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Microwave Emission and Scattering of Foam Based
on Monte Carlo Simulations of Dense Media
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Kung-Hau Ding Member, IEEEand Chi-Te Chen

Abstract—The foam-covered ocean surface is treated as denselyered ocean from an aircraft at a®5@icidence angle. He related
packed air bubbles coated with thin layers of seawater. We apply the emissivities of foam at the three channels (vertical polariza-
Monte Carlo simulations of solutions of Maxwell's equations t0 tion at 19 GHz and both polarizations at 37 GHz) to one an-

calculate the absorption, scattering, and extinction coefficients at . . .
10.8 and 36.5 GHz. These quantities are then used in dense-mediaother by linear regression. Stogryn [5] used a least squares fit

radiative transfer theory to calculate the microwave emissivity. ©Of & polynomial to measurements of artificially generated and
Numerical results of the model are illustrated as a function of naturally occurring foam available as of 1971 and derived an
foam parameters. Results of emissivities for both horizontal expression for the foam emissivity as a function of incidence
polarization and vertical polarizations at 10.8 and 36.5 GHz are gngle and frequency. All of these models are empirical fitting
compared with recent experimental measurements. procedures using experimental data. The empirical models do

Index Terms—bense-media radiative transfer, electromagnetic not take into account the physical microstructure of foam and
wave scattering, microwave emissivity, Monte Carlo simulations, the foam |ayer thickness.

ocean foam. The subject of foam dynamics has attracted great attention.
Huang and Jin [6] discussed a composite model of foam scat-
|. INTRODUCTION terers and two-scale wind-driven rough sea surface. Controlled

O ESTIMATE the effect of the foam on the ocean Surﬂeléjtﬁxpe_nments were pe_rtforrfneclj 0 measture7foaSm F(;Iynan:;cs
face due to wave breaking on passive microwave remdte h e_zm:::rt;wavg EmISSIvI KO ca mseawzé ?r[ ]'([j ]if ecently,
sensing measurements, various empirical microwave emissi ysically basec approach was proposed to modet foam as air

models have been used [1]-[5]. Williams [1] measured emissivl bbles coated with seawater [9]. In this approach, wave scat-

ties of foam in a waveguide and found that at X-band, the em g_ring and emission in a medium consisting of densely packed

sivity of foam depends strongly on the thickness of the foaﬁ?at.ed partlcles_are_ solve_d using the qu_asrcrys_ta_lllne approx-
mation in combination with dense-medium radiative transfer

layer. Wilheit's model [2] treats foam as having neither polarl- . ) T
ot i ) .. (BMRT) theory [10], [11]. The quasi-crystalline approximation
ization nor viewing angle dependence. In Pandey's empir hgkes into account the effects of dense media, a method that has

emissivity model [3], the effect of foam was taken into accou " .
by coupling of the theoretical expressions of specular ocean sﬁ?-e” vgnﬂed by controlled laboratory expe.rlmenf[s [12], [13].
In this paper, we apply Monte Carlo simulations of solu-

face emissivity with empirical expressions from ocean tower £ M I " fd | ked ted parti

observations and from the analysis of published measuremef _sto allxweths equations ot densely pc'éc N ttha N f[;ar -

Smith [4] measured the brightness temperature of the foam-c =S 10 analyze the microwave emission and scatiering ot foam.
e absorption, scattering, and extinction coefficients are cal-

culated. These quantities are then used in DMRT theory to cal-
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Fig. 1. Video micrograph of artificially generated bubbles in foam on the
surface of Chesapeake Bay. The scale in the upper left corner shows a distance

of 1 mm. Fig. 3. Three-dimensional graph (upper) and layout (below) of the fcc
structure.

The fractional volume of seawater is

N
N > (a7 —b3)
1 4 j=1
o= 2 5 (0] =) =74 —x—— ()
j=1 Z a?
Jj=1

By choosing values for the inner and outer radii, the foam
void fraction (1.0 — f,,) can be on the order of 0.90 (i.e., 90%
of the total volume of the foam is air), in agreement with exper-
imental measurements of artificially generated foam [8].

