on the surface, that is, the mean 

velocity ~xternal to the boundary layer, must be given. In general, 

it is assumed that u'u' = v'v' = w'w' = u'v' = 0 at y = 00 and at 

y = o. If the initial boundary layer is chosen laminar but contains 

some small initial disturbance, say u'u' = v'v' = EO(y), a kind of 

transition to a turbulent flow takes place. The character of this 

turbulent boundary layer is independent of the initial conditions which 

started the transition at sufficient distances downstream from x = x o 
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Appendix B 

APPENDIX TO CHAPTER III OF TEXT 

In so far as possible, consistency is maintained between the 

notations in the text and in the computer program. The last letter of 

a program notation is usually related to the subscript or superscript 

of the quantity it symbolizes in the text. For example, 

Endings Cor subscripts) Usual significance 

M 

x 

WCo) 

E(l) 

R 

PC') } 

ppC") 

B(i-l) 

MAX (MX) 

PROGRAM NOTATION 

Al - A34 

AKI 

AK2 

AK3 

Quantities evaluated at mean position 

Ci + 1/2), say 

Derivatives with respect to x 

Value at the wall 

Value at the free stream 

Ratios, of local to wall or pushed 

values 

Derivatives with respect to n. 

Value at previous x-stations 

Maximum value 

Parameters (al -a
34

) in the dimension­

less equations of motion 

Double velocity u'u'/U2 
I = kl 

correlations for v'v'/U2 = k2 I 

the fluctuation w'w'/U2 = k3 I 



AKlB, AK3B 

AKlP, AKlPP, 

AK2P, AK2PP, 

AK3P, AK3PP 

ANUX 

AMPF 

CF 

CFR 

CHL 

CW, (CWM) 

CWO 

CWl 

CP 

DETO 

DETOX 

DT 

DTS 

DUDX 

DRDT 

D2RDT 

DTX 

DTXM 

DX 
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Values of AKl, AK2, AK3 at previous 

x-station 

ki ' k2 
ki ' k2 
k3' kIf , 3 

Local Nusselt Number (based on x); 

Amplification parameter 

2To/plui ' Skin friction coefficient 

TIT , Local shear stress ratio 
o 

Characteristic body length, L 

Wall curvature (l/ro) , (CWi - 1/2) 

(o*/r) , wall curvature parameter o 

1 + (o*/ro)y/o* 

Specific heat at constant pressure C 
p 

(~T) = (1 - TIlT ) o 0 

[(T IT l )· - (T IT l )· l]/~x o 1 0 1-

0* , displacement thickness 

Value of 0* before it is altered to 

conform to integral momentum equation 

dUl/dx , x-gradient of freestream 

velocity 

a(l/Ro*)/an , 

a2 (l/Ro*) I an2 

do*/dx 

} [(do*/dx)i + (do*/dx)i_l] 

X. - X. 1 ' (~X) 
1 1-



OY 

E 

EPS 

F 

Fl,F2,F3,F4 

FV 

FXM 

FMY 

PMl 

FRDT 

GAM 

GC 

GOT 

GPW 

H 

HQ 

I 

10 

J 

JEY, JEF, JEG, 

JK1, JK2, JK3, JSG 

JO(JE,JY) 
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n· - n· 1 ' (L\n) 1 1-

Eckert Number, Uf/[Cp(To - Tl )] 

~ , convergence criterion specifying 

tolerance 

. }mean velocity field 
f"', flV 

f 

f', f", 

u/Ul 

( f. - f. 1) / L\x 
1 1-

(f - n) 

(1 - f') 

FRo* , Pressure gradient parameter 

I (To/pUi ) , friction velocity/ 

free stream velocity 

g , gravitational constant 

Grashof Number (based on 0*), 

To/Tl 

Shape factor, 0*/6 

L\*/o* 

x-direction index 

Maximum number of x-stations 

y-direction index 

Maximum number of data points read 

for n, f', q', kl , k2 , k3 and 0, 

respectively 

Absolute maximum number of data points 

for any profile 



KT, KOUNT 

L 

PF, (PFM) 

PR 

Ql, Q2, Q3 

RE (REM) 

REDT, (ROT) 

REDX 

RHO 

RUF 

SC 

SIG, SIGP, SIGPP 

SN 

ST 

STAB 

TAU 

TATE 

TE 

TW 

TK, (STK) 

TIE, (TI) 
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Iteration counter 

Number of subdivions of the profiles 
vI dU l Pressure gradient parameter - -
U2 dx' 

(intermediate value) 

Prandtl Number, pC /k 
P 

1 

q', q", q'" Mean temperature field 

Unit Reynolds Number, Ul/vl 

(intermediate value) 

U16*/vl ' (U16*/v , local) 

x-Reynolds Number, Uix/v i 

Density, PI 

Equivalent Nikuradse wall roughness 

height, K 
s 

1100K (for air) • Constant in 

~utherland's viscosity formula 

a , a', ott , velocity cross correla-

tion field 

Stability Number 

Stanton Number, a/pCpU
I 

= ANUX/ 

(REDX· PR) 

Stability parameter 

Tl ' free stream ambient temperature 

T ,wall temperature o 

II ' free stream turbulence intensity 



TIR 

THC 

THETAF 

THETAQ 

U 

UE 

VE, (VEE) 

VER 

VKC 

vw 

vow, (VOWM) 

X , (XD) 

y 

YPS 

142 

II at initial x-station 

k = thermal conductivity 

8 , momentum thickness 

b* , energy thickness 

Local mean velocity, u 

Freestream velocity, Ul 

Kinematic viscosity~ 

V/Vl ' ratio of local to freestream 

kinematic viscosity 

Von-Karman constant 

Blowing (or suction) velocity, v o 

vo/Ul ' (intermediate value) 

Local x, (x = x/L) 

n = y/o* 

Effective roughness scale, K /0* s 

The variable coefficients, a l - a34 for equations (3.22) 

through (3.28) in the text are as follows: 

1 a
l = 

Ro*(l+Cn) 

({2 2. (_1_) v } 1 a2 = an - 0 (l+Cn) Ro* 

= 

= 



as = 

a6 = 

a7 = 

as = 

ag = 

a10 = 

all = 

a12 = 

a13 = 
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(i" , - C I' ') (0* + 0* )/~x 
i i-I 

C(l 1')(0* + 0* )/~x 
i i-I 

(1 1')(0* +0* )/~x 
i i-I 

[ 0" - C 0'] 
(l+Cn) 

4 F Reo* 
(0* + 0* )/~x 

(l+Cn) i i-I 

- 2 6(F Reo*) 

(l+Cn) 

Reo* 
(0. + 0i_1)6* I ~x 

(l+Cn) 1 

0 

0 

[(1-f')6*( TTol - TTol )/(~x{T IT1 - I})] 
1 i 1 i-I ° 

E 

2Re * o 

1 

(l+Cn) 
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a19 = [2 (f' 

a24 = 

a25 = 

- k1' (o~ + o~ l)/~X 
1 1-

o 

o 

if"/(l + Cn) 

[ -2 (_1_) -2 (K) 
an - an 

Ro* 
+ 50f" K] 

2 ~ (_1_) alB + an -(l+Cn) Ro* 

1 

3(1+Cn) 



a33 = 

a34 = 

Reo* 

Ro* = 
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o 

k3' (o! + o~ l)/~ 
1 1-

0' (o~ + 
1 

k 1" 2 

(l+Cn) 

U o*L 1 
vI 

U o*L 1 
v 

1 ] 

(l+Cn) 

o~ 1)/6X 
1-

value at free stream. 

local value. 

The coefficients A. , B. , C. and D. for the set of equations 
J J J J 

(3.23 through 3.28) are as tabulated below: 
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> 2 
i 

A. B. j C. D. 
J J J J 

[-alf", - a2f'" - (a3 + a7)f"]i_1 
a1 a2 2al a2 a l + 2aS + alO (oi + ai_I) a9 (01 - ai_I) -(- + -) (a -a )-- (- --) -
111 62 3 7 113 112 114 

I 
+ al2 (qi - qi+l) - all(Fi - Fi _l ) 

- a14 (fi + fi_1 + a6 (fi - fi_l) 

I + as(fi 
- f

i
_
l
) + a l3 (qi + qi-l) 

I 
a l b6. 

