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ABSTRACT 
 
 
 

PHYSICAL ACTIVITY: IMPROVING ASSESSMENT TOOLS AND BEHAVIOR IN 

CHILDREN 

 
 
  
Adequate physical activity (PA) is a critical component of chronic disease prevention and a 

healthy lifestyle. Unfortunately, studies suggest that US children do not meet the recommended 

60 minutes of PA per day (11, 68). However, recent advances in measurement techniques are 

enabling researchers to gather more detailed objective PA data, allowing for an improved 

understanding of children’s PA accumulation and patterns. This information will enable 

researchers and policy makers to better design and evaluate interventions aimed at increasing 

PA, ultimately reducing the prevalence of chronic disease. These ongoing advances in objective 

PA monitoring devices call for studies to test and refine the methods by which PA data are 

processed and interpreted. Specifically, although these novel PA devices and methods (e.g., 

accelerometers and activity intensity classification methodologies) are being calibrated and 

validated using laboratory protocols, their accuracy in estimating children’s free-living PA has 

not been well-established. Additionally, given the well-established sporadic nature of children’s 

activity, it is critical to measure activity during very short time intervals (i.e., 1-2 second bouts), 

requiring devices that can record and store acceleration data at a relatively high-resolution (e.g. 

30-100 Hz). Importantly, though many intervention studies have been conducted with the goal of 

increasing daily PA, none have used high frequency acceleration data to examine the 

accumulation of PA in a free-living setting, nor to evaluate the effectiveness of these PA 

interventions. However, the need to do so is widely recognized among the PA monitoring 
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community (7, 21, 34). Therefore, the following dissertation describes a series of experiments 

with the overall aim of improving PA measurement tools and behaviors in children. 

 

In the first study (Chapter 2), we attempt to establish cutpoints to distinguish between sedentary, 

light, moderate and vigorous activity using a novel wrist-mounted accelerometry device. We also 

examine the effects of various bout lengths (periods of consecutive seconds of activity above the 

moderate threshold) on the estimated MVPA accumulation. Moderately accurate cutpoints 

resulted (~70-75% accuracy). We also found very high estimates of daily MVPA (>300 

minutes). Because of the high estimates of daily MVPA as well as the relative difficulty in 

distinguishing between light and moderate activity by the confusion matrix, we began to further 

investigate the effects of the specific processing methodologies we used.  

 

This led us to the second study (Chapter 3), whereby we attempted to investigate the ability of 

three different processing methodologies to accurately detect MVPA. In this study, we applied 

three different processing methodologies (band pass filtered: BPEN, unfiltered: ENMO, and low 

pass filtered: LPENMO) to three separate independent samples of children: a calibration sample, 

a direct observation (classroom/recess) sample, and a multi-day, free-living sample. Results from 

this study suggested that BPEN is likely overestimating MVPA. ENMO and LPENMO both 

appeared to accurately detect MVPA compared to direct observation data (~85%). Because of 

these relatively good accuracies, and because low pass filtering is considered a best practice in 

signal processing, we elected to move forward with the low pass filtering methodology.  

 

Once we had established a methodology that we felt accurately detected MVPA, we were able to 

process and analyze data from the IPLAY (Intervention of PhysicaL Activity in Youth) study. 

IPLAY is a large-scale, school-based intervention aimed at increasing activity through either 
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curriculum intervention (SPARK), environmental intervention (renovated playgrounds), or the 

combination of the two (see Chapter 4 for a more detailed description of the intervention). 

Results revealed no differences in lunch recess, school day or full day MVPA between the 

groups. In addition, relatively high estimates of daily MVPA resulted (~140 minutes), as well as 

a lack of effect of BMI z-score on MVPA accumulation.  

 

The combination of these studies adds a significant contribution to the literature around PA in 

children. Specifically, the investigation into processing methodologies demonstrates how critical 

this step is in being able to interpret acceleration data. It also provides a framework for other 

investigators to process acceleration data, with the goal of producing comparable results. The 

evaluation of the IPLAY study suggests the need for additional opportunities for children to be 

active during the day. The high estimates of daily MVPA suggest the need to further investigate 

how/when activity is being accumulated. Finally, an investigation into whether the PA guidelines 

ought to be re-established given novel methodologies for quantifying PA is warranted. 
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CHAPTER 1: INTRODUCTION AND EXPERIMENTAL AIMS 
 
 
  
The current US population is said to be the most overweight, sedentary, diseased cohort in our 

history. It is well-established that physical activity (PA) is associated with protection against 

nearly every preventable chronic disease (74). Specifically in children, PA has been shown to 

protect against type 2 diabetes, bone mineral density losses, decrements in academic 

performance, low self-esteem and depression(18, 30). Recent advances in measurement 

techniques are enabling researchers to gather more detailed objective PA data. These detailed PA 

data will allow an improved understanding of individuals’ PA habits and enable researchers to 

better design and evaluate interventions aimed at increasing PA, thereby reducing the risk for, 

and prevalence of, chronic disease. While advances in developing accurate, objective PA 

assessment are promising, several challenges remain (12). Namely, although these PA 

devices/methods (e.g. accelerometers and activity/intensity classification methodologies) have 

been calibrated and validated using laboratory protocols, their accuracy in estimating free-living 

PA, particularly in children, has not been established (10). Given the sporadic nature of 

children’s PA, there is a need to measure PA across short sampling intervals (e.g. 1-2 second 

bouts), which requires devices that can sample and store data at frequencies of ~30-100 Hz (66). 

To date, there are no studies reporting estimated levels of free-living PA using these newer, high-

resolution devices that would permit comparisons to studies using older, lower resolution 

devices. Thus, there is a critical need for devices and methods that provide accurate PA data that 

can be used to assess interventions aimed at increasing PA. No studies have used high frequency 

acceleration data to examine the accumulation of PA in a free-living setting, nor to evaluate the 
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effectiveness of PA interventions. However, there is a widely recognized consensus for the need 

to do so (10, 21). 

Our long-term goal is to develop, validate and employ devices that can objectively and 

accurately measure motion in order to quantify PA as well as facilitate the design and assessment 

of sound interventions that promote sustained PA habits. The overall objectives of this project 

are to improve methods for quantifying PA in children via accelerometry, and to test the efficacy 

of a curricular and environmental intervention to increase PA in elementary school-aged 

children. Our central hypothesis is that high-resolution accelerometry data can be used to 

accurately estimate the accumulation of moderate-vigorous intensity PA in children, as well as to 

evaluate the effectiveness of interventions aimed at increasing the accumulation of PA in this 

population. The rationale for this research is that by improving our measurement techniques, 

researchers and public health professionals will be able to gain a more comprehensive 

understanding of PA behaviors, and will be better equipped to design strategies that lead to 

adequate amounts of daily activity, ultimately providing protection against multiple major 

chronic diseases. With that in mind, I propose the following three specific aims: 

SPECIFIC AIM 1  

To establish wrist-based cutpoints for the GENEActiv accelerometer in children ages 6-11 years. 

A secondary aim is to apply these cutpoints to a free-living sample and to examine how the 

estimated accumulation of minutes of moderate-vigorous (MVPA) is affected by various bout 

length criteria.   
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Approach  

A laboratory calibration study will be conducted in 6-11 year old children wearing the 

GENEActiv accelerometer device and portable metabolic system while doing child-specific 

tasks. Receiver Operator Characteristics (ROC) curves will be created to establish wrist-based 

cutpoints. Confusion matrices will be developed to examine the accuracy of the cutpoints.  

Hypotheses  

1) The GENEActiv will discriminate between sedentary, light, moderate and vigorous activity 

with at least 80% accuracy and 2) children’s estimated PA accumulation will decrease 

significantly as bout length increases.  

SPECIFIC AIM 2  

To examine the accuracy (compared to direct observation, DO) of three data processing 

methodologies applied to free-living accelerometry data in children, including 1) Band pass 

filtering (0.2-15Hz) the Euclidian Norm (vector sum of accelerations along each axis, BPEN) 2) 

calculating the Euclidian Norm minus one (ENMO) and Low pass filtering (15 Hz) followed by 

calculating the ENMO (LPENMO). A secondary aim is to apply cutpoints established using each 

of the three methods to an independent sample of free-living, multi-day data to explore 

differences in MVPA accumulation.  

Approach 

Data recorded by wrist-mounted GENEActiv accelerometers from three independent samples of 

children including: 1) a laboratory calibration protocol 2) an elementary school-day direct 

observation sample and 3) a multi-day free-living period will be compared using three data 
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processing techniques. Cutpoints established using each technique will be applied to distinguish 

between sedentary, light, moderate and vigorous activity. Each set of cutpoints will then be 

applied to a single school day of DO data to determine the accuracy of each processing 

methodology as well as to the multi-day dataset to examine the effect of processing on estimates 

of MVPA in free-living children. 

Hypotheses 

1) The accuracy of ENMO and LPENMO will be significantly greater than BPEN; LPENMO 

will be significantly more accurate than ENMO, and 2) when applied to free-living estimates, 

significantly different estimates of daily MVPA will result. 

SPECIFIC AIM 3  

To quantify the effects of an elementary school-based environmental and curricular intervention 

on levels of PA during lunch recess, the school day and full day activity using wrist-mounted 

accelerometers.  

Approach 

A subset of accelerometry data from a large, multi-year study will be collected in elementary 

school students as part of a multi-site intervention study (Intervention of PhysicaL Activity in 

Youth, IPLAY study) which aims to examine the effects of curriculum and environment on PA 

levels. Published, laboratory-established cutpoints will be applied to the IPLAY dataset to 

examine minutes of MVPA as well as to evaluate the effectiveness of the intervention. 
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Hypothesis 

Those schools receiving a combination of the curricular (SPARK) and environmental (Learning 

Landscapes playground) interventions will participate in significantly more MVPA compared to 

either curriculum-only or environment-only schools, which will participate in significantly more 

MVPA than control schools. Because the intervention took place only during lunch recess, our 

secondary hypothesis is that these differences would only be observed during the lunch recess 

period. 

By completing the aforementioned aims, we expect the following outcomes: 1) establishment of 

wrist-based cutpoints for children using the GENEActiv accelerometer, 2) improvement in the 

accuracy of high-frequency acceleration data collected in children to detect MVPA and 3) 

evaluation of a novel environmental and curricular intervention aimed to increase PA in 

elementary school children. By achieving these outcomes, we will successfully attain our overall 

goal of evaluating and improving methods for quantifying and increasing physical activity in 

children. By accomplishing this, not only will we move the field of PA monitoring forward in a 

significant way, but we will also gain a better understanding of individuals’ PA habits which will 

enable the design of more effective interventions aimed at increasing PA and providing 

protection against multiple chronic diseases.  
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CHAPTER 2: ESTABLISHING AND EVALUATING WRIST CUTPOINTS FOR THE 

GENEACTIV ACCELEROMETER IN YOUTH1 

 
 
  
SUMMARY 

The purpose of this study was to establish physical activity (PA) intensity cutpoints for a wrist-

mounted GeneActiv accelerometer (ACC) in elementary school-aged children. A second purpose 

was to apply cutpoints to a free-living sample and examine duration of PA based on continuous 

1s epochs.  METHODS:  Metabolic and ACC data were collected during nine typical activities 

in 24 children ages 6-11.  Measured VO2 values were divided by Schofield-estimated resting 

values to determine METs.  ACC data were collected at 75 Hz, band pass filtered and averaged 

over each one-second interval.  Receiver Operator Characteristic (ROC) curves were used to 

establish cutpoints at <1.5, 1.5-3, 3-6 and ≥6 METs for sedentary, light, moderate and vigorous 

activity, respectively.  These cutpoints were applied to a free-living independent data set to 

quantify the amount of moderate-vigorous PA (MVPA) and to examine how bout length (1, 2, 3, 

5, 10, 15 and 60 seconds) affected the accumulation of MVPA.  RESULTS: ROC yielded areas 

1 This chapter was accepted for publication in the Journal of Medicine and Science in Sports and Exercise and 
published in the March 2013 issue. Details of the publication are listed below: 
Establishing and evaluating wrist cutpoints for the GENEActiv accelerometer in youth 
AUTHORS: Christine A. Schaefer1, MS, Claudio R. Nigg2, PhD, James O. Hill3, PhD, Lois A. Brink3, MLA, Raymond C. 
Browning1, PhD, FACSM 
1Colorado State University, Fort Collins CO, 2University of Hawaii, Honolulu HI, 3University of Colorado Denver, 
Aurora CO 
CORRESPONDING AUTHOR: 
Christine A Schaefer, MS 
220 Moby B Complex 
Colorado State University 
Fort Collins, CO 80523-1582 
PHONE: 303-518-6316 
FAX: 970-491-0445 
EMAIL: Christine.a.schaefer@gmail.com 
FUNDING: NICHD/NCI/NIDDK R01HD057229 
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under the curve of 0.956, 0.946 and 0.940 for sedentary, moderate and vigorous intensities, 

respectively.  Cutpoints for sedentary, moderate and vigorous intensities were 0.190, 0.314 and 

0.998 g, respectively.  Intensity classification accuracies ranged from 27.6% (light) to 88.7% 

(vigorous) when cutpoints were applied to the calibration data. When applied to free-living data 

(n=47 children ages 6-11), estimated daily MVPA was 308 minutes and decreased to 14.3 

minutes when only including 1 min periods of continuous MVPA.  CONCLUSION:  Cutpoints 

that quantify movements associated with moderate-vigorous intensity, when applied to a 

laboratory protocol, result in large amounts of accumulated MVPA using the 1s epoch compared 

to prior studies, highlighting the need for representative calibration activities and free-living 

validation of cutpoints and epoch length selection.   

INTRODUCTION 

Accurate, objective physical activity (PA) monitoring is crucial to our understanding of current 

activity levels, as well as to evaluate the effectiveness of interventions aiming to increase PA.  

Accelerometers (ACC) are the most widely used objective measure of PA in both children and 

adults (54).  Multiple ACC devices are now commercially available.  Historically, the device 

software has applied proprietary processing algorithms to the unfiltered acceleration signal.  This 

method results in count values generated by the devices that are difficult, or in many cases, 

impossible to compare across devices.  This significant limitation has prompted the PA research 

community to support and encourage the development of devices that collect and store raw (i.e, 

high-frequency, pre-processed, unfiltered ) ACC data (28). Fortunately, advances in data storage 

and battery life have made these devices readily available to the researcher (21).  This new 

generation of ACC devices should facilitate comparisons across studies and devices (e.g. 

GENEActiv and Actigraph GT3X+), permit robust PA quantification (including activity 
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classification) and improve estimates of activity intensity (10, 28).  However, particularly in the 

short-term, activity classification approaches are unlikely to take the place of intensity cutpoints.  

While recent research has investigated the accuracy of activity classifiers in children (70), other 

studies suggest that although these classifiers are accurate when applied to data collected in a 

laboratory, classification accuracy is relatively poor when applied to free-living data (14).  Given 

that PA guidelines continue to be recommended in minutes of moderate-vigorous PA (MVPA), 

and no robust activity classification system has been validated for use in children, researchers 

still require a way to quantify minutes of MVPA.  Therefore, cutpoints must be established and 

evaluated for ACC devices that collect and store raw data, particularly to understand how 

interventions impact children’s accumulation of daily MVPA.   

