THESIS

AUTOMATIC PREDICTION OF INTEREST POINT STABILITY

Submitted by
H. Thomson Comer

Department of Computer Science

In partial fulfillment of the requirements
for the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Spring 2009



Copyright(© H. Thomson Comer 2009
All Rights Reserved



COLORADO STATE UNIVERSITY

April 7, 2009

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR
SUPERVISION BY H. THOMSON COMER ENTITLED AUTOMATIC PREDIC-
TION OF INTEREST POINT STABILITY BE ACCEPTED AS FULFILLING N
PART REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE.

Committee on Graduate Work

Dr. Patrick Monnier

Dr. Ross Beveridge

Advisor Dr. Bruce Draper

Department Chair Dr. Darrell Whitley



ABSTRACT OF THESIS

AUTOMATIC PREDICTION OF INTEREST POINT STABILITY

Many computer vision applications depend on interest pb@tectors as a primary
means of dimensionality reduction. While many experiméatge been done measur-
ing the repeatability of selective attention algorithmsT[&t 05, BL02, CJ02, MP07,
SMBI98], we are not aware of any method for predicting theeeggbility of an indi-
vidual interest point at runtime. In this work, we attempfptedict the individual re-
peatability of a set of 0° interest points produced by Lowe’s SIFT algorithm [Low03],
Mikolajczyk’s Harris-Affine [Mik02], and Mikolajczyk and &mid’s Hessian-Affine
[MSO04]. These algorithms were chosen because of their pedioce and popularity.
17 relevant attributes are recorded at each interest poicityding eigenvalues of the
second moment matrix, Hessian matrix, and Laplacian-afsSian score.

A generalized linear model is used to predict the repeatyabil interest points from
their attributes. The relationship between interest pattributes proves to be weak,
however the repeatability of an individual interest poisut ¢0 some extent be influenced
by attributes. AL% improvement of mean interest point repeatability is acpithrough
two related methods: the addition of five new thresholdingsiens and through select-
ing the NV best interest points as predicted by a GLM of the logarithrallof7 interest
points. A similar GLM with a smaller set of author-selectéttibutes has comparable

performance.



This research finds that improving interest point repeatglbemains a hard prob-
lem, with an improvement of ovet’% unlikely using the current methods for interest
point detection. The lack of clear relationships betwedarést point attributes and
repeatability indicates that there is a hole in selectivengion research that may be

attributable to scale space implementation.

H. Thomson Comer

Department of Computer Science
Colorado State University

Fort Collins, CO 80523

Spring 2009
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Chapter 1

Introduction

Computer vision applications typically depend on extragtinformation from large,
complex visual scenes. One popular approach is to reducdatiaeby concentrating
on a small set of interest points (also referred to as seteattention windows, local
features, image regions, keypoints or extrema). Interesitp are distorted less by
changes in viewpoint than the full image and therefore plevepeatable clues to the
contents of the scene. In this work we model the attributestefest points in order to

predict the accuracy and repeatability of individual ietmpoints at runtime.

1.1 Interest points in computer vision

Interest points are a successful approach to reducing thergiionality of a scene
in computer vision applications. David Lowe’s SIFT [Low0&hd Mikolajczyk and
Schmid’s Harris and Hessian-Laplace [MS02] algorithmsehiasen cited cumulatively
4580 times since their release according to Google Scholaese algorithms use an
efficient gradient-based technique to produce a set ofast@oints - informative image
sub-regions that are localized in scale and space.

Interest points are popular for a number of reasons. Theeffi@ent, produc-
ing a representative sampling of an image with near realperéormance. They are

robust to transformation and viewpoint change becausedépgnd only on local struc-



ture. Interest points can also be produced independeniggrhentation techniques or
any discussion of foreground/background separation. @oenpnodels of human vi-

sion utilize interest points because of their similaritypgychological theories of vision

[Dun98, GSKE 99, IKNT98, KU85, MP90, OFPK02, OVvWHMO04, PLNO2, PIIKO05].
Receptive-field models [dB93, JP87, SH85] suggest thagoaimtion and classifica-

tion in human cortical areas correspond to specific viewgdogations and signal struc-
tures. Numerous models of human vision using interest p@intl their corresponding
research basis are discussed in Chapter 2.

An algorithm is considered an interest point detector if épends on a set of
characteristics shared between numerous approachesresin@int detectors pro-
duce local image sub-regions located in scale and spaceoanddd around corners,
blobs, and image curvature. They provide a broad samplingpofent in the origi-
nal image while being independent of global scene inforomatilnterest points can
be produced RANSAC-style with high density and low repeditgpor in lower den-
sity by focusing on the points with the strongest attributd3escriptors are often
used in conjunction with interest points in order to modalaloimage regions for
object recognition [ECV, Low99, OPFAQ06], segmentation{JLor face recognition
[BLGTO06, MBOO7, KS] as in Figure 1.1. Global scene content also be modeled
with interest points using a combination of descriptor imation and the spatial rela-
tionships between them [SC00, SM97, SL04]. Scenes can bastacted using the
interest points as a set of individualized scene anchortacong global spatial and
local image content information [SI07].

Interest points provide local access to global informastmicture. They do this
using fast, deterministic algorithms that are able to bjigelect the same set of interest
points with high repeatability from a variety of image scenelhis and other good

attributes of interest points make them useful in a wideetgrof image processing



Figure 1.1: A small set of highly relevant interest pointagatle for face recognition.

applications.

1.2 Measuring interest points

Interest points have a number of properties that make thefulu®r computer vision
tasks. Tuytelaars and Mikolajczyk provide a detailed dpson of these properties in

[TMO8], some of which are repeated here.

e Repeatability: A repeatable interest point appears ondheesstructure in a pair
of images taken from different viewpoints. This is the masnenon metric in

interest point stability evaluation.

e Accuracy: Detected points are accurately localized inescsthape, and space.
Registration problems use only the interest points witthégy accuracy for cali-

brating epipolar geometry.

e Locality: Interest points are localized in scale and spagiagulocal structure

information that is robust to scene change.

3



e Distinctiveness: The degree to which an interest pointesgmts local image
structure. This interest point characteristic is ofterntiig coupled with an in-

terest point descriptor.

e Density: Interest points should be produced in such a gyathiat informative
areas of image structure are well sampled. In addition,rdafgos that produce

more interest points will produce more informative subséthose points.

e Efficiency: Interest points are often used in real-time catapvision systems and

as such the algorithms for their detection should be fast.

An interest point can be evaluated on its information canésnwell as its repeata-
bility. The information content of an interest point can beteasily measured without
ground-truth specifications. The repeatability of an ies¢point, however, can be mea-

sured easily. This is the measure used to evaluate inteyggspn this work.

1.3 Interest point repeatability prediction

We seek to predict the repeatability of interest pointsgisittributes from three pivotal
algorithms in selective attention research. The Diffeesot:Gaussian (DOG) interest
point detector from Lowe’s SIFT algorithm is the single mastnmonly used algorithm.
It has been cited 2.4 times per day since its publicatiorelécs interest points that are
the extrema in the DOG filter response computed over an imagepd. Mikolajczyk
and Schmid [Mik02, MS02] propose two highly-repeatableodtyms as the basis of
their affine-invariant technique. The first of these, therlddraplace, detects interest
points using the Harris corner measure, computed from tbensemoment matrix of
first derivatives, and the Laplacian-of-Gaussian (LOGgfjlan analog of the DOG.
The Hessian-Laplace detects interest points using a catidmof the Hessian matrix

of second derivatives and the LOG and is the best performengative-based technique



found in a comparison of affine-invariant detectors [MDS]. We are not interested in
performing another black-box comparison of interest paigbrithms; for such compar-
isons, see [DL04, MTS05, MLS05]. Instead, we are interested in measuring ategu
of individual interest points (no matter what algorithmytiveere generated by) and in
determining whether the repeatability of an interest poant be predicted based on
these measures.

Each selective attention algorithm lacks a means for ptiegiche usefulness of
individual interest points at run-time. The algorithms guoe many interest points;
in most applications users keep and process only a subskewf. tInterest point re-
peatability prediction will therefore provide users wittetability to parameterize each
algorithm towards either increased quantity or increaseatability. It will also lead
research techniques to generate more repeatable algseiiyfocusing on the attributes
that improve individual repeatability most.

This work measures the overall and algorithm-specific regiglety of one million
interest points produced by the above three algorithms fiaomdomly selected images
from the CalTech-101 database [FFFPQ7]. This analysis éeya goals. One is to
determine which attributes, if any, are predictive of wieethn interest point will be
detected again in another image, and whether the currezgttbids in common use are
well chosen. Another goal is to determine to what extent épeatability of an interest
point can be predicted from its bottom-up properties. Fynalur third goal is to fit a

multi-attribute statistical model to best predict whickeirest points will repeat.



Chapter 2

Literature Review

Many selective attention algorithms have been proposeé. aldorithms take inspira-
tion from separate schools of psychology and psychophysigsal theory, and infor-
mation theory. Many of the following works combine the effoof multiple schools,
producing one of the most interesting topics in computeowisThere are two primary
schools responsible for selective attention researclsetlob signal theory and those of

biology.