Fig. 2. Spherical dielectric coated particle,; andb,; are the outer and inner
radii of the spherical shells, respectively, ; ands, . ; are permittivities within

the shell and in the core of the coated particle, respectively. lll. ABSORPTION AND EXTINCTION BASED
ON INDEPENDENT SCATTERING
Il. DESCRIPTION OFFOAM Let E°(F) = #E<(7) be the incident field upon one coated

Avideo micrograph of the bubble structure of artificially genparticle. The electric field within the shell atcan be written as
erated foam on the surface of Chesapeake Bay is showninFig. 1._ B R
Analysis of this and similar images shows that the void fraction £int(T) = [—fA +3 (7*2 cosf + fsin 9)] EX(T). ()
of this foam is 80% to 90% in most cases. To simplify the foam
model, it is assumed in this paper that the foam is composedSimilarly, for the case OEE(F) = #E¢(7) and EQ(T) =
of spherical bubbles. Fig. 2 shows the physical and geometjig: (7) impinging upon the coated particle, by coordinate trans-

structure of a spherical dielectric coated particle, whgrde- formation, the internal field of the coated particle in the shell
notes that the coated particle is of tjtb species. We assumeregion can be obtained readily,

that there ard. species of coated particles in the foam. The core

of the coated particle is air, and the shell is seawater. All e, (7) = —z AES(7) + 53 E(F)

particles have the same outer radius, but need not be identical in r X R

coating thicknesses. To achieve high density packing, the coated . [m sin f cos ¢ — (0 cos 0 cos ¢ — ¢psin gb)] 4)
particles are arranged in a fcc structure, as shown in Fig. 3. The

particles of the first layer are arranged at point-A; the ones of the

second layer are arranged at point-B; the third and fourth lay _ e DB

have the same positions as layer 1 and layer 2, respectively, ?&‘(r) = —JAE,(T) + S E,(7)

so on. The fcc lattice has a fractional volumergf/18 ~ 74% IR 5 . 2

occupied by the particles. The air regions i?:glude the core re- [TZ sinfsin ¢ — (6 cos Gsin g + ¢ cos ¢)] ©)
gions of the coated particles and the interstitial space betwegRere, as shown in the Appendix,

the coated particles. For example,Aebe the number of coated 4 (=3(14+22,))/((2+¢&,)(2e,+1)—26% (e, — 1)2/a3)
particles, and thgth coated particles be of inner radij and p (=3(e, —1))b3/((2+¢,) (260 +1) —26° (e, — 1)2 /a®)
outer radiia; . The total volume of the foam 8. The fractional outer radius of the coated particle;

volume of coated particles is b inner radius of the coated particle;

a Er relative permittivity within the shell of the coated
f= v Z ?Wa:;? = 74%. 1) particl_e; _
i=1 (r,0,¢) spherical coordinates &f b < r < a.
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Fig. 4. Geometrical configuration for thermal emission from foam-covered ocean. The foam layer is region 1 and is absorptive and scatterings Region 2
ocean.

For the casel" () = 2ES(F) + §E5(F) + 2E<(7), the in-  where
ternal field E;,; (7) at7 within the shell is the summation of the a;  outer radius of coated particje

right sides of (3)—(5). b;  inner radius of coated particle
Assuming the coated particles to be small, the power ab-The absorption coefficient is the absorption cross section per
sorbed by the coated particle is [14, p. 6] unit volume of a collection of particles. It is
1 2 K Pabs nw
_ ==\ | . (= abs — 2 :_82
P, = 2wldr€a(r)|Emt(r)| 2%) |’ v ’E v
L 2 2 2 N
= jweq ([EL” + | Ey|" + [EZ 4 st 1 1
2 ) (| | | Yy 8| |1> X .Zé.;/j [g(a?_b?)|AJ|2+?ﬂ-<b_3__3 |BJ|2
" . a’;
| (@® = ) AP+ o (5 — =5 ) 1BI*] () i=1 7
3 3\ add (10)
where wherey is the free-space wave impedance.
w angular frequency of exciting field,; The scattering coefficient requires integration of the scattered
e/ imaginary part of permittivitye, ; intensity over all solid angles. It is the scattering cross section
v volume of the coated particle. per unit volume.
The dipole momerit of one coated particle can be written as ) N o o
. Fg = ——5— Z/ df Sin@/ depr? |Esj|2
p= / dreg(e, — 1) B (7). ) ‘E vV j=1"0 70
A 1 Bkt e 1
The far field radiated by the dipojgin the directionk, is TV Zl 3 |E 11)
J:
— k2edkr » where
ES:—46 ey x (ks x P). ) -
TENT o (erj = 1)(1 + 2e55)(a;j — b3) 12)