-(alS+a7)- ! b6 a l [ 
al 

- a7) q']i-I -(--+-. (-- -) I - p- q'" - b6q' , + (aiS p rl11 11 2 ' 
2al 

I li2 P rli4 r 

I - a I6 (fI,2 + f' ,2 ) 
- Prli3 i i-I 

! 

a l7 alS 
I 

alS al7 (aI9 -a7) I [-aI7ki' - alski - (a7 + a19)k1]i_1 -(- +-) I (-- -) 
li l li2 

2a17 i li2 li4 

- -r;; i -a20 (fi 
- f

i
_l ) - a21 (fI - fi_l) 

I 
I 

-a22 (oi - ai_I) - a23 (ai + ai_I) + 2a24 

a l7 a2S (a26-a7) 
a2S a17 

[-aI7ki'- a2ski - (a26 + a7)k1]i_1 -(- +-) i (-- -) 
111 li2 I li2 li4 

2a19 I -a27(fi - f i _l ) + a 2S (fI - fI_ I ) + 2a24 - -r;; 
I 

a l7 alS i a33 a l7 
-(- +-) (a29-a7) 

I 

(-- -) [-a I7k3' - a1sk3 - (a29 + a7)k3]i_1 li l li2 62 li4 
2a17 + a30 (fi - f

i
_l ) + 2a

24 - --r; 

! 
a l a3l I a31 a1 

-(T +~) (a32 - a7) ! (-X- - T) [-ala" - a 3Ia' - (a32 + a7)0]i_I I 
2 2 4 
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APPENDIX C 

DERIVATION AND SOLUTION OF EQUATION (4.39) IN THE TEXT 

As taken directly from Chapter 3, the equation for the total 

kinetic energy of the fluctuating flow at a point which lies between 

the points i and i-I, is as follows: 

f! 1) 
1-

If K. 1 is taken to be always K. and if 
1- C1 

Q = K/K . 
C1 

equation C.1 becomes: 

(C-1) 

(C-2) 
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The following assumptions were made in Chapter (4). 

1/2 2 4. 
K . (n) - A SN . n- exp (- n" ) 

C1 C1 

(C-3) 

u -u - b l n* + b 2 SN • K 
1 

where bl and b2 are numerical constants and A is a function of 

free stream turbulence intensity. 

In the neighborhood of the critical layer of the boundary layer 

(n - 1.0) one obtains that 



(a28 - a2l) 
::: 

(f. - f .) ::: 
1 Cl 

(f! - ft.) ::: 
1 Cl 

0 
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: d
l 
ASNl~2 001/ 2 n*[n*O' + 20 + 2] 

Cl 

A b
2 

n*3SN2 00 [00-0] 

A b
2 

n*2SN2 00 (00-0) 

where the b,s and d,s are numerical constants. Making the above 

substitutions in equation (C.2) one obtains after dividing through by 

and simplifying the terms: 

where w = SN ./SN and the d,s are numerical constants. Equation C.4 
Cl 

is valid in the region n * If 1.0, that is, in the neighborhood of the 

critical layer. For this region, C.4 may be written in the following 

form: where 0:: Y. 
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(C.s) 

where 

Under the transformations 

Y'(n) = pCY) 

P(Y) - l/U(Y) 

equation c.s reduces to the following 

which is the classical Abel's equation. Obviously the roots of the right 

hand side polynomial feU) = 0, of (C-6) are themselves solutions of 

equation (C-6). The general solution is given, according to Davis (1962) 



as follows: 

where 
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D exp (F Y) o 

are the roots of feU) = 0, a, b, c are 

fixed constants and D is an arbitrary constant. In the present 

problem, the roots ul ' u
2

, and u
3 

are given as: 

Fl 
= - -- + 2F o 

(C-7) 

Reverting to equation (C-S) with a = b = 1 and c = 0, one obtains 

the following solution: 

(C-9) 

which may be solved as a quadratic equation in yl • One obtains 

implicitly that: 

yl = feY) 

i.e., J ~; = n *to Ftmction (A, w, SN). (C-lO) 

Fram equation (C-9), one obtains that, approximately: 
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J ~; · A exp[_B.SN(y_oo)yl / 2 - oo/Y] 

where B is a numerical constant. If one assumes that close to the 

wall, (i.e., n*+ 0), Y(= 0/0.) tends to unity, then Function (A,oo,SN) 
Cl. 

in equation (C-lO) becomes approximately BlA(l-oo) exp[B.SN(l-oo)], where 

Bl is a numerical constant. Hence, in the neighborhood of the critical 

layer, the solution to equation (C-5) may be written as: 

1/2 M exp(~) B3 exp[-B.SN(Y-w)Y - oo/Y - B.SN(Y-oo)] 

= 1 + M(l -(0) exp(~) 

where 

M = BIA 

~ = B SN(l-w) 

B3 is a function of A. 

The left hand side of equation (C-ll) behaves functionally as 

M exp (~) 
1/2 

B _00_ 

2 Y 

(C-ll) 

where B2 is some simple function of SN, (=B leA SNl j2) Hence one "4 • C;l. • 

obtains from (C-ll) that 

Y . 
1/2 

MB200 exp (~) 

(C-12) 
l+M(l-w) exp(~) 

where B4 is a numerical constant. 
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The solution (C-12) has been obtained to be of an identical form to 

~hat quoted by Stuart (1958) as due to Landau (1944). From the above 

discussion, one may get some feel as to what assumptions may have led 

to the Landau solution. 
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APPENDIX D 

THE COMPUTER PROGRAM FOR TURBULENCE FIELD CLOSURE 

ENERGY fORTRAN EXTENDED VERSION 2.0 11'13111 

PROGRAM ENERGY (INPUT,OUTPUr,TAPE5=INPUT,TAPE6=OUTPUT,flLMPL' 
C 
C***·························.·····.·················· .....•.•••.•...•.••..••..• 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS COMPUTER PROGRAM PERfORMS A NUMERICAL INTtGQATION ~F THE EQUATIONS 
Of MOTION fOR A TWO-DIMENSIONAL INCOMPRESSIBLE ~EAN fLOw WITH 3-0 
DISTURBANCES. THE EGUATIONS A~E CLOSED wITH INvA~lANT MODELS fOR THE 
TRIPLE AND HIGHER ORDER CORRELATIONS USING THE OOUBLE VELOCITY CORRELA 
TIONS AND TwO SCALE LENGTHS. AfTER THE MANNER Of C. OONALuSON. 
STARTING wITH INITIAL INPUT PPOfIL~S CLOSE TO 'HE LEADiNG EDGE Of THE 
WALL, THE PROGRAM PREDICTS TrlF- bOUNDARY LAYER PROfILES AND PwINCIPAL 
CHARACTERISTICS fROM tHE LAMINAR THRU T"E TRANSITIONAL TO THE TURBULENT 
REGIME. EffECTS Of STREAMWlSE WALL CURVATURE. wALL wOUG~NESS. HEAT ANO 
MASS TRANSfER AT THE wALL AND AR81TRARY PRESSU~E GRAOfENT$ ARE ACCOUNTEO 
FOR. THE OUTPUT INCLUDES PREalCTIONS Of THE POtNTS Of INSTASILITY AND 
TRANSITION AND THE A~PLtfICATION RATES Of THE 01STUR~ANCE~. 

JOSHUA .C. ANYIWO 
COLORADO STATE UNIVERSITY, 1911. 

C···················································*· ...• * •• *******.* ....•.• * •. 

C 

COMMON THTA(200),THTB(200).AY(iOO),Y(200),Fl(200),Ql(?00t,F2( iGO). 
lAK1(200).AK2C200),AK3Cloo).60T(200),YER(200),RuT(200),THlf(200). 
2 SIG(200).Q2(200).AKIP(200)'AK2PC~OO),A~3P(200),SIGPC200).f4(2QO) 
l,T~TQ(200),fv'200),f(200).SIGoP(200),RTHTA(200),Oft~00),OTf(200. 

COMMON Af(200),Hf(200).CCf(200).AE(200).BE(200),CE(ZOO).OE(200'. 
lAAK2(200),AAKl(200),AAK3(lOU).ASlG(200),f18(200),f28(200).f38(200) 
2,QIB(200',Q2SC200),Q3BC200),AKIB(200),f48(200).AK28CZOOt.AK3~C200' 
l,8Kl(200),CK} (200),8K2t200).CK2(200),8K3(200),CKl(200 )t~~IG(200) 

COMMON F3(200).Q3(200),AK1P~(200)'AK2PP(200),A~JPP(200).OROT(200), 
ITHTQC(200),DTfC(200).fYB(200).SIGB(~00).AKIPeC200),AK2P8(200), 
2ZU(200),AK3PB(200',SIGPA(200).CSIG(200),AKJPP8(200),SJGPPb(200), 
lAKIPPB(200),AK2PPrl(200),OKl(200),DK2(200),OKJ(200),DS16(200) 

COMMON ROT~(200),THTC(200),rHTD(200),THTG(lOO).THTH(200),THrfCe200 
1).TKB(200),TKP8(200),02RDT(iOO).u~kOTB(200),OROT8(200),60TB(200) , 
2TK(200),TKP(200).F8(200.,LAdEL(18).fkOTC60),REDTC60) 

