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ABSTRACT 

 

 

 

SNOWFALL-DRIVEN TOPOGRAPHIC EVOLUTION: 

IMPACTS ON SNOW DISTRIBUTION PATTERNS 

 

 

 

This study develops a scalable meteorologically independent snow accumulation model to 

better estimate snowpack depth using an enhanced representation of actual processes. Current snow 

accumulation models incorporate bare or snow-free surface properties derived from elevation, aspect, 

vegetation, and prevailing wind characteristics to determine the drivers of snow distribution yet neglect 

to consider how subsequent snowfalls can reshape the initial terrain conditions. We hypothesize that a 

snow depth model that accumulates snowfall while accounting for the antecedent snow-affected 

surface characteristics is more representative of natural processes and will therefore yield more 

accurate depth estimates than models that reference a snow-free topographic surface. To address this 

premise, the research explores (1) conducting a sensitivity analysis to evaluate the behavior of both 

models, (2) determining the differences between the two snow accumulation modeling approaches, and 

(3) assessing each model’s performance in different location, scale, and temporal resolution conditions 

to determine their resiliency and transferability. 

Terrestrial LiDAR was employed at two field sites following snow deposition events and 

captured a range of spatial extents and resolutions. The Upper Piceance Creek (UPC) site near Meeker, 

CO covered approximately 10 m2 at centimeter resolution; the Izas Experimental Catchment in the 

Spanish Pyrenees covered 1 km2 at meter resolution. A regression tree machine learning model was 

utilized to estimate snow depth based on 14 topographic features. This process engaged in two 

mechanisms: 1. Static method, where snow depth (dst) determined from the bare earth digital terrain 

model (ds0) was estimated with snow-free topographic features and 2. Dynamic method, where snow 
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depth (dst) determined from the previous snow surface height (dst-1) was estimated with the dst-1 

snowfall affected surface. The analyses found that the models were resilient to changes in training 

allocations under a random sampling method, but sensitive to both the prevailing wind direction used 

for feature creation and the overall resolution used to represent surface features. The primary 

difference between the static and dynamic models for snow depth estimates was the number of 

features used and their relative importance. The static method had a higher overall median importance 

and relied mainly on Directional Relief and Relative Topographic Position for snow depth estimates, 

while the dynamic method displayed lower overall median importance but utilized more surface 

features over a single accumulation season. The dynamic method outperformed the static method at 

UPC by approximately 0.07 in a Nash-Sutcliffe efficiency comparison, and only 0.01 at Izas Experimental 

Catchment suggesting issues with process-scale representation of snow accumulation at the Izas site.   
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1. INTRODUCTION 

 

 

 

1.1 Snow as a Natural Resource 

 

In Frank Herbert's science fiction epic, "Dune" (Herbert, 1965), the declaration of the desert 

dwelling Fremen, "This is the bond of water. A man's flesh is his own; the water belongs to the tribe," 

serves as an unadorned reminder that fresh water is not only the lifeblood of our societies but the very 

foundation of our existence. While Earth may not face the same extreme scarcity of fresh water as the 

setting in the novel, it remains a finite and essential resource that requires careful management to 

support a growing global population. The hydrosphere encompasses the entirety of Earth's water, and 

according to estimates by the U.S. Geological Survey, merely 3% of this reservoir is composed of fresh 

water. However, only 1/6th of that fresh water readily accessible, where the rest remains locked in polar 

ice caps, buried deep underground, or suspended in the atmosphere. The primary sources of this 

available fresh water include groundwater, surface water runoff, and snow (U.S. Geological Survey, 

2022)  

As a critical source of fresh water, snow serves many important roles within the hydrologic 

cycle. In addition to being a source of fresh water, snow also acts as a water storage system or a natural 

reservoir giving supply to many rivers. A significant portion of the water flow in the Colorado River and 

various other Southwestern U.S. rivers stems from the annual thaw of mountain snowpack (Serreze et 

al., 1999). In addition to supplying much of the water itself to these river systems, snow also provides an 

important timing and attenuation control on the water it slowly releases and the shape, peak, and 

duration of the snowmelt hydrograph are often controlled by the spatial pattern of the snowpack (Luce 

et al., 1998; Pomeroy et al., 2009). The presence of snow on the landscape also influences surface 

https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.13545#hyp13545-bib-0059
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.13545#hyp13545-bib-0067
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properties, including albedo, the surface radiation budget, and turbulent surface-atmosphere fluxes 

(Peixóto and Oort, 1992). Beyond these immediate effects, snow plays a pivotal role in shaping the 

global climate and energy exchange, making it a crucial component of the Earth's natural systems. 

As a source of fresh water in many parts of the world, snow supports the vitality of ecosystems 

and the prosperity of human societies. In the Colorado River Basin, the rivers fueled by snowmelt play a 

fundamental role in satisfying the water demands of approximately 38 million individuals and sustaining 

nearly 4–6 million acres of irrigated agriculture (United States Bureau of Reclamation, 2012; Cohen et 

al., 2013). In addition to providing water for urban centers, snowmelt driven rivers achieve additional 

purposes, including replenishment of storage reservoirs like the at-risk Lake Powell (Myers, 2013), 

recharge of groundwater aquifers (Carroll et al., 2019), and the mechanism behind hydropower 

generation systems (Schaefli et al., 2007). Snow also exerts a substantial economic influence in 

numerous regions that extend beyond its evolution into water. Winter sports are enjoyed by millions 

and have become significant business sectors within state and local economies. In 2016, the economic 

impact of skiing and snowmobiling in Colorado amounted to $2.56 billion, supported over 43,000 jobs in 

related industries (Hagenstad et al., 2018), and the annual global economic impact of snow is estimated 

to be in the trillions (Sturm, 2017). Snow also plays a key ecological role as a critical habitat, providing a 

vital shelter for various species. Throughout the winter, many animals rely on the subnivean zone for its 

thermal resistance and structural stability, which support essential processes such as reproduction, 

thermoregulation, and predation avoidance (Glass et al., 2021). 

 

1.2 Snow Measurement Methodology 

 

 Snow measurements are important for water resource planning, especially in water limited 

regions like western United States dominated by mountain snowpack where 60-75% of annual 
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streamflow originates from snowmelt (Doesken and Judson, 1996). The connection between winter 

snowpack metrics and available runoff in the spring and summer was established in the early 1900’s via 

manual snow course measurements (Church, 1908). Snow courses consist of a series of measurements 

that provide information about the quantity of water associated with a given snowpack or snow water 

equivalent (SWE), where SWE is calculated as the product of snow depth (𝑑𝑠) and density (𝜌𝑠). 

Snowpack monitoring in the western U.S. has since evolved to a more regionally distributed system, 

with the Natural Resources Conservation Service (NRCS) oversight of the Snow Telemetry Network 

(SNOTEL). The SNOTEL network consists of over 900 automated data collection sites strategically 

situated in remote mountainous watersheds (U.S. Department of Agriculture, Natural Resources 

Conservation Service). These stations gather and disseminate snowpack, precipitation, temperature, and 

other climatic data to the National Water and Climate Center where it is analyzed and used to inform 

runoff forecasting and water management decision making. 

Recent decades in snow mapping and measurement have been characterized by a shift away 

from both manual and automated point-based measurements to the adoption of sophisticated remote 

sensing techniques, ushering in a new era of snowpack assessment. Point-based snow measurements 

from sources like SNOTEL alone can be a poor indicator of snow over large areas and complex 

environments like mountainous terrain (Molotch and Bales, 2005; Guan et al., 2013, Meromy et al., 

2013). Light Detection and Ranging (LiDAR) systems are tools with the ability to capture precision target 

positions and snow surfaces with high spatial resolution in rough terrain and forested regions (Lefsky et 

al., 2002; Hopkinson et al., 2004). These highly precise mapping systems geolocate by coupling ranging 

lasers with geographic positioning systems (GPS) for ground based terrestrial laser scanning (TLS) 

systems or with inertial measurement units when affixed to airborne platforms (Deems et al., 2013). TLS 

systems have been employed at the catchment-scale (Egli et al., 2012; Revuelto et al., 2014) and 

airborne systems for basin-scale (Painter et al., 2016) snow depth mapping with excellent results. After 
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acquiring LiDAR data from both the ground surface and snow-affected terrain, the subtraction of co-

registered point clouds yields snow depth maps with high spatial resolution (Deems et al., 2013). While 

manual point-based snow mapping techniques have traditionally been labor-intensive and area limited, 

the transition to remotely sensed measurements is an advancement in efficiency, coverage, and 

resolution. However, it is important to recognize both approaches hold distinct value to accurate snow 

mapping. 