ConsiderN coated particles in a volumE. According to (24¢e,j)(2e,;+1) — 2”?(2—5,_1)2
the independent scattering assumption, the absorption and scat- !
tering of N' coated particles is the sum of the individual partiander; is the relative permittivity of coated particje
cles’ absorption and scattering
IV. MONTE CARLO SIMULATIONS AND DMRT THEORY

N

1 — 1= | =

Py = Ew z:l A dT€aj(T) ‘Eint(r)
1= J

Consider thermal emission from a layered medium with

2
‘ coated particles embedded in a background medium of air,

1 ) as indicated in Fig. 4. The layer consists of coated particles
= 5w (|E;|2 + |E;’ + |E§|2) (region 1), and covers a half space of ocean (region 2). Fig. 5
~ shows the collection oV coated particles. In the Monte Carlo
) Zg//r 4_7r(a3 B bg) |A-|2 simulations, we consider the absorption and scatteringy/ of
= 3Ny ! particles collectively by solving Maxwell's equations. The
scattering coefficient and absorption coefficient are defined
GO (L1 1B, 2 (9) respectively as scattering cross section per unit volume and
3 bf- a;’- ! absorption cross section per unit volume. Thus, we pl&ce
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Let
o™ =k | dFg(F7)(erj — 1) fjal
Zi0(7) / 97,7 (Ers = 1) FalP)

=V [ Vg e~ D). @)
Jv;

Then the integral equation becomes

3 N 3 3

Y cCiafia®) =E @)+ DD cialia) + Y cialia(T):

a=1 j=1la=1 a=1

J#i

Fig. 5. The collection ofV coated particles. (18)
We apply the Galerkin method to rewrite (18) into a linear

particles in volumé/. We calculate the scattering cross sectiogystem of equations for the coefficients.

and absorption cross section for th@searticles and then divide

them by the volumé'. These are done for largé and the results Cia | dfis(T) - (Fia(F) = ©u (7))

of the scattering coefficient and absorption coefficient computet Vi

in this manner converge for largé. A volume integral equation N 3

is used to solve Maxwell's equations for tie particles. The = / d?fm(r) .Ee(r) + Z Z Co / dfﬁ.ﬁ(r) .qja(r)
volume integral equation has the internal electric field in the Vi imla=1 Vi

coated regions as the unknown. Let the incident electric field be iz

impinging uponV coated particles. Coated partiglis centered (19)

atr; and has permittivity ;. The particles are putinavolum&  yith ; — 1 2 .. N andg = 1,2,3.
Each particlej occupies regiorV;, j = 1,2,...,N. Letthe  raying the small particle assumption into account, we can

internal field in the seawater coating region of partitlee make approximations of (19).
Ein(7) = E;(7), forr e V. (13) 3 ) )
The volume integral equation, derived from Maxwell’s equa- 2;1 Cia /‘,7 A7 fip(7) - (fia(T) = Gia (7))
tions for a collection of particles, is [15] = N 3
o N B :/ dFfia(F) - B (F) + (ers — )eja
Ei(r) =F (") ++ / a9 (7. %) (er; — DE; () v g 2 K=
j=1"Vj i#i
N —F =\ A= = 1 F (=l
— . dr f; -G(T;,7; dr’ fa (7). 20
- Zv/ A7V g(7, 7 )(erj — VE;(F), TeVi /v Tfiolr) G ’TJ)/VJ. T fi0lT) (20)
=V s .
=t (14) After simplifications, (20) can be written as
. . K =55 B (T
whereg(7,7) is the free-space scalar Green'’s function. €ip %i N(rg)
We expand the internal field in the coating region of par- 2 =
. — . . . . . 1 rj — 1 jadSi3 ° 15 )9j
ticle 7, £;(7), into three basis functions. The basis functions are + z_:l (; W (ers = Dejadin - GFaTi)55a (21)
from the electrostatic solutions of the coating region of a coated P
sphere. The subscriptis suppressed in the following: where
. 3 B 2€T’i + 1 1 4’IT 3 3
Ei(F) =) ca(®fal), TEV, (15) Ki=— g 5 (e =t
a=1
203 (e — 1)?
= 1+2, 1—-¢g 4 .[(25.+1)(2+E.)_$ (22)
— b Tt 3 3
h®) 3¢, Sl 3e, oo 1 4 @;
2 1 - R = P (F) = i L AT g3y s
. [f—3 sin 6 cos p—— (6 cos l cos ¢ — qbsinqﬁ)} Sil _/V drfun (r) = 3e. 3 (a7 —b7)i  (23a)
T T i e
z 2ei+1 4 .
(162) 512 = / A fia(®) = 2 T @ 1)y (230)
- 14+ 2 1—¢ . 3eri 3
_ r oA r;3 Vi
L e e A %41 4x
2T r 1 Si3 :/ d?fig(T) = 37 . ?(af’ — b?)ﬁ (23C)
~ A Eri
: [ﬁ—?)sinﬁsingb——?)(&cos&sinqﬁ—i-¢cos¢)] v _ . o
r r After solving the matrix equations for the coefficients, the
(16b)  power absorbed by coated particles can be calculated by
_ 14+2,. 1l—e¢, L2 A1
f3(7) = —;ETE Z+ 365 b3 (Tr_3 cos ¢+97‘_3 sin 9) .

