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ABSTRACT

An independent analysis of Nimbus 6 Earth Radiation Budget
measurements is presented for July 1975 to June 1977. Monthly mean
maps of albedo, emitted exitance and net radiation were constructed
from the individual satellite irradiance measurements from the wide
field of view sensors. A recalibration was performed with reference
to Nimbus 7 ERB, day-night comparisons, and removal of the trend in
reflected data. Also, a resolution enhance scheme was used to im-
prove the details in the maps, both on the emitted exitance and albedo
estimates. The maps are then discussed in terms of zonal averages,
land averages, ocean averages and variance emphasizing the year to
year differences. For instance, substantial changes in emitted and
albedo appear around the intertropical convergence zone for these

two years. The largest variance in net radiation occurred along the

north coast of the Pacific.



INTRODUCTION

Variation over the earth of the net radiation is the fundamental
driving force of the atmosphere. It is a manifestation of the latitude
variation of incident flux from the sun with more incident in the equa-
torial regions than the polar. The other fundamental fact is that the
atmosphere—ocean-earth system is not in local radiative equilibrium
either in space or time. The system's circulation is such that large
transports of energy occur giving the weather we see around us. Near
balance between the thermal emission and the absorbed energy occurs
only on an annual and global average, resulting in the strong similarity
between one year's weather and the next.

Early estimaﬁes were made of the radiation terms (London, 1954) but
only in the era of artificial satellites have moderately accurate mea-—
surements been made by various systems (Table 1). Vonder Haar and Ellis
(1974) have summarized the measurements of the 1960's in Atlas of Radia-
tion Budget Measurements from Satellites. The companion report, Clima-
tology of Radiation Budget Measurements by Satellites by Campbell and
Vonder Haar (1980) and Stephens et al. (1980) discuss this in some detail.
Figure 1 shows the climatology of the annual cycle of the zonal average
emitted and net fluxes and the albedo.

A small seasonal variation appears in the albedo caused partly by
the sun—earth‘geometry and by changes in cloudiness, Ellis (1978).

The emitted exitance matches the temperature changes except near the
equator where clouds produce the dip. Finally the net radiation leads
the temperature cycle, an indication of the heat capacity of the atmo-

sphere-ocean system.



The major difficulties with the measurements in this climatology
result from the many changes of instruments and non-continuity of the
time series. Few overlaps in time are available to check the sensor
calibrations and standardize the measurements. The variation in the
resolution has smoothed out some features. Also the local time of
measurement changed improving the representativeness of the mean but
making comparisoﬁs difficult.

A new radiation budget experiment began in July 1975 with the
Nimbus 6 Earth Radiation Budget experiment (Smith et al., 1977). Here we
present an analysis of two years of these measurements (7/75-6/77). This
is the first continuous record over more than one year from one instru-
ment. Measurements have been recorded up to October 1978 from Nimbus 6
followed by a similar experiment on Nimbus 7 continuing to the present.
These two experiments and their successors, Earth Radiation Budget Experi-
ment, promise long term observations which will monitor the mean weather
and perhaps detect systematic climate change;.

Our primary purpose here is to discuss the analysis scheme used
in the production of the Nimbus 6 radiation budget estimates. The flow
chart summarizes the steps discussed below. Only a few interpretations
will be presented. We are presently involved with comparing these maps

with mean weather for the concurrent times (Campbell, 1980).

ERB INSTRUMENT

The Earth Radiation Budget exberiment of Nimbus 6 (and Nimbus 7)
contains three principle components: 1) a multi-spectral solar observing
instrument to monitor the sun, 2) a multi-axis scanning device to measure
the angular reflection and emission characteristics of the earth radiance

fields and obtain a medium resolution (500 km) budget and 3) wide field of



Table 1. Chronological list of earth orbiting satellites from which present radiation measurements
were taken., The approximate local time at which each satellite crossed the equator during
daylighi Dours appears in parenchesis., EX - experimental, NZ — Nimbus 2, N3 - Nimbus 3,
N6 - Nimbus 6, E3 ~ Essa 3 and E7 - Essa 7.