2.1 Selective attention as signal theory

Original work produced interest point detectors like cordetectors, edge detectors,
the computation of principal curvature in an image, and rimfation points based in
information theory. These algorithms were extended toiplelscales using the concept
of scale invariance and the computation of a scale spacée Sgace algorithms detect
interest points at multiple parameterizable levels ofeseald radius. Recent work has
extended scale space algorithms further into affine inmaga These algorithms find

ellipsoidal instead of circular interest points at mukipgvels of scale.



2.1.1 Scale spaces

Interest points detected on the original image signal oatge its smallest frequency
range. Many interest point detectors attempt to extradesosgariant interest points
through use of a “scale space”. Seminal work by Koenderindef4] and Witkin

[Wit87] provide the basic framework for such scale invariemerest points. In their
work scale spaces are computed from a set of derivative-aled Gaussian convo-
lutions of a source image. Using a scale space representatierest points can be
detected at any required scale. The scale space of an imadeamputed over the
original image, derivatives of the original image, or byatdéting the entropy at each
pixel coordinate inz, y and scale. Eaton et al. give detailed instructions for lngjc

scale space used with scale-invariant interest point géorsr[ESM 06] and Burt and

Adelson discuss their theoretical foundations [BA83].

2.1.2 Scale invariance

Lindeberg [Lin94] suggests methods for locating the charéstic scale in an image
scale space by producing an image pyramid from successiw®ltions with a gaus-
sian. Extrema of the “Laplacian-of-Gaussian” (LOG) funatacross levels of the scale
space find optimal locations in the second order derivatiila® image in bothe, y
coordinates as well as region size. An optimal region, orattaristic scale, also gives
a local frequency estimation. This work is extended [LinBglfinding and annotating
the characteristic scale of local image structures inagtlobs, junctions, and ridges.
David Lowe contributes to the understanding of Lindebepgévious work by show-
ing that the LOG operator can be approximated with a Diffeeeof-Gaussians (DOG)
pyramid [Low03]. Lowe’s DOG pyramid is able to find extremative scale space of
an image similar to those found by Lindeberg’s LOG. The rumetiof Lowe’s DOG

function is significantly improved over LOG by eliminatinget convolution with an



LOG filter. The DOG approach is the keypoint detection staggnoalgorithm called
Scale Invariant Feature Transform (SIFT), a popular ctlasiten-of-features based ob-
ject recognition technique. A reimplementation of the DOW@eiest point detector is
one of the algorithms analyzed in this work.

Lowe’s SIFT algorithm is used often in subsequent publacet] including Led-
wich and Williams who use SIFT features for image retrievad autdoor localization
[LWO4]. Clusters of SIFT local features are used in a Hougdicspo perform object
recognition and perform an 8-dof homography between imables usefulness of per-
forming sub-pixel optimization vi8 D quadratic is also demonstrated [BL02]. Other
uses of SIFT are numerous and exist for object recognitamrg €letection, scene recon-
struction, and many other applications [FPZ03, OPFAQ06, \WB4.

Mikolajczyk proposed a new scale invariant interest poerterator in his Ph.D. the-
sis [Mik02]. The Harris-Laplace detector combines scalesgtive Harris corners with
Lindeberg’s detection of the characteristic scale. Hdraplace first uses the Harris
corner detector to find maxima in the second order momentixnattfirst derivatives
[HS88]. Those Harris points that are also extrema in the L&3tsen accepted as key-
points. He and Cordelia Schmid propose a similar algoritsmgithe blob detection of
the Hessian in place of Harris corner points [MS04]. Our waldo examines the fea-
tures and performance of these two algorithms due to theiopeance and popularity.

Information-theoretic approaches using Shannon entragg been used for a vari-
ety of image processing applications. Gilles’ Ph.D. worklagul regional measurement
of entropy to aerial images[Gil98]. In order to select sdalariant interest points, this
work was extended by Kadir and Brady to a multi-scale reprasion[KBO01], called
Scale-saliency. The use of entropy to detect regions ofdateén an image is intuitive
since the goal of all selective attention algorithms is ttedethe most informative set

of regions. The algorithm proposed by Kadir and Brady, caeale-saliency, finds



regions in an image where the second derivative of entrofly mgard to scale is zero.
The level of scale where the second derivative of entropgiis then defines a bounded
circular region inside of which the entropy is greater osl#san its immediate neigh-
borhood.

Scale-saliency has been used by a variety of authors. Hatd ewis use the
scale-saliency approach for tracking and identifying ot§ehrough image matching
sequences[HLO3], providingD motion tracking in real time. Fei Fei et al. use
Scale-saliency local features to perform constellatibfeatures style object recogni-

tion [FFFPO7], and Fergus et al. use them for object classyr@tion [FPZ03].

2.1.3 Affine invariance

Mikolajcyk and Schmid proposed another successful sekattention algorithm called
Harris-Affine in [MS04]. They extend Harris-Laplace with aearative algorithm that
adaptively fits the keypoints with increasing precision #meh fits them with a second
moment matrix that defines the bounding ellipse of the exatesgion.

Kadir and Brady [KZB04] extend Scale-saliency interesthp®io affine invariance
using an iterative approach over the original scale invrscale-saliency points. It is
shown to perform similarly to curvature-based techniquéhk imnproved performance
for small perturbations.

Maximally Stable Extremal Regions (MSER) are interest {sogenerated using a
fast watershed algorithm. It has performance comparabtbedest affine invariant

approaches [MCUPO4].

2.2 Selective attention and biology

The use of rapid non-contextual interest point detectovgei$ supported in biological

literature [KBO1]. Biological attention research is basedartificial intelligence (A.l.),



visual recognition tasks, and aspects of the growing bicgtimcommunity that seeks
to model already proven systems (those we see in nature).eMws A.l. systems are
using interest point generators to make judgements abcagencontent in order to
localize the objects viewed in the scene or the actor’s osivithin it. In order to
improve these systems and provide an observational jatdit for their existence,
many researchers are turning toward biomimetic modelecBe¢ attention is the first
stage in many of these systems, using the research of pdyg$iop and psychology to
model the interest points used in later cortical areas.

There exists a large body of psychology research demoimgitae validity of selec-
tive attention systems in human and animal visual systemet.dl. [LVKP02] show that
the identification and categorization of image scenes sdauhe early stages of the vi-
sual system, massively and in-parallel. Malik and PeronB3®] provide the biological
foundation for LOG/DOG techniques by proposing a model ohhno attention based
on the differences of offset Gaussians observed in humarewdptive fields [SH85].
Multiple sparse local features are supported by Tsunodh, ettao show that complex
objects are represented as additive features in inferaiexhportex [TYNTO1].

Koch and Ullman proposed the use of a saliency map [KU85]eBas neurological
studies, they suggest that human attention is a sum of sgli®aps tuned to various
image features. In order to detect the regions of highewrsal, they propose the use
of multi-scale DOG filters followed by a winner take all nelunatwork. By using an
image pyramid to provide analysis of scale space, the witaker-all feedback network
finds salient regions of varying scale. A neurally inspineulilti-layer neural network
based on selective tuning is proposed by Tsotsos et al. [T@3)V Interest points are
selected via tuning and a winner-take-all neural network.

Itti's Neuromorphic Vision Toolkit (NVT) [IKNt98] combines massively parallel

feature detection [TG80] with the combination of multipgafure maps [KU85] to pro-

10



duce biologically plausible feature maps. Feature mapsanguted for opponent-
color and intensity channels, and 8 principle orientatiolkese maps are combined
using a scale space similar to Lowe’s DOG [Low03] into a srglpographic saliency
map. Interest points are ranked according to a winner-tdlkeeural network with sup-
pression. In a time series, this suppression leads NVT ttefioa each interest point in
descending rank. Siagian and Itti [SI0O7] suggest the etialuaf vision applications for
speed, performance, and a measure of their biological-iésshypothesis is extended
to rapid scene classification using the NVT system from Itti.

Peters et al. [PIIKO5] extend the bottom-up salience mofisketective attention
to include interactions between orientation-tuned celfscfutter reduction and contour
facilitation. Their work builds on Parkhurst et al. [PLNO&Zho demonstrate that human
eye-tracking can be partially accounted for using a Diffieeeof-Gaussians model.

Sun and Fischer [SF03] produce a biologically inspiredorisystem based on Dun-
can’s Integrated Competition Hypothesis, which suggéstisdarly, pre-cortical regions
of the human visual system compete in parallel with tunind kater regions for the
selection of salient regions [Dun98]. Sun and Fischer usetee attention to compute
the visual salience of objects and groupings of objects &ally stage, combining that

with a second region that implements hierarchical seligtof attentional shifts.