 

1.3 Snow Measurement Challenges 

 

The foremost challenge in quantifying snow in mountainous regions lies in achieving accurate 

and precise representations of snow distributions given the myriad of forces acting upon it. It has been 

widely established that snow depth and density vary both spatially and temporally (Borman et al., 2013; 

López-Moreno et al., 2013; Fassnacht et al., 2018) especially in mountain and alpine terrain (Buisan et 

al., 2015) with these heterogeneities resulting from processes occurring at different scales (Blöschl, 

1999; Clark et al., 2011). Some of the major processes contributing to the variation in the spatial 

distribution of snow include incident shortwave radiation and the absorption and emission of most long-

wave radiation (Male, 1980), snow crystal metamorphism and settling (Colbeck, 1982), redistribution by 

wind (Schmidt, 1982), and sublimation and interception by vegetation which can comprise 13-31% of 

annual snowfall depending on forest canopy type (Pomeroy et al., 1998).  

In the operational context of snow hydrology, accurate snow depth data are critical to the 

determination of snow water equivalent. While the snow depth parameter makes up half of the SWE 

equation, it has been empirically established that the spatial variability of snow density is smaller than 

that of snow depth (López-Moreno et al., 2013). Sufficient SWE estimates can be made based on snow 

depth paired with assumptions of bulk snow density facilitated by modeling techniques and historical 

https://scholar.google.com/citations?user=AFibUF4AAAAJ&hl=en&oi=sra
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data (Jonas et al., 2009; Sturm et al., 2010, McCreight and Small, 2013). This emphasis on precise spatial 

snow depth distributions provides a foundational component for greater hydrologic assessments, 

making it a key consideration in the broader understanding of snowpack dynamics. 

The ongoing challenge due to the spatiotemporal variation in snow has garnered increased 

attention within the realm of snow research. Expanding snow measurement efforts along with more 

thoroughly evaluated sampling strategies for collecting ground-truth measurements to improve snow 

estimation techniques have been called for from within the discipline (Fassnacht, 2021). As remotely 

sensed snow products become assimilated into larger data structures, it becomes increasingly essential 

to improve our understanding of the uncertainties surrounding the spatiotemporal distribution of snow, 

a crucial aspect in addressing the most significant problem in snow hydrology – accurate estimation of 

mountain SWE (Dozier et al., 2016).   

 

1.4 Snow Distribution: Relationships & Uncertainty 

 

Considerable research has been dedicated to a better understanding of the spatial distribution 

of snow and the associated variables impacting snow depth. Prior to the implementation of 

contemporary remote sensing techniques like LiDAR, point measurements were used with statistical 

methodologies to assess the factors influencing snow distributions. Early efforts to understand the 

controls on snow distributions showed that snow accumulation was related to elevation and forest 

canopy (Meiman et al., 1969). Furthering the idea, the use of statistical techniques like binary regression 

tree (BRT) models found that partitioning SWE sampling into zones based on topographic and radiation 

variables yielded superior estimates over random samples (Elder et al., 1991). Evaluations of the relative 

performance of different spatial interpolation methods for snow depth estimates suggested BRT models 

were superior to inverse distance weighting and kriging but independent variables including elevation, 
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slope, aspect, net solar radiation, and vegetation were only sufficient at explaining 18-30% of the snow 

depth variability (Erxleben et al., 2002). A general additive model improved the estimates of the spatial 

distribution of snow depth explaining up to 73% of the variance using additional geographic and 

topographic variables and supporting non-linear relationships (Lopez-Moreno and Nogués‐Bravo, 2005). 

More recently, the combination of high-resolution TLS acquisitions (1 m2) and machine learning 

algorithms identified two highly important topographic snow depth predictors, topographic position 

index and maximum upwind slope, while explaining 82-94% of the snow depth variance in a catchment 

(Revuelto, et al., 2020).  

In addition to spatial structure, snow distributions also exhibit a temporal dimension 

characterized by inter- and intra-seasonal patterns. Research into the temporal relationship of snow 

distribution has found strong interannual consistency of spatial patterns of snow depth from TLS and 

airborne LiDAR scans (Lopez-Moreno and Vicente-Serrano, 2007; Deems et al., 2008; Mendoza et al., 

2020). Inter-seasonal snow depths may differ in absolute magnitude, but deep and shallow zones occur 

in the same location (Mason, 2020). Fractal analyses of snow depth discovered spatial consistencies at 

shorter ranges of 15-40 meters (Deems et al., 2008), longer-ranges of 185-300 meters in the direction of 

dominant winds (Mendoza et al., 2020) and that the variability of resolutions required to detect these 

consistencies suggests appropriate scaling of measurements is required for accurate representations of 

snowpack characteristics over time (Fassnacht and Deems, 2006). The inter-seasonal consistency of the 

spatial patterns observed in snow depth also extended to the topographic controls on the spatial 

distribution of snow depth (Erickson et al., 2005) where potential solar radiation and a measure of 

exposure or shelter to wind (Winstral et al., 2002) were statistically significant year to year. However, 

the spatial distribution of snow and the relationship to topographic influences from an intra-seasonal 

perspective is less well understood beyond the dynamic processes mentioned in section 1.3. From the 

intra-seasonal basis, topographic surface characteristics can undergo significant transformations caused 
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by the addition, accumulation, and redistribution of snow whereas these features tend to stay the same 

from an inter-seasonal context.  

 

1.5 Machine Learning and Applications 

 

The integration of more powerful technologies and innovative methods, including the concept 

of machine learning within the field of artificial intelligence, stimulates new possibilities in the spatial 

analyses of snow. Advances in computer science have opened the accessibility of artificial intelligence 

methodologies, where they are commonly incorporated into research processes. These data-intensive 

machine learning methods are proliferating across diverse fields, facilitating evidence-based decision 

making in areas such as healthcare, manufacturing, education, financial modeling, policing, marketing, 

and more (Jordan and Mitchell, 2015). As the practice of machine learning rapidly expands, it will 

present many methodological opportunities which match very well with the needs and challenges of 

hydrological research (Lange and Sippel, 2020).  

Machine learning is a subdivision of artificial intelligence defined by algorithms capable of 

learning from data that can make decisions based on observed patterns but require human intervention 

to correct a wrong decision or conclusion. Machine learning is further classified into supervised, 

unsupervised, and reinforcement learning based on the type of problem being addressed. Within the 

supervised learning category of approaches are applications concerning classification and regression, the 

latter of which is explored in this research. Fundamentally, machine learning algorithms construct a 

model using training data and then utilize test data to make informed decisions or generate predictions. 

Regression machine learning methods like random forests are excellent tools for geospatial applications 

due to their recognition of complex patterns and relationships, identification of relevant features, and 

efficiency with large data volumes (Döllner, 2020) and the integration with remotely sensed products 
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presents a promising avenue to address and reduce uncertainties in the estimation of snow data (Oroza 

et al., 2016). Exploring Intra-seasonal variations in snow depth distributions and their associations with 

evolving topographic structures via machine learning tools offers a compelling framework for improving 

the accuracy of snow depth estimates in mountainous terrain.  

 

1.6 Research Questions and Objectives 

 

The purpose of this study is to introduce a novel approach in representing snow accumulation, 

thereby aiming to improve snow distribution modeling. As snow falls, redistributes, and settles, it 

reshapes the landscape, thus changing the initial conditions upon which subsequent snow accumulates. 

Current snow distribution and modeling approaches accumulate snow onto an initial surface or bare 

ground. Specifically, the terrain as represented with static conditions of elevation, slope, aspect, and 

topographic position are constant throughout the accumulation period. This current research seeks to 

improve the formulation of the snow accumulation process by asking the following questions: (1) does 

the change in the shape of the snow surface influence the nature of subsequent snow accumulation 

patterns, and (2) how does scale influence this snow accumulation. The hypothesis is that using variable 

snow-affected surfaces for accumulation over the winter season yields more accurate snow depth 

estimates than using a static bare ground surface. By considering natural processes, these variable 

surface accumulation models are expected to provide improved representations of snow depth. The 

hypothesis is addressed with the following objectives: (1) conduct a sensitivity analysis of the models to 

evaluate the behavior of the static and dynamic method, (2) determine the difference between static 

and dynamic machine learning snow accumulation modeling approaches, and (3) assess the model 

performance in different location, scale, and temporal resolution conditions to determine their 
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reliability and applicability. To accomplish these objectives, we evaluated snow data collected at two 

geographically separate locations with distinct spatiotemporal resolutions. 
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2. SITE DESCRIPTION 

 

 

 

2.1 Primary Site: Upper Piceance Creek 

 

The Upper Piceance Creek (UPC) site serves as the focal point for this study. Situated 

approximately 35 km south of Meeker, Colorado, in the Rocky Mountain region of the western U.S., the 

site spans a small-scale area of 27 m2 and sits at an elevation of 2,100 m above sea level (Figure 2-1). 

The UPC field site has a warm summer continental climate in the Köppen and Geiger Climate 

Classification (subtype Dfb). On-site sensors recorded hourly from November 2019 to March 2020 

yielded an average temperature of -4.1°C (-7.9°C min, 1.6°C max) and average dewpoint temperature of 

-8.7°C (-12.3°C min, -3.5°C max). Grasses, sagebrush, juniper, and other species from the mountain 

shrub ecological community occupy the landscape (Figure 2-1d). 

