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ABSTRACT 

An analysis has been performed of penetrative convective 

instabilities arising from the combined action of thermal and centri-

fugal buoyancy forces. The theory allows for the fact that in the 

atmosphere, convection arising in an unstable layer may penetrate into 

a neighboring stable region. The objective has been to examine the 

effect of various mean temperature and velocity profiles on the critical 

limit and convective penetration of the disturbances. The linearized 

perturbation equations have been solved employing an approximate 

technique. The results obtained indicate that nonlinear profiles are 

more unstable and penetrative than linear ones. The close analogy 

between streamline curvature and thermal stratification effects has 

been demonstrated. It is found that for parallel layers of fluid 

along curved heated walls, a unique stability curve for neutral dis-

turbances may be obtained if the quantity plotted along the abscissa 

2 is Ra + KNG where Ra is the Rayleigh Number, NG is the Goertler 

Number and K a constant which expresses the relative importance of 

the mean temperature and velocity profiles. 
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PENETRATIVE CONVECTIVE INSTABILITIES IN PARALLEL FLOWS 

I. INTRODUCTION 

This discourse considers penetrative convective instabilities 

resulting from the combined action of thermal and centrifugal buoyancy 

forces. These instabilities are assumed to take the iorm of steady 

three dimensional vortices oriented in the streamwise direction and 

are similar to the disturbances observed in the flow between rotating 

concentric cylinders. The latter instability manifests itself in 

the form of regularly spaced toroidal vortices stacked around the 

inner cylinder. This phenomenon was first examined by Taylor (1) 

who formulated the motion in mathematical tenns, analyzed its stability 

and verified the analysis in quite conclusive fashion. If the inner 

cylinder is sufficiently far removed that the flowfield reduces to 

that of a boundary layer along a curved wall, the instabilities induce 

a secondary flow of parallel streamwise oriented vortices. Goertler 

(2) and later Smith (3) investigated the vortex mode of motion along a 

plate with concave curvature and indicated the presence of a system of 

parallel counter rotating vortices aligned in the mean flow direction. 

Furthermore, their analyses clearly indicated that only flows with con

cave curvature were susceptible to this type of instability. Experimental 

verification was subsequently obtained by Goertler (2), Liepmann (4) 

and Tani (5). The parameter governing the stability of the flow is 

the Goertler Number Ro~ where Ro is the Reynolds Number based 

on the boundary layer thickness, 0, and k is the curvature of the 

wall. 

The analogy between flows with concave curvature and buoyancy 

due to unstable stratification was pointed out by Goertler (6) and 
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more recently by Yih (7) and by Bradshaw (8). Terada (9) and Sparrow 

et al. (10), have observed the vortex mode of motion in the flows of 

liquids down inclined heated plates. 

The occurrence of a closely analogous phenomenon in the atmosphere 

is fairly well documented. The large-scale cloud streets frequently 

observed in satellite photographs are now accepted as direct evidence 

of the presence of longitudinal vortex instabilities in the earth's 

atmosphere. The clouds are formed as a result of the convective 

action of the rolls in lifting moist air to its condensation level. 

Further direct evidence is supplied by the experience of glider 

pilots (11), who have made use of these 'invisible highways' in the air 

to soar over large distances. Kuo (12) analyzed the stability of plane 

Couette flow with a suitable gradient of potential temperature so as to 

model the atmospheric boundary layer. However, his boundary conditions 

required the physically unrealistic situation of a rigid upper bounding 

surface. 

The present study allows for the fact, that in the atmosphere, 

convection arising in an unstable layer may penetrate into a neighboring 

stable region. This in fact, was implied in a paper by Kuettner (11) 

who observed that cloud streets frequently had well defined tops 

indicating the presence of an elevated inversion. An additional 

consideration is that when there is a mean shear, the role of pene

trative convection in vertical transfer of heat, moisture, and momentum 

may be important, as indicated in a recent paper by Estoque (13). 

