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ABSTRACT

TOPICS IN DESIGN-BASED AND BAYESIAN INFERENCE FOR SURVEYS

We deal with two different topics in Statistics. The first topic in survey sampling deals

with variance and variance estimation of estimators of model parameters in the design-

based approach to analytical inference for survey data when sampling weights include post-

sampling weight adjustments such as calibration. Under the design-based approach estima-

tors of model parameters, if available in closed form, are written as functions of estimators

of population totals and means. We examine properties of these estimators in particular

their asymptotic variances and show how ignoring the post-sampling weight adjustments,

i.e. treating sampling weights as inverses of inclusion probabilities, results in biased variance

estimators. Two simple simulation studies for two common estimators, an estimator of a

population ratio and an estimator of regression coefficients, are provided with the purpose

of showing situations for which ignoring the post-sampling weight adjustments results in

significant biased variance estimators.

For the second topic we consider Bayesian inference for directional data using the pro-

jected normal distribution. We show how the models can be estimated using Markov chain

Monte Carlo methods after the introduction of suitable latent variables. The cases of random

sample, regression, model comparison and Dirichlet process mixture models are covered and

motivated by a very large dataset of daily departures of anglers. The number of parameters

increases with sample size and thus the need of exploring alternatives. We explore mean field

variational methods and identify a number of problems in the application of the method to

these models, caused by the poor approximation of the variational distribution to the pos-

terior distribution. We propose solutions to those problems by improving the mean field

variational approximation through the use of the Laplace approximation for the regression

case and through the use of novel Monte Carlo procedures for the mixture model case.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Two different topics are covered in this dissertation. The first topic (Chapter 2) deals with

the variance and variance estimation of estimators of model parameters in the design-based

approach to analytic inference for survey data were estimators of model parameters make

use of the sampling weights. For example, for simple linear regression the estimator of the

slope is
∑
i∈s wi(xi−x̄)(yi−ȳ)∑

i∈s wi(xi−x̄)2
for covariate x and response y in sample s, and wi representing

survey weights. It is common for the weights wi to include post-sampling adjustments such

as calibration. However, in practice, variance estimation methods treat the sampling weights

as inverses of inclusion probabilities, i.e. they ignore post-sampling weight adjustments, and

doing so could lead to significantly biased variance estimators of estimators of model pa-

rameters depending on the nature of the post-sampling weight adjustments. Some formulas

and simple simulation studies that show the bias effect in variance estimators when ignor-

ing post-sampling weight adjustments are given in Chapter 1. Under a different approach

of constructing efficient estimators of model parameters, similar formulas to the ones in

Chapter 2 were given by Särndal, Swensson, and Wretman (1992, p.294-296) for the case

of estimation of a population ratio and by Elvers et al. (1985) for an estimator of linear

regression coefficients. Furthermore Goga and Ruiz-Gazen (2012) give variance formulas for

the semiparametric case. Due to these facts the original aim of generalizing the results to

the semiparametric context and to obtain estimators that fully account for the design and

the post-sampling weight adjustments was not pursued.

The rest of the dissertation is devoted to the second topic: Bayesian methods for analysis

of directional data based on the projected normal distribution. Directional data arise in
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various ways and in many scientific disciplines. In Meteorology wind directions provide a

natural source of circular data, (Breckling, 1989). The times of day at which thunderstorms

occur and times of year at which heavy rain occur are other examples of circular data. We

can also find circular data in Biology when studying bird navigation (Schmidt-Koenig, 1965

and Batschelet, 1981). Spherical data arise in Earth Sciences, Physics and Astronomy. Some

examples are the epicentre of an earthquake and the distribution on the celestial sphere of

sources of high-energy cosmic rays (Mardia and Edwards, 1982). For our application we

have a large data set of daily departure of anglers, which we want to predict based on a

set of spatial and temporal categorical variables. In Chapter 3 we present regression mod-

els for circular data and model selection based on the Deviance Information Criterion. We

show how these models can be fit using Markov chain Monte Carlo methods after the in-

troduction of suitable latent variables. Due to the very large size of the data set of daily

departure of anglers (over 1,000,000 observations), we also show how they can be fit us-

ing variational/Laplace approximations which are fast and deterministic approximations to

the posterior distribution. The mean field variational method (Ormerod and Wand, 2010) is

based on the minimization of the Kullback-Leibler divergence between the posterior distribu-

tion and a variational distribution. The variational distribution is restricted to a manageable

class of distributions and thus minimization of the Kullback-Leibler divergence is done over

that class. Depending on the Bayesian model at hand and restrictions of the variational

distribution, the mean field variational method can lead to poor inference. We identify a

problem in the application of the mean field variational method and fix it by making use of

the Laplace approximation.

In Chapter 4 we present Dirichlet process (DP) mixture models for directional data.

The Dirichlet process (Ferguson, 1973) is a distribution over distributions. With probability

one, distributions drawn from a DP are discrete. That is, a draw from a DP is a discrete

distribution that places its probability mass on a countable (finite or infinite) subset of

the underlying sample space. This discreteness is useful when modeling data with mixture
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models. In the DP mixture, a discrete distribution is drawn from a DP. Mixture parameters

are then drawn from this distribution and finally data are drawn conditional on the mixture

parameters. These models can be fit using Markov chain Monte Carlo methods. Since our

application is for the daily departure of anglers, we explore variational methods similar to

the methods given by Blei and Jordan (2006). We identify a number of problems in the

application of the variational method for DP mixture models for circular data and propose

solutions to those problems by improving the variational approximation through the use of

novel Monte Carlo procedures.
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CHAPTER 2

ISSUES WITH VARIANCE ESTIMATION IN DESIGN-BASED

APPROACHES TO ANALYTIC INFERENCE FOR SURVEY DATA

Summary

Design-based analytic inference for model parameters makes use of the survey

weights in the construction of estimators of model parameters. In practice, the survey

weights include post-sampling weight adjustments such as calibration. The major vari-

ance estimation methods in use today treat the survey weights as if they were inverses

of inclusion probabilities. This accounts for the sampling design but not for any of

the post-sampling adjustments, which can result in biased variance estimators. We

present some theoretical results that allow us to identify situations for which ignoring

the post-sampling weight adjustments indeed suffer from bias. Through simulation ex-

periments, we illustrate the effect of the calibration on the variance estimators of two

simple but common estimators: the estimator of a population ratio and the estimator

of linear regression coefficients.

2.1 Introduction

An important use of survey data is for analytic inference, in which the target of inference is

not the specific population from which the sample is drawn, but rather a statistical model.

The statistical model can be thought of as the stochastic mechanism that generated the

population being sampled. Then the sample is viewed as a set of data obtained by two

random process operating in sequence: in a first step, the population is a realization from

the statistical model, often referred to as the “superpopulation model,” and in a second step,

the sample is drawn from that particular population via a sampling design.

Two main approaches are in use for analytic inference: the model-based approach to
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analytic inference, which relies primarily on model specification to capture the survey effects;

and the design-based approach to analytic inference, which emphasizes the use of the survey

weights in the construction of estimators. The survey weights account for the complex

sampling design and often incorporate calibration and regression adjustments applied for

reasons of consistency with other data sources or to improve the efficiency of estimators.

In the model-based approach for inference about superpopulation parameters θ, the

effects of the sampling design and the survey data collection are incorporated as part of the

model describing the data, by adding those effects to the distributional specification of the

model itself. Once such a model is constructed and accepted as being a good representation

of the data as observed in the sample, analysis proceeds using standard methods. Model-

based approaches tend to be more efficient than the design-based approaches on which we

will focus, but often require more information for implementation.

Under the design-based approach for inference about θ, one begins by defining census

parameters θN , which are estimators of the model parameters that would be computed given

a census of the complete population. Many census parameters are defined as the solution

of population-level estimating equations, such as those obtained by setting the derivative of

the population log-likelihood equal to zero. Once θN are defined for the population, they are

estimated from the sample data as θ̂N using survey-weighted approaches, by treating them

as functions of sample means and totals. It is usually assumed that the following central

limit theorem (CLT) holds (Binder and Roberts, 2003):

√
n
(
θ̂N − θN

)
L→ N (0,V1) .

For example, conditions were given by Hájek (1960) and Hájek (1964) for the asymptotic

normality of the sample mean under simple random sampling without replacement and

rejective sampling with varying probabilities. Other design-based CLT results for the sample

mean were given by Rosén (1972) and Rosén (1997) for the case of probability proportional
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to size without replacement (πps). Results for stratified multistage probability proportional

to size with replacement designs were given by Krewski and Rao (1981).

Under suitable assumptions on the superpopulation, we also have a CLT (assuming
√
N -

consistency of θN for θ), written as

√
n/N
√
N (θN − θ)

L→
{

lim
n,N→∞

(n/N)

}1/2

N (0,V2) .

Finally, from a standard argument (e.g., Rubin-Bleuer and Kratina, 2005) that the two are

asymptotically independent, it follows that

θ̂N is asymptotically N (θ, (1/n) {V1 + (n/N) V2}) ,

and so inference relies on finding consistent variance estimators V̂1 and V̂2. If the sampling

fraction n/N is negligible, then estimation of V2 can be avoided since the latter variance

component is asymptotically negligible.

The major variance estimation methods in use today for analytic inference treat the

survey weights as if they were inverses of inclusion probabilities. Depending on the model

under analysis as well as the nature of the post-sampling weight adjustments, this can result

in biased variance estimation. The main goals of this article are two-fold. First, we aim

to derive a set of general results that can be applied to modeling contexts in which the

parameter estimators and the survey calibration estimators can be written as differentiable

functions of survey totals. Second, rather than trying to provide an in-depth study of

specific models and designs, we highlight two special cases and illustrate the effects of the

calibration on the variance estimators through some simple simulation experiments. The

original intent of this research was to generalize these results to the semiparametric context

and to obtain estimators that fully account for the design and the calibration. However, a

recent unpublished article by Goga and Ruiz-Gazen (2012) has covered a very similar topic,

so that this original aim was abandoned.
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The paper is organized as follows. In section 2.2 we present some results about the

asymptotic variance of estimators in the design-based approach to analytic inference with

proofs provided in the Supplement. In section 2.3 we consider some linear models with

post-sampling weight adjustments (post-stratification and calibration) and a few simulation

studies. In section 2.4 we present our conclusions.

2.2 Some results

Consider a population U consisting of N elements labeled k = 1, 2, . . . , N. A sample s of size

n is obtained from this population via a sampling design p (s) . Let y,x, z denote variables

and let yk,xk, zk be the values of those variables for the kth element in the population. We

will use y to denote the model response variable, x will denote the model covariates and z will

denote survey auxiliary variables. We will use tj and t̄j to denote the population total and

population mean for some variable, labeled j, respectively and their “hat” versions, t̂j and

ˆ̄tj, as the Horvitz-Thompson estimators of them. For example t̂y =
∑

s
yk
πk

and t̂x =
∑

s
xk
πk

,

where πk is the inclusion probability of element k.

In what follows, we will also use ˆ̄hi to denote a different estimator of a population mean

that uses the auxiliary variables zk (e.g. a regression estimator of a population mean) which

will in general be a function of Horvitz-Thompson estimators. Finally, we will use g
(

ˆ̄h
)

to

denote a function of ˆ̄hi estimators, which in the design-based approach to analytic inference

will typically be a population-level estimator of a model parameter of interest. We will refer

to this quantity as a “census parameter,” as is commonly done in the survey literature.

Some of the results in this section are concerned about the asymptotic variance (denoted

AVar) of estimators of population quantities. The asymptotic variance of an estimator

will be defined here as the variance of the first order Taylor approximation around the

target version of the estimator of interest. For example, let our estimator of interest be

R̂ = t̂y/t̂x with target R = ty/tx. To find the asymptotic variance of R̂ we perform a

first order Taylor approximation around the target R i.e. R̂ ≈ R + 1
tx

∑
s
yk−Rxk
πk

and so
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AVar
(
R̂
)

= Var
(

1
tx

∑
s
yk−Rxk
πk

)
. This is the most common approach to perform inference

for nonlinear estimators for surveys, see for instance the classic text by Särndal, Swensson,

and Wretman (1992).

The first of the following 3 results is about the order in probability of estimators which

are functions of estimators of population means. The second and third results are about the

asymptotic variance of these estimators for special cases of calibration and sampling designs.

We will use these results in Section 2.3 to derive asymptotic formulas for two estimators, a

ratio estimator and a regression estimator.

Result 1. Let g
(
ˆ̄h
)

be a function of m estimators of population means ˆ̄h =
(

ˆ̄h1,
ˆ̄h2, . . . ,

ˆ̄hm

)
and let g have continuous partial derivatives of order 2 at the population means h̄ =

(
h̄1, h̄2,

. . . , h̄m
)
. Let the estimators ˆ̄hi be continuous functions of J Horvitz-Thompson estimators

of population means ˆ̄hi = ˆ̄hi

(
ˆ̄t
)

, ˆ̄t =
(

ˆ̄t1, ˆ̄t2, . . . , ˆ̄tJ

)
and let ˆ̄hi have continuous partial

derivatives at the population means t̄ = (t̄1, t̄2, . . . , t̄J) and let n be the sample size. Assume

that the sampling design is such that ˆ̄tj − t̄j = Op

(
1√
n

)
for all population means t̄j. Then,

g
(
ˆ̄h
)

= g
(
h̄
)

+
m∑
i=1

∂g
(
h̄
)

∂ˆ̄hi

J∑
j=1

∂ˆ̄hi (t̄)

∂t̄j

(
ˆ̄tj − t̄j

)
+Op

(
1

n

)
.

Result 2. Let the same conditions as in result 1 apply and let the ˆ̄hi estimators be regression

estimators of means of x′s and y based on auxiliary information z i.e.

ˆ̄h1 = ˆ̄try = ˆ̄tyπ +
L∑
l=1

(
t̄zl − ˆ̄tzlπ

)
B̂1l

ˆ̄hi = ˆ̄trxi = ˆ̄txiπ +
L∑
l=1

(
t̄zl − ˆ̄tzlπ

)
B̂il

where ˆ̄tyπ, ˆ̄txiπ,
ˆ̄tzlπ are the Horvitz-Thompson estimators of the population means t̄y, t̄xi and

the known population means t̄zl respectively. The coefficients B̂i1, B̂i2, . . . , B̂iL are compo-
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nents of the L-vector B̂i =
(
B̂i1, B̂i2, . . . , B̂iL

)T
=
(∑

s zkz
T
k /πk

)−1∑
s zkxik/πk where

zk = (z1k, z2k, . . . , zLk)
T is the value of the auxiliary vector for the kth element in the

population and B̂1 =
(
B̂11, B̂12, . . . , B̂1L

)T
=
(∑

s zkz
T
k /πk

)−1∑
s zkyk/πk. Under these

conditions the asymptotic variance of g
(
ˆ̄h
)

is

AVar
(
g
(
ˆ̄h
))

=
1

N2
Var

(∑
k∈s

[
∂g
(
h̄
)

∂ˆ̄h1

yk
πk

+
m∑
i=2

∂g
(
h̄
)

∂ˆ̄hi

xik
πk

])
+

1

N2
Var

(∑
k∈s

[
m∑
i=1

∂g
(
h̄
)

∂ˆ̄hi

zTkBi

πk

])
−

2

N2
Cov

(∑
k∈s

1

πk

[
∂g
(
h̄
)

∂ˆ̄h1

yk +
m∑
i=2

∂g
(
h̄
)

∂ˆ̄hi
xik

]
,
∑
k∈s

1

πk

[
m∑
i=1

∂g
(
h̄
)

∂ˆ̄hi
zTkBi

])

where the vectors B1 and B2, . . . ,Bm are the population regression coefficients obtained by

regressing the z′s on the y and x′s respectively and N is the population size.

Result 3. Let conditions in result 1 and result 2 apply and let

zk =
(
I{k∈U1}, I{k∈U2}, . . . , I{k∈UL}

)T
for strata U1, U2, . . . , UL, the post-stratification case. De-

fine rk =
∂g(h̄)
∂h̄1

yk +
∑m

i=2

∂g(h̄)
∂h̄i

xik, r̄Ul =
∑

k∈Ul rk and N̂l =
∑

s I{k∈Ul}/πk. Then the asymp-

totic variance of g
(
ˆ̄h
)

is

AVar
(
g
(
ˆ̄h
))

=
1

N2
Var

(∑
k∈s

1

πk
[rk]

)
− 1

N2
Var

(
L∑
l=1

r̄UlN̂l

)
+

− 2

N2

L∑
l=1

r̄Ul

L∑
k=1

∑
i∈Uk

∑
j∈Ul

(ri − r̄Uk)
πij
πiπj

.

Furthermore, if the sampling design is such that
πij
πiπj

=


al, i = j

bl, i 6= j

for i, j ∈ Ul and
πij
πiπj

= c

9



for i and j in different stratum, then the asymptotic variance of g
(
ˆ̄h
)

is

AVar
(
g
(
ˆ̄h
))

=
1

N2
Var

(∑
k∈s

1

πk
[rk]

)
− 1

N2
Var

(
L∑
l=1

r̄UlN̂l

)
.

In the next section, we consider two common models and the effect of calibration on the

asymptotic variance of estimators. We derive asymptotic variance formulas for these two

models and then run a few simple simulations to illustrate the calibration effects. Similar

asymptotic variance formulas exist already in the literature, although the results are de-

scribed there in less generality. In section 2.3.1 we consider the estimation of a ratio of two

population totals, which is also done in Särndal et al. (1992, p.294-296). In section 2.3.2

we consider the estimation of regression coefficients and similar formulas can be found on

Elvers et al. (1985).

2.3 Models

2.3.1 Ratio model

Consider the model

yk = βxk + εk, {εk} iid N
(
0, σ2xk

)
.

The census parameter βN = ty/tx =
∑

U yk/
∑

U xk is the maximum likelihood estimator of

β under the stated superpopulation model. The sample s used to estimate β is obtained

according to a sampling design with inclusion probabilities πk. Auxiliary information on

the population U is available to post-stratify the sample into L strata U1, U2, . . . , UL with

known sizes N1, N2, . . . , NL. This corresponds to the case where the zk are post-stratum

membership indicators. The survey weights to be used in estimation are wks = π−1
k

(
Nl/N̂l

)
for k ∈ Ul, with N̂l =

∑
s I{k∈Ul}/πk, l = 1, 2, . . . , L. The census parameter βN is a function of

population totals and so the traditional approach to analytic inference substitutes population

totals by estimates, β̂N = t̂y/t̂x, with t̂y =
∑

swksyk and similarly for t̂x.
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If we assume that the difference between βN and the model parameter β is negligible,

then the variance of the asymptotic distribution of β̂N is obtained using Taylor methods,

under standard design-based asymptotic assumptions. We will start by showing what would

the asymptotic variance of β̂N be if wk = π−1
k , i.e. if no post-sampling weight adjustments

were used. In this case the linearized variance of β̂N is obtained by finding the first order

Taylor approximation to β̂N in a neighborhood of the population totals ty, tx:

AVar1

(
β̂N

)
=

1

t2x
Var

(
t̂e
)
, (1)

where ek = yk − βNxk are the finite population-level model residuals. Notice that if the

survey weights were now to include post-stratification adjustments wkl = π−1
k

(
Nl/N̂l

)
,

l = 1, 2, . . . , L, these would be sample dependent and would also be functions of estimators

of population totals. Thus β̂N is now a function of the total estimators t̂y1,π, t̂x1,π, N̂1,π, . . . ,

t̂yL,π, t̂xL,πN̂L,π

β̂N =

∑
l
Nl
N̂l,π

t̂yl,π∑
l
Nl
N̂l,π

t̂xl,π
,

where the t̂yl,π =
∑

i∈s∩Ul yi/πi are the Horvitz-Thompson estimators of the corresponding

population totals, and similarly we have defined all other estimators of totals. We include

the subscript π in the notation to distinguish t̂y,π from t̂y =
∑

swksyk. Using result 2, the

complete linearized variance of β̂N obtained by making ˆ̄h1 = 1
N

∑
swkyk , ˆ̄h2 = 1

N

∑
swkyk

and g
(
ˆ̄h
)

=
ˆ̄h1
ˆ̄h2

= β̂N is readily shown to be:

AVar2

(
β̂N

)
=

1

t2x
Var

(
t̂e,π
)

+
1

t2x
Var

(
L∑
l=1

ēUhN̂l,π

)
− 2

t2x
Cov

(
t̂e,

L∑
l=1

ēUlN̂l,π

)

= AVar1

(
β̂N

)
+

1

t2x
Var

(
L∑
l=1

ēUhN̂l,π

)
− 2

t2x
Cov

(
t̂e,

L∑
l=1

ēUlN̂l,π

)
, (2)

where the ēUl =
∑

k∈Ul ek/Nl are the means of the population-level residuals in post-stratum

l, and the ek were defined previously. In general, the two extra terms in AVar2

(
β̂N

)
rel-
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ative to AVar1

(
β̂N

)
are of the same order of magnitude as the first term and, depending

on the sign of the covariance term, they can result in a larger or smaller overall linearized

variance. Survey-specific software programs typically target AVar1

(
β̂N

)
and this could lead

to bias. When the residuals ek are uncorrelated with the I{k∈Ul}, then ēUl ≈ 0 and ignoring

the second and third term in equation (2) is reasonable. Also, if the sampling design satisfies

the conditions in result 3 the post-stratification is efficient i.e. AVar2

(
β̂N

)
< AVar1

(
β̂N

)
and so ignoring the second and third term in equation (2) leads to conservative estimates.

Some sampling designs that satisfy the conditions in result 3 are simple random sampling

without replacement (SI), simple random sampling with replacement (SIR), Bernoulli sam-

pling (BE), stratified Bernoulli sampling (STBE) and stratified simple random sampling

with Replacement (STSIR) when strata and post-strata are the same and thus in those

cases AVar2

(
β̂N

)
= AVar1

(
β̂N

)
− 1

t2x
Var

(∑L
l=1 ēUlN̂l,π

)
.

We performed a small simulation study to assess the difference between AVar2

(
β̂N

)
and

AVar1

(
β̂N

)
. We generated a population of size N = 1000 with the xk generated from a

Gamma (1, 1) distribution and we generated yk = βxk + εk by generating the εk from a

normal distribution with mean 0 and variance σ2 = 1. Furthermore we generated normal

observations ξk correlated with εk, i.e. (εk, ξk)
ind∼ N

(0, 0) ,

 1 ρ

ρ 1


, and assigned

the population units to two post-strata by making use of the indicator zk = I {ξk > 0}.

Population unit k was assigned to post-stratum 1 if zk = 1 and assigned to post-stratum 2

if zk = 0. It can be shown that the correlation between εk and zk is Corr (εi, zi) = ρ
√

2
π
,

and this is how we controlled for the amount of correlation between the errors ek and the

post-stratum indicators I{k∈Ul}, l = 1, 2.

We drew 10000 simple random samples of sizes n = 100 from this population, and

estimated the population ratio βN for each sample by the ratio of the estimated totals

β̂N =
∑

swksyk/
∑

swksxk, with wks the post-stratified weights. Results in Table 1 show the

relative bias, 1
10000

∑10000
i=1 (estimate− true) /true, for estimators of variances AVar1

(
β̂N

)

12



Table 1: Post-stratification effect in variance estimation for the ratio model 2.3.1

Corr (εi, zi) −0.75 −0.5 0 0.5 0.75
AV ar2
AV ar1

0.426 0.771 0.999 0.758 0.420

Rel.bias
(
ÂV ar1,π

)
1.270 0.265 −0.005 0.332 1.446

Rel.bias
(
ÂV ar2,π

)
−0.038 −0.032 −0.014 0.004 0.020

and AVar2

(
β̂N

)
. It shows that ignoring the calibration produces biased estimates of the

variance, and accounting for calibration the variance estimates are nearly unbiased. The

estimators of the variances were obtained by replacing all the population quantities in equa-

tions (1) and (2) by survey-weighted sample estimators. In both estimates of relative bias

the “true” variance was taken as the sample variance of the 10000 estimates of βN . Also,

Table 1 shows the ratio AVar2/AVar1 to show how much smaller AVar2 is, relative to AVar1

when changing the value of Corr (εi, zi).