2.3 Evaluation and review

A number of evaluations have been made considering whichexet two front ends
generates more stable keypoints. Mikolajczyk et al.[MU5] evaluate the accuracy of
interest point detectors against each other under affinefrem and find Hessian-Affine
and Maximally Stable Extremal Region (MSER) keypoints tonbest stable. Draper
and Lionelle[DLO4] recently compared the performance af IO G-filter based tech-

niques. Mikolajczyk et al. test various interest point detes for their usefulness in
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object recognition tasks [MLS05]. Object recognition penmiance is improved with the
use of interest points, particularly using those from Hasdiaplace and Scale-saliency.
Descriptors used as the second stage of selective attaiforithms are compared in
[MS05]. Mikolajczyk et al. also compare the invariance dfred-interest point detec-
tors, finding MSER and Hessian-Affine interest points the tneffective [MTS05].
Itti and Koch provide a detailed review and justification tteational models inspired
in psychological studies [IKO1]. Several computationahétectures and their applica-
tion to objective evaluation of advertising design are eexd by Itti [I1tt05]. Finally,
Tuytelaars and Mikolajczyk undertake a broad survey of ils&oty, progression, and

implementation of interest point detectors [TMO08].
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Chapter 3

Implementation

While there exist exhaustive tests of the comparable pedace of various interest
point detectors [MTS05, BL02, CJ02, MPO7, SMBI98], no experimental demonstra-
tion of the selected interest points has been performed.pli@ose of this research is
not to compare the performance of three fairly well knoweiast points detectors, but
to determine which attributes of those detectors are the¢ des<riptive, and why.

10 interest points are generated randomly from images in theCha-101 image
dataset using three state-of-the-art algorithms andddsteepeatability. Each interest
point is produced from one of three algorithms - Lowe’s LO@m@aximation [Low99],
hereafter referred to as DOG, and Mikolajczyk and Schmidisrid-Laplace [Mik02]
and Hessian-Laplace [MS02] algorithms. Harris-Laplacedpces interest points at
corners, Hessian-Laplace produces interest points atlairblobs, and DOG produces
interest points at blobs and edges. Hessian-Laplace arésHaplace algorithms are
sometimes referred to in this work as H-L algorithms to dertbieir similarity, and
Lowe’s algorithm is denoted as DOG because the behaviorsofiéscriptor is not ex-
amined.

These algorithms are representative of the state-of+thie-eterest point detection,
with one notable exception. Matas et al.'s MSER algorithnCli#P04] offers affine-

invariance, rapid run-time, and good performance, butigpad of the derivative-based
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class of algorithms we evaluate.

3.1 Use of scale invariant algorithms

We test the scale invariance class of algorithms insteadeoéffine invariance class for
a number of reasons. Lowe’s DOG is the only mechanism thabisdically tested
[IKN +98, OVWHMO04] and it is the most commonly used interest poipérator in
modern literature. Scale invariant algorithms are, in galnéster than the affine invari-
ant methods because no procedural iteration is requirefineAihvariance commonly
uses iteration on mathematical models to locate the irtpast region and introduce
isotropy

Scale invariant interest points can be viewed as the sel efaathorphic affine in-
variant interest points. Finding the homography betweem d¥fine interest points is
equivalent to finding their shared isomorphy. The most @ted characteristics of
scale invariant interest points then are good guides to tedigiive characteristics of
affine invariant interest points.

Finally, the importance of using similarity versus affinganant interest point de-
tectors is not yet known. Similarity transformations are gimplest form of planar
transformation defined by the perspective transformatiéfiine transformations are
the middle-ground between these two extremes. In eitheaffime or perspective trans-
form, only small changes are acceptable. This is because siampling effects caused
by scaling make repeatability impossible. We focus on scabriance because it shares
the goals of affine invariance with a faster runtime, redwedplexity, and a more com-

plete history.
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3.2 Scale-space

In order to represent image structures over all scales a spalce must be constructed
[Koe84, Wit87]. The scale space gives a discrete representa the continuous signals
presentin an image. Detecting extrema in the scale-spaneiofage provides the scale
of an underlying structure [Lin98].

A scale space is produced by successive convolution of acsanrage/ with a
Gaussian kernel. Since the Gaussian kernel is separablenvese a 1D Gaussian

given by

1 22 /252
g(z) = oo /2 (3.1)

producing a series of imagdgo,z) = g(o,z) x I. Each time the Gaussian kernel
o = 2.0, I is subsampled by a factor of two, reducing the sizel dfy four while
retaining signal and eliminating noise. Thus, a scale s{gag@yramid of images where
the width and height of each level decrease by two succégsive

The appropriate set of values used in the scale space depends on the size of image
structures we seek to detect. Usimg= 2.0 produces a very coarse pyramid and only
responds to image structures with scales that are powevgoofEherefore, we divide
each octave into an integer number of levelsuch that the constant scale difference
between levels: = 2'/5. Our experiments use = 3 based on the results of Lowe
[Low03], who found that three levels per octave maximizesegpbility. The pyramid
is then composed of octaves each containing three levefsowit {20, 21/3 22/3}, The
bottom half of Figure 3.1 shows an image pyramid with= 3. The upper half shows
two levels in the same octave, and one level each higher extaxdditional details
of pyramid construction are available from Burt and Adelf8A83] and Eaton et al.
[ESMT086].

When the size of an octave becomes smaller than the cormolaotask used to
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Figure 3.1: Two views of an image pyramid.
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produce each successive octave, the pyramid is finished. sé&/@ux 9 convolution
mask at all levels of scaléd x 9 minimizes the error between the expectedf each

level of an octave and the true

3.3 DOG

A set of difference images is produced from the originalssglace, producing a DOG-
pyramid. This is based off of Lowe[Low99] who demonstrateatthe LOG diffusion
equation

oG

— =oV3@ (3.2)
oo

is approximated and optimized for speed with a DOG pyramitie DOG pyramid
improves computation time by eliminating the necessityarfvétive convolutions.
The DOG algorithm produces an image pyramid containing sef difference

imagesD, produced from a pyramid of gaussian imagedEquation 3.4).

L(z,y,0) = G(z,y,0)*I(z,y) (3.3)
1 2 2 2
_ — (@2 +9?)/20
G(x7 y? U) 27‘(‘0’2 6

D({L',y,O') = (G([L’,y, ]{,‘O‘) - G(‘Tay?U)) * I(x,y)

= L(z,y,ko) — L(z,y,0) (3.4)

In order to create a DOG-pyramid, one extra gaussian levgli(€ 3.2) is produced,
creatings + 1 levels per octave. The difference of each set of four levelgken,
producing a difference pyramid with the same size as thétiwadl scale-space.

By detecting extrema in the difference imabeof each pair of images, salient re-

gions are detected in both scale and space. Interest pomiscated at these extrema.
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The scale of an interest point is determined by its positidhe image pyramid. Interest
points are then localized by fitting a 3D quadratic to the hleaging points around each
potential maximum:

oDT 1 +0°D

where D(x) is evaluated at the sample point and= (z,y, o) is the offset from this

point as explained by Lowe [Low03].

Figure 3.2: An extra level in each octave of a scale spaces tosproduce a Difference-
of-Gaussians Pyramid.

3.4 Harris-Laplace

The Harris corner detector is one of the best and most-taetaee detectors but it has no
scale component [HS88]. The Harris-Laplace algorithm @asssale space to produce
interest points by detecting Harris corner points on eauhl lef an image pyramid.
The corner points are localized in scale by finding the “ctimréstic scale” using the
Laplacian-of-Gaussian (LOG) [Lin98] filter.

Harris corners are constructed using the second-momenixmét:, o;, op) in the
scale-normalized first derivative of the source image.

L2(flf o ) L. L ({lj’ o )
_ 2 z\*» VD Yyt O D
pw(x,01,0p) = opglor) * L,L,(z,0p) ng/(xv op)

(3.6)
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whereo; p are the integration and differentiation kernel sizes, eetipely, ¢ is a gaus-
sian, andL?(z, op) is the square of the intensity of the first derivative withpest toi
at positionz.

Interest points are detected using maxima in the Harris uneds

R = det(u(x,07,0p)) — atrace(u(x, o7, 0p))? (3.7)

The second moment matrix describes the orientation and ituggnof gradients
around each candidate interest point. The second momeriknsahe covariance ma-
trix of partial derivatives of image intensity around a ciaade interest point and is used

for the detection of corners.

3.5 Hessian-Laplace

The Hessian matrix

L(Ly)s(x)  L(Ly)y(x)
L(Ly)y(x) L(Ly)y(x)

is used for the detection of blobs. Instead of the covariaftiee first derivative neigh-

H(x) = (3.8)

borhood, H (x) contains the second derivative information at the exactdinates of
the extremum inc = I(x,y, o), denoted by..(L;);(z). Interest points produced by the
Hessian-Laplace detector are simultaneously maximalertrdice and determinant of

the Hessian matrix.

DET(H) = 07(L(Ly)sL(Ly)y(x) = L(Ly)5(x)) (3.9)

Y

TR(H) = o1(L(Ly)2(x) + L(Ly)y(x)) (3.10)

The trace and determinant include a normalization compongrthe scale of the

current pyramidal level as suggested [Lin98]. One pardictrength of Hessian-
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Laplace is the non-requirement of any thresholding. Therdlyn is very similar to
Lowe’s DOG: The trace approximates DOG and the determinan&lzes edges sim-
ilarly to thresholding the ratio of Hessian eigenvalueswWi8]. Hessian-Affine, the
affine invariant version of Hessian-Laplace, has been fdarve the highest interest

point accuracy other than MSER [MT85].

3.6 Interest point comparison metrics

Two metrics are to evaluate interest points. Repeatabdity binary valued property
of an interest point that specifies if it was found invariamsimilarity transform. Ac-
curacy measures the degree of invariance of an interest, @oid is highly related to
repeatability. Algorithms are generally measured in teofngverall repeatability. Ac-
curacy provides a more detailed measure of the quality ohtrast point but cannot

be computed independently of repeatability.

