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Correspondence 

An Error Analysis for 2-D Block Implemented 
Digital Filters 

MAHMOOD R. AZIMI-SADJADI AKD ROBERT A. KING 

Abstract-This  correspondence  considers  error  analysis  of  block- 
implemented 2-D digital filters. Expressions  for  error  bound  and  mean- 
square  error  for  roundoff  error  accumulation  are derived using fixed- 
point  arithmetic,  and  compared with the results  obtained  usingordinary 
2-D difference  equations. 

I. INTRODUCTION 
Block implementation  technique  has  attracted  considerable 

attention  in  recent  years,  applied  almost exclusively to  1-D 
digital  filters [ 11. The  primary  motivation  behind  this  study 
was t o  develop  a  parallel  processing model  for recursive  digital 
filters,  with  increased  data-throughput  rate  and re.duced com- 
putational  effort.  Subsequent  work [ 21, [ 31 , however,  reveals 
several other  fruitful  features of this  method  which  stem  from 
its  unique  structure. 

In  the 1-D case,  Barnes and  Shinnaka [ 3 ]  have shown  that 
the  roundoff noise  variance for  a 1-D fixed  point digital filter, 
realized by  a  block-state  structure, is reduced  by  a  factor  equal 
to  the block  length  when  compared  with  the noise  variance  in 
the simple  state-space  realization  model [4 ] .  Moreover, the 
dynamic ranges of the  state variables are preserved under  the 
transformation  from  a simple  state-space  structure to a  block- 
state  structure. 

The  block  implementation  technique  for 2-D recursive digi- 
tal  filters was extended  by Azimi-Sadjadi [ 5 ] ,   [ 6 ] .  The 
method is particularly  useful  when the linear  filtering of an 
image is performed  by  a 2-D recursive  digital  filter. 

In  addition to  the advantages of  2-D block  processing  in the 
implementation, several other benefits  relating to its  structure 
can  also be  exploited, as in  the 1-D  case. 

In  this  paper,  a  bound  on  the  norm of the  error  produced 
due to roundoff of multiplications is derived for a 2-D block- 
implemented digital filter. This bound is shown to be  consid- 
erably  smaller than  that  obtained  by Ni and Aggarwal [71 
when the  filter is implemented using ordinary 2-D difference 
equations. 

The  method of analysis adapted  here is analogous to  that de- 
veloped in [ 71, [ 81 but using  a matrix  model.  The  technique 
of Barnes et al. cannot easily be  extended to  the 2-D  case,  be- 
cause of the  complexity of the  state  matrices  in  the 2-D block- 
state  realization  model [ 91 . 

11. 2-D BLOCK RECURSIVE EQUATION 
A  two-dimensional  recursive  digital  filter is described  by the 

linear  difference  equation 
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i + j # O  (1) 

where (x,,,} and { y m , , ]  are the  input  and  output  sequences, 
respectively. 

Consider the  input  sequence {x,,,} to be partitioned  into 
nonoverlapping  blocks of dimension K by L ,  where 

K Z max ( M a ,  M b ) ,  L > rnax (Nu,   Nb) .  (2) 

Now, if these  blocks  are  arranged  as  vectors  with  element  sub- 
scripts  ordered  lexicographically, (1) can be written  in  a ma- 
trix  form. Using this  formulation,  the  following “2-D block 
recursive equation”  can  be  obtained [ 51,  [6].  

1 1  

D m n X ( i -  m , i -  n )  
m=o n = o  

1 1  
- Cm,Y(i- m ,  j -  n )  = 0. 

m = o  n = o  

In  this  equation, X(i,  j )  X i , j  may  be  defined as 

X i , i =  L X i K X i K + 1   X ( i + l ) K - l ] f  
“(i)  “(i) . . . “(i) 

where 
X $ j )  A = 

[x l , jLx l , jL+1 . * * x z , ( ~ + I ) L - I ~  
t (4 ) 

and  similarly for Y(i,  j )  2 Yi , j .  Matrices Cij are  either  lower 
r triangular  block  Toeplitz, i.e., or  uppe: 

coo 

and 

Cl 0 

A0 

0 -4% 
0 

0 

:KL  X K L )  

Y L  x K L )  

This  also holds  for Col and C l l ,  where the  copstituent  block 
matrices  are Aj’s.  The  block  matrices Ai and Ai are  also  lower 
and  upper  triangular  Toeplitz,  respectively,  and  may be  de- 
fined  similarly,in  terms of the coefficients ai, . of the differ- 
ence  equation [ 5 ] , [ 61. Matrices Di,- can  be  defined,  in  a simi- 
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lar  manner,  in  terms of Bi and B:, where  these  latfer  matrices 
may  be  defined in  terms of bi,i similar to Ai and Ai .  