2.3.2 Linear model

Consider the model

yk = xTkβ + εk, {εk} iid N
(
0, σ2

)
,

where xk is a q-dimensional vector of covariates, for k = 1, 2, . . . , N . The census parameter

BN =
(
XTX

)−1
XTY

=

(∑
U

xkx
T
k

)−1(∑
U

xkyk

)
= H−1h0

is the maximum likelihood estimator of β, where X is the design matrix and Y is the vector of

responses. The q×q symmetric matrix H = (hij) defined here as
(∑

U xkx
T
k

)
has as elements

the population totals hij =
∑

U xikxjk, while the q-dimensional vector h0 = (h10, . . . , hq0)

13



has as elements the population totals hi0 =
∑

U xikyk. The sample s used to estimate β is

obtained according to a sampling design with inclusion probabilities πk. Auxiliary informa-

tion zk, k = 1, . . . , N on the population U is available and calibrated weights are constructed

in the following way (Särndal et al. 1992, p.232):

wk =
1

πk

(
1 +

(
t̄z − ˆ̄tz,π

)T ˆ̄T−1zk

)
,

where ˆ̄T =
∑

s

zkz
T
k

Nπk
, and ˆ̄tz,π is a p-dimensional vector of Horvitz-Thompson estimators of

population means t̄z =
(
t̄z1 , t̄z2 , . . . , t̄zp

)T
. The census parameter BN is a function of popu-

lation totals and so the traditional design-based approach to analytic inference substitutes

population totals by estimates,

B̂N = Ĥ−1ĥ0 (3)

where Ĥ is a q × q symmetric matrix with elements ĥij =
∑

s xikxjkwk and ĥ0 is a q-

dimensional vector with elements ĥi0 =
∑

s xikykwk.

If we assume that the difference between BN and the model parameter β is negligible,

then the variance of the asymptotic distribution of B̂N is obtained using Taylor methods.

We will again start by showing what would the asymptotic variance of B̂N be if wk = π−1
k .

From Särndal et al. (1992, p.194) the asymptotic variance of B̂N is

AVar1

(
B̂N

)
= H−1Var

(
t̂1
)
H−1. (4)

where t̂1 is a q-dimensional vector with ith component equal to

t̂1i =
∑
k∈s

1

πk
xik
(
yk − xTkBN

)
(5)

and where xik is the value of the ith covariate for the kth population element. We now let

wk = 1
πk

(
1 +

(
t̄z − ˆ̄tz,π

)T ˆ̄T−1zk

)
and define Ciy = T̄−1t̄iy, Cij = T̄−1t̄ij where t̄iy and t̄ij

are p-dimensional vectors with elements t̄iyr = 1
N

∑
k∈U zrkxikyk and t̄ijr = 1

N

∑
k∈U zrkxikxjk

14



respectively for r = 1, 2, . . . , p. We now make use of result 2 to show that after some algebra

the asymptotic variance of B̂N is

AVar2

(
B̂N

)
= H−1Var

(
t̂2
)
H−1 (6)

where t̂2 is a q-dimensional vector with ith component equal to

t̂2i =
∑
k∈s

1

πk

[
xik
(
yk − xTkBN

)
− zTk

(
Ciy −

q∑
j=1

CijBj

)]
(7)

where Bj is the jth component of BN . The extra term in t̂2 relative to t̂1 is due to the cali-

bration effect and not accounting for it could lead to bias in the estimation of the asymptotic

variance of B̂N .

We performed a small simulation study to assess the difference between AVar2

(
B̂N

)
and

AVar1

(
B̂N

)
. Before going into details of the simulation we present the following result that

was useful in generating the population values. The proof is given in Supplement 2.8.

Result 4. For a SRS design and calibration weights wk = 1
πk

(
1 +

(
t̄z − ˆ̄tz,π

)T ˆ̄T−1zk

)
,

define z∗j , j = 1, 2, . . . , p as the N-dimensional vector with kth element equal to the value of

the jth covariate for the kth population element (the jth column in the Z design matrix).

Also define ηi = (xi1e1, . . . , xiNeN)T , ek = yk − xTkBN and ξi as the projection of ηi onto the

span of
{
z∗1 , . . . , z

∗
p

}
. Then,

Var
(
t̂1i
)

= Var
(
t̂2i
)

+N2
(

1− n

N

) 1

n
S2
ξi

where t̂1i and t̂2i are defined as in equations (5) and (7) respectively.

This implies that for SRS AVar1

(
B̂i

)
≥ AVar2

(
B̂i

)
and the calibration effect will depend

on the amount of correlation between ηi and the z’s.

We generated a population of size N = 2000 with ξ∗1 and ξ∗2 generated from independent

normal N (5, 1) and N (3, 1) respectively. We then generated x∗1 = 2 + 5ξ∗1 − 3ξ∗2 + ε1 and

15



x∗2 = 1 + 2ξ∗1 + 4ξ∗2 + ε2 where ε1 and ε2 are independent normal with mean zero and variance

σ2
x such that the R2 = 1 − SSerr/SStot between x∗1 and {1, ξ∗1 , ξ∗2}, and R2 between x∗2 and

{1, ξ∗1 , ξ∗2} was approximately 0.75. This was done by setting σ2
x =

(1−R2)SSreg
(n−2)R2 , where SSreg

can be easily estimated by making use of the mean of the distribution that generated x∗1 and

the average of the x∗1 values. We then generated the y values by setting y = 5 + 5x∗1 +x∗2 + ε,

where the ε were draws from a N
(
0, σ2

y

)
and σ2

y was such that R2 between y and {1, x∗1, x∗2}

was close to 0.75. Finally we built different sets of calibration variables {1, z∗1 , z∗2} to show

the effect that calibration can have on the variance of estimators. For example, in the first

simulation we made z∗1 equal to η1 + noise where η1 is defined in result 4 and changed the

value of R2 between z∗1 and η1 from 0.1 to 0.9 in increments of 0.1.

We drew 15000 samples of sizes n = 400 from these populations and for each one of

these samples estimated AVar1

(
B̂i

)
and AVar2

(
B̂i

)
for i = 0, 1, 2 where B̂0 is the estimate

of the intercept. The estimators of the variances were obtained by replacing all the popu-

lation quantities in equations (4) and (6) by survey-weighted sample estimators and then

we computed relative biases, 1
15000

∑15000
i=1 (estimate− true) /true, taking as true the sample

variance of the 15000 estimates of B̂i computed as in (3).

First simulation.

We made the calibration variables equal to {1, z∗1 = η1 + noise, z∗2 = ξ∗2} and changed the

values of R2
z∗1η1

= 0.1, 0.2, . . . , 0.9, 0.95. Figure 1 shows plots of the asymptotic variance ratios

AVar2

(
B̂i

)
/AVar1

(
B̂i

)
and plots of relative biases of the variance estimators vs the value

of R2
z∗1η1

. We note that as the correlation between z∗1 and η1 gets bigger the calibration effect

also increases but only affecting the variance of B̂1. This is because only η1 is correlated

with the z′s while η0 and η2 are not. The variance estimator
̂

AVar1

(
B̂1

)
is an estimator

of AVar1

(
B̂1

)
and hence significantly biased for the true variance when AVar1

(
B̂1

)
is

significantly different from AVar2

(
B̂1

)
.

Second simulation.

We made the calibration variables equal to {1, z∗1 = η1 + noise, z∗2 = η2 + noise} such that
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Figure 1: The top left plot shows AVar2

(
B̂i

)
/AVar1

(
B̂i

)
for i = 0, 1, 2. The top right plot

shows relative biases of
̂

AVar1

(
B̂i

)
and the bottom plot shows relative biases of

̂
AVar2

(
B̂i

)
.

All plots have as the horizontal axis the value of R2
z∗1η1

= 0.1, 0.2, . . . , 0.9, 0.95.

R2
z∗1η1

= R2
z∗2η2

= R2 = 0.1, 0.2, . . . , 0.9, 0.95. Figure 2 shows plots of AVar2

(
B̂i

)
/AVar1

(
B̂i

)
vs the value of R2 and also relative biases of the variance estimators. We note that as the

correlations of the η′s with the z∗′s get bigger the calibration effect increases but only affecting

the variance of B̂1 and B̂2. The variance of B̂0 is practically the same since η0 = (e1, . . . , eN)
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is not correlated with the z∗′s.

Figure 2: The top left plot shows AVar2

(
B̂i

)
/AVar1

(
B̂i

)
for i = 0, 1, 2. The top right plot

shows relative biases of
̂

AVar1

(
B̂i

)
and the bottom plot shows relative biases of

̂
AVar2

(
B̂i

)
.

All plots have as the horizontal axis the value of R2 = 0.1, 0.2, . . . , 0.9, 0.95.

Third simulation.

We made the calibration variables equal to {1, z∗1 = η0 + noise, z∗2 = η2 + noise} such that

R2
z∗1η0

= R2
z∗2η2

= R2 = 0.1, 0.2, . . . , 0.9, 0.95. Figure 3 shows plots of AVar2

(
B̂i

)
/AVar1

(
B̂i

)
18



vs the value of R2 and also relative biases of the variance estimators. We note that as the

correlations of the η′s with the z∗′s get bigger the calibration effect again increases but

only affecting the variance of B̂0 and B̂2. The variance of B̂1 is practically the same since

η1 = (x1,1e1, . . . , x1,NeN) is not correlated with the z∗′s.

Figure 3: The top left plot shows AVar2

(
B̂i

)
/AVar1

(
B̂i

)
for i = 0, 1, 2. The top right plot

shows relative biases of
̂

AVar1

(
B̂i

)
and the bottom plot shows relative biases of

̂
AVar2

(
B̂i

)
.

All plots have as the horizontal axis the value of R2 = 0.1, 0.2, . . . , 0.9, 0.95.

19



2.4 Conclusions

We presented a simulation study for two common estimators, the ratio estimator and the

regression estimator, for when sampling weights include calibration. For each of the estima-

tors we explained situations for which ignoring the calibration leads to significantly biased

variance estimators. For the ratio estimator and post-stratification, big bias effects occur for

when the errors ek = yk − βNxk are correlated with the post-strata indicators I{k∈Ul}. For

the regression estimator in Section 2.3.2, large bias effects occur for when the ηi (defined

in result 4) are correlated with the calibration variables. There biases can be significant as

shown by table 1 and by figures 1,2 and 3 and these biases are most often ignored in practice.

2.5 Supplement: Result 1

Corollary 5.1.5 in Fuller (1996, p.224-226) states:

Corollary 5.1.5. Let {Xn} be a sequence of scalar random variables such that

Xn = a+Op (rn) ,

where rn → 0 as n→∞. If g (x) is a function with s continuous derivatives at x = a, then

g (Xn) = g (a) + g(1) (a) (Xn − a)

+ · · ·+ 1

(s− 1)!
g(s−1) (a) (Xn − a)s−1 +Op (rsn) ,

where g(j) (a) is the jth derivative of g (x) evaluated at x = a.

The generalization to vector random variables is given after corollary 5.1.6 in Fuller (1996,

p.225-226). Then, for i = 1, 2, . . . ,m we have that

ˆ̄hi

(
ˆ̄t
)

= h̄i +Op

(
1√
n

)
,
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and again by corollary 5.1.5 in Fuller (1996, p.225-226)

g
(
ˆ̄h
)

= g
(
h̄
)

+
m∑
i=1

∂g
(
h̄
)

∂ˆ̄hi

J∑
j=1

∂ˆ̄hi (t̄)

∂t̄j

(
ˆ̄tj − t̄j

)
+Op

(
1

n

)
. (8)

2.6 Supplement: Result 2

Using the notation in Särndal et al. (1992, p.235),

∂ˆ̄hi (t̄)

∂t̄i

(
ˆ̄ti − t̄i

)
=

1

N

∑
k∈s

Ěik,

where Ě1k = E1k

πk
=

yk−zTkB1

πk
and Ěik = Eik

πk
=

xik−zTkBi
πk

and thus by substitution on equation

(8)

g
(
ˆ̄h
)

= g
(
h̄
)

+
∂g
(
h̄
)

∂ˆ̄h1

∑
k∈s

Ě1k

N
+

m∑
i=2

∂g
(
h̄
)

∂ˆ̄hi

∑
k∈s

Ěik
N
,

thus the asymptotic variance AV
(
g
(
ˆ̄h
))

is

AV
(
g
(
ˆ̄h
))

= Var

(
∂g
(
h̄
)

∂ˆ̄h1

∑
k∈s

Ě1k

N
+

m∑
i=2

∂g
(
h̄
)

∂ˆ̄hi

∑
k∈s

Ěik
N

)
,

and after rearanging terms

AV
(
g
(
ˆ̄h
))

=
1

N2
Var

(∑
k∈s

[
∂g
(
h̄
)

∂ˆ̄h1

yk
πk

+
m∑
i=2

∂g
(
h̄
)

∂ˆ̄hi

xik
πk
−

m∑
i=1

∂g
(
h̄
)

∂ˆ̄hi

zTkBi

πk

])
.

2.7 Supplement: Result 3

For the post-stratification case the vector Bi in result 2 is the vector of averages in each stra-

tum B1 = (ȳU1 , . . . , ȳUL)T and Bi = (x̄iU1 , . . . , x̄iUL)T . Letting rk =
∂g(h̄)
∂h̄1

yk +
∑m

i=2

∂g(h̄)
∂h̄i

xik
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and substituting in the second term of result 2, we obtain

∑
k∈s

m∑
i=1

∂g
(
h̄
)

∂ˆ̄hi

zTkBi

πk
=

∑
k∈s

1

πk

L∑
l=1

I{k∈Ul}

(
∂g
(
h̄
)

∂ˆ̄h1

ȳUl +
m∑
i=2

∂g
(
h̄
)

∂ˆ̄hi
x̄iUl

)

=
L∑
l=1

r̄UlN̂l.

Now the third term in result 2, the covariance term, can be written as

Cov

(∑
s

1

πk
rk,

L∑
l=1

r̄UlN̂l

)
=

L∑
l=1

r̄Ul
∑
i∈U

∑
j∈U

ri4ij

πiπj

=
L∑
l=1

r̄Ul

[
L∑
k=1

∑
i∈U

∑
j∈U

riπij
πiπj

−
∑
i∈U

∑
j∈U

ri

]
.

For i ∈ Uk we rewrite
riπij
πiπj

as r̄Uk
πij
πiπj

+
πij
πiπj

(ri − r̄Uk) and substituting

Cov

(∑
s

1

πk
rk,

L∑
l=1

r̄UlN̂l

)

=
L∑
l=1

r̄Ul

[
L∑
k=1

∑
i∈Uk

∑
j∈Ul

r̄Uk
πij
πiπj

+
L∑
k=1

∑
i∈Uk

∑
j∈Ul

(ri − r̄Uk)
πij
πiπj

−
∑
i∈U

∑
j∈Ul

ri

]

=
L∑
l=1

r̄Ul

[
L∑
k=1

r̄Ul r̄Uk
∑
i∈Uk

∑
j∈Ul

(
πij
πiπj

− 1

)
+

L∑
k=1

∑
i∈Uk

∑
j∈Ul

(ri − r̄Uk)
πij
πiπj

]

= Var

(
L∑
l=1

r̄UlN̂l

)
+

L∑
l=1

r̄Ul

L∑
k=1

∑
i∈Uk

∑
j∈Ul

(ri − r̄Uk)
πij
πiπj

.
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If
πij
πiπj

=


al, i = j

bl, i 6= j

for i, j ∈ Ul and
πij
πiπj

= c for i and j in different stratum, the second

term is zero. To see this, first suppose k = l, then

∑
i∈Uk

∑
j∈Uk

(ri − r̄Uk)
πij
πiπj

=
∑
i∈Uk

(ri − r̄Uk)
1

πi
+

∑∑
i∈Uk,j∈Uk,i 6=j

(ri − r̄Uk)
πij
πiπj

=
∑
i∈Uk

(ri − r̄Uk) ak + bk

[∑
i∈Uk

(ri − r̄Uk)NUk −
∑
i∈Uk

(ri − r̄Uk)

]
= 0 + 0,

the terms in the bracket are the sum of all terms in the square minus the diagonal terms.

Now suppose k 6= l

∑
i∈Uk

∑
j∈Ul

(ri − r̄Uk)
πij
πiπj

=
∑
i∈Uk

(ri − r̄Uk)
∑
j∈Ul

πij
πiπj

= 0,

because
πij
πiπj

is a constant.

2.8 Supplement: Result 4

Define γ1 = (xi1y1, . . . , xiNyN)T and γ2 = (xi1
∑q

r=1 xr1Br, . . . , xiN
∑q

r=1 xrNBr)
T

. Then,

γ1 − γ2 =
[
γ1 − proj

(
γ1;
{
z∗1 , . . . , z

∗
p

})]
−
[
γ2 − proj

(
γ2;
{
z∗1 , . . . , z

∗
p

})]
+[

proj
(
γ1;
{
z∗1 , . . . , z

∗
p

})
− proj

(
γ2;
{
z∗1 , . . . , z

∗
p

})]
.
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Define γ3 =
[
γ1 − proj

(
γ1;
{
z∗1 , . . . , z

∗
p

})]
−
[
γ2 − proj

(
γ2;
{
z∗1 , . . . , z

∗
p

})]
and define γ4 =[

proj
(
γ1;
{
z∗1 , . . . , z

∗
p

})
− proj

(
γ2;
{
z∗1 , . . . , z

∗
p

})]
. Thus,

||γ1 − γ2||2 = ||γ3 + γ4||2

= ||γ3||2 + ||γ4||2,

the last equality due to the fact that γ3 is orthogonal to γ4. To see this notice that γ4

is in the span of
{
z∗1 , . . . , z

∗
p

}
while each bracket in γ3 is orthogonal to every vector in

the span of
{
z∗1 , . . . , z

∗
p

}
. Now notice that ||γ1 − γ2||2 ∝ Var

(
t̂1i
)
, ||γ3||2 ∝ Var

(
t̂2i
)

and

γ4 = proj
(
γ1 − γ2;

{
z∗1 , . . . , z

∗
p

})
= ξi.
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CHAPTER 3

HIERARCHICAL BAYESIAN SMALL AREA ESTIMATION FOR

CIRCULAR DATA

Summary

We consider Bayesian regression models for circular data using the Projected Nor-

mal distribution. We show how they can be fit using Markov chain Monte Carlo

methods after the introduction of suitable latent variables. We develop novel varia-

tional/Laplace approximation to the posterior distribution to dramatically speed up

the computations. We apply these methods to a large dataset of daily departures of

anglers, which we want to predict based on a set of spatial and temporal categorical

covariates. We do model comparison based on the Deviance Information Criterion and

make predictions using a composite estimation approach, balancing goodness-of-fit to

the observations with prediction stability.

3.1 Introduction

Time-of-day observations are often modeled as coming from a circular distribution, in order

to respect the special structure imposed by that type of data. In the application being

considered here, we are interested in obtaining predictions of the daily distributions of the

departures of recreational anglers along the coasts of the United States, as a function of the

type of fishing trip, its location and time of year. The data are collected through the Marine

Recreational Fisheries Statistics Survey (MRFSS), which is a national survey of recreational

fishing activities in saltwater. Such activities constitute a multi-billion dollar industry in the

United States. The survey is conducted by the U.S. National Marine Fisheries Service. Its

major goal is to estimate recreational fish catch by species and size class, which are used
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in fisheries stock assessments and in fisheries regulations, such as setting quotas on species,

start and end dates for the fishing season, etc.

We begin by providing some background on MRFSS and explain why it was necessary

to estimate the distributions of daily departures of anglers. MRFSS actually consists of two

separate and complementary surveys. The Access Point Angler Intercept Survey (APAIS)

collects data on catch at the fishing site. An on-site interviewer “intercepts” anglers as they

leave the site. Data from this survey are used to estimate average catch per angler trip.

The Coastal Household Telephone Survey (CHTS) is a separate survey that collects fishing

activity data, through a stratified random-digit dialing (RDD) sample of households. The

CHTS data are used to estimate total angler trips. Finally, the estimated total catch is

obtained as the product:

(estimated average catch per trip)× (estimated total trips).

While the sampling design of the CHTS is straightforward, the APAIS consists of two

or more stages of sampling with different sampling probabilities. The first stage consists of

stratified unequal-probability selection of site-days in each fishing mode, with probabilities

proportional to a known index of expected fishing pressure. Subsequent stages depend on

the fishing mode. For boat-based modes, intermediate stages consist of selection of fishing

boats and groups of anglers within boats, with each stage approximated by simple random

sampling without replacement. The final stage of sampling in any mode consists of equal-

probability selection of anglers observed leaving the site during the interviewer’s on-site

assignment within the selected day.

A serious problem with estimation in the original APAIS was that it ignored essentially

all aspects of this design in the estimation, as noted by a US National Academy of Sciences

panel (Sullivan et al. 2006). Valid design-based estimation for APAIS requires sampling

weights accounting for the survey design. Consider two stages of selection. Let UI denote
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the set of all site-days in a domain of interest, and Ud denote the set of all anglers departing

the site during that day. A sample sI ⊂ UI of site-days is selected via a probability sampling

design, with first-order inclusion probabilities πId > 0 for d ∈ UI . Within each selected

site-day, a sample sd ⊂ Ud of anglers is intercepted by the interviewer as they leave the site.

Let πa|d > 0 denote the probability that angler a ∈ Ud is intercepted by the interviewer.

Then, an unbiased estimator of the total ty =
∑

d∈UI

∑
a∈Ud yda for yda = catch characteristic

of angler a on site-day d is given by

t̂y =
∑
d∈sI

∑
a∈sd

yda
πId πa|d

.

While πId is based on known fishing pressure and can be readily calculated, the angler

inclusion probability πa|d is unknown. Let ∆ represent the segment of the day during which

the interviewer visited the site on a given day. Let F∆d denote the fraction of anglers who

departed the site during that time segment. The inverse of the angler inclusion probability

is interpreted as a weight: the nd anglers intercepted while departing the site during ∆d

represent all Nd anglers departing the site during ∆d, and those Nd anglers in turn represent

(1/F∆d) anglers departing the site during the entire day. The weight is then

π−1
a|d = (N∆d/n∆d)(1/F∆d).

The key problem preventing the use of this weight in APAIS estimation is that F∆d is

unknown.

The data from the CHTS contain departure times for a random sample of angler trips, so

that they can be used to estimate F∆d. The ultimate goal of the current paper is therefore

to obtain estimates of F∆d that can be used to obtain weights for the APAIS. In the process

of doing so, we develop a flexible modeling approach that makes it possible to specify and

fit regression models for circular data, based on the projected normal distribution. Finally,

in order to predict the departure distribution for a specific wave, state and fishing mode
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combination, composite estimation is used to combine the observed departure distribution

with the model fit.

Directional data arise in various ways and in many scientific disciplines. In Meteorology

wind directions provide a natural source of circular data, (Breckling, 1989). The times of

day at which thunderstorms occur and times of year at which heavy rain occur are other

examples of circular data. We can also find circular data in Biology when studying animal

navigation for example bird navigation (Schmidt-Koenig, 1965 and Batschelet, 1981). Also

in Medicine when analyzing deaths due to a disease at various times of year like month of

onset of cases of lymphatic leukaemia in the UK, 1946-1960 (Lee, 1963). Circular data also

occur in Psychology with studies of the mental maps which people use to represent their

surroundings (Gordon, Jupp, and Byrne, 1989).