Sample
Month L 1964 1965 1966 1968 1969 1970 1975 1976 1977 Size
Jan . Ex(10:30) E7 . N3 N6 N6 5
Feb Ex(10:35) E7 . N6 4
Mar Ex(10:40) E7 . N6 4
Apr N3(11:30)%* . N6 3
May N3 . N6 3
Jun N2(11:30)* N3 . N6 4
Jul ’ Ex(8:30) N3 N6(11:45)% 4
Aug Ex(8:55) N3 N6 . 4
Sep Ex(9:15) . N6 . 3
Oct Ex(9:40) E7(14:30) N3 N6 . 5
Nov Ex(10:05) E7 N6 . 4
Dec Ex(10:30) E3(14:40) E7 N6 . 5
Annual 6 3 2 3 9 1 6 12 6 48

Resolution = Half Power Diameter

Experimental 1280 km, 11.5°

ESSA3

Nimbus 2 Averaged to 10° grid

ESSA7 ‘2200 km, 20°

Nimbus 3 Averaged to 10° grid

Nimbus 6 1100 km, 10° (analyzed from 16°

*Albedo corrected for diurnal variation of reflection with directional
reflectance model.
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view (WFOV) integrating sensors to measure low resolution, 200 km, fluxes
and the global integral budgets. We will discuss results from the WFOV
detectors of the earth fluxes. Results from the other systems have been
discussed elsewhere (Hickey et al., 1977; Jacobowitz et al,, 1979). Per-
haps the most interesting result is the stability of the solar constant
with no variations detected to the instrument accuracy (+ .5%) over 4
years (Hickey, 1980).

Instrument measurements by the WFOV sensors were made by flat plate
thermopile detectors. The instruments have been described by Hickey et
al. (1974) but here we discuss them briefly as it will explain the cali-
bration procedure used. The total channel (#12) was a black painted de-
tector with a field of view stop slightly bigger than the earth's disc
as seen at 1100 km altitude. This detector responded to all radiation,
both emitted and reflected from the earth (as well as the sun when it is
near the earth's edge). The thermopile voltage was converted to irradiance
by equation 1.

vV - Vo

A (Irradiance) = —5 = E(o,B)cosadcosadB

angle subtended by earth

4

+e[1- FD(a)]Tz - € oT) (1)

4
+ GD(l—Gg)cTD (l—FD)

V = thermopile voltage

V0 = offset voltage

s = sensitivity

E

it

source radiance field (space contributes zero)

Es[l—FD]Tg = radiation emitted by the field stop to the detector
(close to zero)



EDGTS = emitted flux from detector

D detector emissivity = .977

Tp

€D(1-€;) TS[l-FD] = radiance reflected from field stop

detector temperature (changed very little during orbit)

"

€

size of the whole in field stop

the polished aluminum field stop reflected all radiation so
this is essentially zero.

A calibration was used to measure the sensitivity, s. The entire
field of view was filled with a constant temperature black body and V
was recorded for several temperatures. Essentially E = ngB/n for all

angles and so equation 1 becomes 2.

_ 4
= oTge By GDoTDFD (2)

This calibration is not a measure of s but really a measure of s times
FD. Originally FD was calculated from the geometry.

This problem was discovered when disagreement was found between the
total channel and the long wave scan channel measurements in space. For
the Nimbus 7 experiment the field of view, FD, was measured in the pre-
flight calibration and has been confirmed by comparisons between the
systems on Nimbus 7. We have chosen to use the measured Nimbus 7 field
of view in our analysis of the Nimbus 6 data since the instruments were
built to be i&entical. This results in the factor, F = 1.068, which is
the ratio of measured to calculated fields of view, eq. 4.

A separate shuttered channel with the same design as the total

channel was included to measure the time change of sensitivity of #12.

This channel was open approximately once a month and, to the measurement



accuracy, it showed no change in the semsitivity of #12 for two years
(Jacobowitz, 1979).