3.6.1 Repeatability

The optimal selective attention algorithm is invariantitoigarity transforms:

T(K(I)) = K(T(1)) (3.11)

or, equivalently

K(I) = T (K(T(I))) (3.12)

wherel is an imagekK () is an interest point detector (such as DOG, Harris-Laplace,
Hessian-Laplace), arifl() is a similarity transform.
Our algorithm for computing repeatability is as follows. tlig € T1(K(T(I)))

be a interest point from the target image image, transforbaet into into the source
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image coordinates, and lgt. be the scale of;. Similarly, lets; € K(I) be an interest

point from the original, unmodified image. Thgrands; match if:

o153 < Sie < 2t
|t2 — Sj‘ < max<ti07 3]‘0’)

(3.13)

This metric determines when a target interest pgirg considered a repeat by being
equivalenttos;. If the scale difference betweenands; is within one-third of an octave
and the distance is less than the larger of the two radii, thennterest points match.
If a single target interest poirif matches two target interest pointsands;, only the

match with the smaller spatial (as opposed to scale) distsnased.

3.6.2 Accuracy

Accuracy is used for the matching criteria in three recemhgarison papers [MS02,
MSO01, MTS"05] and measures the overlap of an original interest poitit it§ repeat.

Accuracy for each interest point is measured as the invérsear ¢

1 —eg= s TN (3.14)

wherenr? is the area of the source or target interest point. Our repéiy metric is

equivalent to accuracy thresholding=ai.227.

3.7 Implementation differences and discussion

Side-by-side implementation of these three algorithmsiired some design compro-
mises. In addition to numerous threshold decisions thaaew&led entirely in our im-

plementation, structural decisions such as interest pginimber of levels per octave,
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and the criteria for detecting a match vary slightly from ¢niginal texts. This section
explains a few of those problems and our solutions to them.

Our scale space uses three levels per octave because of wowéound improved
repeatability up ta = 3 and diminishing returns thereafter. For three levels p&aneag
o = 1.26, which is close to Mikolajczyk and Schmid’s recommendatén = 1.2 for
their H-L algorithms.

We usey/2 in our repeatability measure to produce keypoints withrgjes matching
characteristics. This differs from Draper and Lionelle 21l who use a set radius of
17 pixels and Mikolajczyk et al. [MTS05, MLS05] who requirét; — s;| < 1.5. Our
repeatability measure is similar to Lowe [Low03] who allomatches within one-half
an octave. Matching interest points up to one-third of aaweftollows intuitively from
using three levels per octave, allowing matches betweeaghhbering levels only.

Harris and Hessian-Laplace interest points are formedyusitrema in the DOG
signal, rather than the canonical LOG. Crowley et al. confinat DOG is a good
approximation for LOG, showing that the differencedrbetween the two functions
is a constant, and that the error between the LOG and DOG nieikaninimized at
Olog = 1.1804,, at3.6% [CRPO2].

Extrema are not thresholded following the systems impldatems of the previous
authors. In SIFT [Low03], DOG extrema are culled based omdtie of the eigenvalues
of the Hessiar{r 4+ 1)/r whenr < 10. Interest points that have a DOG value below a
threshold are also thrown away. In the Harris-Laplace nutimberest points are culled
when their Harris scor& is below a threshold. This threshold from Mikolajczyk’s PhD

thesis is set to 1000. We assume his use of the same thresHatdr work.
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Chapter 4

Experiments

We measure the repeatability ®f° interest points detected from randomly selected
images in the CalTech-101 database [FFFPQ7]. Three digmitire used for interest
point detection: the DOG, Harris-Laplace, and Hessiand@palgorithms. Interest
points for each algorithm are generated on the exact sand seages and transfor-
mations, showing the relative density, repeatability, aoduracy of each interest point
detector in Table 4.1.

The transformatiofl’() used to produce interest points from target imagésalso
randomly selected. One quarter of the transformations apgasion up to90 degrees,
one quarter undergo uniform scaling fran® to 1.2, one quarter apply a10% to 10%

affine transformation, and one quarter randomly combinthetie.

Table 4.1: Initial results verifying expected repeatapitates and interest point density
of each algorithm.
type number repeatability accuracy

DOG/LOG 311,149 88 % 0.69
Harris-Laplace 1,112,983 85 % 0.68
Hessian-Laplace 381,910 85 % 0.72

Based on extrema detection in the absence of any threshaldlacal attribute eval-
uation, Harris-Laplace produces three times as many stt@ants as the other algo-

rithms. We therefore randomly select a subset of Harriddaginterest points, limiting
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the total number of interest points 16° in the following experiments. Repeatability
is almost equal across all three algorithms, and the meamramcof Hessian-Laplace
is slightly higher than either DOG or Harris-Laplace, whidnfirms previous affine

comparison results [MTS)5].

We seek to model the repeatability of individual intereshpin the following sec-
tions. Section 4.1 describes the attributes we extractdt imdéerest point location. The
thresholding decisions of prior authors are confirmed andieé in Section 4.2. We
apply the predictions of a generalized linear model (GLMPBection 4.3 to attribute
normalization in Section 4.3.1, the predictability of eadtorithm separately in 4.3.2,
and to the contribution of each attribute to interest ponetictability in general (Sec-
tion 4.4). Section 4.5 examines the difference betweemaatgoints located at minima
and those located at maxima. In Section 4.6, we discuss apecked and interesting

effect of the method used to select neighborhood extrema.

4.1 Attributes of interest points

Seventeen attributes are recorded from each interest géath attribute comes from
one of five feature “families” that are based on interest pdatection algorithms. Re-
gardless of which algorithm detected a specific interesttpaittributes are recorded
from every feature family. The five families of attribute® grosition, Harris, Hessian,

value, and entropy.

e Position attributes includepos, ypos, andzpos. xpos andypos are rescaled to
be in a range frond to 1.0 relative to their source image dimensions. We do not
expectrpos andypos, thex andy coordinates of an interest point in the original
image, to have a great effect on repeatability. The scatdati of an interest

point is recorded bypos and will be informative.

e Harris attributes includéariambdal, the first eigenvalue of the second moment
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matrix, harlambda2, the second eigenvalue of the second moment matrix, and
hardeterminant, their product. Harris interest points are maximafused in

Harris-Laplace.

Hessian attributes includéeslambdal, heslambda2, and hesdeterminant,
where heslambdal is the first eigenvalue of the second derivative matrix,
heslambda?2 is the second eigenvalue, andsdeterminant is their product.
Hessian interest points are maxima simultaneoushh@fdeterminant and

heslambdal + heslambda?2.

A number of successful interest point detectors use ent[@p8, KBO1,
KZB04]. The interest point detectors used in this study agvdtive based,
rather than entropy, but we include an entropy measure Becatiits rele-
vance to interest point research. In this family we includéropy, the entropy
H = —> p(x)logpp(z) of the region defined by each interest point. Also in-
cluded arelentropy andddentropy, the first and second derivatives of the local

entropy.

Value attributes includealue, truevalue, dx2, dy2, anddz2. Thevalue attribute
changes depending on which algorithm produced an inteoést. g~or DOG in-
terest pointsyalue = D(x,y, o). For Harris-Laplace interest pointsjlue = R,
and for Hessian-Laplace interest pointslue = DET(H). Our choice of
DET(H) follows from the linear modeling of a GLM. Each interest poia-
ceives sub-pixel optimization according to Lowe such thatvalue = D(x).
ComputingD(x) provides us with a 3D quadratic, from which we compaite,
dy2, anddz2. These are the second derivativegxk) in thex,y, andz direction.
These features describe local curvature around each shigoent, regardless of

algorithm.
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Figure 4.1: Repeatability of interest points thresholdgdHe Hessian determinant as
suggested by Lowe [Low03]. Repeatability is maximized kscdrding interest points
with a negative Hessian determinant.

We begin our attempt at predicting interest point repeétgliy reproducing the
thresholding tests of previous authors in Section 4.2. Tdisses on a small subset
of the available attributes. In Sections 4.3 and 4.4 we gitémpredict interest point

repeatability using logistic regression on each attribute

4.2 Attribute thresholding

The only technique used for improving repeatability in thigioal works depends on
discarding interest points for which a certain attributésfautside of a threshold. DOG
attributes are discarded if the absolute value of the 3D gimdequationD(x) is below

a threshold and if the ratioof the first and second eigenvalues of the Hessian is greater
than ten. Harris-Laplace interest points are discarddtkibbsolute value of the Harris
measureR < 1000.