The penetrative action of the instabilities into the stable region 

may be due to two causes, viz., a) the nonvanishing of the vertical 

velocity components of the disturbances at the interface causing 

inertial penetration or b) momentum being transferred into the upper 
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layer by viscous interaction of the perturbations with the adjoining 

stable fluid. The outer system of vortices observed in Taylor's 

experiment was due to this second type of penetration. 

Inertial penetration has been studied extensively (see, for 

example, Stix (14), and Whitehead and Chen (15)), while penetration 

by viscous entrainment has been studied recently by Rintel (16). The 

analysis described herein, assumes that the penetration is of the 

second type and follows closely the work of Rintel. In this approxi-

mation, the instabilities generated in a layer of fluid of thickness 

o , penetrate to a total height d into neighboring stable fluid. 

A quantity d c = 8 called the penetration coefficient provides an 

estimate of the degree of penetration. 

Solutions have been obtained for a variety of flows along heated 

curved walls with stable* fluid overhead. In most cases, the paison 

d'etpe has been to model atmospheric type t instabilities and to demon-

strate more clearly the analogy existing between flows with concave 

curvature and unstable stratification. Consequently, the Tollmein-

Schlichting wave-type disturbances pertinent to transtion are not 

accounted for in this analysis. However, for heated or curved flow-

fields the Squire theorem does not necessarily hold (17); hence three 

dimensional disturbances may be the more unstable mode. Furthermore, 

these stationary convective motions have been observed to persist in 

turbulent fluid by Tani (5) where the problem of transition does not 

arise. The.specific cases of the parallel flows whose stability 

*In this context 'stable' refers to stability with respect to velocity 
gradient, i.e., where Rayleigh's inviscid stability criterion is 
satisfied as well as the conventional interpretation of stable 
temperature stratification. 

tIt is realized of course, that the atmospheric situation is complex, with 
anistropic turbulent diffusivities of heat and momentum. Nevertheless, 
some qualitative results may be inferred. 
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are examined herein are: 

a) Heated flat plate boundary layer 

b) Parallel flow with free surface along curved heated walls 

c) Boundary layer type flow with wall curvature and heating bounded 

above by fluid with differing stable gradients of temperature 

and velocity 

d) Stationary layer of fluid with strongly non-linear temperature 

distribution bounded by mildly stable fluid 

e) Stationary layer of fluid with parabolic mean temperature pro

file posed as a problem in penetrative convection 

Details of the cases examined will be discussed later. 
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II. Theoretical Development 

Consider an unstably stratified parallel flow over a curved surface. 

The unstable layer is considered to be bounded above by fluid of neutral 

or arbitrarily specified stability. It is assumed that the disturbances 

generated in the lower layer of thickness 0 penetrate to a height 

d • The penetration coefficient is then defined as d 
c=(f' The 

parameter c thus provides a measure of the extent of penetration. 

In this respect it is closely allied to the "effective depth" defined 

by Kuo (12). 

We start with the Navier-Stokes equations of motion and the energy 

equation, expressed in a curvilinear coordinate system (Fig. (1)). 

Using the Boussinesq approximation, one can derive the following 

equations for the perturbations p, T u. of pressure, temperature 
1 

and the three components of velocity, respectively. 

dW _ !. ~ + 
at - - P dZ 

-

2- 2 - } 
V --+--+ -

{
d w d W k dW 
dy2 dZ2 dy 

dV + dW + kv = 0 
dy dZ 

(1) 

(2) 

(3) 

where k denotes the curvature, v, the kinematic viscosity, S, the 

volume expansion coefficient and g the gravitational acceleration. 