The reflected WFOV detector was a similar thermopile with two
Supersil W dome filters outside the field stop to absorb infrared radia-
tion and transmit the solar spectrum. Figure 2 shows the transmission
curve. Figure 3 shows a sample time series of raw data covering more
than two orbits.. The rapid changes are the sun blip caused by direct
solar illumination. During the ascending part of the orbit, channel 12
responds to changes in reflected as well as emitted exitance. Similarly,
channel 13 follows the reflected term. On the descending part of the orbit
#12 responds only to the emitted and ideally #13 should read zero. In
the original NOAA analysis a constant offset was added to the #13 results
to eliminate negative reading at night. This appeared because the
filter dome temperatures were lower in space than in the ground calibra-
tion. Basically this means the Vo for 13 should be changed. Also the
exponential change in the #13 reading after the sun blip may imply that
the offset varies in time. House and Giannola have discussed this ex-
tensively in various Nimbus 7 ERB NET project reports. We experimented
with the inclusion of this effect but since it is still unsubstantiated
we have not included this potential correction in the analysis. A de-
tailed comparison of integrated scanning channel emitted measurements
with the colocated WFOV measurements might substantiate these results.

During the sun blip, the difference between 12 and 13 should be the
emitted radiance exitance. Because the angular response of the two
channels is not the same near the field of view limiters, this is not

true. We have discarded all the data for these periods in the construction

of the maps. This has resulted in substantial missing data regions in
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the analyzed fields especially on the night or descending half of the
orbit. The peak of the sun blip can provide an estiamte of the solar
constant if the exact angular response of the detector were accurately
known. More importantly, though, it provides a measure of the time
variation of the sensitivity which can be changed by degradation of
filter transmission or change in absorbtivity of the detector thermopile.

Several incbnsistent results have been found from the measurements
of this detector. First albedo calculations showed results much lower
than the climatology. The solar flux estimates when the sun was at the
edge of the field of view was correct (in comparison to the solar chan-~
nels). The emitted flux at night (the total measurement) was larger than
the daytime (total minus reflected) over oceanic regions, an unlikely
situation. The reflected measurements on the dark side of the earth
were negative. The solar flux estimate shows a linear decrease of 6%/year
from this channel on day to night and 0%/year change on night to day
blip indicating a decrease in transmissivity of the domes (Jacobowitz,
1978).

All these observations lead us to an inflight calibration procedure.
Equations 3 and 4 are the transformations from the data we received

and those corrected exitances used in the production of this atlas.

Reflected = S*Rr* 1+ d(t—to)) = RC : (3)

Emitted E

. Tr*f - Rc . + . day side (4)

Tr*f . « . night side

=
1

Recorded reflected radiant exitance

Recorded total exitance

e |
n
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f = field of view adjustment = 1.068 = measured/ calculated
s = scaling of reflected = .97 *f(+ .0l%*f)

d = time decar of tr =smirsion -  025/ycer (£ .002/year)

t. = time of first data (7/76)

t = time

The scaling »f the reflected flux, s, was estimated by requiring that
the emitred measuremcent pe the same {in the least sjuares sense) day

and night over -e mid Pacific (Fig. 4) for the region 180°E to 225°E
acd 27°§ to 2773, Oty ten montins of data were available for this test,
because of pausity of wmeasurements at night caused by a mechari.al
failure of the satellite cape recorder. The decay of dome transmissiomn.
d, was estimated by requiring the annual cycle of average emitted f£lux
to be the -ame for the twc years of dzytime morguremenrs “Fig, &7,

Since there was consistency in the estimates of d for several reginn- we
Zezel justifisc¢ in using ic. It does not agree with the 6% changa in
solar measurement by the WFOV channels, but this could be evidence of
non-uniform transmissicr change over the domes. All of these aajustments
GeStroy any absolute calibraticn of the results tut rclative changes

are still detected. Also, it removed any year tc year change in the

annual zlobal wean fluxes.

ERROR ESTIMATE

A quantitative error estiwmate iz difficult because only a few other
measurements can be compared and some of these are used in the calibration
adjustments. The initial measurement digitization error is .1 W/MZ2,
The absolute electrical calibrations of the thermopiles is +2% (Hickey,

-

et al., 1978). The measurement of the field of view, Fv’ is accurate to +17%.
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The largest uncretainty appears in the scaling adjustments, (+2%)

because a complete physical explanation is not available.