111. ERROR ANALYSIS 
As a  consequence of input,  coefficient,  and  product  quanti- 

zation,  the  actual  filter  implemented  by  a  finite  wordlength 
machine is represented  by 

m=o n = o  

where [ * ] , indicates  rounding  and  superscript (") denotes  the 
actual  quantized value  of the matrices or vectors, i.e., 

Dm, = Dmn + AD,,, Cmn = Cmn + Acmn 
- Y 

x(i- m , j -  n ) = X ( i -  m , j -  n ) + A X ( i -  m , j -  n )  

?(i- m , j -  n ) =  Y ( i -  m , j -  n ) + A Y ( i -  m , j -  n) .  (7 )  

Subtracting (3) from (6) and using (7) yields 

D,,AX(i- m , j -  n )  
1 1 ,  

m=o n=o 

- 2 2 e m n A Y ( i -  m, j -  n )  
m=o n = o  

1 1  
+ x A D m n X ( i -  m , j -  a )  
m=o n=o  

1 1  
- ACmnY(i - m ,  j - n )  

m=o n = o  

In (8), the  first  term  represents  the  effect of input  quantiza- 
tion,  the  third  and  fourth  terms  are  due to coefficient  quanti- 
zation,  and  the  fifth  and  sixth  terms give the  errors  due  to  the 
quantization of the  product;  the effect of these on the  output 
blocks is determined  by  the  second  term of this  equation. 

In  the  following analysis, attention  has  been  focused  only on 
product  quantization  error.  The  effects of input  and coeffi- 
cient  quantization have been  neglected. 

The  roundoff  error  vectors amn(i - m, j - n )  result  from the 
multiplications of C,, by Y ( i  - m, j - n). For  example, 

Error  vectors a lo ( i  - 1, j ) ,  aol( i ,  j - l),   and a l l ( i  - 1, j - 1) 
may  be  defined  in  a  similar  manner.  The  constituent  vectors 
a, (1, j )  and &(1, i,- 1) whit:? result  from the  multiplications 
of A ,  and A ;  by Y v )  and ?$'-l) may  be defined as 

- - 

where 

n =o 

6m,n(P,4)=[am,nyp,ql,-am,nYp,q 

and 

IGm,n(P, 4)1< 2- j  

for a word  containing t bits.  Vectors &(l ,  j - 1) may  be  de- 
fined  in  a similar manner. 

A similar procedure  can  be  repeated  for  the  roundoff  error 
vectors Omn(i - m, j - n).  

Now define  an  error  vector E(i, j )  as 

E(i, j)=  Omn(i-  m , i -  n )  
1 1  

m=o  n=o 

The  effect of this  error on  the  output may  be  written  as 
V(i, j )  AY( i ,  j )  such  that 

E(i, j )  = x CmnV(i - m, j - n) .  
1 1  

m=o n = o  

Vectors Vi,j 2 V(i,  j )  and Ei , i  A E(i, j )  may be  defined simi- 
larly to X i , i  in (4). 

If the  input  array is of dimensions P X Q, it may  be  repre- 
sented  by  a  sequence of  period P, Q; it is composed of blocks 
of size K X L, and  hence,  the  blocks have a  periodicity of M, 
N where 

Similarly, V(i,  j )  and E(i, j )  blocks will be  periodic  with  pe- 
riod M ,  N .  The ( 2 ,  w)-transforms of these  block  sequences 
may  be  defined  as 

p(z> w ) = ( z ,  w) lVi , i I  

i? [ Vo,o.(z, w) Yo, l ( Z ,  w) 
* * *  VO,L- l (Z ,W)   V1 ,0 (z ,w)* -*  V l , L - l ( Z , W )  

