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ABSTRACT OF THESIS

AUTOMATIC PREDICTION OF INTEREST POINT STABILITY

Many computer vision applications depend on interest pointdetectors as a primary

means of dimensionality reduction. While many experimentshave been done measur-

ing the repeatability of selective attention algorithms [MTS+05, BL02, CJ02, MP07,

SMBI98], we are not aware of any method for predicting the repeatability of an indi-

vidual interest point at runtime. In this work, we attempt topredict the individual re-

peatability of a set of106 interest points produced by Lowe’s SIFT algorithm [Low03],

Mikolajczyk’s Harris-Affine [Mik02], and Mikolajczyk and Schmid’s Hessian-Affine

[MS04]. These algorithms were chosen because of their performance and popularity.

17 relevant attributes are recorded at each interest point, including eigenvalues of the

second moment matrix, Hessian matrix, and Laplacian-of-Gaussian score.

A generalized linear model is used to predict the repeatability of interest points from

their attributes. The relationship between interest pointattributes proves to be weak,

however the repeatability of an individual interest point can to some extent be influenced

by attributes. A4% improvement of mean interest point repeatability is acquired through

two related methods: the addition of five new thresholding decisions and through select-

ing theN best interest points as predicted by a GLM of the logarithm ofall 17 interest

points. A similar GLM with a smaller set of author-selected attributes has comparable

performance.
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This research finds that improving interest point repeatability remains a hard prob-

lem, with an improvement of over4% unlikely using the current methods for interest

point detection. The lack of clear relationships between interest point attributes and

repeatability indicates that there is a hole in selective attention research that may be

attributable to scale space implementation.

H. Thomson Comer
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
Spring 2009
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Chapter 1

Introduction

Computer vision applications typically depend on extracting information from large,

complex visual scenes. One popular approach is to reduce thedata by concentrating

on a small set of interest points (also referred to as selective attention windows, local

features, image regions, keypoints or extrema). Interest points are distorted less by

changes in viewpoint than the full image and therefore provide repeatable clues to the

contents of the scene. In this work we model the attributes ofinterest points in order to

predict the accuracy and repeatability of individual interest points at runtime.

1.1 Interest points in computer vision

Interest points are a successful approach to reducing the dimensionality of a scene

in computer vision applications. David Lowe’s SIFT [Low03]and Mikolajczyk and

Schmid’s Harris and Hessian-Laplace [MS02] algorithms have been cited cumulatively

4580 times since their release according to Google Scholar.These algorithms use an

efficient gradient-based technique to produce a set of interest points - informative image

sub-regions that are localized in scale and space.

Interest points are popular for a number of reasons. They areefficient, produc-

ing a representative sampling of an image with near realtimeperformance. They are

robust to transformation and viewpoint change because theydepend only on local struc-

1



ture. Interest points can also be produced independently ofsegmentation techniques or

any discussion of foreground/background separation. Computer models of human vi-

sion utilize interest points because of their similarity topsychological theories of vision

[Dun98, GSKE+99, IKN+98, KU85, MP90, OFPK02, OvWHM04, PLN02, PIIK05].

Receptive-field models [dB93, JP87, SH85] suggest that categorization and classifica-

tion in human cortical areas correspond to specific viewpoint locations and signal struc-

tures. Numerous models of human vision using interest points and their corresponding

research basis are discussed in Chapter 2.

An algorithm is considered an interest point detector if it depends on a set of

characteristics shared between numerous approaches. Interest point detectors pro-

duce local image sub-regions located in scale and space and focused around corners,

blobs, and image curvature. They provide a broad sampling ofcontent in the origi-

nal image while being independent of global scene information. Interest points can

be produced RANSAC-style with high density and low repeatability, or in lower den-

sity by focusing on the points with the strongest attributes. Descriptors are often

used in conjunction with interest points in order to model local image regions for

object recognition [ECV, Low99, OPFA06], segmentation [JLK], or face recognition

[BLGT06, MBO07, KS] as in Figure 1.1. Global scene content can also be modeled

with interest points using a combination of descriptor information and the spatial rela-

tionships between them [SC00, SM97, SL04]. Scenes can be reconstructed using the

interest points as a set of individualized scene anchors containing global spatial and

local image content information [SI07].

Interest points provide local access to global informationstructure. They do this

using fast, deterministic algorithms that are able to reliably select the same set of interest

points with high repeatability from a variety of image scenes. This and other good

attributes of interest points make them useful in a wide variety of image processing

2



Figure 1.1: A small set of highly relevant interest points suitable for face recognition.

applications.

1.2 Measuring interest points

Interest points have a number of properties that make them useful for computer vision

tasks. Tuytelaars and Mikolajczyk provide a detailed description of these properties in

[TM08], some of which are repeated here.

• Repeatability: A repeatable interest point appears on the same structure in a pair

of images taken from different viewpoints. This is the most common metric in

interest point stability evaluation.

• Accuracy: Detected points are accurately localized in scale, shape, and space.

Registration problems use only the interest points with highest accuracy for cali-

brating epipolar geometry.

• Locality: Interest points are localized in scale and space using local structure

information that is robust to scene change.
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• Distinctiveness: The degree to which an interest point represents local image

structure. This interest point characteristic is often tightly coupled with an in-

terest point descriptor.

• Density: Interest points should be produced in such a quantity that informative

areas of image structure are well sampled. In addition, algorithms that produce

more interest points will produce more informative subsetsof those points.

• Efficiency: Interest points are often used in real-time computer vision systems and

as such the algorithms for their detection should be fast.

An interest point can be evaluated on its information content as well as its repeata-

bility. The information content of an interest point can notbe easily measured without

ground-truth specifications. The repeatability of an interest point, however, can be mea-

sured easily. This is the measure used to evaluate interest points in this work.

1.3 Interest point repeatability prediction

We seek to predict the repeatability of interest points using attributes from three pivotal

algorithms in selective attention research. The Difference-of-Gaussian (DOG) interest

point detector from Lowe’s SIFT algorithm is the single mostcommonly used algorithm.

It has been cited 2.4 times per day since its publication. It selects interest points that are

the extrema in the DOG filter response computed over an image pyramid. Mikolajczyk

and Schmid [Mik02, MS02] propose two highly-repeatable algorithms as the basis of

their affine-invariant technique. The first of these, the Harris-Laplace, detects interest

points using the Harris corner measure, computed from the second moment matrix of

first derivatives, and the Laplacian-of-Gaussian (LOG) filter, an analog of the DOG.

The Hessian-Laplace detects interest points using a combination of the Hessian matrix

of second derivatives and the LOG and is the best performing derivative-based technique
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found in a comparison of affine-invariant detectors [MTS+05]. We are not interested in

performing another black-box comparison of interest pointalgorithms; for such compar-

isons, see [DL04, MTS+05, MLS05]. Instead, we are interested in measuring attributes

of individual interest points (no matter what algorithm they were generated by) and in

determining whether the repeatability of an interest pointcan be predicted based on

these measures.

Each selective attention algorithm lacks a means for predicting the usefulness of

individual interest points at run-time. The algorithms produce many interest points;

in most applications users keep and process only a subset of them. Interest point re-

peatability prediction will therefore provide users with the ability to parameterize each

algorithm towards either increased quantity or increased repeatability. It will also lead

research techniques to generate more repeatable algorithms by focusing on the attributes

that improve individual repeatability most.

This work measures the overall and algorithm-specific repeatability of one million

interest points produced by the above three algorithms fromrandomly selected images

from the CalTech-101 database [FFFP07]. This analysis has several goals. One is to

determine which attributes, if any, are predictive of whether an interest point will be

detected again in another image, and whether the current thresholds in common use are

well chosen. Another goal is to determine to what extent the repeatability of an interest

point can be predicted from its bottom-up properties. Finally, our third goal is to fit a

multi-attribute statistical model to best predict which interest points will repeat.

5



Chapter 2

Literature Review

Many selective attention algorithms have been proposed. The algorithms take inspira-

tion from separate schools of psychology and psychophysics, signal theory, and infor-

mation theory. Many of the following works combine the efforts of multiple schools,

producing one of the most interesting topics in computer vision. There are two primary

schools responsible for selective attention research: those of signal theory and those of

biology.

2.1 Selective attention as signal theory

Original work produced interest point detectors like corner detectors, edge detectors,

the computation of principal curvature in an image, and information points based in

information theory. These algorithms were extended to multiple scales using the concept

of scale invariance and the computation of a scale space. Scale space algorithms detect

interest points at multiple parameterizable levels of scale and radius. Recent work has

extended scale space algorithms further into affine invariance. These algorithms find

ellipsoidal instead of circular interest points at multiple levels of scale.

6



2.1.1 Scale spaces

Interest points detected on the original image signal only sample its smallest frequency

range. Many interest point detectors attempt to extract scale-invariant interest points

through use of a “scale space”. Seminal work by Koenderink [Koe84] and Witkin

[Wit87] provide the basic framework for such scale invariant interest points. In their

work scale spaces are computed from a set of derivative-normalized Gaussian convo-

lutions of a source image. Using a scale space representation, interest points can be

detected at any required scale. The scale space of an image can be computed over the

original image, derivatives of the original image, or by calculating the entropy at each

pixel coordinate inx, y and scale. Eaton et al. give detailed instructions for building a

scale space used with scale-invariant interest point generators [ESM+06] and Burt and

Adelson discuss their theoretical foundations [BA83].

