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ABSTRACT 
 
 

EPIDITHIODIOXOPIPERAZINES: SYNTHETIC STUDIES OF 

(+)-CHETOMIN AND (–)-SPORIDESMIN A  

 
 This dissertation documents efforts toward the asymmetric total syntheses of the 

natural products (+)-chetomin and (–)-sporidesmin A. Synthetic methods have been 

developed to efficiently construct the dioxopiperazine core of both molecules. 

Additionally, a simple epidithiodioxopiperazine has been synthesized to demonstrate a 

general method for the addition of a sulfur bridge to a dioxopiperazine ring. The work 

described herein, while not totally successful, provides a basis for future completion of 

the asymmetric total syntheses of these two epidithiodioxopiperazines and other related 

fungal metabolites. 
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 1 

CHAPTER 1 

Epidithiodioxopiperazines 

 

1.1: Introduction 

Nearly twenty distinct families of epidithiodioxopiperazine fungal metabolites 

have been characterized since the seminal discovery of gliotoxin in 1936. This unique 

class of natural products is characterized by a sulfur-bridged dioxopiperazine (1.1), a 

feature generally requisite for the potent biological activity prevalent among the class.1-5  

 

All natural epidithiodioxopiperazines discovered to date contain at least one 

aromatic amino acid. Representative molecules from each family to be discussed are 

shown in Figure 1.1 (tyrosine- and/or phenylalanine-derived) and Figure 1.2 

(tryptophan-derived). In this chapter, we present an overview of the structures of 

naturally occurring epidithiodioxopiperazines, relevant physiological properties, and 

some of the more interesting of the proposed fungal biogeneses.  

N
N

O

O

R4

R2

R1

R3

S
S

1.1



 2 

 

Figure 1.1. Epidithiodioxopiperazines derived from tyrosine and/or 

phenylalanine. 

 

 Figure 1.2. Tryptophan-derived epidithiodioxopiperazines. 
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1.2: Epidithiodioxopiperazines Derived from Phenylalanine or Tyrosine 

 In 1936, a novel substance with substantial antifungal and antiviral activity was 

isolated from the wood fungus Gliocladium fimbriatum by Weindling and Emerson.6 A 

putative structure (1.16, Figure 1.3) was proposed for the metabolite based on 

degradation studies. This structure, however, could not account for some experimental 

observations, leading Johnson and Woodward to propose a revised structure for gliotoxin 

(1.2) in 1958.7 Absolute stereochemistry was later determined by x-ray analysis.8 

Gliotoxin and related metabolites (Figure 1.3) have since been isolated from a variety of 

fungi—including several Penicillium and Aspergillus species, Gliocladium, 

Thermoascus, and Candida—and have been the focus of numerous synthetic and 

biosynthetic studies that have formed the basis for much of the research discussed 

herein.2,3 

 

 Figure 1.3. Gliotoxins. 

 The initial interest in the chemotherapeutic potential of gliotoxin as an antifungal 

or antiviral agent waned as in vivo studies revealed gliotoxin to be generally cytotoxic.9 

Moreover, gliotoxin has been implicated as a virulence factor of Aspergillus fumigatus, 
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the main source of invasive aspergillosis and leading cause of death in 

immunocompromised patients.10 However, interest in the molecule was renewed when it 

was discovered that gliotoxin displayed selective toxicity to cells of the hematopoietic 

system.11,12 Specifically, gliotoxin exhibits antiproliferative activity against T and B cells 

and inhibits phagocytic activity with considerable selectivity toward immune system 

cells, leading to promising studies that have demonstrated that gliotoxin prevents graft-

versus-host disease after bone marrow transplantation.13  

 Generally, the toxicity of gliotoxin and other epidithiodioxopiperazines can be 

attributed to two mechanisms: generation of reactive oxygen species (Figure 1.4) and 

mixed disulfide formation (Figure 1.5). In the presence of a suitable reducing agent such 

as glutathione or dithiothreitol, epidithiodioxopiperazines are reduced to the 

corresponding dithiols (1.23). Autooxidation back to the disulfide (1.1) occurs with the 

production of superoxide ions and hydrogen peroxide, known to cause oxidative damage 

to cells.14,15 Gliotoxin has specifically been shown to induce single- and double-stranded 

DNA damage in the presence of glutathione, presumably by hydroxyl radicals generated 

in this redox process.16  

 

Figure 1.4. Redox cycling of epidithiodioxopiperazines. 

 Evidence suggests that gliotoxin and other epidithiodioxopiperazines are also 

capable of forming mixed disulfides with free thiol groups in cells.17,18 Following 
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incubation with radiolabelled gliotoxin, cells were shown to contain protein-bound [35S]-

gliotoxin (1.24).3 This result could be reversed if cells were treated with both gliotoxin 

and excess reducing agent (dithiothreitol), suggesting a covalent interaction. Moreover, 

the antiviral activity of gliotoxin is lost in the presence of excess dithiothreitol. This 

evidence supports a mechanism of toxicity resulting from mixed disulfide formation 

between gliotoxin and protein.19 

 

 Figure 1.5. Mixed disulfide formation. 

 Toxicity of epidithiodioxopiperazines would seem to rely on an intact disulfide 

ring or the reduced dithiol. Indeed, dethiogliotoxin lacks the antibacterial activity of 

gliotoxin. Reduction and methylation of the disulfide bridge 

(bisdethiodi(methylthio)gliotoxin, 1.19) also results in a loss of antiviral activity.4,20 Not 

surprisingly, the simple disulfide 1.25 and dithiol 1.26 exhibit potent biological activity, 

highlighting the importance of the fragment to the observed toxicity of 

epidithiodioxopiperazines.21 The great structural diversity in epidithiodioxopiperazines 

may have evolved only to mask the core disulfide moiety to prevent degradation by target 

organisms, rather than to impart any sort of selectivity or increased toxicity.2 
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 Figure 1.6. Simple biologically active epidithiodioxopiperazines. 

 Like gliotoxin, the hyalodendrins (Figure 1.7) are derived naturally from 

phenylalanine and serine. Hyalodendrin (1.3) was originally isolated by Strunz in 1974 

from Hyalodendron sp.22 The same fungus was later shown to produce the 

bis(methylthio) derivative (1.29)23 and epitetrasulfide 1.28.24 Epitrithiohyalodendrin 

(1.27) has only been observed as a product of the unidentified fungus NRRL 3888, along 

with 1.3 and 1.29.25 Not surprisingly, hyalodendrin and the epitri- and epitetrasulfide 

derivatives exhibit antibacterial activity, while the bisdethiodi(methylthio) analogue is 

inactive against fungi and bacteria and relatively non-toxic to mice.22-25 Interestingly, it 

was observed that hyalodendrin could be converted to epitetrasulfide 1.28 in the presence 

of HCl with heating in methanol and the culture medium. Racemic tetrasulfide was 

isolated when HCl was omitted from the same conditions.  

Enantiomers of the hyalodendrins (except for epitrisulfide 1.27) have been 

isolated from both terrestrial and marine sources. Gliovictin (1.32) was first isolated from 

Helminthosporium victoriae in 1974,26 the same year that researchers at Eli Lilly reported 

the isolation of the same structure (named A26771E) along with the disulfide (A26771A, 

1.30) and epitetrasulfide (A26771C, 1.31) from Penicillium turbatum.27 Fenical has also 

isolated gliovictin from the marine deuteromycete Asteromyces cruciatus.28 Predictably, 

1.30 and 1.31 both showed antiviral and antibacterial activity, while gliovictin–lacking 

sulfur atoms capable of redox cycling or mixed disulfide formation–was inactive.27 
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 Figure 1.7. Hyalodendrins and related compounds. 

 Kawahara and coworkers reported the isolation of dithiosilvatin (1.4) and 

silvathione (1.33) in 1987 from Apergillus silvaticus (Figure 1.8).29 

Dioxopiperazinethiones such as 1.33 are rare and are possible intermediates in the 

formation of trioxopiperazines from epidithiodioxopiperazines. The authors reported the 

conversion of 1.4 to the bisdethiodi(methylthio) derivative (1.34) by reductive 

methylation (NaBH4, MeI), a compound previously isolated by Hanson and O’Leary 

from Gliocladium deliquescens.30 

 

 Figure 1.8. Silvatins. 
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aranotins (Figure 1.9), emethallicins (Figure 1.10), and emestrins (Figure 1.11). 

Aranotin (1.5) and acetylaranotin (1.35) have been isolated from Arachniotus aureus and 

Aspergillus terreus and exhibit antiviral activity that is apparently selective for RNA 

viruses such as the polio, Coxsackie (A21), rhino-, and parainfluenza viruses through 

inhibition of viral RNA synthesis.31-37 Structurally, the aranotins are related to gliotoxin, 

with the similarities most evident in apoaranotin (1.37). Apoaranotin can be considered a 

chimera of gliotoxin and aranotin, containing the cyclohexadienol of gliotoxin and the 

dihydrooxepine ring of aranotin. Asteroxepin (1.39) was the first monooxepine derivative 

to be isolated and is further unique in that it contains one unsubstituted amide. This 

dioxopiperazine may provide evidence for the sequence of steps in the biosynthesis of the 

more complex aranotins. 

 

 Figure 1.9. Aranotins. 

 Closely related to the aranotins are the emethallicins (Figure 1.10). Both families 

share the same absolute stereochemistry, and emethallicin A (1.6) differs apoaranotin 
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occurring apoaranotin.38 Emethallicins B, D, and F (1.40, 1.42, and 1.44) share this same 

monooxepine core and differ apoaranotin only in ester substitution and sulfur content of 

the epipolythiodioxopiperazine ring. Emethallicin C (1.41) is symmetrical and the only 

emethallicin to contain two dihydrooxepine rings, more closely resembling aranotin and 

acetylaranotin. 

 

 Figure 1.10. Emethallicins. 

Emethallicin A (1.6) was first isolated from Emericella heterothallica in 1989 by 

Kawai and coworkers, who later reported the isolation of emethallicins B-F (1.40-1.44) 
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tetrasulfide monoacetates of 1.6 and 1.40, respectively.39 This disproportionation of the 

trisulfide is similar to a result obtained by Waring and coworkers, who similarly 

converted trisulfide gliotoxin E (1.21) to the disulfide, gliotoxin (1.2), and the 

tetrasulfide, gliotoxin G (1.22).42  

All of the emethallicins exhibit fairly strong inhibitory activities upon histamine 

release from mast cells, with IC50 values ranging from 1.0 x 10-6 to 2.0 x 10-8 M. 

Generally, activity is stronger for the original emethallicins than for the acetate 

derivatives. Micromolar inhibition of 5-lipoxygenase has also been reported.43 

The final class of known epipolythiodioxopiperazine metabolites known to 

contain at least one dihydrooxepine ring is the macrocyclic emestrins (Figure 1.11). 

Emestrin (1.7) was isolated in 1985 from the fungus Emericella striata, and later from E. 

quadrilineata, E. foveolata, E. acristata, and E. parvathecia.44-46 Trisulfide emestrin B 

(1.45), piperazinethione aurantioemestrin (1.47), and trioxopiperazine dethiosecoemestrin 

(1.48) were later isolated from E. striata.46-49 It has been postulated that the latter two 

compounds are derived biosynthetically from emestrin. Emestrin displays potent 

antifungal and antibacterial activity, but is also very toxic to mammals. 

Recently, Kanda and coworkers reported the isolation of MPC1001 (1.46) and its 

analogues (not shown) from Cladorrhinum sp. KY4922, contributing eight new members 

to the emestrin family of natural products.50 MPC1001 contains a methoxy group rather 

than the free phenol found in emestrin, but is otherwise structurally and stereochemically 

identical. MPC1001 and its epipolysulfide analogues all showed antiproliferative activity 

in the DU145 human prostate cancer cell line.50 
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 Figure 1.11. Emestrins and related metabolites. 

 Epicorazines (Figure 1.12) have been isolated from several organisms, including 

Epicoccum nigrum (epicorazine A and B, 1.8 and 1.49),51-53 E. purpurascens (epicorazine 

B),54 and Stereum hirsutum (epicorazine C, 1.50).55 The only difference between 1.8 and 

1.49 is the absolute stereochemistry at C6. This cis configuration is shared between 1.49 

and 1.50. 

 

 Figure 1.12. Epicorazines. 
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negative organisms. All three exhibit antiproliferative effects against L929 mouse 

fibroblast cells and K562 human leukemia cells, as well as cytotoxicity toward the HeLa 

human cervical carcinoma cell line.55 

 The scabrosin esters were originally isolated from the lichen Xanthoparmelia 

scabrosa in 1978, but it was not until 1999 that the correct structures were determined 

(Figure 1.13).56,57 The isolation of these compounds was of particular interest, as this 

report marked the first epidithiodioxopiperazine to be isolated from lichenized fungi. 

Submicromolar activity, similar to that of gliotoxin (1.2), was observed for the scabrosins 

against the murine P815 mastocytomia cell line, as well as low nanomolar activity in 

MCF7 human breast carcinoma cell line. Scabrosin esters have also been shown to induce 

apoptosis concomitantly with a large increase in mitochondrial membrane potential and 

significant decrease in total cellular ATP. Mitochondrial ATP synthase is the proposed 

cellular target of the scabrosins.58 

 

 Figure 1.13. Scabrosin esters. 

 The sirodesmins (Figure 1.14) were first discovered in 1977 as metabolites of 

Sirodesmium diversum59 and later from the unrelated fungus Phoma lingam.60 

Sirodesmins A-H (1.10, 1.56-1.60) are characterized by a spirofused tetrahydrofuran 

cyclopentylpyrrolidine skeleton. Sirodesmins A-C are epimers of G and H at the 

spirocenter. Notably, sirodesmin H was the first example of a naturally occurring 

monosulfide. 
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 Figure 1.14. Sirodesmins. 

Sirodesmins are potent antiviral agents, particularly against the rhinovirus.59 

Sirodesmin G (originally named sirodesmin PL, 1.58) has specifically been shown to 

exhibit activity against Gram-positive bacteria,61 although it has also been implicated as 

the causative agent of blackleg disease in canola crops (along with phomalirazine, 1.61). 

Metabolites 1.58 and 1.61 have both been isolated from the ascomycetous fungus 

Leptosphaeria maculans, the organism known to be responsible for blackleg disease.62 
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Sporidesmin was discovered by researchers investigating the source of the disease facial 

eczema that plagued sheep in New Zealand and Australia. The disease caused extensive 

liver damage in infected sheep and ultimately resulted in death. Thornton and Percival 

eventually established that ingestion of pasture grasses on which the fungus Pithomyces 

chartarum (previously known as Sporidesmium bakeri) was growing was the cause of the 

serious disease.63,64 Sporidesmin (1.11) was isolated and implicated as the main toxic 

agent produced by P. chartarum.65 The structure and absolute configuration were 

subsequently determined by crystallographic means.8,66,67  

 As an interesting aside, veterinarians discovered that zinc sulfate doses gave 

sheep protection from the effects of sporidesmin.68 Transition metals such as zinc are 

now known to inhibit generation of the superoxide anion radical, with 

epidithiodioxopiperazines shown to form a 2:1 complex with zinc ion.69,70 

Extensive amounts of research have focused on the sporidesmins, producing the 

complete characterization of all nine derivatives (1.11, 1.62-1.69). All contain a densely 

functionalized, tryptophan–derived pyrroloindoline core coupled to an alanine residue. 

Sporidesmin C (1.63)71 is the most unusual, containing a novel trisulfide [4.3.3] ring 

system.  

 A great deal of chemistry applicable to most of the epipolythiodioxopiperazines 

was discovered through investigations of the sporidesmins. For example, the trisulfide 

sporidesmin E (1.65) is readily converted to the disulfide (1.11) upon treatment with 

triphenyl phosphine. Alternatively, di- and trisulfides can be converted to tetrasulfides, 

achieved using hydrogen polysulfide or dihydrogen disulfide. This was demonstrated by 

the conversion of sporidesmins A (1.11) and E (1.65) into sporidesmin G (1.67). 
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 Figure 1.15. Sporidesmins. 

In 1944, Waksman and Bugie reported the isolation of a new antibiotic metabolite 

of the fungus Chaetomium cochliodes that they named chetomin.72 It was not until 30 

years later that Walter and coworkers determined the structure of chetomin (1.12), 

revealing a nearly dimeric core likely formed from two molecules each of tryptophan and 

serine.73 The two fragments are joined by a bond between the β-pyrrolidinoindoline 

carbon and the indole nitrogen, a common feature of all five chaetocins (Figure 1.16).74 

Chetomin is the only molecule in the family to contain a disulfide bridge within both 

dioxopiperazine rings. Dethio-tetra(methylthio)chetomin (1.70) and chaetocochin C 

(1.73) differ only in the oxidation state of the sulfurs, while chaetocochins A (1.71) and B 

(1.72) are macrocyclic analogues of 1.70 and 1.73, each containing a novel 14-membered 

ring. 
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 Figure 1.16. Metabolites of the fungus Chaetomium cochliodes. 

 Chetomin was recently isolated from Chaetomium seminudum by Fujimoto and 

coworkers in 2004, along with three new metabolites named the chetoseminudins (Figure 

1.17).75 Chetoseminudin A (1.74) is merely the pentasulfide homolog of chetomin. From 

a biosynthetic viewpoint, the more interesting discoveries are chetoseminudins B-D 

(1.75-1.77), monomeric bisdethiodi(methylthio) structures that potentially provide insight 

as to the biosynthetic sequence that produces chetomin, the chaetocochins, and other 

related epipolythiodioxopiperazines derived from tryptophan and serine. 

 

 Figure 1.17. Chetoseminudins. 
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induction of the heterodimeric transcription factor hypoxia-inducible factor 1 (HIF-1) in 

order to survive. Overexpression of HIF-1 is associated with radioresistance in tumors, 

increased risk of metastasis, and a poor prognosis for patients.76-78 In normal cells, the !-

subunit of HIF-1 (HIF-1!) is hydroxylated and degraded by vHL proteosome (Figure 

1.18). As oxygen levels decrease and become the rate-limiting reagent in the 

hydroxylation reaction, HIF-1! accumulates and binds to transcriptional coactivators 

p300 and CREB binding protein (CBP). Consequent to this binding is the transcription of 

proteins requisite to the survival of hypoxic cancer cells, facilitating tumor growth and 

progression.79  

Figure 1.18. HIF-1 hypoxia response pathway. 

Chetomin has been shown to inhibit the interaction between HIF-1 and p300 both 

in vitro and in cells, despite extensive surface interactions between the two proteins. 

Specifically, Kung and coworkers have shown that chetomin disrupts the tertiary 

structure of p300, inhibiting the transcriptional activity of HIF-1.76 No other small 

molecule has been identified to mediate an antitumor response through this mechanism of 

action. More recently, Hilton and coworkers proposed that chetomin and other 
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epidithiodioxopiperazines bind zinc at the CH1 domain of p300, ultimately resulting in 

ejection of a stable zinc–epidithiodioxopiperazine complex. Loss of zinc from the CH1 

domain causes the previously observed disruption of the p300 tertiary structure.1,80    

 Chaetocin A (1.13, Figure 1.19) is a dimeric epidithiodioxopiperazine also 

derived from two molecules each of tryptophan and serine. It was isolated from 

Chaetomium minutum in 1970.81,82 Fifteen years passed before the penta- and hexasulfide 

homologs chaetocin B and C (1.78 and 1.79) were isolated from Chaetomium spp., along 

with the novel tetrasulfide chetracin A (1.80).83 In 2012, several related metabolites were 

isolated from Oidiodendron truncatum, including the tetra-, penta- and hexasulfide 

homologs melinacidin IV, chetracins B and C (1.82, 1.83, and 1.84), and the 

dethiotetra(methylthio) derivative chetracin D (1.81).84  

The three chaetocin metabolites (and likely the chetracins) can be interconverted 

through either desulfurization of 1.78 and 1.79 with triphenyl phosphine to generate 

chaetocin (1.13), or by sulfurization of chaetocin with phosphorus pentasulfide in carbon 

disulfide to afford a mixture of chaetocins B and C.83  

Recently, chaetocin A was identified as the first known inhibitor of lysine-specific 

histone methyltransferases.85 Histone methylation is an important process in controlling 

gene expression patterns, especially during cellular differentiation and embryonic 

development. The activity of histone methyltransferases is disregulated in some tumors, 

making chaetocin an attractive tool for the study of the molecular mechanism of histone 

methylation.85 Additionally, melinacidin IV and chetracin B display nanomolar (3 – 54 

nM) activity against five human cancer cell lines (HCT-8, Bel-7402, BGC-823, A549, 

and A2780).84 
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 Figure 1.19. Chaetocins and related metabolites. 

 Several metabolites related to the chaetocins have recently been reported, 

possessing a C3-C3’ linkage to indole rather than the additional monomer found in the 

chaetocins (Figure 1.20). T988 A, B, and C (1.86-1.88) were originally isolated from 

Tilachlidium sp., although recently it was shown that Oidiodendron truncatum also 

produces the same metabolites, in addition to oidioperazine A (1.89) and the chetracins 

(1.83-1.85).75,86 Chetoseminudin C (1.76) was also isolated from O. truncatum, 

suggesting that it may be a common intermediate to all of the tryptophan- and serine-

derived epipolythiodioxopiperazines discussed thus far. T988 A and B are cytotoxic to 

P388 leukemia cells.86 
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 Figure 1.20. Fungal metabolites related to the chaetocins. 

 Verticillin A (1.14, Figure 1.21) is quite similar to chaetocin A (1.13), derived 

from two molecules of alanine rather than serine. Only verticillins A, D and E (1.14, 1.92 

and 1.93) are symmetrical, while the two tryptophan residues of the remaining verticillins 

are coupled to different amino acids on the two halves (either alanine, serine, or tyrosine). 

Verticillin B (1.90), for instance, contains alanine and serine residues on the northern and 

southern halves of the molecule, respectively. Verticillins A-C were isolated from 

Verticillium sp., while the remaining compounds in Figure 1.21 are produced by 

Gliocladium sp.87-89 

 

 Figure 1.21. Verticillin A and related metabolites. 

 Gliocladines A-E (Figure 1.22, 1.97-1.101) were isolated in 2005 from 

Gliocladium roseum, along with verticillin A, Sch52900, and Sch52901 (1.14, 1.95, and 

1.96).90 Gliocaldines A and B are simply the penta- and hexasulfide homologs of 

verticillin A, thus it is not surprising that the same organism produces all three 

compounds. The structures of gliocladines C and D (1.99 and 1.100) should also look 
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familiar, as they are the alanine derivatives of T988 A and C (Figure 1.20). Bionectra 

byssicola F120 has also been shown to produce bionectins A and B (1.102, 1.103), the 

glycine and tyrosine derivatives of T988C.91 

 

 Figure 1.22. Verticillin-type epipolythiodioxopiperazines. 

 The dimeric subset of epipolythiodioxopiperazines increased greatly in number 

with the discovery of the leptosins (Figure 1.23) from a strain of Leptosphaeria sp. 

attached to the marine alga Sargassum tortile.92-94 Leptosins A-K (1.104-1.118) all 

contain at least one valine residue, a feature unique among all 

epipolythiodioxopiperazines to this family. Leptosins A-C, G, H, and K (1.104-1.113) 

share the 12,12’-dihydroxylated, octacyclic core of the verticillins, gliocladines, and 

chetracins. The C3-C3’ linkage to indole is once again produced in leptosins D-F (1.114-

1.116), the valine derivatives of the T988s, gliocladines C-E, and the bionectins. In 1994, 

two remarkable additions to this family were discovered, the epimers leptosin I and J 

(1.117 and 1.118).94 These two compounds are characterized by a C12-C11’ ether 

linkage, introducing an additional ring to the structure that prohibits the possibility of 

topoisomers. Leptosins are generally toxic to P388 leukemia cells. 
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 Figure 1.23. Leptosins. 

 In summary, over 100 epipolythiodioxopiperazine alkaloids have been isolated 

and characterized to date. While this was intended to be a comprehensive review of all 

known members of this class of natural products, some were undoubtedly and 

inadvertently omitted. One cannot help but marvel at the remarkable biological activity of 

the class as a whole, although it is unlikely that any epipolythiodioxopiperazine will ever 

achieve therapeutic utility in the clinic due to the general cytotoxicity inherent in the 

disulfide through mechanisms discussed above. Certainly others have and will continue 

to argue otherwise, but it is our opinion that the true contribution to medicine will be 

realized by employing epipolythiodioxopiperazines as tools for the study of novel 

biological pathways. To date, the natural products chetomin (1.12), gliotoxin (1.2), and 

chaetocin A (1.13) have already contributed to our understanding of the respective 

biological targets of the molecules.  
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 Many of the families (particularly those containing a C3-C3’ indoline linkage) 

share a great deal of structural similarity beyond the epipolythiodioxopiperazine moiety 

that defines the class. It is likely that hundreds of additional variants exist in nature and 

have yet to be discovered. While numerous biosynthetic studies have been conducted, we 

still have only a limited understanding of the ease with which nature is able to assemble 

epipolythiodioxopiperazines, molecules that have for over fifty years taunted synthetic 

chemists. In the last section of this chapter, we present the notable biosynthetic 

discoveries reported to date. 

 

1.4: Biosynthetic Investigations of Epidithiodioxopiperazines 

 Researchers have investigated the biosynthesis of gliotoxin (1.2) for nearly forty-

five years, but still very little experimental evidence exists to support the numerous 

proposals. In 1958 and 1960, Suhadolnik reported the only undisputed incorporation 

study, demonstrating that Trichoderma viride incorporates isotopically labeled 

phenylalanine (1.119) and serine (1.120) into gliotoxin (Scheme 1.1).95,96 Walsh recently 

implicated the nonribosomal peptide synthetase GliP in the catalysis of the peptide 

coupling and dioxopiperazine cyclization reactions.97 Some debate has occurred as to 

whether cyclo-Phe-Ser (1.121) is a biosynthetic intermediate to gliotoxin. Although 

doubly labeled 1.121 is incorporated into gliotoxin by T. viride, the fungus Penicillium 

terlikowskii poorly incorporates the same compound.98-100 Walsh observed that release of 

the dioxopiperazine from the enzyme is slow, allowing for some speculation that further 

transformations may occur to the enzyme bound compound prior to release. 
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  Scheme 1.1. Proposed biosynthesis of gliotoxin. 

 Arene oxide 1.122 was proposed as a biosynthetic intermediate to both the 

gliotoxins and aranotins by Neuss in 1968. Cyclization at the ortho position provides the 

tricyclic core of gliotoxin (1.123), whereas a ring enlarging tautomerization of the arene 

oxide could give the oxepine ring (1.129) characteristic of the aranotins (Scheme 

1.2).33,34 

 

 Scheme 1.2. Proposed oxepine ring formation. 
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 The incorporation of sulfur into epidithiodioxopiperazines was until recently 

poorly understood. Sulfur transfer readily occurs among various potential donors, 

including methionine, cysteine, and sodium sulfate, complicating [35S] feeding 

studies.2,101 In 2011, two groups independently provided evidence supporting a GliC–

mediated bishydroxylation of a dioxopiperazine (i.e. 1.123 to 1.124).102,103 Elimination of 

water to generate diiminium 1.125 could be followed by nucleophilic attack of the 

cysteine thiolate residues of two glutathione (GSH) molecules, catalyzed by the 

specialized glutathione S-transferase GliG.102-104 Sequential GliJ peptidase and GliI 

thioesterase activity is proposed to reveal the free dithiol.102 Scharf and coworkers have 

unequivocally shown that GliT catalyzes the oxidation to the disulfide (i.e. 1.128), 

leaving N-methylation to complete the biosynthesis of gliotoxin.105 The order of tailoring 

events is up for debate, but recent advances in genomics and proteomics tools to study 

and manipulate secondary metabolite production will certainly produce much more 

accurate insight as to the formation of gliotoxin in nature. 

 Recall that the toxicity of epidithiodioxopiperazines generally arises from redox 

cycling or mixed disulfide formation (Figures 1.4 and 1.5). How is it then that producing 

fungi, such as Aspergillus fumigatus, are immune to toxicity inherent in the structure of 

gliotoxin? Several studies published in the last two years have provided convincing 

evidence that GliT is responsible for the self-resistance of A. fumigatus to gliotoxin.105,106 

Deletion of the gliT gene renders A. fumigatus mutants highly sensitive to gliotoxin, 

toxicity that can be reversed by addition of glutathione. Moreover, concentrations of 

reduced gliotoxin increase with the concomitant depletion of intracellular glutathione 
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levels. It is likely that alterations of the cellular redox status and mixed disulfide 

formation contributes to the growth inhibition observed in the absence of gliT.  

Perhaps the cytotoxicity of gliotoxin is an indirect consequence of the true role of 

gliotoxin and other epidithiodioxopiperazines produced by fungi. The same redox cycling 

that produces deleterious consequences in naïve organisms may, in Aspergillus 

fumigatus, serve as a buffer against cellular oxidative stress.106 Gliotoxin and other 

epidithiodioxopiperazines may have evolved as simple antioxidants, with the host 

protected from unwanted redox cycling and mixed disulfide formation by GliT. 

Sirodesmin PL (1.58) is the only other epidithiodioxopiperazine to have been 

extensively studied from a biosynthetic perspective. Putative biosynthetic gene clusters 

for sirodesmin and gliotoxin identified from Leptosphaeria maculans and Aspergillus 

fumigatus, respectively, are given in Figure 1.24.107-109 Based on recent advances to our 

understanding of gliotoxin biosynthesis and the identification of homologs in the 

sirodesmin gene cluster, we are able to predict many of the experimentally unverified 

steps in the biosynthesis of sirodesmin PL (Scheme 1.3). 

Figure 1.24. Putative epidithiodioxopiperazine gene clusters for sirodemsin PL 

(A) and gliotoxin (B).109 

Feeding studies have shown that Leptosphaeria maculans incorporate labeled 

tyrosine and serine into both sirodesmin PL (1.58) and presumed intermediate 

phomamide (1.132).59,110-112 We propose the incorporation of sulfur to proceed 
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analogously to the gliotoxin biosynthesis, through dihydroxylation (1.133), imine 

formation, and glutathione addition (1.134). Unmasking of the dithiol (1.135) and 

oxidation to the disulfide (1.136) could be followed by oxidation and Claisen 

rearrangement to give 1.137, which after cyclization and oxidation provides known L. 

maculans metabolite phomalirazine (1.61).59,111 Oxidative spirorearrangement, N-

methylation, and ketone reduction would lead to another known metabolite, desacetyl-

sirodemin PL (1.59). Acetylation by SirH would complete the biosynthesis of sirodesmin 

PL (1.58).2,65,107,109  

 

 Scheme 1.3. Proposed biosynthetic pathway of sirodesmin PL. 
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1.5: Concluding Remarks 

 Epidithiodioxopiperazine alkaloids possess an astonishing array of molecular 

architecture that has for decades challenged and inspired synthetic chemists. Biosynthetic 

studies presented in this chapter provide a glimpse at the efficiency and elegance with 

which Nature is able to assemble these compounds. Synthetic chemists strive to mimic 

and in turn better understand the mechanisms by which microorganisms are able to 

produce such complexity, hoping to channel some of Nature’s efficiency into novel 

synthetic pathways. In the next chapter, we present many of the synthetic advances made 

toward several of the epidithiodioxopiperazines presented above. 
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CHAPTER 2 

Total Syntheses of Epidithiodioxopiperazines 

 

2.1: Introduction  

 Over 100 naturally occurring epidithiodioxopiperazines have been isolated. 

However, relatively few have succumbed to total synthesis despite decades of effort, 

highlighting the challenging synthetic nature of the class of molecules. Initial interest in 

the biological activity of epidithiodioxopiperazines sparked the synthetic interest of 

several groups, with six different naturally occurring members of the class yielding to 

synthetic chemists between 1973 and 1981. Three decades passed before renewed interest 

in epidithiodioxopiperazines arose, sparked by isolation reports of new metabolites, 

exciting results from the biological community detailing novel mechanisms of action in 

cells, and advances in genomics that invigorated interest in elucidating the biosynthesis 

of these secondary metabolites. Between 2009 and 2012 alone, syntheses of eight 

additional epidithiodioxopiperazine alkaloids have been reported. A casual glance 

through Chapter 1 is enough to impress upon the reader the great degree of structural 

similarity shared among and between families of epidithiodioxopiperazines. We 

anticipate that in the coming decade total syntheses of entire families of this class of 

fungal metabolites will be completed concomitantly with great advances in synthetic 

methods and biosynthetic understanding. In this chapter, we present a comprehensive 

review of total syntheses of epidithiodioxopiperazines. 
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2.2: Early Epidithiodioxopiperazine Syntheses (1973-1981) 

The total synthesis of sporidesmin A was completed by Kishi and coworkers in 

1973. In a series of communications Kishi described a novel strategy for the synthesis of 

epidithiodioxopiperazines using a dithioacetal moiety as a protecting group for the 

disulfide bridge.113-115 Thus protected, the dithioacetal is stable to acidic, basic, and 

reducing conditions, allowing for the introduction of thiol groups at an early stage in a 

total synthesis. Synthesis of the sporidesmins began with the treatment of 

dioxopiperazine 2.1 with the dithiane derivative of p-anisaldehyde in the presence of acid 

to afford dithioacetal-protected dioxopiperazine 2.2 (Scheme 2.1).113 Condensation with 

acid chloride 2.3 and subsequent methoxymethyl deprotection gave compound 2.4. 

Treatment of ketone 2.4 with DIBAL-H at -78 °C resulted in stereoselective reduction to 

the alcohol, which was then converted into acetate 2.5 in 80% yield. Cyclization to the 

diacetate (2.6) proceeded upon addition of iodosobenzene diacetate, and hydrolysis of the 

acetates gave the corresponding diol. Treatment of the diol with m-chloroperbenzoic acid 

(mCPBA) afforded an intermediate sulfoxide, which decomposed to the disulfide upon 

exposure to strong Lewis acid, revealing (±)-sporidesmin A (1.11). 

Intermediate 2.5 was also used by Kishi in a total synthesis of (±)-sporidesmin B 

(Scheme 2.2).116 Reduction of the acetate gave the methylene (2.7), which underwent an 

oxidative cyclization similar to that reported in the sporidesmin A synthesis to benzoate 

2.8. The disulfide was revealed as described above, completing the synthesis of (±)-

sporidesmin B (1.62). 
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 Scheme 2.1. Total synthesis of (±)-sporidesmin A. 

 

 Scheme 2.2. Synthesis of (±)-sporidesmin B. 
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and boron trifluoride etherate gave a 1:1 diasteromeric mixture of thioacetals 2.13 in 

good yield. This masked disulfide is stable to a variety of conditions that the disulfide 

would not otherwise survive, allowing Kishi to introduce sulfur at an early stage in the 

synthesis. 

 

 Scheme 2.3. Synthesis of (±)-dehydrogliotoxin. 
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disulfide protecting strategy as employed above for the sporidesmins, and was re-

engineered in 1981 by the same route starting from optically pure dithioacetal 2.17 

obtained from resolution (Scheme 2.4).117,118 Coupling of 2.17 with t-butoxy arene oxide 

2.18 in the presence of triton B afforded 2.19 and 2.20 in a 2 :1 ratio. Acetylation, 

deprotection, mixed anhydride formation, and reduction gave alcohol 2.21 in 77% yield 

from 2.19. Primary alcohol 2.21 was converted to the chloride following mesylation, and 

the secondary ester deprotected to reveal alcohol 2.22. The key stereoselective 

cyclization-alkylation reaction was achieved upon addition of phenyllithium to 2.22 and 

benzoxymethyl chloride, affording cycloadduct 2.23 in modest yield (53%). The primary 

alcohol was revealed upon removal of the benzyl group, and the thioacetal oxidatively 

removed to afford either (±)- or (+)-gliotoxin (1.2). 

 

 Scheme 2.4. Synthesis of (+)-gliotoxin. 
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sequentially with chloromethyl methyl ether and benzyl bromide, then deprotected to 

reveal hyalodendrin (1.3). 

 

 Scheme 2.5. Synthesis of (±)-hyalodendrin.  
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enolate of 2.28 followed by reductive workup provided thiol 2.32. Conversion to the 

enolic methyl disulfide, deprotection of the silyl group, and sulfenylation with 

triphenylmethyl chlorodisulfide gave a mixture of diastereomers, unfortunately favoring 

the undesired anti isomer (2.34). Reduction and oxidation of 2.34 gave hyalodendrin (1.3) 

in 29% yield. 