* a *  vK-l,L-l(z,w)lt (13) 

where V,,,(z, w), r E [O, K - 1 1 ,  and s E [0, L - 11 is the 
(z ,  w)-transform of the sampled  version  sequence formed  by 
the (v, s) th  elements of all the blocks, i.e., 
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vv , s ( z ,w)=  c i K + v , j L + s  
i = o  j = o  

m m  
z-iw-j (14) 

From  (1  3)  and  (1 4), we may  write 

m m  

?(z, w ) =  x vi,jz-iw-i. 
i=o j = o  

The  (z,  w)-transform of the sequence {Ei, j}  may be  defined 
likewise.  Now,  taking the  (z,  w)-transform of both sides of 
(1 2) yields 

A 

E ( z ,  w) = G(z, w) . V(z, w) 
A A 

(16) 

where G(z; w) is the (z, w)-transform of {Cmn} = {Coo, Clo,  
A 

COl, c111, i.e.9 

G(z, w) = Coo + Cl0z-’ + C0lw-l + Cl1z-’ w-l.  (1 7 )  

Note  that  matrix  G-’(z, w) is the block  matrix  transfer  func- 
tion of the corresponding  all-pole  filter. 

A 

A 

I v .  A BOUND ON  THE NORM OF ERROR 
Since V(i, j )  and E(i, j )  are  considered to  be  periodic,  their 

rms values  are 

and 

where 

Proof: The proof is straightforward  and,  thus, is omitted 
here [ 8 ] .  

Now,  since COO, Clo,  ColAand C11 are  block  Toeplitz  ma- 
trices, it can  be shown  that  G  {exp  exp ( $ 4 2 ) )  is a (0)- 
block  circulant  matrix [ 51 where 0 fi exp ( - i&) ;  also,  the ele- 
mental blo%ks of each Cij are themselves Toeplitz,  and so the 
blocks of G  are  {a}-circulant  where C2 4 exp ( - i&) .  Using 
the  properties of these patrices [ 5 ] ,  [ l o ] ,  it can  be  shown 
that  the eigenvalues of G  are  the  elements of the 2-D DFT of 
size P X Q of sequence {up,q}. As a  result,  the eigenvalues of 
G-l  are 

P-1 Q-1  

p = O  9 = 0  

where 

and 

h’=hM+rn;  h ‘ ~  [ o , P -  11 

p = i K + r ;  p E [ O , P -  11 

l ’ = Z N + n ;  Z ’ E [ O , Q -  11 

q = j L  +s; q E [ O , Q -  11.  
Therefore,  (1  9)  becomes 

( V )  G maxh’, 
1 

exp (-2.1 [% + $1 ) I E ) *  
p = o  q = o  

(21 1 
Now,  in  order  to  express (E), take  the  norm of E in  (1  1). 

Thus, 

+ llamn(i- m , j -  n ) / l .  (22) 
1 1  

m=O n = O  

Using the  definitions of a,,’s and Pmn’s and  their  constit- 
uent  vectors f f m ,  &, p,, and 0; in (9) and (lo), and also 
considering that uo,o = 1,  the  upper  bound on the  norm of 
error  vector E(i, j )  may  be found as 

A A  A A  

llE(i,j)llupper < 2-t[$(MaNa  +MbNb - 1)1 (23a) 

where 
A A 

Ma =Ma + 1, Na = N a  + 1 

l i ib  =Mb + 1, I t b  “ N b  + 1. 

This  upper  bound  occurs  when K = 2Ma + 1 = 2Mb + 1  and 
L = 2Na + 1 = 2Nb + 1.  The  lower  bound, on the  other  hand, 
occurs  when K = Ma = Mb and L = Na = Nb, i.e., for minimum 
values of the  block sizes. This  bound is found  to be 

A A   A A  

~ ~ ~ ( ~ , i ) ~ ~ ~ c n v e r  G2-t[$(MaNa  +MbNb - 111. (23b) 

It is interesting to  note  that  the  computational  time  and 
computer  memory  allocations  for 2-D block  processing  would 
also  become  minimum  when the minimum  values for block 
sizes are  chosen [ 61. 

