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Kinematically redundant manipulators have been proposed for use in remote
or hazardous environments due to their potential for tolerance to joint failures.
This article defines a local measure of failure tolerance based on the worst­
case dexterity following a locked joint failure. Optimal values of this measure
are identified and related to the required structure of a Jacobian matrix. It
is shown that it is trivial to derive manipulator configurations that correspond
to the desired Jacobians with the single exception of a manipulator with seven
rotational joints that is required to perform tasks which require fully general
linear and rotational velocities of the end effector.

1.

Kinematically redundant manipulators have long been proposed for complicated tasks
due to their inherently higher degree of dexterity. Recently, there has been an in­
creased interest in the use of such manipulators in remote or hazardous environ­
ments due to their potential for failure tolerance (Colbaugh and Jamshidi, 1992).
Researchers have analysed the reliability of robotic systems (Schneider et al., 1994),
developed techniques for identifying failures (Visinsky et al., 1993), and even designed
joint drives with multiple actuators (Wu ei al., 1991). This article is concerned with
the most basic aspect of a robotic manipulator, i.e., its kinematics.

It has been previously shown that the kinematic structure of a redundant manip­
ulator must be carefully designed to guarantee that the additional degrees of freedom
support failure tolerance (Maciejewski, 1990). The classic example of a non-failure tol­
erant design is the common kinematic structure that mimics the human arm. Locking
the elbow joint of such an arm constrains the workspace of the wrist to lie on a sphere
centered at the shoulder despite the fact that there remain six degrees of freedom in
the mechanism.
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To design a kinematically failure tolerant redundant manipulator, one must first
decide on a definition of failure tolerance. One possibility is to focus on local dex­
terity measures centred around the manipulator Jacobian (Maciejewski, 1990; Lewis
and Maciejewski, 1994a). An alternative is to consider the global characteristics of
the manipulator such as its workspace (Lewis and Maciejewski, 1994b; Paredis et al.,
1994). Both of these measures are related since workspace boundaries result in ma­
nipulator singularities that are easily, identified through the Jacobian. In this work,
the local definition of failure tolerance centred on the desirable properties of the ma­
nipulator Jacobian is used and is mathematically defined in the following section.
Section 3 then presents several examples of optimally failure tolerant Jacobians as
well as manipulator configurations derived from these J acobians. Since most manip­
ulators consist of primarily rotational joints, the constraints imposed by such designs
are considered in Section 4. Finally, the conclusions of this work are presented in the
last section.

The dexterity of manipulators is frequently quantified in terms of the properties of
the manipulator Jacobian matrix which relates end-effector velocities to joint angle
velocities. The Jacobian will be denoted by the m x n matrix J where m is the
dimension of the task space and n is the number of degrees of freedom of the manip­
ulator. For redundant manipulators n > m and the quantity n - m is the degree of
redundancy. The manipulator Jacobian can be written as a collection of columns

(1)

where i, represents the end-effector velocity due to the velocity of joint i. For an
arbitrary single joint failure at joint t, assuming that the failed joint can be locked,
the resulting m by n - 1 Jacobian will be missing the f-th column, where f can
range from 1 to n. This Jacobian will be denoted by a preceding superscript so that
in general

ij-l ij+l··· in] (2)

The properties of a manipulator Jacobian are perhaps best illustrated through the
use of the singular value decomposition (SVD) which can be defined as

J = UDVT (3)

where U is an m x m orthogonal matrix of the output singular vectors, V is an
n x n orthogonal matrix of the input singular vectors, and D is a diagonal matrix of
the form

Drn x n =

o

o 0

o

o
o Urn 0

o

o

o

(4)
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where the a; are the singular values which are typically ordered from largest to small­
est. Most local dexterity measures can be defined in terms of simple combinations
of these singular values such as their product (determinant) (Yoshikawa, 1985), sum
(trace) (Baillieul, 1987), or ratio (condition number) (Angeles ei al., 1987; Klein and
Miklos, 1991). Task specific dexterity measures also require knowledge of the output
singular vectors (Chiu, 1988). The most significant of the singular values is Urn, the
minimum singular value, since it is by definition the measure of proximity to a singu­
larity and tends to dominate the behaviour of both the manipulability (determinant)
and the condition number. The minimum singular value is also a measure of the
worst-case dexterity over all possible end-effector motions.