COMMON SN(60),YOwX(60).AMPXCbOJ.rAMPX(60),TIECcOl,DELTA(60), 
lX(601,UEC60).E(60).OETO(bO).UPWC60',Pf(60',DETQXC60),YOW(60'. 
2XO(60),T~(60).V~(cO).CW(bO),MUf(60)'RE(60),REDX(cO),CWO(60).OT(60) 
l.TKMX(60),SIGX(60,.THET4f(60l.THETAQ(OOl,H(60),ANUX(oU).ST(60), 
4Cf(60),GAM(60).OEL(60)tT~ETAfC(60),THtTAQC(60',DTC(60),HC(60' 

DATA JO.ID,EPS/200.60.0.0051 
DATA CP,PR,SC,VKC/0.434,0.11'110 •• 0.411 
CALL SETL (0) 
READCS,11) (LAdELCK). K=1,18) 
READ{S,1) JEY,JEf,JEG.JK1,JK2.JK3,JSG 
READ(S,S) TIR,uT(l,.CHL 
REAO(S,12) ~HO,GC.rE,VEE,L 

S fORMATCf8.8.5X.fd.4.5X,FIO.3t 
11 fORMAT(18A4) 
12 fORMATCF10.9,flO.3.flO.8,flO.Q,10X.Il' 

ERC TERM 
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c 
C READ INITIAL PROfILES 
t 

c 
c 

R£ADCS.2) (Y(J).J=I.J£Y) 
REAO(S.2) ( fleJ),J=l.JEF) 
REAOeS.2) e OleJ',J=l.JEG) 
REAO(S.4) e A~leJ).J=l.JKl) 
REAO(S.4) ( AK2(J).J=1,JK2) 
REAOCS.4) ( AK3(J).J=1.J~3) 
REAO(S.4) ( SIG(J).J=l.JSGI 

2 FORMAT(10fd.4) 
4 fORMAT(lOF6.~) 
6 fOKMAT(6FIO.3) 
7 FORMATC7I2) 

C READ IN PARAMETERS FOR EACH X-STATION 
C 

C 

00 100 1=1,10 
READ(S,6) X(I).uEtI),rw(I).VW(I).CWO(I).RUFCl) 
tFeXel) .GT. 1000.) GO iO 90 
REel) = U[(I)/VEE 
REOX(J) ; RE(l)O~eI) 

XD(I) = X(I)/CNL 
VOwel) = VW(I)/UECI) 
DETO(I) : 1. - (Ti/lweI» 
E(I) = (UE(I)~·2)/(2.·CP~TE) 
IfCA3S(TW(J) - TE) .~T. 2.) E(I) = (UE(1)**2'/(CP*(Tw(1, - TE)' 
GPW(J) = Tw(l)/TE 

100 CO~TINUE 
90 10 = I 

IMX = 10 - 1 

C CALCULAT( THE PRESSU~E AND TE~PERATURE GRADIENT PARA~ETERStprt OETox 
C 

t 

00 101 I=l,IMX 
II = I - I/IM~ 
IP =11.1 
1M ~II-l 
IF(t .LE. 1) I~ = II 
IFCI .GE. IMA) IP = II 
DUOX = CUECIP) - ~EeIM»/(xeI~) • X(IH» 
Pfel) = DUDX~VEE;(UE(I)o~2) 
VOWX(I) = (VowtIPl - VO~(IM)/(xelp) - X(tM» 

101 OETOX(I) ~ (GP~(IP) - GP~(lM»/e~D(IP) - XOCIM') 

C SMOOTH THE INITIAL PPOFILES 
C SUBDIVIDE PROFILES To CALCULATE ALL Y-OERIVATlvES 
t 

1=1 
eW(I) = CWO(I)~DT(I) 
CALL OIVIO[eJ£V,L,V,VH.JD) 
CALL OtVIDE(JlF.L.fl.VH,JO) 
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CALL DIVIOE(JEG.L.al.VH.JD) 
CALL OIVlOE(JKl.L.A~l.VH.JD) 
CALL DIVIOE(JK2.L.A~2.VH.JO) 
CALL 0IVIOE(J~3.L,A~3.VH.JO) 
CALL DIVIOE(JSG,L.SIG.VH,JD) 
JE = MAXO(JEF.JEG) 
JJVL = JE - L 
.lY = JE 

CALL INTEG(JE.JO.V.fl,O.O.f) 
00 1111 J=l .. JE 
fVeJ) = I. - fl (J) 
Ife(fV(J) - 1.) .IT. 0.) JJK = J 
f(J) = feJ)/fCJE) 

1111 CO~TINUE 
00 51 J=I,JE 
JJ = J - J/JE 
JP = JJ • 1 
JM = JJ - 1 
IF(J .LE. 1) JM = JJ 
IF(J .GE. JE) JP = JJ 
2M = (f(JP)-feJ~»/(V(JP)-v(JH» 
fICJ) = (fl(J) • Z~)/2. 

S1 CONTINUE 
N = 19 
CALL LEASTSQ(V.fl.JE.N,fl' 
M~M = JJI( • 1 
Do 4'. J=MM~, JE 

44 Fl(J) = O. 
00 102 J=I,JE. 
JJ = J - J/JE 
JP = JJ • 1 
JM = JJ - 1 
If(J .lE. 1) JM = JJ 
IF(J .GE. JE) JP = JJ 
DY = Y(JP) - Y(JM) 
fl(J) = (fleJP) - fl(JM)/OV 
02(J) = (Ol(JP) - QleJM»/U1 
AKIP(J) = (AKl(JP) - AKl(JM)/UV 
AK2P(J) = (AK2(JP) - AK2(J~)/DV 
AK3P(J) = (AK3(JP) - AK3(J~»/uV 
SIGP(J) = (SIG(JP) - SI(j(JM»/OY 
fVeJ) = 1. - fICJ) 
IfCFV(J) .lE.0.~9b) vOEl = veJ) 
If ( e F V (J) - 1.) • LT. 0.) JJI< = J 

102 CO .... ~INUE 
JLL = JJK • I 
JTM = JJI< • 2 
JLT = JJK • 3 
N = 19 
CALL LEASTSQ(V,f2,JE,N.f2) 
DO 43 J=JLl.JE 

43 FZ(J) = 02(J) = O. 

11/13/71 
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RDEl • YO£L*DT(t'*~E(l) 
ALAN. Pf(I)*(RO£L**2) 
DEMON: 6. • VOw(t)*40EL • CWfl) 
PARI: VOW(I)*ROEl 
PAR2 • CW(})*YOEl*VOwACt) 
APO = e12 •• ALA~-PAR2)/(nfMo~*vDEL) 

11/13/71 

SPO • (l.*ALAM-6.*PA~1·3.*PA~~)/(O~~ON~(YOEl.~Z» 
CPO = (12. - 3 •• AlA~ • 3.~·PAQ1.l.~·PAR2)/'D~MON·(YO£l**3» 
DPO • (6. - ALAM • l •• PARl • OA~2)/(OEMON*(YOEL**4)' 
DO' 110 J= 1 • JE 
JJ = J - J/JE 
JP = JJ • 1 
JH =- JJ - 1 
IFCJ .lE. 1) J~ : JJ 
IfCJ .GE. JE) JP = JJ 
OY = Y(JP) - Y(JM) 
F3(J) : (f2(JP) - F2(JM)/Ot 
Q3(J) • (Q2(JP) - Q2(JM),/OV 
AklPP(J) = CAK1PeJP) - AKlP(JM»/OY 
AK2PP(J) = CAK2~CJP) - AKZP(Ju,)/OV 
AK3PP(J) = (.KlP(JP) - AKJP(J~»/OY 
SIGPPCJ) = (SIG~(JP) - SlGP(J~»/OY 
l'CYCJ) .IT. 3.) Fl'J) = 2.*00 0 • b.*CPO*Y(J) - 12.*OPO*CYCJ'*·2, 

110 CONTINUE 
N = 19 
CALL LEASTSQ(Y,Fl.JE,N.F3' 
00 41 J=JTM.J£ 

41 F3CJ)=Q3(J'=O. 

AKltl)=AK2(1)=AKJ(1)=O. 
TKCl) • SIGel) = o. 
F1Cl' • 01(1) = 1. 
TKMAX = SlhMAX = -100. 
IF(ABSCTE - TWel') .lE. EP~) ~1(1' = o. 
00 111 J =1.JE 
IF(OETO(l) .£Q. 0 •• Q2(J) = Q3(J) :: o. 
TK(J' = AK1CJ) • A~2(J) • A~3(J' 
AK3P(J' = AK3PP(J' = SlGP(J) = SIGPP(J) • O. 