Now,  in  order  to  demonstrate  the  advantage of the block 
implementation  technique over the  direct  recursion  method 
using 2-D difference  equations, it is necessary to show that  the 
upper  bound on the mean-square  value of the corresponding 
scalar error  sequence is less than  that of direct  method. Com- 
bine (18),  (21),  and  (23)  and divide ( V )  by (KL)’” to  obtain 
the  rms values of the relevant  scalar  error  sequence (u).  This 
would  result  in 

where ( e )  is the  bound on the  roundoff  error  for  the  direct fil- 
tering  process [ 7, expression  (32)]  when  the  sequences  are as- 
sumed to  be  periodic, i.e., 
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1 

and 

2nh’  2nl‘ 
$1 =p , $ 2 = - .  e 

As a  result,  the  upper  bound  on  the  roundoff  error  obtained 
in  this  correspondence  for 2-D block  implemented  filter is re- 
duced  approximately  by  a  factor of (KL)’” when  compared 
with  the  result given by Aggarwal 171 for  the  filter  imple- 
mented  by  an  ordinary 2-D difference  equation. 

In the  implementation,  the  choice of  blocks  with  minimum 
dimensions  becomes  much  more  attractive,  due to  the resul- 
tant efficient  filtering  operation.  Additionally,  this  would  also 
result  in  an  optimum  roundoff  error  characteristic, as shown  in 
(23b). As a  consequence,  the  block  implementation  technique 
provides a very efficient  and  accurate  means of recursive filter- 
ing operation, even when  compared  with  the  direct  method 
using the 2-D  difference  equation. 

V. CONCLUSION 
The  bound  on  the  norm  and  the  mean-square value of the 

error  produced  due to  roundoff of multiplications  for  a 2-D 
block  implemented digital filter is obtained  employing  fixed- 
point  arithmetic.  This  bound is shown to be  smaller than  that 
available  when the  filter is implemented using ordinary 2-D 
difference  equations. 

Several 2-D block  structures  may  be  determined  which 
exhibit  different  performances  with regard to  roundoff er- 
ror.  The  exact  form  of  these  structures  requires  further 
investigation. - 
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Comments on “A  Recursive  Kalman Window Approach 
to Image Restoration” 

J. BIEMOND AND R.H.J.M. PLOMPEN 

Abstract-In a  recent paper,’  a  recursive  Kalman  window estimation 
procedure  for image restoration was  claimed to  be  at least  nearly  optimal. 
Here,  we  show that it is not  and  point out some basic model errors. 

I. INTRODUCTION 
The  Kalman  window  approach to  image restoration,  intro- 

duced  by  Dikshit’ to  reduce  processing  time  and  storage 
requirements by  processing  images in  overlapping  strips  and 
moving a processing  window within  these  strips,  contains  some 
basic model  errors,  which  severely  affect the  optimality of the 
resulting  Kalman  window  algorithm. 

Based on  the  assumption of a  two-dimensional  (2-D),  sepa- 
rable,  exponentially  decaying  autocovariance  function of the 
original undistorted image,  Dikshit  introduces  white  noise 
driven,  semicausal  image  models.  These models  are  transfor- 
mations of noncausal  4-point  and  8-point  nearest-neighbor 
models. 

By  observing that  the  models  postulated  by  Dikshit  are 
representations of a  general  linear 2-D autoregressive type of 
model for homogeneous images, in  Section I1 we calculate 
the  model  coefficients  in  a  linear MSE fitting  procedure. We 
will show that  the proposed  transformation  does  not  yield 
semicausal models  with MSE coefficients  (minimum-variance 
models),  and  further,  that even  in the case of minimum-variance 
model  representations, semicausal and  noncausal  minimum- 
variance models  are  not driven by  white noise. 

In Section 111, we  will show that  the  erroneous  assumption 
of a  white  noise  model  input  results  in  an  inadequate descrip- 
tion of the  dynamic  model  representing  the original  image and, 
ultimately,  in  a  nonoptimal Kalman filter  solution. 

11. IMAGE MODELING AND MODEL INPUT 
In  the  paper’, it is assumed that  the original undistorted  image 

can  be represented  by  a  zero-mean  homogeneous m X n ran- 
dom  field,  and that  the 2-D ensemble  autocorrelation  function 
is separable  and  exponentially  decaying, Le., 

~ [ x ( i , j )  x ( i  - k ,  j - z)] = r ( k ,  I) = u2 exp  (-71 ( k l  - y2 IzI), 
(1) 

where k and I are the vertical  and  horizontal  displacements, 
respectively. For convenience, we set u2 = 1. 

The linear  models  postulated  in the paper’ to  describe  this . 
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