Lowe [LowO03] suggests that when the determinant of the HesAi is negative
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Figure 4.2: Relationship of repeatability and ratio of Has®igenvalues. Repeatabil-
ity is maximized for interest points where< 5 regardless of the algorithm used for
detection.
the interest point should be discarded. These interestpwainere the first and second
derivatives have opposite signs are edge-like troughsdges, instead of peaks. This
implies that such interest points will be less repeatablk iarwell supported by our
results. Figure 4.1 shows the repeatability of interestisdrom each algorithm when
thresholded by the sign of the Hessian determinan of DOG interest points have
negative Hessian determinant. These interest points &zerepeatability and the
points with positive Hessian determinants 8e3% repeatable. Only two percent of the
determinant of Hessian-Laplace interest points and aldigsiof Harris-Laplace points
are below 0. If an application depends on a small number dflfiggpeatable interest
points, discarding Harris-Laplace points according te threshold is recommended.
We also test the repeatability of interest points for a rasfge= 2eslambdal tq yerify
Lowe’s use ofr < 10. We find thatr < 5 is most repeatable for DOG, Harris-Laplace,

and Hessian-Laplace interest points. Figure 4.2 show thdteeof validating Lowe’s

r < 10 threshold [LowO03].
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Figure 4.3: Repeatability of interest points with Harfisvalues above a threshold.
We did not find a Harris threshold that improves repeatabilihese results show that
performance decreasesiascreases. We also examined the accuracy of Harris interest
points with a similar result.

Harris interest points in prior work are those that are abBve- 1000 [Mik02].
Figure 4.3 shows the results of tests on the minimum acclepkduris-Laplace alue
scores in order to determine that threshold. Included asshiolds against the original
value produced from Harris-Laplace, and the sub-pixel optimize@value produced
from fitting the local region of the interest point to a 3D qratdt equation. We find that
no such threshold exists, and that interest point repdayatbecreases ag increases.

This experiment was also performed using the accuracy eneiitn identical results.

4.3 Logistic regression

The unique effort of this research is to contribute to ruetiprediction of keypoint
stability. We investigate this objective through logistegression on the attributes in
Section 4.1 at each interest point. The interest point dlyos being compared each

select repeatable locations based on two measures: sglétaé maxima of their cor-
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responding function (DOG, R, or H) and by thresholding thesgema according to
some minimum. This suggests that larger values of thesdifunscare better. We test
this hypothesis with the use of a generalized linear modéeiéd on individual interest
point attributes.

A GLM iteratively computes the expectation or log odds rdiid”) of each depen-
dent variable using maximum likelihood such that

eﬁo—l—Zﬁij
E(Y)=g(fo+ > BiX;) = (s S (4.1)

using the logit link functiong(p;) = log(lf—’;i) and fitting the prediction variabl®
(repeat or non-repeat) to a binomial distributiof.is our dataset of0° interest points
with 17 attributes5; are the coefficients that model a linear relationship betwae
attribute and the probability of repeat, ands the known repeatability of each interest
point as computed with the metric from Section 3.6. Logissigression allows us to
predict the probability that an individual interest pointlwepeat. We measure the
effectiveness of each logistic regression experimentgusorrelationrzyy - and the

area-under-curve (AUC).

The correlation between two vectafgY') andY” is defined as

Y YE(Y;) - NYE(Y;)
RO T TN 1) Sy Segr

wheres; is the standard deviation of the set.

(4.2)

TE(y),y 1S maximized when the set df = 10% samples and the set of expectations
E(Y) vary simultaneously. This metric depends heavily on theedisionality of the
data - one-tailed significance fpr< 0.05 when N = 10° requires a correlation score
of only 0.001645.

Area under the curve measures the discrimination of eaafdfiid correctly predict

an interest point that either repeats or does not repea.tlitei measured area under a
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receiver-operating-characteristic (ROC) curve whichipéofitting’ssensitivity against
1 — speci ficity.

Because interest points are generated from three algaithat may produce at-
tributes with different variance, we first examine data nalipation techniques in Sec-
tion 4.3.1. Section 4.3.2 tests if either of the three salectttention algorithms is more
or less predictable via GLM. Section 4.4 closely examinegtrformance of our GLM
on each family of interest points. We find, ultimately, tHa¢ repeatability of an indi-
vidual interest point cannot be easily predicted using @dirmodel. We see that each
attribute influences repeatability, but none strongly. sTwill enable us to construct a
GLM that increases repeatabilityt by ranking the interest points from most-to-worst

likely to repeat.

4.3.1 Normalization techniques

Attributes of the original data have variances that rangenfslightly above zero to
10!, This variability suggests that we look initially at norrzaltion techniques. We
investigate three normalization techniques on the datadiry mean centering each
sample and giving it unit length

V2 X7

Mean centering each sample and dividing the attribiieby their standard devia-

tion

N P ¢
] \/ﬁ DX = X;)?

Log-normalization of the absolute value of the subset aftaites with the largest

sd(X; (4.4)

variance is also examined including the Harris, Hessiat vatue attributes.
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Normalization has very little effect on eitheg)y (Figure 4.5) or AUC (Fig-
ure 4.4) scores. There is one exception: log normalizatidgheodata affects the corre-
lation of Harris and Hessian fittings. Correlation scoregsi@any of these attributes are
inverted. The net positive effect after log normalizatisthat the AUC and correlation
scores are highly correlated € 0.97, p < 0.0000001). Before log normalization cor-
relation between our two metricsis= 0.474,p = 0.06. We discuss the meaning of
this behavior in Sections 4.4.2 and 4.4.3.

The only cases where fitting with original attributes un@efprms any normaliza-
tion technique aréardeterminant andtruevalue. In both cases, the original model
is deceived by extremely large outliers which are correétedy log normalization.
We believe that the correlation and AUC metrics are effechiecause log normaliza-
tion introduces such a strong correspondence between ti@nginal attributes and
log normalized attributes are superior to unit and sd naeagbn in every fitting. We
proceed into Section 4.3.2, GLM performance by algorithma, Section 4.4, GLM per-
formance by each specific attribute, with an investigatibthe effect of original and

log normalized attributes on repeatability.

4.3.2 Regression by interest point detector

Figures 4.6 and 4.7 show the performance of logistic regressn the original data
and its log, separated by which algorithm the interest pamd detected by. Interest
points generated from the three algorithms do not, as wectsgedepend primarily on
their own attributes to predict repeatability. Nearly gvattribute has some predictive
power across all three algorithms; however that predigimser is quite weak. A hor-

izontal line is drawn at the random line for AU€ 0.5. Our predictions havé99, 998
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Logistic Regression By Normalization Type (AUC)
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Figure 4.4: Logistic regression by normalization type. Tdrea under the curve
(AUC) for each attribute on original data and each of threamon normalization tech-
niques. Fitting determinant of Harrigirdeterminant and optimized valuéruevalue
attributes fail because of the magnitude of these attrihute
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degrees of freedom, so a significancepof 0.05 in a one-tailed t.test is achieved at
r = 0.001645. A horizontal line is also drawn at that point on the grapharheindis-
tinguishable from zero.

The harlambdal attribute produces the largesty) y but does not boost AUC be-
cause AUC is a rank-based metric. The steep slope of the GleM seFigure 4.11
is enabling the prediction to produce a larger set of prabadpeats without properly
ranking them. A similar effect is causing high correlatiotha.eslambda?2, visualized
in Figure 4.19.

Results for why AUC is maximized among Harris-Laplace ies¢mpoints using a
GLM fit to Hessian family attributes is unclear. Similar agation results for DOG

with log normalized Hessian attributes is less surprisasgpoth are blob detectors.
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AUC and Correlation By Algorithm
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Figure 4.6: Regression by algorithm on original attributBerformance of the GLM
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Logistic regression performance with xpos
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Figure 4.8: Extremum near the borders of images are préuiycteot as repeatable.
reryy = 0.01, AUC = 0.51

4.4 Individual attribute performance

The next section shows a set of three graphs for each integedtribute with the goal of
finding shared attribute dependencies among all threeitigws, and exploiting them.
Each graph includes the logit probability function prodiity the GLM from the in-
dicated feature, the ROC curve of the logit prediction, amdrditional density graph
showing probability of a repeat by attribute value. A grex i drawn on the logit
function and conditional density plot denoting the bouretaof two standard devia-
tions above and below the mean of samples for each attribute.

The logit function shows the potential strength of the prBdih. Uninformative
attributes like the image coordinates of an interest pgipear flat. More informative
attributes will actually appear as a logit function with atdict boundary between the
probability of a repeat and a non-repeat. However, none patitibutes are strongly

predictive of a repeat or non-repeat. Most of the logit fioret are approximately linear,
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particularly within two standard deviations of the mean. eThgit functions with a
high positive or negative slope have some predictive etiaaepeatability and suggest
thresholding or weighting interest points by these feaure

The ROC curve provides a visualization of the AUC score fraguntisns 4.3.1
and 4.3.2. It graphs thensitivity of a classifier againdt— speci ficity. Sensitivity is
the number of true positives, over the sum of true positives, and false negatives,.
Specificity is the number of misclassified negatives/(F), + 7,,). A ROC curve for a
classifier with random performance is a line with slepé and AUC= 0.5. None of the
AUC scores are above6 and none of the ROC curves appear to be very strong clas-
sifiers, but they are a visual aid to the performance of eagistic regression. As the
curve stretches toward the top left corner (perfect semtgitand specificity) the fitting
is more predictive.

The conditional density of an attribute is given biy|x;) wherez; is a particular

range of values of the attribute It is computed from Bayes rule as

plyle) = L;fg‘y) (4.6)
and in a discrete sample is simply
% 4.7)

over each attribute. This graph shows the attribute rangereviepeatability is maxi-
mized. It is particularly informative with log normalizetti@butes and suggests a num-
ber of thresholding decisions.