 

 

Figure 2-1 a) Location of site within western United States. b) Approximate location of city of Meeker, Colorado on 
western slope of Rocky Mountains. c) Upper Piceance Creek study site location. d) Upper Piceance Creek study site 
with Faro terrestrial laser LiDAR scanner in foreground and approximate footprint (red) on 11/15/2019 (photo 
source: Jessica Sanow). 
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2.2 Secondary Site: Izas Experimental Catchment 

 

The Izas Experimental Catchment (Alvera et al., 2000) is operated by the Pyrenean Institute of 

Ecology (IPE) of the Spanish Science Council (CSIC) in Zaragoza, Spain in the headwaters of the Gállego 

River in the Spanish Central Pyrenees (Figure 2-4a). For this study, the main purpose of this site is to 

assess the performance of snowfall resurfacing models when applied to hydrologically operational units 

of significant size and scale. The 55-hectare catchment covers an elevation range from 2056 to 2311 m 

above sea level and snow depth information (Figure 2-4c). The average winter (Dec through Feb) 

temperature is 1.2°C with an average winter precipitation total of 750 mm. The predominate land cover 

consists of subalpine meadows and the lithology is comprised of sandstones and slates (Figure 2-4b). 

The region is exposed to Atlantic climate conditions associated with relatively humid winters and is 

characterized by a subarctic climate (Köppen and Geiger subtype Dfc). The snowpack in the catchment 

typically persists from November until the end of May (Revuelto et al., 2017).  

 

 

Figure 2-2. a) Izas Experimental Catchment location in the Pyrenees Mountain range in northeast Spain. b) Photo of 
the catchment showing variable terrain and subalpine meadows. c) Digital elevation model of the catchment with 
location of meteorological station and TLS scan positions for mapping snow depth (source: Revuelto et al., 2017). 
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3. METHODS 

 

 

 

3.1 Overview of Methodology 

 

This research was performed with the following five sequential steps: data collection, geospatial 

processing, modeling with machine learning, model sensitivity analysis, and model comparison (Figure 3-

1). TLS scans were performed at the UPC field site following snow deposition events, while at Izas, TLS 

scanning had been conducted previously (Revuelto, 2017). With the CloudCompare software, UPC TLS 

scans were registered to create a 3D point cloud, ground points were classified using a cloth simulation 

filter, and then rasterized and exported at 1, 5, and 10 cm resolution digital elevation models (DEM). 

DEM’s from both sites were imported into the QGIS software where they were reprojected and 

differenced according to the two methodologies (static and dynamic) resulting in gridded snow depth 

data or rasters. A set of topographic features were calculated from each DEM with Whitebox Tools in 

QGIS. A machine learning algorithm (XGBoost) was applied to each set of DEM’s and used to estimate 

snow depth from the topographic feature values calculated from the DEM. A sensitivity analysis was 

performed on each snow depth estimation model to determine model behavior in response to 

variations in training data size, wind direction, resolution, input extent, feature length, and snowpack 

phase. The static and dynamic depth estimation models at UPC were then compared by their feature 

importance distributions and the Nash-Sutcliffe efficiency coefficient. Finally, the snow depth models at 

UPC were compared to models from Izas Experimental Catchment. 
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Figure 3-1. General workflow performed in this study. UPC was scanned using a TLS to produce DEM’s. The DEM’s 
were used to create topographic features and snow depth rasters in QGIS. A machine learning algorithm was used 
to estimate snow depth using a static and dynamic surface method. Sensitivity analyses were performed on the 
models looking at training data size, wind direction, resolution, extent, feature length, and snowpack phase. Finally, 
the two models were compared using a Nash-Sutcliffe performance metric. 

 

3.2 Data Collection 

 

Data collection consisted of a series of TLS performed at the UPC field site near Meeker, 

Colorado during the snow season occurring over water year 2020 (10/1/2019 - 9/31/2020). TLS is a 

ground-based LiDAR method that uses near infrared (1550 nm) pulsed lasers to resolve objects and 

surfaces at high resolution. A FARO Focus3D X 130 scanner (https://www.faro.com) with a phase-based 

ranging system was employed after snow deposition events over fixed extent study sites (Figures 2-1d 

and 3-2a). An integrated global positioning system (GPS) recorded the precise scanner position while the 

instrument processor resolved incidence angle, time of flight, and return phase resulting in highly 
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accurate location data paired with each return. The scanner was positioned at multiple viewing angles to 

comprehensively map the snow surface at each site visit. Spherical pylons were placed in each TLS view-

scene to aid with scan registration from multiple angles later in processing (Figure 3-2a). UPC was 

selected for exhibiting high scan frequency, low vegetation obstruction, and variability of the ground 

surface. An initial TLS scan was performed on 11/15/2019 to capture the snow-free surface 

characteristics and an additional 8 scans followed while snow was present at the site (Figure 3-2c). The 

sites were scanned repeatedly over the snow accumulation period with varied frequency based on 

availability to access the sites after deposition events. A Blue Maestro Tempo Disc™ 3 in 1 sensor 

(https://bluemaestro.com/) was affixed with a radiation shield and recorded hourly temperature, 

humidity, and dew point at the site. 

 

 

Figure 3-2. a) UPC site near Meeker, Colorado. Faro Focus3D X 130 in background with point cloud registration 
pylon and BlueMaestro temperature sensor in conical radiation shield in foreground. b) Snow accumulation at UPC 
scan site on 1/24/2020. c) TLS acquisition dates (red) at UPC shown on snow depth reported at Burro Mountain 
SNOTEL located approximately 40 kilometers northeast of UPC. The Burro Mountain SNOTEL station is located at 
2,865 meters elevation (approximately 700 meters higher than the UPC field site). (Photo credits: J. Sanow) 
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3.3 TLS Processing 

 

TLS LiDAR processing began with point clouds in CloudCompare version 2.10.2, an open-source 

three-dimensional processing software (CloudCompare, 2022) in American Standard Code for 

Information Interchange (ASCII) grid form (Figure 3-1, TLS Scans). Individual TLS scans were registered 

into a single comprehensive point cloud via the sphere detection method with the Align-point pairs 

picking tool (Figure 3-3). After the TLS scans were registered, a Cloth Simulation Filter (CSF) plugin 

feature (Zhang, 2016) was used to classify ground points within the point cloud (Figure 3-4). Settings 

used for the CSF point classifier are listed in Table 3-1. CSF settings were determined by selecting 

parameters which removed the highest number of vegetation points within each raw point cloud. 

 

 

Figure 3-3. Registered point clouds from UPC over the snow accumulation season. Point cloud from no snow scene 
on 11/15/2019 showing short and medium vegetation (Top Left). Point cloud from max snow depth on 2/11/2020 
(Bottom Left). Point clouds displayed simultaneously representing snow off and max snow depth surfaces (Right).  
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Figure 3-4. LiDAR point cloud at UPC on 12/2/2019 before (left) and after (right) application of Cloth Simulation 
Filter to classify ground points. In this example, the filter removed approximately 147,000 points or 2.6% of the total 
LiDAR returns comprising the point cloud. 

 

Table 3-1. Cloth Simulation Filter settings used for classifying ground points in registered Terrestrial Laser Scans. The 
rigidity of the simulated cloth was controlled by the scene type, while slope processing facilitated a better fit of the 
simulated cloth to the surface, particularly on steep slopes. Advanced parameter settings for all scans: Cloth 
Resolution = 0.1m, Maximum Iterations = 1000, Classification Threshold = 0.1m. 

Scan Date Scene Type Slope Processing 

Enabled 

Vegetation 

Points Removed 

% Points Removed 

11/15/2019 Flat No 170145 2.5 

12/2/2019 Relief No 147013 2.6 

1/8/2020 Flat No 31440 1.3 

1/24/2020 Flat No 15697 0.6 

2/11/2020 Steep No 4749 0.1 

2/25/2020 Steep No 6643 0.2 

3/12/2020 Flat No 60065 1.7 

3/24/2020 Flat Yes 44539 1.3 

 

Once the ground points in each scan were classified, a rasterization tool was applied to create 

DEM’s at resolutions of 1, 5, and 10 cm. Raster cell elevation values were calculated by taking the mean 

elevation of all points falling within the bounds of the corresponding grid cell. Raster cells without any 

LiDAR point returns were given a ‘No Data’ value of -999 to be handled at a later processing stage. 

DEM’s were then exported in GeoTiff file format for further processing in additional software.  

 



17 

 

3.4 Raster Processing 

 

The DEM’s were imported to QGIS open-source geographic information system software version 

3.16.7 (QGIS.org, 2022) for topographic feature creation (Figure 3-1, GIS Processing). Each DEM was 

assigned a common Universal Transverse Mercator (UTM) projection corresponding to the data 

collection location using North American Datum 1983, (NAD83 / UTM zone 13N, EPSG:26913). The 

DEM’s were then aligned using a nearest neighbor algorithm. After alignment, elevation derivatives, or 

topographic features, were calculated with Whitebox Tools, a QGIS plugin consisting of a collection of 

geospatial analysis tools (Lindsay, 2014). Table 2 lists the topographic features, control group, 

designators used, parameters, and descriptions from the Whitebox Tools User Manual found in the 

‘Geomorphometric Processing’ sub-toolset. From each DEM, a select series of topographic features 

were calculated (Figure 3-5). Relative Aspect, Directional Relief, Wind Fetch, and Horizon Angle required 

a wind direction input parameter which was determined by using the valley direction the UPC site was 

situated within. Six terrain-based, four wind-based, and four solar-based surface features were derived 

from each DEM (Table 3-2). 