Although multiple investigators have cited the need to collect raw ACC data to assess PA, few 

have done so (10, 28).  Given the relatively recent capability to collect raw ACC data in multi-

day, free-living studies, we do not yet have clear data processing guidelines, and there are 

unanswered questions regarding interpretation of the data.  For example, over what period of 

time (epoch) should researchers process data collected at frequencies of up to 100 Hz?  While a 

shorter epoch allows improved temporal resolution of PA, it could be argued that at very short 

epochs (<1 s), the device is quantifying movement that may not equate to purposeful (e.g., hand 

movement from reading, computer gaming, etc.) PA.  However, direct observation of children 

indicates that they engage in short, intermittent periods of movement, with higher intensity 

activities lasting an average of 3s (5). This suggests that epochs of 1-2 seconds may be necessary 

to provide the resolution needed to detect all PA in children.     

Another important consideration in quantifying PA accumulation is the duration of the activity 

bouts taking place.  Here, we define the bout as a continuous period of PA above a given 
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intensity threshold.  Current guidelines for adults state that MVPA be accumulated in a minimum 

of ten consecutive minutes (52).  To date, no such recommendation has been established for 

children, but children are recommended to participate in at least 60 minutes of MVPA most days 

of the week.  However, as noted above, it is well known that children typically do not choose to 

participate in long periods of sustained PA, but rather engage in sporadic movements (5, 8, 43).  

In one of the only studies to examine the effects of minimum bout duration on reported PA 

accumulation in children, the number of moderate bouts of activity decreased from an average of 

~193 bouts per day using a two-second minimum bout duration (the epoch length of the study) to 

5.3 bouts using a 20-second bout minimum (6).  This highlights the significance of bout duration 

in the interpretation of daily PA accumulation in children.  Importantly, no studies have yet 

reported PA accumulation using a one second epoch or bout in children.   

The move toward collecting raw ACC data is logical and necessary.  While this raw ACC data 

will eventually allow a much more detailed understanding of PA, estimating minutes of MVPA 

remains an important objective.  One of the devices currently capable of raw ACC data 

collection is the GENEActiv ACC (Activinsights Limited, Cambridge, UK).  It is waterproof and 

has been validated for wrist placement (20).  The wrist is an attractive location, particularly in 

children, given improvements in compliance typically observed.  For example, in our large 

Intervention of PhysicaL Activity in Youth (IPLAY) study of approximately 1400 children over 

3 years, we have achieved compliance rate of ~92-97% (75) (see Methods for additional IPLAY 

details). However, to date only one study has attempted to create cutpoints specific to the 

GENEActiv device when placed on the wrist in children.  Therefore, the primary purpose of this 

study was to establish wrist-based cutpoints for the GENEActiv ACC in children ages 6-11 

years. We hypothesized that the GENEActiv would accurately discriminate between sedentary, 
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light, moderate and vigorous activity.  Our secondary aim was to apply these cutpoints to a free-

living sample and to examine how the estimated accumulation of minutes of MVPA is affected 

bout length criteria.   We hypothesized that children’s PA accumulation would decrease 

significantly as bout length increased.   

METHODS 

We conducted a calibration experiment on 24 children ages 6-11 years (Table 2.1).  

Table 2.1 Subject characteristics for calibration sample and Independent IPLAY subsample    
Mean (SD) 

 

 

 

 

 

 

 

 

 

We placed the GENEActiv ACC on children’s non-dominant wrist while they participated in 10 

activities in a laboratory.  Approval for this study was provided by the Institutional Review 

Board for Human Subjects Research at Colorado State University.  All children and parents 

  

Subjects  

(n) 

 

Height 

(cm) 

 

Weight 

(kg) 

 

Age 

(yrs) 

Calibration/Validation Study 

Girls 13 140.0 (7.3) 34.0 (5.8) 9.5 (1.1) 

Boys 11 141.4 (12.5) 35.2 (10.1) 9.3 (1.3) 

Total 24 140.6 (9.8) 34.6 (7.9) 9.4 (1.2) 

IPLAY Subsample     

Girls 20 139.65 (11.1) 36.9 (11.1) 9.6 (1.5) 

Boys 27 136.7 (14.1) 37.9 (14.9) 8.9 (1.9) 

Total 47 138.0 (12.9) 37.5 (13.3) 9.2 (1.8) 
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signed informed assent and consent forms, respectively, prior to children’s participation in the 

study. 

Study Design and Activities  

Prior to participation, we conducted a phone screening with the parent to assess any 

contraindications to exercise.  We asked that children arrive at the Physical Activity Laboratory 

having fasted for a minimum of two hours.  Participants typically came in pairs, which allowed 

them to feel more comfortable in the laboratory setting.  Upon arrival, staff explained the study 

details to the child, and obtained informed assent from the child and consent from the parent.  

Next, we measured each child’s weight (Health o meter professional, Model 349KLX) and 

height (Detecto, Webb City, MO).  We then fitted one of the children with the portable indirect 

calorimetry system as well as the GENEActiv ACC device.  Upon completion of the activities by 

the first child, study staff recalibrated the indirect calorimeter for the second child, who then 

completed the nine activities sequentially.  The protocol began with an initial six-minute resting 

trial, during which children were asked to lie quietly in a clinical bed while watching a parent-

approved DVD.  Additional activities included (in order): coloring (seated), Lego® building 

(seated on the floor), Wii Sports ® Tennis, Wii Sports ® Boxing, treadmill walking at two 

speeds (0.75 and 1.25 m/s), jogging (1.75 m/s), and running (2.25 m/s).  Each activity trial lasted 

six minutes.  In order to synchronize the metabolic system with the ACC data, we 

simultaneously placed markers in the metabolic data file and on the ACC device, marking the 

end of each trial.  We then analyzed the last two minutes of metabolic and accelerometry data 

preceding the event markers. On average the study visit lasted 1.5 hours per child (~3 hours per 

pair of children).   
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Instrumentation 

Accelerometry 

The GENEActiv ACC is lightweight (16 grams), triaxial and waterproof.  It collects raw 

acceleration data (range- +/-8 g).  It has storage capabilities of 0.5 Gb at recording frequencies 

ranging from 10-100 Hz and can collect data for up to 7 days at 100Hz.  Data is downloaded 

using a USB 2.0 Charging Cradle.  Devices were calibrated by the manufacturer prior to use.  

We collected data at 75 Hz and downloaded the data using the GENEActiv software (Version 

2.1).  We used a customized Matlab program (Matlab v 12.0, Mathworks, Natick, MA) to filter 

the data (band pass with cutoff frequencies of 0.2 and 15 Hz).  We filtered the data to remove 

gravitational acceleration and reduce the inclusion of accelerations associated with the device 

moving relative to the wrist. Although we did not perform a frequency analysis of the 

accelerometer in a “noise-free” protocol, studies have reported that the frequency content of 

ground reaction forces (most relevant to acceleration) during human locomotion are <9-17 Hz (2, 

31). We then calculated an average gravity-subtracted signal vector magnitude (SVMg) for each 

second (see Equation 1, f= sampling frequency, x, y and z are accelerations in each axis).  The 

average one-second value of the last two minutes of SVMg values of each trial was used to 

establish cutpoints. 

SVM = ∑ │�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2𝑓𝑓
𝑖𝑖=1

 │/ (f)   (1) 

Metabolic Measures 

We measured the rates of oxygen consumption (VO2) and carbon dioxide production (VCO2) to 

determine metabolic rate using a portable open circuit respirometry system (Oxycon Mobile, 

Yorba Linda, CA).  Pediatric-specific masks were used on our subjects when necessary.  The 
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Oxycon Mobile provides valid measures of oxygen consumption across a range of exercise 

intensities (53) and has been used in calibration experiments with children (3, 4, 69).  Before the 

experimental trials, we calibrated the system using gases with known concentrations.  During 

each activity trial, expired gas data were averaged every 30 seconds. We allotted six minutes to 

ensure subjects reached steady state, which was defined as no significant increase in VO2 during 

the final 2 minutes and a respiratory exchange ratio <1.0.  We then calculated the average VO2 

and VCO2 (ml/sec) for the final two minutes of each trial.   

Data/Statistical Analysis 

To establish subject-specific resting metabolic rates, we used the Schofield equation for 

estimating resting energy expenditure (61).  We then divided the measured VO2 value for each 

activity by the Schofield predicted resting value to determine MET values for each activity.  

Receiver Operator Characteristics (ROC) curves were generated using a leave-one-out cross 

validation (LOO) to determine appropriate SVMg values for cutpoints associated with sedentary 

(≤1.5 METs), light (>1.5-2.99 METs), moderate (3-5.99 METs) and vigorous (≥6 METs) 

activity.  To generate these ROC curves, the last two minutes of SVMg values (N=120 values) 

for each activity for all subjects (less the left-out subject) were associated with the average MET 

value over the same time period of each trial.  For each ROC curve, MET values were coded as a 

zero or one according to the cutpoint being established (per SPSS methodology).  For example, 

when the vigorous cutpoint was being established, a one was assigned to all vigorous activities, 

while a zero was assigned to all activities not of vigorous intensity.  Area under the ROC curve 

was calculated for sedentary, moderate and vigorous activity, and cutpoint values were selected 

where the sum of the sensitivity and specificity was greatest.   The sedentary and moderate 

cutpoints established the boundaries for light activity.  The final set of cutpoints was established 
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by averaging the values generated from each iteration. To examine the accuracy of the average 

cutpoints in estimating activity intensity, each left out child then served as the test subject. This 

LOO process was repeated for all children.  An average confusion matrix was constructed to 

examine how well the final set of cutpoints accurately classified activity on the left-out subject 

(i.e., the test subject). A confusion matrix is a tool used primarily in machine learning that allows 

for the visualization of the performance of a classifier. The columns typically represent predicted 

cases, while the rows represent actual cases. SPSS was used (Version 20, IBM, Somers, NY) for 

all statistical analysis. 

Application to a Free-Living, Independent Sample 

To determine estimates of daily PA using the cutpoints as well as to examine the effects of 

various bout duration minimums, we applied the cutpoints to an independent sample of free-

living data from the Intervention of PhysicaL Activity in Youth (IPLAY) Study.  IPLAY is a 

multi-school intervention that aims, in part, to examine the effects of playground renovations on 

levels of PA in elementary school students.  The subsample to which the cutpoints were applied 

comprised 47 elementary school children (one 1st, 3rd and 5th grade class).  Table 2.1 includes the 

descriptive statistics for the IPLAY data sample.  GeneaActiv ACCs were attached to each 

child’s non-dominant wrist and secured using a plastic, non-elastic, hospital-type band 

(Wristbands MedTech USA, Orlando, FL).   The devices were worn for six days (including two 

weekend days) and data was recorded at a sampling frequency of 75 Hz.  As in our calibration 

experiment, a custom Matlab program was used to process the data into 1 second average SVMg 

(see Methods, Equation 1), to analyze the ACC data and to define custom intervals for the time 

periods of interest (e.g., weekday, school day, recess).  We examined a single weekday 

(midweek, to avoid atypical activities including field day and field trips), with an outcome 
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measure of minutes of MVPA, based on bout lengths of 1, 2, 3, 5, 10, 15 and 60 seconds using 

cutpoints established in the laboratory-based protocol.  In an attempt to better understand how 

much of children’s activity is vigorous in nature, we then examined vigorous PA (VPA) based on 

bout lengths of 1, 2, 3 and 5 seconds.  The bout analysis was done using a custom Matlab 

program whereby consecutive seconds of data above the moderate (or vigorous) threshold were 

summed.  Independent samples t-tests were conducted to determine differences in age, height 

and weight between the calibration sample and the IPLAY sample population.  Analysis of 

Variance with Tukey’s post hoc was used to examine differences in the minutes of MVPA when 

applying the different bout durations to the IPLAY sample.  Sigmaplot (Version 11.0, San Jose, 

CA) was used for the statistics involving the IPLAY subsample.   

RESULTS 

ACC Data and Oxygen Consumption 

Descriptive statistics for the ACC SVMg output, VO2 value and MET value for each activity trial 

are listed in Table 2.2.   

The average cutpoints resulting from the LOO validation, as well as the average values for area 

under the curve (AUC), sensitivity and specificity are listed in Table 2.3.  Sedentary, moderate 

and vigorous cutpoint values were 0.190, 0.314 and 0.998, respectively. We encountered an error 

with one subject’s ACC data, and one subject was unable to complete two trials, therefore the 

subject sample size ranges from 22-23.  

When examining the ability of the cutpoints to accurately classify intensity, we found that 

sedentary and vigorous activities were classified with relatively good accuracy (83.3 and 88.7%, 
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respectively) while light and moderate activities were less accurately classified (27.6 and 41%, 

respectively, see Table 2.4).   

Table 2.2. Descriptive statistics for each laboratory calibration activity.  Values are reported as 
mean (SD). Pref=average preferred walking speed 

Activity N Mean SVMg Mean VO2 
ml/kg/min 

Mean METs  

Resting 23 0.050 (0.05) 4.89 (0.6) 1.00 (0.0) 

Coloring 23 0.112 (0.04) 7.68 (1.6) 1.57 (0.2) 

Legos 23 0.234 (0.06) 8.06 (2.4) 1.65 (0.5) 

Wii ® Tennis 23 0.353 (0.13) 13.55 (4.2) 2.78 (0.8) 

Wii ® Boxing 22 1.290 (0.46) 18.72 (5.4) 3.90 (1.2) 

Slow walking, 0.75 m/s 23 0.296 (0.16) 14.16 (2.1) 2.91 (0.4) 

Pref walking, 1.25 m/s 22 0.381 (0.07) 18.39 (2.6) 3.76 (0.5) 

Jogging, 1.75 m/s 23 1.277 (0.24) 30.33 (5.7) 6.24 (1.2) 

Running, 2.25 m/s 22 1.594 (0.20) 37.74 (2.8) 7.83 (0.9) 

 

When grouping sedentary and light activity together (SL), as well as moderate and vigorous 

activity (MV), classification accuracies improved (SL-75.2%, MV- 69.7%).  The values for area 

under the curve (AUC), sensitivity and specificity are listed in Table 2.3.  

Table 2.3. ROC-established Cutpoints (SVMg) and corresponding sensitivity and 1-specificity 
values per 1 second epoch. (N=23) 

 1 sec epoch 
cutpoint, 

Mean (SD) 

Sensitivity Specificity Area 
under  
ROC 
curve 

Std 
Error 

Significance 

Sedentary 0.190 (.0016) .970 .876 .956 .015 P<.001 

Light NA NA NA NA NA NA 

Moderate 0.314 (.0004) .910 .873 .946 .015 P<.001 

Vigorous 0.998 (.0024) .949 .853 .940 .016 P<.001 
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Table 2.4. Average Confusion Matrix (N=23) indicating ability of cutpoints to accurately classify 
activities (% accurately classified).  Columns indicate actual activity while rows indicate predicted 
activity  

 Sedentary Light Moderate Vigorous 

Sedentary 83.3 5.8 4.7 0 

Light 47.6 27.6 21.1 3.6 

Moderate 5.5 24.9 41 28.7 

Vigorous 0.7 1.2 9.3 88.7 

 

Application to IPLAY Subsample 

Using a one-second bout, mean daily MVPA in the free-living sample was estimated to be 308.2 

minutes. Results of the bout duration analysis when applied to the free-living sample are 

displayed in figure 2.1 (MVPA) and 2.2 (vigorous PA, VPA).   