 

 Scheme 2.7. Rastetter’s total synthesis of (±)-hyalodendrin. 
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tetraol (2.39). Exposure of 2.39 to Fu’s (R)-(+)-4-pyrrolidinopyridinyl(pentamethyl-

cyclopentadienyl)iron (PPY) catalyst with t-butyldimethylsilyl chloride (TBSCl) gave 

selectively the alanine-derived protected hemiaminals (2.40). Removal of the 

benzenesulfonyl groups with sodium amalgam revealed diaminodiol 2.41. Treatment of 

2.41 with K2CS3 followed by ethanolamine gave diaminotetrathiol 2.42, which readily 

oxidized to (+)-11,11’-dideoxyverticillin A (2.43) when partitioned between aqueous 

hydrochloric acid and dichloromethane and treated with potassium triiodide. 

 

 Scheme 2.8. Biomimetic total synthesis of (+)-11,11’-dideoxyverticillin A. 
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 Chaetocin (1.13) is quite similar in structure to 11,11’-dideoxyverticillin A, 

derived from two molecules of serine rather than alanine. Substituted dioxopiperazine 

2.46 was prepared in five steps from N-Me,Cbz-D-Ser (2.44) and D-Trp-OMe 

(2.45).123,124 Bromocyclization gave tetracycle 2.47, converted to the tribromide (2.48) 

under radical conditions and hemiaminal 2.49 following addition of water. Movassaghi’s 

reductive dimerization conditions using a Co(I) complex afforded the desired dimer 

(2.50) in modest yield. Addition of 2.50 to condensed hydrogen sulfide and BF3⋅OEt2 

formed the tetrathiol, oxidized to the bis(disulfide) upon addition of iodine to complete 

the synthesis of (+)-chaetocin (1.13).  

 

 Scheme 2.9. Sodeoka’s total synthesis of (+)-chaetocin. 
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circumvent this problem. Recall that Movassaghi had similar difficulties in forming 

related tetraol 2.39 and eventually settled on the mild oxidation discussed above. 

 Mere months after Sodeoka reported the first total synthesis of chaetocin, 

Movassaghi published the synthesis of (+)-chaetocin (Scheme 2.10), the hexasulfide (+)-

chaetocin C (1.79), and the octasulfide (+)-12,12’-dideoxychetracin A (1.81, Scheme 

2.11), all from the natural amino acids L-serine and L-tryptophan.125  

 

 Scheme 2.10. Movassaghi’s total synthesis of (+)-chaetocin. 
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interestingly the acetate allows for differentiation of the hemiaminals, resulting in 

regioselective substitution of hydrogen sulfide. Protection of resulting thiohemiaminal as 

the dithioisobutyrate (2.55) served both to prevent opening of the hemiaminal under polar 

protic conditions and to activate the hemiaminal to mild ionization in future steps. Mild 

deprotection of the sulfonyl group was followed by chemoselective hydrazinolysis and 

addition of triphenylmethanesulfenyl chloride to give disulfane 2.56. Ionization of the 

isobutyrates and cyclization to the epidithiodioxopiperazines with concomitant loss of a 

triphenylmethyl cation was followed by removal of the acetates using Otera’s catalyst to 

afford (+)-chaetocin (1.13). 

 Chaetocin C (1.79) and 12,12’-dideoxychetracin A (1.81), the epitri- and 

epitetrathiodioxopiperazine analogues of chaetocin, were similarly synthesized from a 

common intermediate (Scheme 2.11).125  

 

 Scheme 2.11. Total syntheses of chaetocin C and 12,12’-dideoxychetracin A. 
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 Hydrazinolysis of diaminodithioisobutyrate 2.57 was followed by treatment with 

the corresponding sulfur source to give 2.58 or 2.59. It was necessary to protect the 

indoline nitrogens as the trifluoroacetates before addition of Lewis acid to form the 

polysulfide bridges (2.60 and 2.61), presumably to prevent decomposition pathways 

encountered over longer reactions times necessary to the formation of the larger 

polysulfide bridges. Global deprotection gave either (+)-chaetocin C (1.79) or (+)-12,12’-

dideoxychetracin A (1.81). 

 In 2011, Overman and coworkers reported the total synthesis of (+)-gliocladine C 

(1.99, Scheme 2.12).126 Known 2-indolinone 2.62 (prepared from isatin and indole) was 

reduced and Boc-protected to afford compound 2.63. Conversion to the oxindole ester 

(2.64) proceeded efficiently upon treatment with 2,2,2-trichloro-1,1-dimethylethyl 

chloroformate, triethyl amine, and 10 mol % of Fu’s (S)-(–)-4-pyrrolidinopyrindinyl-

(pentamethylcyclopentadienyl)iron catalyst. The oxindole was elaborated to indoline 2.65 

over four steps in 54% yield. Aldol condensation with the lithium enolate of the 

piperazinedione provided exclusively the Z isomer of 2.66, which readily cyclized to 

hexacycle 2.67 upon treatment with BF3·OEt2. Grignard addition, silyl protection of the 

resultant alcohol, asymmetric dihydroxylation, and acetylation gave advanced 

intermediate 2.68. Addition of the epimeric mixture of silyl ethers to condensed hydrogen 

sulfide and BF3·OEt2 gave the dithiol, oxidized to the disulfide upon exposure to oxygen. 

Removal of the acetate revealed (+)-gliocladine C (1.99). 
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 Scheme 2.12. Synthesis of (+)-gliocladine C. 
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 Scheme 2.13. Total synthesis of (+)-gliocladin B. 

 Although it has not to date been isolated from a natural source, it is worth noting 

that the authors were able to convert diol 2.72 into the disulfide (+)-12-deoxybionectin A 

(2.76) using conditions analogous to those discussed above in the chaetocin syntheses 

(Scheme 2.14).127 Disulfide 2.76 is also easily converted to (+)-gliocladin B (2.73) by 

reduction of the disulfide with sodium borohydride in the presence of iodomethane. 

 

 Scheme 2.14. Synthesis of (+)-12-deoxybionectin A and (+)-gliocladin B. 

 Epiccocin G (2.84) lacks a disulfide bridge and was thus not discussed in Chapter 

1. Nonetheless, the structure is remarkably similar to that of epicorazine A (1.8), and a 

discussion of Nicolaou’s recent total synthesis is certainly relevant in this context.128 
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Hydroxy enone 2.77 (prepared in two steps from N-Boc-tyrosine) was converted in four 

steps to hydroxy methyl ester 2.78 (Scheme 2.15). Separate deprotections to either the 

amine or carboxylic acid gave two derivatives that were coupled to form amide 2.79. 

Deprotection and cyclization to the dioxopiperazine was followed by conversion to the 

bistrifluoroacetate (2.80), which eliminated to bisdiene 2.81 upon exposure to Pd(PPh3)4 

catalyst. Treatment with S8 and NaHMDS gave a mixture of oligosulfenylated 

compounds (2.82) that were readily converted to the bisdimethylthio compound (2.83) 

upon reduction with sodium borohydride and addition of iodomethane. Bisendoperoxide 

2.85 was generated on reaction with singlet oxygen, and addition of DBU induced a 

Kornblum–DeLaMare rearrangement to give a bishydroxy enone. Reduction to the 

ketone completed the total synthesis of epicoccin G (2.84). 

 

 Scheme 2.15. Total synthesis of epicoccin G. 
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 The last epidithiodioxopiperazine total synthesis to be discussed was reported 

recently by the Reisman group, who completed an elegant synthesis of (–)-acetylaranotin 

(1.35).129 Pyrrolidine 2.88 was synthesized with >98% ee by (1,3)-dipolar cycloaddition 

of cinnamaldimine 2.87 to t-butyl acrylate (2.86) and subsequent cleavage of the t-butyl 

ester (Scheme 2.16). Protection of the amine and ozonolytic cleavage of the alkene 

provided lactone 2.89 in good yield. Ethynylmagnesium bromide was added to the 

hydroxylactone to form the hydroxy acid, which upon addition of triphenylphosphine and 

DIAD underwent Mitsunobu lactonization to 2.90. Reduction to the diol (2.91) was 

followed by bis-TBS protection of the alcohols and selective deprotection of the primary 

alcohol. The aldehyde obtained following oxidation with Dess–Martin periodinane was 

efficiently converted to chlorohydrin 2.92.  

 

 Scheme 2.16. Key pyrrolidine synthesis. 
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acetylaranotin (1.35) was completed following formation of tetrasulfide 2.98, 

bisacetylation, mild reduction to the dithiol, and oxidation to the natural disulfide. This 

publication marked the first total synthesis of a dihydrooxepine-containing 

epidithiodioxopiperazine natural product. 

 

 Scheme 2.17. Completion of the total synthesis of (–)-acetylaranotin (1.35). 
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feel it prudent to discuss in the remainder of this chapter methods for the formation of the 

challenging C3-N1’ bond as it relates to the synthesis of chetomin.  

 In 2008, Newhouse and Baran reported the total synthesis of (±)-psychotrimine 

(Scheme 2.18).130,131 The key C3-N1’ bond forming reaction was completed by treating 

tryptamine derivative 2.99 with N-iodosuccinimide and 2-iodoaniline to afford compound 

2.100. Larock indole synthesis with alkyne 2.101 completed the carbon framework for 

the top tryptamine fragment (2.102). A total synthesis of psychotrimine (2.103) was 

completed in two steps from 2.102. 

 

 Scheme 2.18. Synthesis of (±)-psychotrimine via novel C3-N1’ bond formation. 

 Baran used the same method in the synthesis of kapakahine B (2.108, Scheme 

2.19).130,132 In this instance, dipeptide 2.104 was cyclized and coupled to 2-iodoaniline to 

give 2.105. Indole formation by a Larock annulation with TES-alkyne 2.106 gave indole 

2.107, converted in several steps to the natural product kapakahine B (2.108). 
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 Scheme 2.19. Total synthesis of kapakahine B. 

 In 2008, Espejo and Rainier reported a new method for the synthesis of C3-N1’ 

heterodimeric indolines from bromopyrroloindoline 2.110 (Scheme 2.20, prepared in one 

step from N,N’-Boc2-L-Trp-OMe).133  

 

 Scheme 2.20. Rainier’s synthetic C3-N1’ bond forming method. 

 Addition of potassium tert-butoxide to a stirring solution of 2.110 and an indole 
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This method is far more general and cost effective than that reported by Baran, as a 

variety of indole derivatives can be coupled directly without the added Larock annulation 

step. 

 The utility of this method was demonstrated through the total synthesis of 

kapakahine F (2.121, Scheme 2.21).134 Pyrroloindoline dimer 2.118 was synthesized as 

described above and transformed to phenylalanine derivative 2.119 over several steps. 

This substrate was originally intended to serve as a model for the subsequent trimethyl 

aluminum induced rearrangement, but unfortunately the product resulting from the 

coupling of 2.110 to a tryptophan derivative decomposed under the rearrangement 

conditions. Thus, indole 2.120 was ultimately used to complete the synthesis of 

kapakahine F (2.121). 

 

 Scheme 2.21. Total synthesis of kapakahine F. 
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above examples. Accordingly, D-tryptophan was selected as the starting material, 

converted to bromopyrroloindoline 2.122 using known methods. Rainier’s coupling 

methodology was employed to join 2.122 with dioxopiperazine 2.123 to form key 

intermediate 2.124. Removal of the Boc groups and peptide coupling produced 

tetrapeptide 2.125. Treatment of 2.125 with diethyl amine resulted in concomitant Fmoc 

deprotection and cyclization to the naturally occurring dioxopiperazine, completing the 

total synthesis of pestalazine B (2.126).  

 

 Scheme 2.22. Concise total synthesis of (+)-pestalazine B. 

 

2.5: Concluding Remarks 

 Epidithiodioxopiperazine alkaloids possess an astonishing array of molecular 

architecture and, with that, corresponding synthetic challenges to construct such 
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context. Our own synthetic efforts toward chetomin and sporidesmin A as described in 

the following chapters were undertaken before all of the recent reports were published, 

although insight and inspiration were drawn from each as new developments in the 

modern synthetic renaissance of epidithiodioxopiperazines emerged. 
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CHAPTER 3 

Studies Toward the Total Synthesis of Chetomin 

  

3:1: Introduction 

 Our interest in chetomin stems both from its novel mechanism of action as a 

potential cancer chemotherapeutic agent and the synthetic challenge posed by the unique 

architecture of the molecule. Chetomin (1.12) and related metabolites isolated from 

Chaetomium sp. (Figure 3.1) are the only known epidithiodioxopiperazine alkaloids to 

contain a nearly dimeric structure joined by a C3-N1’ linkage.73,74 The densely 

functionalized structure contains five tetrasubstituted carbons and six stereocenters. The 

synthetic challenge imposed by the epidithiodioxopiperazine rings is also not to be 

overlooked, as the disulfide bridge is sensitive to oxidative, reductive, basic, and strongly 

acidic conditions. 

 

3.2: Goals and Early Studies 

3.2.1: Goals for the Project  

The primary goal of this project was to develop a scalable, divergent synthesis of 

(+)-chetomin (1.12). We hoped to bring in as much functionality as possible when 

forming the C3-N1’ bond to exploit the pseudo-dimeric architecture. Introduction of the 

disulfide bridges would be reserved for a late stage in the synthesis to circumvent the 

troubling sensitivity of the functional group. However, no precedent existed in the
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infancy of this project for the formation of the key C3-N1’ bond. Our initial synthetic 

efforts were focused on this bond. 

 

Figure 3.1. Chetomin and related fungal metabolites. 
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 A simple model study was designed to gain access to oxindole 3.1 (Scheme 3.1). 

A side chain mimicking the amino acid fragment could be added by nucleophilic addition 
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reagent to the condensation product (Scheme 3.2). However, further structural analysis 

by NMR revealed that water was not eliminated in the condensation, and hemiaminal 3.6 

was instead formed through direct addition of indoline to the C3 carbonyl of isatin. Vinyl 

Grignard reagent was adding to the lactam carbonyl carbon. Numerous conditions were 

attempted to effect elimination of water, but all failed to produce the desired iminium ion 

(3.7).   

 

 Scheme 3.2. Attempted iminium ion formation. 

 Looking back, we did achieve our goal of forming a tetrasubstituted carbon on an 

indole surrogate. However, no reasonable plan existed for the incorporation of the amino 

acid residue, let alone with any stereocontrol.  
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of aniline 3.11. The nitro alkene dimer could be accessed via coupling of bromoalkyne 

3.12 with 2,3-dihydrotryptophan (3.13). 

 

 Scheme 3.3. Retrosynthesis of key intermediate 3.8 through a pinacol-type 

rearrangement. 
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3.4).139  
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of the nitro group using zinc and ammonium chloride gave aniline 3.17 in 61% yield, 

although copper iodide mediated indole formation failed to produce the desired indole 

(3.18). 

 Protected 2,3-dihydrotryptophan was synthesized in parallel to this model study to 

be used in place of indoline (3.4) above. N-Cbz tryptophan was treated with iodomethane 

to form the methyl ester (3.20) in quantitative yield (Scheme 3.5). Reduction of 3.20 

using BH3·Me2S in THF and TFA gave 2,3-dihydrotryptophan derivative 3.21 in 79% 

yield. Coupling using the previously optimized conditions afforded alkyne 3.22 in 45% 

yield, although reduction to aniline 3.23 gave only trace amounts of the desired product. 

 

 Scheme 3.5. Synthesis of 2,3-dihydrotryptophan alkyne derivative. 
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that the pyrroloindoline core is formed in nature prior to coupling with the second half of 

the molecule, if not concomitantly. Witkop’s pyrroloindole (3.24) was identified as a 

synthetically useful intermediate in the synthesis of chetomin that could be formed 

readily from tryptophan.141 Halogenation of the indole double bond would provide a 

handle that could be substituted with another indole, ideally tryptophan, all with the 

potential for some stereocontrol (Scheme 3.6). 

  

 Scheme 3.6. Witkop’s pyrroloindole inspiration. 

 Retrosynthetically, we could form advanced intermediate 3.26 from the coupling 

of bromopyrroloindoline 3.28 and a suitably protected tryptophan derivative (3.27, 

Scheme 3.7). Both of these coupling partners could be synthesized in a few steps from 

tryptophan. 

 

 Scheme 3.7. Retrosynthetic plan using pyrroloindoline. 

 Tryptophan methyl ester (3.30) was protected as the trifluoroacetate amide (3.31), 

then cyclized to pyrroloindole 3.32 using t-BuOCl in 63 % overall yield (Scheme 3.8). 

Treatment of 3.32 with sodium hydride and NBS did not provide the desired 

bromopyrroloindole.142 
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 Scheme 3.8. Attempted synthesis of 3-bromopyrroloindole. 

 

3.3.2: Indole–Aniline Coupling  

 This stepwise procedure to 3.33 was put on hold after a report from the Baran 

group was published, showing an analogous sequence that showed promise at reducing 

our synthesis of 3.26 to one step. Baran showed that treatment of N-Boc-Trp-OMe (3.34) 

and 2-iodoaniline with N-iodosuccinimide in acetonitrile afforded the desired C-N bond 

and C-3 quaternary center in one pot (Scheme 3.9).130-132 

 

 Scheme 3.9. Formation of key C-3 quaternary center. 

 We repeated this chemistry using indoline in place of 2-iodoaniline, but only 

starting material was recovered (Scheme 3.10). Ideally, this reaction would be done with 

tryptophan or 2,3-dihydrotryptophan, eliminating the need for a Larock indole synthesis 

with the iodoaniline. To our disappointment, the reaction only worked as originally 

reported with 2-iodoaniline, despite numerous attempts at the reaction with indoline (3.4), 

aniline (3.37), or 7-iodoindoline143 (3.36). 
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 Scheme 3.10. Attempted formation of functionalized C3-N bond. 

 A suitable TMS-acetylene derivative was synthesized from L-serine methyl ester 

(3.39) and TMS-acetylene (Scheme 3.11). Serine methyl ester (3.39) was N-Boc 

protected (3.40) and the alcohol converted to the iodide (3.41) upon treatment with 

triphenylphosphine, imidazole, and iodine. TMS-acetylene bromide (prepared in one 

step, 72% yield) was coupled to serine-derived halide 3.41 to afford the desired alkyne 

(3.42) in 40% yield.132  

 

 Scheme 3.11. Key alkyne synthesis. 

 Alkyne 3.42 was subjected to Larock annulation with iodoaniline 3.12 to form 

indole 3.43. Saponification to the diacid (3.44) proceeded in good yield. While this route 

afforded access to advanced intermediate 3.44 in decent yields, it suffered from high step 

count due to the necessary Larock annulation and provided access to a diastereomer of 

chetomin. We again looked back to the convergent, stepwise approach that we had 
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previously envisioned (Scheme 3.7) and attempted the desired sequence in a stepwise 

manner. 

 

 Scheme 3.12. Larock indole synthesis of tryptophan dimer. 

 

3.3.3: Coupling to exo-3-bromopyrroloindoline 

 N-Cbz-Trp-OMe (3.20) was synthesized in >99% yield from tryptophan and the 

indole nitrogen protected as the Boc carbamate (3.46). Per a report published by Espejo 

and Rainier in 2008, addition of NBS and PPTS to 3.46 afforded exo-3-

bromopyrroloindoline 3.47 in 89% yield (Scheme 3.13).133,144 Deprotonation by KOtBu 

in the presence of indole formed the C3-N bond in 28% yield and resulted in 

epimerization of the methyl ester to the thermodynamically more favorable endo position 

(3.48).133 

 

 Scheme 3.13. Coupling of 3-bromopyrroloindoline. 
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 This result evolved into our current strategy for the formation of the C3-N1’ bond. 

The stereochemistry of 3.48 matches the enantiomer of what would be needed for a 

synthesis of chetomin (i.e. 3.51, Scheme 3.14). We could either form the 

bromopyrroloindoline from L-tryptophan and to it couple D-tryptophan and D-serine to 

synthesize the enantiomer of chetomin, or we could synthesize the D-tryptophan-derived 

pyrroloindoline (3.52) and use the natural amino acid isomers for the remaining three 

couplings in a synthesis of (+)-chetomin (1.12). Initially, however, only the cheaper L-

isomers were used for all four fragments as conditions were worked out for the remaining 

steps.  

 

 Scheme 3.14. Retrosynthetic analysis of (+)-chetomin. 

 

3.3.4: Attempted Coupling to Tetracyclic Bromide 

 The next goal was to test a more divergent approach. Ideally, the dioxopiperazine 

ring could be formed prior to coupling with indole (Scheme 3.15).  
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 Scheme 3.15. Coupling with more advanced bromopyrroloindoline. 

 Unfortunately, synthesis of 3.55 was more challenging than expected. Peptide 

coupling of tryptophan derivative (3.56) with N-Me-L-Ser-OMe initially suffered from 

poor yield. Eventually, the coupling was optimized using EDCI as the coupling reagent to 

afford dipeptide 3.57a in good, reproducible yield (Scheme 3.16). Cyclization to the 

dioxopiperazine (3.58a) failed under methods traditionally used in the Williams group 

(i.e. refluxing toluene with catalytic 2-hydroxy pyridine following Boc deprotection). 

However, microwave heating of neat N-Boc dipeptide 3.57a at 180 °C effected 

deprotection and cyclization to the dioxopiperazine (3.58a) in two minutes. The 

recovered product did not require any purification before proceeding to the next step. 

 

 Scheme 3.16. Optimized peptide coupling and dioxopiperazine formation. 

 Gratifyingly, this procedure was generally applicable to a variety of related 

dipeptides. Dioxopiperazines 3.58a-e were all synthesized with consistently good yield 

on scales up to 500 mg (Scheme 3.17). 

 Several of the dioxopiperazines were cyclized to the corresponding 

bromopyrroloindolines (3.55, Scheme 3.18). Despite numerous attempts, coupling of 

indole failed using conditions analogous to those first used in Scheme 3.13. 
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 Scheme 3.17. Microwave assisted dioxopiperazine synthesis.  

 

 Scheme 3.18. Attempted coupling with indole. 

 

3.4: Epidithiodioxopiperazine Formation 

 While unsuccessfully attempting to couple indole or tryptophan to 3.55, we also 

began to explore methods for the introduction of sulfur to the same dioxopiperazine. 

Epidithiodioxopiperazine 3.63, essentially a monomer of chetomin, was synthesized by a 

general method recently described by the Sodeoka group in Japan (Scheme 3.19).123,124 
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substitution of 3.61. Addition of the diol to condensed hydrogen sulfide and BF3·OEt2 

and oxidation of the resultant disulfide with iodine gave epidithiodioxopiperazine 3.63. 

 

 Scheme 3.19. Formation of the disulfide bridge. 

 

3.5: Attempted Core Construction 

3.5.1: Problematic Peptide Couplings 

 With a method for the formation of an epidithiodioxopiperazine in hand, we went 
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N-Boc-tryptophan methyl ester (3.34) was prepared and further protected as the 
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protection of the primary alcohols proceeded in good yield, although cyclization to the 

dioxopiperazines (3.70) using the previously described microwave conditions failed, as 

did the reaction with traditional thermal conditions. 

 

 Scheme 3.20. Coupling to 3-bromopyrroloindoline and attempted 

dioxopiperazine formation. 
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 Scheme 3.21. Attempted synthesis of alternate dioxopiperazine precursor. 

 

3.6: Synthesis of Heptacyclic Core 

3.6.1: Synthesis of Dioxopiperazines 

 We reasoned that the failed cyclization attempts in Scheme 3.20 and peptide 

coupling problems in Scheme 3.21 could be due to steric congestion caused by the 

indoline protecting group. Thus, N,N’-Boc2-D-Trp-OMe was prepared from D-tryptophan 

(3.73, Scheme 3.22). Bromocyclization proceeded stereoselectively to exo-

bromopyrroloindoline 3.74. Coupling with N-Boc-L-Trp-OMe gave endo-intermediate 

3.75 in decent yield, while deprotection of the carbamate gave the key intermediate for 

peptide coupling. In the absence of an aniline protecting group, peptide coupling 

proceeded in 44% yield to tetrapeptide 3.76. With the Fmoc amines, deprotection and 

cyclization to dioxopiperazine 3.77 proceeded in one pot upon treatment with morpholine 

in THF with gentle heating. At this point, all of the amides needed to be methylated prior 

to the introduction of sulfur, which first required protection of the aniline nitrogen. 

Selective Boc protection at this position was never achieved, nor was protection of 

tetrapeptide 3.76 to 3.78. 

N
SO2Ph

NBoc

N
CO2Me

MeO2C

BocHN

N
SO2Ph

NH

N
CO2Me

MeO2C

NH

2. N-Cbz-L-Ser-OTBS
    EDCI, iPr2NEt

O

TBSO
CbzHN

3.66 3.71

1. TFA

73%



 66 

 

 Scheme 3.22. Synthesis of dioxopiperazine 3.77. 
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dioxopiperazine 3.82 in excellent yield after Boc deprotection and addition of 

morpholine. 

 

 Scheme 3.23. Synthesis of (N-Me)3 dioxopiperazine. 

 Initially we attempted to again protect the aniline nitrogen before subjecting the 

material to radical bromination conditions. All attempts to Boc or TBS protect 3.82 failed 
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 Scheme 3.24. Attempted protection and deprotection of 3.82. 

 

 Scheme 3.25. Attempted peptide coupling with N-Me,Boc-Ser(OH). 
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 Scheme 3.26. Synthesis of sarcosine-derived dioxopiperazine. 

 

3.6.4: Completion of the Carbon Skeleton of Chetomin 

 Meanwhile, N-Me,Fmoc-Ser(OTBS) was successfully prepared and coupled to 

3.80 (Scheme 3.27). Dioxopiperazine 3.90 was easily formed as described above. 
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(1.12 and 3.91, Scheme 3.28). Much to our disappointment, both have refused to yield to 

our continued efforts. 

 

 Scheme 3.28. Attempted epidithiodioxopiperazine formations. 

 

3.7: Proposed Future Studies 

3.7.1: Proposed Synthesis of Tetraol 

 We have successfully synthesized the carbon framework of chetomin. The final 
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(Scheme 3.29). Numerous examples (see Chapter 2) suggest that this compound should 
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 Scheme 3.29. Key tetraols and iminium intermediates. 

 Synthesis of the tetraols should be possible either by the method previously 

attempted (radical bromination and substitution) or by mild oxidation with 

bis(pyridine)silver(I) permanganate (Scheme 3.30). In the synthesis of gliocladin B, n-

Bu4NMnO4 was also used as an oxidant for this reaction.127 Repeated trials will be 

necessary to produce optimal conditions, requiring sufficient time, material, and 

persistence. Three potential problems may complicate this route: (1) The free indoline 

nitrogen may require protection if it proves to be reactive under the proposed radical or 

oxidation conditions. This has previously been a difficult protection, and while a Boc or 

silyl group would be ideal, a trifluoroacetate group would also be appropriate (although it 

would introduce an additional deprotection step). (2) The desired hemiaminal may very 

well be unstable and require additional functionalization after it is formed before sulfur 

can be introduced. (3) The serine-derived bis(dioxopiperazine) (3.90) is susceptible to 

elimination of the primary alcohol. 
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 Scheme 3.30. Possible oxidations. 

 

3.7.2: Bypassing the Tetraol 

 It would also be worth attempting the addition of sulfur directly to 

dioxopiperazines 3.90 and 3.88. Both Nicolaou and Reisman took this approach in their 

respective epidithiodioxopiperazine syntheses, using S8 and NaHMDS (Scheme 

3.31).128,129 

 

 Scheme 3.31. Alternative sulfenylation. 

 

3.7.3: Late-Stage Alkylation of Sarcosine Analogue 

 Lastly, if access to sarcosine-derived epidithiodioxopiperazine 3.91 proves to be 

the most efficient route, conversion to chetomin can occur using inspiration from Kishi’s 

early syntheses of sporidesmin and gliotoxin (Scheme 3.32).113-118 Reduction of the 

N
H

N
NMe

O

OH

N

N
Me

Me
N

O

O

R

R

3.90 (R=CH2OTBS)
3.88 (R=H)

N
H

N
NMe

O

OH

N

N
Me

Me
N

O

O

R

R

3.92 (R=CH2OTBS)
3.89 (R=H)

HO
OH

OH

HO

NBS, V-70; 
H2O
or

Py2AgMnO4

N
NMe

O

O
R

S
S

N
H

H

MeN
NMe

O

O
R

S
S

N

1.12 (R=CH2OTBS)
3.91 (R=H)

N
H

N
NMe

O

OH

N

N
Me

Me
N

O

O

R

R

3.90 (R=CH2OTBS)
3.88 (R=H)

1. S8, NaHMDS
2. deprotection
3. I2



 73 

disulfide bridges and protection as the thioacetals would give 3.95. Alklation with 

BOMCl would install the protected serine side chain (3.96), which could be deprotected 

and the disulfide revealed to give chetomin (1.12). 

 

 Scheme 3.32. Proposed conversion of 3.91 to chetomin. 

 

3.8: Concluding Remarks 

 It will be difficult to leave this project behind with the total synthesis of chetomin 
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that remains is synthesis of the disulfide bridges to complete a total synthesis of (+)-

chetomin. 
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CHAPTER 4 

Synthetic Approach to Sporidesmin A 

  

4:1: Introduction 

 In 2010, we had the opportunity to write a book chapter on biomimetic syntheses 

of tryptophan-derived dioxopiperazines, in which Kishi’s elegant synthesis of (±)-

sporidesmin A (1.11) was featured (Figure 4.1).145 We were drawn to the densely 

functionalized structure of sporidesmin A, including the polysubstituted aromatic ring, 

pyrroloindoline core, hydroxyl groups at C3 and C12, and the epidiothiodioxopiperazine 

ring. We hoped that chemistry developed for the synthesis of chetomin (see Chapter 3) 

could be applied to an improved, stereoselective synthesis of sporidesmin A. 

 As detailed in Chapter 1, sporidesmin A was isolated from Pithomyces chartarum 

in 1959 as part of a forty-year nationwide search for the cause of facial eczema, a disease 

that was plaguing sheep herds of New Zealand.63-65 Facial eczema causes extensive liver 

damage in sheep and has been responsible for massive economic losses in New Zealand 

since the late 1890s. A dental nurse allegedly discovered that the addition of zinc sulfate 

to drinking water could prevent the disease, a measure still endorsed by veterinarians.146 

Epidithiodioxopiperazines are known to form a 2:1 complex with zinc ions, inhibiting the 

generation of the superoxide anion radical and likely providing the observed protective 

effects of zinc against sporidesmin.69,70 The toxicity of sporidesmin toward sheep was 

responsible for many of the early advances made in the study of 
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epidithiodioxopiperazines, including the isolation and characterization of sporidesmin 

and related metabolites (Figure 4.1). 

 

 Figure 4.1. Sporidesmin A and related fungal metabolites. 

No reasonable argument can be made advocating that a new synthesis of 

sporidesmin A will have any direct impact on mankind, medicine, or even sheep herds in 

New Zealand. Our interest is purely academic. Sporidesmin A is a synthetically 

challenging molecule, and pursuit of a total synthesis will allow us both to explore the 

scope of similar reactions employed toward the total synthesis of chetomin and to expand 

our general understanding of the reactivity of epidithiodioxopiperazine alkaloids. 
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ring. We hoped to develop an efficient synthesis of the requisite substituted L-tryptophan 

derivative and to apply the previously used bromocyclization reaction (Scheme 3.13) to 

form the pyrroloindoline core.  

 As with chetomin, we planned to introduce the disulfide bridge of (–)-sporidesmin 

A (1.11) at a late stage in the synthesis from hemiaminal 4.1 (Scheme 4.1). The 

hemiaminal could be formed by oxidation of tetracycle 4.2 after forming the 

pyrroloindoline core through oxidative cyclization and N-methylation of dioxopiperazine 

4.3. This intermediate is similar to many of the dioxopiperazines prepared in the previous 

chapter and was envisioned to arise via coupling of 4.4 with alanine, followed by 

cyclization.  

 

 Scheme 4.1. Retrosynthetic analysis of (–)-sporidesmin A. 
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derivative 4.4. We hoped to introduce both stereocenters and the amino acid portion of 

this intermediate through Sharpless asymmetric aminohydroxylation of unsaturated ester 

4.5. This ester could be formed by Wittig olefination of the aldehyde product of a 
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Vilsmeier–Haack reaction of indole 4.6. Modified dinitrostyrene Batcho–Leimgruber 

conditions were planned for the formation of the indole from styrene 4.7, prepared in 

several precedented steps from vanillin (4.8). 

 

4.3: Synthetic Approach to Sporidesmin A 

4.3.1: Preparation of Dinitrostyrene Derivative 

 Nitration of O-acetyl vanillin (4.9) afforded 4.10 when fuming nitric acid (>90%) 

was used as the nitronium source (Scheme 4.2). Fuming nitric acid was originally 

prepared fresh by distillation from a slurry of potassium nitrate and concentrated sulfuric 

acid, but this procedure seemed quite dangerous on scales producing more than 50 mL of 

nitric acid, prompting us to obtain the reagent from a commercial source. 

 

 Scheme 4.2. Nitration of vanillin. 
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vanillin (4.15) was prepared by bubbling chlorine gas through a solution of vanillin in 

acetic acid (Scheme 4.4).148 Nitration, deacetylation, and methylation proceeded in good 

yield to provide aldehyde 4.18. The Henry reaction gave dinitrostyrene 4.7 in low 

yield.149 

 

 Scheme 4.3. Dimethoxyindole synthesis. 

 

 Scheme 4.4. Synthesis of 5-chloro-dinitrostyrene derivative. 
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 Scheme 4.5. Undesired acetal formation. 

 

4.3.2: Indole Synthesis and Sharpless Asymmetric Aminohydroxylation 

 Synthesis of indole 4.6 proceeded in good yield using modified Batcho–

Leimgruber conditions (Scheme 4.6). Following N-methylation, an aryl aldehyde was 

installed at C3 via the Vilsmeier–Haack reaction.150 This aldehyde (4.20) was 

immediately converted to the unsaturated ester (4.5) upon Wittig reaction with the 

requisite phosphonium ylide. Sharpless asymmetric aminohydroxylation gave β-

hydroxytryptophan derivative 4.4, albeit in modest yield.151 

 

 Scheme 4.6. Asymmetric aminohydroxylation. 
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difluorobenzene gave dione 4.23, which was alkylated to form the dihydroquinidinyl 

anthraquinone ligand (4.24) in good yield. 

 

 Scheme 4.7. Preparation of (DHQD)2AQN. 

 

4.3.3: Dioxopiperazine Formation 

 β-hydroxytryptophan derivative 4.4 was protected as the silyl ether (4.25) and the 
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 Attempts to form the desired dioxopiperazine directly from 4.27 using the 

microwave conditions described in the previous chapter resulted in decomposition. 

O

O

O 1. AlCl3, reflux,
    48 h

F

F

+
2. polyphosphoric 
    acid, 140°C

O

O F

F

DHQD, n-BuLi
THF

O

O DHQD

DHQD
(DHQD)2AQN (4.24)4.21 4.22 4.23

14%
78%

N
Me

Cl

MeO
OMe

HN
NH

O

O
Me

H2, Pd/C

EDCI, iPr2NEt,
N-Boc-Ala-OH

N
Me

Cl

MeO
OMe

HN
NHBoc

CO2Me

O
Me

TBSO

2-OH-pyridine

OMe
MeO

Cl

N
Me

CO2MeHO
NHCbz

OMe
MeO

Cl

N
Me

CO2MeTBSO
NHCbzTBSCl, imid

OMe
MeO

Cl

N
Me

CO2MeTBSO
NH2

N
Me

Cl

MeO
OMe

HN
NH2

CO2Me

O
Me

TBSO
TMSOTf,

2,6-lutadine
CH2Cl2

PhCH3, reflux

4.4 4.25 4.26

4.27 4.28

4.29

DMF
>99%

MeOH
94%

CH2Cl2
59% 59%

61%



 82 

Following more traditional methods, we first removed the Boc group, then heated the 

crude product (4.28) in toluene in the presence of 2-hydroxypyridine. The 

dioxopiperazine was formed, but unfortunately the conditions also caused elimination of 

the silyl ether to afford 4.29. 

 An alternative cyclization precursor was synthesized from 4.25 by saponification 

of the methyl ester and coupling of L-Ala-OMe (Scheme 4.9). The low yielding coupling 

step forced a quick screen of coupling reagents, through which T3P was identified as the 

most efficient of those tested, providing dipeptide 4.31 in a mere 34% yield. 

 

 Scheme 4.9. Preparation of dipeptide. 

 The unoptimized reaction allowed us access to enough material to attempt the 

cyclization reaction. Dipeptide 4.31 was converted to the free amine and heated gently in 

toluene with catalytic 2-hydroxypyridine (Scheme 4.10). A mixture of the elimination 

product (4.29) and the desired dioxopiperazine (4.3) was obtained in poor yield. 
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 We returned to amine 4.26 and to it coupled N-Fmoc-L-Ala (Scheme 4.11). 

Again, our standard EDCI-mediated coupling produced dipeptide 4.32 in very poor yield. 