THE ANALYSIS PROCEDURE

The original data was recorded at 4 second intervals, but the data
we processed were 16 second averages. All the second data values were
mapped onto 2070 equal area regions over the earth. These areas are
approximately 4.50 by 4.50 great circle arc. Maps were made for the
emitted exitance, EC, and reflected, Rc’ and maximum diffuse reflected
exitance for ascending and descending halves of the orbits (6 maps).
Data was rejected for those times when the sun shone into the detectors,
about 15%Z of each orbit, sun zenith angles from 96° to 123°. These maps
of the radiant exitance through the sphere with radius 7478 km at near
local noon or midnight.

A zero order estimate of the earth albedo is the reflected measure-
ment divided by the maximum. Similarly, the zero order emitted radiant
exitance at the top of the atmosphere (TOAM) is just the distance cor-
rected map (orbit radius/earth radius)**2. A spherical earth was assumed
with a radius 6378 km. These estimates are substantially smoother than
atmosphere fields. A realistic resolution is the size of the half power
region, 16002km2 or a circlé 15.8%rc in diameter.l Incidentally,
these procedures were used in the earlier radiation budget experiments

except the Nimbus 2 and 3 scanning analyses. We have chosen a more

1 The half power region is the circular cap on the earth centered at the
sub-satellite point which contributes half the total power incident on
the detector. For this one assumes a unit source function and thus
total power on the flatplate detector is r%/rS or 0.727. The total
power area has a diameter of 63° circular arc. As an interesting side-
light, the edge of the half power area occurs at the observation zenith
angle of 459,
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complex approach which removes some of the smoothing and includes the

systematic diurnal effects.

RESOLUTION ENHANCEMENT
A measurement at satellite altitude is an integral over the field

of view of the radiance leaving the TOAM toward the detector (Eq. 5).

m(}’s) = fs('r*e-?) g(f_-f,, 'r*e-?s) g (5)

]
]

source radiance dependent on position, view point and time

g = weighting dependent on sensor geometry
A >, a
(rc-r) (Tt )

= 3 for flat plate detector
T

-5

r, = vector to source point at TOAM

+ . . ]

r, = satellite position

-> > -> .

r=r -r = observation vector

dQ = dcosb d¢

(6,9) = colatitude, longitude earth coordinates

The weighting function, g, depends on the angular properties of the source,
radiance and the view position. If the function g depends only on the

relative position of observer and source the equation has a simple solution.

EMITTED FLUX
For the emitted radiance, a diffuse emission model is quite good

at the TOAM so Equation 5 becomes 6 for the flat plate detectors.

s = E(re) = emitted radiant exitance at TOAM (6)

> -
Ec(rs) = fE(re)g dQ

It can be shown that spherical harmonics are eigen functions of this
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simplified equation with the spherical harmonic addition theorem (Smith

et al., 1975) Thus equation 7 follows.

N n
_ 1.1
m = nEO 130 m oY (es,¢s) (N
N n
_ 1.1
s = nfo lfo SnYn(eS’¢S)

7]' —-— 1
f&n (ee,¢e) gda-= An Yn (es,¢s)
Thus

n

where

Y = spherical harmonics

colatitude, longitude of earth point

(6 ,50,)

(es,¢s) = colatitude and longitude of observation point

The eigen values, A, depend only on the order of the term, n. Table 2
shows the values of A for the Nimbus 6 orbit. Since A decreases with
increasing resolution (increasing n) noise will be amplified as one
extends the series. The coefficients at satellite altitude were de-
termined by numerically integrating the maps times the spherical har-
monics and using the orthonormal properties of these functions.

The series was truncated at order 15. Also, terms with 1 greater
than 13 were set to zero because these terms were excited by the orbit
sampling. Approximately 13 orbits occurred each day leading to an ar-
tificial east-west wave number about 13. Truncating the series and
deleting terms set the resolution of the final maps without introducing

excessive amounts of noise.
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Eigen values of measurement operator, A

727
714
.689
.654
.610
<560
«508
«455
404
«356

Order

10
11
12
13
14
15

16
17
18
20

.312
.273
.240
.209
.184
.161
141
124
.108
.094
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The final resolution should delineate about (n+l)#*%*2 regions giving
a size of 10002 km2 or 10° arc diameter half power areas.2 We feel that
this procedure improves the specificity of the results and makes the
size of the highs and lows more representative of the radiation budget
at tﬁe top of the atmosphere. This resolution means that points separated
by 1100 km are still highly correlated. Independence is not obtained
until about 1500.km (Y2 x 1100 km). This same statement is true of the
conventional analysis except the respective sizes are 1700 km and about

2400 km. One should then be very cautious when discussing small scale

features.