One can analyze an arbitrary disturbance into a set of normal modes 
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u (y) Cos 
SIt 

u = az e p 

v (y) Cos 
SIt 

v = az e p 

w = w (y) Sin 
SIt 

az e p 

T T (y) Cos 
SIt 

= (lZ e p 

pp(y) COS (lZ 

SIt 
P = e 

and since we consider only neutral disturbances we substitute the 

above disturbances into equations (1) to (3) with 13 1 = o. The 

justification for this step lies in the validity of the principle of the 

"exchange of stabilities" for such flows (15,18). This results in the 

following system of differential equations: 

v ( au + kU) = -v{u" + ku' - o.2u } 
p ay p p p 

p' 
2kUu = gST _:..E. + v{v'" + kv' 

p P p P P 

p 
o = (l :..E. + v{w" + kw' 

p P P 

o = v' + kv + aw 
p p p 

aT v 
v - = P {T" + kT' 
P ay r P p 

2 
a w } 

p 

2 a v } 
p 

(l is of course the horizontal wavenumber of the perturbations. 

For solution of these equations, the 'rigid-free' boundary 

conditions (Chandrasekhar (18)) are assumed. That is, the plane 

(4) 

(5) 

(6) 

(7) 

(8) 

y = 0 is taken to be a rigid surface with y = 8 being a free surface. 
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The boundary conditions are then 

v = (D2 _ a.2)2 v = 0 for y = 0 and 0 p p 

v' = 0 at y = 0 and v" = 0 at y = 0 p p 

By eliminating p and wand discarding higher order curvature terms, 
p p 

equations (4) to (8) may be reduced to 

2 2 2 a.
2 

(D - a.) v = -- (gST - 2kUu ) 
p v p p 

(9) 

2 2 -v au 
(D - a. ) u = -E. (- + kU) 

P v ay (10) 

(11) 

Here D d dy and U and T refer to the undisturbed mean velocity 

and temperature respectively. 
2 

Defining dimensionless quantities ¢ = a.O , ~t= g~O , 

R = Uoco 
o v' 

U 
f --- U ' 

00 

Tt = aT ...!.. with * ay I:J.T y 

made dimensionless with respect to 0 and I:J.T the temperature 

difference across the fluid layer, equations (9), (10), and (11) become 

(D2 _ ¢ 2) 2 v = ¢ 2 ( ® 'T - fu y') 
p p p (9a) 

(lOa) 

= 0 Pr I:J.T T' v 
v * p (lla) 

As stated earlier, the penetration coefficient c is defined 

as the ratio of the penetrated height d to the thickness 0 of the 

unstable layer. We therefore define a new dimensionless coordinate 
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E;. = l. and the modified parameters ® = c 2 ®, 
c 

cp = c~ , 2 
y = c y' 

and a modified Reynolds Number Rco = cRo . Eliminating the second 

term on the right hand side of equation (lOa) since the product k6 

is always small, one obtains with the above dimensionless parameters 

the final form of the differential equations for the perturbations viz., 

(12) 

(13) 

(02 cp2) T co 
T' (cE;.) - v Pr -llT 

p P v 
(14) 

where 0 d 
The revised boundary conditions - dE;. are 

T = u = 0 for E;. = 0 and 1 
p P 

v = Ov = 0 for E;. = 0 
p p 

v = 02v = 0 for E;. = 1 
P P 

Equations (12) to (14) are solved approximately using a technique 

devised by Chandrasekhar (18). The parallel and normal to the wall 

components of the perturbation velocity are expanded in a series of 

functions satisfying the boundary conditions for a rigid wall at 

E;. = 0 and a free surface boundary at E;. = 1 

00 

u = L B x 
p n=l n n 

00 

v = I A z 
p n=l n n 

The temperature perturbation, since it satisfies similar boundary 

conditions as u is written as 
p 

(15) 
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00 

T = Lex p n n 
n=l 

where we choose 

A x Sin nnE,; 
n n 

= A. x 
n n 

+ 2nn {Sinh~~ -~Sinh~Cosh(~~-~)} 
Sinh 2<1> - 2~ 

It may be readily verified that the functions chosen satisfy the 

boundary conditions and also that 

(IS) 