Use of T3P nearly doubled the yield and greatly simplified purification of 4.32. Gentle 

heating of the dipeptide in THF and morpholine resulted in concomitant Fmoc 

deprotection and cyclization to the desired dioxopiperazine (4.3). 

 

 Scheme 4.11. Improved synthesis of dioxopiperazine 4.3. 
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 Scheme 4.12. First attempts at oxidative cyclization. 

 Dioxopiperazine 4.3 was precious material at this point in the synthesis, and we 

certainly did not have large enough quantities to attempt a variety of conditions. 

Therefore, simple dioxopiperazine 4.36 was prepared and subjected numerous times to 

variations of the above conditions (Scheme 4.13). Unfortunately, model compound 4.36 

also failed to react. Dioxopiperazine 4.36 is nearly insoluble in most solvents, so we were 

never able to determine if this was the true cause of the failure. The unique electronics of 

dioxopiperazine 4.3 and the poor solubility of any readily accessible surrogate forced us 

to study the cyclization using advanced material. 

 

 Scheme 4.13. Model cyclization study. 
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reaction of either dioxopiperazine 4.3 or amine 4.26. However, trace amounts of 3-

hydroxypyrroloindoline 4.40 were detected from the reaction with Cbz protected 

derivative 4.25. 

 

 Scheme 4.14. More oxidative cyclization attempts. 
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 Scheme 4.15. Progression of cyclization. 

 We also attempted the cyclization using other oxidants, including Davis’s 

oxaziridine and benzoyl peroxide (Scheme 4.16).116,156 Only starting material was 

recovered, with no trace of the desired products (4.34 and 4.43). 

 

 Scheme 4.16. Attempted cyclizations. 
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similar substrate. That said, it should be noted that in the original sporidesmin synthesis, 

the authors only recovered diacetate 2.6 in 30% yield and completed the synthesis using 

authentic diacetate prepared from the degradation of sporidesmin A (Scheme 4.17).113 

One can only conclude that they also were unable to access appreciable quantities of the 

pyrroloindoline. Moreover, in Kishi’s later synthesis of sporidesmin B, benzoyl peroxide 

was used as the oxidant instead of iodosobenzene diacetate, yielding only 20% of the 

desired oxidative cyclization product.116 We recognized that intermediate 2.5 reported in 

the Kishi sporidesmin A synthesis could be intercepted from alcohol 4.4. 

 

 Scheme 4.17. Kishi’s final steps in the sporidesmin A synthesis. 

 A suitable N-Me alanine derivative needed to be prepared for the formal synthesis 

of sporidesmin A. N-Fmoc-Ala-OH (4.44) was converted to the oxazolidinone (4.45), 

then reduced to afford N-Me,Fmoc-Ala-OH (4.46, Scheme 4.18).157 

 

 Scheme 4.18. Preparation of N-Me,Fmoc-Ala-OH. 

 Alcohol 4.4 was acetylated by standard procedures to give 4.47. Amine 4.48 was 

revealed following deprotection of the Cbz group, then coupled to N-Me alanine 
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derivative 4.46 to afford dipeptide 4.49. This substrate, however, did not cyclize to the 

dioxopiperazine when heated in morpholine and THF. Only 4.50, the product resulting 

from Fmoc-deprotection and elimination of acetic acid, was recovered. 

 

 Scheme 4.19. Incorporation of N-Me-Ala. 

  

4.4: Future Direction 

 Given more time, I would like to prepare bis(N,N’-Cbz) tryptophan derivatives 

4.51 and 4.53 from indole 4.6 (Scheme 4.20). The bromocyclizations that were carried 

out for the synthesis of chetomin were all performed on tryptophan derivatives bearing an 

electron-withdrawing group on the indole nitrogen. Cyclization to the pyrroloindoline 

should be more favorable with these substrates than for the N-Me derivatives. Experience 

thus far with the oxidative cyclization reaction shows that a complex mixture of products 

will likely be recovered from each reaction, so sufficient starting material will be required 

to obtain adequate characterization of the reaction products.  
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 Scheme 4.20. Full panel of oxidation conditions to screen. 

 The proposed installation of the epidithiodioxopiperazine ring may also be 

problematic, especially considering the attempts made in the chetomin synthesis. Still, we 

propose forming (–)-sporidesmin A (1.11) through oxidation of the disulfide prepared by 

reaction of hemiaminal 4.1 with hydrogen sulfide (Scheme 4.21). The hemiaminal could 

be prepared from dioxopiperazine 4.2 or a related derivative.  

 

 Scheme 4.21. Proposed epidithiodioxopiperazine formation. 

 

4.5: Concluding Remarks 

 In summary, we have developed an asymmetric approach toward the synthesis of 

(–)-sporidesmin A. Advanced dioxopiperazine 4.3 can be prepared in decent overall yield 
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many of the synthetic advances made over the course of this synthesis were applied in 

our approach to chetomin. Particularly, use of N-Fmoc amino acids as precursors to 

dioxopiperazine rings eliminated a deptrotection step from each synthesis while 

improving the cyclization yields. While it is difficult to leave this project behind 

unfinished, I have no doubt that capable hands will pick it up in the future to achieve the 

total synthesis of (–)-sporidesmin A. 
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CHAPTER 5 

Experimental Procedures 

 

Unless otherwise noted, all reagents were obtained from commercial suppliers 

and were used without further purification. All air or moisture sensitive reactions were 

performed under a positive pressured of argon in flame-dried glassware. Tetrahydrofuran 

(THF), toluene, diethyl ether (Et2O), dichloromethane, benzene (PhH), acetonitrile 

(MeCN), triethylamine (Et3N), pyridine, diisopropyl amine, methanol (MeOH), 

dimethylsulfoxide (DMSO), and N,N-dimethylformamide (DMF) were obtained from a 

dry solvent system (Ar degassed solvents delivered through activated alumina columns, 

positive pressure of argon). Column chromatography was performed on Merck silica gel 

Kieselgel 60 (230-400 mesh). Melting points were determined in open-end capillary 

tubes and are uncorrected. 1HNMR and 13CNMR spectra were recorded on Varian 300, or 

400 MHz spectrometers. Chemical shifts are reported in ppm relative to CHCl3 at δ 7.27 

(1HNMR) and δ 77.23 (13CNMR). Mass spectra were obtained on Fisons VG Autospec. 

IR spectra were obtained from thin films on a NaCl plate using a Bruker Tensor 27 FT-IR 

spectrometer. Optical rotations were collected at 589 nm on a Rudolph Research 

automatic polarimeter Autopol III. 
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Tert-butyl 2,3-dioxoindoline-1-carboxylate (3.5). To a solution of isatin (4.0 g, 27.2 

mmol) in THF (100 mL) at 0°C was added Boc2O (7.1 g, 32.6 mmol) and DMAP (195 

mg, 1.6 mmol). The resulting mixture was stirred overnight at r.t. under Ar, then 

concentrated under reduced pressure. The product was recrystallized in EtOAc/hexanes 

to afford 3.5 (4.7 g, 70% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  7.92 (d, J = 8.2 Hz, 1H), 7.76-7.65 (m, 2H), 7.29 (t, J 

= 7.5 Hz, 1H), 1.56 (s, 9H). 

REF: TRW-I-175, TRW-I-179.  
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Figure 5.1a. 1H NMR spectrum of compound 3.5.  
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Boc-Hemiaminal (3.6). To a flame-dried RBF was added 3.5 (500 mg, 2.02 mmol) and 

toluene (20 mL). Indoline (134 µL, 1.2 mmol), K2CO3 (372 mg, 2.7 mmol), and 4 Å M.S. 

(5 g) were subsequently added, and the resulting suspension heated to reflux for 12 h 

under Ar. The reaction mixture was filtered through celite and the fitrate concentrated 

under reduced pressure to afford 419 mg of 3.6 as a tan solid (100% yield) that was taken 

on without further purification.  

1H-NMR (400 MHz; CDCl3): δ  10.59 (s, 1H), 8.55 (d, J = 8.7 Hz, 1H), 8.26 (d, J = 8.1 

Hz, 1H), 7.74 (dd, J = 8.1, 1.4 Hz, 1H), 7.57 (dd, J = 8.6, 7.2 Hz, 1H), 7.24-7.20 (m, 1H), 

7.13-7.11 (m, 1H), 7.03-6.99 (m, 1H), 3.97 (t, J = 8.4 Hz, 2H), 3.15 (t, J = 8.3 Hz, 2H), 

1.54 (s, 9H); 13C-NMR (101 MHz; CDCl3): δ 193.7, 163.4, 152.9, 144.1, 141.7, 137.0, 

133.9, 132.0, 129.2, 128.0, 125.5, 121.7, 119.3, 117.7, 81.4, 48.1, 28.49, 28.42. 

REF: TRW-I-180, TRW-I-185, TRW-I-201. 
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Figure 5.2a. 1H NMR spectrum of compound 3.6. 

 
Figure 5.2b. 13C NMR spectrum of compound 3.6. 
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1-(2,2-dibromovinyl)-2-nitrobenzene (3.15). 2-nitrobenzaldehyde (3.14, 2.0 g, 13.2 

mmol) and CBr4 (6.57 g, 19.8 mmol) were dissolved in CH2Cl2 (100 mL). The resulting 

solution was cooled to 0 °C and a solution of PPh3 (10.38 g, 39.6 mmol) in CH2Cl2 (80 

mL) slowly added. The reaction was stirred an additional 30 minutes at 0 °C, then 

concentrated under reduced pressure. The residue was taken up in chloroform (30 mL), 

filtered, and the solid washed with chloroform (2 x 30 mL). The filtrate was concentrated, 

then purified by SiO2 chromatography (8:1 hexanes:EtOAc) to afford 3.15 (3.69 g, 91% 

yield). 

1H-NMR (300 MHz; CDCl3): δ  8.12 (dd, J = 8.2, 1.3 Hz, 1H), 7.78 (s, 1H), 7.71-7.65 

(m, 1H), 7.60-7.51 (m, 2H). 

REF: TRW-I-286, TRW-I-337, TRW-I-363. 
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Figure 5.3a. 1H NMR spectrum of compound 3.15. 
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1-(bromoethynyl)-2-nitrobenzene (3.12). To a solution of dibromoalkene 3.15 (3.60 g, 

11.7 mmol) and BnEt3NCl (1.33 g, 5.85 mmol) in CH2Cl2 (46 mL) at 0 °C was added a 

solution of KOH (30 g) in 23 mL of H2O. The resulting solution was stirred for 1 h at 0 

°C, then extracted with CH2Cl2. The organic extracts were dried over Na2SO4, filtered, 

concentrated under reduced pressure, and purified by SiO2 chromatography (10-20% 

EtOAc in hexanes) to afford 3.12 in quantitative yield. 

1H-NMR (300 MHz; CDCl3): δ  8.06 (dd, J = 8.2, 1.4 Hz, 1H), 7.66 (dd, J = 7.7, 1.7 Hz, 

1H), 7.58 (td, J = 7.5, 1.4 Hz, 1H), 7.49 (td, J = 7.8, 1.6 Hz, 1H). 

REF: TRW-I-291, TRW-I-338, TRW-I-364. 
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Figure 5.4a. 1H NMR spectrum of compound 3.12. 
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1-((2-nitrophenyl)ethynyl)indoline (3.16). Bromoalkyne 3.12 (185 mg, 0.82 mmol) was 

dissolved in toluene (2.75 mL). Indoline (110 µL, 0.98 mmol), K3PO4 (418 mg, 1.97 

mmol), CuSO4⋅5H2O (40 mg, 0.16 mmol), and 1,10-phenanthroline (60 mg, 0.33 mmol) 

were added successively. The resulting suspension was heated to 120 °C for 4 h in a 

microwave. Upon completion of the reaction, the solution was cooled and diluted with 

ether, then filtered through celite. The filtrate was concentrated under reduced pressure 

and purified by SiO2 chromatography (10-20% EtOAc in hexanes) to afford 3.16 (80 mg, 

37% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.38 (d, J = 7.9 Hz, 1H), 8.15 (d, J = 8.7 Hz, 1H), 7.68 

(d, J = 9.1 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.30-7.26 (m, 2H), 7.19 (td, J = 10.2, 6.6 Hz, 

2H), 4.72 (t, J = 8.3 Hz, 2H), 3.32 (t, J = 8.3 Hz, 2H). 

REF: TRW-I-328, TRW-I-334, TRW-I-342, TRW-I-343, TRW-I-353, TRW-I-360, 

TRW-I-362, TRW-I-385. 
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Figure 5.5a. 1H NMR spectrum of compound 3.16.  
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2-(indolin-1-ylethynyl)aniline (3.17). Nitroalkyne 3.16 was dissolved in a 4 to 1 

acetone/water mixture (4.3 mL). Zinc dust (141 mg, 2.15 mmol) and NH4Cl (228 mg, 

4.30 mmol) were added successively, and the resulting suspension stirred briskly for 10 

minutes at r.t. The mixture was concentrated under reduced pressure, diluted with EtOAc, 

washed with water, washed with brine, dried over Na2SO4 and concentrated. Purification 

by SiO2 chromatography (3:1 hexanes:EtOAc, 1:1 hexanes:EtOAc, then 100% EtOAc) 

afforded pure aniline derivative 3.17 (61 mg, 61% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.33 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 15.6 Hz, 2H), 7.20-

7.04 (m, 4H), 6.72 (dd, J = 7.4, 2.3 Hz, 2H), 4.39-4.14 (m, 2H), 3.96 (td, J = 10.4, 6.1 

Hz, 1H), 3.54 (td, J = 10.4, 7.0 Hz, 1H), 3.21-2.99 (m, 2H); 13C-NMR (75 MHz; CDCl3): 

δ 131.5, 130.1, 129.1, 127.9, 124.98, 124.95, 122.2, 118.8, 117.6, 117.3, 112.5, 71.6, 

47.5, 28.4. 

REF: TRW-I-331, TRW-I-336, TRW-I-352, TRW-I-357, TRW-I-361, TRW-I-366. 
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Figure 5.6a. 1H NMR spectrum of compound 3.17. 

 
Figure 5.6b. 13C NMR spectrum of compound 3.17. 
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Methyl 3-(benzyloxycarbonylamino)-4-(indolin-3-yl)butanoate (3.21). N-Cbz-L-Trp-

OMe (3.52 g, 10.0 mmol) was dissolved in THF/TFA (16.5 mL/16.5 mL) and cooled to 0 

°C. BH3⋅Me2S was added dropwise and the resulting solution stirred 15 min. at 0 °C. 

Water (33 mL) was added and the mixture stirred 15 min. at r.t. The solvent was removed 

in vacuo and TFA azeotroped off with toluene (3x). The residue was taken up in EtOAc, 

washed with 1M NaOH (3x), water (1x), and brine (1x) successively. The organic layer 

was dried over Na2SO4, filtered, concentrated under reduced pressure, and purified by 

SiO2 chromatography (2:1 – 1:1 hexanes:EtOAc) to afford indoline 3.21 (2.81 g, 79% 

yield). 

1H-NMR (300 MHz; CDCl3): δ  7.36 (s, 5H), 7.03 (t, J = 7.1 Hz, 2H), 6.74-6.71 (m, 1H), 

6.64 (dd, J = 9.5, 1.8 Hz, 1H), 5.37 (dd, J = 26.1, 8.8 Hz, 1H), 5.12 (s, 2H), 4.53-4.44 (m, 

1H), 3.74-3.68 (m, 4H), 3.36-3.22 (m, 2H), 2.11-2.06 (m, 2H). 

REF: TRW-I-369. 
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Figure 5.7a. 1H NMR spectrum of compound 3.21. 
  

2.4
2.4

2.42.4

4.34.3

1.11.1

2.12.1

1.01.0

1.11.1

1.01.0

1.81.8

5.05.0

ppm1 1223344556677-19.97

2.
06

2.
08

2.
08

2.
08

2.
10

2.
11

3.
22

3.
25

3.
25

3.
31

3.
33

3.
34

3.
36

3.
36

3.
36

3.
68

3.
71

3.
74

4.
44

4.
45

4.
46

4.
46

4.
46

4.
48

4.
48

4.
49

4.
51

4.
52

4.
53

5.
12

5.
31

5.
34

5.
40

5.
43

6.
63

6.
63

6.
66

6.
66

6.
71

6.
73

6.
74

7.
01

7.
03

7.
06

7.
36



 119 

 

(S)-methyl 3-(1H-indol-3-yl)-2-(2,2,2-trifluoroacetamido)propanoate (3.31). To a 

solution of L-Trp-OMe·HCl (1.0 g, 3.92 mmol) in MeOH was added trifluoromethyl 

propionate (0.94 mL, 7.84 mmol) and Et3N (1.1 mL, 7.84 mmol). After stirring 1 h at r.t., 

the reaction mixture was concentrated and the resulting residue dissolved in CH2Cl2. The 

organic phase was washed with ammonium hydroxide (5%, 1x) and brine (1x), then dried 

over Na2SO4 and concentrated to afford 1.23 g of the title compound, carried forward as 

crude (>99% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.25-8.23 (bs, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 

8.1 Hz, 1H), 7.21 (td, J = 7.5, 1.1 Hz, 1H), 7.13 (td, J = 7.4, 1.0 Hz, 1H), 6.98 (d, J = 2.4 

Hz, 1H), 6.87-6.85 (bs, 1H), 4.94 (dt, J = 7.8, 5.0 Hz, 1H), 3.73 (s, 3H), 3.42 (d, J = 5.1 

Hz, 2H). 

REF: TRW-I-423, TRW-I-425. 

  

N
H

NH

CO2Me

O CF3

3.31



 120 

 
Figure 5.8a. 1H NMR spectrum of compound 3.31. 
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(S)-methyl 1-(2,2,2-trifluoroacetyl)-1,2,3,8-tetrahydropyrrolo[2,3-b]indole-2-

carboxylate (3.32). To a solution of 3.31 (1.07 g, 3.4 mmol) in CH2Cl2 (34 mL) and Et3N 

(1.9 mL, 13.6 mmol) at 0 °C was added t-BuOCl (0.41 mL, 3.4 mmol) dropwise. The 

resulting solution was allowed to warm to r.t. O/N with stirring. Water was added and the 

product extracted in to Et2O. The combined organic layers were washed with brine, dried 

over Na2SO4, and concentrated. Recrystallization from EtOAc/hexanes provided the pure 

title compound (670 mg, 63% yield). 

1H-NMR (300 MHz; CDCl3): δ  9.17-9.16 (bs, 1H), 7.39 (td, J = 6.7, 2.6 Hz, 2H), 7.17 

(ddd, J = 7.0, 4.3, 2.2 Hz, 2H), 5.55 (dt, J = 9.7, 1.8 Hz, 1H), 3.82 (s, 3H), 3.74 (dd, J = 

14.8, 9.7 Hz, 1H), 3.36 (dd, J = 14.8, 2.3 Hz, 1H). 

REF: TRW-I-424, TRW-I-427. 
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Figure 5.9a. 1H NMR spectrum of compound 3.32. 
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(2S,3aR,8aS)-1-tert-butyl 2-methyl 3a-((2-iodophenyl)amino)-3,3a,8,8a-

tetrahydropyrrolo[2,3-b]indole-1,2(2H)-dicarboxylate (3.35). N-Boc-Trp-OMe (100 

mg, 0.31 mmol) was dissolved in acetonitrile (6 mL), then 2-iodoaniline (81 mg, 0.37 

mmol) added and the resulting solution cooled to -45 °C. Freshly recrystallized NIS (113 

mg, 0.50 mmol) was added dropwise over 1 h as a solution in acetonitrile (1.5 mL). The 

reaction was allowed to warm to -35 °C as it stirred an additional hour. The entire 

reaction mixture was poured into a separatory funnel containing sat’d Na2S2O4 and 

EtOAc. The product was extracted in EtOAc (3x) and the combined organic layers 

washed with brine, dried over Na2SO4, and concentrated. Crude 3.35 was purified by 

SiO2 chromatography (5-10% EtOAc in hexanes) to afford pure 3.35 in 78% yield (130 

mg). 

1H-NMR (300 MHz; CDCl3): δ  7.64 (t, J = 7.8 Hz, 1H), 7.12 (dt, J = 13.7, 7.3 Hz, 2H), 

6.99 (t, J = 7.7 Hz, 1H), 6.75-6.65 (m, 2H), 6.40 (t, J = 7.6 Hz, 1H), 6.30 (dd, J = 16.2, 

8.2 Hz, 1H), 5.89 (d, J = 34.7 Hz, 1H), 4.63 (d, J = 25.6 Hz, 1H), 4.39 (ddd, J = 25.8, 8.3, 

4.3 Hz, 1H), 3.82 (s, 3H), 2.72 (qd, J = 15.3, 6.6 Hz, 2H), 1.46 (d, J = 30.4 Hz, 9H). 

REF: TRW-I-435, TRW-I-441. 
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Figure 5.10a. 1H NMR spectrum of compound 3.35.  
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L-serine-OMe (3.39). To a solution of L-serine (50.0 g, 0.48 mol) in MeOH (450 mL) at 

0 °C was added SOCl2 (35 mL, 0.48 mol). The reaction was allowed to warm to r.t. as it 

stirred O/N. The resulting solution was concentrated, taken up in ether, filtered, and the 

solid washed with ether. The crude solid material was recrystallized in MeOH/ether to 

afford pure crystalline methyl ester 3.39 as the HCl salt. 

REF: TRW-I-462, TRW-II-118. 

 

 

N-Boc-Ser-OMe (3.40). Boc anhydride (12.2 g, 56 mmol) was dissolved in acetonitrile 

(190 mL), then Et3N (24 mL, 168 mmol) and L-Ser-OMe·HCl (8.74 g, 56 mmol) added. 

The reaction was allowed to stir for 6 h at r.t., then CH2Cl2 (950 mL) and 1M HCl (665 

mL) added. The organic layer was separated and washed with sat’d NaHCO3, then dried 

over Na2SO4 and concentrated to afford the title material, used as crude (10.01 g, 82% 

yield). 

1H-NMR (300 MHz; CDCl3): δ  5.43 (m, J = 1.6, 0.8 Hz, 1H), 4.40-4.38 (m, 1H), 3.97-

3.91 (m, 2H), 3.79 (s, 3H), 2.20-2.19 (m, 1H), 1.46 (s, 9H). 

REF: TRW-I-299, TRW-I-439. 
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Figure 5.11a. 1H NMR spectrum of compound 3.40.  
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Methyl 2-(tert-butoxycarbonylamino)-3-iodopropanoate (3.41). To a solution of Ph3P 

(2.13 g, 8.13 mmol) and imidazole (553 mg, 8.13 mmol) in CH2Cl2 (30 mL) at 0 °C was 

added I2 (2.07 g, 8.13 mmol) in 3 portions. The reaction mixture was warmed to r.t. for 

10 minutes, then cooled to 0 °C before adding dropwise a solution of Boc-Ser-OMe (1.42 

g, 6.5 mmol) in 10 mL CH2Cl2. The resulting solution was stirred 1 h at 0 °C, then 

allowed to warm to r.t. as it stirred an additional 1.5 h. The crude reaction mixture was 

filtered through a plug of silica with 1:1 EtOAC/hexanes. The filtrate was concentrated 

under reduced pressure and purified by SiO2 chromatography (5-20% EtOAc in hexanes) 

to afford iodide 3.41 (1.17 g, 55% yield). 

1H-NMR (300 MHz; CDCl3): δ  5.36-5.33 (m, 1H), 4.55-4.50 (m, 1H), 3.80 (s, 3H), 3.56 

(dq, J = 9.8, 5.0 Hz, 2H), 1.46 (s, 9H). 

REF: TRW-I-196, TRW-I-205, TRW-I-243, TRW-I-440 
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Figure 5.12a. 1H NMR spectrum of compound 3.41.  
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(S)-methyl 2-((tert-butoxycarbonyl)amino)-5-(trimethylsilyl)pent-4-ynoate (3.42). A 

flask (Flask A) containing CuCN (123 mg, 1.37 mmol) and LiCl (115 mg, 2.74 mmol) 

was heated to 150 °C under vacuum for 2 h, then cooled to r.t. DMF (4 mL) was added 

and the suspension sonicated until full dissolution was observed. This solution was then 

cooled to -20 °C. A second flask (Flask B) containing Zn dust (358 mg, 5.47 mmol) was 

heated under vaccum, cooled to r.t., filled with Ar, then DMF (1.75 mL) and 

dibromoethane (26 µL, 0.30 mmol) added. The suspension was heated to 80 °C for 30 

min, then cooled to r.t. before addition of TMSCl (19 µL, 0.15 mmol). Following an 

additional 30 min of stirring, N-Boc-Ser(I)-OMe (3.41, 500 mg, 1.52 mmol) was added 

slowly as a solution in a minimal amount of DMF. After complete addition, this 

suspension was transferred to Flask A. The combined reaction mixture was allowed to 

stir for 15 min at -20 °C, then TMS-acetylene bromide (269 mg, 1.52 mmol) added 

dropwise. The reaction mixture was allowed to warm to r.t. O/N. Water was added (15 

mL) and the product extracted in EtOAc. The combined organic layers were washed with 

brine, dried over Na2SO4, and concentrated. SiO2 chromatography (3:1 hexanes/EtOAc) 

afforded the pure title compound (180 mg, 40% yield, stains with vanillin). 

1H-NMR (300 MHz; CDCl3): δ  5.28 (d, J = 8.4 Hz, 1H), 4.43-4.37 (m, 1H), 3.70 (s, 3H), 

2.75-2.59 (m, 2H), 1.39 (s, 9H), 0.07 (s, 8H). 

REF: TRW-I-444, TRW-I-452, TRW-I-469. 
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Figure 5.13a. 1H NMR spectrum of compound 3.42.  
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(Bromoethynyl)trimethylsilane. To a solution of TMS-acetylene (5 mL, 35.5 mmol) in 

acetone (120 mL) was added AgNO3 (604 mg, 3.55 mmol) and NBS (6.94 g, 39 mmol). 

After stirring 3 h, the reaction was quenched by addition of ice water. The product was 

extracted in pentane and the combined organic layers washed with brine, dried over 

Na2SO4, and concentrated (bath at 0 °C) to afford pure (bromoethynyl)trimethylsilane 

(4.51 g, 72% yield). 

1H-NMR (300 MHz; CDCl3): δ  0.18 (s, 9H). 

REF: TRW-I-442, TRW-I-457. 

 
Figure 5.14a. 1H NMR spectrum of (bromoethynyl)trimethysilane.  
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(2S,3aR,8aS)-1-tert-butyl 2-methyl 3a-(3-((S)-2-((tert-butoxycarbonyl)amino)-3-

methoxy-3-oxopropyl)-1H-indol-1-yl)-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-

1,2(2H)-dicarboxylate (3.43). A flask containing 3.35 (300 mg, 0.56 mmol), 3.42 (370 

mg, 1.24 mmol), NaOAc (321 mg, 3.92 mmol), LiCl (24 mg, 0.56 mmol), and Pd(OAc)2 

(25 mg, 0.11 mmol) was vacated and backfilled with Ar. DMF (3 mL) was added and the 

suspension sonicated for 15 minutes while bubbling Ar through reaction. Three freeze-

pump-thaw cycles were performed to complete the degassing procedure. The reaction 

mixture was heated to 100 °C for 24 h, then diluted with toluene and concentrated. The 

crude residue was taken up in EtOAc, filtered through celite, and washed with 3M HCl. 

The organic fraction was further washed with brine, dried over Na2SO4, and concentrated 

to afford the title compound (3.43, 250 mg, 70% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.62 (d, J = 8.1 Hz, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.35-

7.25 (m, 3H), 7.14 (d, J = 7.4 Hz, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), 

6.64 (s, 1H), 6.05-5.91 (m, 1H), 5.02 (d, J = 7.9 Hz, 1H), 4.55-4.53 (m, 1H), 4.28-4.20 

(m, 1H), 3.80 (d, J = 3.1 Hz, 3H), 3.58-3.47 (m, 3H), 3.36 (dd, J = 13.1, 9.3 Hz, 1H), 

3.15-3.14 (m, 1H), 2.98 (dd, J = 13.2, 7.8 Hz, 1H), 1.42 (complex, J = 28.4 Hz, 18H). 

REF: TRW-I-453, TRW-I-458. 
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Figure 5.15a. 1H NMR spectrum of compound 3.43.  
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(2S,3aR,8aS)-1-(tert-butoxycarbonyl)-3a-(3-((S)-2-((tert-butoxycarbonyl)amino)-2-

carboxyethyl)-1H-indol-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-

carboxylic acid (3.44). To a solution of 3.43 (100 mg, 0.136 mmol) in THF and MeOH 

(2:1, 0.40 mL:0.20 mL) was added LiOH (20 mg, 0.80 mmol). After stirring under Ar 

O/N, 10% KHSO4 was added until the solution was acidic, then the product extracted in 

EtOAc. The combined organic extracts were washed with brine, dried over Na2SO4, and 

concentrated. Crude 3.44 recovered as such was carried forward to the next reaction (90.4 

mg, 93% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.55-7.53 (m, 1H), 7.17 (d, J = 8.4 Hz, 2H), 7.06-7.00 

(m, 1H), 6.90-6.86 (m, 1H), 6.79-6.62 (m, 3H), 6.48-6.32 (m, 1H), 6.24-6.13 (m, 1H), 

4.63-4.34 (m, 2H), 3.56-3.47 (m, 1H), 3.20-3.18 (m, 1H), 3.04-2.82 (m, 2H), 1.50-1.38 

(m, 18H). 

REF: TRW-I-456, TRW-I-460. 
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Figure 5.16a. 1H NMR spectrum of compound 3.44.  
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(2S,3aR,8aR)-1-benzyl 8-tert-butyl 2-methyl 3a-bromo-3,3a-dihydropyrrolo[2,3-

b]indole-1,2,8(2H,8aH)-tricarboxylate (3.47). To a solution of N-Cbz,N’-Boc-Trp-OMe 

(1.0 g, 2.2 mmol) in CH2Cl2 (100 mL) was added PPTS (552 mg, 2.2 mmol) and NBS 

(392 mg, 2.2 mmol). The resulting solution was stirred O/N at r.t, then diluted with 

CH2Cl2, washed with brine, dried over Na2SO4, and concentrated. Crude 3.47 was 

purified by SiO2 chromatography (25% EtOAc in hexanes) to afford pure material in 

88% yield (1.03 g). 

1H-NMR (300 MHz; CDCl3): δ  7.37-7.28 (m, 8H), 7.12 (td, J = 7.5, 0.7 Hz, 1H), 6.43 (s, 

1H), 5.19-5.16 (m, 2H), 3.97 (dd, J = 10.3, 6.5 Hz, 1H), 3.69-3.41 (m, 3H), 3.26 (dd, J = 

12.7, 6.5 Hz, 1H), 2.84 (dd, J = 12.7, 10.3 Hz, 1H), 1.52 (s, 9H). 

REF: TRW-I-477. 
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Figure 5.17a. 1H NMR spectrum of compound 3.47.  
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(2R,3aR,8aR)-1-benzyl 8-tert-butyl 2-methyl 3a-(1H-indol-1-yl)-3,3a-

dihydropyrrolo[2,3-b]indole-1,2,8(2H,8aH)-tricarboxylate (3.48). 

Bromopyrroloindoline 3.47 (500 mg, 0.94 mmol) was dissolved in acetonitrile (20 mL), 

and to it added indole (74 mg, 0.63 mmol). The suspension was cooled to 0 °C, then 

KOtBu (141 mg, 1.26 mmol) added slowly. Once the reaction was deemed complete by 

TLC, the mixture was quenched by addition of sat’d NaHCO3 and the product extracted 

in CH2Cl2. The combined organic layers were washed with brine, dried over Na2SO4, 

concentrated, and purified by SiO2 chromatography (3:1 hexanes:EtOAc) to afford pure 

3.48 (100 mg, 28% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.79-7.75 (bs, 1H), 7.65-7.62 (m, 1H), 7.44-7.27 (m, 

8H), 7.19-7.15 (m, 3H), 6.96 (d, J = 3.0 Hz, 1H), 6.44 (d, J = 3.4 Hz, 1H), 5.30-5.20 (m, 

2H), 4.97 (d, J = 8.9 Hz, 1H), 3.57 (dd, J = 13.0, 9.3 Hz, 1H), 3.22 (s, 3H), 3.07 (d, J = 

13.1 Hz, 1H), 1.47 (bs, 9H). 

REF: TRW-I-482, TRW-I-484. 
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Figure 5.18a. 1H NMR spectrum of compound 3.48.  
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N-Boc-L-tryptophan-N-SO2Ph (3.56). N-Boc-Trp (14.8 g, 48.7 mmol) was dissolved in 

THF (100 mL) and the resulting solution cooled to -78 °C. LHMDS (146 mL, 146.1 

mmol) was added slowly over 5 minutes. The reaction was stirred at -78 °C for 1 h, then 

PhSO2Cl (7.5 mL, 58.4 mmol) added in one portion. After stirring an additional 2 h at -78 

°C, the reaction was quenched by addition of 1:1 AcOH:EtOAc then allowed to warm to 

r.t. The suspension was diluted with 1M HCl and the product extracted in EtOAc. The 

combined organic layers were dried and concentrated to afford crude 3.56, purified by 

SiO2 chromatography (5% AcOH, 45% hexanes, 50% CH2Cl2) to afford pure 3.56 (17.12 

g, 79% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  12.64-12.63 (m, 1H), 7.90-7.87 (m, 2H), 7.61 (t, J = 

7.8 Hz, 2H), 7.56-7.50 (m, 2H), 7.25-7.20 (m, 2H), 7.16-7.13 (m, 2H), 4.20-4.17 (m, 1H), 

3.11 (dd, J = 14.8, 4.2 Hz, 1H), 2.95 (dd, J = 14.8, 10.0 Hz, 1H), 1.31 (s, 9H). 

REF: TRW-II-176, TRW-II-251. 
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Figure 5.19a. 1H NMR spectrum of compound 3.56.  
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Dipeptide (3.57a). To a solution of N-Me-L-serine-OMe (2.0 g, 15 mmol) in CH2Cl2 (75 

mL) was added iPr2NEt (2.61 mL, 15 mmol). After stirring 15 minutes, the suspension 

was added to a stirring solution of 3.56 (6.66 g, 15 mmol) and EDCI (2.88 g, 15 mmol) in 

CH2Cl2. The reaction was stirred O/N at r.t., then concentrated and purified through a 

plug of SiO2 (100% EtOAc) to afford 3.57a (86% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  8.40 (d, J = 7.4 Hz, 1H), 7.87 (t, J = 8.8 Hz, 2H), 

7.67 (dt, J = 21.1, 6.5 Hz, 2H), 7.54 (t, J = 7.7 Hz, 2H), 7.29 (complex, 2H), 6.95 (d, J = 

8.9 Hz, 1H), 5.14 (dt, J = 11.2, 5.6 Hz, 1H), 4.47 (d, J = 5.7 Hz, 1H), 4.38-4.34 (m, 1H), 

3.77-3.70 (m, 1H), 3.60 (s, 3H), 3.07-3.01 (m, 1H), 2.88-2.80 (m, 1H), 2.48 (s, 3H), 1.25 

(s, 9H), 1.06 (s, 1H). 

REF: TRW-II-129. 
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Figure 5.20a. 1H NMR spectrum of compound 3.57a.  
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Dioxopiperazine (3.58a). Dipeptide 3.57a (500 mg) was transferred to a microwave 

tube, then heated neat in the microwave at maximum power to a safe temperature of 180 

°C (microwave set to ‘open-vessel’). After cooling, the residue was suspended in CH2Cl2, 

transferred to a vial, and concentrated to afford dioxopiperazine 3.58a (94% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  8.15 (d, J = 2.4 Hz, 1H), 8.03 (d, J = 2.0 Hz, 1H), 

7.89 (dd, J = 24.0, 7.8 Hz, 3H), 7.64 (t, J = 3.6 Hz, 2H), 7.56 (d, J = 4.0 Hz, 1H), 7.33-

7.27 (m, 2H), 5.14 (t, J = 5.7 Hz, 1H), 4.47 (d, J = 5.6 Hz, 1H), 4.05-4.00 (m, 1H), 3.74 

(d, J = 2.1 Hz, 1H), 3.65-3.60 (m, 1H), 3.42 (t, J = 4.2 Hz, 1H), 3.24 (dd, J = 59.1, 5.0 

Hz, 3H). 

REF: TRW-II-132. 
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Figure 5.21a. 1H NMR spectrum of compound 3.58a.  
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(S)-methyl 2-((S)-2-((tert-butoxycarbonyl)amino)-3-(1H-indol-3-yl)propan-amido)-3-

hydroxypropanoate (3.57c). To a solution of L-Ser-OMe·HCl (2.56 g, 16.4 mmol) in 

CH2Cl2 (80 mL) was added iPr2NEt (2.85 mL, 16.4 mmol). After stirring 15 minutes, N-

Boc-L-Trp (5.0 g, 16.4 mmol) and EDCI (3.15 g, 16.4 mmol) were added. The reaction 

was stirred O/N at r.t., then concentrated and purified through a plug of SiO2 (100% 

EtOAc) to afford 3.57c (5.71 g, 86% yield). 