111 CONTINUE 
UPMAX = o. 
VPJotAX a O. 
WPMAX = O. 
f3(1. = 2.'BPO • 6.*CPO*Y'l) - 12.*OPO*CYtl) •• Z' 
00 103 J=l.Jl:. 
TKMAX = AHAXl(rK~AX.1K(J» 
SIGMAX = AMAXICSIGMAX,SIGCJ') 
JJ = J - J/JE 
JP :: JJ • 1 
JM :: JJ - 1 
If(J .LE. 1) JM = JJ 
Jr(J .G£. JE) J? = JJ 
lKPtJ' :: (TK(JP' - TK(JM»)/(Y(JP'-Y(JM'l 
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r4(j) :: tFl(JP) - f3(JM))/(Y(JP) - Y(J"') 
103 COt'!T INUE 

N :: 19 
CALL lEASTSQ(y.f4.JE,N,F4) 
DO 42 J::JTM.JE 

42 r4(J)=0. 
r4(JE. :: o. 

C WRITE OUT SMOOTHED VELOCITY PPOflLES 
C 

11/13/71 

WRITEI6.J9,(F(J).Fl(J).FZ(JI,rJ(JI.t4(j).J=1.JE.l) 

c 

39 FOq~AT(5x,5f20.d) 
TKP(JE) :: o. 
AK2P(JE) :: A~3P(JE' = SIGP(JE, = O. 
FZIJE' :: Q2(.)E) :: ~K1P(JE) :: o. 
AK1PpeJE' :: AKlPP(JE) :: O. 
DElli' :: OTel)*VO€L 

C END OF INITIALISATION. aEGtN~tNG OF MARCHING LOOP 
C PREVIOUS STATION HAS BEEN CO~PUTEO AND NEXT STATION IS BEING STARTED 
C MOVE PREvIOuS P~OFILES BACK TO ~OV~ FORWARO IN X 
C 

KOUNl :: 0 
300 00 116 J=1.J£ 

FaeJ' = Fe.) 
F18CJ) :: fl(J) 
fldeJ) = fleJ' 
f38eJ) :: rl(J) 
F48(J) :: F4CJ) 
QHHJ) :: 01 (J) 

OlBCJ) = oze .. J) 
OltHJ) :: OJ (J' 
AKIBeJ. :: AKleJ) 
AKlBfJ. :: AKZ(J) 
AKJBeJl :: AKJ(J) 
5IGBeJ) :: SIG(J' 
AK1PalJ. = AKIP(J) 
AK2PdIJ) = AK2P(J' 
AKlPBeJ) :: AK3P(J) 
SIGPdeJ' :: stupeJ) 
AK1PPBeJ. :: AKlpP(J) 
AKZPPB(J) :: A~ZPP(J) 
AKJPPH(J) = AKlPP(J} 
SIGPPB(J) : SIG?peJJ 
TK8(J) = TK(J) 
TKPBeJ) = TKP(J) 
rvB(J) :: FV(J) 

116 CO~TINUE 
KAL = Z 
60 TO 771 

555 00 ~61 J=l.JE 
OROT8(J) :: O~OT(J) 
OlROTaeJ) : 02RDTCJJ 
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GDT8eJ) = GOTeJ) 
ROTBeJ) = RDTeJ) 

567 CONTINUE 
KAL = KAL • 1 

777 CONTINUE 
IfCKAL .GT. 2' GO TO 123~ 

11/1.11/71 

C BEGINNING Of STATION ITERATION LOOP 
C CALCULATE LOCAL X-M£AN VALUES Of THE X-PARAMETERS 
C 

Kl = 0 
K1K = 0 
IB = I - 1 
IFel .LE. 1) IS = 1 
OX = xoeI' - XDlld) 
If(1 .LE. I) ox = XD(Z) - XUCI) 
GPWM = (GPwel' • GPw(ld)'/l. 
YOW~ = CV~(I) + V~(I~)/(UE(t) + UECIB» 
REM = CRECI) + wE(IB»)/Z. 
EM = (ECI) + E(I~»/'. 

600 CONTINUE 
OlCI) = OTCl)*feJE) 
cweI' = C~OCl).DTll) 
Kl = KT • 1 
REOT(I) = RE(I)*OT(I) 
fROTCI) = Pf(l)*R£OT{l) 
CWM = (ew(l) + eW(Id»/2. 
D1M = COTCI) • OTCI9)/Z. 
REOTM = CRE0TCIJ • REOT(IM»/2. 
fROTM = (fROTCl, + f~OT(la»/2. 
XM = XC l) 10 T ( I) 
D1XM = 0.86*(1. - f~OT(r)·xM)/S~RT(REOTCI)*X~' 
Ifel .uT. 1) OTx~ = (or(l) - OT(ld)/(xCI. - XCI8" 
DO 113 J=l,JE 
TATE = (1. + (GPW(I)*OlfJ)*DETO(I»)) 
VEReJ) = (TATE·*l.S)*(l. • Se/TE)/(TATE • Se/TE) 
ROTeJ) = REOTCI)/YER(J) 
GOTCJ) = o. 
IfeOETO(I) .NE. 0.' GOTCJ) = oETO(I)*eOTCI'.*3'*Gc/(eVEE**Z'*Cl. 

J • OETOtI)*(QICJ) - 1.),) 
113 CONTINUE 

DO 111 J=I.JE 
TKCJ' = AKl(J) + A~2(J) • AKJ(J. 
JJ = J - J/JE 
JP = JJ + 1 
..1M = JJ - 1 
IFe.) .LE. 1) JM = JJ 
IfCJ .GE. JE) JP = JJ 

117 OROT(J) = Cl./ROT(JP) - 1./ROTCJM"/CY(JP) - yeJM)' 
00 118 J=l.JE 

JJ = J - J/JE 
JP :: JJ • 1 
..1M :: JJ - 1 
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tr(J .LE. I. JM = JJ 
IFIJ .GE. JE' JP • JJ 
OV • Y(JP) - YCJM, 
TKP(J) = (TKCJPt - TKCJM))/UY 

11/13111 

118 02~OTtJ) = (OROfeJP) - ORoTtJM»)/tY(JP' • ytJN.) 
GO TO 555 

123- CO~'tNUE 
F3(1. = fROT~*REOT~ • f2(lJ*(Cw~ • REOTM*CVOWM - OHOTll") 

C 
C ••••• CALCULATE INITIAL PROFILE PARAMEtERS ••••••••••••••••••••••••••••••••••• 
C 

c 
c 

1Ft! .LE. 1. GO TO 500 

C CALCULATE ALL THE PRoftlE £QUATION COEffICIENTS, ~l • A34 AND a.s AND ALL 
C THE RIGHT HAND Slot CONStANtS. 
C 

JJT • JE - 1 
100 00 114 J=2,JJT 

," • (FIJI. rS(J)/Z. 
riM. CFltJ. • Flij(J,'/2. 
'2M. (fctJ) • F28(J,'/2. 
r3M • Cf3CJ) • Fl8tJ»)/Z. 
fXM • (fCJ' ~ f~(Jt)/2. 
AK1M. CAK1(J) • AK19(J)/2. 
AK2M • (A~2(J) + AKZ~(J))/~+ 
AK3M. CAK3(J) • A~38(j')/~. 
SIGH. tSIGtJ) • StG8(J"/l. 
AK1PM t (AK1P(J) • AKIPB(J))/~. 
AK2PM ~ (AK2P(J) • AK2PMtJ))/~. 
AK3PM ~ (AKlP(J) • AK3patJ)'/r. 
SIGPM. (stGP(J. • SlGP~(J)/2. 
St6~PM ~ (S16PP(~) • SlGPP~(J)'IZ. 
tKM • (TK(J) + lk~(J)112. 
TKPM. (TKP(J) • tKPg(J»)/2. 
OROTM • (OROTeJ) • OpOTgtJ»/,_ 
D2ROTM ~ (02ROTtJ) • O~POTa(J»/~. 
GOTM e (GOTeJ) + GOT&(J»/c+ 
OXM ~ Ql(J) - Ql&(J) 
FIXM. Fl(J) • rl~(J) 
SXM ti SIGfJ) • SlGd(J) 
r~XM • (f2(J'-*Z) • (r~e(J).*2) 
AOTM. (RDT(J) • ROTij(J')/~+ 
OIM • (Ql(J) + wlB(J)'/2. 
Cwl • 1 •• CwM*Y(J) 
tM} • 1. - Fl~ 
fMY • fM - y(J) 
AlS • Cwl*OTM*tVOwM/cwl + F~Y.(OrX~.'ROtM' • OtM*tM*2.IOX) 
A36 • A35 *fNOT~O(DTlM • FRDT~) 
A37 • A35*(2.*OT~~ • fwOtM • ~TM) 
A1 ~ J./(ROT~*C*l) 
A2 • (2 •• 0ROTM-VOWM)/C~1 - fMv-COTXM+FR01M) • eWM/(Cwl.Rot~' 
A3 = 'CwM*VOwM.U2~DtM.CNM*fMl*DTXM)/C.l +fMY.CwM*COTX~+F~OTM) 
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t - f~OTM·CWM - CW~~OROTM/C~t 
A4. CWM*(FMl+l.)·F~OTM. f~nT~*FcM • 436 
AS • (rJM-Cw~·F~M)OOlM.2./O~ 
A6 • CWM*fMl*OTM o 2./uX - A~l 
A1 = fMl*OTM*l./Ox 
A8 = SIGPPM/cwl - C~M*SIGPM 
A9 = 8.*FROT~*OTM/{O~~Cwl) 
AIO = 6.·(FROT~**2)/cwl 
All = REOTM*SIGM*Z.*OTM/(OX*Cwl) 
A12 = AIJ = O. 
A14 = VOWM/Cwl • r~Y.(OTXM.fROT~) 
IFeOETOCI) • (Q. 0.) A15 = O. 