After the topographic features were calculated from each DEM, the DEM’s were cropped using 

the ‘Extract by Extent’ tool within QGIS. The cropped area was selected to remove edge effects, cell 

inconsistencies, and regions with large vegetation which resulted in a uniformly sized set of rasters. 

Finally, the original DEM’s were differenced using ‘Raster Calculator’ with two methodologies to create 

separate sets of DEM’s representing distinct snow depth sets. The first set used the snow-free scan as a 

constant subtractor where each successive DEM was differenced using the same snow-free DEM and the 

result represented cumulative snow depth. The second set was differenced using the most recent snow 

surface DEM and depicted snow depth accumulated between successive site scans. 
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Table 3-2. Whitebox Tools list applied to LIDAR derived surface DEM's. Descriptions used were taken directly from 
the Whitebox Tools User Manual 
(<https://www.whiteboxgeo.com/manual/wbt_book/available_tools/geomorphometric_analysis.html>) 

Feature Control 

Group 

Designator Settings Description 

Aspect Solar Aspect N/A Slope orientation in radians clockwise from north based 
on a polynomial fit of the elevations in a 5x5 
neighborhood surrounding each cell. 

Circular 
Variance of 

Aspect 

Solar CVA Kernal = 11 Calculates the circular variance (i.e., one minus the mean 
resultant length) of aspect for an input digital elevation 
model (DEM). Circular Variance of Aspect is therefore a 

measure of surface shape complexity, or texture. It will 
take a value of 0.0 for smooth sites and near 1.0 in areas 

of high surface roughness or complex topography. 

Multi-

Directional 
Hillshade 

Solar Hill Sun Angle = 45°, 

revolutions = 360° Performs a hillshade operation (also called shaded relief) 
on an input DEM with multiple sources of illumination. 

Northness Solar North N/A Represents northness exposure and is calculated as 
northness = cosine(aspect) x sine(slope) with units in 
radians. Northness was not a feature found in the 

Whitebox Tools and was instead calculated using a raster 
calculator in QGIS. 

Deviation from 
Mean Elevation 

Topographic DME Kernal = 11 Calculates the difference between the elevation of each 

grid cell and the mean elevation of the centering local 
neighborhood, normalized by standard deviation. This 

attribute measures the relative topographic position as a 
fraction of local relief, and so is normalized to the local 
surface roughness. 

Elevation 
Percentile 

Topographic EP Kernal = 11, SigFig = 6 Measure of local topographic position (LTP). It expresses 

the vertical position for a DEM grid cell (z0) as the 
percentile of the elevation distribution within the filter 
window. 

Mean 
Curvature 

Topographic MC N/A Calculates the mean curvature from a DEM. Mean 
curvature is the average of any mutually orthogonal 

normal sections, such as profile and tangential curvature 
(Wilson, 2018). This variable has an unbounded range that 

can take either positive or negative values. 

Relative 

Topographic 
Position 

Topographic RTP Kernal = 11 An index of local topographic position (i.e. how elevated 
or low-lying a site is relative to its surroundings) and is a 
modification of percent elevation range; and accounts for 

the elevation distribution. 

Slope Topographic Slope Units = Degrees Calculates slope gradient (i.e., slope steepness in degrees, 
radians, or percent) for each grid cell in an input DEM and 

is based on a polynomial fit of the elevations within the 
5x5 neighborhood surrounding each cell.  

Terrain 

Ruggedness 
Index 

Topographic TRI N/A A measure of local topographic relief. The TRI calculates 

the root-mean-square-deviation (RMSD) for each grid cell 

in a DEM calculating the residuals (i.e., elevation 
differences) between a grid cell and its eight neighbors. 

Relative Aspect Wind RA Azimuth = 110 Relative terrain aspect is the angular distance (measured 
in degrees) between the land-surface aspect and the 
assumed regional wind azimuth (Bohner and Antonic, 

2007). It is bound between 0-degrees (windward 
direction) and 180-degrees (leeward direction). Relative 

terrain aspect is the simplest of the measures of 
topographic exposure to wind, considering terrain 
orientation only and neglecting the influences of 

topographic shadowing by distant landforms and the 
deflection of wind by topography. 

https://www.whiteboxgeo.com/manual/wbt_book/available_tools/geomorphometric_analysis.html
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Directional 

Relief 

Wind DR Azimuth = 110, Max 

Search = Unlimited Calculates the relief for each grid cell in a DEM in a 
specified direction. Directional relief is an index of the 

degree to which a DEM grid cell is higher or lower than its 
surroundings. It is calculated by subtracting the elevation 

of a DEM grid cell from the average elevation of those 
cells which lie between it and the edge of the DEM in a 
specified compass direction. Thus, positive values indicate 

that a grid cell is lower than the average elevation of the 
grid cells in a specific direction (i.e., relatively sheltered), 
whereas a negative directional relief indicates that the 

grid cell is higher (i.e., relatively exposed). 

Fetch Wind Fetch Azimuth = 110, 

Height Increment = 
0.01 

Creates a new raster in which each grid cell is assigned the 

distance, in meters, to the nearest topographic obstacle in 
a specified direction. 

Horizon Angle Wind HA Azimuth = 110, Max 

Search = Unlimited 
Calculates the horizon angle (Sx), i.e., the maximum slope 

along a specified azimuth (0-360 degrees) for each grid 
cell in an input DEM. Horizon angle is sometime referred 

to as the maximum upwind slope in wind 
exposure/sheltering studies. Positive values can be 
considered sheltered with respect to the azimuth and 

negative values are exposed. Thus, Sx is a measure of 
exposure to wind from a specific direction. 
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Figure 3-5. Surface features created from LiDAR derived DEM’s in QGIS using Whitebox Tools for UPC bare ground 
surface on 11/15/2019. Table 3-2 summarizes the nature of these features, how they were calculated, and what 
they represent. 
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Figure 3-6. Histograms for surface feature rasters displayed in Figure 3-5. Most of the surface features display a 
normal distribution pattern except for right skewed features: Horizon Angle (HA), Circular Variance of Aspect (CVA), 
Slope, Terrain Ruggedness Index (TRI) and left skewed: Hillshade (Hill) 

 

3.5 Snow Depth Estimates 

 

The data processing for snow depth estimations was accomplished using R Studio integrated 

development environment version 3.0.386 (R Core Team, 2023). The topographic features calculated 

with Whitebox Tools were assembled into a structured dataframe representing each date specific TLS 

surface scan. The dataframes consisted of grid-cell locations, the associated topographic feature values, 

and snow depth. Two datasets were created based on the different snow depth derivation 

methodologies discussed in the following sections. 
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3.5.1 Snow Depth Estimation Methods 

 

3.5.1.a Static Predecessor 

 

The static predecessor estimation method used topographic feature values (Table 3-2) from the 

snow-free DEM to make estimates of snow depth and the resulting snow depth estimates represent the 

cumulative seasonal snow depth at the time of estimation (Figure 3-6a). The method is termed “static” 

due to the unchanging nature of the surface feature parameters used to estimate snow depth. 

 

 

Figure 3-2. (a) Representation of static predecessor snow depth estimation methodology. Topographic features are 
calculated from the initial snow free surface DEM and used in the model to estimate total snow accumulated at 
each DEM grid cell. (b) Representation of dynamic predecessor estimation methodology. Topographic features are 
calculated from each new snow affected surface and used in the model to estimate incremental snow depth. 

 

3.5.1.b Dynamic Predecessor 

 

A second method called dynamic predecessor was used for making additional snow depth 

estimates. This method differed from the static predecessor such that topographic surface feature 
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values were recalculated at each timestep to reflect the changes brought about by the new snow (Figure 

3-6b). The snow depth estimates from the dynamic predecessor method are more representative of 

natural processes and characterize the snow depth change between successive site visits. 

 

3.5.2 Machine Learning 

 

A widely implemented machine learning algorithm called XGBoost (Chen et al., 2016) was used 

to estimate snow depth via the dynamic and static predecessor methodologies (Figure 3-1, Machine 

Learning). This algorithm in part derives its name from gradient boosting, which is a machine learning 

technique that employs an ensemble of weak prediction models in the form of decision trees to make 

accurate predictions (Figure 3-7). This class of algorithm can be an effective tool for regression and 

classification problems with structured data and is recognized for its accuracy, efficiency, and feasibility 

(Alshari et al., 2021). 