Figure 4.8 shows these three graphs based on the interast:pgicoordinates. As
expected, interest points near the border of an image deamtmseduced repeatability
caused by border effects. Otherwise, the coordinates aftareist point have no effect

on its repeatability. We suggest discarding interest goivithin one-twentieth of the
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Logistic regression performance with zpos

Logit function ROC curve Conditional density
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Figure 4.9: Logit function predicted by the GLM, ROC curvedaconditional den-
sity estimation of scale. Hessian points are the most stabfeale increases, with
the most stable points at the bottom of an octave and the t#abte at the top.
’/’E(y)7y = 003, AUC = 0.52

image border.

4.4.1 Scale

Interested in the effect of on repeatability, we show the repeatability of each alganit
as a function of scale in Figure 4.9. Hessian-Laplace presibhghly repeatable interest
points on every octave, though interest points on the higbesl of each octave have
consistently low repeatability. We believe this is becaas¢éhe o-normalization of
derivatives, which is too large for interest points normedi byo?. Interest points on
the bottom level of each octave are normalizedig'/? < 1, giving them a lower
likelihood of being maximal. Therefore only the most stalsierest points remain
extremal after normalization, increasing the stabilityhe#f bottom octave. DOG fitting
produces similar though less pronounced results.

The repeatability of every algorithm is sinusoidal and igetedent on the production
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of the scale space. DOG interest points seem to repeat mest iofthe center level
of the octave where there are a set of 26 neighbors in a cuhméniem. Harris
interest points behavior in a similar fashion, preferritpees with a full neighborhood.
Hessian interest points repeat the least often in the miofdéa octave, however. We
suspect that this is a function of the neighborhood operdismussed in Section 4.6.
Repeatability of interest points at the highest levels igradictable because of in-
sufficient samples. The number of interest points decreagarithmically with scale
because image size is quartered at each octave. We suggestdbarchers utilizing
interest point detection who desire a small number of rgfiatinterest points select
only those interest points with a moderate level of scalepetbility decreases only

slightly (particularly with Hessian-Laplace) and denslgcreases significantly.

4.4.2 Harris eigenvalues

Harris eigenvalues are seen in six figures: 4.11, 4.12, 4.13, 4.15, 4.16. Correlation
scores using these features are inverted with log normalizén Figure 4.5 because
of variance reduction. The first eigenvalue of the Harris émdieterminant have the
largest variance of any feature? = 10° and 10!}, respectively. Log normalization
reduces this and with it the GLM’s tendency to overfit.

The first eigenvalue of the Harris matrixirlambdal shows the highest correlation
of any feature (see Figure 4.6), suggesting the relatipniseiweenarlambdal and
repeatability is linear. This is true on the original feasiwhere the fit has a large
negative slope. Logging introduces nonlinearity to thdueg eliminating the strong
negative slope and reducing fit performance. Interest pauith a largeharlambdal
are edges and should always be discarded.

It is easy to understand why the original GLM prediction/afrlambda? is the
inverse ofharlambdal. Repeatability is maximized for interest points with small

harlambdal and largeharlambda2 implies that repeatability is maximized when their
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ratio is minimized. The result of minimizing their ratio isen in Figure 4.10.
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Figure 4.10: Investigation of repeatability of interesints against the ratio of Har-
ris eigenvalues. Our results show repeatability of aln908t for interest points with
eigenvalue ratio below.

The determinant of the second moment mathixydeterminant does not predict
repeatability well. This may seem unintuitive since Hatréplace uses this value to
select interest points. The large variancéeflambdal reduces the informativeness of
hardeterminant, which is the product of the two eigenvalues. The deterntinan, it
seems, be as easily maximized on an edge as on a corner. As Bid0 demonstrates,

the ratio of Harris eigenvalues contributes most to refxiéia
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Logistic regression performance with harlambdal

Logit function ROC curve Conditional density
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Figure 4.11: Logit function predicted by the GLM, ROC curaad conditional density
estimation of originaharlambdal. Repeatability decreases as the first eigenvalue in-
creases as interest points become more like edges andkkessiners. High correlation
and low AUC suggest a bad fitzyy = 0.07, AUC = 0.51

Logistic regression performance with log(harlambdal)
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Figure 4.12: Logit function predicted by the GLM, ROC curaad conditional density
estimation of log ofwarlambdal. rpiyyy = 0.00, AUC = 0.49
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Logistic regression performance with harlambda2

Logit function ROC curve Conditional density
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Figure 4.13: Logit function predicted by the GLM, ROC curaad conditional density
estimation of originaharlambda2. High AUC and low correlation suggest overfitting
of the modelrgy)y = 0.02, AUC = 0.55

Logistic regression performance with log(harlambda2)
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Figure 4.15: Logit function predicted by the GLM, ROC curaad conditional density
estimation ofhardeterminant. The large difference in slope for DOG is caused by
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4.4.3 Hessian eigenvalues

The Hessian matri¥! of second derivatives is a blob detector. Prediction perésrce
of this attribute family, along with the Harris attributenidy, inverts when log nor-
malization is used. The next six figures, Figures 4.17, 418 4.20, 4.21, and 4.22
show the results of our experiments on the original and logralized values of these
attributes.

Regression on the first and second eigenvalues of the Helsslaaves similarly
to those of the Harris. The slope ékslambdal is flat or slightly positive while
heslambda2 is sharply positive. This reflects the dependence, sugddstel owe
[Low03] that repeatable interest points have a small ragtavben first and second eigen-
values. The result of our thresholding experiment suppgitiowe’s results are seen in
Section 4.2. We have also found in the previous section tigapplies to Harris eigen-
values.

Each attribute in the Hessian family is nonlinearly relatedepeatability except for
hesdeterminant. A positive slope for the H-L algorithms on this attributeygests that
the Hessian does not respond as strongly to edges as the.Hale determinant is
maximized when both eigenvalues increase simultaneoudileuthe Harris when the

first eigenvalue overtly weights the determinant.
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Logistic regression performance with heslambdal
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Figure 4.17: Logit function predicted by the GLM, ROC curaad conditional density
estimation of originaheslambdal. rgy)y = 0.02, AUC = 0.54

Logistic regression performance with log(heslambdal)
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Figure 4.18: Logit function predicted by the GLM, ROC curaad conditional density
estimation of log ofieslambdal. rgy)y = 0.07, AUC = 0.55
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Logistic regression performance with hesdeterminant

hesdeterminant

False positive rate

Logit function ROC curve Conditional density
o o o
] 7 ] “ ] n| v
. g !
' it
| it
[
@ | @ | o | "
(=} o o | ¥
o
2 l
o | g < | o |
z ° s °© z ° !
3 2 3 .
2 2 2
S 2 S X
a < o < 8 < !
S ] 2 o ] S ] !
= |
I
|
o~ o~ o~ !
s s s !
1
— DOG — DoG X
Harris Harris |
o - = i o o - i
S Hessian S 3 Hessian s |
T T T T T T T T T T T T T T T T T T
-5000 0 5000 15000 00 02 04 06 08 10 -5000 0 5000 15000

hesdeterminant
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Figure 4.22: Logit function predicted by the GLM, ROC curaad conditional density
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4.4.4 Entropy scores

Selective attention algorithms have historically appe#bethe idea of entropy in detect-
ing stable interest points. We examine the measure of gntiog — > p(x)logpp(x)
and its first and second derivatives for each interest pbigures 4.23, 4.24, and 4.25
show the results. Figure 4.4 and Figure 4.5 show that ensopges are most effective
at predicting Harris-Laplace repeatability. Interest®iwith entropy below in our
dataset aré% less repeatable than others. We see that H-L algorithmgatepility
decreases slightly as the derivative of entropy increaB&€3G also benefits from this
interpretation of the first derivative.

While the relationship is weak, we see that repeatabiligsdo some degree depend
on regions where the rate of change of the entropy measueeiisaking. These regions
correspond to a local image region rapidly shifting fromhtigp dark intensity values or
vice-versa. Blob and corner regions, as produced by theitigts in this research, also

correspond to this local structure.
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Logistic regression performance with entropy
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Figure 4.23: Logit function predicted by the GLM, ROC curaad conditional density
estimation of entropy. Interest points withtropy < 1 should be discarded vy =
0.03, AUC = 0.52
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Logistic regression performance with dentropy
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Figure 4.24: Logit function predicted by the GLM, ROC curaad conditional density
estimation of first derivative of entropy. Interest poinithwientropy > —1 ared% less
repeatable than othersgy)y = 0.05, AUC = 0.54
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Figure 4.25: Logit function predicted by the GLM, ROC curaad conditional density
estimation of second derivative of entropy,yy = 0.02, AUC = 0.52
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4.4.5 Values of extrema and their neighborhood

This section examines attributes from the value familyuFeg 4.26 and 4.27 plot three
separatealue scores. For DOG interest pointsylue = D(x,0) = L(z,0) — L(x,0 —

1). For Harris-Laplacealue = R, and for Hessian-Laplaceilue = DET(H). Sub-
pixel optimization is performed omlue with a 3D quadratic fitting in order to produce
truevalue. \We expect these two measures to be informative in predithia repeata-
bility of interest points from their source algorithm. Frgs 4.28, 4.29, and 4.30 each
show the results for the second derivatives of the same 30rgtie. Log normalized
attributes are used in all five figures because of their higianee.