2.1.2 Scale invariance

Lindeberg [Lin94] suggests methods for locating the characteristic scale in an image

scale space by producing an image pyramid from successive convolutions with a gaus-

sian. Extrema of the “Laplacian-of-Gaussian” (LOG) function across levels of the scale

space find optimal locations in the second order derivative of the image in bothx, y

coordinates as well as region size. An optimal region, or characteristic scale, also gives

a local frequency estimation. This work is extended [Lin98]by finding and annotating

the characteristic scale of local image structures including blobs, junctions, and ridges.

David Lowe contributes to the understanding of Lindeberg’sprevious work by show-

ing that the LOG operator can be approximated with a Difference-of-Gaussians (DOG)

pyramid [Low03]. Lowe’s DOG pyramid is able to find extrema inthe scale space of

an image similar to those found by Lindeberg’s LOG. The run time of Lowe’s DOG

function is significantly improved over LOG by eliminating the convolution with an

7



LOG filter. The DOG approach is the keypoint detection stage of an algorithm called

Scale Invariant Feature Transform (SIFT), a popular constellation-of-features based ob-

ject recognition technique. A reimplementation of the DOG interest point detector is

one of the algorithms analyzed in this work.

Lowe’s SIFT algorithm is used often in subsequent publications, including Led-

wich and Williams who use SIFT features for image retrieval and outdoor localization

[LW04]. Clusters of SIFT local features are used in a Hough space to perform object

recognition and perform an 8-dof homography between images. The usefulness of per-

forming sub-pixel optimization via3D quadratic is also demonstrated [BL02]. Other

uses of SIFT are numerous and exist for object recognition, face detection, scene recon-

struction, and many other applications [FPZ03, OPFA06, WRKP04].

Mikolajczyk proposed a new scale invariant interest point generator in his Ph.D. the-

sis [Mik02]. The Harris-Laplace detector combines scale-sensitive Harris corners with

Lindeberg’s detection of the characteristic scale. Harris-Laplace first uses the Harris

corner detector to find maxima in the second order moment matrix of first derivatives

[HS88]. Those Harris points that are also extrema in the LOG are then accepted as key-

points. He and Cordelia Schmid propose a similar algorithm using the blob detection of

the Hessian in place of Harris corner points [MS04]. Our workalso examines the fea-

tures and performance of these two algorithms due to their performance and popularity.

Information-theoretic approaches using Shannon entropy have been used for a vari-

ety of image processing applications. Gilles’ Ph.D. work applied regional measurement

of entropy to aerial images[Gil98]. In order to select scale-invariant interest points, this

work was extended by Kadir and Brady to a multi-scale representation[KB01], called

Scale-saliency. The use of entropy to detect regions of interest in an image is intuitive

since the goal of all selective attention algorithms is to detect the most informative set

of regions. The algorithm proposed by Kadir and Brady, called Scale-saliency, finds
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regions in an image where the second derivative of entropy with regard to scale is zero.

The level of scale where the second derivative of entropy is zero then defines a bounded

circular region inside of which the entropy is greater or less than its immediate neigh-

borhood.

Scale-saliency has been used by a variety of authors. Hare and Lewis use the

scale-saliency approach for tracking and identifying objects through image matching

sequences[HL03], providing3D motion tracking in real time. Fei Fei et al. use

Scale-saliency local features to perform constellation-of-features style object recogni-

tion [FFFP07], and Fergus et al. use them for object class recognition [FPZ03].

2.1.3 Affine invariance

Mikolajcyk and Schmid proposed another successful selective attention algorithm called

Harris-Affine in [MS04]. They extend Harris-Laplace with aniterative algorithm that

adaptively fits the keypoints with increasing precision andthen fits them with a second

moment matrix that defines the bounding ellipse of the extremal region.

Kadir and Brady [KZB04] extend Scale-saliency interest points to affine invariance

using an iterative approach over the original scale invariant Scale-saliency points. It is

shown to perform similarly to curvature-based techniques with improved performance

for small perturbations.

Maximally Stable Extremal Regions (MSER) are interest points generated using a

fast watershed algorithm. It has performance comparable tothe best affine invariant

approaches [MCUP04].

2.2 Selective attention and biology

The use of rapid non-contextual interest point detectors iswell supported in biological

literature [KB01]. Biological attention research is basedon artificial intelligence (A.I.),
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visual recognition tasks, and aspects of the growing biomimetic community that seeks

to model already proven systems (those we see in nature). Numerous A.I. systems are

using interest point generators to make judgements about image content in order to

localize the objects viewed in the scene or the actor’s position within it. In order to

improve these systems and provide an observational justification for their existence,

many researchers are turning toward biomimetic models. Selective attention is the first

stage in many of these systems, using the research of psychophysics and psychology to

model the interest points used in later cortical areas.

There exists a large body of psychology research demonstrating the validity of selec-

tive attention systems in human and animal visual systems. Li et al. [LVKP02] show that

the identification and categorization of image scenes occurs in the early stages of the vi-

sual system, massively and in-parallel. Malik and Perona [MP90] provide the biological

foundation for LOG/DOG techniques by proposing a model of human attention based

on the differences of offset Gaussians observed in human V1 receptive fields [SH85].

Multiple sparse local features are supported by Tsunoda et al., who show that complex

objects are represented as additive features in inferotemporal cortex [TYNT01].

Koch and Ullman proposed the use of a saliency map [KU85]. Based on neurological

studies, they suggest that human attention is a sum of saliency maps tuned to various

image features. In order to detect the regions of highest saliency, they propose the use

of multi-scale DOG filters followed by a winner take all neural network. By using an

image pyramid to provide analysis of scale space, the winner-take-all feedback network

finds salient regions of varying scale. A neurally inspired,multi-layer neural network

based on selective tuning is proposed by Tsotsos et al. [TCW+95]. Interest points are

selected via tuning and a winner-take-all neural network.

Itti’s Neuromorphic Vision Toolkit (NVT) [IKN+98] combines massively parallel

feature detection [TG80] with the combination of multiple feature maps [KU85] to pro-
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duce biologically plausible feature maps. Feature maps arecomputed for opponent-

color and intensity channels, and 8 principle orientations. These maps are combined

using a scale space similar to Lowe’s DOG [Low03] into a single topographic saliency

map. Interest points are ranked according to a winner-take-all neural network with sup-

pression. In a time series, this suppression leads NVT to fixate on each interest point in

descending rank. Siagian and Itti [SI07] suggest the evaluation of vision applications for

speed, performance, and a measure of their biological-ness. This hypothesis is extended

to rapid scene classification using the NVT system from Itti.

Peters et al. [PIIK05] extend the bottom-up salience model of selective attention

to include interactions between orientation-tuned cells for clutter reduction and contour

facilitation. Their work builds on Parkhurst et al. [PLN02]who demonstrate that human

eye-tracking can be partially accounted for using a Difference-of-Gaussians model.

Sun and Fischer [SF03] produce a biologically inspired vision system based on Dun-

can’s Integrated Competition Hypothesis, which suggests that early, pre-cortical regions

of the human visual system compete in parallel with tuning and later regions for the

selection of salient regions [Dun98]. Sun and Fischer use selective attention to compute

the visual salience of objects and groupings of objects at anearly stage, combining that

with a second region that implements hierarchical selectivity of attentional shifts.

2.3 Evaluation and review

A number of evaluations have been made considering which of these two front ends

generates more stable keypoints. Mikolajczyk et al.[MTS+05] evaluate the accuracy of

interest point detectors against each other under affine transform and find Hessian-Affine

and Maximally Stable Extremal Region (MSER) keypoints to bemost stable. Draper

and Lionelle[DL04] recently compared the performance of two DOG-filter based tech-

niques. Mikolajczyk et al. test various interest point detectors for their usefulness in
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object recognition tasks [MLS05]. Object recognition performance is improved with the

use of interest points, particularly using those from Hessian-Laplace and Scale-saliency.

Descriptors used as the second stage of selective attentionalgorithms are compared in

[MS05]. Mikolajczyk et al. also compare the invariance of affine-interest point detec-

tors, finding MSER and Hessian-Affine interest points the most effective [MTS+05].

Itti and Koch provide a detailed review and justification of attentional models inspired

in psychological studies [IK01]. Several computational architectures and their applica-

tion to objective evaluation of advertising design are reviewed by Itti [Itt05]. Finally,

Tuytelaars and Mikolajczyk undertake a broad survey of the history, progression, and

implementation of interest point detectors [TM08].
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Chapter 3

Implementation

While there exist exhaustive tests of the comparable performance of various interest

point detectors [MTS+05, BL02, CJ02, MP07, SMBI98], no experimental demonstra-

tion of the selected interest points has been performed. Thepurpose of this research is

not to compare the performance of three fairly well known interest points detectors, but

to determine which attributes of those detectors are the most descriptive, and why.

106 interest points are generated randomly from images in the CalTech-101 image

dataset using three state-of-the-art algorithms and tested for repeatability. Each interest

point is produced from one of three algorithms - Lowe’s LOG approximation [Low99],

hereafter referred to as DOG, and Mikolajczyk and Schmid’s Harris-Laplace [Mik02]

and Hessian-Laplace [MS02] algorithms. Harris-Laplace produces interest points at

corners, Hessian-Laplace produces interest points at circular blobs, and DOG produces

interest points at blobs and edges. Hessian-Laplace and Harris-Laplace algorithms are

sometimes referred to in this work as H-L algorithms to denote their similarity, and

Lowe’s algorithm is denoted as DOG because the behavior of his descriptor is not ex-

amined.