A circular observation can be regarded as a point on the unit circle or a unit vector in the

plane. Given an initial orientation and direction of the circle, each circular observation can be

specified by the angle between the initial direction and the point on the circle corresponding

to the observation. The most basic distribution on the circle is the uniform distribution.

It is often used as the “null model” in the construction of circular distributions. The most

important family of distributions is the Von Mises distributions. The Von Mises distribution

is unimodal and symmetrical about the mean direction. It shares many properties on the

circle that the normal distribution satisfies on the line. In particular, it arises as maximum

entropy distribution on the circle and it also has a maximum likelihood characterization

(Mardia and Jupp, 2000, p.42). The two distributions are also related in the following way;

if x = r (cos θ, sin θ)T is bivariate normal with variance matrix σ2I, then the conditional

distribution of θ given r is Von Mises (Mardia and Jupp, 2000, p.42).

Other useful distributions are wrapped distributions and projected distributions. Wrapped

distributions consist of taking a distribution on the line and wrapping it around the circum-

ference of the circle of unit radius. The most common wrapped distributions are Wrapped

Poisson, Wrapped Normal and Wrapped Cauchy (Mardia and Jupp, 2000). Projected distri-
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butions are obtained by radial projection of distributions on the plane. Projected normal dis-

tributions have been called off-set normal distributions by Mardia (1972), displaced normal

by Kendall (1974) and angular normal by Watson (1983). The projected normal distributions

were used by Presnell, Morrison, and Littell (1998) to introduce the Spherically Projected

Multivariate Linear Model (SPMLM) for directional data. As noted by these authors, the

underlying normal distributions make it convenient to specify regression models for circular

data, which is also the reason we will be using this approach in the current paper. Recently,

a Bayesian analysis for a random sample using the projected normal distribution was done

by Nuñez-Antonio and Gutiérrez-Peña (2005). Our approach will also use a Bayesian model

specification, and hence can be seen as a generalization of their work.

In this article, we will develop the circular data regression model having as effects mode,

state, and wave and describe a Gibbs sampler estimation method. The existing Gibbs

samplers are based on the introduction of a latent variable (a length variable) and sampling

from its distribution is done via rejection methods. We introduce an extra latent variable

that makes it easy and very fast to sample from the latent length distribution. However,

due to large sample sizes, and the fact that we will do a model selection procedure, we

also explore variational methods which are fast approximations to the posterior distribution

based on deterministic algorithms. Finally, we develop a variational/Laplace approximation

that seems to do an excellent job in approximating the posterior distribution. This approach

is used to fit the SPMLM to the CHTS dataset.

The remainder of the paper is organized as follows. In Section 3.2, we provide basic back-

ground on projected normal distributions. In Sections 3.3 and 3.44, we describe the Gibbs

sampler and model selection procedures, respectively. Section 3.5 discusses the variational

and Laplace approximations. Finally in Section 3.6, the SPMLM fits are incorporated in a

composite estimator to predict the fractions of anglers departing the sites.
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3.2 Projected normal distribution regression model for departure

times

Given the circular nature of the departure times (which can be viewed as angles on (0, 2π]),

we will model them as random variables having a projected bivariate normal distribution

PN2 (µ, I2) (Presnell et al. 1998) and build a mixed effect model based on the following

factors and interactions between them: state (s), wave (w) and mode (m). The dataset con-

tains observations for 17 states, 6 waves, and 4 modes. Some levels for the state factor were

removed because of lack of data within those state levels. Because a responding household

could report on multiple trips, we also investigated the addition of a household factor (h).

This factor has 215, 003 levels, which will require a separate approach to incorporate into

the model. Hence, we will begin by describing the model without household effect.

After normalization to the unit circle, the distribution of the departure time Tijkt of

respondent t in given state i, wave j and mode k is denoted as

Tijkt
ind∼ PN2 (µijk, I2) ,

where µijk = µ +mk + si + wj, each term being a two dimensional vector, and I2 is the

2 × 2 identity matrix. For now, the specification for µijk corresponds to a model without

any interaction between the factors.

In general, the angle Θ of a 2-dimensional unit random vector U = X/‖X‖ has a

projected bivariate normal distribution PN2 (µ, I2) if the random variable X has a bivariate

normal distribution N2 (µ, I2). The density of Θ can be written explicitly as Mardia and

Jupp (2000, p.46):

f (θ|µ) =
1

2π
exp

{
−1

2
‖ µ ‖2

}[
1 +

uTµΦ
(
uTµ

)
φ (uTµ)

]
I(0,2π] (θ) (9)

with u = (cos θ, sin θ), and where Φ (·) and φ (·) are the standard normal distribution and
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density functions, respectively. The distribution PN2 (µ, I2) is unimodal and rotationally

symmetric about the mean direction vector η, where η = µ/‖µ‖ = (cosω, sinω) and ω is

called the mean direction.

In order to develop a model for the departure times, the projected normal distribution

will be embedded in a hierarchical Bayesian framework that includes prior distributions for

the factors. This will allow us to perform model selection, including the determination of

whether fixed or random effects specifications are more appropriate for the different factors,

and whether interactions between factors are needed. The goal of estimation is to obtain the

posterior distribution of µijk, which is the only parameter in the projected normal density

(9). Once this distribution is obtained, the posterior distribution of any functional of µijk,

including the expected fraction of departures in a given time interval, can be obtained. We

will return to this topic below.

3.3 Estimation

The approach is based on the introduction of suitable latent variables to define an augmented

joint distribution with µijk (Nuñez-Antonio and Gutiérrez-Peña, 2005). Conjugate priors will

be assumed in order to ensure that we can simulate from all full conditionals required for a

Gibbs sampler. Suppose first that we could observe the values of Xijkt for a sample of data

and that the mean vector µijk is

µijk = µ+mk + si +wj, (10)

where the mode effect is to be modeled as a “fixed” effect and the state and wave effects

are “random” effects. We are interpreting these terms in the Bayesian context, implying

that a fixed effect corresponds to having a predetermined vague prior and a random effect

to having a prior with a variance parameter with its own prior distribution. The conjugate
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priors corresponding to this model specification are

µ ∼ N2

(
µ0, σ

2
0I2

)
mk ∼ N2

(
0, σ2

mI2

)
si | σ2

s ∼ N2

(
0, σ2

sI2

)
wj | σ2

w ∼ N2

(
0, σ2

wI2

)
σ2
s ∼ IG (αs, βs) ∝ (σ2

s)
−αs−1 exp

{
−βs
σ2
s

}

σ2
w ∼ IG (αw, βw) ∝ (σ2

w)−αw−1 exp

{
−βw
σ2
w

}
. (11)

It is straightforward to obtain the full conditional distributions for this model specification,

after which Gibbs sampling can be used to obtain the posterior distributions of the model

parameters.

In the application we are considering here, the Xijkt are not observed. Let Θijkt = Tijkt
2π
24

represent the departure times normalized to the unit circle, and let

Xijkt = RijktUijkt = Rijkt (cos Θijkt, sin Θijkt)
T .

For a given value of the random variable Θijkt, it is possible to compute the correspond-

ing value of Uijkt. However, the value of Xijkt is unknown because of the unobservable

component Rijkt, which corresponds to the length of the vector Xijkt. Assuming

Xijkt | µijk
ind∼ N2 (µijk, I2) , (12)

it is clear that Θijkt | µijk
ind∼ PN2 (µijk, I2). The structure of the model suggests that we

should treat the unobserved Rijkt = ‖Xijkt‖, l = 1, 2, . . . , nijk as latent variables. This

was the approach followed by Nuñez-Antonio and Gutiérrez-Peña (2005), who obtained the
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posterior distribution for an overall mean µ via MCMC.

For a bivariate normal vectorX, consider the latent variable R = ‖X‖ defined on (0,∞).

From equation (12), we can obtain its joint distribution with Θ by

f
(
θ, r | µijk

)
= (2π)−1 exp

{
−1

2
‖ µijk ‖2

}
exp

{
−1

2

[
r2 − 2r

(
uTµijk

)]}
| J |

where J is the Jacobian of the transformation x → (θ, r). Starting from this distribution,

it is in principle again possible to obtain the full conditional distributions required for the

Gibbs sampler, based on the conjugate priors described above.
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Figure 4: Output from the Gibbs sampler (before transformation) of the overall mean, the
fixed effect for mode 4, and the random effects for state 44 and wave 5.
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However, implementation of the Gibbs sampler for these data required that a number of

issues be addressed. The most important problem was that, if the conjugate priors above

were used, the sampling chain failed to converge even after 1000 iterations. Figure 4 shows

examples of Gibbs sampler output applied to model (10) with a fixed mode effect and random

state and wave effects, for the overall mean parameter and some specific mode, state and

wave factors. Note that there are two traces in each plot, because each level of a factor is

represented by two parameters.

This slow mixing is most likely due to large positive or negative posterior correlations

between model parameters. For an illustration of this problem, we consider the simple

random-intercept model as in Gilks et al. (1998, p.94-96),

yij = µ+ αi + εij

with αi ∼ N (0, σ2
α) and εij ∼ N (0, σ2), i = 1, 2, . . . ,m, j = 1, 2, . . . , n. We assume σ2

α and

σ2 known and a flat prior on µ. Let y denote the observed data. Gelfand et al. (1995) show

that posterior correlations for this model are

Corr {(αi, µ) | y} = −
{

1 +
mσ2

nσ2
α

}−1/2

Corr {(αi, αi′) | y} =

{
1 +

mσ2

nσ2
α

}−1

.

Hence for this simple model, large posterior correlations and poor mixing occur when σ2/n

is small relative to σ2
α/m, or, speaking somewhat loosely, when the number of levels of the

random intercept is small relative to the number of observations. Given the number of levels

for the random effects in our data, it seems likely that we are suffering from the same issue

here.

Remedies to the slow mixing problem involve reparameterizations of the parameters.

Vines et al. (1996) propose a parameterization called sweeping, since the mean of the factors
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are “swept” from the random and fixed effects effects and absorbed into µ. The sweeping

parameterization applied to our model is:

µ′ = µ+ m + s + w

m′k = mk −m

s′i = si − s

w′j = wj −w.

Under this reparametrization, the hierarchical model for the departure times can be rewritten

as

Θijkt ∼ PN2

(
µijk, I2

)
µijk = µ′ + m′k + s′i + w′j

µ′ ∼ N2

(
µ0, σ

′
0

2 = σ2
0 +

σ2
m

K
+
σ2
s

I
+
σ2
w

J

)
m′−K,c ∼ NK−1

(
0, σ2

m

(
IK−1 −

1

K
JK−1

))
m′K,c = −

K−1∑
k=1

m′k,c

s′−I,c | σ2
s ∼ NI−1

(
0, σ2

s

(
II−1 −

1

I
JI−1

))
s′I,c = −

I−1∑
i=1

s′i,c

w′−J,c | σ2
w ∼ NJ−1

(
0, σ2

w

(
IJ−1 −

1

J
JJ−1

))
w′J,c = −

J−1∑
j=1

w′j,c

σ2
s ∼ IG (αs, βs)

σ2
w ∼ IG (αw, βw)

where m′−K,c =
(
m′1,c, . . . ,m

′
K−1,c

)T
, m′k,c is the cth component of m′k and c = 1, 2, with
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similar definitions for s′−I,c and w′−J,c; Np denotes a p-dimensional multivariate normal dis-

tribution; Ip and Jp are the p× p identity matrix and matrix of ones respectively. Note that

the last components of each factor, m′K,c, s
′
I,c and w′J,c, are fully determined once the other

components are known.

To implement a Gibbs sampler for these new prior distributions, we need a new set of

full conditional distributions. Let n represent the total sample size and

z̄ =
K∑
k=1

J∑
j=1

I∑
i=1

nijk∑
t=1

(xijkt −m′k − s′i −w′j) /n.

For the mode factor m, let n
(m)
k =

∑I
i=1

∑J
j=1 nijk denote the total number of observations

for level k. Let V
(m)
1 = diag

(
n

(m)
1 , . . . , n

(m)
K−1

)
and V

(m)
2 = n

(m)
K J + 1

σ2
m

(
I− 1

K
J
)−1

+ V
(m)
1

and

z
(m)
k,c =

I∑
i=1

J∑
j=1

nijk∑
t=1

(
xijkt,c − µ′c − s′i,c −w′j,c

)
k = 1, . . . , K

µ(m)
c =

((
z

(m)
1,c − z

(m)
K,c

)
/n

(m)
1 , . . . ,

(
z

(m)
K−1,c − z

(m)
K,c

)
/n

(m)
K−1

)T
.

We similarly define n
(s)
i , V

(s)
1 ,V

(s)
2 , z

(s)
i,c , µ

(s)
c and n

(w)
j , V

(w)
1 ,V

(w)
2 , z

(w)
j,c , µ

(w)
c for the remaining

two factors. The conditionals for the mean function components can be written explicitly as

follows:

p (µ′ | ·) = N2

(
σ′20

1 + nσ′20

(
µ0

σ′20
+ nz̄

)
,

σ′20
1 + nσ′20

I2

)

p
(
m′−K,c | ·

)
= NK−1

((
V

(m)
2

)−1

V
(m)
1 µ(m)

c ,
(
V

(m)
2

)−1
)

p
(
s′−I,c | ·

)
= NI−1

((
V

(s)
2

)−1

V
(s)
1 µ

(s)
c ,
(
V

(s)
2

)−1
)

p
(
w′−J,c | ·

)
= NJ−1

((
V

(w)
2

)−1

V
(w)
1 µ(w)

c ,
(
V

(w)
2

)−1
)
.
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The conditional distributions for the random effect variances are specified by

p
(
σ2
s | ·
)
∝ IG

(
αs + I − 1,

I∑
i=1

1

2
s′
T

i s′i + βs

)
∗(

1

σ′20
exp

(
− 1

σ′20

[
1

2
(µ′ − µ0)

T
(µ′ − µ0)

]))

p
(
σ2
w | ·

)
∝ IG

(
αw + J − 1,

J∑
j=1

1

2
w′

T

j w′j + βw

)
∗(

1

σ′20
exp

(
− 1

σ′20

[
1

2
(µ′ − µ0)

T
(µ′ − µ0)

]))
.

Finally, the conditional distribution of the latent length of the bivariate normal vector is

p (rijkt | ·) ∝ r exp

[
−1

2
r2 + bijktr

]
I(0,∞) (r) , (13)

with bijkt = uTijktµijk and uTijkt = (cos θijkt, sin θijkt)
T .

The centered mean model components m′−K,c, s′−I,c and w′−J,c are correlated random

vectors, so that they need to be generated as a block for each of the factors. Nevertheless,

sampling from the corresponding multivariate normal distributions p (µ′ | ·), p
(
m′−K,c | ·

)
,

p
(
s′−I,c | ·

)
, p
(
w′−J,c | ·

)
is readily accomplished directly. Sampling from p (σ2

s | ·) and p (σ2
w | ·)

is done via a Metropolis-Hastings algorithm with proposal distributions IG
(
αs + I − 1,∑I

i=1
1
2
sTi si + βs

)
and IG

(
αw + J − 1,

∑J
j=1

1
2
wT
j wj + βw

)
, respectively. Because the rijkt

are latent, each iteration of the Gibbs sampler needs to draw n values from the conditional

distribution (13). This density is concave and it can be shown that it belongs to an expo-

nential family with canonical parameter bijkt, so that sampling from it is straightforward

in principle, using algorithms such as Metropolis-Hastings or adaptive rejection sampling.

However, the very large sample necessitates the use of an efficient algorithm to ensure that

the Gibbs sampler can be run to convergence. In particular, we wanted to avoid having to

explicitly iterate over the n random draws from the conditional distribution for each Gibbs
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sampler realization.

We therefore implemented a method that allows us to sample directly from latent length

distribution p (r|b) after introducing a new convenient latent variable inside the Gibbs sam-

pler. The idea comes from the slice sampler technique (Givens and Hoeting, 2005, pp.221-

223), which is based on the introduction of suitable auxiliary variables. Defining b = uTµ,

the distribution of the latent length is

p (r|µ, θ) ∝ r exp

(
−1

2
(r − b)2

)
. (14)

We introduce the latent variable Y which has joint density with r given by

p (r, y|µ, θ) ∝ rI(0,exp{− 1
2

(r−b)2}) (y) I(0,∞) (r) .

Then, the full conditionals are

(Y |R = r,µ, θ) ∼ U

(
0, exp

{
−1

2
(r − b)2

})
p (r|Y = y,µ, θ) ∝ rI(b+max{−b,−√−2 ln y},b+√−2 ln y) (r) , (15)

where this last one is very easy to sample from using the inverse cdf technique. Thus we

draw y ∼ U
(
0, exp

{
−1

2
(r − b)2}) and independently we draw u ∼ U (0, 1) . Finally we

get a draw r by letting r =
√

(r2
2 − r2

1)u+ r2
1, where r1 = b + max

{
−b,−

√
−2 ln y

}
and

r2 = b+
√
−2 ln y.

Sampling from p (rijkt | ·) in this manner dramatically reduces the running time of the

sampler since it only involves two uniform draws and finding the maximum of two numbers.

The model specification we have used so far contains a fixed effect for mode and random

effects for wave and state. We will investigate alternative model specifications including

interactions and chose between them, as further described in the next section. We now

return to the issue of adding a respondent household factor in the model, to account for the
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fact that a household can report on multiple trips. We consider here the following model

µijklt = µ+ mk + swij + hl (16)

with swij denoting a random interaction term for state and wave and hl a bivariate random

effect for household l. The sweeping adjustment discussed for the previous model specifi-

cation was applied to the state-wave interaction term but not to the household term. The

factor h has over 215,000 levels, so that it is simply not practical to apply the sweeping

adjustment in this instance. However, based on the result by Gelfand et al. (1995) regarding

the posterior correlations, we conjectured that the very large number of levels would result

in negligible correlation between the levels of that factor. Figure 5 displays examples of the

Gibbs sampler output applied to model (16). There do not appear to be undue convergence

problems in this case.

3.4 Model selection

The previous section described the set-up of a Gibbs sampler that, when run to convergence,

provides an approximation to the posterior distribution of all the model parameters. In order

to find a suitable model for the distribution of the departure times, we wanted to investigate

and compare alternative model specifications, including considering models with some of

these effects removed, different effects treated as fixed and random, and interaction between

these models.

A common measure of fit in the Bayesian literature is the deviance (Gelman et al. 2004,

p.179-184). For a general Bayesian estimation problem, the deviance is defined as D (y, ω) =

−2 ln p (y | ω) where y are the data, ω are the unknown parameters and p (y | ω) is the

likelihood function. The deviance is proportional to the mean squared error if the model

is normal with constant variance. The expected deviance E (D (y, ω) | y) is a measure of

how well the model fits and it can be estimated by the posterior mean deviance D(y) =
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Figure 5: Output from the Gibbs sampler (after transformation) of the overall mean, the
fixed effect representing mode 4, the interaction random effect representing state 44 and
wave 5, and the random effect representing household 10.

1
B

∑B
b=1D(y, ωb), where the ωb, b = 1, . . . , B are random draws from the posterior distribution

(as obtained from an MCMC chain at convergence). Let ω̄ =
∑B

b=1 ωb/B. The difference

between the posterior mean deviance and the deviance at ω̄,

pD = D(y)−D(y, ω̄),

is often interpreted as a measure of the effective number of parameters of a Bayesian model.

More generally, pD can be thought of as the number of “unconstrained” parameters in
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the model, where a parameter counts as 1 if it is estimated without constraints or prior

information, 0 if it is fully constrained or if all the information about the parameter comes

from the prior distribution, or an intermediate value if both the data and prior distributions

are informative. For hierarchical models, the effective number of parameters strongly depends

on the variance of the group-level parameters (Gelman et al. 2004, p.182).

A common model selection criterion in the Bayesian estimation context is the deviance

information criterion (DIC):

DIC = 2D (y)−D(y, ω̄)

= D (y) + pD.

The DIC can be interpreted as a measure of goodness-of-fit, i.e. the estimated expected

deviance, plus a “penalty” for model complexity in the form of the total number of effective

parameters. When performing model selection, models with lower values of DIC are viewed

as providing a more preferable tradeoff between fit and model complexity. We therefore used

DIC to compare different model specifications for the departure time data.

Table 2 shows the DIC values obtained from different models applied to the departure

time data. In interpreting the number of parameters, it should be noted that a level of a

factor (e.g. mk) is represented by a pair of parameters. Hence, in a sweeping-reparametrized

model with only a mode effect, there are 2 parameters for the overall mean and the 4-1=3

remaining free mode levels are represented in the projected normal model by 6 parameters,

for a total of 8 possible parameters. The model with only a mode effect, with results in the

first row of Table 2, resulted in a value of pD = 7.63. The reduction of pD relative to the

fully unconstrained value of 8 indicates that the prior distributions resulting in only a small

amount of “shrinking” for this factor. It is possible to similarly interpret the values of pD

for the other model specifications.

The results in Table 2 clearly show that models containing all three factors (mode, state,
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Table 2: DIC results for different model specifications for the departure time data.

Fixed effects Random effects D (ω̄) D (ω) pD DIC

Mode 2642698 2642706 7.631472 2642713
Mode Wave 2631890 2631908 17.85838 2631926

Mode, Wave 2631890 2631907 17.2165 2631924
Mode State 2628456 2628496 40.25385 2628536

Mode, State 2628456 2628495 39.48233 2628535
Mode State, Wave 2618338 2618387 49.50114 2618437

Mode, Wave State 2618337 2618387 49.07431 2618436
Mode, State Wave 2618337 2618387 49.17294 2618436

Mode, State, Wave 2618337 2618386 49.06591 2618435
Mode, State×Wave 2615651 2615856 205.7165 2616062

Mode State×Wave 2615669 2615848 178.9047 2616027
Mode State×Wave, Household 2615668 2615847 179.3620 2616026

wave) consistently achieve lower DIC values than models that excluded any of those factors.

While not shown here, models with mode as random effect performed worse than models

with mode as fixed effect. In contrast, very similar DIC values were obtained with state

and wave treated as either fixed or random. When we investigated models with interac-

tions between the three factors, those with state-wave interactions scored better than any

other arrangement of two-way interactions. As shown in Table 2, treating the state-wave

interactions as a random effect gave better results than treating it as a fixed effect. Finally,

the addition of a household random effect gave results that were virtually identical to those

without the household effect. Based on all this, the following model was selected as the

best-fitting model:

µijk = µ′ + m′k + sw′ij

where swij denotes a random interaction effect between state and wave, with 99 total levels.

With the algorithm improvements discussed in Section 3.3, the Gibbs sampler still took

a substantial time to run: about 2.15 seconds per iteration. Hence, we also explored an

alternative approach to obtain the posterior distribution that would be more computationally

efficient. In the next section we explore variational and Laplace approximations which are

very fast approximations to the posterior distribution. We first consider the case of a random
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sample of projected normals and then extend the method for the regression models considered

so far.