The results are similar for all three algorithms: a largedtisvalue is good, DOG
value increases repeatability when small, and the Harise is uninformative. There
are two interesting and unexplained results from this erpent. Regression perfor-
mance in Figure 4.7 shows that DOG is best predicted fronetfesgtures. The reason
is because the variance of DOG value$ & 92) in this experiment fall outside of the
range of Harris-Laplacert = 3.7 x 10'!) and Hessian-Laplacef = 1.3 x 10°) values
by a significant margin, biasing the model to take advantdgleoslight repeatability
advantage of DOG to computgy,y-.

Behavior of the Hessian attributes is unexpected. Eachditihows a strong positive
relationship between each value attribute and repedtabilVe were able to increase
Hessian-Laplace repeatability88% in our experiments by discarding Hessian-Laplace
interest points withvalue < 1000.

The derivative attributegx2, dy2, anddz2 were expected to be most informative
because they describe the local neighborhood around aenextr By definition, an
extrema is a local region where the second derivatives incthed y directions are
close to zero. We believe that these measures are ine#fefctivtiwo reasons. The

local region is only descriptive for DOG, which computes 8z quadratic from a 27-
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pixel neighborhood cube of the same function. Harris-Legpland Hessian-Laplace
use an incompatible combination of neighborhood operatiissussed in Section 4.6.
The second reason is that while2 and dy2 are computed directly from a quadratic
function, that function is oriented along theandy axes of the original image - not
along the principal directions of variance. The second nmammatrix from Mikolajczyk

and Schmid’s affine invariant work [MS02, MS04] suggestsheomethod to compute

a 3D quadratic with principal orientation information.
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Logistic regression performance with log(value)

Logit function ROC curve Conditional density
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Figure 4.26: Logit function predicted by the GLM, ROC curaad conditional density
estimation ofvalue at each extremal locatiodX(z, y, o), R, andDET(H)) rgr)y =
0.03, AUC = 0.52

Logistic regression performance with log(truevalue)
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Figure 4.27: Logit function predicted by the GLM, ROC curaad conditional density
estimation of sub-pixel optimizetuevalue at each extremal locatioX(z, y, o), R,

andDET(H)) gy = 0.02, AUC = 0.51
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Figure 4.28: Logit function predicted by the GLM, ROC curesed conditional den-
sity estimation of the second derivative with respect tim the neighborhood of each
extremal location(z, y, o), R, andDET(H)) rgy),y = 0.02, AUC = 0.51
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Figure 4.29: Logit function predicted by the GLM, ROC cureed conditional den-
sity estimation of the second derivative with respect o the neighborhood of each
extremal locationD(x,y, o), R, andDET(H)) rgyyy = 0.02, AUC = 0.51

53



Logistic regression performance with log(dz2)

Logit function ROC curve Conditional density
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Figure 4.30: Logit function predicted by the GLM, ROC cureed conditional den-
sity estimation of the second derivative with respect o the neighborhood of each
extremal locationD(z,y, o), R, andDET(H)) rgy),y = 0.00, AUC = 0.51

4.5 Extrema inversion

The scale space of an image is a continuous signal contdiiiignaxima and minima.
The common technique is to detect only maxima in the abswohltes of the scale space
signal. This technique converts negative minima to pasithaxima but overlooks two
additional types of extrema.

Scale space extrema consist of four classes - positive naaxiegative minima,
positive minima, and negative maxima. These extrema typesxpressed in the four
triplets {4,5,4},{—4, -5, —4},{4,3,4},and{—4, —3, —4}. The second two types of
extrema are ignored using the common method of absolutenmaidetection. Sus-
pecting this to be an undiscussed repeatability improvéteehnique, we measured the
repeatability of the four classes of extrema in Figure 4.2.

These results verify the implicit suggestion that invergatrema can be ignored.
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Table 4.2: Extrema inversion results. Negatively valuetdegra are slightly less repeat-

able than positive extrema [Low03].

Overall ++ -- -+ +- + -

repeatability| 87 % 883% 852% 61.2% 583% 88.3% 852%
number | 699,957 343,839 355,349 589 180 344,019 355,938

The repeatability of negative maxima and positive minima0i% lower and their low

frequency suggests they can be ignored completely.

4.6 Method of extrema detection

A scale space presents a discrete representation of th@ewons$ signal of frequences
in an image. That representation implies that neighborb@oist in scale as well as
space. Neighborhood extrema can be detected in multid@g@ements. Lowe’s DOG
approach detects extrema in space and scale simultandpusiyly accepting points
larger or smaller than their 26 neighbors. If an intereshplmication is larger than its
eight neighbors at the same scale and its nine neighborg @mo\nine neighbors below
it, it is a cube extrema. Harris-Laplace detects Harrisesmtr in the 8-neighborhood
(level neighbors) surrounding the point and ignoring sca&hbors. Characteristic
scale localization is performed by simply testing whetle immediate LOG neigh-
bor above and below (tower neighbors) the point are non-maixi The neighborhood
technique for Hessian-Laplace is unspecified. We use a nofrthe Harris-Laplace,
detecting level neighbors in the determinant and towerhimigs in the trace. Extrema
detection techniques are visualized in Figure 4.31

H-L algorithms perform better using this neighborhood mgement. Another ap-
proach using cube neighborhoods for all maxima detectiodyred a sparser collec-
tion of interest points that were less repeatable. This igprsing result since the cube
neighborhood is a tighter constraint. Table 4.3 shows tealr®f using the tightly

constraining cube neighborhood on all three algorithms Gfoduces seven arsd

55



Level and Tower Extrema Cube Extrema

Figure 4.31: Two types of extrema detection. Level extrerealatected in the Harris or
Hessian signal and tower extrema are detected in the LapladtGaussian in [MS02].
Extrema are detected more rigorously in [Low03] using cukieeena. Use of cube
extrema greatly reduces the number detected and negadifetts the repeatability of
H-L interest points.

times as many interest points as Harris and Hessian-Lajitarest points, respectively.
Even more interestingly, the repeatability of both H-L altfons is negatively affected

while accuracy is unaffected.

Table 4.3: Initial results with cube neighborhood extreratedtion constraint for H-L
algorithms. These data are produced from a different setrefomly selected source
images. The ratio of interest point density is informative.

type number repeatability accuracy

DOG/LOG 699,957 87 % 0.673
Harris-Laplacian 100,706 30 % 0.689
Hessian-Laplacian 199,337 67 % 0.691

These results lead us to implement the H-L interest poiraiets according to their
original authors. We suspect that the change in performangemarily a function of
density: blob and corner detectors are also edge detedtdesest point repeatability
from an edge detector increases proportionally with dgnaihich may explain these
findings.

These findings suggest that scale spaces must be constwitttetbnsideration of
the intended neighborhood function and provides a promisienue for further re-

search. They relate to the sinusoidal dependency of rdpbftavith scale in Sec-
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tion 4.9. This work uses three levels per octake<2'/%) to construct a scale space as
suggested by Lowe [Low03]. Mikolajczyk recommerids- 1.2 ~ 2'/3 for the Harris-
Laplace interest point detector. Such a small constanvifactthe difference between
levels of scale is unlikely to produce the behaviors in teigtion and Section 4.9. Fur-
ther investigation is necessary, as both the method ofrestetection and the position

of an interest point in scale space have a strong effect aratapility.
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Chapter 5

Conclusion

One million interest points are generated using three ofrtbst popular selective atten-
tion algorithms - Lowe’s DOG approach and two of Mikolajczatd Schmid’s Lapla-
cian approaches: Harris-Laplace and Hessian-Laplaceinigrest points are matched
between randomly selected images from the CalTech-10ketagand a target image
that has undergone a random affine transformation. Mataleesamsidered to be re-
peats when a distance and radius measure is satisfied.

We predict the repeatability of individual interest poibysmodeling them with gen-
eralized linear models. The models are produced by studiiag7 attributes of each
interest point. No model is particularly informative, baich model suggests that there
is an important relationship between an interest pointiibattes and its repeatability.

The findings in the above experiments contribute to the Walig chapter. The pre-
vious experiments provide a framework for understanding imnalividual attributes af-
fect repeatability. In this chapter, we perform short seéxgjeriments combining this
understanding to improve interest point repeatability. dynbining the small effect
of individual attributes on interest point repeatabilitg \&re able to produce a larger
improvement. The conclusion has three components: recowhatiens to improve re-
peatability, a set of important observations that do naally affect repeatability, and a

number of promising avenues for future research based oresults. Section 5.1 pro-
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vides our set of recommendations, based on either thrasigaldinterest point ranking,
that can be used to improve the mean repeatability of intpaats from any selective

attention algorithm.

5.1 Summary experiments

This research has demonstrated that the repeatabilityinfenest point can be predicted
from its bottom up attributes. A close examination of tho$ekaites, however, reveals
that they only slightly affect the probability that an irget point repeats. Our last exper-
imental contribution combines the effect of these obse@mat improving repeatability

by either thresholding or interest point ranking via mudtiate regression.