11/13/71 

IrCOETO(I) .N€. 0.) A15 = (fMt*OETuX(1'*OTM)/(6P~M*OETO(I») 
A16 = EM/(2.·REOIM~Cwl) 
A17 = Al 
A18 = A2 + C~~/(ROTM*Cwl) 
A19 = C 2.*fMl*FROTM+Su.*fc~-2./«Y(J'**2)*~OTM')/CWl +2.*rMl* 

IFROTM 
A20 = ( -AKIPM'*OTM*2./OX 
A21 = A22 = A28 = o. 
A23 = -2.*F2~/C~1 
A24 = (OROTM.TKP~.SO.*f2M*TKM)/(3.*CWl) 
A2S- = Al8 + 2.*uROTM/CWl 
A26 = A19 - 2.*rMl*fROTM 
A21 = -AK2PM.OT~·2./OX 
A29 = A26 
A30 = AKJPM*OTM*2./0X 
A31 = A2 • OROT~/Cwl 
A32 = A26 
A33 = SIGPMo OTM*2./0X 
A34 = AK2M+f~M/Cwl 
86 = -A14 - OTM*fXM 
JJ = J _oJ/JE 
JP = JJ + 1 
JM = JJ - 1 
IF(J .LE. 1) J~ = JJ 
IfeJ .GE. JE) JP = JJ 
OYA = Y(JP) - yeJM) 
OYAA = CY(JP)-Y(JJ»*{r(JP)-YfJ~»/2. 
OYAB = (Y(JP)-Y(JJ)*(Y(JJ)-Y(J~') 
OYAC = CY(JP)-Y(JM»)o(Y(JJ)-Y(J~)/Z. 
OYl = Y(JP) - Y(JJ) 
OY2 = Y(JJ) - Y(JM) 
Gl = G4 = O. 
G2 = GJ = 1. 
AfeJ) = AI/OYAA + A2*G2/0Yl 
8feJI = 2.*AI/DYAti - A2*GI/JV~ + Ac*Gl/OVl • A7 - A3 
CCfCJ) = AI/OYAC - AZ*ul/0Y2 
OfeJ) = -(-Al*r48(J) - A2*F)R(J) - (A)+A7)+f2rl(J) + 2.*A8 + AIO*2 

I.*SIGH - Aq*SXM • Al£*~XM - Atl*CPfCI' - PfCIB)) - A4*Z.*flM + A6* 
2flX~ + A5*2.*rxM • A13*Z.*Ql~ , 

AEeJ) = Al/(OYAAOPR) + Bb~G3/0Yl 
aECJ) = 2.*Al/(OYAd*PR) - b6*G~/OYi + 86*G3/0Vl + A1 • A15 
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CECJ' = Al/(OYAC*~Q) - a6*G~/OYZ 
D£CJ' =-( -Al*Q3rlCJ)/PR - B6·Q2d(J) • (A15-Al'.Q18(J) - A16*F2~M 
AAK1(J) = A17/0YAA • AIS·OJ/ovi 
BK1(J) = 2 •• A17/DY~& - A18.G~/DYl + A18*G3/0Yl + A7 - A19 
CK1(J) = A17/0YAe - A1S*Gl/0Yl 
OKI(J) =-( -All*AK1PP8(Jl - A18*AKIPS(J) - (Al+A19)*AKI8CJ) - AZO· 

12.*rxM - A21*flxM - A22~SXM - AZl·c.*SIGH • 2.*Ac4 ) 
AAK2(J) = A17/0YAA + A2S*G310vl 
8K2(J) = 2.*AI7/0YA8 • A~5*GJ/DYl - A25*G4/0Y2 • Al - A26 
CK2CJ) = A17/0YAC - A2S*G4/0Y? 
DKZ(J) =-( -A17*A~2ppa(J) - A?5*AKi~o(J) - (A26+Al).AK2B(J) - A21· 

1 2.*FXM + A2~*rlXM • i.*A2~) 
AAK3CJ) = AI7/DYAA • A18*GJ/Ovl 
8K3(J) = 2.*A17/uYAB + Ald*GJ/OYl - Ald*G4/DY2 + A7 - A29 
CK3CJ) = AI7/DVAC - Al~*G4/uY2 • 
OK3CJ) =-( -AI7*AK3PPBCJ) - At8*AKJPiHJ) - CA29+A7,.AK3i.HJ' • A30· 

lZ.*FXM + 2.*A24) 
ASIG(J) = Al/DYAA + A31 0 G3/0Yt 
asIG(J) = 2.*Al/0YA6 + A31*6J/OY} - AJ1.G4/DYZ+ A7 - A32 
CSIG(J) = A}/orAC - A31*61/uYz 
OStGIJ) = -(-Al*SIGPP8(J) - A11*SIGPBeJ' - CAJ2+A7).SIGR(J' + 2~·A 

t330 fXM + 2.*AJ4) 
fV(J' = 1. - FlfJ) 
IF(FveJ) .LE. 0.996) VOEL = Y(J) 

114 CONTINUE 

C...... CALCULATE ALL PROFtLES •• * •••••••• * ••• * •••••• * •••••••• * •••••••••••• * 
C ~ESTA1E THE WALL dOUNUARY CONolTIONS 
C 

C 

QHW = 1. 
IfCA8StTE - TW(I') .LE. EPS' QrlW • o. 
01(1) = QHW 
OW = Ql C 1) 
AK1(1) = AKZ(l) = AK3(1) = o. 
SIG(l) = o. 
IFeKT .GT. 1) GO TO 37 
Jf(ABSCTE-Tw(I)) .LE. EPS) Q~(l) = o. 
02(1) = -0.332·(P~**.33)*SQ~T(RED1(1)*OTCI)/X(1» 

37 CONTINUE 
F2w = f2(}) 
CALL PROFYL(JE,y.AF,8f'CCF,OF.F2,3tf3.F4tr~AX) 
f3(1' = fRDTM·RE01M + F2(1)*(CW~ + REOT~*(VO~M - ORoTet,») 

C TEST fOR fATAL ERROR 
C 

C 

IF(F2(}) .GT. 0.) GO TO 888 
GO TO 889 

888 wRltE(6.1UOO) 
STOP 

loon fORMATUOJ\,*SOLUTION WILL NOT CONVERGE tOR VELOCITY PROfILE.) 

889 CONTINUE 
CALL INTEGeJE,JO,y,rz,o.o,ZUJ 
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00 168 J=l.JE 
Fl(J' = 1. + ZUeJ' 

168 CONTINUE 
fJEE = 1. - Fl(~E' 
CAll INTEG(JE.JO.V.fl.O.O.f' 
IftOETO(I) .Ea. 0.) GO TO 3001 
CAll PROfYL(JE.v.AE.dE.CE,OE,Ol.3.UZ.Q3.QMAX' 
GO TO 3004 

3003 DO 3002 J=l.JE 
300Z QltJ'=02(J)=o3(J) = O. 
3004 CONTINUE 

11/13111 

C CALCULATE NEW KI. KZ. K3. ANU SlGMA PROFILES 
C 

CALL PROfYL(JE.Y.ASIG,BSIG.CStG.OSIG.StG.O.SIG~tsIGPp.SIGMAX) 
CAll PROfYL(J£tY.AA~l.a~I.CKl.u~l.A~l.O.A~lP.A~lPP.UPMAX) 
CALL PROfYL(JE.Y.AA~2,dK2,C~2.0K2.A~2.0.A~2PtA~Z?P.VPMAX) 
CALL PROfYL(JE.Y.AAK3,~K3.C~J.OK3.A~3.0.AKJP.AK3PP.wPMAX) 
TKMAX = UP~AX • VP~AX • WPMAX 
WRITEC6.444) f(JE).fltJE).f2(1),Ql(1).QZ(I).OTtI,.KT 

C 
C TEST fOR SIMULTANEOUS CONVERGENCE Of f. ANO Ql PROfILE~ 
C 

c 

IFet .lE. Z .AND. ABS(fl(JE)-n.) .LE. EPS) GO TO 333 
IF(KT .EO. 1) GO TO bOO 
IF(KT.GT.l .AND. A~S«(f2(1' - F2w)/f2~) .GT. EPS) GO TO 999 
IFCABSCQl(l) - QHW) .~T. EPS) GO TO 999 
IfCKT.GT.l.ANO.ABS(f(JE)-l.).LE. EPSI GO TO 333 