3.5 Variational/Laplace approximation

Variational approximation methods involve approximations to marginal or posterior dis-

tributions in terms of an optimization problem (Ghahramani and Beal, 2001; Opper and

Saad, 2001; Wainwright and Jordan, 2003). Mean-field methods are based on optimizing the

Kullback-Leibler (KL) divergence with respect to a variational distribution (Ormerod and

Wand, 2010). The KL divergence is defined as
∫
q (w) log

{
q(w)
p(w|y)

}
dw which is greater or

equal than zero for all densities q and equal to zero if and only if q (w) = p (w|y). Consider

a model with parameters W and observations y. Tractability is achieved by restricting q to

a more manageable class of densities and then minimizing the KL divergence between q and

p over that class. The restriction for the q density is that q (w) factorizes into
∏
qi (wi) for

some partition {w1, . . . , wM} of w. It can be shown that the solutions satisfy (Ormerod and

Wand, 2010):

q∗i (wi) ∝ exp {E−wi log p (wi|y,w−i)} , (17)

where w−i is w without wi and E−wi denotes expectation with respect to the density∏
j 6=i qj (wj). Next we present a result that will allow us to compute some expectations

needed for the algorithms in this section. The proof is given in Supplement 3.8.

Result 5. Let r (cos θ, sin θ)T = (X1, X2) ∼ N2 (µ, I2). Define b = (cos θ, sin θ)T µ and

C (b) = 1 +
√

2πb exp
{

1
2
b2
}

Φ (b). Then the distribution of the latent length is p (r|θ,µ) =

1
C(b)

r exp
{
−1

2
r2 + br

}
, its moment generating function is

1
C(b)

[
1 +
√

2π (b+ t) exp
{

1
2

(b+ t)2}Φ (b+ t)
]

and the variance is bounded by 1,

0 < Var (r|θ,µ) < 1.

We will first consider the case of a random sample of projected normals and then we will

consider the regression case.
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Algorithm 1 Iterative scheme for obtaining the parameters in the optimal densities for the
random sample case.

Initialize Eµ (µ) .
Cycle:

E−µ ←
∑

uiE (ri)

Eµ ←
µ0/σ

2
0 + E−µ

n+ 1/σ2
0

,

where E (ri) = bi+
√

2π
C(bi)

Φ (bi) exp
{

1
2
b2
i

}
and C (bi) = 1+

√
2πbi exp

(
b2i
2

)
Φ (bi) and bi = uTi Eµ.

3.5.1 Random sample

Consider Θ1,Θ2, . . . ,Θn
iid∼ PN2 (µ, I2) and prior p (µ) = N2 (µ0, σ

2
0I2). We then approx-

imate p (µ, r1, r2, . . . , rn|θ) by q (µ, r1, r2, . . . , rn) = qµ (µ) qr1 (r1) qr2 (r2) · · · qrn (rn). From

equation (17), the optimal densities take the form

q∗µ (µ) ∝ exp {E−µ log p (µ|θ, r)}

∝ N2

(
µ0/σ

2
0 + E−µ (

∑
riui)

n+ (1/σ2
0)

,
1

n+ (1/σ2
0)

I2

)
q∗ri (ri) ∝ exp {E−ri log p (ri|θ,µ, r−i)}

∝ ri exp

(
−1

2
r2
i + riu

T
i Eµ (µ)

)
,

where uTi = (cos θi, sin θi), E−µ (
∑
riui) =

∑
uiE (ri) =

∑
ui
∫
riqridri, and Eµ (µ) =∫

µqµdµ. Each expectation is then repeatedly updated giving us the algorithm in Algorithm

1. The expectation E (ri), shown in Algorithm 1, can be obtained from direct integration

or from the moment generating function of the distribution of the latent length, see Sup-

plement 3.8. Our factorization of q is such that we gain considerable tractability but this

typically leads to low accuracy. The variance for qµ (µ) only depends on sample size and not

on the data, which could lead to poor approximations especially when µ is far away from

the origin, Figure 6. However, it can be shown that for a random sample, the algorithm in

Table 1 converges to the mode of the posterior distribution p (µ|θ) also called the maximum
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Figure 6: Histograms of the output from the Gibbs sampler with variational and Laplace
approximations for a random sample of size 100 from projected normal with ||µ||2 = 0.5
(top) and for a random sample of size 100 with ||µ||2 = 3 (bottom). The tighter curves
are the ones obtained by the variational approximation while the more accurate ones are
obtained by the Laplace approximation.

a posteriori (MAP). The next result states this fact more explicitly. The proof is given in

Supplement 3.9.

Result 6. Let θ1, . . . , θn
iid∼ PN2 (µ, I2) and let p (µ) = N2 (µ0, σ

2I2). Then the posterior

distribution p (µ|θ) is unimodal and for any initialization of Algorithm 1, the algorithm

converges to the posterior mode.

To fix the problem of the variance of qµ (µ) being too tight we decided to compute a

Laplace approximation to the posterior distribution of µ using as mode Eµ obtained after

convergence of Algorithm 1. In the Laplace approximation the goal is to find a multivariate

Gaussian approximation which is centered on the mode of the posterior distribution of µ. The

covariance matrix is taken as the inverse of minus the Hessian of the log posterior distribution

evaluated at the mode (Bishop, 2006, pp.213-216). We will take Eµ (from the variational
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method) as the mode of the Laplace approximation. The log posterior distribution for µ is

log p (µ|θ) = logN2

(
µ0, σ

2
0I2

)
+

n∑
i=1

logPN2 (θi;µ, I2) + C

where C is a term that does not depend on µ. Thus, the Laplace approximation to the

posterior distribution p (µ|θ) is a bivariate normal distribution N2 (Eµ,V) where

−V−1 =

 ∂2

∂µ2
1

log p (µ|θ) |Eµ ∂2

∂µ1∂µ2
log p (µ|θ) |Eµ

∂2

∂µ1∂µ2
log p (µ|θ) |Eµ ∂2

∂µ2
2

log p (µ|θ) |Eµ


The second derivatives needed to compute the Hessian are given in Supplement 3.10. We

can see from Figure 6 that p (µ|θ) is very well approximated by the Laplace approximation.

The next subsection will treat the regression case and find similar results.

3.5.2 Regression model

Consider Θijkt∼PN2

(
µijk, I2

)
, independent with µijk = µ + mk + si + wj and with normal

priors with fixed variances on the overall and mode effects and random variances on the state

and wave effects as specified in equation (11). Here we take the variational distribution as

q
(
µ,m, s,w, σ2

s , σ
2
w, r1, r2, . . . , rn

)
= qµ

∏
qmk

∏
qsi
∏

qwj
∏

qrtqσ2
s
qσ2

w
.

Making use of equation (17), the variational densities take the form

q∗µ (µ) = N2

(
µ0/σ

2
0 +NE (z̄)

N + (1/σ2
0)

,
1

N + (1/σ2
0)

I2

)

q∗mk (mk) = N2

m0/σ
2
m + E

(
z

(m)
k

)
n

(m)
k + (1/σ2

m)
,

1

n
(m)
k + (1/σ2

m)
I2


q∗si (si) = N2

 E
(
z

(s)
i

)
n

(s)
i + E (1/σ2

s)
,

1

n
(s)
i + E (1/σ2

s)
I2


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q∗wj (wj) = N2

 E
(
z

(w)
j

)
n

(w)
j + E (1/σ2

w)
,

1

n
(w)
j + E (1/σ2

w)
I2


q∗σ2

s

(
σ2
s

)
= IG

(
αs + I − 1,Es

I∑
i=1

1

2
sTi si + βs

)

q∗σ2
w

(
σ2
w

)
= IG

(
αw + J − 1,Ew

J∑
j=1

1

2
wT
j wj + βw

)

q∗rijkt (rijkt) ∝ rijkt exp

(
−1

2
r2
ijkl + rijktu

T
ijktE

(
µijk

))

where z̄, z
(m)
k , z

(s)
i , z

(w)
j are defined as previously and Es

∑I
i=1

1
2
sTi si =

∑I
i=1 Var (si1)+Var (si2)+

(E (si1))2+(E (si2))2 and Ew

∑J
j=1

1
2
wT
j wj defined similarly. All expectations are with respect

to the variational density. Each expectation is then repeatedly updated giving us Algorithm

2. In analogy with the random sample case we will take (E (µ) ,E (m) ,E (s) ,

E (w)), obtained after convergence of Algorithm 2, as the mode of the posterior distribu-

tion and get the Laplace approximation by finding the minus inverse of the Hessian matrix

of the log posterior distribution evaluated at the mode. The log posterior distribution for

(µ,m, s,w)

log p (µ,m, s,w|θ) is

logN2

(
µ;µ0, σ

2
0I2

)
+

K∑
k=1

logN2

(
mk; m0, σ

2
mI2

)
+

(−I − αs) log

(
1

2

I∑
i=1

sTi si + βs

)
+ (−J − αw) log

(
1

2

J∑
j=1

wT
j wj + βw

)
+

∑
ijk

nijk∑
t=1

logPN2

(
θijkt;µijk, I2

)
+ C,

where we have integrated out the variance components σ2
s , σ

2
w. The second derivatives needed

to compute the Hessian are given in Supplement 3.11. From Figure 7 we can see again that

the posterior distributions are very well approximated by the Laplace approximation. We

computed the DIC values for the same models in Table 2 using the Laplace approximation
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Algorithm 2 Iterative scheme for obtaining the parameters in the optimal densities for the
linear model case.
Initialize E (µ) ,E (mk) ,E (si) ,E (wj)
Cycle:

bijkt ← uTijktµijk

E (rijkt) ← bijkt +

√
2π

c (bijkt)
Φ (bijkt) exp

{
1

2
b2
ijkt

}
E
(
1/σ2

s

)
← (αs + I) /

(
Es

I∑
i=1

1

2
sTi si

)

E
(
1/σ2

w

)
← (αw + J) /

(
Ew

J∑
j=1

1

2
wT
j wj

)

E (z̄) ←
(

1

n

)∑
ijkt

uijktE (rijkt)− E (mk)− E (si)− E (wj)

E (µ) ← µ0/σ
2
0 + nE (z̄)

n+ (1/σ2
0)

E
(
z

(m)
k

)
←

∑
ij

nijk∑
l=1

uijklE (rijkl)− E (µ)− E (si)− E (wj)

E (mk) ←
m0/σ

2
m + E

(
z

(m)
k

)
n

(m)
k + (1/σ2

m)

E
(
z

(s)
i

)
←

∑
kj

nijk∑
t=1

uijktE (rijkt)− E (µ)− E (mk)− E (wj)

E (si) ←
E
(
z

(s)
i

)
n

(s)
i + E (1/σ2

s)

E
(
z

(w)
j

)
←

∑
ik

nijk∑
t=1

uijktE (rijkt)− E (µ)− E (mk)− E (si)

E (wj) ←
E
(
z

(w)
j

)
n

(w)
j + E (1/σ2

w)

and obtained almost the same values.
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Figure 7: Histograms of the output from the Gibbs sampler with variational and Laplace
approximations using the CHTS data for a model with mode as a fixed effect and state
and wave as random effects. The dashed curves are the ones obtained by the variational
approximation and the solid ones are obtained by the Laplace approximation. The first and
second rows correspond to different combinations of the effects while the first and second
columns correspond to the first and second components of µ, respectively.

3.6 Prediction of fractions of departures

As noted in Section 3.1, the goal of the paper is to estimate the population fraction of daily

departures at a fishing site between the arrival and departure times of the interviewer, for

a stratum Uijk determined by mode, state and wave. The population fraction between two

times, τ1 and τ2, is defined as

FN,ijk (τ1, τ2) =

∑
Uijk

I[τ1,τ2) (Tijkt)

Nijk

, (18)

49



with I[τ1,τ2) (T ) = 1 when τ1 ≤ T < τ2 and 0 otherwise. From the survey data, a direct

estimator of this quantity is given by

F̂D
ijk (τ1, τ2) =

∑
sijk

wijktI[τ1,τ2) (Tijkt)∑
sijk

wijkt
, (19)

where wijkt = 1/πijkt is the inverse of the inclusion probability for the tth element in stratum

Uijk. This estimator is asymptotically unbiased under repeated sampling from the target

population, but is likely to be very variable in many strata because the sample size nijk is

very small (or zero). For simplicity, we consider the case of simple random sampling with

replacement (or without replacement with a vanishingly small sampling fraction). In that

case, the variance of F̂D
ijk (τ1, τ2) is given by

Var(F̂D
ijk (τ1, τ2)) =

1

nijk
FN,ijk (τ1, τ2) (1− FN,ijk (τ1, τ2)). (20)

Under the assumption that the departure times follow a projected normal distribution,

the population fraction FN,ijk (τ1, τ2) is expected to be very close to the probability Pr(τ1 ≤

T < τ2|µijk) under the projected normal distribution as long as Nijk is sufficiently large,

with µijk the “true” parameter value for the stratum. This is a non-random function of

µijk, so that a procedure that provides an estimate for µijk can be used to estimate Pr(τ1 ≤

T < τ2|µijk) and hence FN,ijk (τ1, τ2) as well. Hence, under the hierarchical Bayesian model

described in the previous sections, we can obtain the posterior distribution of

FM
ijk (τ1, τ2) = Pr(τ1 ≤ T < τ2|µijk) (21)

given the sample data. However, obtaining this posterior distribution for each combination

of state, wave, mode and time interval is far from trivial given the size of the dataset,

because the integration of the projected normal density over the interval (τ1, τ2) needs to

be performed at each draw from the posterior distribution p (µijk|data) . These draws are
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obtained by either using iterations of Gibbs sampler after convergence or by drawing from

the Variational/Laplace approximation distribution.

We therefore streamlined the computations by only computing the fractions for 24 one-

hour intervals and by taking advantage of a number of results for the projected normal

distribution. To simplify notation in what follows, let FM
ijk (τ) , τ = 1, . . . , 24 denote the

1-hour fractions FM
ijk (τ − 1, τ). For each iteration b of the Gibbs sampler, we obtain a vector

µbijk for each one of the 368 combinations of indices ijk from which we compute the 24

fractions. Without simplifications, this implies that we would need to compute 368× 24×B

integrals. To make this process more efficient, we first obtained the following two identities,

derived in Supplement 3.12:

∫ θ2

θ1

f
(
θ | µijk

)
dθ = Φ (−ρijk sin (θ1 − ωijk)) if θ2 − θ1 = π∫ θ2

θ1

f
(
θ | µijk

)
dθ = Φ (−ρijk sin (θ1 − ωijk)) Φ (ρijk cos (θ1 − ωijk)) if θ2 − θ1 =

π

2
,

where f
(
θ | µijk

)
denotes the density of a PN2

(
µijk, I2

)
random variable normalized to

the unit circle, and µTijk = ρijk (cosωijk, sinωijk). Then, at each iteration b the 24 fractions

FM,b
ijk (τ) are obtained by computing FM,b

ijk (1) , . . . , FM,b
ijk (5) by numerical integration, followed

by successive differencing using the second identity, i.e. we set FM,b
ijk (6) = Φ

(
−ρbijk sin

(
−ωbijk

))
Φ
(
ρbijk cos

(
−ωbijk

))
−
∑5

t=1 F
M,b
ijk (t), FM,b

ijk (7) = Φ
(
−ρbijk sin

(
π
12
− ωbijk

))
Φ
(
ρbijk cos

(
π
12
− ωbijk

))
−∑6

τ=2 F
M,b
ijk (τ) and so on. In this manner, for each b and each ijk, we only need to com-

pute 5 numerical integrals and 19 integrals using the formula above instead of 24 numerical

integrals.

At the conclusion of this procedure, we obtain the posterior distribution of FM
ijk (τ) for

each one-hour fraction in each wave, state and mode combination. Figure 8 shows boxplots

corresponding to the posterior distributions of the model-estimated fractions of departures

for four state-wave-mode combinations in each 1-hour period, as well as histograms of the

original data in those strata, which correspond to the estimator (19). The very narrow
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boxplots reflect the fact that these estimated departure fractions are based on a very large

sample size. It is also clear from these plots that the modeled distributions deviate substan-

tially from the observed distributions, even when there appear to be many observations in a

stratum.
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Figure 8: Histograms of departure time data and boxplots of the posterior distributions of
the 1-hour fractions of departures. Four different combinations of state, wave, and mode are
shown.

At this point, we have two possible estimators for the population fractions of departures

in (18). The design-based estimator in (19) is unbiased but very variable in any stratum

with small sample size, while the model-based estimator in (21) is very precise (low variance)

but, being model-based, potentially biased if the model specification is incorrect. We now
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consider the model above as a component of a small area estimation procedure. The goal

of small area estimation is to combine a survey estimator that only uses data from a given

“small area” (defined here as a mode-state-wave combination) with a model-based estimator

that is based on data from the whole sample. In this case, the survey estimator is the direct

estimator (19), and the model-based estimator is the posterior mean of (21), which we will

denote by F̂M
ijk (τ). A large literature on small area estimation is available, with a range of

different parametric and, more recently, nonparametric model specifications (see Rao (2003)

for an overview). However, to the best of our knowledge, no small area estimation models

for circular data exist. We therefore decided to apply composite estimation (Ghosh and

Rao, 1994), which consists of taking a convex combination of both estimators. Composite

estimation is generally applicable even in non-standard situations and is easy to implement.

It also provides a simple way to trade off the bias and variance of the two estimators by

adjusting the linear combination weights.

The composite estimator for the fraction of departures that occur in the interval [τ −

1, τ), τ = 1, . . . , 24 for state i, wave j and mode k is defined as

F̂C
ijk (τ) = wijkF̂

D
ijk (τ) + (1− wijk) F̂M

ijk (τ) ,

where wijk ∈ [0, 1] is a weight further specified below. Note that, while the weight wijk can

in principle depend on τ as well, we will use a single weight for all τ in a small area so that

the composite estimator remains a valid fraction in the sense that
∑24

τ=1 F̂
C
ijk (τ) = 1. The

optimal weight wopt
ijk in this context minimizes MSE(F̂C

ijk (τ)), averaged over τ . Assuming that

the direct estimator F̂D
ijk (τ) is unbiased and that the covariance Cov

(
F̂D
ijk (τ) , F̂M

ijk (τ)
)

= 0,

wopt
ijk =

MSE
(
F̂M
ijk

)
MSE

(
F̂M
ijk

)
+ Var

(
F̂D
ijk

) , (22)

where we denote averaging over τ by removing it from the expressions. The assumption
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that both estimators are uncorrelated is approximately met when the variance of the model-

based estimator is negligible relative to that of the direct estimator. Given the very large

sample size in this application, this is certainly reasonable here (see also Figure 8). Speaking

somewhat loosely, the MSE of the direct estimator is equal to its variance, while that of the

model-based estimator is equal to its bias due to model misspecification. The optimal weight

wopt
ijk therefore trades off the variance of the former and the bias of the latter. This optimal

weight is unknown but will be estimated under a number of simplifying assumptions.

First, we assume that the magnitude of the bias of the model-based estimator averaged

over time is approximately constant across small areas. Second, the variance of the direct

estimator is assumed to be of the form C/nijk, which is reasonable given expression (20)

above. Therefore, for any small area ijk, we estimate MSE
(
F̂M
ijk

)
by

M̂SE(FM) =
1

R

∑
i

∑
j

∑
k

∑
τ

(F̂D
ijk(τ)− F̂M

ijk(τ)
)2

−
F̂D
ijk(τ)

(
1− F̂D

ijk(τ)
)

nijk


where R denotes the total number of cells over which this is computed, and the latter term

inside the sum is the direct estimator of the variance of F̂D
ijk(τ).

The term Var
(
F̂D
ijk

)
in (22) is replaced by the simplified “estimator” V̂

(
F̂D
ijk

)
= 0.25/nijk,

which is the largest possible value for the variance of a proportion. We are using 0.25 in

the numerator instead of the average of the F̂D
ijk(τ)

(
1− F̂D

ijk(τ)
)

over τ , because especially

in small areas with small sample sizes, the F̂D
ijk(τ) were 0 for many of the time intervals,

resulting in very small estimates of Var
(
F̂D
ijk

)
and hence skewing the composite estimator

towards the direct estimator despite the small sample size. Using these estimators, the final

weight for small area ijk is given by

wijk =
M̂SE(FM)

M̂SE(FM) + 0.25/nijk
.

In order to illustrate the effect of the above weighting procedure, Figure 9 shows the
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direct, model-based and composite estimators for two small areas with different sample sizes.

Clearly, when nijk is small, the weighting procedure will give a relatively small weight to the

direct estimator and base the composite estimator primarily on the model-based estimator.

In contrast, when the sample size is large, the composite estimator is very close to the direct

estimator.
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Figure 9: Examples of direct, model-based and composite estimators for the fractions of
departures for two strata combinations. Top plot: stratum with small sample size; bottom
plot: stratum with large sample size.
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3.7 Conclusions

We described Bayesian inference for regression models when the response variable is circular

using the projected normal distribution. By introducing another latent variable, we devel-

oped a new sampler that allowed us to draw from the latent length distribution in a simple

manner speeding dramatically the Gibbs sampler compared to other Gibbs samplers that

make use of rejection methods. We also presented the mean-field variational and Laplace

approximations to the posterior distributions of the parameters in the regression models.

The Laplace approximation explained in the paper (which makes use of the variational ap-

proximation to find the centers) worked exceptionally well, for our simulations and our data,

and is dramatically faster than the Gibbs sampler. In the application to prediction of de-

parture times, we made use of a convex combination of an indirect estimator (based on the

Bayesian model) and a direct estimator (based solely on data in the small area). An obvious

drawback of the current procedure is that the estimated weights to construct the composite

estimators were obtained by somewhat ad hoc methods. While the resulting predictions were

reasonable in terms of trading off goodness of fit and stability, a better approach would avoid

the composite estimation altogether in favor of a more flexible model that can incorporate

features of the observed data such as multi-modality and asymmetry. This is the topic of

future work.

3.8 Supplement: proof of Result 5.

We begin by deriving the moment generating function. We define Mr (t) = E (etr) =

1
C(b)

∫∞
0
r exp

{
−1

2
r2 + r (b+ t)

}
dr. Letting

u = − exp
{
−1

2
r2 + r (b+ t)

}
, we obtain du =

[
r exp

{
−1

2
r2 + r (b+ t)

}
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− (b+ t) exp
{
−1

2
r2 + r (b+ t)

}]
dr. Then,

Mr (t) =
1

C (b)

∫ ∞
0

[
du+ (b+ t) exp

{
−1

2
r2 + r (b+ t)

}
dr

]
=

1

C (b)

[
u (r) |∞0 + (b+ t) exp

{
1

2
(b+ t)2

}∫ ∞
0

exp

{
−1

2
(r − (b+ t))2

}
dr

]
=

1

C (b)

[
1 +
√

2π (b+ t) exp

{
1

2
(b+ t)2

}
Φ (b+ t)

]

where C (b) =
∫∞

0
r exp

{
−1

2
r2 + br

}
dr is equal to the expression in the bracket above with

t = 0, i.e. C (b) = 1 +
√

2π (b) exp
{

1
2

(b)2}Φ (b). To get the mean we take the derivative of

Mr (t) with respect to t and evaluate at t = 0.

E (r) =
dMr (t)

dt
|0 =

√
2π exp

{
1
2
b2
}

Φ (b)

C (b)
+ b

We will now show that 0 < Var (r|θ,µ) < 1. After some algebra and making use of the

moment generating function we obtain

E
(
r2|b
)

= bE (r|b) + 2

and

Var (r|b) = E
(
r2|b
)
− (E (r|b))2

= 2−
√

2π exp
{

1
2
b2
}

Φ (b)

C (b)
E (r|b) .