REFLECTED EXITANCE; ALBEDO

Calculation of daily average albedo from any measurement or a group
of measurements requires several assumptions.' First toconvert a set of
radiance measurements into flux (the integral of radiance of all up angles)
one must assume some form of the angular pattern of reflection. In-
cidently the prime purpose of the scanning component of the Nimbus ERB
experiment systmes is to measure this function. From a small set of
scanner measurements from Nimbus 6, Campbell and Vonder Haar (1978) showed
that a diffuse reflection pattern is reasonably accurate for large scale
wide field of view measurements. One can then estimate a zero order al-
bedo at the time of measurement by calculating the maximum reflected

diffuse flux, Rmax’ at the sensorf Eq. 8.

2 1n analogy with the half power region calculated above, the 250
coeificients [(15+1)2-6] specify 250 regions. Half the area of
these correspond to the half power resolution of the enhanced reso-
lution analysis.
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A

R __(F ) = /It -1 d
max ''s = Tsun’ " Te'Toun & L (8)

where the integration is carried out over all points in the
field of view.

I = solar constant adjusted for earth sun distance.

Thus a = R /R
(o} C max

Rmax depends on.the satellite altitude (the g function) and the sun
zenith angle (local noon) at the subsatellite point. The solar constant
was chosen to be 1376 W/m2 from Hickey et al. (1980).

This method neglects the systematic change of albedo with sun angle
during the day. This is especially important for the Nimbus 6 analysis
because of the near noon orbit (11:45 local). Measurements of most sur-
faces show the lﬁwest albedo at the highest zenith angle. Figure 6
shows some observations and models of this variation from the anelysis
of the Nimbus 3 experiment (Raschke et al., 1973). We have chosen to
use the land-cloud model from the N-3 analysis in tﬁo ways. First, the
maximum reflected flux is adjusted with the inclusion of the model, Eq.

9.

max (rs ) rsun) =JI e * Tsun f(re ’ rsun) g d (9)

f(r -1 ) = directional reflectance function
e sun

thus
. - m
a1 (tlocal) Rc/Rmax
t = local time of measurement
local :

Since the local time is near noon, Rmax is generally larger than the
diffuse model maximum implying a lower noon time albedo than the diffuse
assumption for ERB. Second, though, one must convert the near noon al-

bedo to the daily average again using the model, Eq. 10.
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-~

) e Tsun £ (tlocal) d Y1ocal

J_A

re.rsun d t1ocal

i

- 'dayal (tlocal

2

- 10
One can call this a first order daily average albedo estimate.

Figuré 7 shows the daily average albedos of a cloud like surface
over the whole globe for different times of year. This is the result
of substituting .3 for a; in equation 8 and plottinglzl. One sees
quite large changes with changing illumination conditionms.

Another important effect is the-smoothing of the reflected flux
field occurring because the measurements are made at 1100 km rather than
at the top of the atmosphere. In analogy with the resolution enhancement
qf the emitted flux the measurement field Rc (fs) and the maximum Rmax
(fs) have been expanded in spherical harmonic coefficients. These coef-
ficients were amplified by the eigen values of the diffuse model and then
a higher resolution reflected flux and maximum fields were reconstructed

(Eq. 11, 12, 13).

R(re) = =0 170 rn Yn_(ee,¢e) (11)
- 1 1

R (rs) %l rcn ¥ (es’¢s)

rl = rl /x

n cn' ‘'n

Y (12)
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MODEL PREDICTION OF ALBEDO FOR
CONSTANT SURFACE TYPE
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Tig. 7. Model predicted albedo for a surface with 337 albedo at
the equator on the equinox. Based on the Nimbus land-
cloud model (Raschke et al., 1973)

Contour interval is 2.5%.
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Then a second order local time albedo is the ratio of these higher

resolution fields, (Eq. 13).
a, () = R.ED/R__(E) (1%

Finally the daily average albedo is estimated via equétion 13 to

include the systematic diurnal variation.