5.1.1 Thresholds

The use of thresholding to improve repeatability and dessrekensity is supported by
Lowe [Low03] and Mikolajczyk [MS02]. Lowe recommends disdiaag interest points
where the ratio between Hessian eigenvalues 10 and when the determinant of the
Hessian is negative. Mikolajczyk, though unsupportedisiriésearch, suggests discard-
ing interest points with Harris corner scake< 1000. We extend on Lowe’s thresholds
by adding five additional thresholding decisions that invpreepeatability performance.
Seven thresholding decisions are supported in total, stiggediscarding interest points

that do not fall inside of the following ranges:

hesdeterminant >= 0

heslambda2 >= 0

heslambdal /heslambda2 <=5

0.05 < {zpos, ypos} < 0.95
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e harlambdal/harlambda2 <= 20
e entropy > 1

e dentropy < —1

Implementing these seven decisions on our sébbfnterest points increases mean
repeatability from86% to 90.4% while reducing the total number of interest points to
174,291. Thresholding in this fashion provides a fast and easyriplement solution
to repeatability improvement. These thresholds can baexpphly when applicable to
the interest point detectors that depend on them or theyeaninputed for any interest

point detector, improving the repeatability of that dedect

5.1.2 Multivariate generalized linear modeling

Having examined the individual contribution of each atitéoon repeatability, we use
a GLM to perform multiple linear regression. The next smatlaf experiments detail
our results in selecting the best performing attributeating to AUC andrgy),y.
The final experiments are separated into three groups: pteslinear regression by
attribute family, by the best fit attributes regardless ohifg, and by a hand-selected
set of attributes whose logit functions share similar sioggnally Figures 5.1 and 5.2
shows the usable performance of three trained GLMs - ongyusiamall subset of
author selected attributes, one on the log normalized st aftributes, and one on the
log normalized set of Harris attributes.

Each attribute family contributes to interest point repbdity according to
different theoretical foundations. We select the bestibaiie from each fam-
ily, maximizing either AUC orrgyyy. Among original features we select
{zpos, harlambda2, heslambda2, dentropy, value}, which maximize AUC, with re-

SultsAUC = 0.566, rg(yy,y = 0.1. Maximizingrgy),y we useharlambdal instead of
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harlambda2, improving both correlation and AUC tg;y) y = 0.11 andAUC' = 0.57.
Log normalization of attributes in this experiment offecsimprovement.

The above experiment attempts to sample the best attribate €ach family
of features. Ignoring the family, we select the five attrdsuthat contribute most
to rpyyy: heslambda2(0.07), harlambdal(0.07), dentropy(0.05), zpos(0.03) and
entropy(0.03). The generalized model using these features improves AWG tcand
rery),y = 0.12 Again, log normalization of attributes in this experimeffecs no im-
provement.

Finally, the authors look at the logit functions producedesxch single-attribute
experiment. A subset of attributes is selected that mirentie attribute-wise varia-
tion between the slope and curvature of the three logit fanst They are the most
consistent across all three algorithms. We train a GLM usipgs, harlambdal,
log(harlambda?2), heslambdal, log(heslambda2) anddentropy and further improved
AUC to 0.585 andrg(y)y = 0.13. This subset, referred to as the “consistency” fitting
in Figure 5.1, scores nearly as well in AUC angly y as modeling the set of all 17
attributes. Figure 5.1 shows the performance of the two pebrming generalized
linear models: Our set of consistency-maximizing attiéstand the multivariate GLM
trained with all of the log-normalized data. Table 5.1 of Glcgkefficients is included
to assist in weighting interest points used by selectivendtin designers and imple-
menters. The consistency GLM performs nearly as well as it @ained on all of
the data. Training a GLM using the thresholded data fromi@e&.1.1, unfortunately,
offers no improvement. The two models perform nearly idzily to the thresholding
approach.

Of the three algorithms used for interest point detectiothisiwork, only one ben-
efits from analysis of its own attributes. Coefficients a@uded in Table 5.1 for a log

normalized GLM (Figure 5.2) that can select the top percémianris interest points
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Table 5.1: Log odds coefficients produced by a GLM trainedéaljzt the repeatability

of an interest point.

Attribute | LOG GLM Small GLM LOG(Harris) GLM
AUC 0.60 0.59 0.56
A priori 5.990 6.713 8.610
Tpos 1.000 1.000
ypos 1.000 1.000
2pos 0.937 0.951 0.952
log(harlambdal) 0.933 1.000 0.981
log(harlambda?) 1.161 1.096 1.189
log(hardeterminant) 0.951 0.945
log(heslambdal) 1.187 1.003
log(heslambda2) 1.092 0.970
log(hesdeterminant) 0.876
entropy 1.175
dentropy 0.903 1.000
ddentropy 1.071
log(value) 1.104
log(truevalue) 0.976
log(dz2) 0.979
log(dy?2) 1.009
log(dz=2) 0.942
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Repeatability of the N best interest points

- consistency
— log

Repeatability
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Figure 5.1: Fitting of a GLM fit to six author selected attitiésiand to a GLM fit to alll
17 attributes including log normalized Harris, Hessiarm ealue families.

with 92.4% repeatability and the top tenth percentile With6%. These coefficients
should plug in to current implementations of Harris-Lagldand we suspect Harris-

Affine) with immediate repeatability improvement.

LOG(Harris) 92.4% at best 3000

Repeatability
0.88 0.90 0.92
| | |

0.86
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Figure 5.2: Fitting of a GLM fit to five author selected attrié&siand to a GLM fit to all
17 attributes including log normalized Harris, Hessiarm ealue families.

63



5.2 Discussion

We have seen that selection of a subset of highly repeatatdeest points can be in-
fluenced by weighting interest points relative to theiribttres. Achieving a set of
extremely & 100%) repeatable interest points remains, however, a daurdsig Both
thresholding and repeatability prediction increase tpeagability of interest points gen-
erated by three well-known interest point detectors by exiprately4%. Implement-
ing our seven thresholds provides the same repeatabilgyanement while discarding
more than four-fifths of the original set.

This work does not provide a means to select a small set ofreelly repeatable
interest points, but it has uncovered a number of areas wihet@havior of scale spaces
and interest point detectors is not fully understood. Taiisn discusses some of those
areas of opportunity.

In the close examination of individual attributes, DOG tdgnctions usually vary
in slope significantly from H-L logit functions. This doestidllow from one of the
premises of this research — that interest points dependnoifesiattributes regardless
of their generating algorithm. We believe this disparitycaused by their differing
neighborhood detection method. More research will be rsacgg0o properly describe
the difference between these two techniques.

The magnitude of the Hessian second eigenvaluéambda? is more important to
feature repeatability than its first eigenvalue. A largeoseeigenvalue depends on there
being a large first eigenvalue, and as such any interest wdtimta largeheslambda?2
exhibits strong blob characteristics. The first eigenvadusmimportant: interest points
with a large first eigenvalue are edges in any case where tomdeigenvalue is not
similarly large. This relationship is inverted when comsidg the eigenvalues of the
second moment matrix. Repeatable interest points rely mor@ smallharliambdal

than a largeharlambda2. The ratio between these eigenvalues is another important
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method for discarding edges from corner and blob selectieat@on algorithms.

The value andtruevalue features are produced from the corresponding signal re-
sponsible for interest point detection in each algorithorthe range obalue differs for
each algorithm and should contribute little to generic nesé point repeatability. We
demonstrated in Section 4.5 that positively valued extraraalightly more repeatable
than negative extrema, which most likely produces thisltestucvalue, being a sub-
pixel optimizedvalue, has a similar effect except on Harris-Laplace interestigoiWe
believe this effect is caused by the lack of sub-pixel optation nor smoothing of the
derivatives that contribute tg.

Some vision applications depend on detection of a small murabhighly repeat-
able interest points. Our thresholding guidelines andatgielity prediction can help
to achieve this goal. An easier method for achieving thigcibje is by selecting only
interest points with a large scale. As seen in Figure 4.®atgbility decreases slightly
as scale increases. Quantity, however, decreases logarély with scale. An applica-
tion depending on a low quantity of highly repeatable irgep®ints can then be selected
from the higher levels of scale with little loss of repealifpi Selecting interest points
with high scale is the easiest method to reduce quantityowitiosing repeatability.
Repeatability can be improved cheaply uplté by discarding keypoints outside of the

thresholds summarized above in Section 5.1.

5.3 Future work

Further investigation into the structure and theory of scglaces is called for. There
exist nearly unlimited parameterizations of scale spaostcoction in the literature and
their construction is not well standardized [BA83, ESB&]. The repeatability of in-

terest points fluctuate sinusoidally along each octave ursadscale space. In order to

achieve true scale-invariance this effect needs to be nuenin Finally, the method of
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extrema detection (Chapter 4.6) is strongly related toessphces and scale invariance
and we believe a formal theory of its technique is welcome.

The value family of features were surprisingly uninformative, givéreir descrip-
tion of neighborhood derivative information regardlesthaf generating algorithm. It is
promising, then, to compute the local derivative informatusing the second moment
matrix, which describes the structure of a local region. @otimg neighborhood infor-
mation usingD(x) is surprisingly uninformative because it does not take adoount
the direction of principal variance.

We believe that an opportunity exists to perform scene neitiog by determining
the affine structure of the entire image using the set of éstguoints. The affine shape
of the probe image can be fit globally to images in the galldti wo transformation in-
formation. We suspect using this method there is a robusttfite 8-dof correspondence

problem without requiring the selection of four points dierence.
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