As hypothesized, total accumulated minutes of MVPA and VPA decreased as the length of the 

bout increased. When a 60-second minimum bout duration was used, the average MVPA was 

14.3 minutes.  One-second MVPA values were significantly greater than 5, 10, 15 and 60 second 

bouts, but not significantly different from 2 and 3 second bouts. VPA decreased from 32.7 

minutes when assessing activity using a one-second bout minimum to 12.4 minutes when using a 

five second minimum bout duration.  One-second VPA values were significantly different than 

three and five second bouts. When bout length was increased from one to five-seconds, MVPA 

decreased by ~32% while VPA decreased by ~60%. 
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Figure 2.1.  Effects of bout length duration on the accumulation of minutes of MVPA 
during a single weekday (mean, SE).  significantly different* compared to one-second bout 
(p<.05) 
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Figure 2.2.  Effects of bout length duration on the accumulation of minutes of VPA during 
a single weekday (mean, SE).  significantly different* compared to one-second bout (p<.05) 

 

DISCUSSION 

The primary aim of this study was to establish cutpoints for sedentary, light, moderate and 

vigorous activity in 6-11 year old children using a wrist-mounted GENEActiv ACC sampling at 

75 Hz.  SVMg cutpoints were 0.190, 0.314 and 0.998 g for sedentary, moderate and vigorous 

activity, respectively.  The cutpoints distinguished MVPA with reasonable accuracy (~70%), 

supporting our hypothesis.  Using these cutpoints, accumulated minutes of daily MVPA were 

estimated to be ~300 minutes in an independent free-living sample and, as hypothesized, 

decreased with increasing bout duration. 

 

                  
     

      

 

* 
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Few published studies have attempted to establish wrist-mounted cutpoints using the GeneActiv 

ACC (20, 46).  A recent study by Phillips et al. established activity intensity cutpoints for the 

wrist mounted GENEActiv in children using a similar methodology to our study (46).  Age 

group, activity choice and much of the post-processing methodology was similar.  By 

multiplying our cutpoint values by the sampling frequency we were able to compare our values 

to those established by Phillips, et al. Values established in this study (sed-14.25, mod-23.4, vig-

74.85 gs) are greater than those reported by Phillips, et al (sed-7, mod-20, vig-60 gs). However, 

the AUC values from the ROC curves were similar, suggesting similar classification 

performance (46).  The most notable difference between our values and those established by the 

Phillips group is in the sedentary cutpoint (14.25 vs. 7).  This likely reflects our selection of 

sedentary tasks involving the use of the hands/wrist (i.e., coloring and legos ®), while the 

sedentary activities performed by Phillips et al. included lying, sitting and DVD watching 

(minimal wrist movement).  The similarity of the moderate cutpoints is encouraging and not 

surprising given the similarity of the moderate intensity activities (e.g. walking). If the Phillips et 

al. cutpoints were applied to our free-living, independent sample, fewer minutes of sedentary 

activity would be classified, but a similar or slightly greater number of minutes of MVPA would 

be observed compared to what we report here. As no study has yet applied the Phillips et al. 

cutpoints to an independent free-living sample, we are not able to compare the ability of these 

cutpoints to quantify accumulated minutes of MVPA. 

We examined the ability of the cutpoints to accurately classify activity in our participants by 

creating a confusion matrix based on the calibration data.  To our knowledge, no groups have 

used a similar methodology to quantify how well cutpoints are able to distinguish activity 

intensity levels.  Our results demonstrate that sedentary and vigorous activities are classified with 
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good accuracy (83.3 and 88.7%, respectively).  Though the classification accuracies of light and 

moderate activity are not as precise, by grouping SL and MV activities, accuracies improve 

substantially (SL- 75.2%, MV- 69.7%).  While these values indicate that up to 30% of activity 

may be misclassified, a similar percentage of activities are likely classified too low as those 

classified too high. Importantly, these classification accuracies likely represent a best case given 

we used the same subjects for cutpoint determination and classification testing.  The challenge 

associated with accurately classifying activity intensity using accelerometers is similar to that of 

using these devices to classify free-living activities and predict metabolic rate. Laboratory based 

validations of activity classification report good accuracies (>90% for general classes of 

activities) (77), a significant improvement compared to those reported here. The better activity 

vs. intensity classification accuracies are likely due to the more sophisticated classification 

methodology (e.g. machine learning with multiple features) used in activity classification and 

suggests intensity classification could improve with such approaches. Calibration studies that 

have used linear regression to estimate metabolic rate or energy expenditure report R2 values 

ranging from 0.35 to 0.84 (22, 45, 48), indicating that a substantial portion of the variance in the 

relationship (16-65%) is not explained by ACC output.  Although the ability of accelerometers to 

accurately estimate activity intensity may improve as additional calibration studies are 

conducted, using acceleration data to classify activities and estimate activity specific energy 

expenditure potentially offers a promising alternative use of this data.  However, even robust 

classifiers are only as good as the data used to develop them and our results suggest the 

possibility that the way children move in a calibration experiment is not the way they move in a 

free-living study.  If true, classifiers intended to quantify intensity and activity in children may 

improve when free-living data is used to develop them. 
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When we applied the cutpoints to an age, height and weight matched, free-living sample of 

children wearing GENEActiv ACCs collecting data at 75 Hz and processed identically to the 

calibration study, estimates of minutes of MVPA (mean MVPA=308 minutes) were much larger 

than those typically reported for children of this age. However, the vast majority of published 

studies reporting objectively measured average daily minutes of MVPA in children have been 

conducted using one-minute epochs (68).  No studies have quantified MVPA in children using a 

one-second epoch, though many have acknowledged the need to do so (6, 19, 35, 54).  Studies 

that have used hip-mounted devices recording 2 s epochs report MVPA ranging from 80 (6)-160 

min/day (56). Possible explanations for the wide range of accumulated MVPA include 

significant variation in children’s activity levels, seasonal variations, differences in wear time, 

device location and on-board processing of the data (e.g., data filtering). Interestingly, in a series 

of studies conducted by Sleap and Warburton that involved direct observation of 5-11 year old 

children using the Children’s Physical Activity Form (CPAF, which measures children’s PA 

every 3 seconds,) (44), an average of 122 minutes of MVPA was accumulated per observation 

period (~ 418 minutes), more than double the suggested daily guideline (63).  Approximately 

half the observed time during school playtimes and one quarter of the time outside of school was 

observed to be MVPA.  If we extrapolate these percentages to a full day, assuming an estimated 

eight hours of out of school time (6-8AM and 3-9PM) and two hours of school playtime, 

including break time, lunch, recess, PE, before and after school, estimates of nearly 200 minutes 

of MVPA may be observed (25% x 8 hrs. out of school time each day + 50% x 2 hours of school 

playtime = 3 hours of MVPA).  These direct observation studies support our finding that children 

engage in substantial amounts of daily MVPA. However, the modest intensity classification 

accuracy reported here, combined with the MVPA estimates that exceed other published 
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estimates, suggests that wrist-mounted ACC cutpoint derived estimates of MVPA may, at 

present, be better suited for measuring changes in MVPA, rather than as an accurate measure of 

MVPA.   

There has been little attempt to explore how much continuous MVPA children perform.  Studies 

examining the average bout duration of activity in various intensity levels suggests that children 

perform MVPA for short periods of time.  Using a two-second epoch, a study conducted by 

Baquet, et al., found the average duration of moderate (3-6 METs), vigorous (6-9 METs) and 

very high (> 9 METs) bouts of PA to be 9, 4.7 and 3.9 seconds, respectively (6).  Additional 

studies exploring children’s activity patterns at two-second epochs suggest similar trends (55, 

65).  Our results are consistent with these findings. When increasing minimum bout duration 

from one to five-seconds, estimates of vigorous activity decreased by over 60% (32.7 vs. 12.9 

minutes of VPA).  This information is useful in the design of interventions aiming to increase 

children’s MVPA.  A novel strategy may be to focus on increasing the duration of short bouts 

(e.g., extending PA from one to five consecutive seconds) rather than encouraging prolonged PA 

(i.e., anything longer than ~10-15 consecutive seconds).  An alternative strategy may be to 

increase the number of (rather than the duration of) short bouts.  These may be more effective 

strategies for accumulating PA, given that it may mimic children’s natural PA patterns.  Future 

studies that investigate the dose/response of MVPA bout duration on health outcomes are also 

needed to establish effective PA guidelines for children (68). 

We acknowledge that our findings indicating that children accumulate > 300 minutes of MVPA 

per day are much greater than estimates in many published studies. One potential explanation 

was our use of 3 and 6 METs as the cutoffs for moderate and vigorous activity, respectively.  

Some groups have suggested that 4 and 7 METs are more appropriate cutoffs for children (68). 
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However, this recommendation appears to have been based upon using a standard resting 

metabolic rate value of 3.5 mL/kg/min, rather than using age-specific resting metabolic rate 

estimates.  To examine the difference in MVPA accumulation using 4 vs. 3 METs, we created a 

4 MET cutpoint and applied it to our data.  The moderate cutpoint changed by approximately 

22% (from 0.314 to 0.400), and estimates of MVPA changed by 27% (from 308 to 225 minutes).  

Another contributing factor to the amount of MVPA reported here could be that light PA is being 

misclassified as MVPA. While we acknowledge this possibility, it is also likely that some 

MVPA is also being misclassified at light.  An additional explanation for our free-living 

estimates may be that the activities in the calibration study were not performed the same way in a 

free-living setting, making it difficult for the correct intensity to be estimated. Of course, it is 

also possible that our calibration activities are not representative of typical children’s activities. 

This points to the critical need for a taxonomy of child-specific activities from which to select in 

order to more appropriately calibrate devices.  Clearly, future studies are needed that validate the 

amount of MVPA children accumulate during a day using direct observation or other technique 

with an equivalent short sampling interval. 

The move toward the collection of raw acceleration data highlights the need to standardize 

methodologies for data processing, establishing cutpoints, classifying PA and quantifying 

duration and intensity of PA (76).  Potential ways by which to do so include standardizing 1) the 

activities/speeds selected for validation studies, 2) the method selected for processing the data, 

including the frequency with which data is collected and the filtering applied to the raw signal 3) 

the analysis method for deriving and validating the cutpoints or classifier (e.g., ROC vs. machine 

learning) and 4) the ACC and device location selected (e.g., wrist versus hip) (28).  To facilitate 

comparisons across studies, in the appendix we have included sample .docx versions of the 
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Matlab code used to process the raw .bin file (binread.docx- reads the bin file, convertbin.docx- 

converts the file from a .bin to a .csv file, filterbin.docx- applies the band pass filter).  We have 

also included a sample output file from the calibration study 

(Sample1_Filtered_Timestamp.xlsx) along with the time codes used in the calibration trial 

(Sample1_ActivityTimes.xlsx).  Samples of the raw .bin data files may be obtained by contacting 

the corresponding author.  

Limitations 

Our study is not without limitations.  First, our sample size for the calibration trial was relatively 

small (n=24) and not widely ethnically diverse, which may limit the generalizability of our 

findings.  Additionally, we elected to use a prediction equation that is validated for children (61), 

rather than using our measured values for resting EE.  Because we did not measure resting EE 

under the stringent conditions required for a true resting measurement, we believe using the well-

established Schofield equation would minimize any potential error associated with the baseline 

resting value.  The degree to which the established cutpoints can be applied to a population is 

dependent upon the similarity in age, size, behavioral patterns and activities undertaken between 

the two populations (76).   The subsample of children to which our cutpoints were applied was 

not significantly different in terms of age, sex, height or weight from the calibration sample.  

However, there may be behavioral differences between the two populations that we are unable to 

detect.  Understanding the degree to which behavioral differences affect the estimated levels of 

PA is important to accurately quantify PA in children. Additionally, the differences between the 

activities selected for the calibration study and the actual activities undertaken during free-living 

activity is an important consideration and should be addressed in future calibration studies.  

Finally, though we conducted a LOO cross-validation to create the confusion matrix (Table 2.4), 

25 
 



we did not apply the cutpoints to an independent sample.  As a whole the field of PA monitoring 

acknowledges that this is an important future step in assessing the accuracy of both intensity and 

activity classifiers (14).       

Conclusion 

Using ROC curves, the calibration of the wrist-mounted GENEActiv in elementary school-aged 

children resulted in intensity cutpoints of .019, .314 and .998 SVMg for sedentary, moderate and 

vigorous activity, respectively.  MVPA intensity classification accuracy was moderately good 

(~70%). When applied to a free-living data set, we estimated 308 minutes of MVPA/day, 

suggesting that children move frequently and intermittently throughout the day.  As we move 

toward raw data collection, researchers will need to explore how to interpret the physiological 

meaningfulness of these very short bouts of activity.   
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CHAPTER 3: ACCELEROMETRY DATA PROCESSING AFFECTS ESTIMATED 

ACTIVITY ACCUMULATION IN CHILDREN2 

 
 
  
SUMMARY 

Accelerometry devices that record high frequency, unfiltered acceleration data are now widely 

available to quantify physical activity (PA). PURPOSE: The purpose of this study was to 

compare the ability of accelerometry data processing methodologies to accurately estimate free-

living moderate-vigorous PA (MVPA) in children. METHODS: We processed data recorded by 

wrist-mounted GENEActiv accelerometers from three independent samples of children 

including: 1) a laboratory calibration protocol (N=24), 2) an elementary school-day direct 

observation sample (N=21) and 3) a multi-day free-living period (N=59). Data were unfiltered, 

low-pass filtered (15Hz) or band-pass filtered (0.2-15Hz). We then computed the acceleration 

magnitude (Euclidian Normalization) and subtracted one to remove gravitational acceleration 

from the unfiltered and low-pass filtered data. We used average one-second accelerations from 

the laboratory sample to establish process-specific cutpoints to distinguish between sedentary, 

2 This chapter has been submitted for publication to the Journal of Medicine and Science in Sports and Exercise. It is 
currently under review. The following details are included with the submission: 
Title: Accelerometry Data Processing Affects Estimated Activity Accumulation in Children 
Authors: Christine A Schaefer1, Erin M. Strutz1, Jaime Valencik1, Jennifer Skotak1, Hailey D Bridgewater1, Raymond 
C Browning1 

1Colorado State University, Fort Collins, CO 
Corresponding Author: 
Christine A Schaefer 
220 Moby B Complex 
Colorado State University 
Fort Collins, CO 80523 
303-518-6316 
Funding: NICHD/NCI/NIDDK R01HD057229, Agriculture and Food Research Initiative Grant no. 2012-68001-19603 
from the USDA National Institute of Food and Agriculture, Childhood Obesity Prevention: Integrated Research, 
Education, and Extension to Prevent Childhood Obesity – A2101. 
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light, moderate and vigorous activity. Each set of cutpoints was then applied to the school day 

direct observation dataset to determine the accuracy of each processing methodology as well as 

to the multi-day dataset to examine the effect of processing on estimates of MVPA in free-living 

children. RESULTS: Compared to direct observation, unfiltered and low-pass filtered cutpoints 

achieved ~85% accuracy in estimating MVPA in the school day sample, however the accuracy 

was 79.3% when the data was band-pass filtered. Accumulated daily MVPA in the multi-day 

sample was 282, 143 and 137 minutes using band-pass filtered, unfiltered and low-pass filtered 

data, respectively. CONCLUSION: Data processing methodologies, specifically the selection of 

filter frequency and method for accounting for gravitational acceleration, significantly affect the 

estimate of daily MVPA accumulation in children. Our results suggest that low-pass or unfiltered 

methodologies may result in more accurate estimates of MVPA in elementary-aged children.  