999 CONTINUE 
treKT .GT. 2u) STOP 
GO TO 600 

444 fORMAT(lX,~f(JE) = *,E9.Z.2X •• ;1(JE) = *.E9.Z.ZX,*f2(~) = *.£9.2, 
12X.*Ql(W)= •• E9.i.2X.~Q2(W)=·.~~.2.lX •• OT(I '=.,E9.Z.1x,*lT.NO. *.1 
21' 

333 CO~TINUE 

C PROfiLE SOLUTIONS H~vE CONVERr,EO 
C CALCULATE NEw PROfILE PARAMETERS 
t 

Cwtl' = CWO(I).OTet) 
500 00 liZ J=I,JE 

THTF(J) = fl(J)*Cl. - fl(J» 
THTO(J) = (I. - QleJ» 
OTFCJ) = OT(I)*flC~) 
THTFCeJ) = THTf(J)*(l. - Cw(I,*YCJ» 
THTOCeJ) = THTQ(J)*Cl. - CW(I'*1(J) 
OT;C(J) = OTf(J) *(1. - CW(1)*Y(J)) 

liZ CO~TINUE 
TKMXC}) = TKMAX 
SJGX(I. = SIGMAX 
CAll INTEGtJE.JU,y,THTf.O.O.THTA) 
He), = 1./THTA(JE) 
THETAf(I) = oT(I)/H(l) 



C 

164 

ENERGY rORT~A~ EXTENUEO VERSION 2.0 

CALL tNTEG(JEtJo.Y.OTrc.o.o.r~TC' 
OTC(11 = IHTC(jE}/feJE) 
CALL JNTEu(JE,JO,YtT~TfCtO.O.THTO) 
Hell) = OTCtIJ/COT(I)*rHTO(Jf» 
THETAFC(I) = OTC(I.IHCCI) 
CALl. INTEGeJe..,JI.I.y.Tt1TO.O.o.THT':3J 
THETAQ(I) = THtq(JE) 
CALL INTEGeJE,JO,Y.ThTOC.O.O.THTG. 
THETAQCtI) = THTGeJE) 
HQ = THETAQtIJ/OT{I) 
CWlt) = CWOCI)*OTCI' 
ANUX(t) = -X(I)4Ql(1)/OTCI) 
ST(I' = ANUX(I)/(~EOx(I)OPR) 
erCI) = -2.~vE~(1)*f2(1)/~EDrfl) 
GA"(I) = SQ~T(Cf(I)/2.)*u((lJ 
DEL(I) = OTCI)·YDEL 
Hr = (10./H(I» - ~. 

111'131'71 

ANUM = -2.34*(E~P(Hf) - EXP(-~f»/(EXP(HF)+EXP(-HF») 
YL = lO.*·ANU" 
DELTACt) = YL*OT(I) 

C END Of STATION COMPUTATl\lN. wRITE OUT STATION PROfILES AND PARAMETERS. 
C 

TIE(I) = TIR 
wRJTE(6,lI 
wRITE(6,8) 
~RITE(&.200) X(I).UE(I).TE.Tw(J).Vow(I).CW(}',RUFft) 
WRITE(6.201' REDT(I).REDX(l).ANUX(l).ST(I,.P~.E(I'.GAM(I' 
WRITE(6.202) TIfCl).TKMIX,uPMAX.VPHAX.wPMAX,SIGMAX.rlQ 
WRITE(6.203) THETAF(I).0TtI),TH£TAy(IJ,H(I).Cf(I}.OELCIJ 
WRITE(6.717) Trl£TAFC(I).THETAQC(I).OTC(l),HC(I) 
WRITEC6.204) 

1 fOQMAT(IHl.~OX.5SriA STATISTICAL ENE~GY METHOD fOR STUDYING BOUNDAR 
IY LAYEPJ 

8 FORMAT (44X,4SHOEVELOPMf NT ANO LAMINAR/TURBULENT TRANSITIONS' 
200 rOR~AT(lHO.I0x.~A=O.F7.)t2X'*IJE=~.fd.J.2X.*TE=o.r8.3.ZX.*Tw=*,fS.3 

).ZX,OVW/U~=~.f6.4.2X.oCJ=*.F~.~.2~.*RUF=*.fb.4) 
201 fO~MATCIHO,lOX,~R€DT=*.E9.~.2x.*Rfo~=*.£9.l.ZX.*~USSELT=*.E9.Z,2X. 

1*STANTON=*,E9.2.2X,*PRA~OTL= •• fS.J.2x.·£CKERf= •• E9.2tzX,*UCfAU'=*' 
Zf6.3' 

202 fORMAT(lHO.lx.*T/jNTENSITY=*t~10.8.1X,.K(MAX,= •• F10.8.l~ •• U(MAX)=. 
1.fl0.8.1Xt~V(~AjJ=·,rlO.~JlXt*W(MA~)=*.FlO.8,lX.·UV(MAX)=*.flO.8.1 
2X.*O/D=*.f8.5) 

203 fORMAT(lHO,lO~.*THETA=*.fl.5.1X.*O~L(STAR)=*.f7.5.1x •• DEL(THE~M'=. 
1.f7.S.1X.*H = •• fS.3.2x.*cr =*.flO.B.lx.*OELTA =*,F1.5. 

204 fOQMAT(lHO.IX.IHJ.6X.1~Y,8~.lHYY'~A.3hU/U.8x.2HFl.8Xt2HQl,BX.2HK1, 
18X.2HK2.8X,2~K3.dX,JHSIG,9~.j"rAUt~X.3HCfR,lX.~hVE.7X.4~AM?f) 

206 fOR~AT(lx.J3.13(lX91PE~.~)) 
717 fOAMAT()HO,10X.·VALUES Of THTA,OlQ.OT.ANO H FON ~O CURVATU~E A~E * 

1.4f15.S) 
AMPfX = -1000. 
00 205 j=l.,JE.L 
FZM = Cf2(j) + f26(J)/2. 
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fJM • (f3(J) + fJ~(J»/2. 

FM = CfCJ) • fBtJ)'/2. 
fMY = fM - V(J) 
Cwl = I •• CwM*V(J) 
GOTM = CGOT(J) • uOT~(J»/~. 
fX~ = IfCJ) - f8(J»/2. 
YY = YIJ).OT(I)/OtlCI) 
fV(J) = 1. - fl(J) 
RTHTAtJ) = RuT(J)OTHETA~(I)/OT(I) 

11/13/71 

V = vowel) • fMVOCwi.(OTXH.f~OTM) + 2.*OTM*Cwl*rXM/eOX*CHLJ 
AMPf = O. 
IfCTKeJ) .NE. O •• A~D. TK8(J' .NE. 0.' AMPf = TKIJ'/TK8'J' 
TAU = -VER(J}Of2(J)/PEDT(I) • SIG(J) 
crR = TAU/C-VER(1)of2(1)/R[OTrl» 
AMPfX = AMAXl(AMPfX.A~PF) 
IfeAMPf .GE. A~PfX) JT = J 

205 WRIT[(6.206) J,Y(J),yy,fV(J),FleJ),QltJ).AK1(J).AKZ(J',AK3(J),SIGC 
IJ).TAU,CfR, V,A~Pf 

RTHAN = ROT(JL)*1l 
RA = GOT(JE)~PR.«OElTA(l'/OTfI"**J) 
TA = 2.·Cw(I)~(P.TnANo·2) 
ATY = CvwtI).OElTA(I)/VE[J·4~ 
ATX = I •• VOwel) 
SN(IJ = SORI«(PTrlANoATX)o.Z' • 12UOO.*'RA+TA+ATY» 
AMPX(I) = A~pfX 
TAMPXCI) = AMPXCI)OAMPXC18) 
WRITEC6,207) Y(JT),A~PFX 

~RI1E(6,609) TAV.PA(I).SNtIJ,RA.JA 
XCT = o. 
SNR = lOOO./SN(I) 
IfCTIR.LE.O.OJ) S~~ = (lOOO.-lJOO.~AlOG(JJ.*TIR»/SNtl) 
IF(ARS(SN~-l).lE.O.Ol) XCT = X(I) 
IFeXCT.NE.Q.) SPFR = 1.53E-Ioo(~E(1)**2'.(1.-EXP(-5.34E-05*«X(t)-

IXCT '**2)/VEE) 
IfCXCT .NE. 0.) fl~T = 1. - ExPC-O.04*SPfR*(X(I)··3)/UE(1'J 
FfH = .OlbO~E(I)/RTHAN 
CTAMPX = EX~(.OOJ~(SN(I)-lOOO.»)/(l ••• 3J*Cl.-lOOO./SNCl))* 

I EXP(.OOJO(S~(I) - 1000.)) 
WRITE(6.5J) SN~.CTAMPX.FfM 
If(XCT .NE. 0.) wRIIE(b,54) Spf~.flNT 
wRITE(6.208) 