Feature importance serves as a descriptive tool that quantifies the significance of individual 

model inputs in the construction of regression trees, ultimately contributing to the estimates. A feature 

exhibiting high relative importance is more effective at splitting the target variable and building trees, 

while a low relative importance indicates a poor target splitter and tree builder. In the XGBoost model, 

feature importance is closely related to the gain metric which represents the improvement in the 

model's performance achieved by splitting on an individual feature. The gain for a particular split is 

calculated by combining the scores of the left and right leaf nodes at the split and the difference 

between the combined score and the sum of the scores of the individual leaves. Feature importance 

quantifies the contribution each feature makes to the overall performance of the model and is 

calculated as the sum of the gains for each individual feature for every split in the ensemble model. The 
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feature importance is represented in a relative manner, where the aggregate of all feature importance 

equals 1. 

To begin the process, 80% of each dataset was randomly partitioned for training a model and 

the remaining 20% for testing the performance. The machine learning model was trained to estimate 

snow depth at each grid cell using the DEM derived surface feature values as parameters. The grid-cell 

locations were excluded to prevent spatial autocorrelation. The machine learning model was configured 

with a tree-based linear regression objective which attempts to minimize root mean squared error 

(RMSE) of the residuals of the model with the observed snow depths. Each trained model was tasked 

with iteratively constructing regression trees until three consecutive iterations resulted in no further 

reduction in RMSE. Furthermore, a maximum leaf depth of 6 was maintained throughout the process. 

All other model parameters related to tuning were left on the default setting for simplicity, uniformity, 

and ease of comparison purposes. Model parameter hyper-tuning was not performed given that model 

consistency was preferred in-lieu of individual optimization. After the models were tested, the 

importance values for each topographic feature were recorded along with mean absolute error, mean 

standard error, and RMSE.  

 

 

Figure 3-7. Simplified process diagram of XGBoost gradient boosting machine learning. The process starts with an 
initial prediction. Residuals are computed and used to construct a decision tree. At each branch or node of the tree, 
the feature and threshold that maximize the gain are selected for the split. Output values are calculated for each 
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leaf of the tree based on the residuals and become the new residuals for the dataset. This process is repeated, with 
each subsequent tree learning from the residuals of the previous tree and adjusting its predictions. The process 
continues until the residuals stop reducing or until a specified condition is met.  

 

In XGBoost, the process begins with an initial prediction of the target variable where prediction 

residuals are computed and used to construct a decision tree. At each branch or node of the tree, a 

similarity score is calculated for the residuals and the feature and threshold that maximize the gain in 

similarity are assigned to the split. The residual similarities in each leaf are evaluated along with the 

similarity gain from the next split. By comparing the gains, the algorithm determines the feature and 

threshold that provides the most valuable information for predicting the target variable. The output 

value for each leaf is calculated based on the residuals. This process is repeated iteratively, with each 

subsequent tree learning from the previous residuals and adjusting its predictions accordingly. The 

iterations continue until the residuals stop reducing or until a specified number of iterations is reached. 

The model assigns higher weight to the trees that contribute more to the overall performance rather 

than equal weights like in other related algorithms. Finally, the concluding prediction is made via the 

aggregate of the predictions from all the trees with their associated weights. This approach allows 

XGBoost to gradually improve its predictions by learning from the estimate residuals and incorporating 

the information gained from each tree. 

 

3.6 Sensitivity Analysis 

 

A sensitivity analysis of the UPC snow depth estimation models was conducted to see how the 

models behaved in response to changes to the inputs (Table 3-3). A base case model consisting of 80% 

training data, 5 cm resolution, 110° wind direction, cropped extent, and trimmed feature length was 

established to appropriately perform the tests. Directional Relief was identified in the initial model as a 

topographic feature of interest (TFOI) and used to indicate the effect on the model. The models were 
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first subjected to changes in the size and selection method of the original dataset that was allocated for 

training, and the response in the RMSE of the model estimates with the testing data were tracked. The 

following sensitivity tests measured changes in the TFOI as the determination of effect. First, wind 

direction was varied 30° and 60° to either side of the existing valley azimuth of 110°. Next, the resolution 

of the DEM’s and resulting topographic features was changed to 1 and 10 cm. The extent of the input 

DEM varied between a full range which included vegetated areas that persisted through the CSF and a 

cropped extent which was focused on an unobstructed region of the point cloud. Feature lengths varied 

between a full set which included all 14 of the topographic features and a trimmed set which consisted 

of only the features that exhibited a feature importance of greater than 0.1 at least once over the 

observation period. Finally, the snowpack was classified into either an accumulation or net loss state 

determined by the average change in snow height.  

 

Table 3-3. Summary of sensitivity tests performed, and the attributes tested on the snow estimation models at UPC. 
To perform the analyses a base case model consisting of 80% test data, 110° wind direction, 5 cm resolution, 
cropped extent, and a trimmed feature length were used with directional relief as an indicator feature where 
appropriate. 

Sensitivity Test Attribute Tested 

Training Size 70-90% 

Wind Direction 50, 80, 110, 140, 170° 

Resolution 1, 5, 10cm 

Extent Full, Cropped 

Feature Length All, Trimmed 

Snowpack Status Accumulation, Net Loss 

 

3.7 Model Comparison 

 

The Nash-Sutcliffe Efficiency (NSE) index was calculated for each snow depth estimation method 

and used to evaluate model performance within and between the sites (Nash and Sutcliffe, 1970) 

(Figure 3-1, Model Comparison). NSE is normally used to assess the predictive ability of hydrological 
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models and is defined by (Eq. 3-1). In a perfect model, where estimation error variance equals 0, the NSE 

will result in a score of 1. When NSE equals zero (the estimation error variance equals the variance of 

the observed time series), the model has the same predictive ability as the mean of the time series. A 

score of less than zero indicates the mean of the time series serves as a better predictor than the model 

and, in general, model simulation can be judged as satisfactory if NSE > 0.50 (Moriasi, et al., 2007).  

 𝑁𝑆𝐸 =  1 − ∑ (𝑄0𝑡  −  𝑄𝑚𝑡 )2𝑇𝑡=1∑ (𝑄0𝑡  −  �̅�0)2𝑇𝑡=1  

(Eq. 3-1) 

NSE coefficients were calculated for both the static and dynamic snow depth estimation models 

at both the UPC and Izas Experimental Catchment sites. These coefficients, along with the feature 

importance distributions provided by the machine learning model, were utilized to compare the 

performance of the static and dynamic models within each site as well as between the two sites. 
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4. RESULTS 

 

 

 

4.1 Model Behavior Assessment 

 

To frame the investigation of the nature of the model and more easily make comparisons, a 

base case model was established for the UPC dataset consisting of an extent cropped 5 cm DEM origin 

(Table 3-3). A resolution of 5 cm was selected on the basis that it was the middle of the three resolutions 

evaluated and an edge cropped DEM focused on the center of the LiDAR scene which omitted large 

vegetation intrusions that persisted through the cloth simulation ground point filter. From the base 

case, Directional Relief was selected as a feature of interest to illustrate differences between the static 

and dynamic snow depth estimation models because it had a feature importance greater than 0.6 for at 

least one observation using both approaches (Figure 4-1c). 

 

4.1.1 Base Case Time Series 

 

Snow depth at the UPC site was calculated from each TLS scan using the static predecessor 

method (Figure 4-1). Snow depth variability was apparent in the first scan (12/2/2019) and relative snow 

depth patterns emerge beginning at the following site visit (1/8/2020) where a deeper snow depth band 

appears between two relatively shallower zones. This snow depth variability pattern remains relatively 

consistent through the accumulation period (12/2/2019 – 2/25/2020) and remains during the net loss 

period as well (3/12/2020 – 3/24/2020). 
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Figure 4-1. Snow accumulation patterns at UPC (5 cm resolution, cropped) over the sampling period using the 

static surface differencing method with snow depths measured in meters. As the accumulation season progressed, 

snow depth patterns emerged with zones of consistently deeper snow (darker blue) as well as regions of relatively 

shallower snow.  

 

Examining the feature importance over the sampling period, the static depth estimation model 

resulted in high importance scores for Directional Relief (DR), Relative Topographic Position (RTP), and 

to a lesser extent Circular Variance of Aspect (CVA) (Figure 4-2). Early in the accumulation period, RTP 

had the highest importance, but as the season progressed DR importance increased inversely with RTP. 

During the end of the sampling period, DR displayed a small decline that was supplanted by an increase 

in CVA importance. Overall, these three topographic features account for most of the total importance 
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within the static estimation model. The dynamic snow depth model found Aspect, CVA, DR, Fetch, 

Horizon Angle (HA), Multi-Directional Hillshade (Hill), Mean Curvature (MC), Northness (North), Relative 

Aspect (RA), and RTP all to be at least momentarily important estimators (Figure 4-2). DR was the 

highest source of importance over the observation period. The behavior of the feature importance in 

the dynamic model is characterized by a flashy nature. 