INTRODUCTION 

Accelerometry is one of the most commonly employed methodologies for quantifying free-living 

physical activity (PA). Recent advances in processing capabilities, battery life and storage 

capacity have made these devices widely available to researchers interested in objectively 

quantifying PA in a variety of populations. Until recently, the vast majority of research 

accelerometers applied processing procedures (e.g. filtering, summing) to the acceleration signal 

before storing the output. In response to the needs of the research community to gain more 

control over the acceleration data, more recent devices have the capability to record and store the 

unfiltered acceleration signal at a user-defined frequency. Although these devices allow 

researchers the ability to apply a variety of processing methods to the acceleration data, little is 

known about how these methods affect the accuracy and validity of the PA estimates.  
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As described in a recent study conducted by Van Hees, et al., an acceleration signal comprises 

three components, namely the movement component, the gravitational component and noise 

(73). To extract relevant movement data from the acceleration signal, both noise and the 

gravitational component are typically removed (71). To remove the high-frequency noise, it is 

commonly recommended to apply a low pass filter to the signal (33). With regard to removing 

the gravitational component, two methods are most commonly suggested. The first of these is to 

apply a high-pass filter to the data such that only portions of the signal above a given threshold 

(e.g., 0.2 Hz) pass through. Importantly, when the device is motionless, the summed acceleration 

signal will be equal to the gravitational component (recorded as a value of 1 g). Therefore, the 

other commonly used technique to account for gravity is to subtract one from the vector sum of 

the acceleration channels (71).   

Devices that record and store high-frequency acceleration data have allowed researchers much 

more flexibility in data processing decision-making, yet little is known about the sensitivity and 

relative accuracies of various methodologies. In a recent study, we established wrist-based 

intensity cutpoints for children by applying a band pass filter (0.2-15Hz) to high frequency 

acceleration data (75Hz) recorded by a wrist-mounted GENEActiv accelerometer (60). Band 

pass filtering is a common signal processing technique, with the justification that the high pass 

cutoff frequency (0.2Hz) removes the effects of gravitational acceleration, while the low pass 

cutoff frequency (15Hz) removes noise in the signal not representative of human movement (71). 

However, when applying these cutpoints to free-living data, estimates of daily moderate-

vigorous PA (MVPA; ~308 min/day) were substantially greater than reported by other studies, 

ranging from 54-122 minutes/day (13, 63, 68). Although we validated our methodology using the 

calibration sample, no independent validation has been performed. A logical next step, then, is to 
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examine the accuracy of these various methods and apply them to independent free-living data to 

determine the most appropriate method for estimating MVPA in children.  

The primary purpose of this study was to examine the accuracy (compared to direct observation, 

DO) of three data processing methodologies applied to free-living accelerometry data in 

children. These methodologies include 1) Band pass filtering (0.2-15Hz) then calculating the 

Euclidian Norm (BPEN) 2) calculating the Euclidian Norm (vector sum of accelerations along 

each axis) minus one (ENMO) and Low pass filtering (15 Hz) followed by calculating the 

ENMO (LPENMO). A secondary purpose was to apply cutpoints established using each of the 

three methods to an independent sample of free-living, multi-day data to explore differences in 

MVPA accumulation. Based on our previous estimates of daily MVPA using BPEN, as well as 

results from others (71), we hypothesized that the accuracy of ENMO and LPENMO would be 

significantly better than BPEN. Additionally, because ENMO does not apply any filter to the 

signal to remove high frequency noise, we hypothesized that LPENMO would be significantly 

more accurate than ENMO.   

METHODS 

Overall Study Design 

Unfiltered, high-frequency (75 Hz) acceleration data recorded from a wrist-mounted GENEActiv 

accelerometer during a laboratory-based calibration experiment were processed using three 

separate procedures, including 1) BPEN, 2) ENMO and 3) LPENMO. Cutpoints to distinguish 

between sedentary, light, moderate and vigorous activity were created with each of the three 

methodologies using receiver operator characteristics (ROC) curves. To investigate the relative 

accuracy of each method, we simultaneously collected school day video and accelerometry data 
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from an independent sample of 22 fourth grade students ages 10-11. We applied each set of 

cutpoints to the accelerometry data and compared the accelerometry results to those obtained 

from direct observation (DO) of the video recording. Finally, to examine how each data 

processing method affected the estimation of daily accumulation of MVPA, we applied each set 

of cutpoints to a separate independent sample of multi-day, free-living data. In each of the three 

samples of children, height to the nearest 0.001 meters (standard tape measurer) and weight to 

the nearest 0.2 kilogram (Health o meter professional scale, Model 349KLX) were measured by 

a trained research team member. From these measurements, BMI was calculated as kg/m2, 

children’s BMI percentiles-for-age were determined from a Centers for Disease Control and 

Prevention (CDC) macro, and children were dichotomized as normal weight (NW, 

<85th percentile) vs. overweight/obese (OW/OB, >85th percentile). One way ANOVAs with 

Tukey’s HSD post hoc test were run to examine differences in the subject characteristics 

between the calibration, DO and free-living samples (see Table 3.1). Study approval was 

provided by the Institutional Review Board for Human Subjects Research at Colorado State 

University.  All children and parents signed informed assent and consent forms, respectively, 

prior to children’s participation in the studies. 

Instrumentation 

We used the GENEActiv accelerometer (Activinsights, Cambridgeshire, UK), a lightweight (16 

grams), triaxial and waterproof device that collects raw acceleration data between +/-8 g.  It has 

the capacity to store 0.5 GB of data, records at user-specified frequencies ranging from 10-100 

Hz and can collect data for up to seven days at 100Hz.  Data were downloaded from the devices 

using a USB 2.0 Charging Cradle.  All devices were calibrated by the manufacturer prior to use. 
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In all studies, devices were attached to the non-dominant wrist of the children using a non-

elastic, hospital-type band (Wristbands MedTech USA, Orlando, FL).    

Acceleration Data Processing 

Acceleration data from the calibration, DO and free-living samples were sampled at 75 Hz and 

downloaded using the GENEActiv software (Versions 2.1 and 2.2).  We used a customized 

Matlab program (Matlab v 12.0, Mathworks, Natick, MA) to process the data and calculate the 

Euclidian Norm (EN) per second (see Equation 1) in the following three ways: 1) BPEN (4th 

order Butterworth recursive, band pass filter, cutoff frequencies of 0.2 to 15 Hz), 2) ENMO 

(absolute value of the unfiltered EN minus one) and 3) LPENMO (absolute value of the low pass 

filter at 15 Hz minus one). See Equation 2 for details regarding calculation of the absolute value 

and subtraction of one.  

EN = (∑ �𝑥𝑥2+𝑦𝑦2+𝑧𝑧2𝑓𝑓
𝑖𝑖=1

 ) / (f)    (1) 

ENMO =(∑ | (�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2𝑓𝑓
𝑖𝑖=1

  / -1) | ) / (f)  (2) 

Equations 1,2: EN=Euclidian Norm, x, y and z = accelerations in each axis, f= sampling 

frequency 

Calibration Study 

Data Collection 

For details of the calibration data collection procedures, see Schaefer, et al (60). Briefly, we 

conducted a laboratory calibration experiment with 24 children ages 6-11 years. We collected 

metabolic data using a portable, open circuit respirometry system (Oxycon Mobile, Yorba Linda, 
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CA) while children wore the GENEActiv on their non-dominant wrist. Acceleration data were 

collected at 75 Hz while children participated in 10 activities for six minutes each. Measured 

VO2 values per activity were divided by each subject’s estimated resting metabolic rate (using 

Schofield equations, (61)) in order to obtain the MET value for each activity.  

Intensity Cutpoint Determination 

ROC curves were generated to determine appropriate BPEN, ENMO and LPENMO values for 

cutpoints associated with sedentary (≤1.5 METs), light (>1.5-2.99 METs), moderate (3-5.99 

METs) and vigorous (≥6 METs) activity, selecting the value where sensitivity and specificity 

were maximized (See Chapter 2 for specific procedures for generating ROC curves (60)). A 

confusion matrix comparing measured versus predicted intensities was constructed for each data 

processing methodology (i.e., BPEN, ENMO and LPENMO) to examine how well the cutpoints 

accurately classified activity intensity in the calibration sample (See results, Table 3.2). Because 

our primary variable of interest is time spent in MVPA, confusion matrices are collapsed to show 

the accuracy of the distinction between sedentary/light (SL) and moderate/vigorous (MV) 

intensities, though full matrices can be found in the supplemental material. SPSS was used 

(Versions 21 and 22, IBM, Somers, NY) for all cutpoint data analysis.  

Direct observation sample 

Data Collection  

We collected a single day of video data in one fourth grade classroom during the Fall of 2013. 

Video data were recorded mid-week during a typical school day when no special events were 

taking place. This classroom was participating in the USDA-funded Fuel For Fun study, which is 

a school- and family-based obesity prevention effort that utilizes experiential cooking and tasting 
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curricula as well as active recess lessons within the school environment (15). Video data were 

collected during the baseline assessment of the Fuel for Fun study, and thus, no intervention 

components had been delivered prior to video data collection. Concurrent with video data 

collection, children wore GENEActiv devices, and accelerometry data were recorded at a 

sampling frequency of 75 Hz. A video camera (GoPro, San Mateo, CA) was mounted on the 

ceiling in the corner of the classroom prior to students’ arrival for the day. To ensure 

synchronization of the camera with the accelerometer, we videotaped a research staffer dropping 

an accelerometer onto a table and matched this frame of video (collected at 30 frames per 

second) to the spike in the acceleration data file associated with contact with the table. This was 

done at the beginning of the school day, and the camera continued recording throughout the 

length of the school day. All accelerometer units were synchronized by initializing them using 

the same computer clock. At the start of the school day, the teacher explained the presence of 

and reasoning for the camera in the classroom, and asked that children carry-on with normal 

classroom activities. Continuous video recording of the classroom space took place from 

8:15am-2:05pm. During this time, children spent approximately 3 hours and 40 minutes in the 

classroom space. We then moved the video camera to the playground area to collect data during 

an afternoon recess period (2:31-3:05pm). 

Data Processing/Analysis  

The DO video data were separated into periods of classroom time (8:30-9:30am, 10:18-11:30am, 

11:58am-12:23pm and 1:05-2:05pm) and recess time (2:31-3:05pm) and directly observed 

frame-by-frame. However, to enhance accuracy of the DO sample for comparison purposes, only 

consecutive periods of sustained activity (e.g. sitting, standing or walking) were coded and used 

in the analysis (typically ≥ 2 seconds). The observation team included a lead observer, who 
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developed a standard protocol for activity classification and coding for both classroom and 

recess, and three additional trained observers, who coded only classroom footage.  For the 

classroom time periods, the lead observer developed a seven-code activity classification system 

based on an initial, in-depth observation of the overall range and types of prolonged activities 

displayed among the children throughout the school day. Classroom activities were then coded 

on a random sub-sample of children (n=9, 56% boys) (child-by-child, frame-by-frame, over a 

span of 180 minutes) using the seven defined classifications, including 1) sitting floor, 2) sitting 

quiet, 3) sitting active, 4) standing quiet, 5) standing active, 6) walking and 7) 

running/skipping/jumping. To enhance accuracy in classification and to increase inter-coder 

reliability, any transitional activities (i.e. movements between any of the seven defined activities, 

or miscellaneous movements that did not fall clearly into one of the seven defined 

classifications) were not coded.  Subsequently, using the compendium of physical activities in 

children, a 1-4 coding system for activity intensity was used to assign an intensity level to each 

classroom activity as follows: 1=sedentary (sitting floor, sitting quiet), 2=light (sitting active, 

standing quiet, standing active), 3=moderate (walking), 4=vigorous (running/skipping/jumping) 

(51). Intraclass Correlation (ICC) was calculated between the coders in order to evaluate inter-

rater reliability. 

For the recess time period, the lead observer developed an eight-code activity classification 

system based on the same initial, in-depth observation of the overall range and types of 

prolonged activities displayed among the children throughout recess. Due to more frequent 

ambiguous movement patterns, the recess footage was coded by the lead observer to ensure 

consistency in recess activity coding. Recess activities were coded on a sub-sample of 19 

children (child-by-child, frame-by-frame, over a span of 27 minutes) using the eight defined 
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classifications, including 1) sitting play, 2) standing quiet, 3) standing active, 4) playing catch, 5) 

walking, 6) playing tag, 7) playing ball, and 8) running/skipping/jumping. To increase 

classification accuracy, any recess activities that were difficult to identify, either due to 

ambiguity of movement or lack of child identification from the observer’s perspective were not 

coded.  For instance, two children were unable to be accurately coded due to occlusion by the 

play structures. Subsequently, a similar 1-4 coding system for movement intensity was 

developed based on the childhood compendium and applied to each recess activity:  1=sedentary 

(none identified), 2=light (sitting play, standing quiet, standing active, playing catch), 

3=moderate (walking, playing tag, playing ball), 4=vigorous (running/skipping/jumping). 

Because only one individual coded all recess data, no inter-rater reliability was calculated. 