53 fORMAT(lHO,l~.~S~(CT)/S~(I) = *.f6.3.2X.*COMPUTEO TOTAL AMP. fACTO 
lR = *,E9.2,2X' o MOST FAVORED nlSTu~liANCE FHEQ. = *.FlO.S, 

54 fORMAJ(lHO,l~.o SP~T fOQMATI0N RATf PER SO.fT. = *.flO.5.2X,* INTE 
lRMITTENCY fACTOR IN TRANS. ril. : ·,f4.2) 

609 fORMAl (lX,*TOTAL AMP. fACTO~ = •• E~.2,2x.*STAaILITY NO. a *.E9.2, 
12X,.~AYLEIGrl NO. = o.E~.2.~X,*TAYLOR NO~ = •• f~.2' 
00 809 J=I,JE,L 
YY = Y(J)~Ol(I)/OEL(l) 

809 WRITEC6.209)J,yeJ),yy.6nTeJ),f(J).fZ(J).fJeJ).f4(J).Q2CJ).RTHTA(J) 
208 rORMATelHl,lx'lHJ.bX.lHY.7~,iH1Y.lJX.JHG0T.1~X,lHf.lOx.2HFi.l1X.~H 

JF3(J).11X.4HF~-J.~x,5Ha2(J),))X.5H~THIA) 

209 fORMATCIX,13,lx.~(lx.1PE~.c)'lX,1e~x.lPEI0.Z» 
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201 fOR~AT(IHO.SX,*CRITICAL YlJ) = *.fb.J.5X,*WITh MAX. AMPLIfICATION 
1 RATE:: ·,fl0.4) 

C END Of STATION WRITE OuT. COMPUTE NEXT STATION OR STOP. 
e CORRECT THE OISPLACE~ENT THICKNESS wITH THE ~OMENTU~ INTEGRAL EQUATION 
e 

e 

OEX :: XCI) - X(18) 
HB :: (H(I) + HCtb))/2. 
COFI :: C(UE(I)/u~tIB)**(2. + HB»*THETAF(I)/THETAF(IB) 
eOF2:: EXP(i)EX.*((CFtilH + ';0))/2. + 2.* (\fW(I)+VWUi:U)/lUECI). 

lUEctd»'/(THflAfCIl • TMtTAf(IB»)) 

e PRINT RESULTS AS AN INDICATION Of ACCURACY 
e 

e 

WRITEC6.aO) COF}.COFl 
80 fORMAT(lHO.lu~ •• LEfT SIDE MO~FNTUM INTEGRAL EQUATION: .,Fl.4 

III 1 OX,*R IGHT SlUE. MOt..tENTUM INTEGRl\L EQUAT ION :: *.f'1.4) 

C RESET THETA AND OT TO MATCh SKIN f'~ICTION 
C 

e 

OTS :: OT(1) 
T~ETAFCI) = THETAf(I)*COf2/COFl 
OTCI) :: HCI)*THETAf(!) 
HQ :: THETAQ(I)/DT(I) 
REOT(I) ::(REOT(I}/OT~)~~T(I) 
REOX(I) :: R£DTCI)OX{I)/OT(I) 
ANUX(I) :: -X(I)~Q~(l)/OT(Il 
ST(I) ::ANUX(I)/(~£Dx(r)*~~) 
ewel) :: CWO(I)*OTCl) 
Cf(I) :: -2.~V£R(1)~f2(1)/RECTfI) 
GAMel) : SQwT(CF(lj/~.)*u£(l) 

fROTtI) :: Pf(I)~REOI(T) 
OTXM = 0.86*(1. - rkuT(I)·X~)/SQRT(REDTCI)*XM) 
IFeI .GT. 1) DTXM = (OT(I) - Qf(lB»/(XCI) - XCIB) 
I = 1 + 1 
OTCI) :: Ol(l-i) + OTXM*(xtI' - XCI-}») 
eWel) = CWQ(I)*OT(I) 
IfC} .GT. IMAl GO TO 66& 
GO TO 300 

C WRITE OUT PRINCIPAL BOUNDARY LAYER PARAMETERS 
C 

666 ~RITE(6.901) (LA8EL(~).K::l.ld) 
90) roqMAT(lHl.45~.J~rlPRINCi?AL b~UNDAHY LAYER PARAMETERS fOR' 

1 26X.lBA4) 
WRITEHH902) 

902 fOQMAT(IISX.*x*.7x.~DT~.6X.*T~TA*.SX.*OTQ*,7X.*H*.7X,*Cf*.6Xt*ST*, 
16X,.R(OTl·,S(.~NUA·.~x,*11*,Sx,*'KMAX*.5X.*AMPfX*,5X,*U(TAU'*.SX. 
2°SIGMAX~.bX.*E·) 

00 903 1=1. p·!X 
903 riPI1E(b.904) X(l).uT(I).THtTAF(I),THETAQ(I)t~(I),CF(I).ST(I), 

IRE 0 T ( I ) • Af\!UX ( I ) ., TIE ( 1) , r I< ~ x· ( 1 , ., T AM ... X C I ). GA:H 1) t S 1 GA ( I ) ,( ( U 
904 fOQMATC/IX,FS.3.1X.J(fd.6.1Xl,fS.3.1X,2(F7.S.2X"F8.0.3x.fl.4t2X, 

12CE9.2,IX).f6.0.1~.f5.J,3X,e~.2.1x,f7.J) 
STOP 
END 
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c 
C COMPUTES ThE PROFILe. PHI (4lA~.!O ITS FIRST ANll SECOND Y-O£R1VAT IVES 
C COMPU1"ES ALSO TNE MAXIMUM VALUE Of THE PROFILE 
C 

c 

DIMENSION Y(300,.A(300)t8(3~O'.Ct300).O(300).PHl(300'.PHIP(JOO) 
OI~ENSION PH~P(300).E(JvO).F(JOO) 
EU) ::: O. 
ru, == o. 
I'(IHC .NE. 3) GO TO 100 
,FePHIll) .NE. 0.) Eel) = 1. 
I'(PHI(I) .~E. 0.) Fll. = -~HtP(I)*IYC2' • Y(1)) 

JOO CONtINUE 
JYM = JE - 1 
JVMM I': JE - 2 
00 1 J I: 2.Jl'M 
EIJI ::: O. 
flJ) #: O. 
SAX = (8(J) - C(J)*£(J-l1' 
IfCBAX .NE. 0.) [(..I) ::: A(Jt/dAI 
t'CBAI .HE. 0.' F(J) = (OeJ) + CeJ)*FtJ-l)).ISAX 

1 CONTINUE 
PHltJE) == 0.0 
AM #: .... 100. 
00 2 JJ==l.JYJ4 
J = JE ... JJ 
PHI'J) ::: E(J)*PtH(J+l) + FIJ) 
AM :: AMAX1(AM.PHItJ») 

2 CON1INU( 

C OBTAIN Y-DERIVATIVES OF PROFILE 
C 

00 3 ..1=1.4£ 
.JJ = J - J/JE 
..1M = JJ .. 1 
JP ::: JJ + 1 
1'('.1 .LE. 1) ..1M =: JJ 
1'(..1 .GE. JE, JP = JJ 
PHIP(J) = (PHfCJP) ... PHItJM,)/(YCJP} - YtJM') 

3 CONTINUE 
Ptd P 'JE ) ;; 0 • 
00 4 J=1.J£ 
JJ =: J ... J/Jf. 
JM =: JJ - 1 
JP=JJ+l 
1".1 .LE. I) J~ ;; JJ 
1'{J.GE. Jf) JP :: JJ 
PH2P(J) ;: 't-'HIP (JP) ... PWIP(J"" ,/tY (JPI ... YIJM), 

" CO~TINUE 
PH2P(J£J = o. 
RETURN 
END 

JO£NT PROf'YL 
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SUBROUTINE DIVIDE ( .. tV. JOIV. W+ \It" ..10) 
DIMENSION W(300).VH(300) 
00 110 J=I. ,JY 
VHfJ) = weJ) 

110 CONTINUE 
OlVJ::JOIV 
JYM::JY-) 
JY=J1M°,JOlv 
00 130 .1=1, .1V'i 
Oy :: (VH(J+l) - VH(J)'/OlV.1 
JF'=fJ-ll*JOIlJ+2 
JL=J*JOIV 
WeJf-1) :: V,itJ, 
00 120 Jl=JF. JL 
WeJl) :: w(Jl-1) • 0'1 

120 co~n t Nut 
130 CONTINUE 

If(Jl+l.LE.JO) ,,(JY+1) -, VtHJvM+l, 
If (JL+l.GE.JOl RETURN 
JLP=JL+Z 
DO 140 J=JlP. JO 
W{J) ;I: o. 