The definition of failure tolerance used in this work is based on the worst-case
dexterity following an arbitrary locked joint failure. Since J Urn denotes the minimum
singular value of J J then JUrn is a measure of the worst-case dexterity if joint f
fails. If all joints are equally likely to fail, then a measure of the worst-case failure
tolerance is given by

n
min(J urn)
J=l

(5)

To insure that manipulator performance is optimal prior to a failure, an optimally
failure tolerant Jacobian is further defined as having all equal singular values due to
the desirable properties of isotropic manipulator configurations (Angeles, 1992; Klein
and Blaho, 1987; Klein and Miklos, 1991). Under these conditions, to guarantee
that the minimum JUrn is as large as possible they should all be equal. Physically,
this can be interpreted as attempting to balance the use of all joints so that they
contribute equally to the velocity of the end effector. It is easy to show that the
worst-case dexterity of an isotropic manipulator that experiences a single joint failure
is governed by the inequality

n J R-mmine urn) ::; U --
J=l n

(6)

where U denotes the norm of the original Jacobian. The best case of equality occurs if
the manipulator is in an optimally failure tolerant configuration. The above inequality
makes sense from a physical point of view since it represents the ratio of the degree
of redundancy to the original number of degrees of freedom. This inequality can be
used to determine the degree of redundancy required to maintain a minimum amount
of dexterity in the event of any single joint failure.

Using the above definition of an optimally failure tolerant configuration one can
identify the structure of the Jacobian required to obtain this property. In terms of
the SVD of J, the matrix of output singular vectors, U, simply represents a rotation
of the end-effector coordinate frame so that it does not affect the configuration of
the manipulator and can be arbitrarily set to identity without a loss of generality.
In addition, since the manipulator is initially in an isotropic configuration, only the
matrix VT needs to be considered. If VT is partitioned between the m and m + 1
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rows in the following manner

vr.i V2,l

Vl,2 V2,2
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Vn,l

Vn,2

vn,m
(7)

Vn,m+l

vn,n

then the n - m rows V~+l to v;:' will span the null space and the upper m rows
vI to v~ will be equivalent to J so that the i-th column of J can be taken to be

Vi,l

ji ==
Vi,2

(8)

Vi,m

The magnitude of the contribution of an individual joint i to the motion at the end
effector is given by the norm of ji. Since the definition of an optimally failure tolerant
configuration requires that each joint contributes equally to the motion at the end
effector, this translates into a constraint that all of the norms of the columns of the
Jacobian be equal. In the following discussion, the scalar R; will be used to denote
the portion of joint i's motion that is transformed into the range space of J, so that

m

(9)

The optimally failure tolerant criteria can be alternatively described as requiring
each joint to contribute equally to the null space of the Jacobian transformation.
Physically, this means that the redundancy of the robot is uniformly distributed
among all the joints so that a failure at any joint can be compensated for by the
remaining joints. An individual joint's contribution to the null space, denoted by Ni,
is given by

n

Ni == I: V;,k
k=m+l

(10)

It is easy to see that the condition that all of the R; be equal is equivalent to all of
the N, being equal since

(11)
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due to the fact that V is an orthogonal matrix. While these conditions are mathe­
matically equivalent, one or the other may be computationally preferable depending
on the degree of redundancy relative to the dimension of the end-effector space.

To summarize, an optimally failure tolerant Jacobian is defined as being isotropic,
i.e. Ui = U for all i, and having a maximum worst-case dexterity following a failure,

i.e. one for which f Urn =uJn ~ m for all f. The second condition is equivalent to

having the columns of the Jacobian of equal norms. The following section contains
several illustrative examples of such manipulator J acobians.

The simplest example of an optimally failure tolerant configuration is given by the
following Jacobian

J= [-ft
o
~ ~ ~]

-If If
(12)

One planar 3R manipulator configuration which possesses this Jacobian is illustrated
in Fig. 1.
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Fig. 1. Optimally failure tolerant' configuration for a planar 3R manipulator
generated from an optimally failure tolerant Jacobian.