A custom Matlab program was created to process these data and create confusion matrices to 

examine the accuracy of each set of cutpoints relative to DO. For intervals of the school day that 

were coded by DO, the Matlab program matched corresponding DO intensity classification and 

ACC intensity classification values to the nearest second. Using DO activity intensity as the 

measured value and ACC activity intensity as the predicted value, confusion matrices were 

generated in Matlab. Similar to the calibration sample, we combined confusion matrix values to 

examine only the distinction between SL and MV for each set of cutpoints. To further examine 

the ability of each method to estimate MVPA, we calculated the percent of time spent in MVPA 

coded via DO versus each data processing procedure (see Table 3.4).    
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Free-Living Sample  

Data Collection/Processing/Analysis  

To determine how each data processing procedure affected the accumulation of daily MVPA, we 

separately applied each set of cutpoints to an independent sample of free-living data from the 

Intervention of PhysicaL Activity in Youth (IPLAY) Study.  IPLAY is a multi-school 

intervention that aims, in part, to examine the effects of playground renovations on levels of PA 

in elementary school students.  The subsample to which the cutpoints were applied comprised 59 

elementary school children (one first, third and fifth grade class, see Table 3.1).  GENEActiv 

devices were attached to each child’s non-dominant wrist and were worn for six days while data 

were collected at 75 Hz. Full day (6am-11pm) custom intervals (i.e., periods of time of interest) 

were created for one school from the IPLAY dataset to quantify minutes of daily MVPA using 

the cutpoints developed from each data processing methodology. A univariate ANOVA with 

Tukey’s HSD post hoc test was run to examine whether significant differences existed between 

processing method (BPEN, ENMO, LPENMO) in the free-living estimates of daily MVPA.  

RESULTS 

Subject Characteristics  

See Table 3.1 for subject demographics for the calibration, DO and free-living samples. No 

significant differences between any of the groups’ sex (F=.611, df=1, p=.436), age in months 

(F=1.350, df=47, p=0.143), height (F=1.129, df=72, p=0.364), or weight (F=1.635, df=85, 

p=0.126) were observed. The calibration sample had a significantly smaller percentage of 

children who were overweight/obese compared to the free-living multi-day sample (F=5.057, 
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df=2, p=.013) but not compared to the DO sample (p=.103). The DO sample was not 

significantly different from the IPLAY sample with regard to weight status: (p=.847) 

Table 3.1. Subject Characteristics for the calibration, direct observation and free-living samples. 

Values are reported as mean (standard deviation). 

 Subjects 
(n) 

Height 
(cm) 

Weight 
(kg) 

Percent 
Overweight/

Obese 

Age 
(yrs) 

Calibration/Validation Study      

Girls 13 140.0 (7.3) 34.0 (5.8) 15.4% 9.5 (1.1) 

Boys 11 141.4 (12.5) 35.2 (10.1) 9.1% 9.3 (1.3) 

Total 24 140.6 (9.8) 34.6 (7.9) 12.5% 9.4 (1.2) 

Direct Observation      

Girls 9 139.3 (6.2) 34.4 (7.2) 22.2% 9.4 (0.49) 

Boys 13 141.0 (3.6) 35.0 (8.6) 15.4% 9.7 (0.29) 

Total 22 140.3 (4.7) 34.8 (7.9) 20.0% 9.6 (0.41) 

IPLAY Subsample      

Girls 25 135.6 (10.7) 39.5 (24.9) 40.0% 8.9 (1.6) 

Boys 34 136.9 (11.9) 40.2 (22.6) 47.1% 9.2 (1.8) 

Total 59 136.3 (11.3) 39.9 (23.4) 44.1% 9.1 (1.7) 

 

Calibration Cutpoint Comparisons  

Cutpoints, area under the curve (AUC) values and confusion matrices distinguishing between SL 

and MV for each set of cutpoints are reported in Table 3.2. ENMO (overall accuracy, 84.6%) and 

LPENMO (85.7%) appeared to outperform BPEN (79.3%) in distinguishing between SL and 

MV activity during the calibration study.   
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Direct Observation Comparisons  

A total of 14 hours and 22 minutes of DO data were collected (classroom- 657 min, recess- 205 

min.) DO accuracy (SL vs. MV) per set of cutpoints in classroom and recess are found in Table 

3.3. 

In the classroom, ENMO (88.7%) and LPENMO (89.2%) cutpoints resulted in similar 

classification accuracies and were significantly more accurate than estimates using BPEN 

(75.9%) cutpoints. During the recess period, however, the opposite was true, whereby BPEN 

cutpoints (78.6%) proved slightly more accurate in classifying intensity than ENMO (72.8%) and 

LPENMO (72.6%) cutpoints. Overall, cutpoints established using ENMO (84.9%) and 

LPENMO (85.3%) outperformed BPEN cutpoints (76.6%) in correctly classifying intensity. 

When examining the ability of each method to accurately identify accumulation of MVPA 

compared to the DO estimates, BPEN cutpoints resulted in a significant overestimate of the 

percent of time identified as MVPA (61% overestimation) compared to ENMO (1.6% 

underestimation) and LPENMO (4.4% underestimation), see Table 3.4. 
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Table 3.2. Calibration Cutpoints, AUC (area under the curve) values, and Confusion Matrix Accuracies (predicted percent versus 
measured percent, SL=sedentary/light, MV=moderate/vigorous) for the calibration subsample for BPEN (Band Pass Euclidian Norm), 
ENMO (Euclidian Norm Minus One) and LPENMO (Low Pass Euclidian Norm Minus One). 

 

Table 3.3. Direct Observation Confusion Matrices (predicted percent versus measured percent) for classroom and recess data 
(SL=sedentary/light, MV=moderate/vigorous) for BPEN (Band Pass Euclidian Norm), ENMO (Euclidian Norm Minus One) and 
LPENMO (Low Pass Euclidian Norm Minus One). 

  Predicted (%) Overall 
Accuracy 

Classroom (%) 

Overall 
Accuracy 

Recess (%) 

 
Combined 

Accuracy (%) 
Classroom Recess 

SL MV SL MV 

BPEN 

 M
ea

su
re

d 
(%

) SL 76.6 23.4 50.6 49.4 75.9 78.6 76.6 MV 33.3 66.7 14.5 85.5 

ENMO SL 91.7 8.3 69.5 30.5 88.7 72.8 84.9 MV 54.7 45.3 26.3 73.7 

LPENMO SL 92.4 7.6 70.2 29.8 89.2 72.6 85.3 MV 55.9 44.1 26.8 73.2 
  

 Cutpoint Area Under the Curve Confusion Matrix Accuracy 

Sed Mod Vig Sed Mod Vig  Predicted (%) Overall 
Accuracy (%) SL MV 

BPEN 0.1620 0.2849 0.8180 0.857 0.877 0.887 

M
ea

su
re

d 
(%

) 

SL 74.8 25.2 79.3 

MV 17.1 82.9 

ENMO 0.0886 0.1862 0.4451 0.896 0.908 0.909 SL 87.8 12.2 84.6 

MV 18.0 82.0 

LPENMO 0.0935 0.1847 0.4532 0.905 0.922 0.903 SL 88.1 11.9 85.7 

MV 16.3 83.7 
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Table 3.4. Percent of time spent in MVPA during classroom, recess and overall as measured by 
Direct Observation (DO), BPEN (Band Pass Euclidian Norm), ENMO (Euclidian Norm Minus 
One) and LPENMO (Low Pass Euclidian Norm Minus One). 

 

 

 

Free-Living MVPA Comparisons  

When we applied each set of cutpoints to a free living, multi-day independent sample of 

children, average estimates of daily MVPA across first, third, and fifth graders were 282, 143 

and 137 minutes for BPEN, ENMO and LPENMO, respectively (see Figure 3.1).  

The univariate ANOVA resulted in a significant F test (F=183.1, df=2, p<.001). Post hoc tests 

revealed that BPEN resulted in significantly greater estimates of daily MVPA compared to 

ENMO (p<0.001) and LPENMO (p<0.001), however no significant differences were observed 

between ENMO and LPENMO (p=0.270). 

 DO BPEN ENMO LPENMO  

Classroom 6.5% 26.2% 10.7% 10.0%  

Recess 80.0% 78.3% 65.0% 64.5%  

Overall 24.0% 38.6% 23.6% 23.0%  
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Figure 3.1. Mean minutes of daily moderate-vigorous physical activity (MVPA) in an independent 
sample of elementary-aged children *significantly different from BPEN, p<.001. 

 

DISCUSSION  
 
In this study, we demonstrate that the data processing methodology, including the selection of 

filter as well as the method for accounting for gravitational acceleration, impacts the accuracy of 

MVPA estimation. We found support for our hypothesis that ENMO and LPENMO would 

outperform BPEN in MVPA accuracy. However, we reject our second hypothesis that LPENMO 

would be more accurate than ENMO, as accuracies were not different. These differences in 

accuracy of BPEN vs. ENMO and LPENMO were observed in calibration data as well as when 

validated using an independent sample of data that was classified using DO. Though the 

differences in classification accuracy appear modest, when applying the methods to a separate 

independent, free-living sample, large differences in accumulation of daily MVPA resulted. 

These differences highlight the critical need to adopt standardized processes for collecting, 
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processing and analyzing high-frequency acceleration data in children in order to meaningfully 

interpret these data.  

Very few studies have examined the accuracy of accelerometer classifications of intensity of 

physical activity by directly comparing to estimates of physical activity intensity using DO in 

children. Those that have done so have used relatively longer epochs (5-60 seconds) and nearly 

all recommend adopting a shorter epoch length (16, 36). In a study by McClain, et al., the effect 

of the epoch length was assessed in children participating in a PE class by comparing various 

cutpoints and epoch lengths to DO. Three sets of cutpoints were each re-integrated into 5, 10, 15, 

20, 30 and 60 second epochs. Results revealed that nearly all the metrics employed 

underestimated MVPA compared to DO. McClain et al, recommended that a shorter epoch be 

adopted to minimize error during intermittent PA periods, including free play (36). In an 

additional study, school day and after school periods of time were directly observed in 

elementary school-aged children in three-second bouts, and an average of 19.7% of the observed 

time was coded as MVPA (5). Sleap and Warburton also conducted DO studies in children to 

examine time spent in MVPA and recorded an average of 29% of the observed time as MVPA 

(mean MVPA minutes: 117) which is quite consistent with the estimates we report here (63). 

This provides evidence of the relatively large amount of accumulated MVPA when collected in 

shorter bouts and via direct observation.  

Importantly, given our methods employed for DO classification, our results likely represent a 

best case scenario in detecting accuracy. Specifically, only consecutive periods of known activity 

were coded (typically ≥ 2 continuous seconds). Though this enabled us to be confident in the 

accuracy of the DO data that was coded, we consequently eliminated much of the transitional 

activity from our sample. Given the short, sporadic nature of children’s movement patterns, we 
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likely excluded a great deal of the higher intensity activity, which is critical to consider in a child 

population. For example, obtaining classroom MVPA was difficult, given that much of the 

higher intensity activity such as jumping and running, was typically observed in 1-2 second 

chunks and thus, although observed, was rarely coded. Though this may have led to an 

underrepresentation of overall MVPA estimates in the classroom setting, given that it was not 

included in the accuracy evaluation, it would not have negatively impacted results reported here. 

Importantly, when we investigated the amount of transitional movement during a subset of 

classroom activity, up to 10% of time was reported to be transitional in nature (i.e., movements 

between any of the defined activities, or miscellaneous movements that did not fall clearly into 

one of the defined classifications). Extrapolated to a full day, this may represent a large amount 

of unclassified time (10% of ~1000 minutes=100 minutes). Therefore, future studies should 

investigate these transitional periods of activity to better understand how much of the full day is 

spent in this way, as well as the metabolic contribution that transitions make to accumulated 

energy expenditure and daily MVPA. Finally, though we only collected a single day of 

classroom video data, the purpose was not to extrapolate to estimates of daily MVPA, but rather 

to examine the ability of these three methods to accurately detect MVPA. Therefore, we believe 

a single day of DO data was sufficient for this purpose. 

Though we observed relatively good confusion matrix accuracies in predicting MVPA compared 

to DO using all three methods, large differences in free-living estimates resulted. Therefore, it is 

important to further investigate the inaccuracies. For example, overall accuracy of the BPEN 

cutpoints was 76.6%, yet the overall amount of time estimated as MVPA was 333 min 

(compared to DO: 207 minutes, 24%). This difference is likely due to the much greater amount 

of time spent in SL activity during the classroom and MV activity during the recess, both of 
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which were more accurately classified. This would then lead to what appears as an 

underestimation of the misclassification. ENMO and LPENMO performed better relative to 

BPEN, and in fact, slightly less time was classified as MVPA (ENMO- 203 min, LPENMO- 198 

min) compared to DO (207 min). Thus, it is important to examine not only the overall 

classification accuracy, but also the amount of time correctly classified. An additional possibility 

to improve accuracy may be to develop intensity classification based on additional features 

within the dataset (e.g., standard deviations, coefficient of variation, minimum and maximum 

values).   

In a recent paper, we published cutpoints using a band pass filter to remove noise and the effects 

of gravitational acceleration (60). When applying these cutpoints to our free-living data, we 

observed very large estimates of daily MVPA (~308 min/day). Our results reported here for 

estimates of daily MVPA accumulation using BPEN are similar (282 min/day). We attribute this 

overestimation of MVPA to the use of the high pass filter to remove gravitational accelerations. 

This filtering step distorted the acceleration signal by increasing the magnitude relative to the 

unfiltered acceleration during periods of relatively small accelerations. This effect may be due to 

rotational movements and warrants further investigation. 

To the best of our knowledge, no other studies have evaluated the effects of various data 

processing methodologies on estimates of MVPA in children. In a recent paper by Van Hees et 

al., several data processing methodologies were applied to acceleration data recorded while 

mounted on a robotic arm and in an adult sample in an attempt to separate the gravitational 

component from the translational acceleration component. Authors concluded that across a wide 

range of standardized kinematic conditions none of the processing methods outperformed the 

others (71). However, when they applied these methodologies to a free-living sample of women 
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to predict PA energy expenditure (PAEE) compared to doubly labeled water (DLW), they 

demonstrated that at best, 36% of the variance in daily PAEE was explained by one of the 

metrics (HFEN+). Although authors did examine various signal processing methods, they did so 

in adults with an outcome of EE. Therefore it is difficult and inappropriate to attempt to compare 

their results to ours. However, their work and ours provide a framework for evaluating various 

data processing methods and suggests that this is an important step in better understanding high-

frequency acceleration data. 