These algorithms are representative of the state-of-the-art in interest point detection,

with one notable exception. Matas et al.’s MSER algorithm [MCUP04] offers affine-

invariance, rapid run-time, and good performance, but is not part of the derivative-based
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class of algorithms we evaluate.

3.1 Use of scale invariant algorithms

We test the scale invariance class of algorithms instead of the affine invariance class for

a number of reasons. Lowe’s DOG is the only mechanism that is biologically tested

[IKN +98, OvWHM04] and it is the most commonly used interest point operator in

modern literature. Scale invariant algorithms are, in general, faster than the affine invari-

ant methods because no procedural iteration is required. Affine invariance commonly

uses iteration on mathematical models to locate the interest point region and introduce

isotropy

Scale invariant interest points can be viewed as the set of all isomorphic affine in-

variant interest points. Finding the homography between two affine interest points is

equivalent to finding their shared isomorphy. The most predictive characteristics of

scale invariant interest points then are good guides to the predictive characteristics of

affine invariant interest points.

Finally, the importance of using similarity versus affine invariant interest point de-

tectors is not yet known. Similarity transformations are the simplest form of planar

transformation defined by the perspective transformation.Affine transformations are

the middle-ground between these two extremes. In either theaffine or perspective trans-

form, only small changes are acceptable. This is because finite sampling effects caused

by scaling make repeatability impossible. We focus on scaleinvariance because it shares

the goals of affine invariance with a faster runtime, reducedcomplexity, and a more com-

plete history.
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3.2 Scale-space

In order to represent image structures over all scales a scale space must be constructed

[Koe84, Wit87]. The scale space gives a discrete representation of the continuous signals

present in an image. Detecting extrema in the scale-space ofan image provides the scale

of an underlying structure [Lin98].

A scale space is produced by successive convolution of a source imageI with a

Gaussian kernel. Since the Gaussian kernel is separable we can use a 1D Gaussian

given by

g(x) =
1√
2πσ

e−x2/2σ2

(3.1)

producing a series of imagesL(σ, x) = g(σ, x) ∗ I. Each time the Gaussian kernel

σ = 2.0, I is subsampled by a factor of two, reducing the size ofI by four while

retaining signal and eliminating noise. Thus, a scale spaceis a pyramid of images where

the width and height of each level decrease by two successively.

The appropriate set ofσ values used in the scale space depends on the size of image

structures we seek to detect. Usingσ = 2.0 produces a very coarse pyramid and only

responds to image structures with scales that are powers of two. Therefore, we divide

each octave into an integer number of levelss such that the constant scale difference

between levelsk = 21/s. Our experiments uses = 3 based on the results of Lowe

[Low03], who found that three levels per octave maximize repeatability. The pyramid

is then composed of octaves each containing three levels with σ = {20, 21/3, 22/3}. The

bottom half of Figure 3.1 shows an image pyramid withs = 3. The upper half shows

two levels in the same octave, and one level each higher octaves. Additional details

of pyramid construction are available from Burt and Adelson[BA83] and Eaton et al.

[ESM+06].

When the size of an octave becomes smaller than the convolution mask used to
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Figure 3.1: Two views of an image pyramid.
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produce each successive octave, the pyramid is finished. We use a9 × 9 convolution

mask at all levels of scale.9 × 9 minimizes the error between the expectedσ of each

level of an octave and the trueσ.

3.3 DOG

A set of difference images is produced from the original scale space, producing a DOG-

pyramid. This is based off of Lowe[Low99] who demonstrated that the LOG diffusion

equation

δG

δσ
= σ∇2G (3.2)

is approximated and optimized for speed with a DOG pyramid. The DOG pyramid

improves computation time by eliminating the necessity of derivative convolutions.

The DOG algorithm produces an image pyramid containing a series of difference

imagesD, produced from a pyramid of gaussian imagesL (Equation 3.4).

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.3)

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ) − L(x, y, σ) (3.4)

In order to create a DOG-pyramid, one extra gaussian level (Figure 3.2) is produced,

creatings + 1 levels per octave. The difference of each set of four levels is taken,

producing a difference pyramid with the same size as the traditional scale-space.

By detecting extrema in the difference imageD of each pair of images, salient re-

gions are detected in both scale and space. Interest points are located at these extrema.
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The scale of an interest point is determined by its position in the image pyramid. Interest

points are then localized by fitting a 3D quadratic to the neighboring points around each

potential maximum:

D(x) = D +
∂DT

∂x

x +
1

2
x

T
∂2D

∂x
2
x (3.5)

whereD(x) is evaluated at the sample point andx = (x, y, σ) is the offset from this

point as explained by Lowe [Low03].

Lσ1

Lσ
2
1/3

Lσ
2
2/3

Lσ2

⊖

Dσ
2
1/3

Dσ
2
2/3

Dσ1

⊖

⊖

Figure 3.2: An extra level in each octave of a scale space is used to produce a Difference-
of-Gaussians Pyramid.

3.4 Harris-Laplace

The Harris corner detector is one of the best and most-tried corner detectors but it has no

scale component [HS88]. The Harris-Laplace algorithm usesa scale space to produce

interest points by detecting Harris corner points on each level of an image pyramid.

The corner points are localized in scale by finding the “characteristic scale” using the

Laplacian-of-Gaussian (LOG) [Lin98] filter.

Harris corners are constructed using the second-moment matrix µ(x, σI , σD) in the

scale-normalized first derivative of the source image.

µ(x, σI , σD) = σ2
Dg(σI) ∗

[

L2
x(x, σD) LxLy(x, σD)

LxLy(x, σD) L2
y(x, σD)

]

(3.6)
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whereσI,D are the integration and differentiation kernel sizes, respectively,g is a gaus-

sian, andL2
i (x, σD) is the square of the intensity of the first derivative with respect toi

at positionx.

Interest points are detected using maxima in the Harris measureR

R = det(µ(x, σI , σD)) − α trace(µ(x, σI , σD))2 (3.7)

The second moment matrix describes the orientation and magnitude of gradients

around each candidate interest point. The second moment matrix is the covariance ma-

trix of partial derivatives of image intensity around a candidate interest point and is used

for the detection of corners.

3.5 Hessian-Laplace

The Hessian matrix

H(x) =

[

L(Lx)x(x) L(Lx)y(x)
L(Lx)y(x) L(Ly)y(x)

]

(3.8)

is used for the detection of blobs. Instead of the covarianceof the first derivative neigh-

borhood,H(x) contains the second derivative information at the exact coordinates of

the extremum inx = I(x, y, σ), denoted byL(Li)j(x). Interest points produced by the

Hessian-Laplace detector are simultaneously maximal in the trace and determinant of

the Hessian matrix.

DET(H) = σ2
I (L(Lx)xL(Ly)y(x) − L(Lx)

2
y(x)) (3.9)

TR(H) = σI(L(Lx)x(x) + L(Ly)y(x)) (3.10)

The trace and determinant include a normalization component σI , the scale of the

current pyramidal level as suggested [Lin98]. One particular strength of Hessian-
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Laplace is the non-requirement of any thresholding. The algorithm is very similar to

Lowe’s DOG: The trace approximates DOG and the determinant penalizes edges sim-

ilarly to thresholding the ratio of Hessian eigenvalues [Low03]. Hessian-Affine, the

affine invariant version of Hessian-Laplace, has been foundto have the highest interest

point accuracy other than MSER [MTS+05].

3.6 Interest point comparison metrics

Two metrics are to evaluate interest points. Repeatabilityis a binary valued property

of an interest point that specifies if it was found invariant to similarity transform. Ac-

curacy measures the degree of invariance of an interest point, and is highly related to

repeatability. Algorithms are generally measured in termsof overall repeatability. Ac-

curacy provides a more detailed measure of the quality of an interest point but cannot

be computed independently of repeatability.

3.6.1 Repeatability

The optimal selective attention algorithm is invariant to similarity transforms:

T (K(I)) = K(T (I)) (3.11)

or, equivalently

K(I) = T−1(K(T (I))) (3.12)

whereI is an image,K() is an interest point detector (such as DOG, Harris-Laplace,or

Hessian-Laplace), andT () is a similarity transform.

Our algorithm for computing repeatability is as follows. Let ti ∈ T−1(K(T (I)))

be a interest point from the target image image, transformedback into into the source
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image coordinates, and lettiσ be the scale ofti. Similarly, letsj ∈ K(I) be an interest

point from the original, unmodified image. Thenti andsj match if:

tiσ
21/3

≤ sjσ ≤ 21/3tiσ

|ti − sj | ≤ max(tiσ, sjσ)

(3.13)

This metric determines when a target interest pointti is considered a repeat by being

equivalent tosj. If the scale difference betweenti andsj is within one-third of an octave

and the distance is less than the larger of the two radii, thenthe interest points match.

If a single target interest pointti matches two target interest pointssj andsk, only the

match with the smaller spatial (as opposed to scale) distance is used.

3.6.2 Accuracy

Accuracy is used for the matching criteria in three recent comparison papers [MS02,

MS01, MTS+05] and measures the overlap of an original interest point with its repeat.