 

 

Figure 4-2. Base case (5 cm, cropped) individual feature importance time series for all topographic features 
computed for the static and dynamic snow estimation method. The static method feature importance is 
concentrated on Directional Relief (DR) and Relative Topographic Position (RTP). The dynamic method feature 
importance was comprised of more features including: Circular Variance of Aspect (CVA), DR, Horizon Angle (HA), 
Mean Curvature (MC), Northness (North), Relative Aspect (RA), and RTP. 

 

The Directional Relief for the initial bare ground scan (11/15/2019) shows a distinct pattern with 

a sheltered (positive values) circular-like structure formed with exposed zones (negative values) on the 
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center-left side and to a lesser extent in the upper-right (Figure 4-3). As snow was deposited over the 

season (12/2/2019 – 2/25/2020) the inherent Directional Relief pattern persisted but the distinction 

between the exposed and sheltered zones became increasingly muted, i.e., the surface was smoothed. 

As net loss proceeded (3/12/2020 – 3/24/2020), the prevailing directional exposure structure was 

decomposed and gave way to the emergence of a new pattern as the snowpack receded. 

 

 

Figure 4-3. Directional Relief depicted from each TLS scan for the duration of the collection period at the UPC site. 
Bare ground scene represented on 11/15/2019. Snow accumulates at the site starting on 12/02/2019 and ending 
on 2/25/2020. Net loss of snow depth becomes prevalent on 03/12/2020 through 03/24/2020. Positive values 
relatively sheltered regions and negative values indicate relative exposure.  
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4.1.2 Sensitivity Analysis  
 

The training data percentage supplied to build the depth estimation models was adjusted from 

70-90% in 10% increments and two distinct partitioning methods were used to observe the effect on the 

model estimates (Figure 4-4). The contiguous selection method resulted in decreased RMSE for both 

methods of snow depth estimates as the supplied training data size was increased. The static model had 

a lower median RMSE than the dynamic model but had wider IQR’s and minimum-maximum ranges of 

RMSE distributions. Randomly selecting the testing partition resulted in minor changes in RMSE 

distributions for both models regardless of the training size allocated and the dynamic model produced 

lower RMSE distributions than the static model. Compared by partition type, the random selection 

method outperformed the contiguous method when training data supplied was less than 90% of the 

available dataset. 
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Figure 4-4. Training data partition and selection method sensitivity analysis for static and dynamic models. Changes 
to the amount of the training data supplied affected the contiguous selection method more than the random 
sample method with decreasing root mean squared error (RMSE) of snow depth estimates as the training partition 
was increased. The random sample method was more resilient to changes in the size of the training partition in 
both the static and dynamic methods.  

 

 The wind direction used to create Directional Relief was varied from the UPC valley azimuth 

(110°) by 30° and 60° on either side and the feature importance was calculated using each method 

(Figure 4-5). The static method resulted in higher importance toward the end of the observation period 

and the directions used followed a similar pattern except for the third observation (1/24/2020) where 

directions of 50° and 80° resulted in high feature importance whereas the rest of the directions cause 

low feature importance. The dynamic method was less ordered, and a direction of 110° resulted in high 

importance at the second observation (1/8/2020) which decreased for the remainder of the 
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observations. The other directions tested produced mostly low feature importance scores with 80° and 

170° wind directions resulting in the highest importance at various points on the timeline. 

 

 

Figure 4-5. Directional Relief feature importance for the various wind directions tested separated by estimation 
method. The importance of Directional Relief to the depth estimates depends on the wind direction used in the 
feature creation for both the static and dynamic models. The importance for the wind direction of 110 degrees 
(valley direction) has been bolded for both methods. 

 

With the static method, Directional Relief initially showed low importance but increased 

throughout the season reaching peak in late February (Figure 4-6a) as input resolution was varied. The 1 

and 5 cm models displayed rapid increases in importance whereas the 10 cm model displayed a more 

gradual increase in importance. The dynamic method exhibited a sharp increase in feature importance 
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scores upon the addition of snow, followed by a rapid decline back to near-initial values. Representing 

the snow surface at finer resolutions resulted in higher Directional Relief importance for both methods 

with larger differences over the sampling period occurring from the static method.  

 

 

Figure 4-6. Sensitivity analysis illustrated using Directional Relief. a) Static and dynamic method Directional Relief 
feature importance for 1, 5, 10 cm resolutions, b) Static and dynamic method Directional Relief feature importance 
for cropped and full extent DEM’s, c) Static and dynamic method Directional Relief feature importance for trimmed 
and full topographic feature lengths, d) Static and dynamic method Directional Relief feature importance for 
accumulation period vs. net loss period. 

 

There was some difference in the feature importance for the full extent model compared to the 

cropped model, with the largest difference in the static model occurring at the end of the sampling and 

near the beginning for the dynamic model (Figure 4-6b). Where deviation occurred in the static model 

the cropped extent resulted in higher importance. The dynamic model varied between having higher 
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importance resulting from the cropped extent and the full extent. For both models, the difference in 

directional relief importance related to the extent used was marginal. 

From the static method, Directional Relief was nearly unaffected using a trimmed topographic 

feature length with the largest difference occurring at the end of the observation period (Figure 4-6c). 

The dynamic method was similarly unaffected by the length of the feature set. When the Directional 

Relief feature importance was evaluated during the accumulation period (n=16) versus the net loss 

period (n=12), the static method yielded lower feature importance from the accumulation phase (Figure 

4-6d). For the dynamic method, the accumulation phase (n=16) resulted in higher Directional Relief 

importance than the net loss phase (n=12). The distributions of accumulation phase importance were 

wider than net loss distributions for both methods. 

 

4.2 Evaluation of Accumulation Models 

 

4.2.1 Feature Importance Basis 

 

When importance scores less than 10% were withheld, the static model (n=174) had a higher 

median (static = 0.28, dynamic = 0.16), wider IQR, and higher maximum importance than the dynamic 

method (n=288) (Figure4-7a). When the distributions were grouped by the tested resolutions, the static 

method distributions resulted in higher medians, wider IQR’s, and higher maximum ranges than the 

dynamic method in each case (Figure 4-7b). For the static method, the 10 and 5 cm resolutions lead to 

similar importance distributions while the 1 cm resolution resulted in an increased median, IQR, and 

maximum range. Resolution changes affected the dynamic method importance distributions less, and 

resulted in several more outlying high importance observations as resolution was increased from 10 to 1 

cm. 
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Figure 4-7. a) Feature importance distributions for static and dynamic methods after removal of low importance 
features (importance < 0.1). The static method results in wider distributions of feature importance with higher 
medians. When resolution is increased, the feature importance distribution and median increases while the 
dynamic method was less affected. 

 

4.2.2 Topographic Feature Importance Distributions 

 

When importance scores of less than 0.1 were withheld from all model combinations, the static 

method was overwhelmingly influenced by Directional Relief (highest median and maximum 

importance) and Relative Topographic Position (Figure 4-8). Only three additional topographic features 

(CVA, EP, and TRI) made contributions higher than 0.25 and a total of 8 features registered importance 

values above the threshold over the sampling period. The dynamic model features with the highest 

contribution to depth estimates were Directional Relief, Northness and Relative Aspect. These three 
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features had narrower distributions than the high influence features from the static model. Throughout 

the dynamic model timeline, 13 topographic feature sources contributed to the snow depth estimates. 

 

 

Figure 4-8. Topographic feature importance scores after removal of low importance scores (importance < 0.1). The 

static method had eight topographic features register importance scores above the threshold with Directional Relief 

(DR) and Relative Topographic Position (RTP) making the highest contributions to the snow depth estimates. The 

dynamic method had 13 topographic features with importance scores higher than the threshold. 

 

4.2.3 Model Performance 

 

Based on the Nash-Sutcliffe Efficiency (NSE), the dynamic model reached a maximum NSE of 

0.97 (2/25/2020) and outperformed the static model by about 0.07 over most of the season with 

exception of the last observation (Figure 4-9a). The static method reached a maximum NSE of 0.92 on 
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2/11/2020. The maximum difference in NSE favoring the dynamic method was 0.09 (1/24/2020) and the 

maximum difference favoring the static method was 0.13 (3/24/2020). The average snow depth seen by 

each method was included to provide additional context for the two estimation models. The snow depth 

from the static method was larger than the dynamic method because the static method referenced the 

total snow accumulation whereas the dynamic method referenced the incremental snow accumulation 

or snow depth change from the perevious measurement date (Figure 4-9b).  

 

 

Figure 4-9. a) UPC average model NSE coefficients for static and dynamic methods. The dynamic method performed 
approximately 0.07 better than the static method excluding the last estimate. b) Average snow depth over the study 
period associated with each estimate method. 
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4.3 Izas Experimental Catchment Analysis 

 

Snow depth at the Izas site was calculated from each TLS scan during the 2014 snow season 

using the static predecessor method (Figure 4-10). Snow depth patterns remain relatively consistent 

over the season with a majority of the catchment resulting in depths of 0-4 m. Small regions, 

predominantly in the south and north, consistently accumulated snow depths greater than 4 m. Holes 

within the catchment represent areas where the TLS instrument was obstructed from making depth 

measurements. 