Cutpoints remain the most common strategy for quantifying MVPA in children (47, 59, 60). In 

the only other study to establish wrist-based cutpoints using the GENEActiv device in children, 

Philips et al. employed very similar methodologies to ours (e.g., child population, a variety of 

treadmill speeds and active gaming activities, ROC curves for analysis, and estimated resting 

oxygen consumption (VO2) to establish MET values for each activity) (47). Yet, their moderate 

and vigorous cutpoints are significantly higher than those reported here (Phillips (ENMO): 0.263 

and 0.700 vs. our ENMO: 0.186 and 0.445). These differences in cutpoints can be attributed to 

the different methods for estimating children’s resting VO2. We estimated resting metabolic rate 

using the Schofield equations (61) (average resting VO2=5.00 ml/kg/min), while Phillips et al. 

used values reported in a study by Harrell, et al (resting VO2=5.92 ml/kg/min) (24). This 

difference in resting metabolic rate has a significant impact on the MET equivalents associated 

with each activity and thus the cutpoints. These differences highlight not only the importance of 

using an accurate resting VO2 value, but also the importance of being clear about each step in the 

process, as small differences along the way can propagate into large free-living differences. This 

provides additional support for the critical need to standardize calibration methods.  
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Conclusion 

This is the first study to independently validate methodologies for processing high-frequency 

acceleration data to quantify MVPA in children. Our results suggest that the methodologies by 

which researchers elect to process high-frequency acceleration data impacts the ability of the 

signal to correctly classify activity intensity. Compared to direct observation, unfiltered (ENMO) 

and low-pass filtered (LPENMO) cutpoints achieved higher accuracy (~85%) in estimating 

MVPA in the school day sample compared to band pass filtered data (BPEN, 77%). The 

resulting accumulated daily MVPA in the multi-day sample was 282, 143 and 137 minutes using 

BPEN, ENMO and LPENMO, respectively. With the increased availability of devices collecting 

and storing unfiltered, high-frequency acceleration data, this information is critical to inform 

researchers how to appropriately process these data. Standardizing processing methodologies is a 

necessary next step to accurately interpret high-frequency acceleration data in children, and this 

study establishes a framework to do so.  
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CHAPTER 4: EFFECTS OF AN ENVIRONMENTAL AND CURRICULAR  

INTERVENTION ON PHYSICAL ACTIVITY ACCUMULATION IN ELEMENTARY 

SCHOOL CHILDREN 

 
 
  
INTRODUCTION 

The benefits of physical activity (PA) in children are numerous (30), including not only 

improved physical health (23, 64), but also mental and emotional health (1) as well as cognitive 

improvements (18). According to current public opinion, and based on NHANES data, there is a 

consensus that children do not accumulate sufficient PA (68). Because of this, multiple 

interventions have been implemented in an attempt to increase the amount of PA that children 

accumulate throughout the day (17, 72). Given the large percentage of waking time that children 

spend in school, schools provide an excellent opportunity to increase daily PA (17, 32). 

However, various intervention studies have been conducted to increase levels of school day 

activity in children (40, 72). Though findings overall have been inconclusive, the effectiveness 

of, and need for multi-component interventions has emerged as a common theme (17, 32, 40, 

72). 

 

One potential facet of multi-component interventions involves modifications to the physical 

environment. There have been multiple attempts to modify aspects of the physical school 

environment with mixed results (25, 50). In a study by Stratton, et al., painting school 

playgrounds resulted in a significant increase in moderate-vigorous PA (MVPA) during school 

lunch recess periods assessed by heart rate monitoring, while no change was observed in the 

control group (67). Provision of facilities has also been associated with higher levels of physical 
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activity (49). In a study by Ridgers et al., equipment provision and playground space were 

positively correlated with greater MVPA and less sedentary time, while no effect of playground 

markings was observed (49). One environmental intervention that has been implemented in 

Denver Public Schools is the Learning Landscape Initiative (LL), which provides renovated 

playgrounds to elementary schools. In an initial evaluation, these playgrounds resulted in an 

increased number of children on the playground, as well as an increased amount of energy 

expended compared to control schools (9). Though various studies have examined the effects of 

environmental modifications, few have done so in combination with the provision of recess 

curriculum (29).  

 

Various curricular interventions have been created with a goal of increasing school-day MVPA 

in children. One such program is Sports, Play, and Active Recreation for Kids (SPARK), which 

provides evidence-based PA programs for children. SPARK has developed curriculum designed 

to provide opportunities for all children to engage in PA, irrespective of ability or experience. It 

is led by instructors who are able to alter lessons by modifying level of difficulty/skill, intensity 

and duration of the given exercises (38). The SPARK Active Recreation (SPARK AR) 

curriculum was recently designed for active recreation environments including recess. However, 

no studies have been conducted to test the effectiveness of this application of the program.  

 

A critical component in assessing the effectiveness of PA interventions is examining the effects 

on whole-day PA (40). In a recent review by Kriemler et al., authors noted that the critical 

parallel from intervention-related increases in activity to overall daily PA accumulation is 

generally not clear (32). This is critical given that a large percent increase in a short recess period 

would translate into very small increases in total daily PA. For example in a 20 minute recess 

where MVPA initially comprised 25% (5 minutes), even a 50% increase in MVPA translates to 
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only two and a half additional minutes of daily MVPA. Therefore, it is critical to evaluate the 

effects of interventions on whole day MVPA (40).  

 

Various interventions have attempted to increase levels of daily PA within elementary school-

aged children, yet few have done so by combining recess curriculum and environmental changes. 

Therefore, the purpose of this study was to quantify the effects of a curricular and environmental 

intervention on levels of recess and school day MVPA in elementary school-aged children using 

accelerometry. We hypothesized that the combination of the recess curriculum (SPARK AR) and 

the environmental intervention (Learning Landscapes playground) would result in significantly 

greater amounts of MVPA during the recess period. A secondary purpose was to examine the 

effects of the intervention on whole day PA. Given that the intervention only took place during 

the lunch recess period, and no consensus exists for the role of activity compensation in children, 

we hypothesized that the intervention would not result in significant differences in MVPA 

accumulation over the course of the full day. 

 
METHODS  

The Intervention of PhysicaL Activity in Youth (IPLAY) study was implemented in 24 

elementary schools in the Metro Denver area between Spring 2010 (baseline only) – Spring 

2013. A subset of eight schools was evaluated using wrist-mounted accelerometry (ACC). All 

study procedures were approved by the Institutional Review Board at Colorado State University 

as well as the University of Colorado. Prior to participation in the study, parents and children 

signed informed consent and assent forms, respectively.  
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Intervention: 

This five-year study employed a 2 (environmental intervention vs. no environmental 

intervention) x 2 (curriculum intervention vs. no curriculum intervention) factorial design with 

repeated measures (baseline, year one intervention, year two intervention, one year follow up). 

Importantly, data reported here represent the baseline and two years of intervention only. The 

environmental intervention comprised the Learning Landscapes Initiative (LL). LL is a 

partnership between Denver Public Schools (DPS) and the University of Colorado Denver that 

provides elementary schools with new playgrounds designed to facilitate community interaction 

and physical activity (9). The curriculum intervention is composed of SPARK Active Recreation 

(SPARK AR) delivered during recess for eight weeks in the fall and 8 weeks in the spring over 

the two intervention years. SPARK has been shown to be effective for increasing PA during 

physical education (57). To facilitate study implementation, a staggered start design was 

employed whereby one half of the selected schools began the intervention in the first year 

(Spring 2011, Wave 1) and the other half began one year later (Spring 2012, Wave 2).  

 

School Selection/Recruitment: 

Recruitment of DPS schools was based on 1) their willingness to implement the curricular 

intervention during recess, 2) their cooperation with the random assignment to curriculum or 

non-curriculum conditions and 3) their agreement to participate in data collection over the five-

year project period. Random assignment to the environmental condition was not possible as 

Learning Landscape playgrounds (LL) had been installed within the previous 3-5 years. After the 

12 Denver Public Schools (with LL) were selected, each was assigned a matched control (non-

LL) from the Adams School district. Matching was done on school size (number of children in 

K-5), percent of students receiving free or reduced lunch (%F&R), and ethnicity (% of Hispanic 
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and African-American students). Matched pairs were assigned a random number and 

subsequently sorted by this number. Assignment to curriculum intervention or no curriculum 

intervention was made based on position on the sorted list (every second pair received the 

curriculum).  

 

Objective PA Assessment 

During the spring of each year (baseline through one year follow up), we collected six 

consecutive days of ACC data on a cross-sectional subset of first, third and fifth grade students 

in eight of the 24 schools (two schools per condition). These data were collected immediately 

post-intervention. A single class in each of these grades was selected to participate in the ACC 

measurement. Each subsequent year, the same teacher’s class was selected for ACC data 

collection. In cases where teachers were no longer employed at the school, study staff worked 

with principals to select a replacement teacher in the same grade. During the first year (baseline 

Wave 1 schools only), we used the Actical accelerometer (Philips Respironics, Bend, OR), a 

lightweight (17g), omni-directional, waterproof device that detects low frequency accelerations 

(0.5-2.0 Hz). It generates an analog voltage signal that is then filtered, amplified and digitized by 

an A-to-D converter at 32 Hz. These digitized values are summed over the epoch and stored in 

the device. These stored values are proportional to the duration and magnitude of the movement 

(26). Devices were calibrated by the manufacturer prior to use. During the baseline year in wave 

1 schools (4 schools), we collected data in 15-second epochs, which is the shortest available 

epoch for the Actical device. After this baseline data collection, the benefits of a device that 

would collect and output unprocessed acceleration data so that we could select an appropriate 

epoch length (i.e. 1 sec) became evident. Additionally, devices that collected these high-

frequency acceleration data were becoming more widely available to researchers. Because of 
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this, we elected to begin using the GENEActiv ACC device (Activinsights Limited, 

Cambridgeshire, UK), a light-weight (16g), wrist-worn, triaxial, waterproof device that collects 

high frequency acceleration data up to 100Hz. It has been validated for use among both children 

and adults (20). Devices were calibrated by the manufacturer prior to use and data were collected 

at 30Hz (a subset of data collected in three schools during the Spring of 2011) and 75Hz (all 

remaining data).  

 

Data Collection Procedures: 

ACC data were collected for six consecutive days in one 1st, 3rd and 5th grade class in each of the 

eight measurement schools. Data were collected during April and May of 2010- 2013, after the 

conclusion of the Spring intervention period. On the day of accelerometer drop off, study staff 

explained the study and assented all children who had returned parental consent. Children then 

filed out into the hall where study staff assigned a device serial number to each child and 

attached the ACC device to the child’s non-dominant wrist using a semi-non-removable hospital-

type band (MedTech Wristbands, Orlando, FL). Children were instructed to go about their 

normal daily activities while wearing the device consecutively for the next six days. Study staff 

measured each child’s height to the nearest 0.5 cm (standard tape measure) and weight to the 

nearest 0.2 kg (Health O Meter professional scale, Model 349KLX) while shod. BMI was 

calculated and BMI percentiles were assigned based on the Center for Disease Control and 

Prevention (CDC) growth charts. Children were assigned as normal weight (NW, <85th 

percentile BMI-for-age score) or overweight/obese (OW/OB, ≥85th percentile BMI-for-age 

score). 

 

Parents and teachers were given instructions about the devices and were asked to report any 

abnormalities in activity during the data collection. Teachers provided school day schedules 
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indicating when school started and ended and when children were at lunch, recess, and physical 

education (PE) classes. On the sixth day of data collection, researchers returned to the school to 

collect the devices and children were provided a gift card as remuneration for their participation 

in the study.  

 

Data Processing: 

Actical data were downloaded using the Actical software (Version 2.12). A custom Matlab 

(Mathworks, etc.) program was created to process the ACC data and clean for nonwear (see 

below). Any periods of 60 minutes or greater of zero count values were summed over the day to 

assess completeness of the data file.   

 

All GENEA devices were downloaded using a USB 2.0 Charging Cradle and the GENEActiv 

software (Version 2.1). We created an additional custom Matlab program to read and 

subsequently filter the .bin file. We applied a low pass filter to the data (15Hz cutoff frequency) 

to remove any noise in the signal not representative of true human movement. Once the data 

were filtered, we calculated a signal vector, the Euclidian Norm minus one (ENMO, see equation 

2 where f=sampling frequency). This low pass ENMO value (LPENMO) was calculated on a 

per-second basis.  

LPENMO =(∑ | (�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2𝑓𝑓
𝑖𝑖=1

  / -1) | ) / (f)  (2) 

After filtering the data, we cleaned the files to remove any periods of non-wear. Using a custom 

Matlab program, we identified periods of sixty consecutive minutes of LPENMO values below 

.06 g seconds (laboratory established non-wear threshold). These periods of time were summed 

over each day to assess completeness of the data file.  
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For all ACC data files, any day found to have less than 10 hours of wear time was considered 

invalid and removed. Any data file that did not contain at least four valid days was also 

considered invalid and removed (n=31). Custom time intervals were created to identify standard 

time periods of interest throughout the day. These intervals include the full day (FD, 6am-11pm), 

school day (SD, school-specific start and end time) and lunch recess (LR, class-specific start and 

end time). The times used for SD and LR were determined from the class schedule completed by 

teachers. After identifying custom intervals, the Matlab program applied published Actical 

cutpoints established using ROC curves (59) to the baseline Actical data, and GENEActiv wrist 

cutpoints derived using the same methodology as the Actical cutpoints to the GENEActiv data. 

Cutpoints were applied to determine the number of minutes and percent of time spent in 

sedentary (SED), light (LPA), moderate (MPA), vigorous (VPA), and moderate-vigorous PA 

(MVPA; sum of MPA and VPA) during each of the custom intervals.  

 

Statistical Analysis  

In order to confirm that output from the Actical device was comparable to that of the 

GENEActiv, data collected during a calibration study while wearing both monitors were 

analyzed (see Chapter 2 for a description of this study). Briefly, 24 children participated in a 

variety of activities while simultaneously wearing both monitors as well as a portable metabolic 

system (Oxycon Mobile, Yorba Linda, CA). Pearson product-moment correlation coefficient was 

calculated to examine the strength of the linear relationship between the two device outputs. 

Descriptive statistics, reported as mean (SD) calculated for age, height, weight, and BMI 

percentile and frequencies for sex and grade are reported in Table 4.1. The dependent variables, 

(i.e., full day minutes of MVPA and percent of time during the school day and lunch recess spent 

engaged in MVPA) were analyzed with a general linear mixed model.  Fixed effects included 
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year and condition, and their two-way interaction. Sex and BMI z-score were included as 

covariates. Random effects included school within condition and the year by grade by school 

within condition.  Kenward-Roger's approximation was used to estimate denominator degrees of 

freedom. For significant fixed effects (p<0.05), pairwise mean comparisons were made using t-

tests. All statistical analysis was conducted in SAS Version 9.4 (SAS Institute, Inc., Cary, NC).  

 

RESULTS 

Results from the Pearson correlation revealed a strong correlation between the two device 

outputs (R=.86). A total of 1726 students (50.4% boys) participating in the IPLAY study are 

reported here. Overall, 34.7% of this sample was overweight or obese, defined by the Centers for 

Disease Control and Prevention (CDC) as greater than or equal to the 85th percentile BMI for age 

score (see Table 4.1). No significant effects of BMI z-score on MVPA were observed either 

during lunch recess (p=0.44), school day (p=0.06) or full day (p=0.42). A significant effect of 

sex was observed in all time periods, whereby boys accumulated significantly more MVPA than 

girls (p<.001 for all time periods). Significant differences were observed in the percent of 

children who were overweight/obese between conditions 

Table 4.2. Subject Characteristics by Condition, OW/OB- overweight/ obese 

 Boys 
(N) 

% 
OW/OB 

Girls 
(N) 

% 
OW/OB 

Control 214 44% 188 34% 
Curriculum 232 33% 247 33% 
LL 254 26% 210 23% 
Both 170 47% 211 43% 
TOTAL 870 36% 856 33% 

 

During the lunch recess period, boys and girls spent a mean (SE) of 40.8 (1.8) and 33.9 (1.8) 

percent engaged in MVPA, respectively. No significant interaction between condition and year 
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was observed during lunch recess (p=0.27, see Figure 4.1). During the school day, boys spent an 

average of 15.6 (.37) % of time in MVPA, while girls spent an average of 13.8 (0.37) % of time 

engaged in MVPA (Figure 4.2). Though a significant interaction between condition and year was 

observed (p=0.008) pairwise comparisons revealed no differences between conditions within 

each year (baseline: p=0.77, year 1: p=0.44, year 2: p=0.68).  