1H-NMR (400 MHz; CDCl3): δ  8.69 (bs, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.23 (d, J = 8.0 

Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 7.01-6.97 (m, 2H), 5.34 (d, J = 7.4 Hz, 1H), 4.42 (bs, 

2H), 3.70 (bs, 2H), 3.54 (s, 3H), 3.16 (bs, 2H), 1.30 (s, 9H); 13C-NMR (101 MHz; 

CDCl3): δ 172.4, 170.6, 155.8, 136.2, 127.5, 123.5, 122.0, 119.4, 118.5, 111.4, 109.8, 

80.4, 62.5, 54.8, 52.6, 28.23, 28.14, 28.08. 

REF: TRW-II-043. 
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Figure 5.22a. 1H NMR spectrum of compound 3.57c. 

 
Figure 5.22b. 13C NMR spectrum of compound 3.57c. 
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Dipeptide (3.57d). To a solution of L-Ser-OMe·HCl (6.0 g, 38.5 mmol) in CH2Cl2 (200 

mL) was added iPr2NEt (6.7 mL, 38.5 mmol). After stirring 15 minutes, the suspension 

was added to a stirring solution of 3.56 (17.12 g, 38.5 mmol) and EDCI (7.39 g, 38.5 

mmol) in CH2Cl2. The reaction was stirred O/N at r.t., then concentrated and purified 

through a plug of SiO2 (100% EtOAc) to afford 3.57d (13.78 g, 66% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.96 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 7.1 Hz, 2H), 7.52 

(t, J = 7.0 Hz, 2H), 7.44 (dd, J = 13.3, 5.5 Hz, 3H), 7.31 (t, J = 7.1 Hz, 1H), 6.96 (d, J = 

6.7 Hz, 1H), 5.24-5.21 (m, 1H), 4.59-4.56 (m, 1H), 4.44 (q, J = 7.2 Hz, 1H), 3.89 (dt, J = 

1.3, 0.7 Hz, 2H), 3.72 (s, 3H), 3.18 (d, J = 6.0 Hz, 2H), 1.40 (s, 9H); 13C-NMR (101 

MHz; CDCl3): δ 171.9, 170.7, 155.9, 138.0, 135.0, 133.7, 130.8, 129.2, 126.6, 124.72, 

124.70, 123.2, 119.6, 117.9, 113.5, 80.3, 62.4, 54.7, 52.6, 28.16, 28.00. 

REF: TRW-II-107, TRW-II-178, TRW-II-253. 
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Figure 5.23a. 1H NMR spectrum of compound 3.57d. 

 
Figure 5.23b. 13C NMR spectrum of compound 3.57d. 
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(3S,6S)-3-(hydroxymethyl)-6-((1-(phenylsulfonyl)-1H-indol-3-yl)methyl)piperazine-

2,5-dione (3.58d). The general cyclization procedure given for compound 3.58a was 

repeated. 

1H-NMR (300 MHz; DMSO-d6): δ  8.14-7.86 (m, 4H), 7.64-7.56 (m, 4H), 7.30-7.28 (m, 

J = 5.5, 0.8 Hz, 2H), 5.13-5.13 (m, 1H), 4.38-4.03 (m, 1H), 3.74-3.60 (m, 2H), 3.43-3.33 

(m, 2H), 3.15-2.85 (m, 2H); 13C-NMR (101 MHz; DMSO): δ 167.5, 167.3, 137.6, 137.2, 

134.8, 131.4, 130.2, 126.9, 125.9, 123.6, 120.4, 118.5, 113.40, 113.31, 63.0, 57.3, 54.7, 

50.9. 

REF: TRW-II-063, TRW-II-186. 
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Figure 5.24a. 1H NMR spectrum of compound 3.58d. 

 
Figure 5.24b. 13C NMR spectrum of compound 3.58d. 
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Dipeptide (3.57e). Alcohol 3.57d (2.9 g, 5.3 mmol) was dissolved in DMF (13 mL), and 

to it added imidazole (864 mg, 12.7 mmol) and TBSCl (2.08 g, 13.8 mmol). The reaction 

stirred O/N at r.t., then was concentrated, dissolved in EtOAc, washed with H2O (3x), 

washed with brine, dried, and concentrated to afford silylether 3.57e (3.14 g, 90% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  8.14 (d, J = 7.8 Hz, 1H), 7.85 (t, J = 7.9 Hz, 3H), 

7.65 (t, J = 7.2 Hz, 2H), 7.58-7.50 (m, 3H), 7.33-7.20 (m, 2H), 7.00 (d, J = 8.8 Hz, 1H), 

4.46-4.40 (m, 1H), 4.34-4.30 (m, 1H), 3.86 (dd, J = 10.3, 4.7 Hz, 1H), 3.74 (dd, J = 10.3, 

4.9 Hz, 1H), 3.60 (s, 3H), 3.05-2.99 (m, 1H), 2.89-2.80 (m, 1H), 1.25 (s, 9H), 0.82 (s, 

9H), 0.00 (d, J = 3.2 Hz, 6H); 13C-NMR (101 MHz; CDCl3): δ 170.6, 170.2, 138.2, 

135.1, 133.7, 130.8, 129.2, 126.7, 124.9, 124.6, 123.3, 119.6, 117.6, 113.6, 63.3, 54.2, 

52.4, 28.20, 28.10, 25.70, 25.61, 18.1, -5.63, -5.77. 

REF: TRW-II-196, TRW-II-222, TRW-II-254. 
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Figure 5.25a. 1H NMR spectrum of compound 3.57e. 

 
Figure 5.25b. 13C NMR spectrum of compound 3.57e. 
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Dioxopiperazine (3.58e). Dipeptide 3.57e (500 mg) was transferred to a microwave tube, 

then heated neat in the microwave at maximum power to a safe temperature of 180 °C 

(microwave set to ‘open-vessel’). After cooling, the residue was suspended in CH2Cl2, 

transferred to a vial, and concentrated to afford dioxopiperazine 3.57e (2.47 g over 6 

batches, 98%). 

1H-NMR (300 MHz; DMSO-d6): δ  7.92-7.83 (m, 4H), 7.64 (t, J = 3.7 Hz, 2H), 7.58-7.52 

(m, 4H), 7.33-7.28 (m, 1H), 7.25-7.20 (m, 1H), 4.15-4.05 (m, 1H), 3.84-3.77 (m, 1H), 

3.61-3.43 (m, 2H), 3.16-2.94 (m, 2H), 0.79 (s, 9H), -0.02 (s, 3H), -0.06 (s, 3H). 

REF: TRW-II-226, TRW-II-255. 
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Figure 5.26a. 1H NMR spectrum of compound 3.58e.  
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Dipeptide (5.1). Alcohol 3.57c (2.0 g, 4.9 mmol) was dissolved in DMF (12 mL), and to 

it added imidazole (802 mg, 11.8 mmol) and TBSCl (1.92 g, 12.7 mmol). The reaction 

stirred O/N at r.t., then was concentrated, dissolved in EtOAc, washed with H2O (3x), 

washed with brine, dried, and concentrated to afford silylether 5.1 (2.38 g, 93% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.18 (bs, J = 0.4 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.34 

(d, J = 8.0 Hz, 1H), 7.20-7.18 (m, 1H), 7.16-7.11 (m, 2H), 6.55-6.52 (m, 1H), 5.19-5.16 

(m, 1H), 4.54 (broad, J = 7.0, 4.1 Hz, 2H), 3.95 (dd, J = 10.1, 2.7 Hz, 1H), 3.66 (s, 3H), 

3.62-3.58 (m, 1H), 3.31-3.30 (m, 1H), 3.21 (dd, J = 14.6, 6.9 Hz, 1H), 1.42 (s, 9H), 0.77 

(s, 9H), -0.07 (s, 3H), -0.10 (s, 3H). 

REF: TRW-III-196. 
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Figure 5.27a. 1H NMR spectrum of compound 5.1.  
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(3S,6S)-3-((1H-indol-3-yl)methyl)-6-(((tert-

butyldimethylsilyl)oxy)methyl)piperazine-2,5-dione (5.2). The general cyclization 

procedure given for compound 3.58a was repeated. 

1H-NMR (300 MHz; DMSO-d6): δ  10.88 (m, 1H), 7.95 (s, 1H), 7.60-7.48 (m, 1H), 7.29 

(t, J = 7.8 Hz, 1H), 7.05-6.93 (m, 2H), 4.09-3.97 (m, 1H), 3.82-3.70 (m, 1H), 3.52-3.43 

(m, 1H), 3.27-3.14 (m, 2H), 2.79 (d, J = 47.6 Hz, 1H), 0.81 (s, 9H), -0.02--0.05 (m, 6H); 

13C-NMR (101 MHz; DMSO): δ 167.6, 165.5, 136.5, 127.9, 124.4, 121.3, 118.96, 

118.77, 111.7, 109.5, 65.4, 57.5, 55.9, 31.5, 26.33, 26.24, 26.11, 26.05, 25.99, 18.7, -5.0. 

REF: TRW-II-187. 
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Figure 5.28a. 1H NMR spectrum of compound 5.2. 

 
Figure 5.28b. 13C NMR spectrum of compound 5.2. 
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tert-butyl 3-(((2S,5S)-5-(((tert-butyldimethylsilyl)oxy)methyl)-3,6-dioxopiperazin-2-

yl)methyl)-1H-indole-1-carboxylate. The general cyclization procedure given for 

compound 3.58a was repeated. 

1H-NMR (300 MHz; CDCl3): δ  8.01 (d, J = 8.2 Hz, 1H), 7.47 (dd, J = 7.7, 0.4 Hz, 1H), 

7.35 (s, 1H), 7.23-7.10 (m, 2H), 4.16-4.12 (m, 1H), 3.87-3.84 (m, 3H), 3.63 (dd, J = 10.1, 

3.1 Hz, 1H), 3.31 (dd, J = 10.1, 5.8 Hz, 2H), 3.05 (dd, J = 14.4, 8.8 Hz, 1H), 1.54 (s, 9H), 

0.75 (s, 9H), -0.09 (s, 6H); 13C-NMR (101 MHz; CDCl3): δ 173.3, 171.6, 135.4, 130.61, 

130.58, 130.50, 128.6, 124.8, 121.0, 120.2, 89.7, 70.5, 62.7, 60.5, 54.7, 54.5, 36.5, 33.7, 

31.4, 24.1, 0.06, -0.00. 

REF: TRW-III-187. 
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Figure 5.29a. 1H NMR spectrum of compound 5.3. 

 
Figure 5.29b. 13C NMR spectrum of compound 5.3. 
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N-Boc-L-tryptophan-N’-SO2Ph (3.56). Compound 3.59 (14.8 g, 48.7 mmol) was 

dissolved in THF (100 mL) and the resulting solution cooled to -78 °C. LHMDS (146 

mL, 146.1 mmol) was added slowly over 5 minutes. The reaction was stirred at -78 °C 

for 1 h, then PhSO2Cl (7.5 mL, 58.4 mmol) added in one portion. After stirring an 

additional 2 h at -78 °C, the reaction was quenched by addition of 1:1 AcOH:EtOAc then 

allowed to warm to r.t. The suspension was diluted with 1M HCl and the product 

extracted in EtOAc. The combined organic layers were dried and concentrated to afford 

crude 3.56, purified by SiO2 chromatography (5% AcOH, 45% hexanes, 50% CH2Cl2) to 

afford pure 3.56 (17.12 g, 79% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  12.64-12.63 (m, 1H), 7.90-7.87 (m, 2H), 7.61 (t, J = 

7.8 Hz, 2H), 7.56-7.50 (m, 2H), 7.25-7.20 (m, 2H), 7.16-7.13 (m, 2H), 4.20-4.17 (m, 1H), 

3.11 (dd, J = 14.8, 4.2 Hz, 1H), 2.95 (dd, J = 14.8, 10.0 Hz, 1H), 1.31 (s, 9H). 

REF: TRW-II-176, TRW-II-251. 
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Figure 5.30a. 1H NMR spectrum of compound 3.56.  
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Bromopyrroloindoline (3.55e). A solution of dioxopiperazine 3.58e (2.47 g, 4.68 mmol) 

in MeCN (50 mL) was cooled to 0 °C and to it added bromine (0.962 mL, 18.7 mmol) 

dropwise. After stirring 5 minutes, 1:1 Na2S2O3:NaHCO3 was added and the product 

extracted in EtOAc. The combined organic layers were washed with brine, dried over 

Na2SO4 and concentrated. Purification by SiO2 chromatgraphy (10/40/50 iPrOH/hexanes/ 

CH2Cl2) afforded pure pyrroloindoline 3.55e in 38% yield (1.09 g). 

1H-NMR (300 MHz; DMSO-d6): δ  8.06 (s, 1H), 7.87-7.84 (m, 2H), 7.66-7.53 (m, 4H), 

7.42 (d, J = 2.3 Hz, 2H), 7.27-7.22 (m, 1H), 6.46 (s, 1H), 4.05 (d, J = 1.0 Hz, 1H), 3.77-

3.75 (m, 2H), 3.73-3.68 (m, 2H), 3.60-3.56 (m, 2H), 1.01 (d, J = 6.1 Hz, 9H), -0.02 (s, 

6H). 

REF: TRW-II-228, TRW-II-256. 
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Figure 5.31a. 1H NMR spectrum of compound 3.55e.  
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N-Me-bromopyrroloindoline (3.60). Dioxopiperazine 3.55e (2.09 g, 3.4 mmol) was 

dissolved in acetone (50 mL). Potassium carbonate (11.73 g, 85 mmol) and MeI (27.5 

mL, 442 mmol) were added, the flask covered with foil, and the reaction allowed to stir at 

r.t. under Ar for 5 d. The crude reaction mixture was concentrated, partitioned between 

EtOAc and H2O (200 mL each), and the product extracted in EtOAc. The combined 

organic layers were dried and concentrated. SiO2 chromatography (10/40/50 

iPrOH/hexanes/CH2Cl2) gave the pure title compound (1.69 g, 98% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.89-7.71 (m, J = 1.6 Hz, 2H), 7.69 (d, J = 8.2 Hz, 1H), 

7.58-7.52 (m, 1H), 7.44 (ddd, J = 8.4, 6.8, 1.4 Hz, 2H), 7.38-7.32 (m, 2H), 7.21 (d, J = 

7.0 Hz, 1H), 6.54 (d, J = 28.9 Hz, 1H), 4.08-3.78 (m, 4H), 3.17 (ddd, J = 28.8, 12.6, 5.2 

Hz, 1H), 2.98 (s, 3H), 2.89-2.76 (m, 1H). 

REF: TRW-II-235, TRW-II-258. 
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Figure 5.32a. 1H NMR spectrum of compound 3.60.  
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OTBS-N-Me-bromopyrroloindoline (3.61). The same general procedure for TBS 

protection was followed as for 3.57e. Instead of carrying the crude product forward as 

before, it was necessary for the subsequent radical bromination to purify the product by 

SiO2 chromatography (20-60% EtOAc in hexanes) to afford 3.61 (47% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.89 (dd, J = 8.1, 1.0 Hz, 2H), 7.70 (dd, J = 7.9, 0.6 Hz, 

1H), 7.56-7.53 (m, 1H), 7.48-7.43 (m, 2H), 7.35-7.32 (m, 2H), 7.21-7.16 (m, 1H), 6.63 

(s, 1H), 4.28 (dd, J = 10.2, 1.3 Hz, 1H), 4.06 (s, 1H), 3.94 (dd, J = 10.1, 2.7 Hz, 1H), 3.78 

(dd, J = 12.4, 4.5 Hz, 1H), 3.09 (dd, J = 12.0, 4.5 Hz, 1H), 2.91 (s, 3H), 2.73 (t, J = 12.2 

Hz, 1H), 0.89 (s, 9H), 0.10 (s, 6H). 

REF: TRW-II-236, TRW-II-242. 
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Figure 5.33a. 1H NMR spectrum of compound 3.61.  
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Diol (3.62). To a solution of Br-dioxopiperazine 3.61 (710 mg, 1.14 mmol) in CCl4 (40 

mL) was added NBS (406 mg, 2.28 mmol) and V-70 (89 mg, 0.29 mmol). The resulting 

suspension was stirred 8 h. at r.t., then filtered through a cotton plug, the solid washed 

with CCl4, and the combined filtrate concentrated. The resulting residue was dissolved in 

1:1 MeCN:pH 7 phosphate buffer (58 mL) and stirred 3 h. at r.t. The product was 

extracted in EtOAc (3x), washed with brine, dried, and concentrated to afford the diol in 

97% yield (720 mg), carried forward to the next step as the crude material. 

REF: TRW-II-244, 245, TRW-II-368, 370. 
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Epidithiodioxopiperazine (3.63). Hydrogen sulfide (ca. 8 mL) gas was condensed in a 

sealed tube capped with a rubber septum at -78 °C. Diol 3.62 (125 mg, 0.19 mmol) and 

BF3·OEt2 (0.119 mL, 0.95 mmol) were added as a solution in CH2Cl2 (7.6 mL). The 

rubber septum was removed and the sealed tube capped with a teflon cap and placed 

behind a blast shield. The reaction mixture stirred at r.t. for 90 min., recooled to -78 °C, 

uncapped and sealed with a rubber septum, then allowed to warm to r.t. with 3 NaOH and 

1 bleach trap in place as the gas vented. The resulting solution was diluted with EtOAc, 

washed with sat’d NH4Cl, and the product extracted in EtOAc. Iodine (100 mg, 2 eq) was 

added to the EtOAc extracts and the mixture allowed to stir 1 min. 10% Na2S2O3 was 

added and the product extracted in EtOAc, dried, and concentrated. Purification by SiO2 

chromatography (1:1 hexanes:EtOAc) afforded pure epidithiodioxopiperazine 3.63 in 

42% yield (44.9 mg). 

1H-NMR (300 MHz; CDCl3): δ  7.78 (dd, J = 8.4, 1.1 Hz, 2H), 7.64 (d, J = 8.2 Hz, 1H), 

7.52-7.49 (m, 1H), 7.41-7.36 (m, 4H), 7.28-7.26 (m, 1H), 6.49 (s, 1H), 4.33 (d, J = 12.8 

Hz, 1H), 4.18 (d, J = 12.7 Hz, 1H), 3.85 (d, J = 15.3 Hz, 1H), 3.21 (d, J = 15.3 Hz, 1H), 

3.13 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 176.9, 163.7, 134.83, 134.82, 134.3, 133.8, 

132.8, 131.23, 131.22, 131.0, 123.9, 114.6, 72.4, 66.2, 37.6, 31.3, 26.9, 23.7, 20.0; 

HRMS (ESI-APCI): [M+H]+ 567.9670 calcd for C21H19BrN3O5S3, found: 567.9641. REF: 

TRW-II-246, 247, TRW-II-372, 373.  
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Figure 5.34a. 1H NMR spectrum of compound 3.63. 

 
Figure 5.34b. 13C NMR spectrum of compound 3.63. 
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N-Boc-L-tryptophan (3.59). To a solution of L-tryptophan (50 g, 245 mmol) in 1:1 

THF:H2O (700 mL) was added NaOH (10.8 g, 270 mmol) and Boc2O (58.9 g, 270 

mmol). The resulting solution was stirred O/N at r.t. The volume was reduced and the 

product extracted in CH2Cl2. The aqueous layer was acidified with 1M HCl to pH 4, and 

the product extracted in CH2Cl2. The combined organic layers were dried over Na2SO4 

and concentrated to afford 3.59 (70.23 g, 94% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.50 (d, J = 7.6 Hz, 1H), 7.26 (d, J = 7.9 Hz, 1H), 7.09-

6.98 (m, 2H), 6.96 (s, 1H), 4.45 (t, J = 5.4 Hz, 1H), 3.28-3.17 (m, 2H), 1.31 (s, 9H). 

REF: TRW-II-252. 
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Figure 5.35a. 1H NMR spectrum of compound 3.59.  

9.1
9.1

2.02.0

0.80.8

1.11.1

1.91.9

1.31.3

1.01.0

ppm0 011223344556677-19.97

1.
31

3.
17

3.
19

3.
22

3.
23

3.
26

3.
26

3.
27

3.
27

3.
28

3.
28

4.
43

4.
45

4.
47

6.
96

6.
98

7.
01

7.
01

7.
03

7.
04

7.
06

7.
06

7.
08

7.
09

7.
25

7.
28

7.
49

7.
51



 175 

 

N-Boc-L-tryptophan-OMe (3.34). To a solution of N-Boc-L-tryptophan (30 g, 98.7 

mmol) in DMF (200 mL) at 0 °C was added MeI (9.2 mL, 148 mmol) and KHCO3 (19.7 

g, 197 mmol). After stirring O/N at r.t., the mixture was diluted with ether, washed with 

H2O (2x), 1M KHSO4 (1x), and brine (1x). The combined organic layers were dried and 

concentrated to afford the title compound (29.86 g, 95% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.10-8.08 (m, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 

8.0 Hz, 1H), 7.22-7.09 (m, 2H), 7.01 (d, J = 2.4 Hz, 1H), 5.09-5.06 (m, 1H), 4.68-4.62 

(m, 1H), 3.68 (s, 3H), 3.29 (d, J = 5.2 Hz, 2H), 1.43 (s, 9H). 

REF: TRW-II-273, TRW-II-285, TRW-II-349. 
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Figure 5.36a. 1H NMR spectrum of compound 3.34.  
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N-Boc-L-tryptophan-OMe-N’-SO2Ph (3.64). N-Boc-L-tryptophan-OMe (10.0 g, 31.4 

mmol), NaOH (3.77 g, 94.2 mmol), and Bu4NHSO4 (544 mg, 1.6 mmol) were suspended 

in CH2Cl2 (150 mL), then PhSO2Cl (4.8 mL, 37.7 mmol) added dropwise. After stirring 6 

h. at r.t., aqueous NH4Cl (300 mL) and EtOAc (300 mL) were added and the product 

extracted in EtOAc (3x). The combined organic extracts were dried and concentrated to 

afford the title compound (14.4 g, >99% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.97 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 7.5 Hz, 2H), 7.56-

7.50 (m, 1H), 7.47-7.44 (m, 2H), 7.42 (d, J = 7.2 Hz, 1H), 7.36 (s, 1H), 7.31-7.20 (m, 

2H), 5.05 (dt, J = 7.9, 0.6 Hz, 1H), 4.66-4.59 (m, 1H), 3.61 (s, 3H), 3.27-3.11 (m, 2H), 

1.44 (s, 9H). 

REF: TRW-II-263, TRW-II-275, TRW-II-350. 
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Figure 5.37a. 1H NMR spectrum of compound 3.64.  
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Bromopyrroloindoline (3.65). To a solution of N-Boc-L-tryptophan-OMe-N’-SO2Ph (42 

g, 91.5 mmol) in CH2Cl2 (1000 mL) was added NBS (16.29 g, 91.5 mmol) and PPTS 

(22.97 g, 91.5 mmol). The reaction was stirred O/N at r.t., then washed with 10% 

NaHCO3 and 10% Na2S2O4 (1:1), and the organic extract concentrated to afford 3.65 in 

quantitative yield. 

1H-NMR (300 MHz; CDCl3): δ  7.83-7.79 (bs, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.46 (ddd, J 

= 8.4, 6.4, 1.6 Hz, 1H), 7.34 (td, J = 7.7, 1.4 Hz, 3H), 7.27-7.25 (m, 1H), 7.17 (td, J = 7.5, 

1.0 Hz, 1H), 6.33-6.31 (bs, 1H), 3.85-3.80 (m, 1H), 3.73 (s, 3H), 3.06 (dd, J = 12.6, 5.9 

Hz, 1H), 2.81-2.73 (m, 1H), 1.54-1.53 (bs, 9H); 13C-NMR (101 MHz; CDCl3): δ 171.9, 

138.0, 133.8, 133.4, 130.9, 129.2, 128.6, 128.3, 127.3, 126.6, 124.9, 124.3, 123.9, 123.3, 

113.6, 86.7, 80.0, 59.4, 52.4, 28.26, 28.17, 27.8, 21.0, 14.2. 

REF: TRW-II-264, TRW-II-277, TRW-II-351. 
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Figure 5.38a. 1H NMR spectrum of compound 3.65. 

 
Figure 5.38b. 13C NMR spectrum of compound 3.65. 
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Indole (3.66). Bromopyrroloindoline 3.65 (16.41 g, 30.6 mmol) was dissolved in 

CH3CN, and to the resulting solution added N-Boc-L-tryptophan-OMe (6.49 g, 20.4 

mmol). The solution was cooled to 0 °C, then KOtBu (4.57 g, 40.8 mmol) added. After 

stirring 1 h at 0 °C, the reaction was quenched with NaHCO3, extracted in CH2Cl2, 

washed with brine, dried, and concentrated. Purification by SiO2 chromatography (40% 

EtOAc in hexanes) afforded 3.66 in 34% yield (5.36 g). 

1H-NMR (300 MHz; CDCl3): δ  7.85-7.79 (m, 1H), 7.85-7.79 (m, 1H), 7.60-7.43 (m, 

2H), 7.60-7.43 (m, 2H), 7.34 (t, J = 7.7 Hz, 3H), 7.34 (t, J = 7.7 Hz, 3H), 7.22-7.01 (m, 

7H), 7.22-7.01 (m, 7H), 6.85 (s, 1H), 6.85 (s, 1H), 6.31 (bs, 1H), 6.31 (s, 1H), 5.06 (bs, 

1H), 5.06 (s, 1H), 4.64-4.61 (m, 1H), 4.64-4.61 (m, 1H), 3.73 (s, 3H), 3.73 (s, 3H), 3.68 

(s, 3H), 3.68 (s, 3H), 3.28-3.21 (m, 2H), 3.28-3.21 (m, 2H), 3.07 (dd, J = 12.6, 5.9 Hz, 

1H), 3.07 (dd, J = 12.6, 5.9 Hz, 1H), 2.77 (t, J = 11.6 Hz, 1H), 2.77 (t, J = 11.6 Hz, 1H), 

1.58-1.55 (bs, 9H), 1.58-1.55 (m, 9H), 1.43 (s, 9H), 1.43 (s, 9H); 13C-NMR (101 MHz; 

CDCl3): δ 172.4, 161.2, 154.9, 143.2, 133.7, 132.9, 132.2, 131.61, 131.58, 131.52, 130.5, 

128.9, 128.5, 128.1, 127.0, 126.46, 126.35, 125.2, 124.1, 122.4, 121.82, 121.76, 120.24, 

120.17, 119.57, 119.43, 114.8, 82.2, 59.44, 59.36, 54.4, 53.3, 52.1, 51.6, 37.9, 37.7, 

28.18, 28.14, 28.08, 28.01, 27.99, 27.97, 27.94, 27.93, 27.91, 27.79; HRMS (ESI-

APCI+): [M+Na]+ 797.2832 calcd for C40H46N4NaO10S, found: 797.2829. 

REF: TRW-II-266, TRW-II-278, TRW-II-352. 
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Figure 5.39a. 1H NMR spectrum of compound 3.66. 

 
Figure 5.39b. 13C NMR spectrum of compound 3.66. 
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Diacid (3.67). To a solution of 3.66 (5.35 g, 6.9 mmol) in 2:1 THF:H2O (24 mL) was 

added LiOH (828 mg, 34.5 mmol). The reaction stirred O/N before acidifying with 10% 

KHSO4. The product was extracted in EtOAc, and the combined organic extracts washed 

with brine, dried, and concentrated. SiO2 chromatography (1:1 hexanes:EtOAc) gave the 

pure diacid (5.01 g, 97% yield). 

1H-NMR (300 MHz; CDCl3): δ  9.51 (bs, 2H), 7.70-7.67 (m, 1H), 7.55 (dt, J = 7.0, 0.8 

Hz, 1H), 7.42-7.38 (m, 1H), 7.19-7.13 (m, 8H), 6.95-6.88 (m, 2H), 6.70 (d, J = 5.8 Hz, 

1H), 6.06-5.93 (m, 1H), 4.99-4.92 (m, 1H), 4.54-4.40 (m, 1H), 3.43-3.34 (m, 1H), 3.19-

3.05 (m, 1H), 2.81-2.72 (m, 2H), 1.56 (s, 8H), 1.42 (d, J = 11.7 Hz, 9H); 13C-NMR (101 

MHz; CDCl3): δ 178.03, 177.95, 159.41, 159.30, 146.7, 141.6, 137.56, 137.44, 136.8, 

136.3, 135.3, 134.47, 134.33, 132.8, 132.4, 131.7, 130.8, 130.4, 129.5, 128.35, 128.18, 

126.2, 123.97, 123.91, 123.64, 123.63, 123.58, 123.54, 123.52, 123.50, 123.47, 113.45, 

113.42, 98.4, 86.33, 86.25, 83.81, 83.68, 64.5, 63.3, 32.0, 31.8. 

REF: TRW-II-268, TRW-II-446. 
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Figure 5.40a. 1H NMR spectrum of compound 3.67. 

 
Figure 5.40b. 13C NMR spectrum of compound 3.67. 
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Tetrapeptide (3.68). To a solution of L-serine-OMe·HCl (2.09 g, 13.4 mmol) in CH2Cl2 

(70 mL) was added iPr2NEt (2.3 mL, 13.4 mmol). After stirring 15 minutes, the 

suspension was added to a stirring solution of 3.67 (5.01 g, 6.69 mmol) and EDCI (2.57 

g, 13.4 mmol) in CH2Cl2. The reaction was stirred O/N at r.t., then concentrated and 

purified through a plug of SiO2 (100% EtOAc) to afford 3.68 (2.11 g, 33% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  8.10-8.08 (broad, 1H), 7.73-7.58 (m, 5H), 7.44-7.31 

(m, 3H), 7.10-7.07 (m, 3H), 6.83-6.74 (m, 1H), 6.44-6.42 (m, 1H), 5.04-4.86 (m, 3H), 

4.34-4.22 (m, 3H), 3.61-3.43 (m, 9H), 3.02-2.83 (m, 1H), 2.76-2.51 (m, 2H), 1.34-1.27 

(m, 18H). 

REF: TRW-II-270, TRW-II-447. 
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Figure 5.41a. 1H NMR spectrum of compound 3.68.  
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TBS2-Tetrapeptide (3.69). To a solution of diol 3.68 (2.11 g, 2.22 mmol) in DMF (12 

mL) was added imidazole (728 mg, 10.7 mmol) and TBSCl (1.74 g, 11.5 mmol). The 

reaction mixture stirred O/N at r.t., then was concentrated. The crude residue was taken 

up in EtOAc and washed with water (3x), brine (1x), dried over Na2SO4, and 

concentrated to afford the title compound (2.27 g, 87% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  8.02-7.99 (m, 1H), 7.72-7.42 (m, 6H), 7.37-7.21 (m, 

2H), 7.13-6.86 (m, 4H), 6.48-6.39 (m, 1H), 4.92-4.89 (m, 1H), 4.43-4.39 (m, 1H), 4.21-

4.06 (m, 2H), 3.82-3.69 (m, 3H), 3.63-3.58 (m, 6H), 3.00-2.89 (m, 1H), 2.86-2.80 (m, 

1H), 2.66-2.52 (m, 3H), 1.31 (dd, J = 22.1, 8.9 Hz, 18H), 0.81 (s, 18H), -0.01--0.03 (m, 

12H). 

REF: TRW-II-272. 
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Figure 5.42a. 1H NMR spectrum of compound 3.69.  
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Diamine (5.4). To a solution of 3.66 (2 g, 2.58 mmol) in CH2Cl2 (50 mL) at 0 °C was 

added TFA (4.8 mL). The resulting solution was warmed to r.t. and stirred for 2 h under 

Ar. The reaction was quenched with sat’d NaHCO3, and the product extracted in CH2Cl2. 

The combined organic layers were dried and concentrated to afford 5.4 in quantitative 

yield (1.48 g). 

1H-NMR (300 MHz; DMSO-d6): δ  7.69 (d, J = 7.4 Hz, 2H), 7.63-7.58 (m, 2H), 7.50-

7.36 (m, 6H), 7.20-7.15 (m, 1H), 7.09-7.04 (m, 1H), 6.99-6.98 (m, 1H), 6.82-6.75 (m, 

2H), 5.89 (d, J = 4.1 Hz, 1H), 4.51 (t, J = 4.2 Hz, 1H), 4.33-4.29 (m, 1H), 3.78 (s, 1H), 

3.52 (d, J = 6.2 Hz, 3H), 3.39-3.32 (m, 3H), 2.95-2.78 (m, 2H), 2.71-2.65 (m, 2H), 

HRMS (ESI-APCI-): [M-H]- 574.1886 calcd for C30H30N4O6S, found: 574.1867. 

REF: TRW-II-282, TRW-II-289, TRW-II-292, TRW-II-300, TRW-II-335, TRW-II-353. 
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Figure 5.43a. 1H NMR spectrum of compound 5.4.  
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Tripeptide (3.71). N-Cbz-L-serine(OTBS) (2.52 g, 7.14 mmol), iPr2NEt (1.3 mL, 7.14 

mmol), and EDCI (1.37 g, 7.14 mmol) were added to a solution of 5.4 (2.05 g, 3.57 

mmol) in CH2Cl2 (20 mL). The reaction stirred O/N, then was concentrated and purified 

through an SiO2 plug to afford pure 3.71 (2.37 g, 73% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  8.48-8.37 (m, 1H), 7.70-7.58 (m, 5H), 7.48-7.42 (m, 

3H), 7.37-7.29 (m, 8H), 7.09-6.99 (m, 3H), 6.79-6.71 (m, 2H), 5.90-5.87 (m, 1H), 5.03-

4.96 (m, 2H), 4.49-4.40 (m, 2H), 4.31-4.29 (m, 1H), 4.23-4.19 (m, 1H), 3.78 (s, 1H), 

3.64-3.61 (m, 1H), 3.53 (d, J = 4.4 Hz, 3H), 3.41-3.34 (m, 1H), 3.19 (d, J = 9.1 Hz, 3H), 

3.01-2.93 (m, 1H), 2.68-2.64 (m, 1H), 0.78 (d, J = 10.3 Hz, 9H), -0.02 (s, 6H); HRMS 

(ESI-APCI): [M+H]+ 910.3517 calcd for C47H56N5O10SSi, found: 910.3543. 

REF: TRW-II-354, TRW-II-341, TRW-II-359. 
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Figure 5.44a. 1H NMR spectrum of compound 3.71.  
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(R)-tert-butyl 3-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)-1H-indole-

1-carboxylate (5.5). Powdered NaOH (19.0 g, 475 mmol) was added to a stirring 

suspension of D-Trp-OMe·HCl (24.14 g, 95 mmol) and Bu4NHSO4 (3.23 g, 9.5 mmol) in 

CH2Cl2 (950 mL). After stirring 2.5 h, Boc2O (62.1 g, 285 mmol) was added, and the 

resulting suspension stirred O/N at r.t. The mixture was filtered through celite, 

concentrated, and purified by SiO2 chromatography (9:1 hexanes:EtOAc) to afford N,N’-

Boc2-D-Trp-OMe (18.53 g, 47% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.11 (d, J = 7.4 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.39 

(s, 1H), 7.27 (td, J = 16.1, 8.4 Hz, 2H), 5.11 (d, J = 7.2 Hz, 1H), 4.65 (q, J = 6.4 Hz, 1H), 

3.69 (s, 3H), 3.22 (qd, J = 13.5, 5.5 Hz, 2H), 1.66 (s, 9H), 1.43 (s, 9H). 

REF: TRW-III-171, TRW-III-239. 

  

N
Boc

NHBoc

CO2H

5.5



 194 

 
Figure 5.45a. 1H NMR spectrum of compound 5.5.  
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Bromopyrroloindoline (3.74). To a solution of N,N’-Boc2-D-Trp-OMe (18.53 g, 44.3 

mmol) in CH2Cl2 (1000 mL) was added NBS (7.89 g, 44.3 mmol) and PPTS (11.12 g, 

44.3 mmol). The resulting solution was allowed to stir at r.t. O/N. The reaction mixture 

was washed with brine, the organic layer dried (Na2SO4) and concentrated. Purification 

by SiO2 chromatography (30% EtOAc in hexanes) gave the desired product in 96% yield 

(21.20 g). 