The null space at this configuration is given by

(13)

which illustrates that each joint contributes equally to the null space motion thus
distributing the redundancy proportionally to all degrees of freedom. Geometrically,
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it is easy to see that the three vectors iI, i2, and i3 are all 1200 apart which results
in a balanced coverage of the planar workspace. If the three possible joint faihires are
considered, one can show that

f (1'2 = jf, f =1, 2, 3 (14)

which satisfies the optimally failure tolerant criterion. The end-effector motion which
suffers most from a failure at one of the joints is, intuitively, in the direction of the
column of the Jacobian which is associated with that joint, so that

J _ jJ
U2 - lIitll (15)

Figure 2 illustrates the two extremes of mint=l (Jurn) for a planar three degree-of­
freedom manipulator.

It is instructive to consider the effects of adding another degree of freedom to this
planar manipulator Jacobian and applying the conditions for optimal failure tolerance.
For this case one can identify an entire family of optimally failure tolerant Jacobians
which can be represented by the matrix

If 0 Ifcos a If'- 2'sIna

0 If j"fsina Ifcos a

VT = (16)

If 0 -Ifcosa Ifsin a

0 vA vA' -vAcos a- 2' SIna

where sin a and cos a are the sine and cosine of an arbitrary parameter a describing
this family. This family of manipulator configurations is illustrated in Fig. 3.

The worst-case dexterity for an arbitrary joint failure in this case is given by

f (1'2 =If, f =1, ... , 4 (17)

If one considers optimal failure tolerance to both single and double joint failures, then
the optimal Jacobian is given by a = k1r / 4 where k is any odd integer.

In order to specify an arbitrary end-effector velocity in three-dimensional space,
the simplest redundant manipulator must possess four joints. An optimally failure
tolerant Jacobian for such a manipulator is given by

-Ii fh fh fh
0 -If If If

V T = (18)
0 0 -If If
1 1 1 1
2' 2' 2' 2'
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Fig. 2. An illustration of the extremes in the failure tolerance index. The
connguration is defined as max(minj=l (JUrn)) whereas an ex-

of the worst possible failure tolerance measure is given by the
configuration with 2 U2 =3 U2 = o.
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Fig. 3. A family of optimally failure tolerant configurations for a planar 4R
manipulator corresponding to a family of optimally failure tolerant
Jacobians.

It is easy to see that the effects of the four joints of this manipulator symmetri­
cally span the three-dimensional end-effector space. The worst-case dexterity for an
arbitrary joint failure is given by

1
f 0"3 == -, f == 1, ... ,4 (19)

2

The canonical structure of an optimally failure tolerant Jacobian is obvious so
that one can specify such a matrix for a task space or manipulator of any dimension.
Doing so for a seven degree-of-freedom manipulator required to perform the standard
task of positioning and orienting its end effector results in

-/it ~ ~ ~ ~ ~ ~
0 -Ii f[o f[o f[o f[o f[o
0 0 -Vi /fa /fa /fa /fa

J==
-~ {[; {[; {[;

(20)

0 0 0

0 0 0 0 -ji ~ ~
0 0 0 0 0 -If If
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Unfortunately, this canonical representation of failure tolerant J acobians for task
spaces which include both linear and rotational velocities only correspond to ma­
nipulators whose joints are capable of an arbitrary screw motion. However, as noted
earlier, premultiplication of any such matrix by an orthogonal matrix U does not
change the Jacobian's failure tolerant properties. Thus, the question now becomes:
Is it possible to identify an orthogonal matrix U such that premultiplying (20) by U
results in a manipulator Jacobian that can be realized by a manipulator with seven
rotational joints? We have not been able to identify such a matrix or to prove that
such a matrix does not exist. The following section outlines an alternative numerical
approach for identifying failure tolerant J acobians corresponding to configurations of
manipulators that possess only rotational joints.