 

 

Figure 4.1. Mean percent of Lunch Recess Spent in MVPA by condition and year.  
Error bars indicate ±2 SE. 
 

Full day minutes of accumulated MVPA for boys and girls were 151 (1.7) and 136 (1.7), 

respectively (Figure 4.3). A trend toward significance was observed in the interaction between 

year and condition (p=.051, see Figure 4.3). Pairwise comparisons of full day activity revealed 

significant differences in the baseline (no intervention) year (p=0.02) between the combination 

condition and all other conditions, whereby the combination schools had significantly greater 

accumulation of MVPA than control (mean difference=29.3 min, p=.05), curriculum (mean 

difference=35.6 min, p=.01), or LL schools (mean difference=28.1 min, p=.05) at baseline. In 
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year 1, no significant between-group differences were observed (p=0.07). In year 2, pairwise 

comparisons revealed significantly greater daily MVPA accumulation in the LL-only schools 

compared to curriculum-only (mean difference=17.3 min, p=.02) and combination schools (mean 

difference=16.6 min, p=.04). 

 

 

Figure 4.2. Mean percent of School Day spent in MVPA by condition and year.  
Error bars indicate ±2 SE. 
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Figure 4.3. Mean Full Day Minutes of MVPA by condition and year. Error bars indicate ±2 SE. 
 

 

DISCUSSION 

In this study we aimed to quantify the effects of a curricular and environmental intervention 

(IPLAY) on estimates of objectively measured MVPA. Results revealed no significant effect of 

the curriculum or playground alone, or of their combination on the percent of time spent engaged 

in MVPA during recess or the school day during the intervention years. Though slight 

differences were observed in full day activity, because the intervention took place only during 

recess, whether these differences are a direct result of the intervention is inconclusive. Finally, 

we observed relatively high estimates of daily MVPA across our sample and no effect of BMI 

percentile on estimated MVPA.  

 

Results in our sample of full day MVPA revealed significant differences between conditions 

during the baseline and year 2 data, while no differences were observed during year 1. Because 

there was no clear pattern or trend in these full day data, and because the intervention took place 
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only during the lunch recess period, we don’t believe these differences are due to the 

intervention.  

Perhaps the lack of significant increases in MVPA as a result the IPLAY study should not have 

been surprising given a recent meta-analysis showing little to no effect of physical activity 

interventions (40) on MVPA accumulation. In this systematic review by Metcalf, et al., the 

magnitude of effect across 14,326 participants was approximately four minutes of additional 

MVPA per day. Evidence from this review and others suggests that interventions must not only 

attempt to increase PA during already established free-time, but also provide additional 

opportunities for PA to take place (27). Potential alternative explanations behind this lack of 

significant intervention effect warrant further discussion.  

 

SPARK has been implemented in various school settings (27, 37, 57). However, to our 

knowledge, no studies have evaluated SPARK AR implemented during recess, either alone or in 

combination with environmental modifications. Our results suggested that SPARK AR did not 

result in greater amounts of accumulated MVPA during the lunch recess period. It is possible 

that individuals participating in the SPARK AR curriculum during recess simply replace one 

type of activity with another activity of equally high intensity. Our sample overall spent 

approximately 38% of recess time engaged in MVPA, which aligns with guidelines suggested by 

Nettlefold and colleagues of 40% (42), providing additional evidence of possible activity 

substitution. Furthermore, the structured SPARK AR delivery period in the spring had concluded 

prior to ACC data collection. The purpose of this study design was to examine any residual 

effects of the curricular intervention. However, it may have been that once the structured SPARK 

AR curriculum was completed, teachers/staff and children did not continue to engage in these 
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activities. Though this design enabled us to examine whether SPARK AR was adopted by the 

schools after the structured delivery of the program, thus allowing us to examine the 

sustainability of the study design, this is a significant limitation in assessing the true immediate 

effectiveness of SPARK AR.  

 

Given the lack of change in MVPA during the intervention, an examination of potential ways by 

which to improve the efficacy of SPARK is warranted. Because girls accumulated significantly 

less MVPA than boys during lunch recess across all conditions, a future strategy worth 

investigating may be to tailor SPARK AR such that girls are targeted with recess curriculum and 

activities that are of particular interest to them. Studies also suggest that SPARK results in better 

PA outcomes when delivered by a trained SPARK staff person (58), and that ongoing training 

and support is required for continued success. In a study conducted by McKenzie et al., although 

delivery via trained classroom teachers initially resulted in increased MVPA, over a 1.5 year 

time frame, a significant decrease in lesson quality and student activity resulted (37). These 

findings suggest effective training strategies to preserve the fidelity of the program in schools are 

needed.  

 

The presence of Learning Landscapes playgrounds did not result in greater estimates of MVPA 

during lunch recess or the school day. It is possible that the age of the playgrounds played a role 

in this finding. All playgrounds had been installed in the LL schools at least three years prior to 

the start of the IPLAY study. While this likely helped eliminate any novelty effect associated 

with a new playground environment, it may benefit the community to consider ways to capitalize 

on this novelty effect. As landscape architects and designers plan new play structures, one 
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strategy to prolong the novelty effect would be to create modifiable and/or mobile structures as 

well as coming up with novel uses for existing structures. 

 

An alternative explanation of the lack of differences between conditions is that children are 

accumulating more activity than we previously thought. Our results reveal significant 

accumulation of daily MVPA across the entire sample (151 and 136 minutes of MVPA per day 

for boys and girls, respectively), which are in contrast to our current paradigm regarding 

children’s relative inactivity (e.g., ~42% meet the 60 min MVPA/day guideline) (68). Thus, 

perhaps this sample did not respond to the intervention because they were already sufficiently 

active. However, upon further investigation, this is not the first study to demonstrate daily 

MVPA estimates of > 60 min/day in a large, objectively measured sample of children. In a study 

conducted by Nader et al., a longitudinal analysis of 1,032 participants of the National Institutes 

of Child Health and Human Development Study of Early Child Care and Youth Development, 

hip-mounted accelerometry using a one minute epoch measured an average of 134 minutes per 

day among 9-12 year old children (41), a number very similar to our estimates. An additional 

study using accelerometers recording data at 2 second epochs revealed approximately 86.1 

minutes of daily MVPA in a sample of 8-10 year old children (6). Direct observation studies also 

demonstrate large estimates of daily MVPA. In one study conducted by Sleap and Warburton, a 

sample of 56 preadolescent children accumulated an average of 117 minutes of MVPA per day 

when directly observed (62). These estimates are in stark contrast to the NHANES estimates of 

daily MVPA suggesting that only 42% of children ages 6-11 are meeting the guideline of 60 

minutes of MVPA per day (68). These discrepant findings ought to question our current thinking 

around how we quantify and interpret MVPA data collected via accelerometry. Additional direct 

observation data needs to be collected in order to gain a better understanding of how and how 
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much children move. A more in-depth examination of the metabolic consequences of these short-

sporadic bouts of movement also needs to be undertaken. Finally, these results suggest the need 

for high fidelity direct observation data, as well as standardization of accelerometry data 

processing techniques. 

Importantly, we observed no difference in activity accumulation across the range of BMI z-

scores. This is also in contrast to our current paradigm around PA and obesity (i.e., that 

overweight/obese children are less active than their normal weight counterparts). However, in 

reviewing the literature, this is not the first study demonstrate a lack of effect of BMI. In a 

systematic review of recess activity that examined 16 individual variables, no association 

between PA and BMI/central adiposity was observed (50). In addition, in a large scale 

longitudinal analysis, little to no effect of BMI was observed on PA (41). In fact, lower BMI 

percentiles had a faster linear decline in activity over time. A 10% decrease from the mean BMI 

(65th percentile) was associated with a less than one minute per day per year decrease in MVPA. 

Future studies that examine how children accumulate activity (e.g., consecutive bout length) will 

enable us to better understand whether differences exist across BMI. Additionally, if we continue 

to observe a lack of difference in PA, nutrition may need to become a greater focus of 

interventions aimed at reducing weight in children. 

 

Limitations 

Given the community-based nature of this study, various limitations warrant further discussion. 

A critical component to community-based interventions is high fidelity of the program and 

adoption by the participants. To examine this, we conducted program implementation surveys in 

all participating schools. An Intervention Coordinator (IC) conducted weekly sites visits at each 
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school to ensure that the intervention was being delivered as scheduled. A fifteen-question form 

session checklist, adapted from the SPARK–AR Curriculum Session Quality Assessment was 

used as the process evaluation checklist. Results from year one revealed that 70.8% of all 

intervention sessions were implemented as planned, with a mean intervention score of 11.4/15 

points (76%). Additionally, during the baseline and two years of intervention, teacher turnover 

was significant. Across three years and eight measurement schools, there were 11 instances of 

teacher turnover and three instances of principal turnover. Though this may have an effect on 

program delivery, because the turnover was not more or less common in any of the conditions, 

we don’t believe this impacted the overall findings. In addition, given the study design, we were 

not able to examine the effects of SPARK AR while being implemented, but rather allowed for 

the assessment of the curriculum uptake by staff and students. Finally, the use of two different 

accelerometers may be viewed as a significant limitation. However, our analysis of the 

calibration data revealed a strong correlation in device output (R=.86).  

 

Conclusion 

ACC results from the IPLAY Study suggest that recess interventions comprised of curriculum, 

environmental changes or the combination are not sufficient to increase the amount of MVPA 

that children accumulate. Future studies may consider a more tailored approach for recess 

curriculum to target children who are at risk for low activity (e.g., girls). Results also suggest that 

children may be more active than previously thought, based on our high free-living daily 

estimates of PA.  
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CHAPTER 5: OVERALL CONCLUSIONS 

 
 
  
Accurate, objective physical activity (PA) monitoring is critical to understanding current 

physical activity levels, as well as in evaluating the effectiveness of interventions aiming to 

increase PA.  Accelerometers (ACC) are the most widely used objective measure of PA in both 

children and adults (54).   

In the first study, using ROC curves, the calibration of the wrist-mounted GENEActiv in 

elementary school-aged children resulted in intensity cutpoints of .019, .314 and .998 SVMg for 

sedentary, moderate and vigorous activity, respectively.  Importantly, these data were processed 

using a band pass filter. MVPA intensity classification accuracy was moderately good (~70%). 

When applied to a free-living data set, we estimated 308 minutes of MVPA/day, suggesting that 

perhaps children move frequently and intermittently throughout the day.  As we continue to 

move toward raw data collection, researchers will need to explore how to interpret the 

physiological meaningfulness of these very short bouts of activity.   

In our second study, a more in-depth examination of methods used to process the raw 

acceleration signal was undertaken. This was the first study to independently validate 

methodologies for processing (i.e. filtering) high-frequency acceleration data to quantify MVPA 

in children. Our results suggest that the methodologies by which researchers elect to filter high-

frequency acceleration data impacts the ability of the signal to correctly classify activity 

intensity. Compared to direct observation, unfiltered (ENMO) and low-pass filtered (LPENMO) 

cutpoints achieved higher accuracy (~85%) in estimating MVPA in the school day sample 

compared to band pass filtered data (BPEN, 77%). The resulting accumulated daily MVPA in the 
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multi-day sample was 282, 143 and 137 minutes using BPEN, ENMO and LPENMO, 

respectively. This was an important finding, given that our first study attempted to establish 

cutpoints with band pass –filtered data, the method associated with the lowest accuracy in 

predicting MVPA. Standardizing processing methodologies is a critical next step to accurately 

interpret high-frequency acceleration data in children, and this study established a framework to 

do so.  

Because of findings from our second study, we abandoned the band pass methodology for 

processing our raw acceleration data and adopted the low pass Euclidian norm minus one 

(LPENMO) procedure. In the third study, we used this methodology in a large sample of free-

living multi-day data to evaluate the effects of a novel curricular and environmental intervention 

aimed at increasing PA in elementary school children. Results from the IPLAY study suggested 

that neither recess curriculum (SPARK) nor a novel playground environment (Learning 

Landscapes), nor the combination of the two resulted in meaningful increases in PA during any 

period of the day (i.e., lunch recess, school day or full day). An additional important finding 

from these results is that children are accumulating relatively more MVPA than previously 

reported. Finally, we observed no effect of BMI z-score on accumulated MVPA across any time 

point. This finding challenges the current paradigm that low PA is associated with childhood 

obesity. These results suggest that a more in-depth examination of children’s PA habits is 

necessary to understand when, how and how much activity children accumulate.  

In order to better understand children’s activity patterns, future studies should be conducted that 

incorporate multiple methods to quantify PA. For example, direct observation data ought to be 

collected over full days to examine activity accumulation at various time points throughout the 

day. Additionally, calibration studies need to be conducted outside the laboratory in order to 
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effectively capture real-world situations in which children play and develop free-living based 

intensity/activity classification. The gathering of contextual information will also be important in 

order to assess PA accumulation in children. For example, the social environment may play a 

critical role in how much and when children accumulate activity. Therefore, utilizing methods 

that may capture social interactions within a space (e.g., GPS and Radio Frequency 

Identification, RFID) will provide necessary information to researchers and program planners to 

help design and evaluate novel intervention strategies. In sum, in order to capture a 

comprehensive picture of children’s PA habits and patterns, researchers must begin to combine 

multiple assessment methodologies. As we gain this improved understanding, more effective 

programs may be developed to impact children’s PA. 
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APPENDIX 

 
 
  
We have included the following files in the appendix material: 

1) BINREAD, CONVERTBIN, FILTERBIN .m files 

o These are the three pieces of Matlab (.m extension) code that are used to read the 

bin file (binread), convert it from a .bin to a .csv file (convertbin), and apply the 

band pass filter (filterbin).   