[α]D = +150.0 (CH2Cl2); 1H-NMR (400 MHz; CDCl3): δ  7.53-7.52 (bs, 1H), 7.34-7.24 

(m, 2H), 7.09 (t, J = 7.6 Hz, 1H), 6.37 (s, 1H), 3.86 (dd, J = 10.3, 6.3 Hz, 1H), 3.71 (s, 

3H), 3.18 (dd, J = 12.6, 6.3 Hz, 1H), 2.79 (dd, J = 12.6, 10.3 Hz, 1H), 1.56 (s, 9H), 1.37 

(bs, 9H); 13C-NMR (101 MHz; CDCl3): δ 171.46, 171.41, 171.0, 152.1, 141.5, 130.6, 

124.37, 124.35, 123.2, 83.8, 82.2, 59.4, 52.3, 36.4, 28.6, 28.2, 24.1, 21.0, 14.2; IR (NaCl, 

film) 2980, 1719, 1395, 1334, 1163, 753 cm-1; HRMS (ESI-APCI): [M+Na]+ 519.1107 

calcd for C22H29BrN2NaO6, found: 519.1102. 

REF: TRW-III-174, TRW-III-246. 
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Figure 5.46a. 1H NMR spectrum of compound 3.74. 

 
Figure 5.46b. 13C NMR spectrum of compound 3.74. 
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(2S,3aS,8aS)-1,8-di-tert-butyl 2-methyl 3a-(3-((S)-2-((tert-butoxycarbonyl)amino)-3-

methoxy-3-oxopropyl)-1H-indol-1-yl)-3,3a-dihydropyrrolo[2,3-b]indole-

1,2,8(2H,8aH)-tricarboxylate (3.75). KOtBu (3.02 g, 27 mmol) was added to a solution 

of bromopyrroloindoline 3.74 (10.0 g, 20.2 mmol) and N-Boc-Trp-OMe (4.29 g, 13.5 

mmol) in CH3CN (1000 mL) at 0 °C at stirred 1h under Ar. NaHCO3 was added and the 

product extracted in CH2Cl2, washed with brine, dried (Na2SO4), and concentrated. 

Purification by SiO2 chromatography (40% EtOAc in hexanes) afforded pure dipeptide 

(5.47 g, 55% yield). 

[α]D = -7.2 (CH2Cl2); 1H-NMR (400 MHz; CDCl3): δ  7.70-7.64 (bs, 1H), 7.51 (t, J = 7.5 

Hz, 1H), 7.37-7.32 (m, 1H), 7.26 (s, 1H), 7.20-7.05 (m, J = 7.8 Hz, 4H), 6.74 (s, 1H), 

6.67 (s, 1H), 4.97 (t, J = 6.4 Hz, 1H), 4.88 (d, J = 7.2 Hz, 1H), 4.53 (s, 1H), 3.58 (s, 2H), 

3.53-3.46 (m, 2H), 3.20 (s, 3H), 3.13 (s, 3H), 1.51-1.48 (m, 18H), 1.39 (d, J = 7.7 Hz, 

9H); 13C-NMR (101 MHz; CDCl3): δ 172.7, 171.0, 155.0, 151.9, 143.6, 134.7, 131.00, 

130.89, 124.80, 124.78, 122.9, 122.31, 122.30, 122.0, 120.0, 119.55, 119.37, 111.5, 

109.7, 82.1, 79.7, 72.57, 72.54, 60.3, 54.2, 52.1, 28.29, 28.17; IR (NaCl, film) 2979, 

1716, 1457, 1207, 739 cm-1; HRMS (ESI-APCI): [M+Na]+ 757.3425 calcd for 

C39H50N4NaO10, found: 757.3427. 

REF: TRW-III-183, TRW-III-194. 
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Figure 5.47a. 1H NMR spectrum of compound 3.75. 

 
Figure 5.47b. 13C NMR spectrum of compound 3.75. 
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(2S,3aS,8aS)-methyl 3a-(3-((S)-2-amino-3-methoxy-3-oxopropyl)-1H-indol-1-yl)-

1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylate (5.6). TFA (15 mL) was 

slowly added to a solution of the Boc-protected compound 3.75 (5.47 g, 7.5 mmol) in 

CH2Cl2 (150 mL) at 0 °C. The reaction mixture was allowed to warm to r.t. as it stirred 

O/N. NaHCO3 was added and the product extracted into CH2Cl2. The combined organic 

extracts were dried (Na2SO4) and concentrated to afford the deprotected product (3.02 g, 

93% yield), used without further purification. 

[α]D = +80.0 (CH2Cl2); 1H-NMR (400 MHz; CDCl3): δ  7.52 (dt, J = 6.6, 3.0 Hz, 1H), 

7.40-7.37 (m, 1H), 7.11-6.99 (m, 5H), 6.70 (t, J = 7.4 Hz, 1H), 6.62 (dd, J = 7.9, 3.4 Hz, 

1H), 5.44 (s, 1H), 4.14 (dd, J = 7.8, 2.6 Hz, 1H), 3.72 (t, J = 6.0 Hz, 1H), 3.60 (d, J = 

17.0 Hz, 3H), 3.40 (ddd, J = 13.0, 7.9, 2.3 Hz, 1H), 3.29 (s, 3H), 3.15 (dt, J = 14.4, 4.3 

Hz, 1H), 2.95-2.86 (m, 2H), 1.99-1.90 (bs, 3H); 13C-NMR (101 MHz; CDCl3): δ 175.6, 

173.8, 149.7, 135.2, 130.5, 129.80, 129.76, 127.5, 125.4, 125.0, 121.8, 119.5, 119.2, 

112.1, 110.9, 109.7, 81.8, 75.7, 60.3, 55.0, 52.1, 40.6, 30.5, 28.4; IR (NaCl, film) 3373, 

2950, 1735, 1459, 1207, 744 cm-1; HRMS (ESI-APCI): [M+H]+ 435.2032 calcd for 

C24H27N4O4, found: 435.2036. 

REF: TRW-III-184, TRW-III-195. 
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Figure 5.48a. 1H NMR spectrum of compound 5.6. 

 
Figure 5.48b. 13C NMR spectrum of compound 5.6. 
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(2S,3aS,8aR)-methyl 3a-(3-((S)-2-((S)-2-((((9H-fluoren-9-yl)methoxy)-

carbonyl)amino)-3-((tert-butyldimethylsilyl)oxy)propanamido)-3-methoxy-3-

oxopropyl)-1H-indol-1-yl)-1-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)-amino)-3-

((tert-butyldimethylsilyl)oxy)propanoyl)-1,2,3,3a,8,8a-hexahydro-pyrrolo[2,3-

b]indole-2-carboxylate (3.76). Diamine 5.6 (1.03 g, 2.4 mmol), N-Fmoc-L-Ser(OTBS)-

OH (2.12 g, 4.8 mmol), T3P (50% by weight in DMF, 3.51 g, 5.5 mmol), iPr2NEt (2.1 

mL, 12 mmol), and CH2Cl2 (24 mL) were combined and stirred under Ar O/N at 35 °C. 

Water was added, the product extracted in EtOAc, the combined extracts washed with 

brine, dried (Na2SO4), concentrated, and purified by SiO2 chromatography (10-25% 

EtOAc in hexanes) to afford the tetrapeptide (2.15 g, 70% yield). 

[α]D = +61.9 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.77 (d, J = 7.4 Hz, 4H), 7.60 (d, 

J = 8.0 Hz, 5H), 7.41 (t, J = 7.3 Hz, 5H), 7.35-7.30 (m, 4H), 7.26-7.15 (m, 4H), 6.82-6.67 

(m, 2H), 5.68 (d, J = 7.7 Hz, 1H), 5.42 (s, 1H), 4.90 (s, 1H), 4.40-4.33 (m, 4H), 4.24-4.10 

(m, 3H), 4.05-3.88 (m, 2H), 3.74 (s, 1H), 3.63 (d, J = 13.3 Hz, 3H), 3.20 (s, 4H), 2.95 (s, 

1H), 0.94-0.82 (m, 18H), 0.08 (dd, J = 35.4, 2.8 Hz, 12H); 13C-NMR (101 MHz; CDCl3): 

δ 177.5, 177.3, 175.7, 175.35, 175.20, 160.8, 156.0, 150.0, 149.48, 149.34, 149.30, 147.1, 

146.9, 140.3, 137.11, 137.00, 135.96, 135.82, 133.25, 133.17, 132.6, 131.5, 130.75, 

130.70, 130.64, 130.60, 130.57, 130.4, 130.1, 127.8, 125.65, 125.58, 125.48, 125.1, 

124.7, 117.28, 117.22, 116.21, 116.13, 114.93, 114.83, 84.8, 78.3, 73.0, 72.78, 72.75, 
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72.62, 70.8, 68.7, 65.3, 59.06, 58.90, 58.4, 57.7, 56.0, 52.75, 52.72, 52.69, 35.3, 33.9, 

33.4, 31.8, 31.52, 31.43, 24.1, 23.75, 23.71, 0.23, 0.11, 0.08, 0.03, -0.01; IR (NaCl, film) 

2953, 1724, 1673, 1450, 1253, 1107, 740 cm-1; HRMS (ESI-APCI): [M+H]+ 1281.5764 

calcd for C72H85N6O12Si2, found: 1281.5759. 

REF: TRW-III-185, TRW-III-196, TRW-III-202. 
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Figure 5.49a. 1H NMR spectrum of compound 3.76. 

 
Figure 5.49b. 13C NMR spectrum of compound 3.76. 
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Dioxopiperazine2 (3.77). Tetrapeptide 3.76 (2.18 g, 1.7 mmol) and morpholine (17 mL) 

were dissolved in THF (70 mL) and heated to 35 °C. After stirring O/N, the reaction 

mixture was concentrated and purified by SiO2 chromatography (5% MeOH in CH2Cl2) 

to afford pure dioxopiperazine 3.77 (1.11 g, 85% yield). 

1H-NMR (400 MHz; CDCl3): δ  7.68 (d, J = 8.0 Hz, 1H), 7.56 (s, 1H), 7.29 (d, J = 7.4 

Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 7.8 Hz, 1H), 7.00 (d, J = 7.7 Hz, 1H), 6.81-

6.79 (m, 2H), 6.63 (d, J = 17.9 Hz, 1H), 6.42 (s, 1H), 6.13 (d, J = 3.5 Hz, 1H), 5.53 (d, J 

= 3.5 Hz, 1H), 4.83 (dd, J = 11.1, 6.1 Hz, 1H), 4.37-4.35 (m, 1H), 4.25 (q, J = 5.4 Hz, 

2H), 4.11 (t, J = 3.8 Hz, 1H), 4.03 (dd, J = 10.0, 3.5 Hz, 1H), 3.85 (dd, J = 19.1, 8.2 Hz, 

2H), 3.72 (d, J = 14.7 Hz, 2H), 3.59 (dd, J = 9.9, 8.0 Hz, 1H), 3.54 (s, 1H), 3.34-3.29 (m, 

1H), 3.19 (dd, J = 14.6, 9.8 Hz, 1H), 2.83 (dd, J = 14.7, 11.4 Hz, 1H), 0.96 (s, 18H), 0.16 

(s, 12H); HRMS (ESI-APCI): [M+Na]+ 795.3698 calcd for C40H56N6NaO6Si2, found: 

795.3696. 

REF: TRW-III-191, TRW-III-198. 
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Figure 5.50a. 1H NMR spectrum of compound 3.77.  
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(2S,3aS,8aS)-1,8-di-tert-butyl 2-methyl 3a-(3-((S)-2-((tert-butoxycarbonyl) 

(methyl)amino)-3-methoxy-3-oxopropyl)-1H-indol-1-yl)-3,3a-dihydro-pyrrolo[2,3-

b]indole-1,2,8(2H,8aH)-tricarboxylate (5.7). KOtBu (3.04 g, 27.2 mmol) was added to 

a solution of bromopyrroloindoline 3.74 (10.08 g, 20.3 mmol) and N-Me,Boc-Trp-OMe 

(4.50 g, 13.6 mmol) in CH3CN (1000 mL) at 0 °C and stirred 1h under Ar. NaHCO3 was 

added and the product extracted in CH2Cl2, washed with brine, dried (Na2SO4), and 

concentrated. Purification by SiO2 chromatography (10-20% EtOAc in hexanes) afforded 

pure dipeptide (5.41 g, 53% yield). 

[α]D = -3.1 (CH2Cl2); 1H-NMR (400 MHz; CDCl3): δ  7.68-7.67 (bs, 1H), 7.56 (d, J = 7.5 

Hz, 1H), 7.35-7.32 (m, 2H), 7.23 (s, 1H), 7.16-7.08 (m, 3H), 6.84 (d, J = 15.2 Hz, 1H), 

6.74 (d, J = 3.3 Hz, 1H), 4.87-4.86 (bs, 1H), 4.73-4.56 (broad, 2H), 3.69 (broad, J = 7.1 

Hz, 3H), 3.49-3.43 (m, 1H), 3.29 (dd, J = 15.0, 4.9 Hz, 1H), 3.20 (s, 3H), 3.02-2.91 (m, 

2H), 2.67-2.59 (m, 3H), 1.57-1.11 (m, 27H); 13C-NMR (101 MHz; CDCl3): δ 171.7, 

170.9, 151.9, 134.7, 130.97, 130.82, 129.9, 125.0, 123.3, 122.2, 119.88, 119.86, 119.2, 

111.6, 110.6, 82.0, 79.9, 72.59, 72.57, 59.9, 59.32, 59.30, 52.12, 52.09, 52.05, 52.00, 

51.97, 34.6, 31.5, 28.19, 28.17, 25.2, 22.6, 20.7, 14.1; IR (NaCl, film) 2978, 1703, 1482, 

1394, 1157, 738 cm-1; HRMS (ESI-APCI): [M+Na]+ 771.3581 calcd for C40H52N4NaO10, 

found: 771.3600. 

REF: TRW-III-211, TRW-III-258. 
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Figure 5.51a. 1H NMR spectrum of compound 5.7. 

 
Figure 5.51b. 13C NMR spectrum of compound 5.7. 
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(2S,3aS,8aS)-methyl 3a-(3-((S)-3-methoxy-2-(methylamino)-3-oxopropyl)-1H-indol-

1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylate (3.80). TFA (11 mL) 

was slowly added to a solution of Boc-protected material 5.7 (4.11 g, 5.49 mmol) in 

CH2Cl2 (110 mL) at 0 °C. The reaction mixture was allowed to warm to r.t. as it stirred 

O/N. NaHCO3 was added and the product extracted into CH2Cl2. The combined organic 

extracts were dried (Na2SO4) and concentrated to afford the deprotected product (2.35 g, 

96% yield), used without further purification. 

[α]D = +73.3 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.61-7.58 (m, 1H), 7.46-7.43 (m, 

1H), 7.18-7.05 (m, 6H), 6.77 (t, J = 7.4 Hz, 1H), 6.68 (dd, J = 7.9, 0.9 Hz, 1H), 5.51 (s, 

1H), 4.55 (bs, 1H), 4.21 (d, J = 7.6 Hz, 1H), 3.61 (d, J = 9.5 Hz, 3H), 3.53-3.46 (m, 2H), 

3.36 (d, J = 1.1 Hz, 3H), 3.10-2.93 (m, 4H), 2.35 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 

174.7, 173.8, 149.69, 149.66, 135.26, 135.23, 130.4, 129.7, 127.58, 127.54, 125.3, 

125.00, 124.89, 121.8, 119.5, 119.30, 119.13, 112.1, 110.74, 110.71, 109.55, 109.49, 

82.0, 75.72, 75.69, 63.71, 63.69, 60.2, 52.1, 51.7, 40.76, 40.70, 34.68, 34.62, 28.91, 

28.81; IR (NaCl, film) 2950, 1734, 1459, 1206, 742 cm-1; HRMS (ESI-APCI): [M+H]+ 

449.2189 calcd for C25H29N4O4, found: 449.2179. 

REF: TRW-III-216, TRW-III-267. 
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Figure 5.52a. 1H NMR spectrum of compound 3.80. 

 
Figure 5.52b. 13C NMR spectrum of compound 3.80. 
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(2S,3aS,8aR)-methyl 3a-(3-((S)-2-((S)-3-(benzyloxy)-2-((tert-

butoxycarbonyl)(methyl)amino)-N-methylpropanamido)-3-methoxy-3-oxopropyl)-

1H-indol-1-yl)-1-((S)-3-(benzyloxy)-2-((tert-

butoxycarbonyl)(methyl)amino)propanoyl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-

b]indole-2-carboxylate (3.81). The diamine (3.80, 430 mg, 0.96 mmol), N-Me,Boc-L-

Ser(OBn)-OH (591 mg, 1.91 mmol), T3P (50% by weight in DMF, 1.41 g, 2.21 mmol), 

iPr2NEt (0.835 mL, 4.8 mmol), and CH2Cl2 (10 mL) were combined and stirred under Ar 

O/N at 35 °C. Water was added, the product extracted in EtOAc, the combined extracts 

washed with brine, dried (Na2SO4), concentrated, and purified by SiO2 chromatography 

(60% EtOAc in hexanes) to afford the tetrapeptide (420 mg, 42% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.58-7.55 (m, 1H), 7.41-7.15 (m, 16H), 6.99 (s, 1H), 

6.76-6.69 (m, 1H), 6.26-6.02 (m, 1H), 5.42-5.12 (m, 3H), 4.96-4.86 (m, 1H), 4.61-4.41 

(m, 5H), 3.71-3.54 (m, 7H), 3.40-3.35 (m, 2H), 3.18 (d, J = 16.2 Hz, 5H), 2.93-2.67 (m, 

8H), 1.42 (t, J = 8.2 Hz, 18H); HRMS (ESI-APCI): [M+H]+ 1031.5130 calcd for 

C57H71N6O12, found: 1031.5126. 

REF: TRW-III-231, TRW-III-237, TRW-III-253. 
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Figure 5.53a. 1H NMR spectrum of compound 3.81.  
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(2S,3aS,8aR)-methyl 1-((S)-3-(benzyloxy)-2-(methylamino)propanoyl)-3a-(3-((S)-2-

((S)-3-(benzyloxy)-N-methyl-2-(methylamino)propanamido)-3-methoxy-3-

oxopropyl)-1H-indol-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-

carboxylate (5.8). TFA (0.2 mL) was slowly added to a solution of Boc-protected 

material 3.81 (103 mg, 0.1 mmol) in CH2Cl2 (2 mL) at 0 °C. The reaction mixture was 

allowed to warm to r.t. as it stirred O/N. NaHCO3 was added and the product extracted 

into CH2Cl2. The combined organic extracts were dried (Na2SO4) and concentrated to 

afford the deprotected product (81 mg, 98% yield), used without further purification. 

REF: TRW-III-233, TRW-III-243, TRW-III-254. 
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Dioxopiperazine2 (3.82). Tetrapeptide 5.8 (81 mg, 0.098 mmol) and morpholine (1 mL) 

were dissolved in THF (4 mL) and heated to 35 °C. After stirring O/N, the reaction 

mixture was concentrated and purified by SiO2 chromatography (5% MeOH in CH2Cl2) 

to afford pure dioxopiperazine (75 mg, >99% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.53-7.05 (m, 23H), 6.91 (t, J = 7.1 Hz, 2H), 6.76-6.71 

(m, 2H), 6.46-6.34 (m, 2H), 5.72 (d, J = 4.1 Hz, 1H), 4.99-4.92 (m, 1H), 4.63-4.52 (m, 

3H), 4.29-4.23 (m, 2H), 3.96 (dd, J = 9.7, 4.1 Hz, 2H), 3.69-3.54 (m, 5H), 3.26-3.21 (m, 

2H), 3.08 (s, 3H), 2.87 (d, J = 3.9 Hz, 2H), 2.71 (dd, J = 12.2, 2.8 Hz, 1H), 2.21 (s, 3H); 

HRMS (ESI-APCI): [M+Na]+ 789.3377 calcd for C45H46N6NaO6, found: 789.3379. 

REF: TRW-III-235, TRW-III-245, TRW-III-257. 
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Figure 5.54a. 1H NMR spectrum of compound 3.82.  
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(2S,3aS,8aR)-methyl 3a-(3-((S)-2-(2-((((9H-fluoren-9-

yl)methoxy)carbonyl)(methyl)amino)-N-methylacetamido)-3-methoxy-3-oxopropyl)-

1H-indol-1-yl)-1-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)(methyl)amino)acetyl)-

1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylate (5.9). The diamine (3.80, 

896 mg, 2.0 mmol), N-Fmoc-sarcosine-OH (1.24 g, 4.0 mmol), T3P (50% by weight in 

DMF, 2.93 g, 4.6 mmol), iPr2NEt (1.7 mL, 10.0 mmol), and CH2Cl2 (20 mL) were 

combined and stirred under Ar O/N at 35 °C. Water was added, the product extracted in 

EtOAc, the combined extracts washed with brine, dried (Na2SO4), concentrated, and 

purified by SiO2 chromatography (50-100% EtOAc in hexanes) to afford tetrapeptide 5.9 

(1.17 g, 57% yield). 

[α]D = +92.1 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.78-7.74 (m, 4H), 7.63-7.59 (m, 

6H), 7.35 (dd, J = 19.2, 7.0 Hz, 8H), 7.16-7.04 (m, 5H), 6.78-6.65 (m, 2H), 6.10-6.00 (m, 

1H), 4.54-4.20 (m, 7H), 3.99-3.86 (m, 2H), 3.72-3.61 (m, 5H), 3.37-3.33 (m, 3H), 3.23-

3.08 (m, 6H), 2.99-2.90 (m, 4H), 2.80-2.56 (m, 4H); IR (NaCl, film) 2951, 1703, 1451, 

1229, 740 cm-1; HRMS (ESI-APCI): [M+H]+ 1035.4293 calcd for C61H59N6O10, found: 

1035.4285. 

REF: TRW-III-292. 
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Figure 5.55a. 1H NMR spectrum of compound 5.9.  
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(5aR,10bS,11aS)-10b-(3-(((S)-1,4-dimethyl-3,6-dioxopiperazin-2-yl)methyl)-1H-

indol-1-yl)-2-methyl-2,3,5a,6,11,11a-hexahydro-1H-pyrazino[1',2':1,5]pyrrolo[2,3-

b]indole-1,4(10bH)-dione (3.88). Tetrapeptide 5.9 (1.0 g, 0.97 mmol) and morpholine 

(10 mL) were dissolved in THF (40 mL) and heated to 35 °C. After stirring O/N, the 

reaction mixture was concentrated and purified by SiO2 chromatography (2-6% MeOH in 

CH2Cl2) to afford pure dioxopiperazine 3.88 (470 mg, 92% yield). 

[α]D = +145.5 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.49 (t, J = 7.3 Hz, 1H), 7.26-

7.15 (m, 2H), 7.09-6.91 (m, 3H), 6.79-6.73 (m, 2H), 6.01 (dd, J = 51.3, 3.1 Hz, 1H), 5.45 

(dd, J = 53.9, 3.8 Hz, 1H), 4.57-4.49 (m, 1H), 4.18 (t, J = 3.2 Hz, 1H), 3.84-3.46 (m, 4H), 

3.23-3.12 (m, 2H), 3.06-2.98 (m, 6H), 2.68 (ddd, J = 15.3, 11.5, 4.2 Hz, 1H), 2.33 (d, J = 

32.5 Hz, 3H), 2.06-1.94 (m, 1H); 13C-NMR (101 MHz; CDCl3): δ 166.3, 166.0, 164.6, 

164.2, 146.7, 135.4, 130.1, 129.1, 128.1, 127.8, 124.7, 124.4, 122.8, 122.5, 120.2, 119.7, 

112.4, 110.2, 108.3, 82.6, 82.0, 74.1, 62.7, 57.2, 53.5, 40.1, 39.7, 33.5, 32.9, 32.0; IR 

(NaCl, film) 2931, 1664, 1459, 1324, 1259 cm-1; HRMS (ESI-APCI): [M+H]+ 527.2407 

calcd for C29H31N6O4, found: 527.2402. 

REF: TRW-III-293. 
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Figure 5.56a. 1H NMR spectrum of compound 3.88. 

 
Figure 5.56b. 13C NMR spectrum of compound 3.88. 
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Tetrapeptide (5.10). The diamine (3.80, 327 mg, 0.73 mmol), N-Me,Fmoc-L-

Ser(OTBS)-OH (663 g, 1.46 mmol), T3P (50% by weight in DMF, 1.07 g, 1.68 mmol), 

iPr2NEt (0.635 mL, 5.0 mmol), and CH2Cl2 (7.3 mL) were combined and stirred under Ar 

O/N at 35 °C. Water was added, the product extracted in EtOAc, the combined extracts 

washed with brine, dried (Na2SO4), concentrated, and purified by SiO2 chromatography 

(35% EtOAc in hexanes) to afford tetrapeptide 5.10 (351 mg, 36% yield). 

[α]D = -1.5 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.78-7.71 (m, 4H), 7.61-7.53 (m, 

5H), 7.41-7.15 (m, 14H), 6.93-6.66 (m, 3H), 5.13-5.07 (m, 2H), 4.41 (d, J = 6.8 Hz, 2H), 

4.16-4.01 (m, 5H), 3.93-3.89 (m, 1H), 3.75-3.66 (m, 5H), 3.40-3.35 (m, 2H), 3.25 (d, J = 

10.7 Hz, 2H), 3.09-2.94 (m, 5H), 2.82-2.81 (m, 4H), 2.72-2.66 (m, 2H), 2.34 (dd, J = 6.3, 

3.2 Hz, 1H), 2.10-1.95 (m, 2H), 0.87-0.81 (m, 18H), 0.09--0.02 (m, 12H); IR (NaCl, 

film) 2953, 1696, 1651, 1451, 1317, 1154, 740 cm-1; HRMS (ESI-APCI): [M+H]+ 

1323.6234 calcd for C75H91N6O12Si2, found:1323.6253. 

REF: TRW-III-299, TRW-III-314. 
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Figure 5.57a. 1H NMR spectrum of compound 5.10.  
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(3S,5aR,10bS,11aS)-3-(((tert-butyldimethylsilyl)oxy)methyl)-10b-(3-(((2S,5S)-5-

(((tert-butyldimethylsilyl)oxy)methyl)-1,4-dimethyl-3,6-dioxopiperazin-2-yl)methyl)-

1H-indol-1-yl)-2-methyl-2,3,5a,6,11,11a-hexahydro-1H-

pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(10bH)-dione (3.90). Tetrapeptide 5.10 (300 

mg, 0.227 mmol) and morpholine (2.3 mL) were dissolved in THF (9 mL) and heated to 

35 °C. After stirring O/N, the reaction mixture was concentrated and purified by SiO2 

chromatography (4% MeOH in CH2Cl2) to afford pure dioxopiperazine 3.90 (153 mg, 

83% yield). 

3.90A: [α]D = +56.6 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.51 (d, J = 7.9 Hz, 1H), 

7.18 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 11.2 Hz, 2H), 6.90 (t, J = 6.1 Hz, 2H), 6.69 (t, J = 

7.5 Hz, 2H), 6.50 (d, J = 8.4 Hz, 1H), 5.70 (s, 1H), 4.80 (dd, J = 11.9, 5.9 Hz, 1H), 4.33-

4.09 (m, 4H), 3.76 (d, J = 10.4 Hz, 1H), 3.66 (dt, J = 9.9, 4.9 Hz, 2H), 3.50-3.43 (m, 2H), 

3.37 (t, J = 4.8 Hz, 1H), 3.19 (dd, J = 14.8, 4.6 Hz, 1H), 3.10 (s, 3H), 3.02 (s, 3H), 2.31 

(s, 3H), 0.82 (s, 9H), 0.74 (s, 9H), 0.04 (d, J = 4.6 Hz, 6H), -0.11 (d, J = 4.3 Hz, 6H); 13C-

NMR (101 MHz; CDCl3): δ 167.9, 166.5, 165.73, 165.62, 146.6, 135.6, 130.2, 129.5, 

124.4, 123.1, 122.5, 120.2, 112.3, 110.0, 108.6, 82.9, 62.6, 62.2, 62.0, 60.5, 59.9, 56.9, 

40.7, 32.5, 30.4, 30.0, 27.2, 25.64, 25.52, 18.1, 17.9, -5.60, -5.66, -5.69; IR (NaCl, film) 

2930, 2857, 1662, 1461, 1256, 1116 cm-1; HRMS (ESI-APCI): [M+H]+ 815.4348 calcd 

for C43H63N6O6Si2, found:815.4352. 
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3.90B: [α]D = +80.0 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.60 (d, J = 7.9 Hz, 1H), 

7.30 (s, 1H), 7.15 (td, J = 7.7, 1.0 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.99-6.94 (m, 1H), 

6.88 (d, J = 7.4 Hz, 1H), 6.76 (d, J = 8.3 Hz, 1H), 6.69-6.63 (m, 2H), 5.91 (d, J = 2.6 Hz, 

1H), 5.59 (d, J = 2.6 Hz, 1H), 4.57-4.52 (m, 1H), 4.26-4.19 (m, 2H), 4.03 (dd, J = 10.8, 

2.7 Hz, 1H), 3.87-3.77 (m, 2H), 3.68-3.61 (m, 2H), 3.40 (dd, J = 9.4, 5.6 Hz, 2H), 3.26-

3.21 (m, 1H), 2.99 (d, J = 9.6 Hz, 6H), 2.71 (s, 3H), 2.60-2.55 (m, 1H), 0.84 (s, 9H), 0.74 

(s, 9H), -0.01--0.08 (m, 12H); 13C-NMR (101 MHz; CDCl3): δ 166.0, 164.56, 164.55, 

164.35, 146.7, 135.6, 130.1, 129.5, 123.1, 122.6, 120.4, 119.5, 112.1, 111.2, 109.7, 82.7, 

65.1, 64.2, 63.7, 63.3, 60.6, 56.8, 41.5, 33.8, 33.1, 31.1, 30.7, 25.9, 25.5, 18.4, 18.0, -

5.38, -5.40, -5.71, -5.74; IR (NaCl, film) 2930, 2857, 1654, 1462, 1255, 1112 cm-1; 

HRMS (ESI-APCI): [M+H]+ 815.4348 calcd for C43H63N6O6Si2, found:815.4349. 

REF: TRW-III-301, TRW-III-315. 
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Figure 5.58a. 1H NMR spectrum of compound 3.90A. 

 
Figure 5.58b. 13C NMR spectrum of compound 3.90A. 
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Figure 5.59a. 1H NMR spectrum of compound 3.90B. 

 
Figure 5.59b. 13C NMR spectrum of compound 3.90B. 
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5-chlorovanillin (5.11). Vanillin (25 g, 164 mmol) was dissolved in AcOH (150 mL), 

then chlorine gas bubbled through the solution. After a significant amount of white solid 

had precipitated, the solution was filtered and the solid washed with hexanes. To the 

AcOH filtrate was added an additional batch of vanillin (25 g), and chlorine gas again 

bubbled through the solution. The resulting precipitate was filtered, washed with hexanes, 

combined with the first yield, and dried to afford 5-chlorovanillin (39.30 g, 64% yield). 

1H-NMR (400 MHz; acetone-d6): δ  9.83 (s, 1H), 7.58 (d, J = 1.7 Hz, 1H), 7.43 (d, J = 

1.7 Hz, 1H), 3.98 (s, 3H); 13C-NMR (101 MHz; acetone): δ 189.5, 148.7, 129.2, 125.6, 

120.0, 108.7, 56.0. 

REF: TRW-II-413, TRW-II-463, TRW-II-479, TRW-III-076.  
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Figure 5.60a. 1H NMR spectrum of compound 5.11. 

 
Figure 5.60b. 13C NMR spectrum of compound 5.11. 
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5-chlorovanillin-OAc (4.15). To a solution of 5-chlorovanillin (58.5 g, 313 mmol) in 

THF (1000 mL) was added Ac2O (35.5 mL, 376 mmol), Et3N (65.5 mL, 470 mmol), and 

DMAP (200 mg). The resulting solution was stirred O/N, then concentrated. The product 

was extracted in CH2Cl2 from 1M HCl, the combined organic extracts washed with brine, 

dried over Na2SO4, and concentrated to give 4.15 (71.45 g, >99% yield). 

1H-NMR (400 MHz; acetone-d6): δ  9.98 (s, 1H), 7.67 (d, J = 1.7 Hz, 1H), 7.59 (d, J = 

1.7 Hz, 1H), 3.97 (s, 3H), 2.36 (s, 3H); 13C-NMR (101 MHz; acetone): δ 190.0, 166.8, 

153.6, 141.3, 135.4, 128.5, 123.2, 110.4, 56.2, 19.2; HRMS (ESI-APCI): [M-H]- 

229.0268 calcd for C10H9ClO4, found: 229.9854. 

REF: TRW-II-415, TRW-II-464, TRW-II-481, TRW-III-078. 

  

CHO

OMe
AcO

Cl

4.15



 228 

 
Figure 5.61a. 1H NMR spectrum of compound 4.15. 

 
Figure 5.61b. 13C NMR spectrum of compound 4.15. 
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5-chloro-2-nitrovanillin (4.17). Nitric acid (fuming, 125) was chilled in an ethylene 

glycol/dry ice bath, then 4.15 (28 g) added in small batches such that the internal 

temperature did not rise above 5 °C. Following the addition, the reaction was stirred for 2 

additional hours at -15 °C. The reaction mixture was carefully poured into ice water, and 

the resulting bright orange precipitate filtered and rinsed with cold water until the 

washings were pH neutral. This solid (combined from 2x28 g batches) was dissolved in 

2M KOH (500 mL) and the solution heated to a boil for 10 min. After cooling to r.t., the 

solution was poured into ice-cold concentrated HCl, and the resulting precipitate filtered, 

washed with cold water, and dried to afford 4.17 (43.21 g, 76% yield). 

1H-NMR (400 MHz; acetone-d6): δ  9.82 (s, 1H), 7.94 (s, 1H), 3.95 (s, 3H); 13C-NMR 

(101 MHz; acetone): δ 186.0, 153.0, 140.9, 129.6, 123.2, 119.6, 98.5, 62.4; HRMS (-

APCI): [M-H]- 229.9856 calcd for C8H6ClNO5, found: 229.9860. 

REF: TRW-II-417,419; TRW-II-424,425; TRW-II-484, TRW-III-080. 

Nitric acid (fuming). Potassium nitrate (500 g) was added to concentrated sulfuric acid 

(500 mL) in a flask equipped with a distillation column, and the resulting suspension 

heated in an oil bath at 170 °C. Fuming nitric acid (75 mL) was collected over a 4 hour 

period. This can be purchased commercially from VWR. 
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Figure 5.62a. 1H NMR spectrum of compound 4.17. 

 
Figure 5.62b. 13C NMR spectrum of compound 4.17.  
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5-chloro-3,4-dimethoxy-2-nitrobenzaldehyde (4.18). Phenol 4.17 (15.0 g, 64.7 mmol) 

was dissolved in absolute EtOH (26.3 mL), then Me2SO4 (26.3 mL, 278 mmol) added. 

The resulting solution was immersed in an ice/brine bath before adding a solution of 

NaOH (11.1 g, 278 mmol) in water (13.2 mL) dropwise. The reaction was heated to 50 

°C for 3 hours, then cooled to r.t. and diluted with water. The product was extracted into 

ether, and the organic extracts dried and concentrated to afford the title compound (15.9 

g, >99% yield). 

1H-NMR (400 MHz; CDCl3): δ  9.80 (d, J = 17.5 Hz, 1H), 7.73 (s, 1H), 4.05 (s, 3H), 4.01 

(s, 3H); 13C-NMR (101 MHz; CDCl3): δ 184.7, 155.3, 151.4, 131.6, 126.7, 123.1, 120.3, 

62.7, 61.4; HRMS (-APCI): [M-H]- 245.0091 calcd for C10H9ClN2O6, found: 245.0080. 

4.19: 1H-NMR (300 MHz; CDCl3): δ  7.45 (s, 1H), 5.58 (s, 1H), 3.97 (s, 3H), 3.93 (s, 

3H), 3.65-3.50 (m, 4H), 1.22 (t, J = 7.1 Hz, 6H). 

REF: TRW-II-421, TRW-II-429, TRW-II-485, TRW-III-081. 
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Figure 5.63a. 1H NMR spectrum of compound 4.18. 

 
Figure 5.63b. 13C NMR spectrum of compound 4.18. 
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Figure 5.64a. 1H NMR spectrum of compound 4.19.  
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Dinitrostyrene (4.7). Aldehyde 4.18 (13.64 g, 55.4 mmol) was suspended in EtOH (180 

mL), and to it added nitromethane (4.4 mL, 77.6 mmol). The mixture was cooled to -15 

°C, then a solution of KOH (13.3 g, 238 mmol) in water (18 mL) and EtOH (180 mL) 

added dropwise over 2 hours. Upon complete addition of the KOH solution, the reaction 

was acidified with concentrated HCl (34 mL), diluted with H2O (200 mL), and the 

product extracted into chloroform. The organic extracts were dried and concentrated. To 

the resulting oil was added 55 mL acetic anhydride and sodium acetate (5.5 g). The 

solution was heated to reflux for 30 min., then poured into water and stirred. Water was 

decanted from the brown paste then EtOH added and heated to dissolve the crude 

product. Pure nitrostyrene crystals were recovered (10.3 g, 64% yield). 