We will show that
√

2π exp{ 1
2
b2}Φ(b)

C(b)
E (r|b) is greater than 1. Since

√
2π exp

{
1
2
b2
}

Φ (b)

C (b)
E (r|b)− 1 =

(
√

2π exp{ 1
2
b2}Φ(b))

2

C(b)
− 1

C (b)
,

we then need to show that
(
√

2π exp{ 1
2
b2}Φ(b))

2

C(b)
> 1 or equivalently ln

[
(
√

2π exp{ 1
2
b2}Φ(b))

2

C(b)

]
> 0.
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We will first prove it for the case of b < 0. The proof will make use of the following inequality

that can be found in Abramowitz and Stegun (1964, p.298 f.7.1.13). For x > 0,

2

x+
√
x2 + 4

<
√

2π exp

{
1

2
x2

}
Φc (x) ≤ 2

x+
√
x2 + 8

π

where Φc (x) = 1− Φ (x) = Φ (−x). From the above inequality we have that for b < 0

2

|b|+
√
b2 + 4

<
√

2π exp

{
1

2
b2

}
Φ (b) ≤ 2

|b|+
√
b2 + 8

π

(23)

2b

|b|+
√
b2 + 4

>
√

2π exp

{
1

2
b2

}
Φ (b) b ≥ 2b

|b|+
√
b2 + 8

π

(24)

1− 2|b|
|b|+

√
b2 + 4

> 1 +
√

2π exp

{
1

2
b2

}
Φ (b) b ≥ 1− 2|b|

|b|+
√
b2 + 8

π

(25)

ln

[(√
2π exp

{
1
2
b2
}

Φ (b)
)2

C (b)

]

= 2 ln

(√
2π exp

{
1

2
b2

}
Φ (b)

)
− ln

(
1 +
√

2π exp

{
1

2
b2

}
Φ (b) b

)
> 2 ln

(√
2π exp

{
1

2
b2

}
Φ (b)

)
− ln

(
1− 2|b|
|b|+

√
b2 + 4

)
> 2 ln

(
2

|b|+
√
b2 + 4

)
− ln

(
1− 2|b|
|b|+

√
b2 + 4

)
= ln 4− ln

(
|b|+

√
b2 + 4

)
− ln

(√
b2 + 4− |b|

)
= ln 4− ln

[(√
b2 + 4− |b|

)(√
b2 + 4 + |b|

)]
= ln 4− ln 4 = 0.

The inequalities on lines 2 and 3 are obtained by making use of (25) and (23) respectively.
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Now for the case b > 0. We define f (b) =
√

2π exp
{

1
2
b2
}

just for convenience, and

f (b) Φ (b)

C (b)
E (r|b)− 1 =

(f(b)Φ(b))2

C(b)
− 1

C (b)

=
(f (b) Φ (b))2 − 1− f (b) Φ (b) b

(C (b))2

=
(f (b))2 (1− Φ (−b))2 − 1− f (b) b (1− Φ (−b))

(C (b))2

=
(f (b))2 (1− 2Φ (−b))− f (b) b+

[
(f (b) Φ (−b))2 − C (−b)

]
(C (b))2

>
(f (b))2 (1− 2Φ (−b))− f (b) b

(C (b))2

=
(f (b)) [f (b) (1− 2Φ (−b))− b]

(C (b))2 .

The inequality comes from the fact that
(√

2π exp
{

1
2
b2
}

Φ (−b)
)2 − C (−b) > 0, as proved

for the case b < 0. Finally, we show that [f (b) (1− 2Φ (−b))− b] ≥ 0 by showing that it is

monotone with value equal to zero for when b = 0:

d

db

[√
2π exp

{
1

2
b2

}
(1− 2Φ (−b))− b

]
= 1 + (1− 2Φ (−b))

√
2π exp

{
1

2
b2

}
b

> 0,

which completes the proof.

3.9 Supplement: proof of Result 6.

First we note that Algorithm 1 converges to a solution of the following fixed point equation

µ? =
µ0/σ

2
0 +

∑n
i=1 uiE (ri|µ?, data)

n+ 1/σ2
0

,
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where E (ri|µ?, data) = bi+
√

2π
c(bi)

Φ (bi) exp
{

1
2
b2
i

}
with bi = uTi µ

?. Let µ∗c be the cth component

of µ∗ and similarly define µ0,c and ui,c.

µ∗c =
µ0,c/σ

2
0 +

∑n
i=1 ui,cE (ri|µ∗, data)

n+ 1/σ2
0

=

∫ (
µ0,c/σ

2
0 +

∑n
i=1 ui,cri

n+ 1/σ2
0

)
p (r|µ∗, data) dr

=

∫ (
µ0,c/σ

2
0 +

∑n
i=1 ui,cri

n+ 1/σ2
0

)
p (µ∗|r, data) p (r|data)

p (µ∗|data)
dr.

Multiplying by p (µ∗|data) on both sides,

µ∗cp (µ∗|data) =

∫ (
µ0,c/σ

2
0 +

∑n
i=1 ui,cri

n+ 1/σ2
0

)
p (µ∗|r, data) p (r|data) dr

µ∗c

∫
p (µ∗|r, data) p (r|data) dr =

∫ (
µ0,c/σ

2
0 +

∑n
i=1 ui,cri

n+ 1/σ2
0

)
p (µ∗|r, data) p (r|data) dr.

Subtracting µ∗c
∫
p (µ∗|r, data) p (r|data) dr on both sides,

0 = −
∫ (

µ∗c −
µ0,c/σ

2
0 +

∑n
i=1 ui,cri

n+ 1/σ2
0

)
p (µ∗|r, data) p (r|data) dr

and finally multiplying by (n+ 1/σ2
0) on both sides, we obtain

0 =

∫
−
(
n+ 1/σ2

0

)(
µ∗c −

µ0,c/σ
2
0 +

∑n
i=1 ui,cri

n+ 1/σ2
0

)
p (µ∗|r, data) p (r|data) dr

=

∫
∂

∂µc
p (µ∗|r, data) p (r|data) dr

=
∂

∂µc

∫
p (µ∗|r, data) p (r|data) dr =

∂

∂µc
p (µ∗|data) .

The penultimate line results from the fact that p (µ∗|r, data) is a normal density. We

just showed that Algorithm 1 converges to a critical point of p (µ|data) . Following the same

steps but in the opposite direction we can show that every critical point of p (µ|data) is a

solution to the fixed point equation.
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Next we will show that there is only one critical point of p (µ|data), the mode. We

will do this by showing that every critical point of p (µ|data) is a local maximum. To do

this we need to compute the Hessian matrix. For convenience we will define f (µc, r) = µc−
µ0,c/σ2

0+
∑n
i=1 ui,cri

n+1/σ2
0

.We will also notice that f (µ∗c , r) = µ∗c−
µ0,c/σ2

0+
∑n
i=1 ui,cri

n+1/σ2
0

=
[
∑n
i=1 ui,c(E(ri|µ∗,data)−ri)]

2

n+1/σ2
0

.

This last equality is because µ∗c =
µ0,c/σ2

0+
∑n
i=1 ui,cE(ri|µ∗,data)

n+1/σ2
0

. We compute

∂2

∂µ2
c

p (µ∗|data)

=
∂2

∂µ2
c

p (µ|data) |µ∗

=
∂

∂µc

∫
−
(
n+ 1/σ2

0

)
f (µc, r) p (µ|r, data) p (r|data) dr|µ∗

=
(
n+ 1/σ2

0

)2
∫

[f (µ∗c , r)]2 p (µ∗|r, data) p (r|data) dr −
(
n+ 1/σ2

0

)
p (µ∗|data)

=
(
n+ 1/σ2

0

)
p (µ∗|data)

[(
n+ 1/σ2

0

) ∫
[f (µ∗c , r)]2

p (µ∗|r, data) p (r|data)

p (µ∗|data)
dr − 1

]
=
(
n+ 1/σ2

0

)
p (µ∗|data)

[(
n+ 1/σ2

0

)−1
∫

[f (µ∗c , r)]2 p (r|µ∗, data) dr − 1

]
,

where the integral inside the bracket is

∫
[f (µ∗c , r)]2 p (r|µ∗, data) dr

=

∫ ∑
i,j

ui,cuj,c [ri − E (ri|µ∗, data)] [rj − E (rj|µ∗, data)] p (r|µ∗, data) dr

=

∫ n∑
i=1

u2
i,c [ri − E (ri|µ∗, data)] p (r|µ∗, data) dr

=
n∑
i=1

u2
i,cVar (ri|µ∗, data)

<

n∑
i=1

Var (ri|µ∗, data)

< n.
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The inequality is due to Result 5. Thus,

∂2

∂µ2
c

p (µ∗|data) <
(
n+ 1/σ2

0

)
p (µ∗|data)

[
n

n+ 1/σ2
0

− 1

]
< 0.

Now we will compute ∂2

∂µ1∂µ2
p (µ∗|data) . Following similar steps as above:

∂2

∂µ1∂µ2

p (µ∗|data) = p (µ∗|data)

∫ n∑
i=1

ui,1ui,2 [E (ri|µ∗, data)− ri]2 p (r|µ∗, data) dr

= p (µ∗|data)
n∑
i=1

ui,1ui,2Var (ri|µ∗, data) .

To simplify the notation we will write Var (ri|µ∗, data) simply as Var (ri). Finally, the

determinant of the Hessian matrix evaluated at µ∗ is

[p (µ∗|data)]2
[(

n∑
i=1

u2
i,1Var (ri)−

(
n+

1

σ2
0

))( n∑
i=1

u2
i,2Var (ri)−

(
n+

1

σ2
0

))

−

(
n∑
i=1

ui,1ui,2Var (ri)

)2
 .

The second bracket is equal to:

( n∑
i=1

u2
i,1Var (ri)

)(
n∑
i=1

u2
i,1Var (ri)

)
−

(
n∑
i=1

ui,1ui,2Var (ri)

)2

+

(
n+

1

σ2
0

)((
n+

1

σ2
0

)
−

n∑
i=1

Var (ri)

)]
,

and by making use of Result 5 this last quantity is greater than:

(
n∑
i=1

u2
i,1Var (ri)

)(
n∑
i=1

u2
i,1Var (ri)

)
−

(
n∑
i=1

ui,1ui,2Var (ri)

)2

,

which is greater than zero due to the Cauchy-Schwartz inequality. To see this define
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xi = ui,1
√

Var (ri) and yi = ui,2
√

Var (ri). Then, the Cauchy-Schwartz inequality says

(
∑n

i=1 xiyi)
2 ≤ (

∑n
i=1 x

2
i ) (
∑n

i=1 y
2
i ) . We have shown that the determinant of the Hessian

evaluated at the critical point is positive and also shown that the second partial derivative of

p (µ|data) with respect to µc evaluated at the critical point µ∗ is negative. These two facts

together show that every critical point of p (µ|data) is a maximum. Thus, there is only one

critical point, the mode of p (µ|data) .

3.10 Supplement: derivatives to find the Hessian, random sample

case.

∂2

∂µ2
c

logN2

(
µ0, σ

2
0I2

)
= − 1

σ2
0

∂2

∂µ1∂µ2

logN2

(
µ0, σ

2
0I2

)
= 0

∂2

∂µ2
c

logPN2 (θi;µ, I2) = −1 + u2
i,cBi

∂2

∂µ1∂µ2

logPN2 (θi;µ, I2) = ui,1ui,2Bi,

where Bi = 2− Φ(bi)
ϕ(bi)

[
1 + biΦ(bi)

ϕ(bi)

]−1
[

Φ(bi)
ϕ(bi)

[
1 + biΦ(bi)

ϕ(bi)

]−1

+ bi

]
, bi = uTi µ, uTi = (cos θi, sin θi),

and ui,c is the cth component of ui.
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3.11 Supplement: derivatives to find the Hessian, regression case.

∂2

∂µc∂µc′
logPN2

(
θijkl;µijk, I2

)
= −δc,c′ + uijkl,cuijkl,c′Bijkl

∂2

∂mk,c∂mk′,c′
logPN2

(
θijkl;µijk, I2

)
= (−δc,c′ + uijkl,cuijkl,c′Bijkl) δk′k

∂2

∂si,c∂si′,c′
logPN2

(
θijkl;µijk, I2

)
= (−δc,c′ + uijkl,cuijkl,c′Bijkl) δi′i

∂2

∂wj,c∂wj′,c′
logPN2

(
θijkl;µijk, I2

)
= (−δc,c′ + uijkl,cuijkl,c′Bijkl) δj′j

∂2

∂µc∂mk′,c′
logPN2

(
θijkl;µijk, I2

)
= (−δc,c′ + uijkl,cuijkl,c′Bijkl) δk′k

∂2

∂µc∂si′,c′
logPN2

(
θijkl;µijk, I2

)
= (−δc,c′ + uijkl,cuijkl,c′Bijkl) δi′i

∂2

∂µc∂wj′,c′
logPN2

(
θijkl;µijk, I2

)
= (−δc,c′ + uijkl,cuijkl,c′Bijkl) δj′j

∂2

∂mk′,c∂si′,c′
logPN2

(
θijkl;µijk, I2

)
= (−δc,c′ + uijkl,cuijkl,c′Bijkl) δk′kδi′i

∂2

∂mk′,c∂wj′,c′
logPN2

(
θijkl;µijk, I2

)
= (−δc,c′ + uijkl,cuijkl,c′Bijkl) δk′kδj′j

∂2

∂si′,c∂wj′,c′
logPN2

(
θijkl;µijk, I2

)
= (−δc,c′ + uijkl,cuijkl,c′Bijkl) δi′iδj′j

∂2

∂si,c∂si′,c′
log

(
1

2

I∑
j=1

sTj sj + βs

)
= −I ′

(
1
2

∑I
j=1 sTj sj + βs

)
δc,c′δi′i − si,csi′,c′(

1
2

∑I
j=1 sTj sj + βs

)2

∂2

∂wj,c∂wj′,c′
log

(
1

2

J∑
i=1

wT
i wi + βw

)
= −J ′

(
1
2

∑J
i=1 wT

i wi + βw

)
δc,c′δj′j − wj,cwj′,c′(

1
2

∑J
i=1 wT

i wi + βw

)2 ,

where I
′
= I + αs, J

′
= J + αw and δi,i′ is the kronecker delta which is equal to 1 if i equals

i′ and 0 otherwise. The values Bijkl are defined as

Bijkl = 2 − Φ(bijkl)
ϕ(bijkl)

[
1 +

bijklΦ(bijkl)
ϕ(bijkl)

]−1
[

Φ(bijkl)
ϕ(bijkl)

[
1 +

bijklΦ(bijkl)
ϕ(bijkl)

]−1

+ bijkl

]
, where bijkl =

uTijklµijk.
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3.12 Supplement: projected normal identities.

Taking µ as µ = ρ (cosω, sinω), the projected normal density is

f (θ | µ) =
1

2π
exp

(
−1

2
ρ2

)[
1 +

ρ cos (θ − ω) Φ (ρ cos (θ − ω))

ϕ (ρ cos (θ − ω))

]
.

Define P (ρ; θ1, θ2) as

P (ρ; θ1, θ2) =

∫ θ2

θ1

f (φ | µ) dφ,

so that

dP (ρ; θ1, θ2)

dρ
= −ρP (ρ; θ1, θ2) +

1

2π
ρ exp

(
−1

2
ρ2

)∫ θ2

θ1

cos2 (φ− ω) dφ

+
1

2π
exp

(
−1

2
ρ2

)∫ θ2

θ1

cos (φ− ω)
Φ (ρ cos (φ− ω))

ϕ (ρ cos (φ− ω))
dφ

+
1

2π
ρ2 exp

(
−1

2
ρ2

)∫ θ2

θ1

cos3 (φ− ω)
Φ (ρ cos (φ− ω))

ϕ (ρ cos (φ− ω))
dφ.

The last term in the sum can be written as

I3 =
1

2π
ρ2 exp

(
−1

2
ρ2

)∫ θ2

θ1

cos (φ− ω)
(
1− sin2 (φ− ω)

) Φ (ρ cos (φ− ω))

ϕ (ρ cos (φ− ω))
dφ

=
ρ2

2π
exp

(
−1

2
ρ2

)∫ θ2

θ1

cos (φ− ω)
Φ (ρ cos (φ− ω))

ϕ (ρ cos (φ− ω))
dφ

− ρ
2

2π
exp

(
−1

2
ρ2

)∫ θ2

θ1

cos (φ− ω) sin2 (φ− ω)
Φ (ρ cos (φ− ω))

ϕ (ρ cos (φ− ω))
dφ.

Taking u = sin (φ− ω) Φ(ρ cos(φ−ω))
ϕ(ρ cos(φ−ω))

, the second term in I3 becomes

I3,2 =
exp

(
−ρ2

2

)
2π

∫ θ2

θ1

du+
ρ

2π
exp

(
−ρ

2

2

)∫ θ2

θ1

sin2 (φ− ω) dφ

−
exp

(
−ρ2

2

)
2π

∫ θ2

θ1

cos (φ− ω)
Φ (ρ cos (φ− ω))

ϕ (ρ cos (φ− ω))
dφ.
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Substituting all the corresponding integrals into dP (ρ;θ1,θ2)
dρ

, we obtain

dP (ρ; θ1, θ2)

dρ
=

1

2π
exp

(
−1

2
ρ2

)[
sin (θ2 − ω)

Φ (ρ cos (θ2 − ω))

ϕ (ρ cos (θ2 − ω))
−

sin (θ1 − ω)
Φ (ρ cos (θ1 − ω))

ϕ (ρ cos (θ1 − ω))

]
.

This is a differential equation on ρ with initial value P (0; θ1, θ2) = θ2−θ1
2π

Proof of first identity:

Let θ2 − θ1 = π. This implies that sin (θ2 − ω) = − sin (θ1 − ω) and

cos (θ2 − ω) = − cos (θ1 − ω). Hence,

dP (ρ; θ1, θ2)

dρ
= sin (θ2 − ω)

1√
2π

exp

(
−1

2
(ρ sin (θ2 − ω))2

)
so that

P (ρ; θ1, θ2) =

∫
dP (ρ; θ1, θ2)

dρ
dρ+ const.

=

∫
sin (θ2 − ω)

1√
2π

exp

(
−1

2
(ρ sin (θ2 − ω))2

)
dρ+ const.

Letting z = ρ sin (θ2 − ω),

P (ρ; θ1, θ2) =

∫
1√
2π

exp

(
−z

2

2

)
dz + const.

= Φ (ρ sin (θ2 − ω)) + const.

= Φ (−ρ sin (θ1 − ω)) .

The value of the constant is obtained from the initial value P (0; θ1, θ2) = θ2−θ1
2π

= 1
2
. Since

Φ (0) = 1
2
, the value of the constant is zero.

Proof of second identity:
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Let θ2 − θ1 = π
2
. This implies that sin (θ2 − ω) = cos (θ1 − ω) and

cos (θ2 − ω) = − sin (θ1 − ω). Hence,

dP (ρ; θ1, θ2)

dρ
= cos (θ1 − ω)ϕ (ρ cos (θ1 − ω)) Φ (−ρ sin (θ1 − ω))

− sin (θ1 − ω)ϕ (ρ sin (θ1 − ω)) Φ (ρ cos (θ1 − ω)) .

Integrating the first term by parts, taking u = Φ (−ρ sin (θ1 − ω))

and dv = cos (θ1 − ω)ϕ (ρ cos (θ1 − ω)) dρ, gives us

I1 ≡
∫

cos (θ1 − ω)ϕ (ρ cos (θ1 − ω)) Φ (−ρ sin (θ1 − ω)) dρ

= Φ (−ρ sin (θ1 − ω)) Φ (ρ cos (θ1 − ω)) +

+

∫
sin (θ1 − ω)ϕ (ρ sin (θ1 − ω)) Φ (ρ cos (θ1 − ω)) dρ.

Then,

P (ρ; θ1, θ2) =

∫
dP (ρ; θ1, θ2)

dρ
dρ+ const.

= Φ (−ρ sin (θ1 − ω)) Φ (ρ cos (θ1 − ω)) + const.

= Φ (−ρ sin (θ1 − ω)) Φ (ρ cos (θ1 − ω)) .

The value of the constant is obtained from the initial value P (0; θ1, θ2) = θ2−θ1
2π

= 1
4
. Since

Φ (0) Φ (0) = 1
4
, the value of the constant is zero.
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CHAPTER 4

DIRICHLET PROCESS MIXTURE MODELS FOR DIRECTIONAL DATA

Summary

We consider Dirichlet process mixture (DPM) models for directional data using

the projected normal distribution. We show how they can be fit using Markov chain

Monte Carlo (MCMC) methods after the introduction of suitable latent variables. A

large dataset of daily departures of anglers makes the MCMC method infeasible and

thus we explore mean field variational methods. We identify a number of problems

in the application of the mean field variational method for DPM models for circular

data, caused by the poor approximation of the variational approximation to the true

posterior distribution. We propose solutions to those problems by improving the mean

field variational approximation through the use of novel Monte Carlo procedures that

are incorporated into the variational algorithm. The procedures are applied to the

angler departure dataset, where the variational and MCMC methods are compared.

4.1 Introduction

In Hernandez-Stumpfhauser et al. (2011), a Bayesian hierarchical for directional data was

used to obtain model predictions of the daily distributions of the departures of anglers

from fishing sites. The current article will explore a more sophisticated approach that better

handles some of the features often encountered in this type of data, including non-symmetric

distributions and multi-modality.

We begin by briefly reviewing the data analysis context for both articles. We are in-

terested in obtaining predictions of the daily distributions of the departures of recreational

anglers along the coasts of the United States, as a function of the type of fishing trip, its

location and time of the year. These predictions are an input into the estimation procedure
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to estimate recreational fish catch by species and size class used by the U.S. National Marine

Fisheries Service. The data for these estimates are collected by the Marine Recreational

Fisheries Statistics Survey (MRFSS) which consists of two separate and complementary sur-

veys: the Access Point Angler Intercept Survey (APAIS) which collects data on catch at

the fishing site and the Coastal Household Telephone Survey (CHTS) which collects fishing

activity data. The APAIS data are used to estimate average catch per angler trip and the

CHTS data are used to estimate total angler trips. Roughly speaking, the estimated total

catch is obtained as the product of the two previous estimates.

The APAIS consists of two or more stages of sampling with different sampling proba-

bilities. A serious problem with the estimation in the original APAIS was that it did not

incorporate crucial aspects of the sampling design in the estimation, as noted by the US

National Academy of Sciences panel (Sullivan et al. 2006). An unbiased (and unfeasible)

survey estimator of the total ty =
∑

d∈UI

∑
a∈Ud yda for yda = catch characteristic of angler a

on site-day d is given by

t̂y =
∑
d∈sI

∑
a∈sd

yda
πId πa|d

,

where UI denotes the set of all site-days in a domain of interest, Ud denotes the set of all

anglers departing the site during that day, πId > 0 for d ∈ UI is the first-order inclusion

probability of site-days and πa|d > 0 is the probability that angler a on site day d is in-

tercepted by the interviewer. All quantities are known except for πa|d. Even if we assume

that all anglers at the site are equally likely to be selected, so that πa|d = nd/Nd with nd

the intercepted anglers at the site and Nd the total number of anglers, Nd is not observed

because the interviewer is only at the site for a fraction of the 24-hour period.

In order to create APAIS estimates that continue to incorporate weighing to account for

varying inclusion probabilities, t̂y above was replaced by an estimator in which the unknown

πa|d are replaced by model-based estimates. We rewrite πa|d = (nd/N∆d)(F∆d), where ∆d

represents the “slice” of time during which the interviewer visited the site on a given day,

F∆d denotes the fraction of anglers who departed the site during that time slice and N∆d
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represents the number of anglers departing the site during ∆d. The unknown quantity F∆d

will be estimated as a function of type of fishing trip (mode), its location (state) and time

of the year (wave) is the quantity of interest in this paper.