140 CONTINUE 
REtURN 
END 

E INTEG fORTRAN EXTE"IOEO \lERSlON 2.0 

110 

120 

SU8ROUTlt.JE INTEGC.JE.JO. y,fP,' IRsT .fl 
DIMENS10N Y(200),FP(200).f(20Q} 
JEM ::: ..IE - 1 
fP2 =: f'P (1) 
f1 :: FJRST 
.-ell f: f1 
00 1 It) .1=l.JEM 
fPl :: fP2 
fP2 == F'P (J+1) 
fl :: F'l + (veJ.l) - V(J))*CfP2 + fPll/2. 
f(J+l) = Fl 
CONTINUE 
lre.1E .GE. JO) RETURN 
DO 120 .1=JE.JO 
FeJ'= fCJE) 
(;ONTn~uE 
RETURN 
END 

111'13111 

11/13/71 
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SU~ROUTINE LEASTSQ (x.V.NPOINTS.M,PHl' 
DIMENSION X(200).OU~1(l).Y(iOO).OU~l(40,.A(21,21),OU~JC40).~&(ll). 
IB(21).OUM4C2).C(ll).OU~5(Z).Pf40)'UUMbC2).AA(21.21).~HIC20~) 

C LEAST SQUARES POLYNO~IAL FIT 
C ~CC~AKEN AND OO~~ PAGE 2~1 
C COkRECTEU AND E'P~~OEU ~y ~tLfORO ~. BURT. C.S.U. ENG. RES. CENTER 31'1l 
C GENERATE MATRIX 

NUM~ER = NPOINTS 
14 Mx2=M·2 

DO IJ 1=1''''X2 
PCU=O.O 
00 13 J=I.NUM8ER 

13 PCI)=PCI)·xeJ)··I 
N=M+l 
00 30 I=l.N 
00 30 J=l.N 
K=I'J-2 
JfCK) 28, 29 

28 ACI,J)=AACI.J,=PCK) 
GO TO 30 

29 A(l.l)=AA(l,l)=NUMdER 
30 CONTINUE 
C GENERATE CONSTANT ~ECTOR 

8(1)=0.0 
00 21 J=l.NUMdER 

21 Bcl)=BC1)·YeJ) 
BBC 1)=B' 1) 
00 23 1=2,1'1 
B(I)=O.O 
00 22 J=I.NU~9E~ 

22 S(I)=BCI)'Y(J)·x'J)*.CI-l) 
23 tiS C U =3 <I , 

C BEGIN MATklX SOLVE 
NMl=N-l 
00 300 K=l.NMI 
KPl=Y.+l 
L=K 

C PARTIAL PIVOTI~G 
00 400 I=KPl.N 
JfCASSeACI,K).GT.ABSCACL.K)) L=l 

400 CONTINUE 
JFCL-K) 405, 500 

405 00 410 J=K.N 
TEMP=ACK.J) 
ACK.J,=A(L.J' 

410 ACl.J'=TEMP 
TE,-tP=BCK) 
8CK)=BCl) 
8(L)=TEH? 

C Ell~INATION 
500 00 300 I=KPl.N 

fACTOR=ACI.K)/A(K.K' 
ACI.K)=O.O 
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301 
lOO 
C 

710 

700 

c 
C 

800 

00 301 J=KPI.N 
A(f.J)=A(I.J)-FACTO~*AC~.J) 
8(I)=8fl)-rACTO~·d(K) 
8ACK SOLliE 
CVH=8(N)/AHhN' 
I=N*'41 
IP1=1+1 
SUM=O.O 
00 100 J=IP1.t<: 
SUM=SU~+A(l.J)*C(Jl 
C(I,=tB(l)-SuM)/A{I.l, 
1=1-1 
IF(J) 110. 800 
CONTINuE 
ITER=20 
PRINT OUT RESULTS 

170 

11/13111 

C •• ·*.·.· OBTAIN fUNCTION AND ITS fIRST rwo DERIVATIvES •••••••••••• * ••••••••••• 
C 
C 

C 
C 

930 

950 

PRINT .,V,AND V(COMPUTED) VALtlES 
00 950 1=ltNUM8ER 
YC=C(1. ~ DO 930 J=l.M 
YC=YC+CfJ+l,*XlI)··J 
PHI (I) = YC 
CONTIUUE 
WRITEC6t12) 

12 fORMAT ClHU 
RETURN 
END 
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CALCULATE X-GRADIENTS AND PRINCIPAL X-PARAMETERS 

MOVE ALL PROFILES BACK TO MOVE FORWARD IN X 

CALCULATE MEAN POSITION MRAMETERS AND VARIABLES 

YES 

NO 

CALCULATE H • a . 8. Ct. S. Atf) FLOW STABILITY CHARACTERISTICS 

NO 

PRINT ERROR MESSAGE 
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FIGURES 
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n Unstable Laminar Regime (Linear a Non Linear Amplification) 

ill Transitional Boundary Layer (Intermittently Laminar a Turbulent) 

N Fully Turbulent Regime (Stable) 

Fig. I Schema of the Conventional Wall Boundary Layer Regimes 
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25 30 35 
15 a - A F amity of Parallel Curves 

Center of Curvature 

r-y 

r 

b - 0 imensional Relationships 

Fig. 2 Orthogonal Curvilinear Coordinate System. 
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I 
I 
I x+ llx 

:::======~ ====C> Inertial Force 

~ Bouyancy Force 

~ ~ Resistive 

Schema of Boundary Layer Sections. 
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• B Blasius (Lin 1945; Tellmien 1929) 
• AS Asymptotic-suction profile 

(Chiarulli and Freeman 1948) 
• Schlichting(l940); Howarth profiles 
o Pretsch(i941}, Falkner-Skan profiles 
c Tetervin(l953); Falkner-Skan profiles 
A Hahnemann et 01. (1948); Falkner-

Skan profiles 
.. Schlichting and Ulrich (1940); 

sixth -order polynomials 
• Hahnemann et 01. (1948); sixth­

order polynomials 
v Tetervin and Levine (1952); 

exponential-sinusoidal function 

---Suction 

---Best fit Curve(eq. 4-lIb) 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 

H 

U 8* 
Fig. 5 Functional Relation Between (-Vi ). and the Shape Factor H. 

CI 
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Q. Coordinate Sys1em 

y 

u,fib 
b. Descri ption of Velocity and Total Enthal py Profi les 

Fig.S Herring - Mellor Coordinate System 
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a. I, II, III, IV Energy Volumes 

Higher Energy States 

(Turbulent Energy II 
Dissi pat ion ) II 

__ ~I~_-;u;--~- -~ ~J~ . E V~ Yx I R~lon 
.--~ -- 1\ '" ~ I I 2 of Hot 

- - ~ - --;r-z- _ I _ -,- Particles 

III (Turbulent Energy 
I Production) 

Lower Energy States 

,"""""~~~~~~~~,,~""~~"'~~~"",,""~ 
I. I nitial Distribution of Particles in Energy State 
2. Altered Distribution Due to Disturbances 

lle = Maximum Energy Gain or Loss Due to Collisions 
b. 

Fig.8 Schema of Conceptual Energy Volumes on a Flat 

Plate Boundary Layer. 
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o Points on the trace of experimental 

points as taken from Ref.(55) 

---Present prediction 

o~----~----~~----~----~------~----~----~ 
o 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

Fig. 9. Effect of Initial Turbulence Intensity on (SNct-SNci ). 
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Fig.IO: Continuous Predictions of Boundary Layer Thicknesses 
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--- Difference- Differential 
- -- - Invariant Modeling 
--- Describing Function 

Laminar 

2 4 

Transitional 

6 
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8 

Turbulent 

10 

Fig. 12 Continuous Predictions Of Skin Friction. 
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productiOn] S . . I ell'· Th tatlstlca 0 ISlon eory 
Dissipation 

U, = 80 ft Isec 
y = Transition Function 

• Production 1 Experimental Points of Klebanoff 

• Dissipation J ( 1954) 
U1 = 50 ft/sec 
8 = 3.0 ins (Fully Turbulent) 

_____ y=1.0,8 =1.5 ins. 

O~~~~~~=S~~~~~~~~ 
0.2 0.4 0.6 0.8 1.0 12 

y/8* ~ Wall Region 

Fig. 14 Turbulence Energy Production and Dissipation 
Ra tes In Wall Reg ion. 
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Production ] 

- - - - - Dissipation 
Statistical Collision 
Theory 
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• Production 1 Data of Klebanoff 
• Dissipation j (1954) 
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Fig. 15 Turbulence Energy Production and Dissipation 
Rates Away From Wall. 
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Fig. 16. Typical St reamw ise Va riat ion of Max. Ampli f icat ion Factor. 
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-..-----

Fu II Y Developed Laminar 

Fully Developed Turbulent 

Zero Pressure Gradient Flow 

U1 = 80 ft Isec 
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Fig. 17 The Describing Function Coefficients 
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