When these expressions are substituted into the differential equations 

and the coefficients Band C are eliminated, the following 
n n 

eigenvalue system is obtained for A 
n 

A 
n 

where NG = RoM is the 

Rayleigh Number with 

~m = A. A. Jlfx x dE,; 
n m m n 

0 

Y~n = AlAn flf' z lXnd~ 
0 

0 A A flT'z x d~ Ymn = m n m n 
0 

Goertler Number and Ra = gSo3LlT 
is the vK 
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The standard method of evaluating the Fourier coefficient has been used 

to arrive at the previous equation. It may now be rewritten as 

Here 

00 00 

= 

yO 
2n 

AT ' 
2 n 

P2n = 
00 

L 
m=l 

In matrix notation we have the familiar eigenvalue problem 

[A] = <l)2C
3[R] [A] 

The equation of neutral stability is then 

(16) 

To simplify numerical evaluation of equation (16), it is rewritten in 

the form 

(17) 

where is defined as Ra 

N
2 
G 

It therefore expresses the relative 

importance of buoyancy forces to centrifugal inertial forces with 

viscous damping as an overall effect. Equation (17) was solved 

for various values of the ~ number. 
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III. Outline of Solution Procedure 

Numerical evaluation of the eigenvalue problem was performed on 

a CDC 6400 computer. The method consisted in minimizing the Goertler 

or Rayleigh Number as a function of the wavenumber ~ and penetration 

coefficient c. The method is well described by Rintel (16). A 

complete neutral stability curve may be generated by varying ~ 

keeping c at its critical value. The results thus obtained are 

scaled with the critical c value. A more accurate representation 

would be obtained if c is minimized at each point on the stability 

curve. This, however, ceases to be economical in terms of computer 

time. For cases of combined heating with wall curvature, equation 

(17) was used with R being treated as a parameter. 
n 

For purposes 

of numerical evaluation, the infinite series expansion in equation 

(IS) was truncated to thirty terms and the matrices were limited to 

fifth order. For the cases where penetration was into neutrally 

stable fluid, the order of the matrices used was increased to nine. 

A check, performed by increasing the truncation order of both the 

series and the matrices, revealed that this provided sufficient accuracy. 

The mean flow profiles for the cases examined are listed below. 

(a) The heated flat plate boundary layer 

matched at 

fey) = 2y _ 2y3 + y4 

1 
~ = with 

c 

fey) 

1 o .::.. ~ < -c 

1 
- < ~ < 1 c -

where y = c~ and X is a parameter- used to represent the stability 

of the outer "freestream" gradient. X was set equal to 10 -8 in this 

case, to represent a neutrally stable freestream. The Prandtl Number 

was taken as unity. Critical conditions were evaluated with two 
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types of mean thermal profile, the first being identical to the 

Pohlhausen profile above and the second, a linear one: 

with -8 
X = 10 . 

1 
o_<~<-c 

1 
- < ~ < 1 c-

T - T 
Here T - w where * - T - T 

00 w 
T = temperature at edge 

00 

of unstable layer, T = wall temperature. w 

(b) Parallel flow with free surface along curved heated wall 

fey) y(2 - y) 

T*(y) y 

were assumed for the mean velocity and temperature profiles respectively 

with unit Prandtl Number. Since the fluid layer was assumed to have 

a free surface, the penetration was taken as zero implying c = 1 . 

(c) Boundary layer type flow with combined wall curvature and 

heating 

fey) = y(2-y) 

fey) = xy(2-y) + I - X I 
- < ~ < 1 c-

The same mean temperature profile was assumed except that x was 

taken as one for the velocity profile and three for the temperature 

profile. This served to demonstrate the generality of the method 

while also approximating a possibly ~eal situation in the atmosphere. 

A value of 0.7 for the Prandtl Number was used in evaluating this case. 

A semiempirical adjustment for this was made in evaluating the integral 

yO by defining a new variable ~ = ~ Prl / 3 according to Eckert 
mn 1 

and Drake (19). Hence, when the integration of ~ is carried over the 



13 

range 0 to 1 , the entire thermal profile is integrated cCTOSS 

simultaneously. 