1H-NMR (400 MHz; DMSO-d6): δ  8.33 (d, J = 13.3 Hz, 1H), 8.15 (s, 1H), 7.63 (d, J = 

13.4 Hz, 1H), 3.98 (s, 3H), 3.97 (s, 3H); 13C-NMR (101 MHz; DMSO): δ 152.3, 146.3, 

145.0, 142.2, 131.5, 129.8, 124.9, 119.3, 63.1, 61.9; IR (NaCl, film) 1639, 1519 cm-1; 

HRMS (-APCI): [M-H]- 288.0149 calcd for C10H9ClN2O6, found: 288.0141. 

REF: TRW-II-426, TRW-II-431, TRW-II-489, TRW-III-003, TRW-III-011, TRW-III-

084. 
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Figure 5.65a. 1H NMR spectrum of compound 4.7. 

 
Figure 5.65b. 13C NMR spectrum of compound 4.7. 
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5-chloro-6,7-dimethoxy-1H-indole (4.6). A suspension of 4.7 (380 mg, 1.3 mmol), SiO2 

(3.8 g, 1000 wt%), Fe powder (1.37 g, 24.4 mmol), AcOH (7.6 mL), and PhCH3 (13 mL) 

was heated to reflux for 3 h, then cooled to r.t. and diluted with CH2Cl2. The mixture was 

filtered and the solid washed with CH2Cl2. The filtrate was washed with NaHSO3 (5% 

aq), NaHCO3 (sat’d aq), and brine, then dried and concentrated. The resulting oil was 

dissolved in CH2Cl2 (13 mL) and SiO2 added until the suspension was just fluid. After 

stirring under Ar for 30 min, the suspension was filtered and the solid washed with 

MeOH. The filtrate was concentrated and the product deemed sufficiently pure as crude 

(250 mg, 91% yield). 

1H-NMR (400 MHz; CDCl3): δ  8.40 (bs, 1H), 7.27 (s, 1H), 7.03 (t, J = 2.8 Hz, 1H), 6.32 

(t, J = 2.6 Hz, 1H), 3.94 (s, 3H), 3.82 (s, 3H).; 13C-NMR (101 MHz; CDCl3): δ 191.9, 

142.7, 139.1, 130.6, 128.8, 121.1, 115.8, 102.5, 61.4, 61.0; IR (NaCl, film) 3357, 2939, 

2831, 1655 cm-1; HRMS (ESI-APCI+): [M+H]+ 212.0478 calcd for C10H11ClNO2, found: 

212.0472. 

REF: TRW-II-430, TRW-II-434, TRW-II-490, TRW-III-086. 
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Figure 5.66a. 1H NMR spectrum of compound 4.6. 

 
Figure 5.66b. 13C NMR spectrum of compound 4.6.  
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5-chloro-6,7-dimethoxy-1-methyl-1H-indole (5.12). To a solution of indole 4.6 (126 

mg, 0.59 mmol) in DMF (1.5 mL) at 0 °C was slowly added NaH (47 mg). After stirring 

30 minutes, iodomethane (0.044 mL, 0.71 mmol) was added dropwise, and the reaction 

stirred an additional 30 minutes at 0 °C. The reaction was warmed to r.t. and stirred 5 h 

before adding water. The product was extracted in EtOAc, washed with water (2x) and 

brine, then dried and concentrated to afford the title compound, deemed sufficiently pure 

as crude (133 mg, >99% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.35 (s, 1H), 6.93 (d, J = 3.1 Hz, 1H), 6.34 (d, J = 3.1 

Hz, 1H), 4.02 (s, 3H), 3.98 (s, 3H), 3.93 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 143.7, 

140.6, 131.0, 126.9, 120.6, 116.0, 115.7, 100.6, 61.8, 61.2, 35.4; IR (NaCl, film) 2928, 

1048 cm-1; HRMS (ESI-APCI+): [M+H]+ 226.0635 calcd for C11H13ClNO2, found: 

226.0618. 

REF: TRW-II-433, TRW-II-437, TRW-III-087. 
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Figure 5.67a. 1H NMR spectrum of compound 5.12. 

 
Figure 5.67b. 13C NMR spectrum of compound 5.12. 

3.2
3.2

3.33.3

3.33.3

1.01.0

1.01.0

1.01.0

ppm1 12233445566778-19.97

3.
93

3.
98

4.
02

6.
33

6.
34

6.
92

6.
93

7.
35

ppm0 05050100100150150-253.79

35
.4

3

61
.2

2
61

.8
3

10
0.

64

11
5.

74
11

6.
05

12
0.

62

12
6.

89
13

1.
03

14
0.

62
14

3.
68



 240 

 

5-chloro-6,7-dimethoxy-1-methyl-1H-indole-3-carbaldehyde (4.20). DMF (6.5 mL) 

was cooled to 0 °C, then POCl3 (0.586 mL, 6.42 mmol) added dropwise. Indole 5.12 

(1.32 g, 5.84 mmol) was added dropwise as a solution in DMF. After warming the 

mixture to 35 °C and stirring an additional 1.5 h, ice water was added followed by 2M 

NaOH (15 mL). The resulting solution was boiled for 10 min, then cooled and diluted 

with EtOAc. The organic layer was washed with water and brine, then dried and 

concentrated to give the aldehyde (1.38 g, 93% yield), used as crude in the next reaction. 

1H-NMR (400 MHz; CDCl3): δ  9.76 (s, 1H), 7.96 (s, 1H), 7.44 (s, 1H), 3.95 (s, 3H), 3.94 

(s, 3H), 3.82 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 183.9, 145.4, 140.92, 140.89, 

129.6, 124.5, 123.1, 117.26, 117.20, 61.9, 61.1, 36.7; IR (NaCl, film) 2930, 2853, 1656, 

1044 cm-1; HRMS (ESI-APCI+): [M+H]+ 254.0584 calcd for C12H13ClNO3, found: 

254.0581. 

REF: TRW-II-436, TRW-II-439, TRW-III-090. 
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Figure 5.68a. 1H NMR spectrum of compound 4.20. 

 
Figure 5.68b. 13C NMR spectrum of compound 4.20. 
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(E)-methyl 3-(5-chloro-6,7-dimethoxy-1-methyl-1H-indol-3-yl)acrylate (4.5). To a 

solution of aldehyde 4.20 (133 mg, 0.52 mmol) in toluene (1.8 mL) was added 

methyl(triphenyl-phosphoranylidene)acetate (347 mg, 1.04 mmol). The resulting solution 

was heated to reflux O/N, then concentrated and purified by SiO2 chromatography (9:1 – 

4:1 – 2:1 hexanes:EtOAc) to afford olefin 4.5 (128 mg, 80% yield). 

1H-NMR (400 MHz; CDCl3): δ  7.67 (d, J = 16.0 Hz, 1H), 7.51 (s, 1H), 7.11 (s, 1H), 6.20 

(d, J = 16.0 Hz, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 3.83 (s, 3H), 3.71 (s, 3H); 13C-NMR (101 

MHz; CDCl3): δ 168.4, 144.7, 141.0, 137.2, 134.8, 129.9, 124.3, 122.8, 115.7, 112.5, 

111.4, 61.8, 61.2, 51.4, 36.1; IR (NaCl, film) 2940, 1736, 1626, 1043 cm-1; HRMS (ESI-

APCI+): [M+H]+ 310.0846 calcd for C15H17ClNO4, found: 310.0840. 

REF: TRW-II-441, TRW-II-443, TRW-III-091. 
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Figure 5.69a. 1H NMR spectrum of compound 4.5. 

 
Figure 5.69b. 13C NMR spectrum of compound 4.5. 
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(2S,3R)-methyl 2-(((benzyloxy)carbonyl)amino)-3-(5-chloro-6,7-dimethoxy-1-

methyl-1H-indol-3-yl)-3-hydroxypropanoate (4.4). To a solution of benzyl carbamate 

(178 mg, 1.18 mmol) in 0.4 M NaOH (2.5 mL) and n-propanol (2 mL) in a flask covered 

with foil was added fresh t-butyl hypochlorite (0.135 mL, 1.20 mmol). After stirring 5 

min, (DHQD)2AQN (14 mg, 0.016 mmol) in n-propanol (0.5 mL), olefin 4.5 (100 mg, 

0.32 mmol) in n-propanol (1 mL), and K2OsO2(OH)4 (5 mg, 0.013 mmol) in 0.4 M 

NaOH (0.5 mL) were added successively, and the resulting solution stirred O/N. Sodium 

bisulfite (0.2 g) was added and the product extracted into EtOAc. The organic layer was 

washed with water, then brine, dried over Na2SO4, and concentrated. SiO2 

chromatography (10:1 – 1:1 hexanes:EtOAc) gave pure tryptophan derivative 4.4 (54 mg, 

35% yield). 

[α]D = -20.9 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.40 (s, 1H), 7.32 (s, 5H), 6.92 

(s, 1H), 5.77 (d, J = 9.2 Hz, 1H), 5.46-5.45 (bs, 1H), 5.06 (s, 2H), 4.69-4.65 (m, 1H), 3.98 

(s, 3H), 3.89 (s, 3H), 3.88 (d, J = 9.3 Hz, 3H), 3.78 (s, 3H), 2.69 (bs, 1H); 13C-NMR (101 

MHz; CDCl3): δ 166.1, 144.6, 140.9, 133.75, 133.73, 128.66, 128.60, 128.46, 128.43, 

128.28, 128.18, 128.07, 126.3, 122.6, 114.2, 108.6, 72.9, 67.3, 66.9, 61.9, 61.2, 52.3, 

36.2; IR (NaCl, film) 3346, 2952, 1723, 1465, 1218, 1040 cm-1; HRMS (ESI-APCI+): 

[M+Na]+ 499.1248 calcd for C23H25ClN2NaO7, found: 499.1249. 

REF: TRW-II-459, TRW-II-461, TRW-III-093. 
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Figure 5.70a. 1H NMR spectrum of compound 4.4. 

 
Figure 5.70b. 13C NMR spectrum of compound 4.4. 
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1,4-difluoroanthracene-9,10-dione (4.23). To a solution of phthalic anhydride (10 g, 

67.6 mmol) in 1,4-difluorobenzene (68 mL) was added AlCl3 (36 g, 270 mmol). The 

resulting solution was stirred at reflux for 48h before removing the solvent by distillation. 

HCl (1M, 400 mL) was added and the product extracted into CH2Cl2 (3x). The combined 

organic extracts were filtered through a cotton plug and concentrated. The crude residue 

was taken up in chloroform (40 mL) and to it added hexanes (100 mL). The solution was 

cooled to -20 °C then filtered to collect the resultant precipitate. After drying the 

precipitate under vacuum, polyphosphoric acid (50 mL) was added and the mixture 

heated to 140 °C for 2h. The mixture was poured over approximately 400 g ice and 

allowed to warm to r.t. while stirring. Solid K2CO3 was added to neutralize the solution, 

then the product was extracted into CH2Cl2. The combined organic extracts were dried 

(Na2SO4) and concentrated. The residue was dissolved in CH2Cl2, filtered through basic 

alumina using CH2Cl2 as the eluent, and concentrated to afford the title compound (920 

mg). 

1H-NMR (400 MHz; CDCl3): δ  8.21-8.16 (m, 2H), 7.76-7.72 (m, 2H), 7.43-7.39 (m, 

2H); 13C-NMR (101 MHz; CDCl3): δ 134.3, 133.2, 127.0, 124.7, 124.48, 124.34. 

REF: TRW-II-451, TRW-III-079. 
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Figure 5.71a. 1H NMR spectrum of compound 4.23. 

 
Figure 5.71b. 13C NMR spectrum of compound 4.23. 
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(DHQD)2AQN (4.24). To a solution of DHQD (3.1 g, 9.5 mmol) in THF (19 mL) at -50 

°C was added nBuLi (1.6M in hexanes, 6.0 mL, 9.5 mmol) dropwise over 10 min. After 

stirring 15 min at -50 °C, the reaction mixture was warmed to 0 °C and the difluoro 

compound added (920 mg, 3.8 mmol). The reaction was allowed to warm to r.t. as it 

stirred O/N under Ar, then warmed to 40 °C and stirred an additional 2h. EtOAc was 

added and the reaction quenched by addition of sat’d NaHCO3. The product was 

extracted in EtOAc, dried (Na2SO4), concentrated, and purified by SiO2 chromatography 

(5% MeOH, 0.5% NH4OH, in CHCl3) to afford (DHQD)2AQN (2.55 g, 78% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.63 (d, J = 4.5 Hz, 2H), 8.22 (dd, J = 5.8, 3.3 Hz, 2H), 

8.01 (d, J = 9.2 Hz, 2H), 7.79 (dd, J = 5.8, 3.3 Hz, 2H), 7.49 (d, J = 4.5 Hz, 3H), 7.37 

(dd, J = 9.2, 2.5 Hz, 3H), 6.80 (bs, 2H), 5.28 (s, 2H), 3.95 (s, 6H), 3.28-3.26 (bs, 2H), 

3.00-2.53 (broad, 10H), 1.83 (bs, 2H), 1.61-1.45 (broad, 12H), 0.84 (t, J = 7.3 Hz, 6H). 

REF: TRW-II-457, TRW-III-002, TRW-III-082. 

  

O

O DHQD

DHQD
(DHQD)2AQN (4.24)



 249 

 
Figure 5.72a. 1H NMR spectrum of compound 4.24.  
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(2S,3R)-methyl 2-(((benzyloxy)carbonyl)amino)-3-((tert-butyldimethylsilyl) oxy)-3-

(5-chloro-6,7-dimethoxy-1-methyl-1H-indol-3-yl)propanoate (4.25). Alcohol 4.4 (296 

mg, 0.62 mmol) was dissolved in DMF (1.6 mL), and to it added imidazole (102 mg, 1.5 

mmol) and TBSCl (242 mg, 1.6 mmol). After stirring O/N, the solution was diluted with 

EtOAc, washed with water (3x), brine (1x), dried over Na2SO4, and concentrated to give 

the title compound (366 mg, >99% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.36 (s, 1H), 7.32 (s, 5H), 6.83 (s, 1H), 5.49 (dd, J = 

12.6, 2.3 Hz, 1H), 5.07 (s, 2H), 4.98 (s, 1H), 4.47 (dd, J = 9.6, 2.1 Hz, 1H), 4.00 (s, 3H), 

3.91 (s, 3H), 3.89 (s, 3H), 3.79 (s, 3H), 0.86 (s, 9H), 0.09 (s, 6H); HRMS (ESI-APCI+): 

[M+Na]+ 613.2113 calcd for C29H39ClN2NaO7Si, found: 613.2109. 

REF: TRW-II-460, TRW-II-465, TRW-III-096. 
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Figure 5.73a. 1H NMR spectrum of compound 4.25.  
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(2S,3R)-methyl 2-amino-3-((tert-butyldimethylsilyl)oxy)-3-(5-chloro-6,7-dimethoxy-

1-methyl-1H-indol-3-yl)propanoate (4.26). To a suspension of 4.25 (366 mg, 0.61 

mmol) and Pd/C (37 mg) in MeOH (3 mL) was added hydrogen gas. After stirring O/N, 

the reaction was flushed with argon and filtered through celite to afford the free amine 

(262 mg, 94% yield). 

[α]D = +6.4 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.32 (s, 1H), 6.90 (s, 1H), 5.40 (d, 

J = 1.8 Hz, 1H), 4.85-4.63 (m, 1H), 4.00 (s, 3H), 3.94 (s, 3H), 3.90 (s, 3H), 3.75 (s, 3H), 

2.24-2.14 (bs, 2H), 0.88 (s, 9H), -0.01 (s, 3H), -0.15 (s, 3H); 13C-NMR (101 MHz; 

CDCl3): δ 173.3, 143.8, 140.7, 129.3, 129.0, 123.9, 120.6, 114.8, 114.3, 70.4, 61.8, 61.1, 

60.8, 52.0, 35.5, 25.66, 25.61, 25.52, 18.0, -4.6, -5.6; IR (NaCl, film) 3332, 2953, 2858, 

1750, 1464, 1038 cm-1; HRMS (ESI-APCI+): [M+Na]+ 479.1745 calcd for 

C21H33ClN2NaO5Si, found: 479.1746. 

REF: TRW-II-462, TRW-II-468, TRW-III-098. 
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Figure 5.74a. 1H NMR spectrum of compound 4.26. 

 
Figure 5.74b. 13C NMR spectrum of compound 4.26. 
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(2S,3R)-methyl 2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-((tert-butyl-

dimethylsilyl)oxy)-3-(5-chloro-6,7-dimethoxy-1-methyl-1H-indol-3-yl)propanoate 

(4.27). To a solution of amine 4.26 (262 mg, 0.57 mmol) in CH2Cl2 (3 mL) was added N-

Boc-ala-OH (108 mg, 0.57 mmol), iPr2NEt (0.1 mL, 0.57 mmol), and EDCI (110 mg, 

0.57 mmol). The reaction was stirred at r.t. O/N, the concentrated and purified by SiO2 

chromatography (10% - 25% - 50% EtOAc in hexanes) to afford 4.27 (210 mg, 59% 

yield). 

1H-NMR (300 MHz; CDCl3): δ  7.36 (s, 1H), 6.86 (s, 1H), 6.73-6.70 (bs, 1H), 5.53 (d, J 

= 2.0 Hz, 1H), 4.97-4.96 (bs, 1H), 4.67 (dd, J = 9.1, 1.7 Hz, 1H), 4.19-4.15 (bs, 1H), 3.99 

(s, 3H), 3.92 (s, 3H), 3.90 (s, 3H), 3.78 (s, 3H), 1.45 (s, 9H), 1.24 (dd, J = 7.1, 0.8 Hz, 

3H), 0.89 (s, 9H), 0.01 (s, 3H), -0.15 (s, 3H). 

REF: TRW-II-466, TRW-II-471. 
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Figure 5.75a. 1H NMR spectrum of compound 4.27.  
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(2S,3R)-methyl 2-((S)-2-aminopropanamido)-3-((tert-butyldimethylsilyl)oxy)-3-(5-

chloro-6,7-dimethoxy-1-methyl-1H-indol-3-yl)propanoate (4.28). Compound 4.27 

(105 mg, 0.167 mmol) was dissolved in CH2Cl2 (1.7 mL), then 2,6-lutadine (0.039 mL, 

0.334 mmol) added. The solution was cooled to 0 °C, then TMSOTf (0.045 mL, 0.251 

mmol) added. After warming to r.t., the reaction was monitored by TLC and once 

complete, quenched with sat’d NH4Cl. The product was extracted into CH2Cl2, the 

organic extracts dried and concentrated, and the product purified by SiO2 

chromatography to afford the title compound (52 mg, 59% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.36 (s, 1H), 6.92 (s, 1H), 5.53 (s, 1H), 4.79-4.77 (bs, 

2H), 4.59 (d, J = 8.8 Hz, 1H), 3.97 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 3.82 (d, J = 7.4 Hz, 

1H), 3.74 (s, 3H), 1.29 (d, J = 8.4 Hz, 3H), 0.87 (s, 9H), -0.01 (s, 3H), -0.16 (s, 3H). 

REF: TRW-II-476; for TFA version, see TRW-II-474. 
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Figure 5.76a. 1H NMR spectrum of compound 4.28.  

3.0
3.0

2.72.7

9.19.1

2.72.7

2.92.9

1.21.2

2.72.7

2.72.7

2.72.7

1.01.0

2.02.0

1.01.0

1.01.0

1.41.4

ppm0 0112233445566778-19.97

-0
.1

6
-0

.0
1

0.
87

1.
27

1.
30

3.
74

3.
80

3.
83

3.
88

3.
90

3.
97

4.
57

4.
60

4.
77

4.
77

4.
78

4.
78

4.
78

4.
79

4.
79

5.
53

6.
92

7.
36



 258 

 

(S,Z)-3-((5-chloro-6,7-dimethoxy-1-methyl-1H-indol-3-yl)methylene)-6-

methylpiperazine-2,5-dione (4.29). To a solution of amine 4.28 (69 mg, 0.167 mmol) in 

toluene (5 mL) was added a small amount of 2-OH-pyridine. The solution was heated to 

reflux O/N, then cooled to r.t. The solvent was decanted off and the remaining solid 

washed with toluene and dried to afford pure 4.29 (37 mg, 61% yield). 

1H-NMR (300 MHz; DMSO-d6): δ  9.43 (s, 1H), 8.32 (s, 1H), 7.87 (s, 1H), 7.43 (s, 1H), 

6.81 (s, 1H), 4.11 (q, J = 6.9 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.81 (s, 3H), 1.32 (d, J = 

6.8 Hz, 3H); 13C-NMR (101 MHz; DMSO): δ 167.9, 160.77, 160.73, 144.2, 141.0, 133.1, 

128.4, 126.3, 123.8, 120.9, 114.2, 107.2, 106.2, 62.4, 61.4, 50.7, 36.0, 19.9; HRMS (ESI-

APCI+): [M+H]+ 364.1064 calcd for C17H19ClN3O4, found: 364.1075. 

REF: TRW-II-475, TRW-II-477. 
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Figure 5.77a. 1H NMR spectrum of compound 4.29. 

 
Figure 5.77b. 13C NMR spectrum of compound 4.29. 

3.3
3.3

3.13.1

3.13.1

3.03.0

1.11.1

1.11.1

1.11.1

1.11.1

1.01.0

0.90.9

ppm0 0112233445566778899-19.97

1.
31

1.
33

3.
81

3.
93

3.
96

4.
08

4.
10

4.
12

4.
15

6.
81

7.
43

7.
87

8.
32

9.
43

ppm0 05050100100150150-253.79

19
.8

6

35
.9

7

50
.7

3

61
.4

2
62

.4
1

10
6.

16
10

7.
21

11
4.

17

12
0.

87
12

3.
79

12
6.

26
12

8.
40

13
3.

09

14
0.

99
14

4.
19

16
0.

73
16

0.
77

16
7.

85



 260 

 

(2S,3R)-2-(((benzyloxy)carbonyl)amino)-3-((tert-butyldimethylsilyl)oxy)-3-(5-chloro-

6,7-dimethoxy-1-methyl-1H-indol-3-yl)propanoic acid (4.30). To a solution of methyl 

ester 4.25 (682 mg, 1.2 mmol) in THF/H2O (2:1, 2.6:1.3 mL) was added LiOH (144 mg, 

6.0 mmol) and the resulting suspension stirred O/N. The reaction mixture was acidified 

with 10% KHSO4, then the product extracted in EtOAc. The combined organic extracts 

were washed with brine, dried over Na2SO4, and concentrated to afford 4.30 (545 mg, 

82% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.37-7.28 (m, 6H), 6.87 (bs, 1H), 5.62-5.58 (broad, 1H), 

5.10-5.00 (m, 2H), 4.70 (s, 1H), 4.51-4.49 (bs, 1H), 3.99-3.89 (broad, 9H), 0.91-0.86 (m, 

9H), 0.10-0.01 (m, 6H). 

REF: TRW-III-023. 
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Figure 5.78a. 1H NMR spectrum of compound 4.30.  
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(S)-methyl 2-((2S,3R)-2-(((benzyloxy)carbonyl)amino)-3-((tert-

butyldimethylsilyl)oxy)-3-(5-chloro-6,7-dimethoxy-1-methyl-1H-indol-3-

yl)propanamido)propanoate (4.31). To a solution of acid 4.30 (100 mg, 0.173 mmol), 

L-Ala-OMe·HCl (24 mg, 0.173 mmol), and iPr2NEt (0.075 mL, 0.433 mmol) in CH2Cl2 

(2 mL) was added T3P (50 wt % in DMF, 127 mg of solution). The resulting solution 

was stirred O/N under Ar at r.t., then quenched by addition of water. The product was 

extracted in EtOAc and the combined organic layers dried over Na2SO4 and concentrated 

to afford the crude material. Purification by SiO2 chromatography (10-40% EtOAc in 

hexanes) gave 4.31 (39 mg, 34% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.58 (d, J = 7.4 Hz, 1H), 7.35 (d, J = 3.1 Hz, 5H), 7.04 

(s, 1H), 5.56 (dd, J = 29.0, 5.4 Hz, 2H), 5.13-5.10 (broad, 3H), 4.76-4.74 (bs, 1H), 4.57-

4.50 (m, 1H), 3.98 (s, 3H), 3.89 (d, J = 3.7 Hz, 6H), 3.78 (s, 3H), 1.42 (d, J = 7.2 Hz, 

3H), 0.94 (s, 9H), 0.06 (d, J = 48.3 Hz, 6H). 

REF: TRW-III-026. 
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Figure 5.79a. 1H NMR spectrum of compound 4.31. 
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(2S,3R)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propan-

amido)-3-((tert-butyldimethylsilyl)oxy)-3-(5-chloro-6,7-dimethoxy-1-methyl-1H-

indol-3-yl)propanoate (4.32). To a solution of amine 4.26 (100 mg, 0.22 mmol) in 

CH2Cl2 (2.2 mL) was added N-Fmoc-Ala (68 mg, 0.22 mmol), iPr2NEt (0.1 mL, 0.55 

mmol), and T3P (160 mg 50 wt% solution in DMF, 0.25 mmol). The resulting solution 

was allowed to stir O/N at r.t. under Ar, then quenched with water and the product 

extracted in EtOAc. The combined organic layers were dried over Na2SO4, filtered, and 

concentrated. Purification by SiO2 chromatography (1:1 hexanes:EtOAc) afforded 4.32 in 

59% yield (97 mg). 

[α]D = -3.9 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.76 (d, J = 7.5 Hz, 2H), 7.58 (d, J 

= 7.4 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H), 7.36 (s, 1H), 7.31 (d, J = 7.4 Hz, 2H), 6.85 (s, 

1H), 6.65 (s, 1H), 5.54 (d, J = 1.4 Hz, 1H), 5.41-5.38 (m, 1H), 4.68 (dd, J = 9.0, 1.7 Hz, 

1H), 4.33-4.27 (m, 2H), 3.97 (s, 3H), 3.89 (s, 3H), 3.86 (s, 3H), 3.79 (s, 3H), 1.36 (d, J = 

6.8 Hz, 3H), 0.89 (s, 9H), 0.02 (s, 3H), -0.13 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 

171.4, 165.8, 156.4, 144.4, 143.7, 143.3, 141.27, 141.15, 140.9, 135.1, 128.3, 127.78, 

127.70, 127.5, 127.10, 127.06, 126.5, 124.87, 124.82, 122.4, 119.98, 119.92, 117.9, 

113.9, 108.1, 67.0, 61.8, 61.2, 52.3, 51.5, 47.1, 36.0, 25.61, 25.48, 25.3, 17.94, 17.91, -

3.6; IR (NaCl, film) 3302, 2953, 2857, 1714, 1462, 1254, 1040 cm-1; HRMS (ESI-

APCI+): [M+Na]+ 772.2797 calcd for C39H48ClN3NaO8Si, found: 772.2799. 

REF: TRW-III-056, TRW-III-064, TRW-III-113. 
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Figure 5.80a. 1H NMR spectrum of compound 4.32. 

 
Figure 5.80b. 13C NMR spectrum of compound 4.32.  
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(6S)-3-((R)-((tert-butyldimethylsilyl)oxy)(5-chloro-6,7-dimethoxy-1-methyl-1H-

indol-3-yl)methyl)-6-methylpiperazine-2,5-dione (4.3). Dipeptide 4.32 (350 mg, 0.47 

mmol) was dissolved in THF (20 mL), then morpholine (4.7 mL) added. The resulting 

solution was stirred O/N at r.t., then concentrated. The crude residue was purified by SiO2 

chromatography (10% methanol in CH2Cl2) to afford 181 mg of the title dioxopiperazine 

(78% yield). 

[α]D = -5.8 (CH2Cl2); 1H-NMR (300 MHz; CDCl3): δ  7.31 (s, 1H), 6.98 (s, 1H), 5.67 (s, 

2H), 4.13 (q, J = 6.7 Hz, 1H), 4.05 (d, J = 1.5 Hz, 1H), 4.02 (s, 3H), 3.97 (s, 3H), 3.91 (s, 

3H), 3.76 (s, 1H), 1.61 (d, J = 7.0 Hz, 3H), 0.88 (s, 9H), 0.03 (s, 3H), -0.03 (s, 3H); 13C-

NMR (101 MHz; CDCl3): δ 166.5, 160.4, 140.9, 136.1, 129.7, 127.4, 125.7, 122.7, 114.6, 

108.6, 61.9, 61.2, 51.6, 51.3, 36.02, 36.00, 25.8, 25.6, 25.3, 20.4, 17.9, -1.6, -3.6; IR 

(NaCl, film) 3225, 2932, 1681, 1449, 1259, 1042 cm-1; HRMS (ESI-APCI+): [M+Na]+ 

518.1854 calcd for C23H34ClN3NaO5Si, found: 518.1852. 

REF: TRW-III-057, TRW-III-065. 
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Figure 5.81a. 1H NMR spectrum of compound 4.3. 

 
Figure 5.81b. 1H NMR spectrum of compound 4.3. 
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(2S,3S,3aS,8aR)-1-benzyl 2-methyl 3-((tert-butyldimethylsilyl)oxy)-5-chloro-3a-

hydroxy-6,7-dimethoxy-8-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1,2(2H)-

dicarboxylate (4.40). Indole 4.25 (70 mg, 0.118 mmol) was dissolved in CH2Cl2 (6 mL) 

and the resulting solution cooled to -78 °C. Freshly prepared DMDO (0.056 M in 

acetone, 3 mL, 0.165 mmol) was added and the reaction mixture allowed to warm to r.t. 

O/N. Sodium thiosulfate (sat’d aq) was added and the product extracted in CH2Cl2. The 

combined organic extracts were washed with brine, dried over Na2SO4, and concentrated. 

Purification by pTLC (40% EtOAc in hexanes) afforded pure 4.25 (6.2 mg, 9% yield). 

1H-NMR (400 MHz; CDCl3): δ  7.46-7.40 (m, 5H), 7.05 (t, J = 9.1 Hz, 1H), 5.59 (s, 1H), 

5.42-5.37 (m, 2H), 5.11-5.08 (m, 1H), 4.67-4.61 (m, 1H), 3.97-3.87 (m, 6H), 3.55 (s, 

3H), 3.39 (s, 3H), 0.96 (s, 9H), 0.04 (d, J = 36.9 Hz, 6H); HRMS (ESI-APCI+): [M+H]+ 

607.2242 calcd for C29H40ClN2O8Si, found: 607.2240. 

REF: TRW-III-107, TRW-III-110. 

  

N
Me

Cl

MeO
OMe

NCbz
H

HO
TBSO

CO2Me

4.40



 269 

 
Figure 5.82a. 1H NMR spectrum of compound 4.40.  
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(2S,3R)-methyl 3-acetoxy-2-(((benzyloxy)carbonyl)amino)-3-(5-chloro-6,7-

dimethoxy-1-methyl-1H-indol-3-yl)propanoate (4.47). To a solution of alcohol 4.4 

(250 mg, 0.52 mmol) in THF (2.5 mL) was added Ac2O (0.059 mL, 0.62 mmol), Et3N 

(0.109 mL, 0.78 mmol), and DMAP (small amt). The resulting solution was stirred at r.t. 

O/N, then concentrated and 1M HCl added. The product was extracted in CH2Cl2, 

washed with brine, dried over Na2SO4, and concentrated. The crude material was purified 

by SiO2 chromatography (1:1 hexanes:EtOAc) to afford 4.47 (150 mg, 56% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.38-7.35 (broad, 6H), 6.92 (d, J = 38.1 Hz, 1H), 5.61-

5.54 (m, 1H), 5.18 (s, 1H), 5.09-5.06 (m, 2H), 4.82 (dd, J = 9.7, 3.7 Hz, 1H), 4.00-3.98 

(m, 3H), 3.92-3.87 (m, 6H), 3.75 (d, J = 7.0 Hz, 3H), 2.17 (s, 3H). 

REF: TRW-III-137. 
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Figure 5.83a. 1H NMR spectrum of compound 4.47.  
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(2S,3R)-methyl 3-acetoxy-2-amino-3-(5-chloro-6,7-dimethoxy-1-methyl-1H-indol-3-

yl)propanoate (4.48). Compound 4.47 (150 mg, 0.29 mmol) was dissolved in MeOH 

(1.5 mL) and to it added Pd/C (15 mg). The suspension was treated with H2 (atm) O/N, 

then filtered through celite and concentrated to afford crude 4.48, used as crude in the 

next step. 

REF: TRW-III-141. 

 

 

(3R)-methyl 2-((S)-2-((((9H-fluoren-9-

yl)methoxy)carbonyl)(methyl)amino)propanamido)-3-acetoxy-3-(5-chloro-6,7-

dimethoxy-1-methyl-1H-indol-3-yl)propanoate (4.49). Crude 4.48 (78 mg, 0.203 

mmol) was dissolved in CH2Cl2 (2  mL) and to it added N-Me,Fmoc-Ala (66 mg, 0.203 

mmol), iPr2NEt (0.088 mL, 0.233 mmol), and T3P (150 mg 50 wt% solution in DMF, 

0.233 mmol). The resulting solution was allowed to stir O/N at r.t. under Ar, then 

quenched with water and the product extracted in EtOAc. The combined organic layers 

were dried over Na2SO4, filtered, and concentrated. Purification by SiO2 chromatography 

afforded 4.49 in 18% yield (25 mg). A clean NMR could not be obtained for this sample. 

REF: TRW-III-145. 
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(S,Z)-methyl 3-(5-chloro-6,7-dimethoxy-1-methyl-1H-indol-3-yl)-2-(2-

(methylamino)propanamido)acrylate (4.50). Dipeptide 4.49 (25 mg, 0.037 mmol) was 

dissolved in THF (1.5 mL), then morpholine (0.37 mL) added. The resulting solution was 

stirred O/N at r.t., then concentrated. The crude residue was purified by SiO2 

chromatography (10% methanol in CH2Cl2) to afford the title product as a 1:1 mixture of 

diasteromers (trace yield). 

1H-NMR (400 MHz; CDCl3): δ  7.44 (d, J = 17.9 Hz, 2H), 6.86 (d, J = 4.3 Hz, 2H), 5.07 

(dt, J = 15.5, 4.8 Hz, 2H), 4.84-4.77 (m, 2H), 3.98 (s, 3H), 3.96 (s, 3H), 3.90 (s, 3H), 3.89 

(s, 3H), 3.77 (s, 3H), 3.71 (s, 2H), 3.66 (s, 3H), 3.32 (s, 3H), 3.27 (s, 3H), 2.40 (s, 3H), 

2.29 (s, 3H), 1.18 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H); HRMS (ESI-APCI+): 

[M+H]+ 410.1483 calcd for C19H25ClN3O5, found: 410.1471. 
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Figure 5.84a. 1H NMR spectrum of compound 4.50.  
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(S)-(9H-fluoren-9-yl)methyl 4-methyl-5-oxooxazolidine-3-carboxylate (4.45). To a 

solution of N-Fmoc-Ala (5.0 g, 16.1 mmol) in PhMe (50 mL) was added 

paraformaldehyde (3.15 g, 105 mmol) and p-TsOH (247 mg, 1.3 mmol). The resulting 

suspension was heated to reflux for 1 h with a Dean-Stark trap in place. Upon cooling, 

EtOAc was added and the organic phase washed with sat’d NaHCO3, dried over Na2SO4, 

and concentrated to afford 4.45, carried forward as crude. 

1H-NMR (300 MHz; CDCl3): δ  7.78 (d, J = 7.3 Hz, 2H), 7.54 (d, J = 7.4 Hz, 2H), 7.38 

(dt, J = 26.6, 7.4 Hz, 4H), 5.38-5.14 (broad, 3H), 4.61-4.60 (broad, 2H), 4.25 (t, J = 5.6 

Hz, 1H), 1.51-1.14 (broad, 3H). 

REF: TRW-III-125. 
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Figure 5.85a. 1H NMR spectrum of compound 4.45.  
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N-Me,Fmoc-L-Ala-OH (4.46). Compound 4.45 (crude, directly from previous reaction) 

was dissolved in CHCl3 (4.1 mL) and to the resulting solution added TFA (4.1 mL) and 

Et3SiH (1.0 mL). After stirring 10 h, additional Et3SiH (3.0 mL) was added. The reaction 

stirred another 24 h, then was concentrated and TFA removed by repeated azeotropic 

distillations with toluene. The crude product was recrystallized from ether/EtOAc to 

afford pure 4.46 (2.87 g, 55% yield over 2 steps). 