Accuracy for each interest point is measured as the inverse of error ǫS

1 − ǫS =
πr2

s ∩ πr2
t

πr2
s ∪ πr2

t

(3.14)

whereπr2
i is the area of the source or target interest point. Our repeatability metric is

equivalent to accuracy thresholding at≥ 0.227.

3.7 Implementation differences and discussion

Side-by-side implementation of these three algorithms required some design compro-

mises. In addition to numerous threshold decisions that areavoided entirely in our im-

plementation, structural decisions such as interest pointσ, number of levels per octave,
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and the criteria for detecting a match vary slightly from theoriginal texts. This section

explains a few of those problems and our solutions to them.

Our scale space uses three levels per octave because of Lowe,who found improved

repeatability up tos = 3 and diminishing returns thereafter. For three levels per octave,

σ = 1.26, which is close to Mikolajczyk and Schmid’s recommendationof σ = 1.2 for

their H-L algorithms.

We use3
√

2 in our repeatability measure to produce keypoints with stronger matching

characteristics. This differs from Draper and Lionelle [DL04] who use a set radius of

17 pixels and Mikolajczyk et al. [MTS+05, MLS05] who require|ti − sj| ≤ 1.5. Our

repeatability measure is similar to Lowe [Low03] who allowsmatches within one-half

an octave. Matching interest points up to one-third of an octave follows intuitively from

using three levels per octave, allowing matches between neighboring levels only.

Harris and Hessian-Laplace interest points are formed using extrema in the DOG

signal, rather than the canonical LOG. Crowley et al. confirmthat DOG is a good

approximation for LOG, showing that the difference inσ between the two functions

is a constant, and that the error between the LOG and DOG methods is minimized at

σlog = 1.18σdog at3.6% [CRP02].

Extrema are not thresholded following the systems implementations of the previous

authors. In SIFT [Low03], DOG extrema are culled based on theratio of the eigenvalues

of the Hessian(r + 1)/r whenr < 10. Interest points that have a DOG value below a

threshold are also thrown away. In the Harris-Laplace method, interest points are culled

when their Harris scoreR is below a threshold. This threshold from Mikolajczyk’s PhD

thesis is set to 1000. We assume his use of the same threshold in later work.
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Chapter 4

Experiments

We measure the repeatability of106 interest points detected from randomly selected

images in the CalTech-101 database [FFFP07]. Three algorithms are used for interest

point detection: the DOG, Harris-Laplace, and Hessian-Laplace algorithms. Interest

points for each algorithm are generated on the exact same setof images and transfor-

mations, showing the relative density, repeatability, andaccuracy of each interest point

detector in Table 4.1.

The transformationT () used to produce interest points from target imagesti is also

randomly selected. One quarter of the transformations are arotation up to90 degrees,

one quarter undergo uniform scaling from0.9 to 1.2, one quarter apply a−10% to 10%

affine transformation, and one quarter randomly combine allthree.

Table 4.1: Initial results verifying expected repeatability rates and interest point density
of each algorithm.

type number repeatability accuracy
DOG/LOG 311,149 88 % 0.69

Harris-Laplace 1,112,983 85 % 0.68
Hessian-Laplace 381,910 85 % 0.72

Based on extrema detection in the absence of any thresholding or local attribute eval-

uation, Harris-Laplace produces three times as many interest points as the other algo-

rithms. We therefore randomly select a subset of Harris-Laplace interest points, limiting
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the total number of interest points to106 in the following experiments. Repeatability

is almost equal across all three algorithms, and the mean accuracy of Hessian-Laplace

is slightly higher than either DOG or Harris-Laplace, whichconfirms previous affine

comparison results [MTS+05].

We seek to model the repeatability of individual interest points in the following sec-

tions. Section 4.1 describes the attributes we extract at each interest point location. The

thresholding decisions of prior authors are confirmed and verified in Section 4.2. We

apply the predictions of a generalized linear model (GLM) inSection 4.3 to attribute

normalization in Section 4.3.1, the predictability of eachalgorithm separately in 4.3.2,

and to the contribution of each attribute to interest point predictability in general (Sec-

tion 4.4). Section 4.5 examines the difference between interest points located at minima

and those located at maxima. In Section 4.6, we discuss an unexpected and interesting

effect of the method used to select neighborhood extrema.

4.1 Attributes of interest points

Seventeen attributes are recorded from each interest point. Each attribute comes from

one of five feature “families” that are based on interest point detection algorithms. Re-

gardless of which algorithm detected a specific interest point, attributes are recorded

from every feature family. The five families of attributes are position, Harris, Hessian,

value, and entropy.

• Position attributes includexpos, ypos, andzpos. xpos andypos are rescaled to

be in a range from0 to 1.0 relative to their source image dimensions. We do not

expectxpos andypos, thex andy coordinates of an interest point in the original

image, to have a great effect on repeatability. The scale attribute of an interest

point is recorded byzpos and will be informative.

• Harris attributes includeharlambda1, the first eigenvalue of the second moment
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matrix, harlambda2, the second eigenvalue of the second moment matrix, and

hardeterminant, their product. Harris interest points are maxima ofR, used in

Harris-Laplace.

• Hessian attributes includeheslambda1, heslambda2, and hesdeterminant,

where heslambda1 is the first eigenvalue of the second derivative matrix,

heslambda2 is the second eigenvalue, andhesdeterminant is their product.

Hessian interest points are maxima simultaneously ofhesdeterminant and

heslambda1 + heslambda2.

• A number of successful interest point detectors use entropy[Gil98, KB01,

KZB04]. The interest point detectors used in this study are derivative based,

rather than entropy, but we include an entropy measure because of its rele-

vance to interest point research. In this family we includeentropy, the entropy

H = −
∑

p(x)logDp(x) of the region defined by each interest point. Also in-

cluded aredentropy andddentropy, the first and second derivatives of the local

entropy.

• Value attributes includevalue, truevalue, dx2, dy2, anddz2. Thevalue attribute

changes depending on which algorithm produced an interest point. For DOG in-

terest points,value = D(x, y, σ). For Harris-Laplace interest points,value = R,

and for Hessian-Laplace interest pointsvalue = DET(H). Our choice of

DET(H) follows from the linear modeling of a GLM. Each interest point re-

ceives sub-pixel optimization according to Lowe such thattruevalue = D(x).

ComputingD(x) provides us with a 3D quadratic, from which we computedx2,

dy2, anddz2. These are the second derivatives ofD(x) in thex,y, andz direction.

These features describe local curvature around each interest point, regardless of

algorithm.
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Figure 4.1: Repeatability of interest points thresholded by the Hessian determinant as
suggested by Lowe [Low03]. Repeatability is maximized by discarding interest points
with a negative Hessian determinant.

We begin our attempt at predicting interest point repeatability by reproducing the

thresholding tests of previous authors in Section 4.2. Thisfocuses on a small subset

of the available attributes. In Sections 4.3 and 4.4 we attempt to predict interest point

repeatability using logistic regression on each attribute.

4.2 Attribute thresholding

The only technique used for improving repeatability in the original works depends on

discarding interest points for which a certain attribute falls outside of a threshold. DOG

attributes are discarded if the absolute value of the 3D quadratic equationD(x) is below

a threshold and if the ratior of the first and second eigenvalues of the Hessian is greater

than ten. Harris-Laplace interest points are discarded if the absolute value of the Harris

measureR < 1000.

Lowe [Low03] suggests that when the determinant of the Hessian H is negative

26



5 10 15 20

0.
75

0.
80

0.
85

0.
90

R
ep

ea
ta

bi
lit

y

Ratio of Hessian Eigenvalues

Hessianλ1

λ2
= r

≤

>

Figure 4.2: Relationship of repeatability and ratio of Hessian eigenvalues. Repeatabil-
ity is maximized for interest points wherer ≤ 5 regardless of the algorithm used for
detection.

the interest point should be discarded. These interest points where the first and second

derivatives have opposite signs are edge-like troughs or ridges, instead of peaks. This

implies that such interest points will be less repeatable and is well supported by our

results. Figure 4.1 shows the repeatability of interest points from each algorithm when

thresholded by the sign of the Hessian determinant.14% of DOG interest points have

negative Hessian determinant. These interest points have83% repeatability and the

points with positive Hessian determinants are88.3% repeatable. Only two percent of the

determinant of Hessian-Laplace interest points and almost40% of Harris-Laplace points

are below 0. If an application depends on a small number of highly repeatable interest

points, discarding Harris-Laplace points according to this threshold is recommended.

We also test the repeatability of interest points for a rangeof r = heslambda1
heslambda2

to verify

Lowe’s use ofr < 10. We find thatr < 5 is most repeatable for DOG, Harris-Laplace,

and Hessian-Laplace interest points. Figure 4.2 show the results of validating Lowe’s

r < 10 threshold [Low03].
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Figure 4.3: Repeatability of interest points with HarrisR values above a threshold.
We did not find a Harris threshold that improves repeatability. These results show that
performance decreases asR increases. We also examined the accuracy of Harris interest
points with a similar result.

Harris interest points in prior work are those that are aboveR = 1000 [Mik02].

Figure 4.3 shows the results of tests on the minimum acceptable Harris-Laplacevalue

scores in order to determine that threshold. Included are thresholds against the original

value produced from Harris-Laplace, and the sub-pixel optimizedtruevalue produced

from fitting the local region of the interest point to a 3D quadratic equation. We find that

no such threshold exists, and that interest point repeatability decreases asR increases.