 

 

Figure 4-10. Snow accumulation patterns at Izas Experimental Catchment over the 2014 sampling period using the 

static surface differencing method and snow depth measured in meters. A majority of the catchment exhibits 

lower relative snow depths, while smaller localized areas consistently accumulate deep snow (dark blue areas). 
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From the static method, the features at the Izas catchment with the highest importance were 

Horizon Angle and Relative Topographic Position, with Directional Relief and Wind Fetch making minor 

contributions to snow depth estimates (Figure 4-11). The dynamic model had more features that 

provided meaningful contributions to the snow depth estimates to include: Aspect, Relative Aspect, 

Relative Topographic Position, Horizon Angle, Directional Relief, and Total Ruggedness Index. The 

topographic features from the dynamic model exhibited more temporal variability than those from the 

static model which in comparison remained relatively consistent over the observation period. 

 

 

Figure 4-11. Individual feature importance time series for all topographic features computed for the static and 
dynamic snow estimation method at Izas. The static method feature importance is concentrated to Aspect, CVA, DR, 
Fetch, HA, and RTP. The dynamic method feature importance is made up of more topographic features including: 
Aspect, CVA, DR, DME, Fetch, HA, RA, RTP, and TRI.  
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From the static method, individual feature importance distribution minimum and maximum 

ranges and IQR’s are small (Figure 4-12). Six topographic features registered importance over the 

threshold and Relative Topographic Position and Horizon Angle had the highest median importance. 

Distributions from the dynamic method exhibited more variability in individual feature importance than 

the static model. The minimum-maximum ranges and IQR’s were both much greater than their static 

counterparts. A total of seven topographic features exceeded the threshold where Aspect and Relative 

Aspect displayed the highest median importance.  

 

 

Figure 4-12. Topographic feature importance scores after removal of low importance scores (importance < 0.1). The 

static method had six topographic features register importance scores above the threshold with Horizon Angle (HA) 

and Relative Topographic Position (RTP) making the highest contributions to the snow depth estimates. The 
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dynamic method had 7 topographic features with importance scores higher than the threshold. The distributions 

from the dynamic method tended to be wider than those from the static method. 

 

4.3.1 Izas Model Performance 

 

In the Nash-Sutcliffe test between modeled and observed snow depth, three out of the four 

dynamic estimates performed better than the static method estimates (Figure 4-13a). The dynamic 

model outperformed the static model by approximately 0.01, whereas on the occasion where the 

reverse was true, the static model was approximately 0.05 better. As in the UPC experiment, the snow 

depth for the static model references total snow accumulation over the season, while the dynamic 

model represents the snow accumulated between samples (Figure 4-13b). 
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Figure 4-13. a) Izas average model NSE coefficients for static and dynamic methods. The dynamic model performed 
better by approximately 0.01 for three out of the four observations with the largest disparity occurring where the 
static model outperformed the dynamic method by approximately 0.05. b) Average snow depth over the study 
period associated with each method. 

 

4.4 Site Comparison 

 

The model performance was generally better at UPC than at Izas. At UPC using the 5 cm cropped 

extent, the NSE coefficients for both methods improved over the initial sampling period and fell towards 

the end (Figure 4-14a). At Izas, the NSE remained more constant over the duration of the observation 

period. The lowest average NSE coefficients from both methods at UPC are approximately even with the 

highest average NSE coefficients at Izas. When comparing the NSE distributions between snow depth 

estimation sites, Izas (n=16) displayed a narrower distribution and lower median than the NSE 
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distributions from the UPC site (n=28) (Figure 4-14b). Considering the two depth estimation methods, 

the NSE distributions did not differ substantially between the static and dynamic models at Izas. 

However, at UPC, the distributions from the dynamic method had a wider IQR, larger total range, and 

higher median than the NSE from the static method.  

 

 

Figure 4-14. a) Mean NSE coefficients by site plotted on common water-day timeline displayed on the x-axis. The 
NSE coefficients from UPC are higher than the coefficients from Izas where the lowest coefficients from UPC are 
approximately even with the highest coefficients from Izas. b) Distribution of NSE scores by site and method. 
Between sites, Izas had lower average NSE and narrower distributions than UPC using the static and dynamic 
estimation methods.  
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5. DISCUSSION 

 

 

 

Snow distribution modeling is a key area of research aimed at enhancing our understanding of 

the complex spatial and temporal distribution of snow. Traditionally, these models have relied on static 

representations of the snowfall affected surface, neglecting the dynamic nature of snow-affected 

topography and its influence on snow distribution. However, a novel approach has been implemented 

(Figure 3-1), incorporating dynamic topography as a key factor in snow accumulation modeling. This 

methodology recognizes the importance of accurately representing the evolving surface morphology 

and its impact on snow depth patterns. By considering dynamic topography, this modeling technique 

aims to provide a more representative depiction of the actual processes governing snow distribution. 

Previous research has established the consistency of inter-seasonal spatial variability in 

snowpack, attributing it to the similarity of meteorological drivers, gradual land cover changes, and 

relatively stable topographical controls over time (Liston and Sturm, 1998; Deems et al., 2008; Sturm 

and Wagner, 2010; Mendoza et al., 2020). This study employs a unique approach by examining the intra-

seasonal variability of snow distribution with a highly capable machine learning regression algorithm, a 

novel array of topographic features, and considers snow depth at spatial resolutions much finer than 

contemporary spatially distributed snow modeling, which typically range from meters to kilometers 

depending on the application objectives, computational resources, and level of detail required (Liston 

and Elder, 2006; Molotch and Margulis, 2008; Richter et al., 2021). To optimize a machine learning 

model, a common practice is hyper-parameter tuning, which involves systematically exploring different 

combinations of settings such as learning rate, regularization parameters, and depth. However, in our 

analysis, we decided not to undertake this time-consuming process due to the large number of models 

involved and previous research suggesting minimal impact on feature importance and model 
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performance (Revuelto, 2020). By incorporating these alternative topographic variables at small spatial 

scales (Figure 4-1), the study expands our understanding of the complex interactions influencing snow 

distribution dynamics within a single snow season. 

The sensitivity analysis conducted as part of the first objective yielded important insights into 

the behavior and characteristics of the static and dynamic machine learning based snow depth models. 

By varying parameters such as training data size and selection method, predominant wind direction 

used in feature creation, DEM resolution, scene extent, predictor feature length, and snowpack phase, 

we gained a deeper understanding of their effect on each model’s behavior and performance over a 

single snow accumulation season. Through varying the size and selection style of model training data, a 

random selection method was more consistent among recommended partition sizes (70-80%) and 

resulted in lower evaluation metrics than training selection using a contiguous method (Figure 4-4). 

Next, the principal wind direction used for feature creation was changed to observe the effect on 

individual feature importance when estimating snow depth (Figure 4-5). Site specific wind direction was 

a critical factor for the creation and representation of wind-dependent topographic features used in 

model estimates and affected the relative importance metric of these features. The sensitivity analysis, 

which focused on the Directional Relief topographic feature, revealed that resolution had the most 

significant impact on the performance of both the static and dynamic snow accumulation models (Figure 

4-5a). This sensitivity can be attributed to the different representations of spatial structures derived 

from the surface, which in turn affect the derived topographic features (Figure 3-5). The models 

exhibited a moderate sensitivity to the snowpack phase, where the dynamic model had higher 

Directional Relief importance during accumulation and the static model during net loss (Figure 4-5d). It 

is important to highlight that the primary focus of this methodology is on snow accumulation processes, 

and as such, the estimate of snow depth based on topographic surface features during ablation periods 

was not the intended application at the outset. Interestingly, changes in DEM extent and predictor 
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variable lengths had minimal effects on topographic feature importance, indicating that these factors 

had a much lower influence on each model’s behavior and overall performance (Figure 4-5b-c). These 

findings emphasize the value of selecting an appropriate DEM resolution and understanding the 

limitations of the models when applied to different snowpack phases. 

The second objective of this study was to analyze the behavior of static and dynamic snow 

depth estimation models on a controlled dataset, focusing on their performance and characteristics 

throughout a single snow season. From the methodology (Figure 3-1) and results presented, we aimed 

to gain insights into their behaviors and reveal any distinct traits exhibited by each modeling approach. 

The analysis of the static and dynamic snow estimation models in the context of topographic feature 

importance time series analysis revealed distinct patterns in their behavior (Figure 4-2). Of the 14 snow 

depth predictors examined, the static model displayed a higher reliance on two key features, Directional 

Relief and Relative Topographic Position, and displayed a higher overall median feature importance over 

a single accumulation season (Figures 4-7 and 4-8). The estimates of snow depth were substantially 

influenced by these features, highlighting their strong association with accumulation processes. These 

findings align with previous studies that have utilized similar topographic features in various frameworks 

such as binary regression, multiple linear regression, and random forest machine learning (Revuelto et 

al., 2014; 2020). Differing from its role as a strong estimator of snow depth in earlier research (Molotch 

et al., 2005), Wind Fetch had a relatively milder influence on the estimates from the static model and 

was primarily associated with the initial accumulation of the snowpack. However, the low importance of 

Wind Fetch in this study may have been masked by the superior estimation capability of other wind 

related features such as Directional Relief, Horizon Angle, and Relative Aspect. In contrast to the static 

model, the dynamic model demonstrated a more diverse and nuanced approach, identifying a total of 

13 different topographic features at a lower median importance value which were useful for snow depth 

estimates (Figures 4-2 and 4-8). This finding suggests that the dynamic model encompasses a broader 
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set of factors and spatial structures to capture the intricate dynamics of snow accumulation tendencies. 