]\7
1 — 2
P = Lo / dre” (%) [B, (7). (24)
(16C) 2 ]2:; Ju, J | J |
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The absorption coefficient is TABLE |
PARAMETERS FORMONTE CARLO SIMULATIONS SHOWN IN FIGS. 6—10
Pabs
Fabs = 1 l=el?, (25) amm) b(mm) N b(mm) N Vmmd) £, (%)
5 E|V

Fig. 6-8 1.0 0.4472 75 0.99795 425 2828 10.5

The scattered field can be calculated by the following: Fig. 9 05 02271 75 049885 425 3536 105

Fig. 10 025 0.1285 75 0.24945 425 44.19 10.5

Bm=KY /V PG (e~ VES). (26)

) ) ] Then the effective propagation constant is
Taking the result in the far-field, we have

ik A F K
k2 etkr . _ .2 i €

47r

N _
>3 / dr(ey; — 1)E;(F)e~*<Ti, (27)  The effective permittivity is
j=1"Vi

This can be written in terms of the horizontally and vertically Eeft = 737 (34)
polarized components
The effective permittivity of foam is used in the Fresnel

ikr

. oe reflection coefficients for the air-foam interface and the foam-

Eo(T) = (Buosts + Enshs) T (28) ocean interface in the DMRT theory.
Then we can obtain the scattered power V. NUMERICAL SIMULATIONS OF EMISSIVITY AND
L o - COMPARISONWITH EXPERIMENTAL MEASUREMENTS
. 2 2
P, = /. d¢>s/0 dfs sin0s([Evs|” + [Ens|™)-  (29)  In the following, we illustrate the numerical results of the

emissivity based on a model of coated particles in a fcc struc-
The scattered power can be decomposed into coherent &#f@. The absorption rate, scattering rate, and effective permit-
incoherent scattered waves [15]. The coherent wave is obtairitty are first calculated using Monte Carlo simulation. Subse-
by averaging the scattered field over the Monte Carlo realiz@uently, these parameters are used to compute the emissivity.
tions. To obtain the incoherent power, we have to subtract thée summarize the foam parameters as follows:

coherent intensity. Thus a; outer radius of coated air bubbje
b; inner radius of coated air bubbje
o 2 4 ) 1 N number of air bubbles;
P = /0 ds /0 df sin 68% \% total sample volume in the Monte Carlo simulations;
9 9 S fractional volume of seawater in foam;
' {<|E'”-*’ = (Eus)[7) + (| Ens = (Ens)| >} (30) Ew permittivity of seawater;
0 observation angle.
where angular bracket represents averaging over realizations. Note that the permittivity of seawater, is a function of the
The scattering coefficient is frequency and other physical parameters such as the temperature
e o _ and salinity. In our simulations, the permittivities of the seawater
po = _ / d. / do, sin §, — at10.8 and 36.5 GHz ar®.149-+440.105 and13.448+i24.784,
1 ‘Ee v o 0 7=’ respectively. In the Monte Carlo simulations, different realiza-
2n tions of the sample of spheres are obtained by rotations of the

. {<|Em —(Eu)]?) + (| Ens — <E,m)|2)} . (31) samplevolume. Fromthe results of the different realizations, the

coherent fields and the incoherent fields are calculated. The pa-

The extinction coefficient is. = r, + .. and the albedo rameters used for Monte Carlo simulations are shown in Table .
is o = K, /K. The calculated scattering and absorption coeff.he total number of coated air bubbles, which are arranged in a

cients are then substituted into DMRT equations. We also ud€g structure, isV- = N’ + N* = 500. Two species of coated
a Rayleigh phase matrix in the DMRT equations. air bubbles are used, as shown in Table I. They have the same