The CHTS collects data on over one million angling trips from a random sample of

anglers. These data contain trip departure times as well as site characteristics, so that they

can be used to estimate F∆d. Hernandez-Stumpfhauser et al. (2011) treated the departure

times data as circular and developed a Bayesian modeling approach that made it possible to

specify and fit regression models for circular data, based on the projected normal distribution

(Presnell et al. 1998). After fitting the regression model to the departure times, they used

composite estimation (Ghosh and Rao, 1994) to predict F∆d for each state-wave-mode “cell.”

While this resulted in reasonable predictions, the composite estimation was somewhat ad hoc

and it was clear that the assumption of a single projected normal distribution for departures

in each cell was not a good model for many cells.

Here in this paper we avoid the composite estimation procedure by considering Bayesian

regression models for mixtures of projected normal distributions. The number of mixture

components is unknown a priori and is to be inferred from the data, which will make it

possible to fit the complicated data patterns present in the data. The clustering property

of Dirichlet processes (DP) provides a nonparametric prior for the number of mixture com-

ponents. The estimation of F∆d is then done by modeling the data in each combination of

state, wave and mode as a sample from mixtures of projected normal distributions whose pa-

rameters follow some regression model. This allows for direct inference on uncertainty about

density estimates, assessment of modality, and inference on the number of components.

We will first develop the model and describe a Gibbs sampler estimation method. How-

ever, due to large sample sizes, this approach will not be feasible for the application of

interest. Hence, we also explore variational methods which are approximations to the pos-

terior distribution based on deterministic algorithms. Finally we find the need to improve

the variational approximations by making use of a sampling scheme that looks similar to a

70



Gibbs sampler.

The remainder of the paper is organized as follows. In section 4.2 we provide basic

background on projected normal distributions and on DP mixture models. In sections 4.3

and 44. we describe the Gibbs sampler and variational algorithms for the case of a random

sample from DP mixture of projected normal distributions, respectively. Section 4.5 discusses

initialization of the variational algorithm, a major issue with the variational estimate, and

improvements of the variational distribution. Section 4.6 presents two regression models and

analysis of the CHTS data, and section 4.7 presents our conclusions.

4.2 Directional data and Dirichlet process mixture models

We first briefly review the projected normal distribution and introduce notation, ignoring

the regression context for now. The directional data point θt, t = 1, . . . , n is drawn from

θt|µ ∼ PNp (µ, Ip) , (26)

with mean vector µ. This means there is a multivariate normal random variable Xt|µ ∼

Np (µ, Ip) and θt is the polar representation of the projection of Xt onto the unit circle (p = 2)

or the unit sphere (p = 3) for circular and spherical data respectively (Mardia and Jupp,

2000, p.46). Here we include the spherical case because it is a natural extension but we will

primarily concerned with the circular case, since that is the case of interest in our data set.

In the circular case θ is one-dimensional with support θ ∈ (0, 2π]. The probability density

function PN2 (µ, I2) can be written as

PN2 (θ;µ, I2) =
1

2π
exp

{
−1

2
µTµ

}[
1 +

uTµΦ
(
uTµ

)
ϕ (uTµ)

]

(Mardia and Jupp, 2000, p.46). The vector u is equal to (cos θ, sin θ)T and the two-

dimensional mean vector µ is the only parameter in PN2 (µ, I2). The spherical case is
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described in Supplement 4.7.

If the data points θt come from a mixture of projected normals, we allow for different

mean vectors µt. When the means µt come from some uncertain prior distribution G (·) on

Rp and G (·) is modeled as a Dirichlet process, then the Xt come from a Dirichlet mixture

of Normals (Escobar and West, 1995), and hence the θt come from a Dirichlet mixture of

Projected Normals. The Dirichlet process DP (α,G0) is a distribution over distributions

(Ferguson, 1973). It has two parameters, a scaling parameter α > 0 and a base distribution

G0. The discreteness of the DP makes it suitable for the problem of placing priors on mixture

components. A few examples of application areas in which DP models have been used are

density estimation (Escobar and West, 1995), document modeling and genetics (Teh et al.

2004) and image analysis (Blei and Jordan, 2006).

In the remainder of this section, we give the definition of a Dirichlet process and two of its

most common representations, the Polya urn and stick-breaking representations. The Gibbs

sampler will be based on the Polya urn representation, while the variational approximations

we will work with in later sections will be based on truncated stick-breaking representations.

Using the terminology of Ferguson (1973), let Ω be a set, and F a σ- field of subsets of

Ω. Let G0 be a finite, nonnull, nonnegative, finitely additive measure on (Ω,F). We say

a random probability measure G on (Ω,F) is a Dirichlet process on (Ω,F) with param-

eter G0, if for every k = 1, 2, . . . and measurable partition B1, B2, . . . , Bk of Ω, the joint

distribution of the random probabilities (G (B1) , . . . , G (Bk)) is Dirichlet with parameters

(G0 (B1) , . . . , G0 (Bk)). Suppose we draw a random measure G from a Dirichlet Process

DP (α,G0), and independently draw n random variables µt from G, t = 1, 2, . . . , n. Then

marginalizing out the random measure G, the joint distribution of {µ1, . . . ,µn} follows a

Polya urn scheme (Blackwell and MacQueen, 1973),

µt|µ(t) ∼ α

α + t− 1
G0 (µt) +

1

α + t− 1

n∑
j=1,j 6=t

δµj (µt) (27)
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where δµj (µ) denotes a unit point mass at µ = µj and µ(t) =
{
µ1, . . . ,µt−1,µt+1 . . . ,µn

}
.

Thus, a draw from µt|µ(t) is a draw from G0 with probability α
α+t−1

and with probability

1
α+t−1

a uniform draw from
{
µ1, . . . ,µt−1,µt+1 . . . ,µn

}
.

Sethuraman (1994) provides a characterization of the DP in terms of a stick-breaking con-

struction. Consider two infinite collections of independent random variables vi ∼ Beta (1, α)

and µi ∼ G0 for i = 1, 2, . . .. Then,

πi (v) = vi

i−1∏
j=1

(1− vj)

G (·) =
∞∑
i=1

πi (v) δµi (·)

The stick-breaking representation of the DP makes it clear that G is discrete with a support

consisting of a countably infinite set of atoms, drawn independently from G0. The pro-

portions πi (v) are constructed by successively breaking a unit length stick. The “breaks”

{v1, v2 . . .} are independent draws from Beta (1, α) .

4.3 Estimation using Gibbs sampling

In this section, we assume that the data are a random sample from a DP mixture of projected

normal distributions. Marginalizing out the random distribution G (·) the mean vectors

follow a Polya urn scheme (27). If the base distribution is normally distributed, G0 =

Np (µ0, Ip), the full conditionals required for the Gibbs sampler are

(
µt|µ(t), r,θ

)
∼ q0Gt (µt) +

n∑
j=1,j 6=t

qjδµj (µt)

p (rt|µ,θ) ∝ rp−1
t exp

(
−1

2
r2
t + uTµtrt

)
, (28)

where rt denotes the length of the bivariate normal vector xt, µ and µ(t) are defined as

in Equations (26) and (27), Gt (µt) = Np

(
1
2

(xt + µ0) , 1
2
Ip
)
, q0 ∝ αNp (xt;µ0, 2Ip) and
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qj ∝ Np

(
xt;µj, Ip

)
and xt = rtut. By Np

(
xt;µj,Wp

)
, we denote the p-variate normal

density with parameters (µj,Wp) evaluated at xt, and by Np

(
µj,Wp

)
we mean the p-

variate normal distribution with parameters µj,Wp. Thus, with probability proportional to

q0,
(
µt|µ(t), r,θ

)
is a draw from Gt and with probability proportional to qj is equal to µj

for j = 1, . . . , t− 1, t+ 1, . . . , n.

Draws from p (rt|µ,θ) can be obtained via Metropolis-Hastings, adaptive rejection sam-

pling or by making use of the efficient sampler proposed in Hernandez-Stumpfhauser et al.

2011. This last one is the fastest and we briefly describe it next. Defining b = uTµ, the

distribution of the latent length is

p (r|µ, θ) ∝ rp−1 exp

(
−1

2
(r − b)2

)
. (29)

We introduce the latent variable Y which has joint density with r given by

p (r, y|µ, θ) ∝ rp−1I(0,exp{− 1
2

(r−b)2}) (y) I(0,∞) (r) .

Then, the full conditionals are

(Y |R = r,µ, θ) ∼ U

(
0, exp

{
−1

2
(r − b)2

})
p (r|Y = y,µ, θ) ∝ rp−1I(b+max{−b,−√−2 ln y},b+√−2 ln y) (r) , (30)

where this last one is very easy to sample from using the inverse cdf technique. Thus we

draw yt ∼ U
(
0, exp

{
−1

2
(rt − bt)2}) and independently we draw ut ∼ U (0, 1) . Finally we

get a draw rt by letting rt = p

√(
rp2,t − r

p
1,t

)
ut + rp1,t, where r1,t = bt + max

{
−bt,−

√
−2 ln yt

}
and r2,t = bt +

√
−2 ln yt.

We can also include prior distributions for the parameters in the Dirichlet Process

DP (α,G0 = Np (µ0, Ip)). Suppose µ0 ∼ Np

(
m,σ2

µIp
)

and following Escobar and West

(1995), α ∼ Gamma(a, b). Given µ1, . . . ,µn, µ0 is conditionally independent of θt (t = 1, . . . , n)

74



and depends only on the distinct values µ∗1, . . . ,µ
∗
k of µ1, . . . ,µn. The full conditional

for µ0 is Normal with mean
[
k + 1

σ2
µ

]−1 [
m
σ2
µ

+
∑
µ∗j

]
and variance

[
k + 1

σ2
µ

]−1

Ip . If α ∼

Gamma(a, b) where b is the rate parameter, Escobar and West (1995) also show that the full

conditional for α is the marginal distribution from a joint distribution for α and a continuous

quantity η such that p (α, η|k) ∝ p (α)αk−1 (α + n) ηα (1− η)n−1 for α > 0 and 0 < η < 1.

Making use of the auxiliary variable η, the conditional distribution of α is a mixture of two

gamma densities

p (α|η, k) = πηG (α; a+ k, b− log η) + (1− πη) G (α; a+ k − 1, b− log η)

with weight πη defined by πη/ (1− πη) = (a+ k − 1) / {n (b− log η)}. The distribution of η

conditioned on α and k is a beta distribution

p (η|α, k) = Beta (η;α + 1, n) .

The Gibbs sampler based on the full conditionals described above can not change the

µ for more than one observation simultaneously, making the convergence to the posterior

distribution slow (Neal, 2000). However, resampling µ∗j conditional on the configuration of

all other parameters is straightforward (MacEachern and Muller, 1998). For a fixed j, the full

conditional for µ∗j is the posterior distribution in the simple Bayesian model xt ∼ Np

(
µ∗j , Ip

)
and µ∗j ∼ G0 = Np (µ0, Ip), or

(
µ∗j |·

)
∼ Np

([
1

nj + 1

][
µ0 +

nj∑
s=1

xs

]
,

[
1

nj + 1

]
Ip

)
,

where nj are the number of observations associated to µ∗j , j = 1, . . . , k, t = 1, . . . , n and by

(µ∗|·) we mean µ∗ conditioned on the value of all other parameters.

In our application, the quantity of interest is the predictive distribution, i.e. the distri-

bution of a new observation given the data. Let µ = {µ1, . . . ,µn}, µn+1 be the (new) mean
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of a new observation θn+1 and θn be the data. Conditioned on µ and θn, the distribution of

a new observation is independent of the data, i.e. p (θn+1|µ,θn) = p (θn+1|µ), which may be

evaluated as
∫
p
(
θn+1|µn+1

)
dP
(
µn+1|µ

)
, where

p
(
θn+1|µn+1

)
= PNp

(
θn+1;µn+1, Ip

)
p
(
µn+1|µ

)
= αanG0

(
µn+1

)
+ an

n∑
t=1

δµt
(
µn+1

)
. (31)

Thus, we need to evaluate an integral of the form
∫

PNp (θ;η, Ip) Np (η;µ0, Ip) dη and this

can be done relatively easily by making use of the joint distribution of r and θ, p (r, θ|η) =

rp−1Np (ru;η, Ip). Hence, the predictive distribution for a new observation requires comput-

ing an integral of the form
∫

PNp (θ;η, Ip) Np (η;µ0, Ip) dη =
∫ ∫

[rp−1Np (ru;η, Ip)

Np (η;µ0, Ip)] dηdr. Integrating first with respect to η gives a normal distribution with mean

µ0 and variance equal to 2Ip. Integrating secondly with respect to r gives a projected normal

density PNp (θ;µ0, 2Ip) which is equivalent to a projected normal density PNp

(
θ; µ0√

2
, Ip

)
.

The predictive distribution can be approximated as follows

p (θn+1|θn) =

∫
p (θn+1|µ, α,µ0) dP (µ, α,µ0|θn)

≈ N−1

N∑
i=1

p (θn+1|µ(i), α(i),µ0(i)) ,

where p (θn+1|µ(i), α(i),µ0(i)) = α(i)an(i)PNp (µ0(i), 2Ip)+an(i)
∑n

t=1 PNp (µt(i), Ip), an(i) =

1/ (α(i) + n) and µ(i), α(i),µ0(i) denotes the ith draw of the Gibbs sampler after conver-

gence from a total of N draws.

In the above set-up, we fix the variance in the base distribution to be 1. For a single

projected normal distribution, it is easy to see that PNp (µ, σ2Ip) is the same as the dis-

tribution PNp (µ/σ, Ip). While this is not true in the mixture context, the Gibbs sampler

exhibited non-stationarity when we tried to include a random σ2 in the base distribution.

The choice σ2 = 1 in the base distribution is somewhat arbitrary, and actually if we use
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Figure 10: Simulated data and density estimates for spherical and circular cases. The sphere
on the left represents the density of a mixture of 3 Projected Normal distributions from
which a sample of size 300 was obtained. The sphere on the right represents the estimate of
the density and the black dots are the data. The histogram is a random sample of size 200
from a mixture of two Projected Normal distributions. The light curve is the true density
and the dark curve is the estimate.

the truncated stick-breaking representation, the variance in the base distribution seems to

matter. The choice σ2 = 1 led to reasonable fits, however, and hence we did not explore

further fine-tuning of this parameter.

The Gibbs sampler based on all of the full conditionals described above will be referred

as Algorithm III. Figure 10 shows predictive distributions obtained via the Gibbs sampler,

for simulated spherical and circular data. The Gibbs sampler works very well and is easy to

implement. A major problem with the Gibbs sampler is that if data sets are large, as in the

application we consider in this article, it takes a long time to run or is even impossible to run.

In the next section, we explore variational Bayes methods which are fast approximations to

the posterior distribution. From now on we will focus on circular data (p = 2) although the

case for spherical data (p = 3) would be treated in the same exact way.
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4.4 Mean field variational Bayes approximation

Variational methods involve approximations to marginal or posterior distributions in terms

of an optimization problem (Ghahramani and Beal, 2001; Opper and Saad, 2001; Wainwright

and Jordan, 2003). Mean-field methods are based on minimizing the Kullback-Leibler (KL)

divergence with respect to a variational distribution (Ormerod and Wand, 2010). The KL

divergence between distributions q(·) and p (·|y) is defined as
∫
q (w) log

{
q(w)
p(w|y)

}
dw, which is

greater or equal to zero for all densities q and equal to zero if and only if q (w) = p (w|y). Con-

sider a model with parameters w and observations y. Tractability is achieved by restricting

q(·) to a more manageable class of densities and then minimizing the KL divergence be-

tween q(·) and p(·|y) over that class. The usual restriction for the q(·) density is that q (w)

factorizes into
∏
qi (wi) for some partition {w1, . . . , wM} of w.

It can be shown that the solutions to the KL minimization satisfy (Ormerod and Wand,

2010):

qi (wi) ∝ exp {E−wi log p (wi|y,w−i)} ,

where w−i is w without component wi and E−wi denotes expectation with respect to the

density
∏

j 6=i qj (wj). Generally, the following iterative scheme is used to solve for qi: initialize

q1, q2, . . . , qM and then cycle

q1 (w1) ∝ exp {E−w1 log p (w1|y,w−1)}
...

qM (w1) ∝ exp {E−wM log p (wM |y,w−M)} (32)

until the increase of a quantity called the lower bound p (y, q) = exp
[
Eq log p(y,w)

q(w)

]
is neg-

ligible. The expectation in the lower bound is with respect to the variational distribution.

Minimizing the KL divergence is equivalent to maximizing the lower bound, and working

with the lower bound is easier than working with the KL divergence. Convergence to at least
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local optima is guaranteed (Boyd and Vandenberghe, 2004). If conjugate priors are used,

the qi are part of recognizable families and updating qi reduces to updating the parameters

in such families.

The variational distribution proposed here is similar to the one proposed by Blei and

Jordan (2006), which makes use of the stick-breaking representation of the Dirichlet pro-

cess, briefly introduced in Section 4.2. A more complete description of the stick-breaking

representation of the Dirichlet process mixture model for projected normal data is as follows:

1. Draw Vi|α ∼ Beta (1, α) , i = {1, 2, . . .}

2. Draw ηi|G0 ∼ G0, i = {1, 2, . . .}

3. For the tth data point:

(a) Draw Zt| {v1, v2, . . .} ∼ Mult (π (v))

(b) Draw Xt|zt ∼ N2

(
ηzt , I2

)
(c) Observe θt

where G0 = N2 (µ, I2), πi (v) = vi
∏i−1

j=1 (1− vj) and θt is the angle in the polar representation

of Xt = rt (cos θt, sin θt)
T .

As in Blei and Jordan (2006), we consider truncated stick-breaking representations as a

family of variational distributions that approximates the distribution of the infinite-dimensional

random measure G, where the random measure is expressed in terms of the infinite sets

V = {V1, V2, . . .} and η = {η1,η2, . . .}. This is done by selecting a value L and letting

q (vL = 1) = 1; this implies that the mixture proportions πi (v) are equal to zero for i > L.

The truncation level L is a variational parameter and can be set freely. The proposed

factorized family of variational distributions we consider here is

q (v,η, r, z) =
L−1∏
i=1

q (vi)
L∏
i=1

q (ηi)
n∏
t=1

q (rt)
n∏
t=1

q (zt) , (33)
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where we have written q (vi) as a shorthand for qvi (vi) and the same for all other parameters.

We will continue with this shorthand notation whenever it does not lead to confusion as to

which term in the variational approximation is being referred to.

To apply the iterative algorithm based on (32), we need to find the full conditionals

p (vi|·), p (ηi|·), p (rt|·), p (zt|·), which are given by

p (vi|·) = Beta

(
vi;

n∑
t=1

zit + 1,
n∑
t=1

∞∑
j=1

zi+jt + α

)

p (ηi|·) = N2

(
ηi;

[
1

1 +
∑
zit

] [
µ+

n∑
t=1

zitrtut

]
,

[
1

1 +
∑
zit

]
I2

)

p (rt|·) ∝ rt exp

{
−1

2
r2
t + rtu

T
t ηzt

}
p
(
zit = 1|·

)
∝

[
vi

i−1∏
j=1

(1− vj)

]
exp

{
−1

2
(rtut − ηi)

T (rtut − ηi)
}
.

Applying the general iterative algorithm in (32), the variational distribution q (vi) must

satisfy q (vi) ∝ exp {E−vi log p (vi|·)} and similarly for the variational distributions of all

other parameters. Thus the variational distributions must satisfy

q (vi) = Beta

(
vi;

n∑
t=1

E
(
zit
)

+ 1,
n∑
t=1

L∑
j=i+1

E
(
zjt
)

+ α

)
(34)

q (ηi) = N2

(
ηi;

[
1

1 +
∑

E (zit)

][
µ+

n∑
t=1

E
(
zit
)

E (rt) ut

]
,

[
1

1 +
∑

E (zit)

]
I2

)

q (rt) ∝ rt exp

{
−1

2
r2
t + rtu

T
t

L∑
i=1

E (ηi) E
(
zit
)}

q
(
zit = 1

)
∝ exp

{
E (log (vi)) +

i−1∑
s=1

E (log (1− vs))−
1

2
E
(
‖ ηi ‖2

)
+ E (rt) uTt E (ηi)

}
,

where all expectations are with respect to the variational distribution (33). The algorithm,

which we will refer to as Algorithm 3, is shown on the next page.

An update of these expectations is equivalent to an update of the variational distributions

q (vi) , q (ηi) , q (rt) , q (zit = 1). We keep updating these expectations until the increase of the
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Algorithm 3 Iterative scheme for obtaining the parameters in the variational distributions
in (34). The Ψ denotes the digamma function and Φ the cdf of standard normal.

Initialize E (zit) and E (ηi) for i = 1, 2, . . . , L and t = 1, 2, . . . , n

γi,1 ← 1 +
n∑
t=1

E
(
zit
)

γi,2 ←
n∑
t=1

L∑
j=i+1

E
(
zjt
)

+ α

E (log (vi)) ← Ψ (γi,1)−Ψ (γi,1 + γi,2)

E (log (1− vs)) ← Ψ (γi,2)−Ψ (γi,1 + γi,2)

bt ← uTt

L∑
i=1

E (ηi) E
(
zit
)

C (bt) ← 1 +
√

2πbt exp
(
b2
t/2
)

Φ (bt)

E (rt) ←
√

2π

C (bt)
exp

(
b2
t/2
)

Φ (bt) + bt

E (ηi) ←
[

1

1 +
∑

E (zit)

][
µ+

n∑
t=1

E
(
zit
)

E (rt) ut

]

E
(
η2
i1

)
←

[
1

1 +
∑

E (zit)

]
+ [E (ηi1)]2

E
(
η2
i2

)
←

[
1

1 +
∑

E (zit)

]
+ [E (ηi2)]2

E
(
zit
)
∝ exp

{
E (log (vi)) +

i−1∑
s=1

E (log (1− vs))−
1

2
E
(
‖ ηi ‖2

)
+

E (rt) uTt E (ηi)

}

lower bound is negligible. The lower bound needs to be computed at the end of each iteration

and its values should be monotonically increasing.

We now discuss the computation of the lower bound in more detail for the specific model

we are considering here. The log lower bound log p (θ, q) = Eq log p(θ,r,η,v,z)
q(r,η,v,z)

can be written
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as follows

Eq log
p (θ, r,η,v, z)

q (r,η,v, z)
= Eq log

p (θ, r|η, z) p (z|v) p (η) p (v)

q (r) q (η) q (v) q (z)

= Eq log
p (θ, r|η, z) p (z|v)

q (z)
− Eq log q (r) + Eq log

p (η)

q (η)
+

Eq log
p (v)

q (v)
.

Using the fact that the joint distribution of r and θ given all other parameters is p (r,θ|η, z) =∏n
t=1 rtN2

(
rtut;

∑L
i=1 z

i
tηi, I2

)
, the first and second terms in log p (θ, q) are

Eq log
p (θ, r|η, z) p (z|v)

q (z)
− Eq log q (r) = −n log 2π +

n∑
t=1

log
L∑
i=1

exp {Sti}

+
n∑
t=1

log C (bt)−
n∑
t=1

Eq (rt) bt

where Sti = Eq log (vi)+
∑i−1

s=1 Eq (log (1− vs))− 1
2
Eq (‖ ηi ‖2)+Eq (rt) uTt Eq (ηi). The third

and forth terms involve standard computations

Eq log
p (η)

q (η)
= L−

L∑
i=1

varq (ηi) +
L∑
i=1

log varq (ηi)−
1

2

L∑
i=1

(Eq (ηl)− µ)T (Eq (ηl)− µ)

Eq log
p (v)

q (v)
= (L− 1) logα + α

L−1∑
i=1

Eq log (1− vi)−
L−1∑
i=1

log Γ (γi,1 + γi,2) +
L−1∑
i=1

log Γ (γi,1)

+
L−1∑
i=1

log Γ (γi,2)−
L−1∑
i=1

(γi,1 − 1) Eq log (vi)−
L−1∑
i=1

γi,2Eq log (1− vi) ,

where Γ denotes the gamma function and γi,1, γi,2 defined as above.