This experiment was also performed using the accuracy metric with identical results.

4.3 Logistic regression

The unique effort of this research is to contribute to runtime prediction of keypoint

stability. We investigate this objective through logisticregression on the attributes in

Section 4.1 at each interest point. The interest point algorithms being compared each

select repeatable locations based on two measures: selecting the maxima of their cor-
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responding function (DOG, R, or H) and by thresholding thoseextrema according to

some minimum. This suggests that larger values of these functions are better. We test

this hypothesis with the use of a generalized linear model trained on individual interest

point attributes.

A GLM iteratively computes the expectation or log odds ratioE(Y ) of each depen-

dent variable using maximum likelihood such that

E(Y ) = g(β0 +
∑

βjXj) =
eβ0+

P

βjXj

1 + eβ0+
P

βjXj
(4.1)

using the logit link functiong(pi) = log( pi

1−pi
) and fitting the prediction variableY

(repeat or non-repeat) to a binomial distribution.X is our dataset of106 interest points

with 17 attributes,βi are the coefficients that model a linear relationship between an

attribute and the probability of repeat, andY is the known repeatability of each interest

point as computed with the metric from Section 3.6. Logisticregression allows us to

predict the probability that an individual interest point will repeat. We measure the

effectiveness of each logistic regression experiment using correlationrE(Y ),Y and the

area-under-curve (AUC).

The correlation between two vectorsE(Y ) andY is defined as

rE(Y ),Y =

∑

YiE(Yi) − NȲ Ē(Yi)

(N − 1)SY SE(Y )
(4.2)

whereSi is the standard deviation of the set.

rE(Y ),Y is maximized when the set ofN = 106 samples and the set of expectations

E(Y ) vary simultaneously. This metric depends heavily on the dimensionality of the

data - one-tailed significance forp < 0.05 whenN = 106 requires a correlation score

of only 0.001645.

Area under the curve measures the discrimination of each fitting to correctly predict

an interest point that either repeats or does not repeat. It is the measured area under a
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receiver-operating-characteristic (ROC) curve which plots a fitting’ssensitivity against

1 − specificity.

Because interest points are generated from three algorithms that may produce at-

tributes with different variance, we first examine data normalization techniques in Sec-

tion 4.3.1. Section 4.3.2 tests if either of the three selective attention algorithms is more

or less predictable via GLM. Section 4.4 closely examines the performance of our GLM

on each family of interest points. We find, ultimately, that the repeatability of an indi-

vidual interest point cannot be easily predicted using a linear model. We see that each

attribute influences repeatability, but none strongly. This will enable us to construct a

GLM that increases repeatability4% by ranking the interest points from most-to-worst

likely to repeat.

4.3.1 Normalization techniques

Attributes of the original data have variances that range from slightly above zero to

1011. This variability suggests that we look initially at normalization techniques. We

investigate three normalization techniques on the data including mean centering each

sample and giving it unit length

unit(Xij) =
Xij − X̄i
√

∑

X2
i

(4.3)

Mean centering each sample and dividing the attributesXj by their standard devia-

tion

sd(Xij) =
Xij − X̄j

√

1
N

∑

(Xj − X̄j)2
(4.4)

Log-normalization of the absolute value of the subset of attributes with the largest

variance is also examined including the Harris, Hessian, and value attributes.
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log(Xij) = log2(|Xij|) (4.5)

Normalization has very little effect on eitherrE(Y ),Y (Figure 4.5) or AUC (Fig-

ure 4.4) scores. There is one exception: log normalization of the data affects the corre-

lation of Harris and Hessian fittings. Correlation scores for many of these attributes are

inverted. The net positive effect after log normalization is that the AUC and correlation

scores are highly correlated (r = 0.97, p < 0.0000001). Before log normalization cor-

relation between our two metrics isr = 0.474, p = 0.06. We discuss the meaning of

this behavior in Sections 4.4.2 and 4.4.3.

The only cases where fitting with original attributes underperforms any normaliza-

tion technique arehardeterminant andtruevalue. In both cases, the original model

is deceived by extremely large outliers which are correctedfor by log normalization.

We believe that the correlation and AUC metrics are effective because log normaliza-

tion introduces such a strong correspondence between them.Original attributes and

log normalized attributes are superior to unit and sd normalization in every fitting. We

proceed into Section 4.3.2, GLM performance by algorithm, and Section 4.4, GLM per-

formance by each specific attribute, with an investigation of the effect of original and

log normalized attributes on repeatability.

4.3.2 Regression by interest point detector

Figures 4.6 and 4.7 show the performance of logistic regression on the original data

and its log, separated by which algorithm the interest pointwas detected by. Interest

points generated from the three algorithms do not, as we expected, depend primarily on

their own attributes to predict repeatability. Nearly every attribute has some predictive

power across all three algorithms; however that predictivepower is quite weak. A hor-

izontal line is drawn at the random line for AUC= 0.5. Our predictions have999, 998
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degrees of freedom, so a significance ofp = 0.05 in a one-tailed t.test is achieved at

r = 0.001645. A horizontal line is also drawn at that point on the graph, nearly indis-

tinguishable from zero.

Theharlambda1 attribute produces the largestrE(Y ),Y but does not boost AUC be-

cause AUC is a rank-based metric. The steep slope of the GLM seen in Figure 4.11

is enabling the prediction to produce a larger set of probable repeats without properly

ranking them. A similar effect is causing high correlation with heslambda2, visualized

in Figure 4.19.

Results for why AUC is maximized among Harris-Laplace interest points using a

GLM fit to Hessian family attributes is unclear. Similar correlation results for DOG

with log normalized Hessian attributes is less surprising,as both are blob detectors.

33



xp
os

yp
os

zp
os

ha
rla

m
bd

a1

ha
rla

m
bd

a2

ha
rd

et
er

m
in

an
t

he
sl

am
bd

a1

he
sl

am
bd

a2

he
sd

et
er

m
in

an
t

en
tr

op
y

de
nt

ro
py

dd
en

tr
op

y

va
lu

e

tr
ue

va
lu

e

dx
2

dy
2

dz
2

0.
0

0.
2

0.
4

0.
6

DOG

Harris
Hessian

AUC and Correlation By Algorithm

Figure 4.6: Regression by algorithm on original attributes. Performance of the GLM
predictions are low but non-random. The fitting of Hessian interest points maximizes
rE(Y ),Y and the Harris fitting maximizes AUC.

xp
os

yp
os

zp
os

ha
rla

m
bd

a1

ha
rla

m
bd

a2

ha
rd

et
er

m
in

an
t

he
sl

am
bd

a1

he
sl

am
bd

a2

he
sd

et
er

m
in

an
t

en
tr

op
y

de
nt

ro
py

dd
en

tr
op

y

va
lu

e

tr
ue

va
lu

e

dx
2

dy
2

dz
2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

DOG

Harris
Hessian

AUC and Correlation By Algorithm (log)

Figure 4.7: Regression by algorithm on log attributes. Log normalization introduces
uniformity and indicates DOG is most predictable.

34



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

xpos

pr
ob

ab
ili

ty

DOG
Harris
Hessian

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

xpos

pr
ob

ab
ili

ty

DOG
Harris
Hessian

Logistic regression performance with xpos

Logit function ROC curve Conditional density

Figure 4.8: Extremum near the borders of images are predictably not as repeatable.
rE(Y ),Y = 0.01, AUC = 0.51

4.4 Individual attribute performance

The next section shows a set of three graphs for each interesting attribute with the goal of

finding shared attribute dependencies among all three algorithms, and exploiting them.

Each graph includes the logit probability function produced by the GLM from the in-

dicated feature, the ROC curve of the logit prediction, and aconditional density graph

showing probability of a repeat by attribute value. A grey box is drawn on the logit

function and conditional density plot denoting the boundaries of two standard devia-

tions above and below the mean of samples for each attribute.

The logit function shows the potential strength of the prediction. Uninformative

attributes like the image coordinates of an interest point appear flat. More informative

attributes will actually appear as a logit function with a distinct boundary between the

probability of a repeat and a non-repeat. However, none of our attributes are strongly

predictive of a repeat or non-repeat. Most of the logit functions are approximately linear,
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particularly within two standard deviations of the mean. The logit functions with a

high positive or negative slope have some predictive effecton repeatability and suggest

thresholding or weighting interest points by these features.

The ROC curve provides a visualization of the AUC score from sections 4.3.1

and 4.3.2. It graphs thesensitivity of a classifier against1− specificity. Sensitivity is

the number of true positivesTp over the sum of true positivesTp and false negativesFn.

Specificity is the number of misclassified negatives:Fp/(Fp + Tn). A ROC curve for a

classifier with random performance is a line with slope= 1 and AUC= 0.5. None of the

AUC scores are above0.6 and none of the ROC curves appear to be very strong clas-

sifiers, but they are a visual aid to the performance of each logistic regression. As the

curve stretches toward the top left corner (perfect sensitivity and specificity) the fitting

is more predictive.

The conditional density of an attribute is given byp(y|xi) wherexi is a particular

range of values of the attributex. It is computed from Bayes rule as

p(y|x) =
p(y)p(x|y)

p(x)
(4.6)

and in a discrete sample is simply

∑

i p(y|xi)

p(y)
(4.7)

over each attribute. This graph shows the attribute range where repeatability is maxi-

mized. It is particularly informative with log normalized attributes and suggests a num-

ber of thresholding decisions.