BINREAD 

function [header, time, xyz, light, button, prop_val] = binread(filename, 
varargin) 
% BINREAD Reads GENEActive .bin files 
% 
% [hdr, time, xyz, light, but] = binread(fname) 
% [hdr, time, xyz, light, but, prop_val] = read(fname, 'key1', 'key2',...) 
% 
% Where 
% 
% FNAME is the file name 
% 
% HDR is a Mx1 cell array containing M header pages (each of them a struct) 
% 
% TIME is an Nx1 vector of measurement times. The times are expressed as  
% serial date numbers (see help datenum) 
% 
% XYZ is a Nx3 matrix of calibrated accelerometer measurements. The columns 
% correspond to the x, y and z axes 
% 
% LIGHT is a Nx1 vector of calibrated light measurements 
% 
% BUT is a Nx1 vector of button status values (1 on / 0 off) 
% 
% 'key1', 'key2' are names of page properties that should be extracted (and 
% interpolated) from each data page. For instance  
% 
% 
% (c) German Gomez-Herrero 
% german.gomezherrero@ieee.org 
  
% Some constants 
DATA_PAGE_NAME = 'Recorded Data'; 
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NB_HEADER_PAGES = 7; 
NB_DATA_PAGES = 100; 
CALIBRATION_PAGE_NAME = 'Calibration Data'; 
TIME_NAME = 'Page Time'; 
TIME_FORMAT = 'yyyy-mm-dd HH:MM:SS:FFF'; 
DATA_PROPS = {'Battery voltage', 'Temperature'}; 
INTERPOLATE_PROPS = true; 
MEASUREMENT_FREQ_NAME = 'Measurement Frequency'; 
  
if nargin < 2, 
    data_props = DATA_PROPS; 
else 
    data_props = varargin; 
end 
  
fid = fopen(filename, 'r'); 
  
% Skip any blank line at the beginning of file 
C = textscan(fid, '%[^\n]',1); 
while isempty(C(39)), 
    C = textscan(fid, '%[^\n]', 1); 
end 
  
% Read header pages 
header = cell(NB_HEADER_PAGES, 1);  
header_page_count = 1; 
page_name = C(39); 
while ~strcmpi(page_name, DATA_PAGE_NAME),     
    C = textscan(fid, '%[^\n:*]: %[^\n]');      
    header{header_page_count} = cell2struct(C{2}, ... 
        strrep(C(39)(1:numel(C{2})), ' ', '_'), 1);   
    header{header_page_count}.Page_Name = page_name; 
    if strcmpi(page_name, CALIBRATION_PAGE_NAME), 
        x_gain = str2double(header{header_page_count}.x_gain);   
        y_gain = str2double(header{header_page_count}.y_gain);   
        z_gain = str2double(header{header_page_count}.z_gain);   
        x_offset = str2double(header{header_page_count}.x_offset);   
        y_offset = str2double(header{header_page_count}.y_offset);   
        z_offset = str2double(header{header_page_count}.z_offset);   
        volts = str2double(header{header_page_count}.Volts);  
        lux =  str2double(header{header_page_count}.Lux);  
    end 
    if numel(C{2})<numel(C(39)), 
        page_name = C(39){end};                 
        header_page_count = header_page_count + 1; 
    else 
        % We have reached the end of the file 
        xyz = []; 
        light = []; 
        button = []; 
        prop_val = []; 
        return; 
    end   
end 
header(header_page_count+1:end) = []; 
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if isfield(header{end},'Number_of_Pages'), 
    nb_pages_in_header = true; 
    nb_pages = str2double(header{end}.Number_of_Pages);  
else 
    nb_pages_in_header = false; 
    nb_pages = NB_DATA_PAGES; 
end 
  
% Read the data pages 
data_page_count = 1; 
page_name = DATA_PAGE_NAME; 
xyz = nan(300*nb_pages, 3); 
light = nan(300*nb_pages, 1); 
button = nan(300*nb_pages, 1); 
prop_val = nan(nb_pages, length(data_props)); 
time = nan(nb_pages, 1); 
freq = nan(nb_pages, 1); 
while strcmpi(page_name, DATA_PAGE_NAME),     
    C = textscan(fid, '%[^\n:*]: %[^\n]');      
    if numel(C(39)) ~= numel(C{2})+1, 
        error('Invalid format in %dth data page', data_page_count); 
    end 
    % Get the numeric properties of that the user wants to get 
    [prop_idx, prop_loc] = ismember(C(39)(1:end-1), data_props); 
    [prop_loc, idx] = sort(prop_loc(prop_idx)); 
    prop_idx = find(prop_idx); 
    prop_idx = prop_idx(idx);    
    prop_val(data_page_count, prop_loc) = str2double(C{2}(prop_idx)); 
     
    % Get the measurement time 
    time(data_page_count) = datenum(C{2}(ismember(C(39)(1:end-1), 
TIME_NAME)), ... 
        TIME_FORMAT);  
     
    % Get the measurement frequency 
    freq(data_page_count) = str2double(C{2}(ismember(C(39)(1:end-1), ... 
        MEASUREMENT_FREQ_NAME))); 
     
    % Get the measurements 
    meas_idx = (data_page_count-1)*300+1:(data_page_count*300); 
    [xyz(meas_idx,:), light(meas_idx), button(meas_idx)] = 
hex2xyz(C(39){end}); 
    page_name =  textscan(fid, '%[^\n]',1); 
    if ~isempty(page_name(39)), 
        page_name = page_name(39); 
        data_page_count = data_page_count + 1; 
    else 
        page_name = ''; 
    end 
end 
if ~isempty(page_name), 
    warning('binread:unknownPageName', 'Unknown page name %s', page_name); 
end 
if nb_pages_in_header && data_page_count ~= nb_pages, 
    warning('binread:unknownPageName', ... 
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        'Only %d data pages were found although %d pages are annotated in the 
header', ... 
        data_page_count, nb_pages);     
end 
  
% Interpolate the time 
if any(diff(freq)), 
    error('Not implemented yet'); 
else 
    secs = 300/freq(1); 
    msecs = round((secs-floor(secs))*1e3); 
    secs = floor(secs); 
    time_end = addtodate(addtodate(time(1), secs, 'second'), ... 
        msecs, 'millisecond'); 
    offset = linspace(0, time_end-time(1), 300);  
    time_interp = repmat(time(:), 1, 300) + repmat(offset, numel(time), 1); 
    time_interp = time_interp'; 
    time_interp = time_interp(:); 
end 
  
% Intepolate the selected page properties 
if INTERPOLATE_PROPS 
    prop_val_interp = nan(numel(time_interp), size(prop_val, 2)); 
    for i = 1:size(prop_val, 2) 
        prop_val_interp(:, i) = interp1(time, prop_val(:,i), time_interp, 
'spline'); 
    end 
    prop_val = prop_val_interp; 
end 
time = time_interp; 
  
% Calibrate the data 
xyz = (xyz*100 - repmat([x_offset, y_offset, z_offset], ... 
    data_page_count*300, 1))./repmat([x_gain, y_gain, z_gain], ... 
    data_page_count*300, 1); 
light = floor(light*lux/volts); 
  
end 
 
function [xyz, light, button] = hex2xyz(hstr) 
% Hexadecimal to decimal conversion of data values 
n_bytes = floor(numel(hstr)/2); 
n_meas = n_bytes/6; 
hstr = reshape(hstr(1:n_bytes*2), 2, n_bytes)'; 
bin_values = dec2bin(hex2dec(hstr))'; 
bin_values = reshape(bin_values, 1, n_bytes*8); 
idx = repmat((1:48:48*n_meas)', 1, 12) + repmat(0:11, n_meas, 1); 
x = tc2dec(bin_values(idx),12); 
y = tc2dec(bin_values(idx+12),12); 
z = tc2dec(bin_values(idx+24),12); 
idx = repmat((37:48:48*n_meas)', 1, 10) + repmat(0:9, n_meas, 1); 
light = bin2dec(bin_values(idx)); 
button = bin_values((47:48:48*n_meas)')=='1'; 
f = bin_values((48:48:48*n_meas)')=='1'; 
if any(f), 
    error('The (f) field is not zero!'); 
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end 
  
xyz = [x(:),y(:),z(:)]; 
button = button(:); 
light = light(:); 
  
end 
  
function value = tc2dec(bin,N) 
% Two-complement to decimal conversion 
  
val = bin2dec(bin); 
y = sign(2^(N-1)-val).*(2^(N-1)-abs(2^(N-1)-val)); 
  
value = y; 
condition = (y==0 & val~=0); 
value(condition) = -val(condition); 
  
end 
  
  
CONVERTBIN 
 
clear all 
clc 
  
disp('Sampling Frequency is set at 75 hz') 
disp(' ') 
disp('File being processed:') 
  
direc=dir('*.bin'); 
fnames={direc.name}; 
numfiles=length(fnames); 
  
  
All_Data=[]; 
for t=1:numfiles 
    filename=fnames {t}; 
    Name_1=filename; 
    disp(Name_1); 
     
    [hdr, time, xyz, light, but] = binread(filename); %Read in the bin file 
  
     
[Name]=textscan(Name_1, '%s %s', 'delimiter','.'); %Seperates ID number from 
.xls extension 
ID=Name{1,1}; %Selects the ID number 
Extension1='_filtered.csv'; 
New_Name1=char(strcat(ID,Extension1)); 
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    [Filtered_data] = filterbin(xyz, time);%Apply Bandpass filter and 
calculate signal vector magnitude 
      
    dlmwrite(New_Name1,Filtered_data,'delimiter',',','precision',15); 
  
  
clear xyz 
clear time 
clear Filtered_data 
  
  
end 
disp(' ') 
disp('Columns 1:4 of the .csv are:[time, filt x, filt y, filt z]'); 
  
 
FILTERTBIN 
 
function [Filtered_data] = filterbin(xyz, time) 
  
%change sampling frequency here: 
freq=75; 
  
x=xyz(:,1); 
y=xyz(:,2); 
z=xyz(:,3); 
  
[bx,ax]=butter(4,[.2,15]/(freq/2)); 
filtx=filter(bx,ax,x); 
  
[by,ay]=butter(4,[.2,15]/(freq/2)); 
filty=filter(by,ay,y); 
  
[bz,az]=butter(4,[.2,15]/(freq/2)); 
filtz=filter(bz,az,z); 
  
filtered=[filtx,filty,filtz]; 
Filtered_data=[time,filtered]; 
 
  

2) Sample1_Filtered_Timestamp 

o This is the output when the raw file is run through the .m files.  Because of the 

size of this file, we included only a sample of one minute of values relevant for 

the calibration trial. (See Sample1_ActivityTimes file for relevant times). 
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Time Stamp X axis Y axis Z axis 
12:26:30.007 -0.04877 -0.02893 0.01303 
12:26:30.020 -0.04933 -0.03181 0.024176 
12:26:30.033 -0.04553 -0.02956 0.026131 
12:26:30.047 -0.04161 -0.02319 0.016714 
12:26:30.060 -0.03854 -0.01661 0.004891 
12:26:30.074 -0.03511 -0.01311 0.000141 
12:26:30.087 -0.03291 -0.01271 0.003261 
12:26:30.100 -0.03232 -0.01326 0.008542 
12:26:30.114 -0.03124 -0.01285 0.010741 
12:26:30.127 -0.03083 -0.0096 0.009162 
12:26:30.140 -0.03448 -0.00129 0.009198 
12:26:30.154 -0.04013 0.010295 0.015463 
12:26:30.167 -0.04111 0.016046 0.021764 
12:26:30.181 -0.03615 0.009243 0.018225 
12:26:30.194 -0.03176 -0.00256 0.008416 
12:26:30.207 -0.03241 -0.00581 0.006116 
12:26:30.221 -0.03533 0.001849 0.013169 
12:26:30.234 -0.03664 0.011588 0.017739 
12:26:30.247 -0.03584 0.016713 0.016153 
12:26:30.261 -0.03489 0.01822 0.015256 
12:26:30.274 -0.03595 0.018107 0.016414 
12:26:30.288 -0.03708 0.01496 0.016194 
12:26:30.301 -0.03466 0.009373 0.015405 
12:26:30.314 -0.03135 0.006307 0.015147 
12:26:30.328 -0.03306 0.008565 0.013077 
12:26:30.341 -0.03897 0.012406 0.011155 
12:26:30.355 -0.04214 0.013127 0.015564 
12:26:30.368 -0.04009 0.01275 0.024601 
12:26:30.381 -0.03763 0.014126 0.02891 
12:26:30.395 -0.03626 0.012838 0.024873 
12:26:30.408 -0.03204 0.005416 0.019448 
12:26:30.421 -0.02656 -0.00395 0.020031 
12:26:30.435 -0.0267 -0.00938 0.025068 
12:26:30.448 -0.03295 -0.00884 0.029578 
12:26:30.462 -0.03748 -0.00534 0.032383 
12:26:30.475 -0.03501 -0.00352 0.032087 
12:26:30.488 -0.02968 -0.00373 0.025449 
12:26:30.502 -0.02647 -0.0035 0.015404 
12:26:30.515 -0.02175 -0.00364 0.011 
12:26:30.528 -0.01091 -0.00728 0.016351 
12:26:30.542 2.84E-05 -0.01282 0.027329 
12:26:30.555 0.001022 -0.01462 0.036092 
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12:26:30.569 -0.00747 -0.01116 0.036569 
12:26:30.582 -0.01701 -0.00639 0.03073 
12:26:30.595 -0.02371 -0.0035 0.026137 
12:26:30.609 -0.02836 0.000381 0.024404 
12:26:30.622 -0.02873 0.009947 0.020546 
12:26:30.635 -0.02202 0.022847 0.015195 
12:26:30.649 -0.01263 0.033355 0.014502 
12:26:30.662 -0.00891 0.039543 0.018245 
12:26:30.676 -0.01422 0.040557 0.020772 
12:26:30.689 -0.02482 0.033938 0.019273 
12:26:30.702 -0.03205 0.019908 0.013648 
12:26:30.716 -0.02965 0.006316 0.006928 
12:26:30.729 -0.02074 0.003637 0.00642 
12:26:30.742 -0.01196 0.013801 0.015057 
12:26:30.756 -0.0061 0.029708 0.026226 
12:26:30.769 -0.00411 0.042839 0.031383 
12:26:30.783 -0.00748 0.047914 0.02749 
12:26:30.796 -0.01636 0.047079 0.01883 
12:26:30.809 -0.02549 0.049074 0.014591 
12:26:30.823 -0.02665 0.058754 0.023352 
12:26:30.836 -0.02057 0.070919 0.045304 
12:26:30.850 -0.01694 0.076013 0.066541 
12:26:30.863 -0.01981 0.069795 0.070451 
12:26:30.876 -0.02375 0.058732 0.058534 
12:26:30.890 -0.02312 0.05368 0.0502 
12:26:30.903 -0.01651 0.055959 0.058669 
12:26:30.916 -0.00588 0.056917 0.071245 
12:26:30.930 0.003461 0.053589 0.063796 
12:26:30.943 0.006271 0.05299 0.035183 
12:26:30.957 0.003014 0.059927 0.009078 
12:26:30.970 -0.00091 0.071886 0.002827 
12:26:30.983 -0.00178 0.083477 0.014061 
12:26:30.997 -0.00172 0.089369 0.03129 
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3) Sample1_ActivityTimes 

o These are the end times of each activity performed in the calibration study.  We 

used the values from the previous two minutes for each trial to create the 

cutpoints. 

End Time Activity Duration 
12:20:30 PM Rest 2 min. 
12:27:30 PM Coloring 2 min. 
12:33:45 PM Legos 2 min. 
12:40:45 PM Wii Tennis 2 min. 
12:47:45 PM Wii Boxing  2 min. 
12:54:30 PM 0.75 m/s 2 min. 
1:00:30 PM 1.25 m/s 2 min. 
1:05:45 PM 1.75 m/s 2 min. 
1:14:00 PM 2.25 m/s 2 min. 
1:18:45 PM Stairs 30 sec. 

 

 

 

81 
 