The parameters α and µ play a strong role in the allocation of subjects to the mixture

components. To allow for unknown α and µ so that their values can be determined inside
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the model estimation rather than fixed a priori, we choose the priors

p (α) = Gamma (α; a,B)

p (µ) = N2

(
µ; 0, σ2

0I2

)
,

where B is the rate parameter and σ2
0 is a large number. The full conditionals and variational

distributions for α and µ are then

p (α|·) = Gamma

(
α; a+ L− 1, B −

L−1∑
i=1

log (1− vi)

)

q (α) = Gamma

(
α; a+ L− 1, B −

L−1∑
i=1

Eq log (1− vi)

)

p (µ|·) = N2

(
µ;

[
1

L+ 1
σ2
0

][
L∑
i=1

ηi

]
,

[
1

L+ 1
σ2
0

]
I2

)

q (µ) = N2

(
µ;

[
1

L+ 1
σ2
0

][
L∑
i=1

Eq (ηi)

]
,

[
1

L+ 1
σ2
0

]
I2

)
.

The parameters of the variational distributions q (α) , q (µ) can be easily updated by includ-

ing them in Algorithm 3. The update of γi,2,E (α) ,E (µ) ,E (ηi) become

E (α) ← a+ L− 1

B −
∑L−1

i=1 E log (1− vi)

γi,2 ←
n∑
t=1

L∑
j=i+1

E
(
zjt
)

+ E (α)

E (µ) ←

[
1

L+ 1
σ2
0

][
L∑
i=1

E (ηi)

]

E (ηi) ←
[

1

1 +
∑

E (zit)

][
E (µ) +

n∑
t=1

E
(
zit
)

E (rt) ut

]
.

The variance in q (µ) has the undesirable property that it can be made arbitrarily small by

making L large. Nevertheless, this is still preferable to picking a fixed value for µ. After
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allowing α and µ to be random, the log lower bound becomes

Eq log
p (θ, r,η,v, z,µ, α)

q (r,η,v, z,µ, α)
= Eq log

p (θ, r|η, z) p (z|v) p (η|µ) p (v|α) p (µ) p (α)

q (r) q (η) q (v) q (z) q (µ) q (α)

= Eq log
p (θ, r|η, z) p (z|v)

q (z)
− Eq log q (r) + Eq log

p (η|µ)

q (η)
+

+Eq log
p (v|α) p (α)

q (v) q (α)
+ Eq log

p (µ)

q (µ)
.

The first and second terms are as before and the third, fourth and fifth terms become

Eq log
p (η|µ)

q (η)
= L−

L∑
i=1

varq (ηi) +
L∑
i=1

log varq (ηi)

−1

2

L∑
i=1

(Eq (ηl)− Eqµ)T (Eq (ηl)− Eqµ)

Eq log
p (v|α) p (α)

q (v) q (α)
= a logB − log Γ (a)−

L−1∑
i=1

log Γ (γi,1 + γi,2) +
L−1∑
i=1

log Γ (γi,1) +

+
L−1∑
i=1

log Γ (γi,2)−
L−1∑
i=1

(γi,1 − 1) Eq log (vi)−
L−1∑
i=1

γi,2Eq log (1− vi) +

+ log Γ (a+ L− 1)− (a+ L− 1) log

(
B −

L−1∑
i=1

Eq log (1− vi)

)

Eq log
p (µ)

q (µ)
= 1 + log

varq (µ)

σ2
0

− 1

2σ2
0

Eq

(
µTµ

)
.

Under the factorized variational approximation to the posterior distribution, the predic-

tive distribution is approximated by a product of expectations,

p (θn+1|θ) =

∫ ( ∞∑
i=1

πi (v) p (θn+1|ηi)

)
dP (ν,η|θ) (35)

≈
L∑
i=1

Eq [πi (ν)] Eq [p (θn+1|ηi)] (36)

=
L∑
i=1

Eq [πi (ν)] PN2

(
θn+1; Eq (ηi) ,

[
1 + varqηi,1

]
I2

)
, (37)

where Eq [πi (ν)] = Eq (vi)
∏i−1

s=1 Eq (1− vs), varqηi,1 is the variance parameter in q (ηi) and
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the expectation Eq [p (θn+1|ηi)] which can be computed as the integral
∫

[PN2 (θn+1;ηi, I2)

N2

(
ηi; Eq (ηi) ,

[
varqηi,1

]
I2

)]
dηi equals a projected normal distribution PN2 (θn+1; Eq (ηi) ,[

1 + varqηi,1
]
I2

)
. This last integral is computed in the same way as we did for the predictive

distribution when using the Gibbs sampler (31).

The variational algorithm is sensitive to initial values for the case of mixtures of normal

distributions (Blei and Jordan, 2006) and even more sensitive to initial values in our case of

mixtures of projected normal distributions. We observed that when the “circular variance”

(defined as 1− R̄ where R̄ is the length of the average vector 1
n

∑n
i=1 (cos θi, sin θi)

T ) is mod-

erate to large, the variational distribution that maximizes the lower bound gives predictive

distributions that are unimodal even when it is clear the presence of multiple modes, which

defeats the purpose of having a mixture model. In the next section, we explain in more

detail this major issue as well as some other computation aspects we had to deal with, and

we propose solutions for them.

4.5 Initialization, fitting and improvement of the variational dis-

tribution

We applied the re-ordering step of Kurihara et al. (2006) in our implementation of the

iterative algorithm. As noted by these authors, the algorithm operates in a space where

component labels are distinguishable, which means that if we permute the labels, the total

probability of the data changes. Since the average a priori mixture weights of the components

are ordered by their size, the optimal labeling of the a posteriori variational components is

also ordered according to cluster size. This is incorporated in the algorithm as a re-ordering

step of components according to approximate size after each iteration of the algorithm.

When we implemented this, the lower bound indeed increased significantly compared to the

leaving the components unordered.

As noted in Section 4.4, the algorithm is also very sensitive to initial values. Next we

show some of the initial values we chose and a big issue with one of the fits. We initialize
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the variational distribution by making a histogram with number of bins equal to L. We

treat the data in each one of the bins as being a random sample of size ni from a projected

normal distribution PN2 (η∗i , I2) and we estimate η∗i using its posterior mean for i = 1, . . . , L.

Hernandez-Stumpfhauser et al. (2011) show how to get the posterior mean for a projected

normal random sample via variational methods and we also provide an algorithm on how

to do this in Supplement 4.8.1. We then initialize the variational parameters as follows:

E (zit) ∝ ni if θt is in bin i and E (zit) ∝ mt if θt is not in bin i for some number mt. We set

the means of the ηs equal to the posterior means E (ηi) ← E (η∗i |data in bin i) and we let

E (α) = 1 and E (µ) = 0.

We choose different initializations of the algorithm by varying the mt values and select

the variational distribution that gives us the highest lower bound, as is recommended in the

literature (Ormerod and Wand, 2010). A big issue arises when the circular variance of the

data has a moderate to large value. The unimodal fit, obtained by initializing the algorithm

with all the E (zit) equal to each other and all the E (ηi) equal to each other, seems to have

the highest value of the lower bound even when it is clear from the histograms that the data

exhibit multiple modes. To show this issue, in Figure 11, we generate data from a mixture of

three projected normal distributions for three different values of the mean components µ1 =

ρ (0, 1.5)T ,µ2 = ρ (0,−1.7)T ,µ3 = ρ (−2, 0)T with proportions π1 = 0.5, π2 = 0.2, π3 = 0.3

respectively. From left to right we changed the value of ρ = 2, 1.5, 1. The truncation level L

was set constant for all fits at L = 13. We see that when ρ = 2 (small circular variance) the

log lower bound for the multimodal fit (-344.14) is greater than the one for the unimodal

fit (-432.49). When ρ = 1.5, the multimodal fit continues to dominate, but the difference in

the log lower bounds is reduced (-408.78 vs. -439.69). At the other extreme, the log lower

bound for the multimodal fit (-467.01) when ρ = 1 (larger circular variance) is less than the

one for the unimodal fit (-451.06), even though we can clearly see the presence of 3 modes.

This problem is caused by the relatively poor approximation to the true posterior of the

variational distribution. We investigated a number of approaches to improve the variational
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Figure 11: Histograms of simulated data and variational approximations to the predictive
density for 3 different mixture models. Each data set is generated from a different mix-
ture of 3 projected normal distributions with mean components µ1 = ρ (0, 1.5)T ,µ2 =
ρ (0,−1.7)T ,µ3 = ρ (−2, 0)T with proportions π1 = 0.5, π2 = 0.2, π3 = 0.3 respectively.
From left to right we changed the value of ρ = 2, 1.5, 1. Top and bottom rows display multi-
modal and unimodal fits respectively due to different initial values. Solid lines are the true
densities and dashed lines are the predictive distributions via the variational approximation.

distribution, starting with alternative factorizations. This did not lead to tractable solutions,

however, and was not further pursued. Another approach we investigated took advantage

of fact that the predictive distributions (37) do not depend on z nor depend on r. For

this reason, after running Algorithm 3 we estimated marginal lower bounds log p (θ, q) =
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Eq log p(θ,η,v)
q(η,v)

via Montecarlo methods. We noticed that this approach led us to choose the

multi-modal predictive distribution over the unimodal one in some cases but not all. We

finally solved this poor approximation issue by using a set of sequential improvements that

can be applied to arbitrary variational distributions. These improvements are derived in the

following three results, which appear to be new.

Result 7. Assume y and (a, b)T are continuous random vectors and p (y, a, b) its joint den-

sity function. Let q0(a, b) be an arbitrary density function over {(a, b)} and let q1 (a, b) =

p (a|y, b) q0 (b). Then, log p (y; q1) ≥ log p (y; q0).

log p (y; q1) = Eq1(a,b) log
p (y, a, b)

q1 (a, b)

= Eq1(a,b) log
p (y, a|b) p (b)

p (a|y, b) q0 (b)

= Eq1(a,b)

[
log

p (y, a|b)
p (a|y, b)

+ log
p (b)

q0 (b)

]
= Eq1(a,b) log

p (y, a|b)
p (a|y, b)

+ Eq1(a,b) log
p (b)

q0 (b)

=

∫ [∫
log

p (y, a|b)
p (a|y, b)

p (a|y, b) da
]
q0 (b) db+ Eq1(b) log

p (b)

q0 (b)

≥
∫ [∫

log
p (y, a|b)
q0 (a|b)

q0 (a|b) da
]
q0 (b) db+ Eq0(b) log

p (b)

q0 (b)

= Eq0(a,b) log
p (y, a|b)
q0 (a, b)

+ Eq0(a,b) log
p (b)

q0 (b)

= Eq0(a,b) log
p (y, a, b)

q0 (a, b)

= log p (y; q0)

Result 8. Assume y and (a, b)T are continuous random vectors and p (y, a, b) its joint density

function and let q0(a, b) be an arbitrary density function over {(a, b)}. Then, Eq(a,b) log p(y,b)
q(b)
≥

Eq(a,b) log p(y,a,b)
q(a,b)

.
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Let q1 (a, b) = p (a|y, b) q (b). Using Result 7 we have that

Eq(a,b) log
p (y, a, b)

q (a, b)
≤ Eq1(a,b) log

p (y, a, b)

q1 (a, b)

= Eq1(a,b) log
p (a|y, b) p (y, b)

p (a|y, b) q (b)

= Eq1(a,b) log
p (y, b)

q (b)

= Eq(a,b) log
p (y, b)

q (b)

Result 9. Assume y and (a, b)T are continuous random vectors and p (y, a, b) its joint density

function. Let q0 (a, b) be an arbitrary density function. Let q1 (a, b) = p (a|y, b) q0 (b) and let

q2 (a, b) = p (b|y, a) q1 (a). Then, log p (y; q2) ≥ log p (y; q1).

log p (y; q2) = Eq2(a,b) log
p (y, a, b)

q2 (a, b)

= Eq2(a,b) log
p (b|y, a) p (y, a)

p (b|y, a) q1 (a)

= Eq2(a,b) log
p (y, a)

q1 (a)

=

∫ ∫
log

p (y, a)

q1 (a)
p (b|y, a) q1 (a) dbda

=

∫
log

p (y, a)

q1 (a)
q1 (a) da

=

∫ ∫
log

p (y, a)

q1 (a)
q1 (b|a) q1 (a) dbda

=

∫ ∫
log

p (y, a)

q1 (a)
q1 (a, b) dbda

= Eq1(a,b) log
p (y, a)

q1 (a)

≥ Eq1(a,b) log
p (y, a, b)

q1 (a, b)

The last inequality follows from Result 8.

Our first improvement is based on Results 7 and 8. Letting q0 (a, b) as the variational
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fit with b = {z,µ, α} and a = {v,η}, we consider the improvement q1 (v,η, z,µ, α) =

p (v|z, α) p (η|θ, z,µ) q0 (z,µ, α) based on Result 7. The distribution p (η|θ, z,µ) is not

available in closed form but it can be very well approximated by a Laplace approximation

(see Hernandez-Stumpfhauser et al. 2011). Notice that we could have included the latent

lengths r in the vector b and there would have been no need of the Laplace approximation

but by marginalizing over the latent lengths we improve the lower bound (Result 8). The

approach is then to get a sample of size N from q1 (v,η, z,µ, α). We do this as follows:

• Obtain q (µ) q (α)
∏n

t=1 q (zt) by making use of Algorithm 3

• Get a sample of size N from q0 (z,µ, α) = q (µ) q (α)
∏n

t=1 q (zt)

• For each draw of q0 we get a draw from

p (v|z, α) =
L−1∏
i=1

Beta

(
vi;

n∑
t=1

zit + 1,
n∑
t=1

L∑
j=1

zi+jt + α

)
p (vL = 1) = 1

p (η|z,µ) =
L∏
i=1

N2 (ηi; mi,Wi) , (38)

where the mi and the Wi are 2 by 1 vectors and 2 by 2 matrices that depend on θ, z,µ

respectively.

Algorithms to obtain the mi vectors and the Wi matrices are given in Supplement 4.8.2.

After obtaining a sample of size N from q1, the predictive distribution is estimated using the

approximation

p (θn+1|θ) ≈ 1

N

N∑
s=1

L∑
i=1

πi
(
ν(s)
)

PN2

(
θn+1;η

(s)
i , I2

)
where ν(s),η

(s)
i denote the sth draw from q1.

The log lower bound log p (θ, q1) = Eq1 log p(θ,η,v,z,α,µ)
q1(η,v,z,α,µ)

is no longer available in closed
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form but can be readily estimated via Monte Carlo methods using

Eq1 log
p (θ,η,v, z, α,µ)

q1 (η,v, z, α,µ)
≈ 1

N

N∑
s=1

log
p
(
θ,η(s),v(s), z(s), α(s),µ(s)

)
q1 (η(s),v(s), z(s), α(s),µ(s))

, (39)

where p
(
θ,η(s),v(s), z(s), α(s),µ(s)

)
= p

(
θ|η(s), z(s)

)
p
(
z(s)|v(s)

)
p
(
η(s)|µ(s)

)
p
(
v(s)|α(s)

)
p
(
α(s)
)
p
(
µ(s)

)
and q1

(
η(s),v(s), z(s), α(s),µ(s)

)
= p

(
v(s)|z(s), α(s)

)
p
(
η(s)|θ, z(s),µ(s)

)
q0

(
z(s)
)
q0

(
µ(s)

)
q0

(
α(s)
)
. All those distributions are known in closed form.

Our second improvement is based on Result 9. Here we make b = {v,η, r} and a =

{z,µ, α} and we again take q0 (a, b) as our variational fit. We then get a sample of size N

from q2 (a, b) as follows:

• Obtain q0

(
v
′
,η
′
, r
′)

=
∏L−1

i=1 q
(
v
′
i

)∏L
i=1 q

(
η
′
i

)∏n
t=1 q

(
r
′
t

)
by making use of Algorithm

3

• Get a sample of size N from q0

(
v
′
,η
′
, r
′)

• For each sth draw
{
v
′
(s) ,η

′
(s) , r

′
(s)
}

get a sample of size N from q1 (z,µ, α) by

drawing from p
(
z|θ,v′ (s) ,η′ (s) , r′ (s)

)
p
(
α|v′ (s)

)
p
(
µ|η′ (s)

)
• For each sth draw {z (s) ,µ (s) , α (s)} get a sample of size N from q2 (v,η, z,µ, α) by

drawing from

p (v|z (s) , α (s)) p (η|θ, z (s) ,µ (s)) . (40)

We again use the Laplace approximation to draw from p (η|θ, z (s) ,µ (s)). Sampling from

q0

(
v
′
,η
′
, r
′)

requires sampling from q0

(
r
′)

directly so we cannot use the sampling scheme

in equation (30). Sampling directly from q0

(
r
′)

outside the Gibbs sampler can be done

using rejection methods such as Metropolis-Hastings or adaptive rejection sampling. In

Supplement 4.8.3, we show a simple and efficient way to sample approximately from q0

(
r
′)

by making use of the inverse cdf technique and finding such inverse via the Newton-Rhapson

method.
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To estimate the predictive distribution we do the same as what we did for the first

improvement, equation (39). Notice that we no longer have q1 in closed form which makes

it a bit more difficult to estimate the log lower bound. We write

Eq2 log
p (θ,η,v, z, α,µ)

q2 (η,v, z, α,µ)
= Eq2 log

p (θ,η,v, z, α,µ)

p (v|z, α) p (η|θ, z,µ) q1 (z,µ, α)

= Eq2 log
p (θ,η,v, z, α,µ)

p (v|z, α) p (η|θ, z,µ)
− Eq1 log q1 (z,µ, α)

and to estimate the second term we approximate by

q1 (z,µ, α) =

∫
p
(
z|θ,v′ ,η′ , r′

)
p
(
α|v′

)
p
(
µ|η′

)
q0

(
v
′
,η
′
, r
′
)
dv
′
dη
′
dr
′

= Eq0p
(
z|θ,v′ ,η′ , r′

)
p
(
α|v′

)
p
(
µ|η′

)
≈ 1

N1

N1∑
s=1

p
(
z|θ,v′ (s) ,η′ (s) , r′ (s)

)
p
(
α|v′ (s)

)
p
(
µ|η′ (s)

)
.

Hence, the second term is approximated by

Eq1 log q1 (z,µ, α)

≈ 1

N2

N2∑
l=1

log
1

N1

N1∑
s=1

p
(
z (l) |θ,v′ (s) ,η′ (s) , r′ (s)

)
p
(
α (l) |v′ (s)

)
p
(
µ (l) |η′ (s)

)
.

To show the effect of the improvements, we consider the simulated data in Figure 11

for ρ = 1 and the unimodal and multimodal variational distributions that were obtained by

choosing different initial values for the variational algorithm. The first column in Figure 12

shows how the log lower bound increases from -467.01 to -458.14 for the multimodal fit and

from -451.06 to -451.02 for the unimodal fit after making use of (38) but still not enough to

choose the multimodal fit over the unimodal fit. The second column shows how the log lower

bound increases again from -458.14 to -445.67 for the multimodal fit and from -451.02 to

-450.66 for the unimodal fit after making use of (40) and this second improvement is enough

to choose the multimodal fit over the unimodal fit. Figure 12 also displays 10%, 20%, . . . , 90%
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point-wise credible intervals.

Figure 12: Improvements to the variational distribution in Figure 11. The data set is the
same one as in Figure 11 with ρ = 1, (the third column in Figure 11). The first column
corresponds to predictive distributions after applying (38) to both variational distributions
in the third column of Figure 11. The second column displays predictive distributions after
applying (40) to the same distributions. Solid lines are the true density while dashed lines
are the predictive distributions obtained through the use of the variational approximation.
Lines above and below the predictive distribution are 10%, 20%, . . . , 90% point-wise credible
intervals.

Result 9 is a direct consequence of Result 7. While Result 7 is quite simple, it allows

us to improve any approximation, including the approximations we have just proposed.
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Notice that the Laplace approximation is not a necessary step. We could proceed as follows.

Improve the variational distribution q0 by using Result 7, i.e. q1 (a, b) = p (a|θ, b) q0 (b) with

b = {z, r,µ, α}, a = {v,η}. Then use Result 7 again to improve the approximation by taking

b = {v,η, z,µ, α} and a = {r} with the approximation being q2 (a, b) = p (a|θ, b) q1 (b).

Then improve this last one by taking b = {v,η, r}, a = {z,µ, α} and so on. As long as all

parameters are part of the a step, all the distributions of the parameters will be improved.

In fact, we could improve one parameter at a time by having in each step only one parameter

in a. Notice that this looks very much like a Gibbs sampler, with one of the differences being

that a Gibbs sampler starts from some starting values while we start from a distribution.

Another difference is that in a Gibbs sampler we collect a sample of size N after convergence

of the chain while here at each step we get a sample of size N from an approximation which

is improved at each step. If a model is such that it is known that the variational distribution

is a good approximation then there is no need to use this sampling scheme. On the other

hand, if the model is such that it is suspected that the variational distribution is a poor

approximation, like in our case, then this sampling scheme could fix those issues.

4.6 Application

4.6.1 Background

The CHTS data contain over a million reported angling trips for 17 states, 6 waves (two-

month time periods), and 4 modes of fishing (shore, private boat, charter boat, party boat).

As noted in Section 1, our goal here is to get density estimates of departure times by state,

wave and mode that can be used to obtain weights for the APAIS. In many state-wave-

mode domains, the sample sizes are small (or even 0) and in many others the sample sizes

are very big (up to 42000). In this section, we will present two types of Dirichlet Process

mixture models that borrow strength across domains and apply those to the CHTS data.

The subsections 4.6.2 and 4.6.3 will discuss the variational approximation to each one of

the two models. For comparison purposes, we will also include computations needed for
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the Gibbs sampler in subsection 4.6.2 and fit the data in the state of New Hampshire. The

sample size for the state of New Hampshire is small and allows us to compare the Gibbs

sampler to the variational approximations to both models. Finally in the last subsection

we show results from applying the variational approximations to the whole data set (over a

million observations).

4.6.2 Multiple populations model

The first model we present has a random distribution Gijk for each combination of state,

wave and mode. Each one of these random distributions is distributed as a Dirichlet process

with a Projected Normal base distribution with mean of the form mijk = m0 +si+wj +mk.

Here m0, si,wj,mk represent the overall, state, wave, and mode effects respectively. The

hierarchical model is as follows:

θijkt|µijkt ∼ PN2

(
µijkt, I2

)
µijkt|Gijk ∼ Gijk

Gijk ∼ DP (α0, G0)

G0 (·) = N2 (·; mijk, I2)

mijk = m0 + si + wj + mk

α0 ∼ Gamma (a, b)

where the effects si,wj,mk and the overall mean m0 are all distributed as bivariate normals

with their own means and variances.