A ~ ~

a, = fa2 T 1 d // r d

e Tsun ¢ Flocal e Fsun ¢ F1ocal (14)

These final resolution enhancement steps are justified by examining

the resultant albedo maps. Certain expected features like the bright
intertropical convergence zone, the bright Sahara and the contrast
between land and ocean are better resolved as displayed in the before

and after maps (Fig. 8). The analysis of the Nimbus 7 scanner data
compared to the WFOV may confirm or deny the utility of these steps.

The final accuracy is difficult to estimate without independent high
resolution measurements. The models are known to perhaps + 10% for
particular source fields, and the combination into a single earth field
presents more problems. The adjustment with the model changes the albedo
by about 10% so the effect of this unknown is perhaps + 1%Z. The combined
error estimate for the monthly average albedo is then + 4%.

Figures 8a, b and ¢ show an example of the transformations. The
first of each pair of plots shows the results of the conventional analysis
scheme with just a distance corregtion. The noisy looking plots results
from the mapping of the data in the relatively small regions (5C0 km x
500 km). This noise arises from uneven space and time sampling. One
should bin the data in regions about the size of the half power for the
final presentation. The same thing could be accomplished with a spatial

smoothing filter.
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EMITTED EXITANCE (W/mz)

Ascending Measurements Only

...................
------------------------------------------------------------

= . S, e \/J |

Resolution Enhancement

Contour Interval 20 W/m2

Fig 8a. Comparison of August 1975 emitted exitance with
conventional analysis and the resolution enhancement
analysis scheme. Only data from the ascending half

of the orbit (day time) was included.
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EMITTED EXITANCE (W/m2)

Ascending and Descending Measurements
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Resolution Enhancement

Contour Interval 20 W/m2

Fig 8b. Comparison of August 1975 emitted exitance with conventional

analysis and the resolution enhancement analysis scheme.
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Resolution Enhanced, a
Contour Interval 5%

Fig 8c. Comparison of August 1975 albedo with conventional analysis

and the resolution enhancement scheme.
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The integration times the spherical harmonics performs this smoothing
of the very small scale noise. The intermediate scale (1500 km) variations
are amplified.

The differences between the ascending or day side emitted exitance
and the combined ascending and descending observations are significant
especially over land. We have chosen to present only the daytime ob-
servation in thé 24 monthly maps because only about 8 months of descending
observations with good global coverage are available. This of course
leads to systematic errors, but the cqnsistency of time makes comparisons

between years more reasonable.

RESULTS

There are three maps presented for each month from July 1975 to
June 1977; 1) the emitted flux based on the daytime half of the orbits is
presented, the sum of day and night is not used as there is no night data
for the second year, 2) the daily average albedo including land cloud model
and resolution enhancement, 3) and the derived field, the net radiation

at the top of the atmosphere (Eq. 15).

Net = I(1 - Ez(f:e)) - E(f:e) (15)

T

]

daily mean incident = I ¥ .r dt /24 hours
e sun local

[
1

solar constant at this day of year

Transparent overlays have been provided showing the scale and geography
for the maps. Also, various summary plots are presented as the discussion

unfolds.
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GLOBAL AVERAGES

Table 3 shows the two years of global average radiation budget
estimates. .The seasonal variation agrees with the climatology and re-
sults discussed by Ellis et al. (1978). The interannual differences
have been suppressed by the calibration scheme but some differences are
still evident. The fact that each year shows a net radiation gain is
probably an indication of systematic errors. A small change in the ratio
of the measured to calculated field of views, f = Fm/FD, equations 3 and
4, would bring the globe into balance. If f were 1.1 rather than 1.068
both the emitted exitance and albedo would increase by 3% giving net
equal to zero (+ 1 W/mz). It may be that the Nimbus 6 instrument is
slightly different than Nimbus 7. Some detailed studies of the overlap
tiem period after launch of 7 might resnlve this. An alternate calibra-
tion method might be to force the annual net to be zero, for instance

Campbell and Vonder Haar (1980b) use this in energetics studies.