Figure 4.8 shows these three graphs based on the interest point x, y coordinates. As

expected, interest points near the border of an image demonstrate reduced repeatability

caused by border effects. Otherwise, the coordinates of an interest point have no effect

on its repeatability. We suggest discarding interest points within one-twentieth of the

36



0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zpos

pr
ob

ab
ili

ty

DOG
Harris
Hessian

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zpos

pr
ob

ab
ili

ty

DOG
Harris
Hessian

Logistic regression performance with zpos

Logit function ROC curve Conditional density

Figure 4.9: Logit function predicted by the GLM, ROC curve, and conditional den-
sity estimation of scale. Hessian points are the most stableto scale increases, with
the most stable points at the bottom of an octave and the leaststable at the top.
rE(Y ),Y = 0.03, AUC = 0.52

image border.

4.4.1 Scale

Interested in the effect ofσ on repeatability, we show the repeatability of each algorithm

as a function of scale in Figure 4.9. Hessian-Laplace produces highly repeatable interest

points on every octave, though interest points on the highest level of each octave have

consistently low repeatability. We believe this is becauseof the σ-normalization of

derivatives, which is too large for interest points normalized byσ2
I . Interest points on

the bottom level of each octave are normalized by1/21/3 < 1, giving them a lower

likelihood of being maximal. Therefore only the most stableinterest points remain

extremal after normalization, increasing the stability ofthe bottom octave. DOG fitting

produces similar though less pronounced results.

The repeatability of every algorithm is sinusoidal and is dependent on the production
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of the scale space. DOG interest points seem to repeat most often in the center level

of the octave where there are a set of 26 neighbors in a cube around them. Harris

interest points behavior in a similar fashion, preferring octaves with a full neighborhood.

Hessian interest points repeat the least often in the middleof an octave, however. We

suspect that this is a function of the neighborhood operatordiscussed in Section 4.6.

Repeatability of interest points at the highest levels is unpredictable because of in-

sufficient samples. The number of interest points decrease logarithmically with scale

because image size is quartered at each octave. We suggest that researchers utilizing

interest point detection who desire a small number of repeatable interest points select

only those interest points with a moderate level of scale. Repeatability decreases only

slightly (particularly with Hessian-Laplace) and densitydecreases significantly.

4.4.2 Harris eigenvalues

Harris eigenvalues are seen in six figures: 4.11, 4.12, 4.13,4.14. 4.15, 4.16. Correlation

scores using these features are inverted with log normalization in Figure 4.5 because

of variance reduction. The first eigenvalue of the Harris andits determinant have the

largest variance of any feature:σ2 = 106 and1011, respectively. Log normalization

reduces this and with it the GLM’s tendency to overfit.

The first eigenvalue of the Harris matrixharlambda1 shows the highest correlation

of any feature (see Figure 4.6), suggesting the relationship betweenharlambda1 and

repeatability is linear. This is true on the original features where the fit has a large

negative slope. Logging introduces nonlinearity to the feature, eliminating the strong

negative slope and reducing fit performance. Interest points with a largeharlambda1

are edges and should always be discarded.

It is easy to understand why the original GLM prediction ofharlambda2 is the

inverse ofharlambda1. Repeatability is maximized for interest points with small

harlambda1 and largeharlambda2 implies that repeatability is maximized when their
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ratio is minimized. The result of minimizing their ratio is seen in Figure 4.10.
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Figure 4.10: Investigation of repeatability of interest points against the ratio of Har-
ris eigenvalues. Our results show repeatability of almost90% for interest points with
eigenvalue ratio below5.

The determinant of the second moment matrix,hardeterminant does not predict

repeatability well. This may seem unintuitive since Harris-Laplace uses this value to

select interest points. The large variance ofharlambda1 reduces the informativeness of

hardeterminant, which is the product of the two eigenvalues. The determinant can, it

seems, be as easily maximized on an edge as on a corner. As Figure 4.10 demonstrates,

the ratio of Harris eigenvalues contributes most to repeatability.
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Figure 4.11: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of originalharlambda1. Repeatability decreases as the first eigenvalue in-
creases as interest points become more like edges and less like corners. High correlation
and low AUC suggest a bad fit:rE(Y ),Y = 0.07, AUC = 0.51
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Figure 4.12: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of log ofharlambda1. rE(Y ),Y = 0.00, AUC = 0.49

40



0 500 1500 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

harlambda2

pr
ob

ab
ili

ty

DOG
Harris
Hessian

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
0 500 1500 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

harlambda2

pr
ob

ab
ili

ty

DOG
Harris
Hessian

Logistic regression performance with harlambda2

Logit function ROC curve Conditional density

Figure 4.13: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of originalharlambda2. High AUC and low correlation suggest overfitting
of the model:rE(Y ),Y = 0.02, AUC = 0.55
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Figure 4.14: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of log ofharlambda2. Collapsing the variance reveals a clear linear rela-
tionship for all three algorithms. The most predictive attribute:rE(Y ),Y = 0.08, AUC =
0.55
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Figure 4.15: Logit function predicted by the GLM, ROC curve,and conditional density
estimation ofhardeterminant. The large difference in slope for DOG is caused by
variance, seen in the next figure.rE(Y ),Y = 0.0018, AUC = 0.48
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Figure 4.16: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of log ofhardeterminant. rE(Y ),Y = 0.04, AUC = 0.52
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4.4.3 Hessian eigenvalues

The Hessian matrixH of second derivatives is a blob detector. Prediction performance

of this attribute family, along with the Harris attribute family, inverts when log nor-

malization is used. The next six figures, Figures 4.17, 4.18,4.19 4.20, 4.21, and 4.22

show the results of our experiments on the original and log-normalized values of these

attributes.

Regression on the first and second eigenvalues of the Hessianbehaves similarly

to those of the Harris. The slope ofheslambda1 is flat or slightly positive while

heslambda2 is sharply positive. This reflects the dependence, suggested by Lowe

[Low03] that repeatable interest points have a small ratio between first and second eigen-

values. The result of our thresholding experiment supporting Lowe’s results are seen in

Section 4.2. We have also found in the previous section that this applies to Harris eigen-

values.

Each attribute in the Hessian family is nonlinearly relatedto repeatability except for

hesdeterminant. A positive slope for the H-L algorithms on this attribute suggests that

the Hessian does not respond as strongly to edges as the Harris. The determinant is

maximized when both eigenvalues increase simultaneously unlike the Harris when the

first eigenvalue overtly weights the determinant.

43



−100 0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

heslambda1

pr
ob

ab
ili

ty

DOG
Harris
Hessian

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−100 0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

heslambda1

pr
ob

ab
ili

ty

DOG
Harris
Hessian

Logistic regression performance with heslambda1

Logit function ROC curve Conditional density

Figure 4.17: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of originalheslambda1. rE(Y ),Y = 0.02, AUC = 0.54
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Figure 4.18: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of log ofheslambda1. rE(Y ),Y = 0.07, AUC = 0.55
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Figure 4.19: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of originalheslambda2. This attribute increases linearly with repeatability
and suggests discarding when< 0. rE(Y ),Y = 0.07, AUC = 0.55
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Figure 4.20: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of log of Hessianheslambda2. The strong relationship from the original
feature disappears after the absolute value is taken in log normalization. rE(Y ),Y =
0.03, AUC = 0.51
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Figure 4.21: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of originalhesdeterminant. The slopes are exaggerated because of high
variance and are reduced in the nexture figure.rE(Y ),Y = 0.01, AUC = 0.54
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Figure 4.22: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of log ofhesdeterminant. rE(Y ),Y = 0.05, AUC = 0.53
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4.4.4 Entropy scores

Selective attention algorithms have historically appealed to the idea of entropy in detect-

ing stable interest points. We examine the measure of entropy H = −
∑

p(x)logDp(x)

and its first and second derivatives for each interest point.Figures 4.23, 4.24, and 4.25

show the results. Figure 4.4 and Figure 4.5 show that entropyscores are most effective

at predicting Harris-Laplace repeatability. Interest points with entropy below1 in our

dataset are6% less repeatable than others. We see that H-L algorithms’ repeatability

decreases slightly as the derivative of entropy increases.DOG also benefits from this

interpretation of the first derivative.

While the relationship is weak, we see that repeatability does to some degree depend

on regions where the rate of change of the entropy measure is decreasing. These regions

correspond to a local image region rapidly shifting from light to dark intensity values or

vice-versa. Blob and corner regions, as produced by the algorithms in this research, also

correspond to this local structure.
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Figure 4.23: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of entropy. Interest points withentropy < 1 should be discarded.rE(Y ),Y =
0.03, AUC = 0.52
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Figure 4.24: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of first derivative of entropy. Interest points with dentropy > −1 are4% less
repeatable than others.rE(Y ),Y = 0.05, AUC = 0.54
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Figure 4.25: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of second derivative of entropy.rE(Y ),Y = 0.02, AUC = 0.52
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4.4.5 Values of extrema and their neighborhood

This section examines attributes from the value family. Figures 4.26 and 4.27 plot three

separatevalue scores. For DOG interest points,value = D(x, σ) = L(x, σ)−L(x, σ−

1). For Harris-Laplacevalue = R, and for Hessian-Laplacevalue = DET(H). Sub-

pixel optimization is performed onvalue with a 3D quadratic fitting in order to produce

truevalue. We expect these two measures to be informative in predicting the repeata-

bility of interest points from their source algorithm. Figures 4.28, 4.29, and 4.30 each

show the results for the second derivatives of the same 3D quadratic. Log normalized

attributes are used in all five figures because of their high variance.