Next, we will show the full conditionals necessary for the Gibbs sampler in this model

based on the Polya urn representation of the Dirichlet process. Conditioned on mijk and α0,
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the full conditionals are the same as in algorithm 1, or

(
µijkt|µ

(t)
ijk, r,mijk, α,θ

)
∼ q0Gt

(
µijkt

)
+

nijk∑
s=1,s 6=t

qsδµijks
(
µijkt

)
p
(
rijkt|µijkt,θ

)
∝ rijkt exp

(
−1

2
r2
ijkt + uTijktµijktrijkt

)
,

where nijk is the number of observations in cell ijk and as before, we define µ
(t)
ijk =

{
µijk,1, . . . ,

µijk,t−1,µijk,t+1 . . . ,µijknijk

}
, Gt

(
µijkt

)
= N2

(
1
2

(xijkt + mijk) ,
1
2
I2

)
, q0 ∝ αN2 (xijkt; mijk, 2I2)

and qs ∝ N2

(
xijkt;µijks, I2

)
and xijkt = rijktuijkt. Thus with probability proportional to q0,(

µijkt|µ
(t)
ijk, r,mijk, α,θ

)
is a draw from Gt and with probability proportional to qs is equal

to µijks for s = 1, . . . , t−1, t+1, . . . , nijk. Again as in Algorithm III, the full conditionals for

the parameters in the base distribution depend only on the distinct values µ∗ijk,1, . . . ,µ
∗
ijk,l

of µijk,1, . . . ,µijknijk . The prior for the parameters in the base distribution are taken as

bivariate normal, and under these priors it is straightforward to obtain the full conditionals

for the parameters in the base distribution.

Slow mixing of the Gibbs sampler for normal linear models is common and several

remedies exist that involve reparameterizations of the parameters. As with the model in

Hernandez-Stumpfhauser et al. (2011), which uses the same data as in this paper, the chain

fails to converge due to a slow mixing problem. We use the sweeping reparameterization

proposed by Vines et al. (1996) again:

m′0 = m0 + m + s + w

m′k = mk −m

s′i = si − s

w′j = wj −w

mijk = m′0 + m′k + s′i + w′j.

Under this reparameterization, the random effects are no longer priorly independent since
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Figure 13: Results for the model in Section 4.6.2 for various waves and modes in the state
of New Hampshire making use of the Gibbs sampler. The dark curve in each panel is the
predictive distribution. Light curves are 20 Gibbs iterates sampled at random from all
iterates, to show variability in the posterior distribution. The light unimodal curves are the
posterior mean estimates of the mode effect.

they have to add to zero, for example
∑

k m′k = 0. The full conditionals for the parameters

in the base distribution under the sweeping reparameterization are shown in Supplement

4.8.4.

To sample the precision parameter inside the Gibbs sampler we will use the method of

Escobar and West (1995). In this model the full conditional for α may be expressed as

a mixture of gamma distributions. The total number of mixture components equals the

number of state-wave-mode combinations + 1. Derivations of the full conditional for the

precision parameter are shown in Supplement 4.8.5.

Figures 13 and 14 show the predictive distributions under a mode effect model (mijk =

m0 + mk) for some of the combinations of mode and wave for the state of New Hamp-

shire. The Gibbs sampler does a good job of fitting and adding multiple modes when data

are rich, and reverting to the overall mode effect when data are sparse, as in Figure 13.

Figure 14 displays the mode effect estimates and 20 curves from the sampler to show the
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Figure 14: Results for the model in Section 4.6.2 for mode effects for the state of New
Hampshire using the Gibbs sampler. The dark curve in each panel is the posterior mean
estimate of the mode effect, computed by averaging all Gibbs iterates. Light curves are
20 Gibbs iterates sampled at random from all iterates, to show variability in the posterior
distribution. Departures by anglers fishing from shore (mode=1) are more diffuse across
time than departures by anglers fishing from boats (modes 2,3,4).

variability. Departures by anglers fishing from shore (mode=1) are more diffuse across time

than departures by anglers fishing from boats (modes 2,3,4). The only disadvantage of the

Gibbs sampler is its computational expense. To be able to use all of the CHTS data (all 17

states together), we make use of the variational approximation to the posterior distribution

based on the stick-breaking representation of the process. We will first use the data from

New Hampshire to compare the approximation to the Gibbs sampler and then in the last

subsection we will use the full CHTS data.

The approximation is based on the stick-breaking representation of the Dirichlet process.

For this model, the variational distributions look the same as before, equation (34), with the
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difference that now we have a regression model for the parameters in the base distribution.

The variational distributions for the parameters in the base distribution again have the

undesirable property of having variances that can be made arbitrarily small by increasing

the truncation levels on the number of mixture components. In this model there is a random

distribution Gijk for each combination of i, j, k and hence a potentially different truncation

level Lijk for each cell. The variational distributions are as follows:

q (vijkl) = Beta

nijk∑
t=1

E
(
zlijkt

)
+ 1,

nijk∑
t=1

Lijk∑
s=l+1

E
(
zsijkt

)
+ E (α)


q
(
µijkl

)
= N2

(
Var

(
µijkl

) [
E (mijk) +

nijk∑
t=1

E
(
zlijkt

)
E (rijkt) uijkt

]
,

Var
(
µijkl

)
I2

)

q
(
zlijkt = 1

)
∝ exp

{
E (log (vijkl)) +

l−1∑
s=1

E (log (1− vijks))

−1

2
E
(
‖ µijkl ‖2

)
+ E (rijkt) uTijktE

(
µijkl

)}

q (rijkt) ∝ rijkt exp

−1

2
r2
ijkt + rijktu

T

Lijk∑
l=1

E
(
µijkl

)
E
(
zlijkt

)
q (m0) = N2

Var (m0)

∑
ijk

Lijk∑
l=1

E
(
µijkl

)
− E (mk)− E (si)− E (wj)

 ,
Var (m0) I2


q (mk) = N2

Var (mk)

∑
ij

Lijk∑
l=1

E
(
µijkl

)
− E (m0)− E (si)− E (wj)

 ,
Var (mk) I2


q (α) = Gamma

a+
∑
ijk

(Lijk − 1) , b−
∑
ijk

Lijk−1∑
l=1

Eq log (1− vijkl)



99



for l = 1, 2, . . . , Lijk, t = 1, 2, . . . , nijk and where Var
(
µijkl

)
=
[
1 +

∑nijk
t=1 E

(
zlijkt

)]−1
,

Var (m0) =
[∑

ijk Lijk + 1
σ2
0

]−1

and Var (mk) =
[∑

ij Lijk + 1
σ2
m

]−1

. The variational distri-

butions for the state and wave effects are similar to that of the mode effect. The prior means

for the effects were taken as 0 and the prior variances are σ2
0, σ

2
m, σ

2
s , σ

2
w for the overall, mode,

state and wave effects respectively. All expectations are with respect to the variational dis-

tributions. The variational algorithm then updates these expectations one at a time in a

similar way as in Algorithm 3. In the next subsection we show an alternative model in which

the regression coefficients are at the level of the mixtures.

4.6.3 Single Dirichlet process prior on regression coefficients

For this second model we use indicators mt,k equal to 1 if mode of departure t equals k and

0 otherwise for k = 1, 2, 3. In the same way we define indicators wt,j equal to 1 if wave of

departure t equals j and 0 otherwise for j = 1, 2, 3, 4, 5. Finally we define st,i as 1 if state of de-

parture t equals i for i = 1, 2, . . . , 16. Let xt = (1,mt,1, . . . ,mt,3, wt,1, . . . , wt,5, st,1, . . . , st,16)T

be a vector of size q and define βt =

 βt,1,0 · · · βt,1,q

βt,2,0 · · · βt,2,q


T

as a q × 2 matrix with each

column denoting the random effects of intercept and covariates for subject t. Now suppose

departure times come from the following model

θt|βt ∼ PN2

(
βTt xt, I2

)
βt|G ∼ G

G ∼ DP (α0, G0)

G0 (β1, β2) = Nq (β1; ξ1, Iq) Nq (β2; ξ2, Iq)

where the means ξ1 and ξ2 are normally distributed. In this model there is only one random

distribution G and the base distribution G0 is normally distributed.

Next we show the variational approximation to this model. We will start by showing
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its stick-breaking representation and then we will show the corresponding variational dis-

tributions. Let βi,c be the cth column of βi, c = 1, 2 and all other parameters defined as

before.

vi|α ∼ Beta (1, α)

βi,c ∼ N (ξc, I)

πi = vi

i−1∏
j=1

(1− vj)

zt ∼ Mult (π)

yt ∼ N2

(
βTztxt, I2

)
yt = rt (cos θt, sin θt) ,

where i = 1, 2, . . . and the data consist of the angles θ1, θ2, . . . , θn. The variational approxi-

mation makes use of a truncated stick-breaking Dirichlet process. Denoting the trunctation
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level as L, the variational distributions take the following forms:

q (vi) = Beta

(
n∑
t=1

E
(
zit
)

+ 1,
n∑
t=1

L∑
j=i+1

E
(
zjt
)

+ E (α)

)

q
(
βi,c
)

= N

[ n∑
t=1

E
(
zit
)
xtx

T
t + I

]−1 [ n∑
t=1

E
(
zit
)

E (rt)ut,cxt + ξc

]
,

[
n∑
t=1

E
(
zit
)
xTt xt + I

]−1


q
(
zit = 1

)
∝ exp

(
E log vi +

i−1∑
j=1

E log (1− vj) + E (rt) uTt E
(
βTi
)
xt−

1

2
E
[(
βTi xt

)T (
βTi xt

)])

q (rt) ∝ rt exp

{
−1

2
r2
t + rtu

T
t

(
L∑
i=1

E
(
zit
)
E
(
βTi
))

xt

}

q (α) = Gamma

(
a+ L− 1, b−

L−1∑
i=1

E log (1− vi)

)
,

where ut,1 = cos θt and ut,2 = sin θt and E
[(
βTi xt

)T (
βTi xt

)]
=
∑2

c=1 tr
(
xtx

T
t cov

(
βi,c
))

+

E
(
βTi,c
)
xtx

T
t E
(
βi,c
)
. We can easily have a variational distribution for ξc by making its prior

a normal distribution. All expectations are with respect to the variational distributions. The

variational algorithm consists of updating these expectations one at a time in a similar way

as in Algorithm 3.

4.6.4 Comparison

Figures 15 and 16 show predictive distributions using the variational approximations for the

models in Sections 4.6.2 and 4.6.3 using the data for New Hampshire with the purpose of

comparing the results to the Gibbs sampler. The Gibbs sampler works very well, adding

multiple modes when data are rich and reverting to the regression effect when data are sparse.

The regression parameters are well estimated and we do not have the issue of sensitivity to

102



initial values as we do for the variational methods. Unfortunately the Gibbs sampler cannot

handle large data sets, as previously mentioned. For the two variational approaches in

Sections 4.6.2 and 4.6.3, the approximations of the form (33) that led to unimodal predictions

(not shown) had the highest lower bound. We then applied the improvements introduced

in Section 4.5. First, we obtained several variational approximations of the form (33) by

choosing different initial values for the variational algorithms, and selected the one with the

highest lower bound. Second, we improved the approximations by using Result 7, i.e. a

sampling scheme similar to the one in (38). Finally, we compared the lower bounds among

all improved approximations and chose the approximation with highest lower bound. The

estimates in Figures 15 and 16 were obtained by using the approximations that had highest

lower bound after making b = {z} in Result 7.

A drawback of the variational approximation in the multiple populations model is that

the variational distributions for the parameters in the base distribution depend highly on

the chosen truncation levels for each of the combinations of the factors. Hence, there is still

the need to appropriately select these tuning parameters. In the model in Section 4.6.3, this

problem is avoided by having the regression at the level of the mixtures. Unfortunately, the

disadvantage of this last model is that we were once again not able to run it for the whole

data set due to the sizes of some of the matrices involved in the variational algorithm.

For the reasons mentioned above, the analysis of the full dataset was ultimately only

performed using the approach of Section 4.6.2. The variational distributions of the form

(33) that gave the highest lower bound gave us again unimodal predictive distributions and

so we had to look at variational distributions of the form (38) and chose the one with highest

lower bound. For illustration, Figure 17 shows predictive distributions for some cells with a

lot of data and some cells with sparse data.
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Figure 15: Results from the variational approximation to the multiple populations model
for the state of New Hampshire. The dashed dark curve in each panel is the predictive
distribution. The light solid curve is the posterior mean estimate of the mode effect. The
light curves above and bellow the predictive distribution are 10%, 20%, . . . , 90% point-wise
credible intervals.

Figure 16: Results from the variational approximation to the Dirichlet process prior on
regression coefficients model for the state of New Hampshire. The dark curve in each panel
is the predictive distribution. The light solid curve is the posterior mean estimate of the
mode effect.
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Figure 17: Predictive distributions for some of the combinations of state wave and mode
obtained by using a variational approximation for the model described in Section 4.6.2 with
a mode, state and wave effects model in the base distribution. Top left and top right are
estimates for the state of Virginia for different combination of modes and waves. Bottom
left and bottom right show estimates for the states of Rhode Island and Florida respectively.
Mode 1 is shore, mode 2 is head boat and mode 4 is PR. Sample sizes for each of the
combinations of state wave and mode are given in the plots. The dark curve in each panel is
the predictive distribution. The light solid curve is the posterior mean estimate of the mode
+ state + wave effect.

4.7 Supplement: Projected normal density, spherical case

Let X = ruT = r (cos θ1 sin θ2, sin θ1 sin θ2, cos θ1)T ∼ N3 (µ,W). The joint distribution of

θ = (θ1, θ2) and r is:

p (θ, r) = r2N3 (ru;µ,W)

= r2

(
1

2π

) 3
2

|W |−
1
2 exp

{
−1

2
(ru− µ)T W−1 (ru− µ)

}
= r2

(
1

2π

) 3
2

|W |−
1
2 exp

{
−1

2
ar2 + br + c

}
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where a = uTW−1u, b = uTW−1µ, c = −1
2
µTW−1µ. Integrating r out will give us the

desired density PN3 (µ,W)

p (θ) =

∫ ∞
0

p (θ, r) dr

=

(
1

2π

) 3
2

|W |−
1
2 exp {c}

∫ ∞
0

r2 exp

{
−1

2
ar2 + br

}
dr.

We first integrate by parts, with u = r exp {br} and dv = r exp
{
−1

2
ar2
}
dr. Then du =

ebr (br + 1) dr and v = − 1
a

exp
{
−1

2
ar2
}

.

∫ ∞
0

r2 exp

{
−1

2
ar2 + br

}
dr =

∫ ∞
0

1

a
(br + 1) exp

{
−1

2
ar2 + br

}
dr

=
1

a

[
b

∫ ∞
0

r exp

{
−1

2
ar2 + br

}
dr+∫ ∞

0

exp

{
−1

2
ar2 + br

}
dr

]
.

We now compute the second integral inside the bracket:

∫ ∞
0

exp

{
−1

2
ar2 + br

}
dr = exp

{
b2

2a

}∫ ∞
0

exp

{
−a

2

(
r − b

a

)2
}
dr

= exp

{
b2

2a

}
1√
a

∫ ∞
− b√

a

exp

{
−1

2
z2

}
dz

= exp

{
b2

2a

}√
2π

a
Φ

(
b√
a

)

=
1√
a

Φ
(

b√
a

)
ϕ
(

b√
a

) .
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To get the first integral inside the bracket we define u = − 1
a

exp
{
−1

2
ar2 + br

}
, then

∫ ∞
0

r exp

{
−1

2
ar2 + br

}
dr =

∫
du+

b

a

∫ ∞
0

exp

{
−1

2
ar2 + br

}
dr

= u (r) |∞0 +
b

a

1√
a

Φ
(

b√
a

)
ϕ
(

b√
a

)
=

1

a

1 +
b√
a

Φ
(

b√
a

)
ϕ
(

b√
a

)
 .

Finally,

PN3 (θ1, θ2;µ,W) =

(
1

2πa

) 3
2

|W |−
1
2 exp {c}

1 +
b√
a

Φ
(

b√
a

)
ϕ
(

b√
a

)
 b√

a
+

Φ
(

b√
a

)
ϕ
(

b√
a

)
 .

4.8 Supplement: Computational derivations

4.8.1 Variational posterior mean for a projected normal random sample

To get the posterior means E (η∗i |data in bin i) we use the variational method explained in

Hernandez-Stumpfhauser et al. (2011). The iterative algorithm is

E (rt) ←
√

2π

C (bt)
exp

(
b2
t/2
)

Φ (bt) + bt

E (η∗i |data in bin i) ← 1

ni

ni∑
t=1

utE (rt)

where bt = uTt E (η∗i |data in bin i) and C (bt) ← 1 +
√

2πbt exp (b2
t/2) Φ (bt). This algorithm

converges rapidly and it is not sensitive to initial values.
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4.8.2 Laplace approximation

Each draw from q0 (z) clusters the data, and then applying the method of Hernandez-

Stumpfhauser et al. (2011),

E (rt) ←
√

2π

C (bt)
exp

(
b2
t/2
)

Φ (bt) + bt

mi ←
[

1

ni + 1

](
µ+

ni∑
t=1

utE (rt)

)
,

where bt = uTt mt, C (bt) ← 1 +
√

2πbt exp (b2
t/2) Φ (bt), and ut are such that zit = 1. The

variance-covariance matrix Wi is found by taking the inverse of minus the Hessian of the

log posterior distribution evaluated at mi (Hernandez-Stumpfhauser et al. 2011). The log

posterior distribution for ηi is

log p (ηi|θ, z,µ) = log N2 (ηi;µ, I2) +

ni∑
t=1

log PN2 (θt;ηi, I2) + C.

The second derivatives needed to compute the Hessian are

∂2

∂η2
c

log N2 (ηi;µ, I2) = −1, ∂2

∂η1∂η2
log N2 (ηi;µ, I2) = 0,

∂2

∂η2
c

log PN2 (θt;ηi, I2) = −1 + u2
t,cBt,i,

∂2

∂η1∂η2
log PN2 (θt;ηi, I2) = ut,1ut,2Bt,i, where Bt,i =

2− Φ(bt,i)

ϕ(bt,i)

[
1 +

btΦ(bt,i)

ϕ(bt,i)

]−1
[

Φ(bt,i)

ϕ(bt,i)

[
1 +

btΦ(bt,i)

ϕ(bt,i)

]−1

+ bt,i

]
, bt,i = uTt ηi, uTt = (cos θt, sin θt), and

ut,c is the cth component of ut.

4.8.3 Efficient algorithm to sample from p (r|b)

The cumulative distribution function (cdf) can be written as

F (r) =
1

C (b)

[
1− exp

(
−1

2
r2 + br

)
+
√

2πb exp

(
b2

2

)
[Φ (r − b)− Φ (−b)]

]
,

where Φ (·) is the cdf of a standard normal random variable and b is the variational parameter

in q0 (r). We then sample from q0

(
r
′)

by making use of the inverse cdf technique. We do
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not have an explicit form for this inverse, but it is approximated by applying the Newton-

Rhapson method using as initial value the mode of q0 (r) which is equal to b+
√
b2+4
2

. That is,

draw a uniform(0, 1), say u, and find r such that F (r)−u = 0. We use the Newton-Rhapson

method to find the root of F (r)− u.

ri+1 = ri −
F (ri)− u
F ′ (ri)

where F
′
(r) = q0 (r) is the derivative of F (r). Taking as initial value r0 = b+

√
b2+4
2

the

algorithm is guaranteed to converge to the root of F (r)− u.

4.8.4 Full conditionals for the parameters in the base distribution in the mul-

tiple populations model

Let I, J,K be the number of levels for the state wave and mode factors and let m−K,c =(
m′1,c, . . . ,m

′
K−1,c

)T
where m′k,c is the cth component of m′k and c = 1, 2. Also, let all prior

means of the factors be zero and prior variances of the overall, state, wave and mode factors

be σ2
0, σ

2
s , σ

2
w, σ

2
m respectively. The full conditionals for the overall mean m′0 and mode effects

m−K,c =
{
m′1,c, . . . ,m

′
K−1,c

}
are shown next and full conditionals for all other factors would

have equivalent forms:

p (m′0|·) = N2

 σ′20
1 + n∗σ′20

∑
ijk

n∗ijk∑
t

µ∗ijkt −m′k − s′i −w′j,
σ′20

1 + n∗σ′20
I2


p (m−K,c) = NK−1

(
(V2)−1 V1y, (V2)−1) ,

where n∗ijk is the number of distinct µ′s for combination ijk of state, wave and mode.

n∗ =
∑

ijk n
∗
ijk is the total number of distinct µ′s, σ′20 = σ2

0 + σ2
s

I
+ σ2

w

J
+ σ2

m

K
, n∗k =

∑
ij n
∗
ijk,

V1 = diag
(
n∗1, . . . , n

∗
K−1

)
, V2 = n∗KJ + 1

σ2
m

(I− J)−1 + V1 where I,J are the identity matrix

and matrix of ones respectively. Finally yk,c =
∑

ij

∑n∗ijk
t µ∗ijkt,c − m′0,c − s′i,c − w′j,c and

109



y =
(
(y1,c − yK,c) /n∗1, . . . , (yK−1,c − yK,c) /n∗K−1

)T
.

4.8.5 Full conditional for the precision parameter in the multiple populations

model

Let S = IJK denote the total number of state-wave-mode combinations. From Escobar and

West (1995), the conditional distribution of the number of distinct components n∗ijk in cell

ijk is p
(
n∗ijk|α, nijk

)
= cnijk

(
n∗ijk
)
nijk!α

n∗ijk Γ(α)

Γ(α+nijk)
, n∗ijk = 1, 2, . . . , nijk and cnijk

(
n∗ijk
)

=

p
(
n∗ijk|α = 1, nijk

)
. Hence we deduce that

p
(
n∗1,1,1, . . . , n

∗
S|α, n1,1,1, . . . , nS

)
=
∏
ijk

p
(
n∗ijk|α, nijk

)
.

Making use of the identity Γ(α)
Γ(α+n)

= (α+n)β(α+1,n)
αΓ(n)

where β (·, ·) is the beta function, the full

conditional for α can be written as:

p (α|·) ∝ p (α) p
(
n∗1,1,1, . . . , n

∗
S|α
)

∝ p (α)α
∑
n∗ijk−S

∏
ijk

Γ (α)

Γ (α + nijk)

∝ p (α)α
∑
n∗ijk−S

∏
ijk

(α + nijk) β (α + 1, nijk)

∝ p (α)α
∑
n∗ijk−S

∏
ijk

(α + nijk)

∫ 1

0

ξα (1− ξ)nijk−1 dξ.

This implies that p (α|·) is the marginal distribution from a joint distribution for α and a

continuous vector ξ = (ξ1,1,1, . . . , ξS)T such that

p (α|·) ∝ p (α)α
∑
n∗ijk−S

[∏
ijk

(α + nijk)

][∏
ijk

ξαijk (1− ξijk)nijk−1

]
.
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If p (α) = Gamma (a, b) where b is the rate parameter, the distribution of α conditioning on

ξ and all other parameters is:

p (α|·) ∝ α
∑
n∗ijk−S+a−1

[∏
ijk

(α + nijk)

] [
exp

(
−α
(
b−

∑
log (ξijk)

))]
∝ α

∑
n∗ijk−S+a−1

[
αS + c1α

S−1 + . . .+ cS
] [

exp
(
−α
(
b−

∑
log (ξijk)

))]
∝

[
S∑
s=0

csα
∑
n∗ijk+a−1−s

] [
exp

(
−α
(
b−

∑
log (ξijk)

))]
, (41)

thus a mixture of gamma distributions with parameters
(∑

ijk n
∗
ijk + a− s,

b−
∑

ijk log (ξijk)
)

. Finally the full conditional distribution of ξ is:

p (ξ|·) ∝
∏
ijk

ξαijk (1− ξijk)nijk−1

∝
∏
ijk

Beta (α + 1, nijk) , (42)

thus p (ξ|·) is the distribution of independent beta distributions with parameters (α + 1, nijk).

At each Gibbs iteration, the currently sampled values of n∗ijk and α allow us to draw a new

value of α by (a) first sampling ξ from the distribution in Equation (42), then (b) sampling

the new α value from the mixture distribution Equation (41).
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