The effective permittivity can be calculated as follows. In th@Uter radii but have different inner radif, andb”. We choose
forward directionk, = k;, the scattered field in the incident/V’ bubbles randomly of inner radi, and the rest have inner
polarization can be written as radii of b”. Seven realizations are generated by rotations of the

sample.
edkr The absorption rate, scattering rate, extinction rate, albedo,

Ey=F——. (32)  and effective permittivity calculated from Monte Carlo simu-
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TABLE I 1 g ! - v
NUMERICAL RESULTS FROM MONTE CARLO SIMULATIONS FOR FIGS. 6-8 e ey
Wﬁ‘ .
Parameter 10.8 GHz 36.5 GHz .3 permefme s s s
T
Absorption rate K ;. 0.2849 0.8854 % oY PSSR |
Scattering rate K 0.01201 0.5738 Lﬁ
Extinction rate X, 0.2969 1.4592 OF prmmmmmmmmmmmem e — 365G V| 4
, ~— 108G Y
Albedo 0.04045 0.3933
: "y 0g - ' ; '
Effective permittivity 1.448+i0.158 1.158+i0.206 20 30 40 50 50 7
Observation Angle (degres)
TABLE Il Fig. 6. Emissivity as a function of observation angle for vertical polarization.

NUMERICAL RESULTS FROM MONTE CARLO SIMULATIONS FOR FIG. 9 The radius of the coated air bubble is 1.0 mm.

1 ¥ Y ¥ ¥

Parameter 10.8 GHz 36.5 GHz
Absorption rate Kabs 0.3009 0.9150 P
P~ - % -----------
Scattering rate K 2.552x103 0.1380 = %&\
Extinction rate &, 0.3035 1.0530 L .
o~
fam
Albedo 8.403x103 0.1310 tu —
OF Fomrmmmmmrmm e — 355G H | |
Effective permittivity 1.508+i0.165 1.284+i0.156 —— HILHEG
DE ; A l A
20 30 40 50 =] 7
TABLE IV Cheenation Angle (degree)

NUMERICAL RESULTSFROM MONTE CARLO SIMULATIONS FOR FIG. 10
Fig. 7. Emissivity as a function of observation angle for horizontal polari-

Parameter 10.8 GHz 36.5 GHz zation. The radius of the coated air bubble is 1.0 mm.
Absorption rate K, o 0.2686 0.9042 1 .
W w1
Scattering rate K, 6.521x10% 0.01553 /,x;f»?ﬁ:z’—’:u o e
[« B 4
Extinction rate X, 0.2686 0.9197 ‘ BB/
Albedo 2.427x10% 0.01689 Y ;
a@ng: 1
Effective permittivity 1.478+i0.144 1.356+i0.140 E — ZBAG Y
- - 3AG H
0.4 —— 108G ¥ |
. . . —e— 118G H
lations for these cases are shown in Tables II-IV, respectively.
Next we plot the microwave emissivity dependence on the ob- 0.2 = ; -
servation angle at 10.8 and 36.5 GHz for vertical polarization in u v 4 8 8
' ' thickness of foam layer (cm)

Fig. 6 and horizontal polarization in Fig. 7. The foam parameters

are shown in Table I. As the size of the bubbles increases, fg g Emissivity as a function of the thickness of the foam layer at

scattering coefficient increases, and the albedo also increaseservation angle 33 The radius of the coated air bubble is 1.0 mm.

The increase in albedo causes the corresponding brightness tem-

peratures to decrease. thicknesses vary and also vary as a function of depth. For conve-
Next we present the microwave emissivity for vertical polamience, we have used two coating thicknesses. The observation

ization and horizontal polarization, at 10.8 and 36.5 GHz, asaagle isf = 53°. From these three figures, we can conclude that

function of thickness of the foam layer with different sizes ddis the thickness of the foam layer increases, the emissivity in-

coated air bubbles, as shown in Figs. 8-10. In actual foam, treases correspondingly and then saturates at a particular thick-

air bubbles have a size distribution with mean diameter abméss of the foam layer, for both horizontal polarization and ver-