By incorporating a wider range of topographic features, the dynamic model allows for a better 

representation of the complex relationship between changing surface characteristics and snow 

distribution patterns within a single accumulation season. 

 The evaluation of the dynamic and static snow accumulation models based on the Nash-Sutcliffe 

snow depth performance metric revealed the superiority of the dynamic model over most of the 

sampling period (Figure 4-9). This improved performance can be attributed to the dynamic model's 

ability to leverage intra-seasonal structures of the snow-affected surface, resulting in a more accurate 

representation of actual snow accumulation processes. In contrast, the static model relied on a snow-

free surface representation, which became anachronistic after ensuing snow depositions. The dynamic 

model's utilization of changing topography enabled it to adapt and account for the evolving snowpack 

surface, taking into consideration factors such as wind redistribution, snow-crystal metamorphism and 

settling, sublimation, and the changing spatial distribution of snowfall. Through the incorporation of 

these processes, the dynamic model demonstrated a higher degree of accuracy in snow depth 

estimates. In contrast, constrained by a fixed representation of the snow-free surface, the static model 

was unable to portray the evolving nature of the intra-seasonal snow surface and therefore exhibited 

lower performance. 

 The last objective of this study focused on evaluating the performance of machine learning snow 

accumulation methods under diverse conditions of location, scale, and sampling frequency. To assess 

the robustness and generalizability of these methods, a comparison was made between the models 

developed for the UPC site with models generated from Izas, which characterized an operationally 

representative hydrologic unit. To ensure the integrity of the modeling process, the models were 

individually developed at each site prior to comparison. This approach was necessary because tree-

based models are highly sensitive to the training data they are provided, requiring comprehensive 
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coverage of the full range of response values (Horning, 2010). As a result, the models lack transferability 

between different snow study sites, which aligns with the expected nature of these models (Erxleben et 

al., 2002; Revuelto et al., 2020). By examining the models' performance across different locations, 

scales, and temporal resolutions, valuable insights were gained regarding their ability to effectively 

capture and predict snow depth in distinct environments. 

 The comparison between the Izas Experimental Catchment and the UPC site was conducted by 

analyzing their NSE scores and distributions using the static and dynamic models. Notably, the dynamic 

method demonstrated greater improvement in performance at UPC compared to the Izas site (Figure 4-

14a). Several factors could explain this disparity in model performance. The coarser resolution (1 m 

versus 5 cm) of the DEM at Izas likely impacted the representation of surface structures, resulting in 

different depictions of derived topographic features compared to UPC. At the Izas site, the extended 

interval between TLS scans permitted a greater opportunity for meteorological and environmental 

forcings to influence the snow-affected landscape. The lower frequency sampling increased the 

prevalence of unaccounted deposition events, wind redistribution, and sublimation which likely 

impacted the accuracy of the depth estimates and could explain the poor performance of the dynamic 

model, especially on the third sampling date (Figure 4-13a). Most notably, the two sites are situated in 

distinct locations and exhibit notable differences in scale. To assume the prevalence of similar 

meteorological conditions and process-scales at both sites would be erroneous (Blöschl, 1999), 

particularly given the alpine location of Izas and the potential intensity disparity of mechanisms like 

wind-scour and redistribution. Additionally, the increased terrain complexity at Izas resulted in a wider 

range of topographic feature values and an incomplete surface DEM which may have resulted in 

reduced performance (Figures 2-2c; 4-10). The holes in the DEM likely resulted from landform 

obstruction to TLS views despite using multiple acquisition locations. The unobserved regions could have 

a tendency for deeper accumulation zones and their exemption would introduce bias to the estimation 

https://scholar.google.com/citations?user=AFibUF4AAAAJ&hl=en&oi=sra
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models. Lastly, Izas (Figure 4-10) experienced approximately four times as much snow deposition as UPC 

(Figure 4-1), which may have posed challenges for the models to accurately estimate extreme snow 

depths (Revuelto et al., 2020). Taken together, these factors contribute to the observed differences in 

model performance between Izas and UPC, highlighting the importance of considering site-specific 

characteristics such as DEM and temporal resolution, terrain variability, and snow deposition 

magnitudes when evaluating the robustness and applicability of terrain-based machine learning snow 

accumulation models. 
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6. CONCLUSION 

 

 

 

This study aimed to advance our understanding of snow accumulation mechanisms and the 

influence of scale on surface accumulation models while addressing the driving research questions, 

objectives, and hypothesis. The driving research questions involved the significance of intra-seasonal 

snowfall resurfacing on accumulation mechanisms and the impact of scale on variable surface 

accumulation models. The objectives were designed to conduct a sensitivity analysis to gain insights into 

the behavior of these models, explore the disparities between static and dynamic snow accumulation 

modeling approaches, and evaluate their performance under varying conditions. The proposed 

hypothesis that incorporating variable surface accumulation models that consider intra-seasonal snow 

resurfacing would produce more accurate snow depth estimates compared to accumulation models 

utilizing a static snow-free surface is supported through the methodology and results presented. 

First, we performed a sensitivity analysis on the models to gain greater understanding of how 

they responded to changes in training data size and selection method, wind direction, resolution, extent, 

predictor size, and snowpack phase (Objective 1). We found that the models were susceptible to 

variations in training data size using a contiguous partition method, wind direction in feature creation, 

and input resolution where the patterns of the surface structure were represented differently according 

to cell resolution. As scale is coarsened the surface feature structures become subdued resulting in a 

decrease in importance from highly predictive features such as Directional Relief. The models 

demonstrated a notable level of resiliency when subjected to variations in training data sizes under the 

random selection method, DEM extents that may deviate from the actual ground surface 

representation, and the number of topographic features utilized for making depth estimates. 
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Next, using a constrained dataset at UPC, we compared the static and dynamic snow 

accumulation modeling approaches and revealed their differences in capturing the complexities of snow 

distribution (Objective 2). In the evaluation of topographic feature importance, we found that the 

dynamic model incorporated more surface features at lower median importance to use in the snow 

depth estimates over the course of a single accumulation season than the static surface model. In doing 

so, the dynamic surface model performed approximately 0.1 better than the static surface model in a 

Nash-Sutcliffe efficiency test. Through this analysis, we gained valuable insights into the characteristics 

and behavior of both static and dynamic models, shedding light on their strengths and limitations.  

Finally, we evaluated the performance of machine learning snow accumulation methods under 

different conditions of location, scale, and temporal resolution by performing an analysis on a 

hydrologically operational dataset which aimed to assess the robustness and generalizability of the 

static and dynamic models (Objective 3). In moving to a site with much coarser cell-resolution, 

significantly larger area coverage, lower temporal resolution, and including more extreme terrain with 

an incomplete surface picture, we found that the models at Izas performed worse than those derived at 

UPC in a Nash-Sutcliffe efficiency analysis. In most cases at Izas where the dynamic model outperformed 

the static model, the average improvement was only approximately 0.01 on a Nash-Sutcliffe efficiency 

index. By subjecting the models to widely varying conditions, we examined their ability to adapt and 

provide reliable estimates of snow depth in diverse snow modeling regions and identify ways to improve 

their capability for further applications.  

Through this research, we have advanced our understanding of snow accumulation 

mechanisms, the influence of scale on surface accumulation models, and the potential of dynamic 

models in improving snow depth estimations. We strongly recommend the integration of this approach 

to intra-seasonal snow accumulation modeling, which leverages the benefits of a variable surface, into 

the framework of relevant spatially distributed snow models such as iSnowbal (Marks et al., 1999), 



54 

 

SnowModel (Liston and Elder, 2006), and Alpine3D (Lehning et al., 2006). While the machine learning 

algorithm employed in this study demonstrated site-specific effectiveness, the inclusion of more 

advanced artificial intelligence architectures, such as neural networks capable of spatiotemporal 

learning, would enhance snow accumulation modeling when applied in conjunction with a dynamic 

surface. The inclusion of airborne LiDAR acquisitions of the Izas site would further enhance this dataset 

for future use. A nadir perspective of the snow and ground surface would fill the topographic gaps 

created by obstructions to the TLS instrument and provide a more complete surface from which to 

model snow processes and reveal intra-seasonal behaviors. This knowledge is vital for enhancing water 

resource management, particularly in the context of climate change impacts, and provides a foundation 

for further advancements in snowpack modeling techniques. 
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