Rotational joint variables result in columns of the manipulator Jacobian that are
constrained to have the linear velocity component being orthogonal to the rotational
velocity component. To restrict the columns of a manipulator Jacobian to be achiev­
able by a rotational joint, one can model the contribution of an individual joint by

(21)

cos Ii [:~::; :::;;] + sin Ii [_S~:::i]
- cos Pi 0

ji = [-: - ]

[

c~s ai cos Pi]
SIn a iCOS Pi

sin Pi

where Vi and Wi are the linear and rotational velocity due to the i-th joint velocity
and ai, Pi, and ,i are the variables defining the orientation of joint i. Note that
this parameterization constrains the norm of the linear velocity component to be
equal to the norm of the rotational component. This is done in order to satisfy the
requirements of an optimally failure tolerant Jacobian. The only other constraint
is that the Jacobian composed of the ii'S formed from (21) be an isotropic matrix.
All isotropic matrices can be represented by scalar multiples of orthogonal matrices.
Therefore, to obtain an optimally failure tolerant configuration, one simply needs to
determine the ai's, Pi'S, and Ii'S that result in a Jacobian with orthogonal rows of
equal norm.

Consider J to consist of the six rows

J= (22)
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The constraint that J have rows of equal norm is represented by the six equations

11 =0 = v~ Vx - n/3 (23)

12 = 0 = v~ vy - n/3 (24)

13 = 0 = v; », - n/3 (25)

14 = 0 = w~wx - n/3 (26)

15 = 0 = w;wy - n/3 (27)

16 = 0 = w;W z - n/3 (28)

The row norm is equal to Ff3 due to the form of (21) since both the linear and
rotational components Vi and Wi were arbitrarily specified to be of unit norm. Note
also that only four of these constraints are independent, also due to the manner in
which (21) is specified. The constraints that J have orthogonal rows is represented
by the 15 equations

17 =0= T
(29)v: Vy

18 =0= T
(30)Vx Vz

19 =0= T
(31)vxwx

/10 =0= T
(32)VXwy

111 =0= T
(33)vxwz

/12 =0= T
(34)v y Vz

/13 =0= T
(35)v y Wx

/14 =0= T
(36)v y Wy

/15 =0= T
(37)vywz

/16 =0= T
(38)Vz Wx

/17 =0= T
(39)Vz Wy

/18 =0= T
(40)Vz Wz

/19 =0= T
(41)wxwy

120 =0= T
(42)wxwz

121 =0= T
(43)wywz
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of which only 14 are independent. The exact expressions for the 21 constraint equa­
tions represented by f = 0 in terms of the a's, {3's, and ,'s that represent the joint
variables are given in the Appendix. It is important to note that like the constraint
equations, not all of the a's, (3's, and ,'s are independent, however, these 21 simul­
taneous non-linear equations can be minimized using an optimization scheme that
uses derivative information since the equations are differentiable. This optimization
was performed for several thousand randomly selected initial conditions. In all cases
the optimization converged to a local minimum with a value of = 0.056827. A
typical Jacobian corresponding to such a nearly optimal failure tolerant solution is
given by

1 0.4296 0.7495 -0.5431 0.1401 0.3298 -0.3783

0 -0.6041 0.6479 0.4640 -0.7889 -0.1853 -0.8047

0 -0.6712 -0.1357 -0.6998 0.5983 -0.9257 -0.4575
(44)J=

0 0.7678 0.1449 0.8391 0.5831 -0.6882 -0.4296

1 -0.1469 -0.3607 0.3308 -0.4226 -0.7184 0.5904
0 0.6236 -0.9214 -0.4319 -0.6938 -0.1014 -0.6832

The singular values for this Jacobian, which are common to all solutions that have
been identified, are given by

D = diag(1.5829 1.5829 1.5250 1.5250 1.4727 1.4727) (45)

which are close to the near optimal value of (J' =~ = 1.5275. The worst-case
failure for this Jacobian is when joint seven is locked, resulting in

(46)

which is approximately 10% poorer than the theoretically optimal worst-case scenario
given by J (J'6 = V113 = 0.5774. It is possible to slightly improve this value if an
optimization is explicitly performed on (5)

It is interesting to note that the 7R manipulator is the only case in which an
optimally failure tolerant Jacobian has not been found. For example, if the numerical
procedure is performed for an 8R manipulator, it immediately converges to a solution.
In fact, there are entire families of solutions, an example of which is given by

1 0.0223 -0.9878 0.1851 -0.6558 0.4505 -0.1501 -0.0246

0 0.7775 -0.1554 -0.9784 0.3045 0.1982 -0.8740 0.4298
0 -0.6284 -0.0002 -0.0917 0.6908 0.8705 -0.4622 -0.9026

J= (47)
0 0.4130 -0.0978 0.5393 0.7384 0.8588 0.5993 0.7442
1 -0.5796 0.6228 0.1791 0.4491 -0.3626 -0.4523 0.6108

-0.7024 -0.7762 -0.8229 0.5030 -0.3619 0.6606 0.2706

As designed, this Jacobian is isotropic with equal singular values of

(J' = v;J3 = V813 (48)
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and an optimal worst-case failure dexterity of

f 0"6 = O"J(n - m)/n = V273
for all joint failures t.