1H-NMR (300 MHz; CDCl3): δ  7.77 (d, J = 7.2 Hz, 2H), 7.61-7.53 (m, 2H), 7.43-7.29 

(m, 4H), 4.76 (dq, J = 84.6, 7.2 Hz, 1H), 4.44 (qd, J = 11.3, 9.0 Hz, 2H), 4.28 (t, J = 6.9 

Hz, 1H), 2.92 (s, 3H), 1.42 (dd, J = 28.0, 7.2 Hz, 3H). 

REF: TRW-III-126. 
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Figure 5.86a. 1H NMR spectrum of compound 4.46.  
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N-Bn-L-Ser-OH (5.13). To a solution of serine (14.7 g, 140 mmol) in 2M NaOH (70 

mL) was added freshly distilled benzaldehyde (14.0 mL, 138 mmol). After stirring for 1 h 

at r.t., the reaction mixture was cooled to 0 °C and NaBH4 (1.5 g, 40 mmol) added 

portionwise such that the internal temperature did not exceed 10 °C. The resulting 

solution was stirred 30 min at 5 °C, 1 h at r.t., then recooled to 0 °C. Additional NaBH4 

(1.5 g, 40 mmol) was added portionwise as before. The reaction was allowed to warm to 

r.t. as it stirred O/N. The crude reaction mixture was washed with ether (3x), then the 

aqueous phase acidified to pH 5 with HCl. The resulting precipitate was filtered and 

washed with water, then dried O/N to afford the crude product (6.55 g, 24% yield). 

REF: TRW-III-288. 
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N-Me,Bn-L-Ser-OH (5.14). N-Bn-Ser (5.13, 2.49 g, 12.8 mmol) was dissolved in formic 

acid (1.6 mL, 38.4 mmol) and formaldehyde (37% in H2O, 1.1 mL, 15.4 mmol) and 

heated to 90 °C for 2 h. The reaction mixture was concentrated, then acetone added and a 

solid triturated out of the solution. The suspension was concentrated, acetone added, and 

the trituration process repeated 3x. Following the final concentration, acetone was again 

added and the suspension allowed to stir 1 h at r.t, then 3 h at -20 °C. The solid was 

filtered, washed with cold acetone, and dried to afford 5.14 (1.47 g, 55% yield). 

1H-NMR (300 MHz; CD3OD): δ  7.58-7.45 (m, 5H), 4.52 (d, J = 12.6 Hz, 1H), 4.37 (d, J 

= 12.7 Hz, 1H), 4.12 (qd, J = 11.8, 5.6 Hz, 2H), 3.73 (t, J = 3.5 Hz, 1H), 2.89 (s, 3H). 

REF: TRW-III-289. 
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Figure 5.87a. 1H NMR spectrum of compound 5.14.  
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N-Me-L-Ser-OH (5.15). 5.14 (1.47 g, 7.0 mmol) was dissolved in MeOH (70 mL) and to 

it added Pd(OH)2 (700 mg). The resulting suspension was treated with H2 (55 psi) for 40 

h, then filtered through celite and concentrated to afford the title compound (660 mg, 

79% yield), carried forward as crude. 

REF: TRW-III-291. 

 

 

N-Me-L-Ser(OTBS)-OH (5.16). To a solution of 5.15 (660 mg, 5.55 mmol) in DMF (12 

mL) was added TBSCl (923 mg, 6.11 mmol) and imidazole (755 mg, 11.1 mmol). The 

resulting solution was allowed to stir at r.t. O/N, then concentrated. To the crude residue 

was added H2O and hexanes (1:1) and the resulting suspension stirred 4 h. The solid was 

filtered, rinsed with hexanes, and dried to give 5.16 (685 mg, 53% yield). 

1H-NMR (300 MHz; CD3OD): δ  4.09 (d, J = 4.1 Hz, 2H), 3.50 (t, J = 4.1 Hz, 1H), 2.72 

(s, 3H), 0.92 (s, 9H), 0.12 (s, 6H). 

REF: TRW-III-296. 
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Figure 5.88a. 1H NMR spectrum of compound 5.16.  
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N-Me,Fmoc-L-Ser(OTBS)-OH (5.17). To a suspension of 5.16 (375 mg, 1.61 mmol) in 

Na2CO3 (aq, 10%, 3.2 mL) and dioxane (1.3 mL) at 0 °C was added dropwise FmocOSu 

(570 mg, 1.69 mmol) as a solution in dioxane (2.1 mL). The resulting solution was 

allowed to warm to r.t. as it stirred O/N. After concentration, the crude mixture was 

diluted with water, acidified to pH 3-4 with 10% KHSO4, and the product extracted in 

EtOAc. The combined organic layer was washed with brine, dried over Na2SO4, and 

concentrated to afford 5.17 (663 mg, 90% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.77 (d, J = 7.6 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.36 

(dt, J = 27.2, 7.4 Hz, 4H), 4.82 (t, J = 5.9 Hz, 1H), 4.49-4.40 (m, 2H), 4.30-4.22 (m, 1H), 

4.14-4.05 (m, 2H), 3.88 (t, J = 5.1 Hz, 1H), 3.04 (d, J = 24.1 Hz, 3H), 0.86 (s, 9H), 0.08-

0.03 (m, 6H); HRMS (ESI-APCI+): [M+H]+ 456.2206 calcd for C25H34NO5Si, found 

456.2200.  

REF: TRW-III-298. 
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Figure 5.89a. 1H NMR spectrum of compound 5.17.  
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N-Me,Bn-L-Trp-OMe (5.18). To a solution of L-Trp-OMe·HCl (500 mg, 2 mmol) in 

MeOH (20 mL) and Et3N (1.67 mL) was added PhCHO (212 µL, 2.1 mmol). The 

resulting mixture was stirred at r.t. for 1 h, then NaBH3CN (132 mg, 2.1 mmol) added. 

The reaction mixture was stirred overnight at r.t., at which time paraformaldehyde (180 

mg, 2 mmol) was added. After full dissolution (ca. 5 h), PhCHO (132 mg, 2.1 mmol) was 

added and the reaction stirred overnight. The crude reaction mixture was concentrated 

and the residue dissolved in EtOAc, filtered through celite, and concentrated. Purification 

by SiO2 chromatography (5-30% EtOAc in hexanes) afforded diprotected amine 5.18 

(300 mg, 47% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.11 (s, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.35 (t, J = 4.3 Hz, 

6H), 7.23 (t, J = 6.9 Hz, 1H), 7.14 (t, J = 6.9 Hz, 1H), 7.02 (d, J = 2.2 Hz, 1H), 3.92 (d, J 

= 13.5 Hz, 1H), 3.82 (dd, J = 9.1, 5.8 Hz, 1H), 3.72-3.68 (m, 4H), 3.42 (dd, J = 14.4, 9.1 

Hz, 1H), 3.17 (ddd, J = 14.3, 5.8, 0.6 Hz, 1H), 2.44 (s, 3H). 

REF: TRW-I-278, TRW-I-284. 
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Figure 5.90a. 1H NMR spectrum of compound 5.18.  
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N-Me-L-Trp-OMe (5.19). To a degassed solution of 5.18 (300 mg, 0.93 mmol) in 

MeOH (9 mL) was added Pd(OH)2/C (150 mg). The resulting suspension was treated 

with H2 (55 psi) for 18 h, then filtered through celite and concentrated to afford 

methylamine 5.19 (215 mg, 99.5% yield), deemed sufficiently pure to carry forward 

without further purification. 

1H-NMR (300 MHz; CDCl3): δ  8.26 (s, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.36-7.33 (m, 1H), 

7.15 (tdd, J = 14.4, 6.5, 1.2 Hz, 2H), 7.04 (d, J = 2.3 Hz, 1H), 3.66 (s, 3H), 3.57 (t, J = 

6.6 Hz, 1H), 3.16 (qd, J = 13.0, 6.6 Hz, 2H), 2.38 (s, 3H), 2.05-1.99 (bs, 1H). 

REF: TRW-I-282. 
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Figure 5.91a. 1H NMR spectrum of compound 5.19.  

1.4
1.4

3.423.42

2.492.49

1.141.14

2.982.98

11

2.42.4

1.281.28

1.061.06

0.950.95

ppm1 1223344556677889-14.99

1.
99

2.
00

2.
00

2.
01

2.
01

2.
02

2.
02

2.
02

2.
03

2.
03

2.
04

2.
04

2.
05

2.
05

2.
38

3.
09

3.
11

3.
13

3.
16

3.
17

3.
19

3.
22

3.
24

3.
55

3.
57

3.
59

3.
66

7.
04

7.
04

7.
09

7.
10

7.
12

7.
12

7.
14

7.
15

7.
16

7.
17

7.
19

7.
19

7.
21

7.
22

7.
33

7.
33

7.
36

7.
60

7.
62

8.
26



 290 

 

N-Me,Boc-L-Trp-OMe (5.20). To a solution of 5.19 (6.40 g, 27.6 mmol) in 

water/dioxane (1:1, 110 mL) was added NaOH (1.10 g, 27.6 mmol) and Boc anhydride 

(7.22 g, 33.1 mmol). The resulting solution was allowed to stir O/N at r.t., then acidified 

with HCl to pH 6-7. The product was extracted in CHCl3 and the organic phase dried 

over Na2SO4 and concentrated. Crude material was purified by SiO2 chromatography 

(25% EtOAc in hexanes) to afford 5.20 (4.50 g, 49% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.07-8.06 (m, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 

7.5 Hz, 1H), 7.16 (dt, J = 21.1, 7.3 Hz, 2H), 7.06-7.00 (broad, 1H), 5.07-4.73 (m, 1H), 

3.76 (s, 3H), 3.48-3.40 (m, 1H), 3.27-3.11 (m, 1H), 2.75 (d, J = 14.1 Hz, 3H), 1.29 (d, J = 

61.0 Hz, 9H). 

REF: TRW-III-209. 
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Figure 5.92a. 1H NMR spectrum of compound 5.20.  
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L-Ser-OMe (5.21). To a solution of L-serine (50.0 g, 0.48 mol) in MeOH (450 mL) at 0 

°C was added SOCl2 (35 mL, 0.48 mol). The reaction was allowed to warm to r.t. as it 

stirred O/N. The resulting solution was concentrated, taken up in ether, filtered, and the 

solid washed with ether. The crude solid material was recrystallized in MeOH/ether to 

afford pure crystalline methyl ester 5.21 as the HCl salt. 

REF: TRW-II-118. 
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N-Bn,Me-L-Ser-OMe (5.22). To a solution of L-Ser-OMe·HCl (10.0 g, 64.1 mmol) in 

MeOH (500 mL) and Et3N (50.0 mL, 385 mmol) was added PhCHO (6.8 mL, 67.3 

mmol). The resulting mixture was stirred at r.t. for 1 h, then NaBH3CN (4.24 g, 67.3 

mmol) added. The reaction mixture was stirred overnight at r.t., at which time 

paraformaldehyde (5.78 g, 64.1 mmol) was added. After full dissolution (ca. 5 h), 

NaBH3CN (4.24 g, 67.3 mmol) was added and the reaction stirred overnight. The crude 

reaction mixture was concentrated and the residue dissolved in EtOAc, filtered through 

celite, and concentrated. Purification by SiO2 chromatography (2:1 hexanes:EtOAc) 

afforded diprotected amine 5.22 (7.41 g, 52% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.37-7.29 (m, 5H), 4.69 (d, J = 5.9 Hz, 1H), 3.79-3.71 

(m, 5H), 3.54 (dd, J = 8.8, 6.6 Hz, 1H), 2.78 (dd, J = 8.6, 3.0 Hz, 1H), 2.33 (s, 3H). 

REF: TRW-II-019, TRW-II-120, TRW-III-208. 
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Figure 5.93a. 1H NMR spectrum of compound 5.22.  
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N-Me-L-Ser-OMe (5.23). To a degassed solution of 5.22 (3.7 g, 16.6 mmol) in MeOH 

(140 mL) was added Pd(OH)2 (1.85 g). The resulting suspension was treated with H2 (55 

psi) for 18 h, then filtered through celite and concentrated to afford methylamine 5.23 

(99.5% yield), deemed sufficiently pure to carry forward without further purification. 

1H-NMR (300 MHz; CDCl3): δ  3.82-3.77 (m, 4H), 3.63 (dd, J = 10.9, 6.1 Hz, 1H), 3.28 

(t, J = 5.2 Hz, 1H), 2.43 (s, 3H). 

REF: TRW-II-020, TRW-II-123. 
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Figure 5.94a. 1H NMR spectrum of compound 5.23.  
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3-(1H-indol-3-yl)-2-(methylamino)propan-1-ol (5.24). To a suspension of LAH (813 

mg, 21.4 mmol) in THF (20 mL) at 0°C was added methyl ester 5.19 (1.70 g, 5.35 mmol) 

dropwise. The resulting mixture was heated to reflux and stirred O/N. After cooling to 

0°C, 15% NaOH (8 mL) was added and the reaction stirred an additional 1 h at r.t. The 

suspension was filtered through celite and the filtrate dried over Na2SO4 before 

concentrating to afford 1.09 g (100% yield) of methylamine alcohol 5.24. 

1H-NMR (300 MHz; CDCl3): δ  8.76 (s, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.34 (d, J = 8.0 

Hz, 1H), 7.23-7.10 (m, 2H), 6.92 (s, 1H), 3.71 (dd, J = 11.5, 2.1 Hz, 1H), 3.47 (dd, J = 

10.9, 4.3 Hz, 1H), 2.98-2.90 (m, 3H), 2.41 (s, 3H). 

REF: TRW-I-294, TRW-I-310, TRW-I-323, TRW-I-327. 
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Figure 5.95a. 1H NMR spectrum of compound 5.24.  
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N-Cbz-L-Ser-OH (5.25). To a solution of L-Ser (10.0 g, 95 mmol) in saturated aqueous 

NaHCO3 (380 mL) was added CbzCl (15 mL, 100 mmol). The resulting solution was 

stirred O/N at r.t., then acidified to ph 4 with 1M HCl. The product was extracted in 

EtOAc (3x), and the combined organic layers dried and concentrated to afford N-Cbz-L-

Ser-OH (21.78 g, 96% yield). 

1H-NMR (300 MHz; CD3OD): δ  7.38-7.28 (m, 5H), 5.10 (s, 2H), 4.27 (t, J = 4.3 Hz, 

1H), 3.91-3.80 (m, 2H). 

REF: TRW-II-337, TRW-II-398. 
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Figure 5.96a. 1H NMR spectrum of compound 5.25.  
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N-Cbz-L-Ser(OTBS)-OH (5.26). N-Cbz-L-Ser-OH (10.0 g, 41.8 mmol), TBSCl (6.95 g, 

46.0 mmol), and imidazole (5.68 g, 83.6 mmol) were dissolved in DMF (100 mL). The 

resulting solution was stirred at r.t. under Ar for 48 h before concentrating. The residue 

was suspended in hexanes and the product extracted into 5% aqueous NaHCO3. KHSO4 

(1M) was added to acidify the aqueous layer to pH 3, from which the product was 

extracted into EtOAc. The combined organic extracts were washed with brine, dried over 

Na2SO4, and concentrated to afford N-Cbz-L-Ser(OTBS)-OH (10.04 g, 68% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.33-7.30 (m, 5H), 5.08 (d, J = 3.4 Hz, 2H), 4.33-4.31 

(m, 1H), 4.05 (dd, J = 10.2, 2.8 Hz, 1H), 3.82 (dd, J = 10.2, 2.8 Hz, 1H), 0.82 (d, J = 2.8 

Hz, 9H), -0.02 (s, 6H). 

REF: TRW-II-198, TRW-II-338, TRW-II-399. 
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Figure 5.97a. 1H NMR spectrum of compound 5.26.  
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L-Trp-OMe·HCl (5.27). To a solution of L-tryptophan (25 g, 123 mmol) in MeOH (250 

mL) at 0 °C was added SOCl2 (8.9 mL, 123 mmol) dropwise. The reaction was allowed 

to warm to r.t. as it stirred O/N. Upon completion, the reaction was concentrated, then 

MeOH (2x) and ether (3x) separately added and the mixture concentrated to thoroughly 

dry the crude product. Pure L-tryptophan-OMe·HCl crystals were recovered following 

recrystallization in MeOH/ether (25.08 g, 80% yield). 

1H-NMR (300 MHz; CD3OD): δ  10.62 (bs, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 

8.1 Hz, 1H), 7.20 (d, J = 2.3 Hz, 1H), 7.17-7.03 (m, 2H), 4.33 (dd, J = 7.4, 5.5 Hz, 1H), 

3.79 (s, 3H), 3.42 (dq, J = 24.1, 7.9 Hz, 2H). 

REF: TRW-II-391. 
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Figure 5.98a. 1H NMR spectrum of compound 5.27.  
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N-Cbz-L-Trp-OMe (5.28). To a suspension of L-tryptophan-OMe·HCl (15 g, 58.8 

mmol) in dioxane (75 mL) at 0 °C was added 1M NaOH (60 mL). CbzCl (9.7 mL, 64.7 

mmol) was added, followed by a second portion of 1M NaOH (60 mL). The reaction 

mixture was allowed to stir for 20 minutes at 0 °C, then diluted with EtOAc. The organic 

layer was separated, washed with 1M HCl and brine, then dried and concentrated to 

afford the title compound. 

1H-NMR (300 MHz; CDCl3): δ  8.22 (bs, 1H), 7.53 (d, J = 7.9 Hz, 1H), 7.34 (bs, 6H), 

7.26-7.17 (m, 2H), 7.13-7.08 (m, 1H), 6.93 (s, 1H), 5.39 (d, J = 8.1 Hz, 1H), 5.11 (d, J = 

4.4 Hz, 2H), 4.77-4.70 (m, 1H), 3.68 (s, 3H), 3.32 (d, J = 5.3 Hz, 2H). 

REF: TRW-II-448. 
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Figure 5.99a. 1H NMR spectrum of compound 5.28.  
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N’-SO2Ph-N-Cbz-L-Trp-OMe (5.29). Phenylsulfonyl chloride (4.4 mL, 34.1 mmol) was 

added dropwise to a suspension of N-Cbz-L-Trp-OMe (10 g, 28.4 mmol), NaOH (3.4 g, 

85.2 mmol), and Bu4NHSO4 (483 mg, 1.42 mmol) in CH2Cl2 (140 mL). The reaction was 

allowed to stir O/N at r.t., then to it added concentrated NH4Cl and EtOAc. The organic 

layer was removed and the product further extracted into EtOAc (2x), then the combined 

organic extracts dried and concentrated to afford the title compound (13.31 g, 95% yield). 

1H-NMR (300 MHz; CDCl3): δ  8.05 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.81 

(d, J = 7.8 Hz, 2H), 7.64 (d, J = 8.0 Hz, 1H), 7.37 (sextet, J = 7.7 Hz, 9H), 7.20 (d, J = 

7.4 Hz, 1H), 5.31 (d, J = 7.9 Hz, 1H), 5.16-5.06 (m, 2H), 4.70 (q, J = 6.6 Hz, 1H), 3.62 

(s, 3H), 3.22 (t, J = 5.6 Hz, 2H). 

REF: TRW-II-452. 
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Figure 5.100a. 1H NMR spectrum of compound 5.29.  
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Bromopyrroloindoline (5.30). N’-SO2Ph-N-Cbz-L-Trp-OMe (13.31 g, 27 mmol) was 

dissolved in CH2Cl2 (400 mL), and to the resulting solution added NBS (4.81 g, 27 

mmol) and PPTS (6.78 g, 27 mmol). The reaction was allowed to stir O/N at r.t. NaHCO3 

(10% aq.) and Na2S2O4 (10% aq.) were added in a 1:1 mixture, the organic layer 

removed, dried, and purified (SiO2 chromatography, 1:1 H:E) to afford the title 

compound (11.46 g, 74% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.63 (d, J = 8.1 Hz, 1H), 7.50-7.45 (m, 3H), 7.36-7.34 

(m, 8H), 7.26-7.25 (m, 2H), 7.19 (d, J = 7.4 Hz, 1H), 6.36-6.29 (bs, 1H), 5.42-5.22 

(broad, 2H), 3.90-3.84 (m, 1H), 3.69-3.52 (broad, 3H), 3.09 (dd, J = 12.8, 6.0 Hz, 1H), 

2.82-2.74 (m, 1H). 

REF: TRW-II-453. 
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Figure 5.101a. 1H NMR spectrum of compound 5.30.  
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Methyl 3-bromo-2-(tert-butoxycarbonylamino)propanoate (5.31). To a solution of N-

Boc-Ser-OMe (2.0 g, 9.1 mmol) in THF (50 mL) at 0 °C was added CBr4 (4.54 g, 13.7 

mmol) and PPh3 (3.59 g, 13.7 mmol). The reaction was stirred at 0 °C for 10 minutes, 

then warmed to r.t. and stirred 4 h under Ar. The crude mixture was filtered through a bed 

of celite, diluted with ether, and washed with water and brine. The organic phase was 

dried over Na2SO4, filtered, and concentrated. The crude residue was purified by SiO2 

chromatography (3:1 hexanes:EtOAC) to afford bromide 5.31 (1.64 g, 64% yield). 

1H-NMR (300 MHz; CDCl3): δ  5.42-5.39 (m, 1H), 4.78-4.73 (m, 1H), 3.81 (s, 3H), 3.71 

(dd, J = 10.4, 3.4 Hz, 1H), 1.46 (s, 9H). 

REF: TRW-I-191. 
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Figure 5.102a. 1H NMR spectrum of compound 5.31.  
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Methyl 2-(benzyloxycarbonylamino)-3-hydroxypropanoate (5.32). To a solution of 

Ser-OMe·HCl (5.0 g, 32.1 mmol) in MeOH:NaHCO3 (1:1, 120 mL) was added CbzCl 

(5.75 g, 33.7 mmol). The reaction mixture was stirred at r.t. for 48 h, then 1 M HCl 

added. The crude mixture was concentrated and the resulting residue dissolved in EtOAc. 

The organic phase was washed with 1 M NaOH, dried over Na2SO4, filtered, and 

concentrated under reduced pressure to afford Cbz-amine 5.32 (8.12 g, 100% yield) as a 

clear oil, carried forward without additional purification. 

1H-NMR (300 MHz; CDCl3): δ  7.37-7.34 (m, 5H), 5.72-5.67 (m, 1H), 5.13 (s, 2H), 4.47-

4.43 (m, 1H), 4.01-3.93 (m, 2H), 3.79 (s, 3H). 

REF: TRW-I-256. 
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Figure 5.103a. 1H NMR spectrum of compound 5.32.  
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3-benzyl 4-methyl 2,2-dimethyloxazolidine-3,4-dicarboxylate (5.33). To a solution of 

Cbz-Ser-OMe (7.56 g, 30.0 mmol) in dry acetone (100 mL) was added 2,2-

dimethoxypropane (40 mL), BF3·OEt2 (3.8 mL, 30.0 mmol), and Na2SO4 (10 g). The 

reaction mixture stirred overnight at r.t. under Ar, and then Et3N (12 mL) was added. The 

resulting suspension was filtered and the filtrate concentrated under reduced pressure. 

The product was extracted with ether (3 x 75 mL), washed with NaHCO3, washed with 

brine, dried over Na2SO4, and concentrated. The crude oil was purified by SiO2 

chromatography (5-50% EtOAc in hexanes) to afford 5.33 (7.20 g, 82% yield) as a 

mixture of rotamers. Crude oil was likely pure enough to carry forward without 

purification. 

1H-NMR (300 MHz; CDCl3): δ  7.36-7.30 (m, 5H), 5.20-5.02 (m, 2H), 4.52 (ddd, J = 

23.2, 6.6, 2.7 Hz, 1H), 4.19-4.07 (m, 2H), 3.69 (d, J = 40.4 Hz, 3H), 1.68 (d, J = 20.1 Hz, 

3H), 1.58 (d, J = 9.5 Hz, 3H). 

REF: TRW-I-257. 
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Figure 5.104a. 1H NMR spectrum of compound 5.33.  
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Benzyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate (5.34). To a 

solution of ester 5.33 (1.0 g, 3.4 mmol) in THF (12 mL) at -10 °C was added NaBH4 (517 

mg, 13.6 mmol). The resulting mixture was stirred for 30 minutes at -10 °C, then MeOH 

(5 mL) added dropwise. The reaction was allowed to warm to r.t. while it stirred 

overnight under Ar. Water was added and the resulting suspension stirred for 30 minutes, 

concentrated under reduced pressure, diluted with brine, and the product extracted with 

EtOAc (3 x 15 mL). The combined organic layers were washed with brine, dried over 

Na2SO4, and concentrated to afford alcohol 5.34 (900 mg, 100% yield), deemed 

sufficiently pure to carry forward without additional purification. 

1H-NMR (300 MHz; CDCl3): δ  7.36 (s, 5H), 5.17-5.12 (m, 2H), 4.15-4.13 (m, 1H), 4.04-

3.98 (m, 2H), 3.83-3.59 (m, 3H), 3.39-3.36 (bs, 1H), 1.65-1.47 (m, 6H). 

REF: TRW-I-260, TRW-I-263, TRW-I-267. 
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Figure 5.105a. 1H NMR spectrum of compound 5.34.  
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Benzyl 4-(iodomethyl)-2,2-dimethyloxazolidine-3-carboxylate (5.35). To a solution of 

Ph3P (550 mg, 2.1 mmol) and imidazole (143 mg, 2.1 mmol) in CH2Cl2 (10 mL) at 0 °C 

was added I2 (533 mg, 2.1 mmol) in 3 portions. The reaction mixture was warmed to r.t. 

for 10 minutes, then cooled to 0 °C before adding dropwise a solution of alcohol 5.34 

(450 mg, 1.7 mmol) in 5 mL CH2Cl2. The resulting solution was stirred 1 h at 0 °C, then 

allowed to warm to r.t. as it stirred an additional 1.5 h. The crude reaction mixture was 

filtered through a plug of silica with 1:1 EtOAC/Hexanes. The filtrate was concentrated 

under reduced pressure and purified by SiO2 chromatography (5-20% EtOAc in hexanes) 

to afford iodide 5.35 (30 mg, 8% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.36 (s, 5H), 5.15 (s, 2H), 4.25-4.19 (m, 1H), 4.08-4.02 

(m, 2H), 3.54-3.35 (m, 1H), 3.21-3.10 (m, 1H), 1.62 (d, J = 20.1 Hz, 3H), 1.47 (d, J = 

19.3 Hz, 3H); 13C-NMR (75 MHz; CDCl3): δ 128.9, 128.0, 67.69, 67.58, 67.0, 59.5, 58.9, 

28.1, 27.2, 24.7, 23.2, 6.8, 6.5. 

REF: TRW-I-261, TRW-I-266. 
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Figure 5.106a. 1H NMR spectrum of compound 5.35. 

 
Figure 5.106b. 13C NMR spectrum of compound 5.35. 
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Benzyl 4-(bromomethyl)-2,2-dimethyloxazolidine-3-carboxylate (5.36). To a solution 

of alcohol 5.34 (450 mg, 1.7 mmol) in THF (9 mL) at 0 °C was added CBr4 (862 mg, 2.6 

mmol) and PPh3 (681 mg, 2.6 mmol). The reaction was stirred at 0 °C for 10 minutes, 

then warmed to r.t. and stirred 4 h under Ar. The crude mixture was concentrated, diluted 

with ether, filtered through a bed of celite, and concentrated. The crude residue was 

purified by SiO2 chromatography (5-20% EtOAc in hexanes) to afford bromide 5.36 (460 

mg, 82% yield). 

1H-NMR (300 MHz; CDCl3): δ  7.35 (s, 5H), 5.15 (s, 2H), 4.20-4.15 (m, 1H), 4.12-4.07 

(m, 1H), 3.99 (ddd, J = 7.0, 5.1, 2.3 Hz, 1H), 3.68-3.49 (m, 1H), 3.30 (dt, J = 15.3, 10.0 

Hz, 1H), 1.60 (d, J = 20.2 Hz, 3H), 1.48 (d, J = 19.8 Hz, 3H). 

REF: TRW-I-262, TRW-I-269. 
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Figure 5.107a. 1H NMR spectrum of compound 5.36.  
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3,5,6-trichloroindole (5.37). NCS (1.75 g, 13.2 mmol) was added in one portion to a 

solution of 5,6-dichloroindole (2.45 g, 13.2 mmol) in DMF (65 mL) at rt. The reaction 

was stirred for 3 h at rt, and brine (50 mL) was added. The mixture was extracted with 

EtOAc (3 x 50 mL). The combined organic layers were washed with water (100 mL), 

brine (100 mL), dried (Na2SO4), and concentrated under reduced pressure. The residue 

was purified by flash chromatography eluting with hexanes/EtOAc (9:1) to give 1.95 g 

(67%) of 5.37 as a brown solid. 

1H NMR (300 MHz, CDCl3) δ 8.11 (bs, 1 H), 7.71 (s, 1 H), 7.49 (s, 1 H), 7.20 (d, J = 2.6 

Hz, 1 H); 13C NMR (100 MHz, CDCl3) δ 133.7, 127.5, 125.3, 125.1, 122.9, 119.7, 113.2, 

106.5; IR (neat) 3442, 1448,1266, 1011 cm-1; HRMS (ES/ApCl) calcd for C8H3NCl3 (M-

H) 217.9337, found 217.9347. 
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Figure 5.108a. 1H NMR spectrum of compound 5.37. 

 
Figure 5.108b. 13C NMR spectrum of compound 5.37. 
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5,6-dichloro-2-(2-methylbut-3-en-2-yl)-1H-indole (5.38). Solid 5.37 (1.95 g, 8.84 

mmol) was added in one portion to a solution of freshly prepared prenyl-9-BBN (26.52 

mmol) and Et3N (3.12 g, 30.94 mmol, 4.30 mL) in THF (53 mL) at rt. The reaction was 

stirred for 3 h, and then quenched with sat. NaHCO3 (50 mL). The organic layer was 

separated and the aqueous layer was extracted with Et2O (3 x 50 mL). The combined 

organic layers were washed with H2O (100 mL), brine (100 mL), and dried (Na2SO4), 

and concentrated under reduced pressure. The residue was purified by flash 

chromatography eluting with hexanes/EtOAc (99:1) to give 1.80 g (80%) of 5.38 as a 

yellow oil. 

1H NMR (300 MHz, CDCl3) δ 7.87 (bs, 1 H), 7.59 (s, 1 H), 7.38 (s, 1 H), 6.23 (m, 1 H), 

6.01 (dd, J = 17.3, 10.6 Hz, 1 H), 5.15 (d, J = 10.6 Hz, 1 H), 5.09 (d, J = 17.3 Hz, 1 H), 

1.46 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 148.2, 145.6, 134.9, 128.5, 125.0, 123.7, 

121.1, 113.0, 112.0, 97.6, 38.5, 27.5; IR (neat) 3231, 2927, 1453, 1102 cm-1; HRMS 

(FAB) calcd for C13H13NCl2 (M+) 253.0425, found 253.0428. 
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Figure 5.109a. 1H NMR spectrum of compound 5.38. 

 
Figure 5.109b. 13C NMR spectrum of compound 5.38. 
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1-(5,6-dichloro-2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl)-N,Ndimethylmethanamine 

(5.39). A solution of Me2NH (0.78 mL, 40% solution in H2O, 6.00 mmol) and a solution 

of CH2O (0.47 mL, 37% solution in H2O, 6.00 mmol) were sequentially added to AcOH 

(2 mL) and the reaction stirred for 1 h. Neat 5.38 (1.45 g, 5.71 mmol) was added, and the 

reaction was stirred for 12 h at rt. 2N NaOH was added until pH ≈ 12. The reaction was 

extracted with Et2O (3 x 20 mL). The combined organic layers were washed with H2O 

(50 mL), brine (50 mL), and dried (Na2SO4), and concentrated under reduced pressure to 

give 1.66 g (90%) of 5.39 as a yellow oil which was used without further purification.  

1H NMR (400 MHz, CDCl3) δ 7.86 (bs, 1 H), 7.76 (s, 1 H), 7.32 (s, 1 H), 6.08 (dd, J = 

17.6, 10.0 Hz, 1 H), 5.14 (d, J = 10.0 Hz, 1 H), 5.12 (d, J = 17.6 Hz, 1 H), 3.49 (s, 2 H), 

2.16 (s, 6 H), 1.52 (s, 6 H); 13C NMR (100 MHz, CDCl3) δ 145.7, 143.4, 132.9, 130.4, 

124.9, 123.3, 120.6, 112.7, 111.8, 109.0, 54.1, 45.5, 39.5, 27.2; IR (neat) 3320, 2928, 

1463, 1016 cm-1; HRMS (+TOF) calcd for C16H21N2Cl2 (M+H) 311.1082, found 

311.1020. 
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Figure 5.110a. 1H NMR spectrum of compound 5.39. 
 

 
Figure 5.110b. 13C NMR spectrum of compound 5.39. 
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Ethyl 2-amino-3-(5,6-dichloro-2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl)–propanoate 

(5.40). PBu3 (346 mg, 1.72 mmol, 0.43 mL) was added to a solution of 5.39 (1.0 g, 3.43 

mmol) and N-(Diphenylmethylene)glycine ethyl ester (832 mg, 3.12 mmol) in CH3CN 

(30 mL) at rt. The reaction was heated to reflux and was stirred under Ar for 12 h. The 

reaction was cooled to rt and concentrated under reduced pressure. The residue was 

purified by flash chromatography eluting with hexanes/EtOAc (4:1) to give 1.19 g of a 

yellow oil which was dissolved in CH2Cl2 (25 mL). 1N HCl was added and the reaction 

was vigorously stirred for 12 h at rt. The organic layer was separated and the aqueous 

layer was extracted with CH2Cl2 (2 x 25 mL). The combined organic layers were 

concentrated under reduced pressure. The residue was purified by flash chromatography 

eluting with MeOH/CH2Cl2 (1:99-5:95) to give 848 mg (67%) of 5.40 as a yellow oil. 

1H NMR (400 MHz, CDCl3) δ 7.89 (bs, 1 H), 7.59 (s, 1 H), 7.34 (s, 1 H), 6.08 (dd, J = 

17.2, 10.8 Hz, 1 H), 5.16 (d, J = 10.8 Hz, 1 H), 5.15 (d, J = 17.2 Hz, 1 H), 4.09 (comp, 2 

H), 3.73 (m, 1 H), 3.20 (dd, J = 14.8, 5.6 Hz, 1 H), 2.96 (dd, J = 14.8, 8.8 Hz, 1 H), 1.53 

(s, 6 H), 1.16 (t, J = 7.2 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 170.6, 145.6, 142.7, 

133.1, 129.9, 125.3, 123.6, 119.9, 112.9, 112.0, 107.3, 61.2, 56.0, 39.5, 31.0, 27.8, 14.3; 

IR (neat) 3368, 2973, 2927, 1729, 1463, 1199 cm-1; HRMS (TOF-) calcd for 

C18H21N2O2Cl2 (M-H) 367.0986, found 367.0975.  
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Figure 5.111a. 1H NMR spectrum of compound 5.40. 

 
Figure 5.111b. 13C NMR spectrum of compound 5.40. 
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2-(tert-butoxycarbonylamino)-3-(5,6-dichloro-2-(2-methylbut-3-en-2-yl)-1Hindol-3-

yl)propanoic acid (5.41). 0.5M NaOH (4.5 mL, 2.25 mmol) and Boc2O (586 mg, 2.69 

mmol) were sequentially added to a solution of 5.40 (848 mg, 2.24 mmol) in dioxane (5 

mL). The reaction was stirred at rt for 3 h, and then concentrated under reduced pressure 

to remove dioxane. 10% KHSO4 was added until pH ≈ 2, and the solution was extracted 

with EtOAc (3 x 25 mL). The combined organic layers were dried (Na2SO4) and 

concentrated under reduced pressure. The residue was dissolved in 2:1 THF/H2O (18 

mL), and LiOH (280 mg, 11.25 mmol) was added in one portion. The reaction stirred at rt 

for 12 h. 10% KHSO4 was added until pH ≈ 2, and the solution was extracted with 

EtOAc (3 x 25 mL). The combined organic layers were dried (Na2SO4) and concentrated 

under reduced pressure to afford 902 mg (91%) of a yellow solid which was used without 

further purification. 

1H NMR (300 MHz, CDCl3) δ 11.0 (bs, 1 H), 8.19 (m, 1 H), 6.63 (m, 1 H), 7.31 (m, 1 H), 

6.80 (bs, 1 H), 6.08 (m, 1 H), 5.18 (comp, 2 H), 4.56 (bs, 1 H), 3.37 (bs, 1 H), 3.14 (m, 1 

H), 1.52 (s, 6 H), 1.28-1.02 (comp, 9 H); 13C NMR (75 MHz, CDCl3) δ 177.3, 176.3, 

170.4, 156.6, 155.3, 145.4, 142.9, 133.0, 129.9, 129.7, 128.4, 125.0, 124.9, 123.5, 123.3, 

119.7, 119.5, 112.9, 112.8, 106.6, 106.0, 81.4, 80.3, 55.4, 54.7, 39.2, 29.8, 28.6, 28.2, 

27.8, 27.5; IR (neat) 3335, 2976, 2932, 1697, 1461 cm-1; HRMS (TOF-) calcd for 

C21H25N2O4Cl2 (M-H) 439.1197, found 439.1185. 
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Figure 5.112a. 1H NMR spectrum of compound 5.41. 