ZONAL FIELDS

Because of the strong zonal symmetry of the average weather, a
similar symmetry appears in the radiation maps. Much of the annual
vari;tion can.be seen in fhe zonal mean plots, Fig. 10, Table 3. This
can be cdmpared to Fig. 1, the climatology. One sees immediately more
variation of the maximum and minima. Some of the differences between
old and new are caused by the weather but much is caused by the reso-
lution changes. The albedo estimétes of Nimbus 6 appear to be arti-
ficially high near the terminator due to the analysis scheme. Albedo
estimates are quite difficult when part of the scene is dark. Also when

measurements are attempted outside the high sun angle situations (beyond
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Fig. 9. Contour plots of time variation of zonal mean

exitance, albedo and net radiation for 2 years.
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Fig. 9c
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9:00 to 15:00 local), the results are more model sensitive. Both these
problems occur with N-6 near the poles. One concludes that more measure-
ments are needed to get more accuracy in these regions of low sun angles.

These results are very similar to Jacobowitz et al. (1978) except
that we show larger gradients and higher peaks. This of course is pro-
duced by the analysis scheme. The variation of the albedo is significantly
different in soﬁe details, Fig. 10. Our albedo estimate shows more varia-
tion in the tropical region, 30°N to 30°S, although this may be due to
the contour interval chosen. This is evident in June and July, 1975
where we estimate the albedo at 5°N to be 27% and this feature is missed
by the Jacobowitz et al. analysis.

The analysis by Winston et al., 1979 also covers this time period.
Their results are from high 1esolution scanning instruments with narrow
spectral responses. We have not done a detailed comparison with their
results but Fig. 11 shows their estimate of net radiation. Of course
the basic pattern is synchror ized with the sun, but the net radiation
gained in the tropics is les: and more is lost in the polar regions.

This corresponds to the repo:ted global and time average net radiation
loss to space, whereas our r¢sults are biased the other way. A detailed
comparison of the maps would be very interesting to determine if the
differences are just systema’ ic over the whole globe or whether the
differences.are concentrated in particular regions and perhaps caﬁsed by
the spectral response differ:mces. Ramanathan and Breigleib (1980) at

NCAR are undertaking a study of this kind.

ZONAL REGIONS
Campbell and Vonder Haa: (1980b) showed from the climatology that

a fruitful first regional sejaration is the averages over land and ocean
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Fig. 11. Scanning radiometer estimates of zonal average net radiation. This data set
overlaps with the Nimbus 6 observations.
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surfaces. Figures 12 and 13 a, b, and ¢ and Tables 4 and 5 show the two
year time sequence of emitted and reflected exitance and net radiation.
The annual cycle synchronized with the sun is obvious. As seen in the
climatology the wvariation of seasonal ctanges over land generally has

a higher amplitude than over ocean as ore would expect from the differences
in heat capacity. In fact, the emitted component over the ocean shows

a very weék seaéonal change south of the equator from 0°s to 50°S. The
northern tropical oceans (0—30°N) show tigger changes but are rather dis-
organized. North of 30°N and south of F0°S one sees the seasonal change
with matching changes in sea and air temperature. In contrast the sea-
sonal wave in emitted is clear in all 1aﬁd regions.

The time change in albedo from 45° to 45°s is partly modulated by
solar illumination angle and mean weather changes. Again one sees bigger
changes over the land than ocean. The fatterns though are rather dis-
organized. In the polar regions (45o znd poleward) the time change is
dominated by the directional reflectance effect. Snow may cause the
increase in albedo in spring over fall tut this resolution data does not
allow observation of a snow line.

The net flux shows very large seascnal change of course produced
by changes in daily average solar insoletion. The near symmetry in the
ocean pattern shows that the southern ard northern ocean climates are
very similar. In fact, most of the difference between the southern maxima
(147 + 151)/2 = 151 and northern (129 + 124)/2 = 126 can be explained by
earth sun distance changes (7%*solar corstant * (1-albedo) = 19 W/mz).

In contrast, the land zonal averages are¢ much different because the
ocean like climate dominates the small :mount of land south of 35°S.