The results are similar for all three algorithms: a large Hessianvalue is good, DOG

value increases repeatability when small, and the Harrisvalue is uninformative. There

are two interesting and unexplained results from this experiment. Regression perfor-

mance in Figure 4.7 shows that DOG is best predicted from these features. The reason

is because the variance of DOG values (σ2 = 92) in this experiment fall outside of the

range of Harris-Laplace (σ2 = 3.7×1011) and Hessian-Laplace (σ2 = 1.3×105) values

by a significant margin, biasing the model to take advantage of the slight repeatability

advantage of DOG to computerE(Y ),Y .

Behavior of the Hessian attributes is unexpected. Each fitting shows a strong positive

relationship between each value attribute and repeatability. We were able to increase

Hessian-Laplace repeatability to88% in our experiments by discarding Hessian-Laplace

interest points withvalue < 1000.

The derivative attributesdx2, dy2, anddz2 were expected to be most informative

because they describe the local neighborhood around an extrema. By definition, an

extrema is a local region where the second derivatives in thex and y directions are

close to zero. We believe that these measures are ineffective for two reasons. The

local region is only descriptive for DOG, which computes the3D quadratic from a 27-
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pixel neighborhood cube of the same function. Harris-Laplace and Hessian-Laplace

use an incompatible combination of neighborhood operators, discussed in Section 4.6.

The second reason is that whiledx2 anddy2 are computed directly from a quadratic

function, that function is oriented along thex andy axes of the original image - not

along the principal directions of variance. The second moment matrix from Mikolajczyk

and Schmid’s affine invariant work [MS02, MS04] suggests another method to compute

a 3D quadratic with principal orientation information.

51



−20 −10 0 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log(value)

pr
ob

ab
ili

ty

DOG
Harris
Hessian

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−20 −10 0 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log(value)

pr
ob

ab
ili

ty

DOG
Harris
Hessian

Logistic regression performance with log(value)

Logit function ROC curve Conditional density

Figure 4.26: Logit function predicted by the GLM, ROC curve,and conditional density
estimation ofvalue at each extremal location (D(x, y, σ), R, andDET(H)) rE(Y ),Y =
0.03, AUC = 0.52
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Figure 4.27: Logit function predicted by the GLM, ROC curve,and conditional density
estimation of sub-pixel optimizedtruevalue at each extremal location (D(x, y, σ), R,
andDET(H)) rE(Y ),Y = 0.02, AUC = 0.51
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Figure 4.28: Logit function predicted by the GLM, ROC curve,and conditional den-
sity estimation of the second derivative with respect tox in the neighborhood of each
extremal location (D(x, y, σ), R, andDET(H)) rE(Y ),Y = 0.02, AUC = 0.51
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Figure 4.29: Logit function predicted by the GLM, ROC curve,and conditional den-
sity estimation of the second derivative with respect tox in the neighborhood of each
extremal location (D(x, y, σ), R, andDET(H)) rE(Y ),Y = 0.02, AUC = 0.51
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Figure 4.30: Logit function predicted by the GLM, ROC curve,and conditional den-
sity estimation of the second derivative with respect tox in the neighborhood of each
extremal location (D(x, y, σ), R, andDET(H)) rE(Y ),Y = 0.00, AUC = 0.51

4.5 Extrema inversion

The scale space of an image is a continuous signal containingboth maxima and minima.

The common technique is to detect only maxima in the absolutevalue of the scale space

signal. This technique converts negative minima to positive maxima but overlooks two

additional types of extrema.

Scale space extrema consist of four classes - positive maxima, negative minima,

positive minima, and negative maxima. These extrema types are expressed in the four

triplets {4, 5, 4}, {−4,−5,−4}, {4, 3, 4},and{−4,−3,−4}. The second two types of

extrema are ignored using the common method of absolute maximum detection. Sus-

pecting this to be an undiscussed repeatability improvement technique, we measured the

repeatability of the four classes of extrema in Figure 4.2.

These results verify the implicit suggestion that invertedextrema can be ignored.
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Table 4.2: Extrema inversion results. Negatively valued extrema are slightly less repeat-
able than positive extrema [Low03].

Overall + + - - - + + - + -
repeatability 87 % 88.3 % 85.2 % 61.2 % 58.3 % 88.3 % 85.2 %

number 699,957 343,839 355,349 589 180 344,019 355,938

The repeatability of negative maxima and positive minima is20% lower and their low

frequency suggests they can be ignored completely.

4.6 Method of extrema detection

A scale space presents a discrete representation of the continuous signal of frequences

in an image. That representation implies that neighborhoods exist in scale as well as

space. Neighborhood extrema can be detected in multiple arrangements. Lowe’s DOG

approach detects extrema in space and scale simultaneouslyby only accepting points

larger or smaller than their 26 neighbors. If an interest point location is larger than its

eight neighbors at the same scale and its nine neighbors above and nine neighbors below

it, it is a cube extrema. Harris-Laplace detects Harris extrema in the 8-neighborhood

(level neighbors) surrounding the point and ignoring scaleneighbors. Characteristic

scale localization is performed by simply testing whether the immediate LOG neigh-

bor above and below (tower neighbors) the point are non-maximal. The neighborhood

technique for Hessian-Laplace is unspecified. We use a mirror of the Harris-Laplace,

detecting level neighbors in the determinant and tower neighbors in the trace. Extrema

detection techniques are visualized in Figure 4.31

H-L algorithms perform better using this neighborhood arrangement. Another ap-

proach using cube neighborhoods for all maxima detection produced a sparser collec-

tion of interest points that were less repeatable. This is a surprising result since the cube

neighborhood is a tighter constraint. Table 4.3 shows the result of using the tightly

constraining cube neighborhood on all three algorithms. DOG produces seven and3.5
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Level and Tower Extrema Cube Extrema

Figure 4.31: Two types of extrema detection. Level extrema are detected in the Harris or
Hessian signal and tower extrema are detected in the Laplacian-of-Gaussian in [MS02].
Extrema are detected more rigorously in [Low03] using cube extrema. Use of cube
extrema greatly reduces the number detected and negativelyaffects the repeatability of
H-L interest points.

times as many interest points as Harris and Hessian-Laplaceinterest points, respectively.

Even more interestingly, the repeatability of both H-L algorithms is negatively affected

while accuracy is unaffected.

Table 4.3: Initial results with cube neighborhood extrema detection constraint for H-L
algorithms. These data are produced from a different set of randomly selected source
images. The ratio of interest point density is informative.

type number repeatability accuracy
DOG/LOG 699,957 87 % 0.673

Harris-Laplacian 100,706 30 % 0.689
Hessian-Laplacian 199,337 67 % 0.691

These results lead us to implement the H-L interest point detectors according to their

original authors. We suspect that the change in performanceis primarily a function of

density: blob and corner detectors are also edge detectors.Interest point repeatability

from an edge detector increases proportionally with density, which may explain these

findings.

These findings suggest that scale spaces must be constructedwith consideration of

the intended neighborhood function and provides a promising avenue for further re-

search. They relate to the sinusoidal dependency of repeatability with scale in Sec-
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tion 4.9. This work uses three levels per octave (k = 21/3) to construct a scale space as

suggested by Lowe [Low03]. Mikolajczyk recommendsk = 1.2 ≈ 21/3 for the Harris-

Laplace interest point detector. Such a small constant factor in the difference between

levels of scale is unlikely to produce the behaviors in this section and Section 4.9. Fur-

ther investigation is necessary, as both the method of extrema detection and the position

of an interest point in scale space have a strong effect on repeatability.
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Chapter 5

Conclusion

One million interest points are generated using three of themost popular selective atten-

tion algorithms - Lowe’s DOG approach and two of Mikolajczykand Schmid’s Lapla-

cian approaches: Harris-Laplace and Hessian-Laplace. Theinterest points are matched

between randomly selected images from the CalTech-101 dataset and a target image

that has undergone a random affine transformation. Matches are considered to be re-

peats when a distance and radius measure is satisfied.

We predict the repeatability of individual interest pointsby modeling them with gen-

eralized linear models. The models are produced by studyingthe17 attributes of each

interest point. No model is particularly informative, but each model suggests that there

is an important relationship between an interest point’s attributes and its repeatability.

The findings in the above experiments contribute to the following chapter. The pre-

vious experiments provide a framework for understanding how individual attributes af-

fect repeatability. In this chapter, we perform short set ofexperiments combining this

understanding to improve interest point repeatability. Bycombining the small effect

of individual attributes on interest point repeatability we are able to produce a larger

improvement. The conclusion has three components: recommendations to improve re-

peatability, a set of important observations that do not directly affect repeatability, and a

number of promising avenues for future research based on ourresults. Section 5.1 pro-
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vides our set of recommendations, based on either thresholding or interest point ranking,

that can be used to improve the mean repeatability of interest points from any selective

attention algorithm.

5.1 Summary experiments

This research has demonstrated that the repeatability of aninterest point can be predicted

from its bottom up attributes. A close examination of those attributes, however, reveals

that they only slightly affect the probability that an interest point repeats. Our last exper-

imental contribution combines the effect of these observations, improving repeatability

by either thresholding or interest point ranking via multivariate regression.