1 mm. However, scattering increases with particle sizes and ti@l polarization. The saturation point of horizontal polariza-

effective scattering mean size can be substantially larger thantioa is slightly larger than that of vertical polarization. For layer

mean size. In our simulations, we use single size particles. Tihékness larger than the saturation thicknessdifferenceof

radii of air bubbles chosen are 1.0, 0.5, and 0.25 mm and regnissivity between the two frequencies increases as the size of

resent the effective scattering mean. In actual foam, the coattwated air bubbles increases.
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44 MMG’F - + * +
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- / f -I?;“ L .
= | L ] e b
FOBY 4 - E — DMRT T
E — FBEG V i - — DMRT Th
- — 365G H D7 0| + Experiment T "m0
0.4 —— MLEG WV & Expariment Th
108G H s : : :
02 , ' = : "0 30 40 & B 70
“n ~ 4 G g observation Angle (degree)

.
thickness of foar layer {fom)

Fig. 12. Comparison between the simulation results and the measurements of
Fig. 9. Emissivity as a function of the thickness of the foam layer d@he microwave emissivity at 36.5 GHz for horizontal polarization and vertical
observation angle 33 The radius of the coated air bubble is 0.5 mm. polarization, respectively.

P ’WW«% TABLE V
£ EMISSIVITIES OF THE EXPERIMENTAL DATA, DMRT MODEL AND AIR—OCEAN
/F'B_/ HALF SPACE RESULTS AT10.8 GH
DB/ ;
= ; Experiment DMRT model Air-ocean half
= e(o) space
oy il
GUBE ’ v H v H % H
U% BIG Y 30 0.920 0.900 0.915 0.897 0.422 0337
- 355G H : . : : : i
04 —= 186G W | 35 0.930 0.890 0.923 0.898 0.440 0.322
—e— HLBG H 40 0.955 0.875 0.930 0.899 0.462 0.305
2 ' ' : 45 0945 | 0860 | 0939 | 088 | 048 | 0.285
0 2 4 & 8
thickness of foam layer {om) 50 0.945 0.815 0.946 0.894 0.523 0.263
55 0.929 0.805 0.950 0.885 0.564 0.239
Fig. 10. Emissivity as a function of the thickness of the foam layer ¢
observation angle 53 The radius of the coated air bubble is 0.25 mm. 60 0919 0.780 0.951 087 0.615 0.211
1 E T 13 T
WW” TABLE VI
I + 4 o] EMISSIVITIES OF THEEXPERIMENTAL DATA, DMRT MODEL AND AIR—OCEAN
03 o= ‘”E&W““‘“""““-%”—L;ML """""""" HALF SPACE RESULTS AT 36.5 GH
B i T
: IR Y LML LI L L LN N i Experiment DMRT model Air-ocean half
s i 0(°) space
g — [ART Ty v q v H v H
= 0.7 .|~ DWRT Th
. + Expefiment Ty 30 0.910 0.880 0916 0.908 0.526 0.429
A Experimant Th 40 0.940 0.885 0916 0.900 0.570 0.391
5] — . : : 45 0.945 0.875 0.915 0.895 0.599 0367
o & 40 50 a0 e 55 0.935 0.850 0911 0.877 0.676 0.310
observation Angle (degree) : i : i i i
60 0912 0.785 0.905 0.863 0.725 0.276

Fig. 11. Comparison between the simulation results and the measurements of
the microwave emissivity at 10.8 GHz for horizontal polarization and vertical

polarization, respectively. 10.8 and 36.5 GHz, respectively. From Figs. 11-12, we see that
Monte Carlo simulations produce results in reasonably good
Next, we compare the microwave emissivity of simulation reegreement with experimental measurements. Both simulations
sults with the experimental measurements as a function of @mnd experiments indicate that absorption at 10.8 GHz is appre-
servation angle in Figs. 11-12. The parameters used for Montable. In addition, the simulations show that emissivities at 10.8
Carlo simulation are the same as that used in Figs. 6-8, wihd 36.5 GHz are comparable. The absorption coefficientat 36.5
a coated air bubble radius of 1.0 mm. In the experiment, emi{SHz is larger than that at 10.8 GHz. However, scattering has a
sivities of horizontal polarization and vertical polarization wersignificant effect at 36.5 GHz. The results are in good agreement
measured at 10.8 and 36.5 GHz, for a foam layer with a meansmall angles of incidence. At large angles, the difference in-
thickness of 2.8 cm. To facilitate the comparisons, we list icreases. We are presently studying the refinement of the model
Tables V and VI, the experimental data, the DMRT model révy investigating realistic foam generation algorithms that can
sults and the air-ocean half space results for the emissivitiesraprove the model.
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VI. CONCLUSION The electric field within the shell is
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