Also presented are the year to year differences (Fig. 14). If one

compares individual points, the differerce from year to year of the fields
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Fig. 12a
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Fig. 12b
ALBEDO OVER OCEAN (%)
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is just at their relative accuracy of + 5 w’/rn2 or + 1% for the albedo.
These differences, though, are organized over large areas in space and
time, making them significant.

The largest differences appear in March and are probably caused by
poor data sampling in one of the two years. In the rest of the year the
period from July to December shows more energy gained in 1976 than 1975.
In the other si# months of the year, higher net appears in the first year
primarily from 40°N to 40°S. This feature appears to be caused by changes
more in the emitted than in the albedo. The albedo differences are very
small so one could say that there is no change in albedo from one year
to the next except along the equator whefe it was lower the first year
than the second and at 10°N where it was higher the first year. This
might have been a shift northward of th=2 convergence zone and its as-
sociated clouds.

Over the ocean these bands of diffzrence near the equator are more
obvious in the emitted and albedo. It is not apparent in the net over
the ocean indicating the cause, probably a cloudiness change, showed
reciprocity between emitted and absorbed damping out the change in the
net. The ocean net time variation pattern is much the same as the full
latitude zone in the northern hemisphere. The southern hemisphere is
mostly ocean so of course they match well there. Also of interest is
the emission in the first year in the northern and southern mid-latitudes.

Over the land regions the changes in emitted are larger than over
the ocean, although not as simply organized in time. Figures 15 and 16

show the persistence of some of the features in the annual zonal means.
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Fig. 1l4. Differences, y=2ar 1 minus year 2, of the zonal averages.
Nine plots are presented for land, ocean and all lati-
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VARTANCE
Another estimate of the year to year difference is presented in

Figure 17. This is a map of the square root of the variance, eq. 16.

12 o 2
o= [Nl (8,9) - Nj (e,¢)] /12 (16)

m=1
The most interesting feature is the arc of large variance along the north

coast of the Pacific Ocean and in the south Pacific.

MONTHLY MAPS

The monthly maps, Appendix 1, show the emitted radiant exitance
measured on the ascending portion of the orbit, near local noon. The
albedo and derived net radiation are also presented.v No sharp dis-
continuities appear in the maps because of the analysis by way of spher-
ical harmonics. This produces the wave like patterns in the east west
direction.

The orbit tracks went from bottom right to top left at about 80°
from the horizontal so features orientated at that angle are suspicious.
For instance, February 1976 has a sampling problem especially in the
Pacific. This problem occurs more often in the first year than the second
because the instrument was being turned on and off to supply power to
other Nimbus experiments. In the second year the data was nearly con-
tinuous in time except for drop outs in most descending orbit halves.
From a qualitative examination of the maps, orbit tracks appear in July
and October, 1975, February, March, June and July of 1976. The spherical
harmonic coefficients could have been truncated further to smooth out
the wiggles. But for studies with this data, features smaller than
1100 km are totally insignificant and only features at 2200 km are truly

resolved, so we chose to ignore the problem.
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We could now give qualitative descriptions of each month and in
fact present year to year difference maps. This is not very fruitful
without reference to simultaneous atmospheric events. That discussion

will be deferred to Campbell, 1980.

CONCLUSION

This report is primarily descriptive of our analysis method and of
the data fields derived. Because of the limitations in the instrument
and calibration procedure we resorted to an inflight calibration. This
depended on the Nimbus 7 calibration to adjust the total channel measure-
ments. Second, the reflected channel was calibrated by comparing day and
night in the Pacific. Third, the time decay of the reflected channel
was estimated by comparing the second year to the first.

Some of these adjustments could be done better if detailed compari-
sons are made with the Nimbus 7 experiment results. Especially important
is to resolve the contamination of the reflected chanmel result by the
apparent dome temperature changes. The detailed comparison between channel
13 measurements and integrals of the scanning channel radiances could
detect this effect. Finally, the time variation of the sensitivity can
be determined by the recalibration by comparison at the Nimbus 7 launch.

Many tantalizing year to year differences have been described. The
data show substantial changes in the emitted exitance and albedo around
the intertropical convergence zone, probably due to systematic changes
in the cloud features. The northefn'coast of the Pacific shows bigger
year to year changes than other areas. The task remains to compare these
variations with changes in monthly mean weather. Campbell (1980) will

present these results.
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