5.1.1 Thresholds

The use of thresholding to improve repeatability and decrease density is supported by

Lowe [Low03] and Mikolajczyk [MS02]. Lowe recommends discarding interest points

where the ratio between Hessian eigenvaluesr > 10 and when the determinant of the

Hessian is negative. Mikolajczyk, though unsupported in this research, suggests discard-

ing interest points with Harris corner scoreR < 1000. We extend on Lowe’s thresholds

by adding five additional thresholding decisions that improve repeatability performance.

Seven thresholding decisions are supported in total, suggesting discarding interest points

that do not fall inside of the following ranges:

• hesdeterminant >= 0

• heslambda2 >= 0

• heslambda1/heslambda2 <= 5

• 0.05 < {xpos, ypos} < 0.95
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• harlambda1/harlambda2 <= 20

• entropy > 1

• dentropy < −1

Implementing these seven decisions on our set of106 interest points increases mean

repeatability from86% to 90.4% while reducing the total number of interest points to

174, 291. Thresholding in this fashion provides a fast and easy-to-implement solution

to repeatability improvement. These thresholds can be applied only when applicable to

the interest point detectors that depend on them or they can be computed for any interest

point detector, improving the repeatability of that detector.

5.1.2 Multivariate generalized linear modeling

Having examined the individual contribution of each attribute on repeatability, we use

a GLM to perform multiple linear regression. The next small set of experiments detail

our results in selecting the best performing attributes according to AUC andrE(Y ),Y .

The final experiments are separated into three groups: multiple-linear regression by

attribute family, by the best fit attributes regardless of family, and by a hand-selected

set of attributes whose logit functions share similar slopes. Finally Figures 5.1 and 5.2

shows the usable performance of three trained GLMs - one using a small subset of

author selected attributes, one on the log normalized set ofall attributes, and one on the

log normalized set of Harris attributes.

Each attribute family contributes to interest point repeatability according to

different theoretical foundations. We select the best attribute from each fam-

ily, maximizing either AUC or rE(Y ),Y . Among original features we select

{zpos, harlambda2, heslambda2, dentropy, value}, which maximize AUC, with re-

sultsAUC = 0.566, rE(Y ),Y = 0.1. MaximizingrE(Y ),Y we useharlambda1 instead of
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harlambda2, improving both correlation and AUC torE(Y ),Y = 0.11 andAUC = 0.57.

Log normalization of attributes in this experiment offers no improvement.

The above experiment attempts to sample the best attribute from each family

of features. Ignoring the family, we select the five attributes that contribute most

to rE(Y ),Y : heslambda2(0.07), harlambda1(0.07), dentropy(0.05), zpos(0.03) and

entropy(0.03). The generalized model using these features improves AUC to0.57 and

rE(Y ),Y = 0.12 Again, log normalization of attributes in this experiment offers no im-

provement.

Finally, the authors look at the logit functions produced ineach single-attribute

experiment. A subset of attributes is selected that minimize the attribute-wise varia-

tion between the slope and curvature of the three logit functions. They are the most

consistent across all three algorithms. We train a GLM usingzpos, harlambda1,

log(harlambda2), heslambda1, log(heslambda2) anddentropy and further improved

AUC to 0.585 andrE(Y ),Y = 0.13. This subset, referred to as the “consistency” fitting

in Figure 5.1, scores nearly as well in AUC andrE(Y ),Y as modeling the set of all 17

attributes. Figure 5.1 shows the performance of the two bestperforming generalized

linear models: Our set of consistency-maximizing attributes and the multivariate GLM

trained with all of the log-normalized data. Table 5.1 of GLMcoefficients is included

to assist in weighting interest points used by selective attention designers and imple-

menters. The consistency GLM performs nearly as well as the GLM trained on all of

the data. Training a GLM using the thresholded data from Section 5.1.1, unfortunately,

offers no improvement. The two models perform nearly identically to the thresholding

approach.

Of the three algorithms used for interest point detection inthis work, only one ben-

efits from analysis of its own attributes. Coefficients are included in Table 5.1 for a log

normalized GLM (Figure 5.2) that can select the top percent of Harris interest points

61



Table 5.1: Log odds coefficients produced by a GLM trained to predict the repeatability
of an interest point.

Attribute LOG GLM Small GLM LOG(Harris) GLM
AUC 0.60 0.59 0.56

rE(Y ),Y 0.18 0.13 0.10

A priori 5.990 6.713 8.610
xpos 1.000 1.000
ypos 1.000 1.000
zpos 0.937 0.951 0.952

log(harlambda1) 0.933 1.000 0.981
log(harlambda2) 1.161 1.096 1.189

log(hardeterminant) 0.951 0.945
log(heslambda1) 1.187 1.003
log(heslambda2) 1.092 0.970

log(hesdeterminant) 0.876
entropy 1.175

dentropy 0.903 1.000
ddentropy 1.071
log(value) 1.104

log(truevalue) 0.976
log(dx2) 0.979
log(dy2) 1.009
log(dz2) 0.942
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Figure 5.1: Fitting of a GLM fit to six author selected attributes and to a GLM fit to all
17 attributes including log normalized Harris, Hessian, and value families.

with 92.4% repeatability and the top tenth percentile with90.6%. These coefficients

should plug in to current implementations of Harris-Laplace (and we suspect Harris-

Affine) with immediate repeatability improvement.
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Figure 5.2: Fitting of a GLM fit to five author selected attributes and to a GLM fit to all
17 attributes including log normalized Harris, Hessian, and value families.
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5.2 Discussion

We have seen that selection of a subset of highly repeatable interest points can be in-

fluenced by weighting interest points relative to their attributes. Achieving a set of

extremely (≈ 100%) repeatable interest points remains, however, a daunting task. Both

thresholding and repeatability prediction increase the repeatability of interest points gen-

erated by three well-known interest point detectors by approximately4%. Implement-

ing our seven thresholds provides the same repeatability improvement while discarding

more than four-fifths of the original set.

This work does not provide a means to select a small set of extremely repeatable

interest points, but it has uncovered a number of areas wherethe behavior of scale spaces

and interest point detectors is not fully understood. This section discusses some of those

areas of opportunity.

In the close examination of individual attributes, DOG logit functions usually vary

in slope significantly from H-L logit functions. This doesn’t follow from one of the

premises of this research – that interest points depend on similar attributes regardless

of their generating algorithm. We believe this disparity iscaused by their differing

neighborhood detection method. More research will be necessary to properly describe

the difference between these two techniques.

The magnitude of the Hessian second eigenvalueheslambda2 is more important to

feature repeatability than its first eigenvalue. A large second eigenvalue depends on there

being a large first eigenvalue, and as such any interest pointwith a largeheslambda2

exhibits strong blob characteristics. The first eigenvalueis unimportant: interest points

with a large first eigenvalue are edges in any case where the second eigenvalue is not

similarly large. This relationship is inverted when considering the eigenvalues of the

second moment matrix. Repeatable interest points rely moreon a smallharlambda1

than a largeharlambda2. The ratio between these eigenvalues is another important
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method for discarding edges from corner and blob selective attention algorithms.

Thevalue andtruevalue features are produced from the corresponding signal re-

sponsible for interest point detection in each algorithm, so the range ofvalue differs for

each algorithm and should contribute little to generic interest point repeatability. We

demonstrated in Section 4.5 that positively valued extremaare slightly more repeatable

than negative extrema, which most likely produces this result. truevalue, being a sub-

pixel optimizedvalue, has a similar effect except on Harris-Laplace interest points. We

believe this effect is caused by the lack of sub-pixel optimization nor smoothing of the

derivatives that contribute toH.

Some vision applications depend on detection of a small number of highly repeat-

able interest points. Our thresholding guidelines and repeatability prediction can help

to achieve this goal. An easier method for achieving this objective is by selecting only

interest points with a large scale. As seen in Figure 4.9, repeatability decreases slightly

as scale increases. Quantity, however, decreases logarithmically with scale. An applica-

tion depending on a low quantity of highly repeatable interest points can then be selected

from the higher levels of scale with little loss of repeatability. Selecting interest points

with high scale is the easiest method to reduce quantity without losing repeatability.

Repeatability can be improved cheaply up to4% by discarding keypoints outside of the

thresholds summarized above in Section 5.1.

5.3 Future work

Further investigation into the structure and theory of scale spaces is called for. There

exist nearly unlimited parameterizations of scale space construction in the literature and

their construction is not well standardized [BA83, ESM+06]. The repeatability of in-

terest points fluctuate sinusoidally along each octave usedin a scale space. In order to

achieve true scale-invariance this effect needs to be minimized. Finally, the method of
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extrema detection (Chapter 4.6) is strongly related to scale spaces and scale invariance

and we believe a formal theory of its technique is welcome.

Thevalue family of features were surprisingly uninformative, giventheir descrip-

tion of neighborhood derivative information regardless ofthe generating algorithm. It is

promising, then, to compute the local derivative information using the second moment

matrix, which describes the structure of a local region. Computing neighborhood infor-

mation usingD(x) is surprisingly uninformative because it does not take intoaccount

the direction of principal variance.

We believe that an opportunity exists to perform scene recognition by determining

the affine structure of the entire image using the set of interest points. The affine shape

of the probe image can be fit globally to images in the gallery with no transformation in-

formation. We suspect using this method there is a robust fit to the 8-dof correspondence

problem without requiring the selection of four points of reference.
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