(49)

5.
This work has discussed a measure of failure tolerance for kinematically redundant
manipulators that guarantees both desirable performance before a failure and optimal
worst-case behaviour following locked joint failures. Mathematically, these properties
were defined as manipulator J acobians that were both isotropic, i.e. all equal singular
values, and that had columns of equal norm. I..t was shown that matrices with such
properties could be easily created for an arbitrary dimension of both the desired task
space and manipulator joint variables. It was also shown that, in most cases,it was
a trivial matter to map a matrix with such properties into a physical manipulator
consisting of purely rotational joints that possessed a configuration with an optimally
failure tolerant Jacobian. The only exception appears to be a manipulator consisting
of seven rotational joints required to perform fully general linear and rotational end­
effector velocities. However, it was shown that one can use a numerical optimization
technique to identify manipulator configurations for such manipulators that possess
J acobians that are very close to being optimally failure tolerant.

The equal norm row constraints specified by eqns. (23)-(28) when applied to a ma­
nipulator Jacobian whose columns have been constrained to be in the form of (21)
are given by:

/1 =7/3-

/2 =7/3-

/3 =7/3-

n

i=l

n

i=l

n

i=l

cos2
ai sin 2 (3i cos2

Ii + 2 sin ai cos ai sin (3i sin Ii cos Ii

+ sin 2
ai sin2

Ii

sin2
a; sin 2 (3i cos2

Ii - 2 sin ai cos ai sin (3i sin Ii cos Ii

+ cos2
ai sin 2

Ii

n

/4 =7/3- cos2 ai cos2 (3i
i=l

n

/5 =7/3- sin 2
ai cos2 Pi

i=l

n

/6 =7/3 - L sin 2 Pi
i=l
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Note, once again, that due to this particular formulation only four of these constraints
are independent.

The orthogonal row constraints specified by (29)-(43) when applied to a manip­
ulator Jacobian whose columns have been constrained to be in the form of (21) are
given by:

n

i=1
sin ai cos ai sirr' f3i cos2 Ii - cos2 a, sin f3i sin Ii cos Ii

+ sin 2 ai sin f3i sin Ii cos 'Yi - sin a, cos ai sin 2 Ii

n

fs == - cos a, sin f3i cos f3i cos2 Ii - sin Oti cos f3i sin Ii cos Ii
i=1

n

f9 == L::: cos2 ai sin f3i cos f3i cos Ii + sin ai cos ai cos f3i sin Ii
i=1

n

sin a i cos a i sin f3i cos f3i cos Ii + sin 2 a i cos f3i sin Ii
i=1

n

cos a, sin 2 f3i cos Ii· + sin ai sin f3i sin Ii
i=1

n

- sin a i sin f3i cos f3i cos2 'Yi + cos a i cos f3i sin Ii cos Ii
i=1

n

sin a i cos a i sin f3i cos f3i cos Ii - cos2 a i cos f3i sin Ii
i=1

n

sin 2 a i sin f3i cos f3i cos Ii - sin a i cos a i cos f3i sin Ii
i=1

n

sin ai sin 2 f3i cos Ii - cos a, sin f3i sin Ii
i=1

n

i=1

n

f17 == L::: - sin ai cos2 f3i cos Ii
i=1

n

f1S == L::: - sin Pi cos Pi cos Ii
i=1



356

119 =
n

i=1

sin ai cos ai cos2 Pi
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n

120 =L cos ai sin Pi cos Pi
i=1

n

121 =L sin ai sin f3i cos f3i
i=l

Note, once again, that due to this particular formulation only fourteen of these con­
straints are independent for a total of eighteen "independent constraints.
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