Cd) Stationary layer of fluid with strongly non-linear 

temperature profile 

T* - N y(y-1) = Y s 

T* = -Xy 

with X = O.S and N s 40 • 

0 ~ 
1 

< < - -c 

1 
~ 1 -< < 

C -

This profile is one proposed by Sparrow, Goldstein and Jonsson (20) 

as being indicative of internally distributed heat sources. However, 

such a profile is not uncommon in the lower layers of the atmosphere, 

where the release of latent heat would generate non-linear temperature 

distributions. As stated above, the unstable layer is capped by fluid 

of moderate stability. The results to be presented later indicate strongly 

penetrative convection. 

(e) Stationary layer of fluid with parabolic thermal profile 

posed as a problem in penetrative convection in this example: 

T* = y(2-y) o 2.. F,; < ~ 
-c 

T* 
1 [y(2-y) - c(2-c)] 1 

< 1 = --2 - < ~ 

(c-l) c -
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IV. Discussion of Results 

The cases for which the critical conditions were evaluated have 

been listed earlier, however, in order to facilitate easy comparison 

they are listed in Table 1 together with the corresponding results. 

TABLE 1 

Mean Velocity Mean Temperature 
C ~ Ra N cr cr cr Gcr 

Profile Profile 
Case (a) Pohlhausen Pohlhausen 2.2325 2.9265 735.9 

Linear 2.0263 2.7119 311.1 

Case (b) Parabolic Linear 1.0 2.656 

Case (c) See Table II 

Case (d) Nonlinear 2.1362 2.9447 15.2173 

Case (e) Parabolic 1.2325 2.71 997.8 

The first case examined, viz., the boundary layer on a heated flat 

plate is relevant to the transition mechanism due to thermal stratifi-

cation effects. An examination of the dimensionless disturbance 

velocity components in Fig. (2) provide a measure of the degree of 

penetration of the longitudinal vortices into the freestream. This 

penetrative action of the vortices has been experimentally observed 

by Sparrow and Husar (10). The critical Rayleigh numbers have been 

calculated to be approximately 736 for the Pohlhausen profile and 311 

for the linear profile and are listed for convenience in Table II. 

The point of first instability is therefore highly dependent on the 

shape of the profile in the unstable layer. Since the system of 

equations (4) to (8) are coupled in only a linear manner, the onset 

of convective instability is independent of the shear, a result that 

is also stated by Gage and Reid (17). (The effect of the shear is only 

to cause the appearance of the longitudinal rolls without which 
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~ 

stationary Benard type convection occurs). The Pohlhausen temperature 

profile causes stronger penetration than the linear one, although the 

latter profile is more unstable. 

The penetrative character of the disturbances causes a marked 

reduction in the critical Rayleigh NllIDber. This may be appreciated 

by comparing the classical non-penetrative result of Ra = 1100 with 

the result obtained here of 311.1. This value of the critical 

Rayleigh Number obtained does not agree with those of Rintel (12). 

A closer examination of his work indicated that he had drawn an 
~ 

incorrect analogy between the narrow gap Taylor problem and the Benard 

problem. Such an analogy follows only when the mean temperature profile 

is linear and continuous throughout the inner and outer (stable) 

region. Since in fact, the values in his Table II (12) were arrived 

at by integrating over a region with a discontinuity in the mean 

thermal profile they are incorrect except for the limiting case with 

c = 1 and X = 00 since then the discontinuity ceases to exist. 

It should be noted that the eigenfunctions for the temperature 

and horizontal velocity perturbations are identical when the mean 

thermal and velocity profiles are the same with Prandtl Number equal 

one, but different otherwise. 

Figure (3) illustrates the results obtained for case (b), i.e., 

the stability of a parallel free surface flow along a curved heated 

wall with zero penetration. The analogy between curvature and buoyancy 

is well displayed in Fig. (4) which is a composite neutral stability 

curve obtained by plotting ~,the disturbance wavenumber versus 

N~ + KRa. This result was arrived at as follows: A previous simple 

analyses by the authors, of curved flows with thermal stratification, 
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had yielded the parameter as a stability criterion for 

linear profiles. It was, therefore, intuitively expected that non-

linear profiles would perhaps yield the slightly more general parameter 

2 NG + K Ra where Know, would account for the differences between 

the thermal and velocity profiles. Consequently, a number of calcu-

lations of the stability boundaries for various values of the 

parameter R were performed. 
n 

It was then easy to calculate K and 

establish that N~ + KRa was indeed a unique parameter by checking 

several points on the calculated curves. 

A secondary dependence of K would be on the degree of penetration 

into the stable fluid, a limiting factor in establishing this dependence 

being the computer time available. To examine this effect, a small 

number of calculations were run on case (c) and the critical values 

obtained in a first approximation in the minimization are given in 

Table II. 
TABLE II 

NG R Ra 1> C K n cr cr cr 

21.76 0 0.0 2.6943 1.4512 

11.57 4 536.23 2.7123 1.356 0.633 

8.83 8 623.35 2.7153 1.344 0.634 

Since the deviation in K is not large it appears that the same type 

of relation holds so that one may write N2 
= N2 - KRa . Gcr G 

crlRa = 0 

The difference in the first value of c is probably due to the absence 

of Prandtl Number effects. The eigenfunctions obtained are plotted 

in Fig. (5) together with the eigenfunctions of the second modal 

instability with Pr = 1 . The neutral stability curves fot R = 5 n 
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and 10 and Pr = 1 are plotted in Fig. (6). They are, of course, 

scaled with the critical value of c. Figure (7) contains curves 

of the variation of critical Goertler Number with Rayleigh Number 

at the point of first instability. 

The results evaluated for cases (d) and (e) are displayed in Figs. 

(8) and (9). The eigenfunctions drawn in Fig. (8) indicate the passage 

of the peak of the perturbations into the stable layer. The high 

value of the penetration coefficient and the extremely low value 

of the critical Rayleigh Number serve as reminders of the strongly 

unstable nature of the nonlinear thermal profiles. Therefore, it 

may be easily appreciated that such nonlinear profiles in the atmosphere 

(caused perhaps by latent heat release) could give rise to strongly 

penetrative disturbances resulting in considerable enhancement of the 

vertical transport of heat, momentum and moisture. 
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v. Conclusions 

The object of this analysis was to explore the stability of 

parallel layers of fluid under the simultaneous influence of curvature 

and heating. The simple linear theory indicates not surprisingly, 

that the two effects are additive, demonstrating the close analogy 

between streamline curvature and buoyancy. A similar result has 

been obtained for the case of Thermohaline Convection by Lindberg 

(21) who arrives at the conclusion that the thermal Rayleigh Number 

and an analogously defined "Concentration Rayleigh Number" add linearly 

to form a stability parameter. The stability of a few nonlinear 

temperature profiles was investigated and their strongly penetrative 

nature demonstrated. Since such profiles are not uncommon in the 

atmosphere, it is reasonable to expect that convective instabilities 

could be generated in the lower layers, causing considerable modifi

cation of the vertical transport of heat, moisture and momentum, as 

is stated by Estoque (13). 

Future work should include the interaction of the Tollmein 

Schlichting wave instabilities with truly three dimensional convective 

disturbances. The disturbances analyzed here have been quasi-two

dimensional in that no variations in the streamwise direction have 

been assumed. The behavior of penetrative instabilities in an Ekman 

layer flow should also prove interesting since this approximates more 

closely the true atmospheric situation. Finally, the need for some 

simple nonlinear analyses to establish the interaction mechanism 

between the disturbances and the mean flow is now becoming of 

vital necessity. 
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