 
Figure 5.112b. 13C NMR spectrum of compound 5.41. 
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(2S,3R)-ethyl-1-(2-(tert-butoxycarbonylamino)-3-(5,6-dichloro-2-(2-methylbut-3-en-

2-yl)-1H-indol-3-yl)propanoyl)-3-hydroxypyrrolidine-2-carboxylate (5.42). To a 

solution of 5.41 (280 mg, 0.63 mmol) in CH3CN (6 mL) was sequentially added HATU 

(361 mg, 0.95 mmol), iPr2NEt (327 mg, 2.54 mmol), and cis-3-hydroxy-L-proline ethyl 

ester HCl (217 mg, 1.11 mmol). The reaction was stirred at rt for 3 h, and 2N HCl (10 

mL) was added. The mixture was extracted with CH2Cl2 (3 x 25 mL), and the combined 

organic layers were dried (Na2SO4) and concentrated under reduced pressure. The residue 

was purified by flash chromatography eluting with hexanes/EtOAc (1:1) to give 252 mg 

(68%) of 5.42 as a colorless oil. 

1H NMR (300 MHz, CDCl3) δ 8.73- 8.47 (m, 1 H), 7.58-7.32 (comp, 2 H), 6.11 (m, 1 H), 

5.50 (m, 1 H), 5.17 (comp, 2 H), 4.63-3.04 (comp, 9 H), 1.57-1.14 (comp, 18 H); 13C 

NMR (75 MHz, CDCl3) δ 172.1, 169.3, 169.1, 169.0, 155.0, 154.8, 154.3, 145.7, 144.8, 

144.7, 143.7, 143.3, 142.9, 133.1, 132.7, 129.9, 129.5, 129.2, 124.9, 124.7, 123.1, 119.6, 

112.9, 112.6, 112.0, 105.9, 105.6, 79.6, 79.3, 71.7, 70.4, 70.1, 63.8, 63.3, 62.0, 61.4, 60.6, 

53.0, 52.4, 45.2, 44.4, 44.3, 39.2, 33.5, 32.6, 30.8, 30.5, 30.2, 28.3, 28.0, 27.7, 21.1, 18.4, 

14.2, 14.0; IR (neat) 3359, 2978, 2932, 1694, 1633, 1500, 1455 cm-1; HRMS (TOF-) 

calcd for C28H36N3O6Cl2 (M-H) 580.1987, found 580.1976. 
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Figure 5.113a. 1H NMR spectrum of compound 5.42. 

 
Figure 5.113b. 13C NMR spectrum of compound 5.42. 
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(8R,8aS)-3-((5,6-dichloro-2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl)methyl)-8-

hydroxyhexahydropyrrolo[1,2-a]pyrazine-1,4-dione (5.43). TFA (0.86 mL, 11.16 

mmol) was added to a solution of 5.42 (252 mg, 0.43 mmol) in CH2Cl2 (9 mL). The 

reaction was stirred for 3 h, and sat. NaHCO3 (30 mL) was added. The mixture was 

extracted with EtOAc (3 x 20 mL), and the combined organic layers were dried (Na2SO4) 

and concentrated under reduced pressure. The residue was dissolved in toluene (9 mL) 

and 2-hydroxypyridine (9 mg, 0.09 mmol) was added. The reaction was refluxed under 

Ar for 12 h, cooled to rt, and concentrated under reduced pressure. The residue was 

dissolved in CH2Cl2 (30 mL) and washed with 1N HCl (30 mL). The organic layer was 

dried (Na2SO4) and concentrated under reduced pressure to afford 156 mg (85%) of a 

beige solid which was used without further purification. 

1H NMR (300 MHz, CDCl3) δ 8.14 (s, 1 H), 7.54 (s, 1 H), 7.43 (s, 1 H), 6.10 (dd, J = 

17.4, 10.6 Hz, 1 H), 5.72 (bs, 1 H), 5.22 (d, J = 10.6 Hz, 1 H), 5.17 (d, J = 17.4 Hz, 1 H), 

4.71-2.10 (comp, 9 H), 1.55 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 167.7, 165.5, 145.0, 

144.1, 133.2, 128.8, 126.1, 124.3, 119.0, 113.6, 112.6, 104.5, 71.0, 64.7, 54.5, 44.2, 39.1, 

30.3, 27.8, 26.3; IR (neat) 3352, 2973, 1647, 1459 cm-1; HRMS (TOF+) calcd for 

C21H24N3O3Cl2 (M+) 436.1189, found 436.1167. 
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Figure 5.114a. 1H NMR spectrum of compound 5.43. 

 
Figure 5.114b. 13C NMR spectrum of compound 5.43. 
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3-((5,6-dichloro-2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl)methyl)-2,3,6,7-

tetrahydropyrrolo[1,2-a]pyrazine-1,4-dione (5.44). DEAD (419 mg soln., 40% in 

toluene, 0.44 mL, 0.96 mmol) was added to a solution of 5.43 (140 mg, 0.32 mmol) in 

CH2Cl2 (10 mL). The reaction was stirred for 5 min, and PBu3 (194 mg, 0.96 mmol) was 

added. The reaction was stirred for 3 h, and then concentrated under reduced pressure. 

The residue was purified by flash chromatography eluting with hexanes/EtOAc (1:1) to 

give 86 mg (64%) of 5.44 as a pale yellow oil. 

1H NMR (300 MHz, CDCl3) δ 8.72 (s, 1 H), 7.52 (s, 1 H), 7.33 (s, 1 H), 6.05 (comp, 3 

H), 5.09 (d, J = 17.3 Hz, 1 H), 5.09 (d, J = 10.6 Hz, 1 H), 4.42 (m, 1 H), 4.01 (comp, 2 

H), 3.57 (dd, J = 14.6, 4.0 Hz, 1 H), 3.15 (dd, J = 14.6, 10.6 Hz, 1 H), 2.73 (comp, 2 H), 

1.46 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 162.4, 156.8, 145.4, 144.3, 133.4, 132.8, 

128.7, 125.5, 123.7, 119.4, 119.2, 112.6, 112.4, 104.3, 60.5, 57.2, 45.7, 39.2, 30.7, 27.8; 

IR (neat) 3323, 2971, 1681, 1644, 1446 cm-1; HRMS (TOF+) calcd for C21H22N3O2Cl2 

(M+H) 418.1084, found 418.1089. 
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Figure 5.115a. 1H NMR spectrum of compound 5.44. 

 
Figure 5.115b. 13C NMR spectrum of compound 5.44. 
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Preparation of Cycloadducts 5.45a and 5.45b. To a solution of 5.44 (86 mg, 0.21 

mmol) in MeOH (16 mL) at 0 °C was added 20% aqueous KOH (4 mL). The reaction 

was warmed to room temperature (rt) and was stirred for 12 h. The reaction was 

quenched with sat. NH4Cl (30 mL) and extracted with CH2Cl2 (3x30 mL). The combined 

organic layers were dried (Na2SO4) and concentrated under reduced pressure. The residue 

was triturated with CHCl3 (30 mL), and the suspension was filtered to provide 53 mg 

(60%) of 5.45a as a white amorphous solid. Concentration of the filtrate gave 25 mg 

(29%) of 5.45b as a white amorphous solid.  

Data for major isomer 5.45a: 1H NMR (300 MHz, CD3OD) δ 7.55 (s, 1 H), 7.40 (s, 1 H), 

3.57 (d, J ) 15.5 Hz, 1 H), 3.47 (m, 1 H), 2.74 (d, J ) 15.5 Hz, 1 H), 2.60 (m, 1 H), 2.20- 

1.96 (comp, 6 H), 1.35 (s, 3 H), 1.11 (s, 3 H); 13C NMR (75 MHz, CD3OD) δ 175.7, 

171.3, 144.3, 137.2, 128.1, 125.4, 123.3, 119.8, 113.1, 104.8, 68.3, 61.6, 50.8, 45.2, 36.2, 

31.7, 30.1, 28.6, 25.4, 24.9, 22.3; IR (neat) 1663, 1428 cm-1; HRMS (TOF+) calcd for 

C21H22N3O2Cl2 (M + H) 418.1084, found 418.1084.  

Data for minor isomer 5.45b: 1H NMR (300 MHz, CDCl3) δ 9.78 (s, 1 H), 7.49 (s, 1 H), 

7.33 (s, 1 H), 3.71 (d, J ) 17.8 Hz, 1 H), 3.47 (comp, 2 H), 3.25 (s, 1 H), 2.78 (d, J ) 17.8 

Hz, 1 H), 2.67 (m, 1 H), 2.18- 1.78 (comp, 6 H), 1.24 (s, 3H), 1.16 (s, 3 H); 13C NMR (75 

MHz, CD3OD /CDCl3 (1:9)) δ 173.7, 169.6, 142.6, 135.7, 127.1, 125.0, 122.9, 119.1, 

112.4, 102.9 67.2, 61.5, 45.8, 44.3, 34.8, 32.6, 29.8, 29.1, 28.4, 24.5, 23.2; IR (neat) 

1676, 1453 cm-1; HRMS (TOF+) calcd for C21H22N3O2Cl2 (M + H) 418.1084, found 

418.1079.  
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Figure 5.116a. 1H NMR spectrum of compound 5.45a. 

 
Figure 5.116b. 13C NMR spectrum of compound 5.45a. 
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Figure 5.117a. 1H NMR spectrum of compound 5.45b. 

 
Figure 5.117b. 13C NMR spectrum of compound 5.45b. 
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Synthesis of Malbrancheamide (5.46). DIBAL-H (0.70 mL, 1 M in toluene, 0.70 mmol) 

was added to a suspension of 5.45a (15 mg, 0.036 mmol) in toluene (7 mL) at rt. The 

reaction was stirred at rt for 12 h, whereupon finely powdered Na2SO4-10H2O was added 

until bubbling ceased. The mixture was filtered with a medium porosity fritted funnel 

washing with EtOAc (50 mL) and MeOH (50 mL), and the filtrate was concentrated 

under reduced pressure. The residue was purified by flash chromatography eluting with 

MeOH/ CH2Cl2 (2:98) to give 12 mg (80%) of 5.46 as a white amorphous solid. 

1H NMR (400 MHz, CD3OD) δ 7.48 (s, 1 H), 7.40 (s, 1 H), 3.43 (d, J ) 10.3 Hz, 1 H), 

3.06 (m, 1 H), 2.85 (comp, 2 H), 2.54 (m, 1 H), 2.27 (dd, J ) 10.2, 1.5 Hz, 1 H), 2.20-1.18 

(comp, 6 H), 1.43 (s, 3 H), 1.34 (s, 3 H); 13C NMR (100 MHz, CD3OD) δ 176.6, 145.1, 

137.3, 128.2, 125.3, 123.2, 119.6, 113.1, 104.7, 66.1, 59.4, 57.4, 55.4, 48.5, 35.5, 32.4, 

30.6, 30.0, 28.1, 24.2, 23.5; IR (neat) 3226, 1658, 1460 cm-1; HRMS (TOF+) calcd for 

C21H24N3OCl2 (M + H) 404.1291, found 404.1290. 

  

O
H

N N

H
NMe Me Cl

H Cl

5.46



 343 

 
Figure 5.118a. 1H NMR spectrum of compound 5.46. 

 
Figure 5.118b. 13C NMR spectrum of compound 5.46. 
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Chetomin (1.12). Authentic sample purchased from Santa Cruz Biotechnology. 

1H-NMR (400 MHz; CDCl3): δ  7.66 (dd, J = 6.1, 3.0 Hz, 1H), 7.35-7.33 (m, 1H), 7.31-

7.27 (m, 2H), 7.23-7.22 (m, 2H), 7.18 (s, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 8.0 

Hz, 1H), 6.21 (s, 1H), 4.43 (s, 1H), 4.39 (d, J = 4.7 Hz, 1H), 4.35 (s, 1H), 4.31 (d, J = 3.5 

Hz, 1H), 4.28 (s, 1H), 3.87 (d, J = 15.6 Hz, 1H), 3.71 (d, J = 15.4 Hz, 1H), 3.20 (s, 3H), 

3.16 (s, 3H), 3.10 (s, 1H), 2.96 (s, 3H); 13C-NMR (101 MHz; CDCl3): δ 166.8, 165.51, 

165.48, 163.2, 148.3, 134.0, 131.4, 130.4, 127.2, 126.5, 125.0, 122.8, 120.60, 120.40, 

119.2, 111.4, 111.2, 107.7, 80.0, 76.5, 76.1, 74.7, 73.7, 73.5, 61.3, 60.7, 42.6, 28.2, 27.44, 

27.34, 27.1. 

FOR NMR FILES, SEE Tim/NMR/robot/trw-III-chetomin. 

See also (for characterization data): Fujimoto, H.; Sumino, M.; Okuyama, E.; Ishibashi, 

M. Immunomodulatory Constituents from an Ascomycete, Chaetomium Seminudum. J. 

Nat. Prod. 2004, 67, 98-102. 
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Figure 5.119a. 1H NMR spectrum of compound 1.12. 

 
Figure 5.119b. 13C NMR spectrum of compound 1.12. 
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4
Biomimetic Synthesis of Alkaloids Derived
from Tryptophan: Dioxopiperazine Alkaloids
Timothy R. Welch and Robert M. Williams

4.1
Introduction

Countless secondary metabolic indole alkaloids produced in both marine and ter-
restrial fungi are derived from tryptophan. Our crude attempts to synthesize some
of the vast array of structurally diverse natural alkaloids only serves to showcase the
efficiency and elegance with which Nature is able assemble the same molecules.
Still, we strive to mimic and in turn better understand the mechanisms inside the
cell that are able to produce molecular architecture of such synthetic complexity.

Moreover, it has often been found advantageous to exploit Nature’s evolutionary
creative design of alkaloids in search of new compounds of therapeutic potential.
The rich subclass of biologically active, tryptophan-derived dioxopiperazines found
in nature has inspired medicinal chemists to use the dioxopiperazine core in
drug design efforts to mimic the interactions of natural peptides while reducing
susceptibility to metabolic amide bond cleavage. Furthermore, a dioxopiperazine
should pay a small entropic penalty upon binding to a target in comparison to an
analogous peptide, as a direct consequence of the reduced conformational mobility
inherent in the dioxopiperazine ring. In this chapter, we present a brief review of a
select group of (partly) biomimetic syntheses of tryptophan-derived dioxopiperazine
alkaloids (Figure 4.1). In most of these syntheses, a single step or key transformation
has been deemed to constitute the ‘‘biomimetic’’ aspect of that particular work. As
the actual biosynthetic pathways to most, if not all, of the alkaloid natural products
covered here are either unknown or known only in part we have attempted, where
appropriate, to point out the particular biomimetic step or transformation.

4.2
Prenylated Indole Alkaloids

Birch, Wright, and Russell first isolated brevianamide A from Penicillium brevi-
compactum in 1969 [1–3]. Several years later, Birch and coworkers determined
that brevianamide A was biosynthetically derived from tryptophan, proline, and

Biomimetic Organic Synthesis, First Edition. Edited by Erwan Poupon and Bastien Nay.
 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 4.1 Representative molecules discussed in this chapter.

mevalonic acid through feeding experiments (Scheme 4.1) [4]. Furthermore, Birch
showed that radiolabeled brevianamide F was incorporated into 5. It was postu-
lated at the time and later supported with experimental evidence by Williams and
coworkers that deoxybrevianamide E was also a biosynthetic precursor [5].
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Scheme 4.1 Proposed biosynthesis of the brevianamides.

Since these early studies, Williams has developed a proposal for the biosyn-
thesis of the brevianamides, with that of brevianamide E shown in Scheme 4.2.
Derived from tryptophan and proline, 6 was proposed to undergo oxidation to
hydroxyindolenine 7. Irreversible nucleophilic ring closure was supposed to lead
to brevianamide E (8), supported by incorporation of [8-3H2]6 into 8 in significant
radiochemical yield [5].
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4.2.1
Dioxopiperazines Derived from Tryptophan and Proline

Brevianamide F (12) was first isolated in 1972 and is one of the simplest
tryptophan-derived dioxopiperazine natural products. It is readily synthesized
through amino acid coupling of N-Boc-tryptophan (9) to proline ethyl ester (10),
Boc-deprotection, and ring closure, in modest overall yield (Scheme 4.3) (R.M.
Williams, unpublished results).
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Scheme 4.3 Biomimetic synthesis of brevianamide F.

Brevianamide F lacks only the reverse prenyl group found in deoxybrevianamide
E, which has been synthesized by Kametani and coworkers en route to
brevianamide E (Scheme 4.4) [6]. N-Benzyloxycarbonyl-l-proline (13) was
subjected to Schotten–Baumann conditions with dimethyl aminomalonate
to give amide 14. Debenzyloxycarbonylation of 14 followed by heating with
catalytic 2-hydroxypyridine effected cyclization to dioxopiperazine 15 in 93%
yield. Condensation with indole 16 gave a separable mixture of diastereomers,
individually hydrolyzed to the corresponding free acids (17). Heating of the desired
diastereomer in dioxane gave deoxybrevianamide E (18) and its epimer (19) in 29
and 55% yield, respectively. Irradiation of methanolic 18, containing Rose Bengal
in the presence of oxygen, followed by addition of dimethyl sulfide, resulted in the
biomimetic hydroxylation of deoxybrevianamide E, furnishing brevianamide E (8)
and 20 as a separable mixture of diastereomers.

Nineteen years later, a more efficient synthesis of brevianamide E was com-
pleted by Danishefsky and coworkers [7]. The synthesis commenced with C3
chlorination of the known phthaloylated tryptophan derivative 21, followed by
addition of fresh prenyl-9-borabicyclo[3.3.1]nonane (prenyl-9-BBN) to the resultant
3-chloroindolenine (Scheme 4.5). Hydrazinolysis in ethanol provided amino ester
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23 in 65% yield, which was coupled to N-Boc-l-proline, deprotected, and cyclized
to afford deoxybrevianamide E (18) in 52% yield. Compound 18 was elaborated
to brevianamide E (8) and bis(epi)brevianamide E (20) in a ratio of ∼1 : 5 upon
treatment with dimethyldioxirane (DMDO) in a biomimetic oxidative cyclization
sequence reminiscent of the original Kametani work discussed above.

The structural similarities between deoxybrevianamide E and the then newly
isolated natural products tryprostatin A and B did not escape notice of Danishefsky
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and coworkers. While prenylation failed in attempts to use a reverse prenylborane
nucleophile directly as in the method used to synthesize 22 above, a solution
was found in treating chloroindolenine 24 with tri(n-butyl)prenylstannane and
BCl3 to afford the desired prenyl functionality at C2 in excellent yield (Scheme 4.6).
Phthalimide deprotection, peptide coupling, Boc-deprotection, and cyclization were
achieved to afford tryprostatin B (30) in 43% overall yield [7].
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Scheme 4.6 Biomimetic total synthesis of tryprostatin B.

Danishefsky and coworkers also completed the total synthesis of the spirooxin-
dole spirotryprostatin B [8]. l-Tryptophan methyl ester was converted into the
oxindole derivative 32, followed by addition of prenyl aldehyde under basic
conditions to afford an inseparable four-component mixture of spirooxindoles
(33–36, Scheme 4.7). Peptide coupling and subsequent treatment of the mix-
ture with lithium bis(trimethylsilyl)amide (LHMDS) followed by selenylation
presumably gave phenyl selenide mixture 38. Oxidative elimination produced
a mixture from which 39 was separated and elaborated to spirotryprostatin B (40)
via Boc-deprotection and base-induced cyclization.

Danishefsky took a markedly different approach in the synthesis of spirotrypro-
statin A [9]. A potentially biomimetic Pictet–Spengler reaction of tryptophan
derivative 42 with thioaldehyde 41 as a masked isoprene equivalent gave the
desired cis-tetrahydrocarboline (43) with marginal selectivity (Scheme 4.8).
N-Bromosuccinimide (NBS)-mediated oxidative rearrangement proceeded via
intermediate 44 to the oxindole was followed by deprotection of the carbamate to
give amine 45. The modest yield of the sequence (57%) reflects the susceptibility of
the oxindole to electrophilic aromatic bromination under the spiro-rearrangement
conditions. Peptide coupling and Troc-deprotection resulted in cyclization to the
dioxopiperazine, after which oxidation and sulfoxide elimination revealed the
prenyl group to afford selectively spirotryprostatin A (48).

The synthesis of notoamide J was completed by Williams and coworkers, starting
with the Boc-protection of 7-hydroxyindole (Scheme 4.9) [10]. Chlorination at C3
was followed by reverse prenylation of the resultant 3-chloroindolenine 51 to afford
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52. The corresponding gramine was prepared by treating 52 with formaldehyde and
dimethylamine, and subsequent Somei–Kametani coupling and imine hydrolysis
gave tryptophan derivative 54 in good yield. Protection of the free amine as the
Boc-carbamate and ester hydrolysis gave 55, which was coupled to proline ethyl
ester in the presence of O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium
hexafluorophosphate (HATU) to afford amide 56. Cyclization to dioxopiperazine
57 was followed by a biomimetic oxidation sequence accompanied by pinacol-type
rearrangement to the oxindoles notoamide J (58) and 3-epi-notoamide J (59) in a
2 : 1 separable mixture.

4.2.2
Dioxopiperazine Derived from Tryptophan and Amino Acids other than Proline

Corey and coworkers designed a succinct synthesis of okaramine N, featuring
a Pd-promoted dihydroindoloazocine formation [11]. Readily available trypto-
phan derivative 60 was reduced to indoline 61 and subsequently prenylated
via copper(I)-catalyzed alkylation with butyne 62 (Scheme 4.10). Treatment with
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Scheme 4.10 Synthesis of the N-reverse-prenylated tryptophan derivative.

2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) effected the dehydrogenation of
the indoline, and the resulting tryptophan derivative 63 was deprotected, saponified,
and reprotected as the N-Fmoc derivative (64).

The synthesis of okaramine N was completed through reductive amination of
3-methyl-buten-2-al onto l-tryptophan methyl ester, followed by coupling of the
resultant product (65) with acid 64 to form the desired tetracycle (Scheme 4.11).
Treatment of 66 with Pd(OAc)2 provided the eight-membered ring (67) in modest
yield (38%). The free amine obtained upon Fmoc cleavage underwent cyclization to
form dioxopiperazine 68 in 95% yield. A potentially biomimetic oxidative cyclization
was effected by treating 68 with N-methyltriazolinedione (MTAD), which reacted
selectively with the N-unsubstituted indole subunit, and after photooxidation and
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Scheme 4.11 Completion of the total synthesis of okaramine N.
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then reduction formed a hydroxylated octacycle that was directly converted into
okaramine N (69) via thermolysis in 70% yield.

Amauromine was synthesized as shown in Scheme 4.12, starting with the
bis(Boc) protection of l-tryptophan [12]. Conversion into the selenide by re-
action with N-phenylselenophthalimide (N-PSP) in the presence of pyridinium
p-toluenesulfonate (PPTS) afforded a mixture of 71 and 72 (9 : 1). Photolysis of
the mixture in the presence of prenyltri(n-butyl)tin produced a mixture of reverse
prenylated pyrrolodinoindolines, the desired major diastereomer of which was
separated by crystallization from hexanes. The Boc groups were globally cleaved
using iodotrimethylsilane (TMSI) to afford the ester (75). Coupling of 75 with
acid 74 gave the amide, which readily cyclized to the desired dioxopiperazine (76,
amauromine) upon treatment with TMSI.

Danishefsky and coworkers completed a total synthesis of gypsetin in the same
fashion as their effort on brevianamide E [7]. The reverse prenylated amine, 23,
was synthesized as shown above (Scheme 4.5). Boc protection and cleavage of the
methyl ester afforded acid 77, which was coupled to amine 23, deprotected, and
cyclized to dioxopiperazine 78 (Scheme 4.13). Treatment with DMDO effected the
biomimetic oxidative conversion into the natural product gypsetin (79).

4.2.3
Bicyclo[2.2.2]diazaoctanes

In 1970, Sammes proposed a hetero-Diels–Alder cycloaddition to be the biosyn-
thetic origin of the bicyclo[2.2.2]diazaoctane core found in brevianamides A and B
(Scheme 4.14) [13].

Support for this proposal was observed upon treating dihydroxypyrazine 82 with
dimethyl acetylenedicarboxylate (83) or with norbornadiene (84) to give cycloadducts
85 or 86, respectively (Scheme 4.15) [13].
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Williams and coworkers expanded on the pioneering work of Sammes with
the following biosynthetic proposal for the brevianamides [5]. Deoxybrevianamide
E (18) was thought to undergo oxidation to hydroxyindolenine 7, which could
undergo a pinacol-type rearrangement to indoxyl 87 (Scheme 4.16). Subsequent
two-electron oxidation and enolization to azadiene 88, followed by an intramolecular
hetero-Diels–Alder reaction was, following from the original proposal of Sammes,
envisioned to give the natural products (+)-brevianamide A and (+)-brevianamide
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B. The pseudo-enantiomorphic relationship between the two natural products
was envisaged to arise from the equilibrium between conformers 88a and 88b,
which undergo cycloaddition to give 89 and 90, respectively. Ab initio studies
of the two transition states demonstrated that 88a is the more stable of the
two, which is consistent with the observed product ratios of 89 and 90. The
theoretical insights published by Domingo et al. lend support to the proposal
of a biosynthetic intramolecular Diels–Alder reaction of intermediate 88 [14].
Unfortunately, experimental support for this pathway has been elusive to secure
and thus it remains a speculative biogenetic construction.

The total synthesis of d,l-brevianamide B demonstrated the first congru-
ent application of a biomimetic Diels–Alder reaction used to form the bicy-
clo[2.2.2]diazaoctane core common to the series of prenylated dioxopiperazines to
be discussed in this section [15]. 9-Epi-deoxybrevianamide E (19) was converted
into the lactim ether (91) and oxidized to give the Diels–Alder precursor 92
(Scheme 4.17). Treatment with aqueous methanolic KOH induced tautomeriza-
tion to azadiene 93, which underwent a potentially biomimetic intramolecular
Diels–Alder cycloaddition to give a mixture of diastereomers (94 and 95, 2 : 1).
Oxidation, pinacol-type rearrangement, and lactim ether deprotection of the minor
diastereomer (95) afforded brevianamide B (90) in 65% overall yield from 96. This
study was one of the first to experimentally support the biogenetic origin of the
core bicyclo[2.2.2] ring system as arising via a dioxopiperazine that undergoes a net
two-electron oxidation to an azadiene moiety.
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Williams and coworkers also applied the intramolecular Diels–Alder reaction to
the racemic synthesis of VM55599 [16]. The reverse-prenylated tryptophan deriva-
tive 97 was coupled to β-methyl-β-hydroxyproline ethyl ester 98 to afford dipeptide
99 (Scheme 4.18). N-Boc deprotection and cyclization afforded dioxopiperazine 100,
and elimination with thionyl chloride gave enamide 101. Formation of the lactim
ether (102) and treatment with aqueous KOH gave azadiene 103, which sponta-
neously suffered intramolecular Diels–Alder reaction to give a separable mixture of
all four possible racemic diastereomers (104–107, 2.6 : 3.7 : 1.0 : 1.6, respectively).
Cleavage of the lactim ether and diisobutylaluminum hydride (DIBAL-H) reduction
gave VM55599 in 73% yield from 105.

The synthesis of VM55599 allowed for assignment of the absolute stereochem-
istry of the molecule, which places the methyl group at the β-position of the
proline residue syn- to the bridging isoprene moiety [16]. In stark contrast, the
analogous methyl group of paraherquamide A is anti to the bridging isoprene
unit. Scheme 4.19 outlines a possible unified biosynthesis for VM55599 and para-
herquamide A, arising from dimethylallyl pyrophosphate (DMAPP), l-isoleucine,
and l-tryptophan. If a Diels–Alder cycloaddition is to be invoked, approach of the
isoprene moiety must occur from the same face as the methyl group on the proline
ring for synthesis of VM55599, and from the opposite face to the methyl group to
give paraherquamide A. The diastereofacial selectivity of the Diels–Alder reaction
gave a preponderance of the syn-relative stereochemistry alpha to the gem-dimethyl
group in both molecules. As VM55599 is a very minor metabolite of Penicillium
sp. IMI332995, it is plausible that cyclization of 112→114 is preferred and further
metabolization gives paraherquamide A, whereas the minor cycloaddition via 113
produces VM55599 as a dead-end shunt metabolite. As shown in Scheme 4.18

358



130 4 Biomimetic Synthesis of Alkaloids Derived from Tryptophan: Dioxopiperazine Alkaloids

N
H

CO2H
BocHN

Me
Me

BOPCl

TFA⋅HN

EtO2C
MeHO

98

83%
N
H

BocHN

Me Me

O
N

CO2Et

Me
OH

1. TFA

2. 2-OH-pyr.
∆, 95%

97 99

N
H

Me
Me

NH
N

O

O

100

Me
OH

SO2Cl, py.

75%

N
H Me

Me

NH
N

O

O

101

Me

Me3OBF4

72%

N
H

Me
Me

N
N

O

OMe

102

Me

KOH

N
H

Me
Me

N
N

O

OMe

103

Me

MeO

N
N

H
N MeMe

O

H
H

Me

MeO

N
N

H
N MeMe

O

H
H

Me

MeO

N
N

H
N MeMe

O

Me
H

H

MeO

N
N

H
N MeMe

O

Me
H

H

O

H

N
N

H
N Me

Me

H
Me

H

VM55599 (108)

1. HCl
2. PhCH3, ∆

3. DIBAL-H
73%104

106

105

107

104:105:106:107 = 2.6 : 3.7 : 1.0 : 1.6

Scheme 4.18 Williams’ biomimetic total synthesis of VM55599.

H
N

HO2C

H2N

Me

Me

PPO

CO2H

NH2

Me

Me

DMAPP (109)

L-Ile (110) L-Trp (111)

OH

N
N

H
NMe Me

H
Me

O

H

N
N

H
N MeMe

H
Me

H

X

HO

N
N

H
N MeMe

Me
H

X

VM55599 (108)
minor

O

H

N
N

H
NMe

Me

H
H

Me

X

syn-selective [4+2]

OMe

NH
O

N
N

Me
H

H
MeMe

O

O

Me
Me

[ox]
SAM

DMAPP

114
major

paraherquamide A (115)

112 113

Scheme 4.19 Proposed biosynthesis of paraherquamide A and VM55599.

359



4.2 Prenylated Indole Alkaloids 131

above, the intrinsic diastereofacial bias of the Diels–Alder reaction is modest at
best, giving a slight excess (1.47 : 1) of cycloaddition from the same face as the
methyl group, and favoring the syn-relative stereochemistry to the extent of 2.4 : 1.
Such observations suggest that the biosynthesis may rely on protein organization
of the precyclization conformers to stereoselectively produce the syn-isomers.

A report from Liebscher and coworkers showed promise in terms of improving
the diastereoselectivity of the Diels–Alder cycloaddition, using neutral conditions
to prepare the azadiene in contrast to the basic conditions employed by Williams
[17]. Compound 118 was prepared by a Horner–Wadsworth–Emmons reaction
of aldehyde 116 with phosphonate 117 (Scheme 4.20). Treatment of 118 with
neat acetyl chloride for 20 days gave the Diels–Alder product 119 as a single
diastereomer in 48% yield.
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Scheme 4.20 Liebscher’s Diels–Alder work.

The precedent set by Liebscher’s work was applied to an asymmetric total
synthesis of VM55599 [18]. The loss of stereochemistry observed at the proline
methyl group in 101 above led Williams to employ a dehydrotryptophan derivative
as the Diels–Alder azadiene precursor, allowing for the preparation of VM55599 in
an enantioselective fashion. Williams has demonstrated that the β-methylproline
residue of paraherquamide A and VM55599 are biosynthetically derived from l-Ile.
In a biomimetic construct, l-Ile was converted into optically pure β-methylproline
120 using Hoffman–Löffler–Freytag conditions in 45% yield (Scheme 4.21).
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Cleavage of the ethyl ester, peptide coupling to glycine methyl ester hydrochloride,
Boc deprotection, and cyclization gave dioxopiperazine 122 in good overall yield.
Protection of the secondary amide and subsequent condensation with aldehyde 116
gave an epimeric mixture of dioxopiperazines, which gave selectively (Z)-isomer
125 following deprotection and dehydration.

Following Liebscher’s protocol, 125 was treated with acetyl chloride for 14 days,
yielding a mixture of three diastereomers (Scheme 4.22). The reaction is thought
to proceed by initial acylation to the O-acyl lactim 126, tautomerization to azadiene
127, which suffers intramolecular Diels–Alder reaction from three of the four pos-
sible diastereomeric transition states, followed by loss of acetate to give compounds
128–131. The major diastereomer 129 was treated with excess DIBAL-H to effect
reduction to (−)-VM55599 (108). Interestingly, cycloadduct 130 was not observed
from the cycloaddition reaction. Penicillium sp. produces paraherquamide A in
large excess over VM55599 (>600 : 1), so it is surprising that this provocative bio-
genetic precursor to paraherquamide A is not observed in laboratory cycloaddition
reactions. Despite the structural differences between the laboratory and biological
Diels–Alder precursors, the intrinsic facial selectivity of the cyclization does not
appear to mimic the bias toward paraherquamide stereochemistry one would
expect given the observed product ratios of the fungal metabolites.

As many of the bicyclo[2.2.2]diazaoctane natural products differ only at the
substitution of the indole ring, a convergent approach utilizing a Fischer indole
synthesis was undertaken in an alternative racemic synthesis of brevianamide
B [19]. This work had the objective of validating other possible biosynthetic pathways
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to reach the oxidation state of the azadiene. In the present instance, the α-ketoamide
species (138) was posed to serve as a surrogate for the possible biosynthetic oxidative
deamination of the tryptophan moiety and coupling to a proline amide species
(Scheme 4.23). Conjugate addition of carboxylate 133 to ketone 132 gave ester 134
in 76% yield. Saponification, peptide coupling with l-proline amide, and dithiane
deprotection gave a mixture of the uncyclized amide 138 and dioxopiperazine
139. Aluminum trichloride was added to the mixture to give the Diels–Alder
cycloadduct (140) in exclusively the anti-configuration, whereas mixtures of both
the syn- and anti-cycloadducts were observed in previous syntheses of VM55599
and brevianamide B discussed above. A Fischer indole synthesis was completed by
treatment of 140 with phenyl hydrazine followed by ZnCl2, affording 141 in good
yield. Oxidation and pinacol-type rearrangement of this known intermediate gave
brevianamide B. While an appealing convergent approach towards the synthesis
of other related bicyclo[2.2.2]diazaoctanes, the utility of this strategy is limited to
those natural products containing the anti-stereochemistry observed in formation
of compound 140, the remainder of which must be able to withstand the harsh
conditions of the Fischer indole synthesis.

The same biomimetic Diels–Alder disconnection was exploited in the total syn-
thesis of stephacidin A [20]. Starting with reverse prenylated tryptophan derivative
142 (prepared in eleven steps from 6-hydroxyproline), dipeptide 144 was prepared
through bis(2-oxo-3-oxazolindinyl)phosphinic chloride (BOPCl) mediated coupling
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4.2 Prenylated Indole Alkaloids 135

with cis-3-hydroxyproline ethyl ester (143, Scheme 4.24). Fmoc deprotection resulted
in the cyclization to dioxopiperazine 145, which upon treatment with tributyl phos-
phine and diethyl azodicarboxylate (DEAD) underwent Mitsunobu dehydration to
give enamide 146. Formation of the lactim ether (147) was followed by intramolec-
ular Diels–Alder reaction to give a mixture of epimers enriched with the syn-isomer
(149, 2.4 : 1). Deprotection of 149 gave stephacidin A (150) in excellent yield.

Williams found that the bicyclo[2.2.2]diazaoctane core could be accessed directly
from compound 145 by treating it with excess PBu3 and DEAD, effecting the dehy-
dration, tautomerization, and Diels–Alder reaction in one pot to afford stephacidin
A and its epimer (Scheme 4.25) [21].
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Scheme 4.25 Improved biomimetic synthesis of stephacidin A.

Myers and coworkers, in the course of their total synthesis of avrainvillamide,
discovered that synthetic (−)-152 spontaneously dimerized to stephacidin B under
several mild conditions, including addition of triethylamine or exposure to silica gel
[22, 23]. Baran and coworkers later determined that stephacidin A could be readily
converted into avrainvillamide through reduction to indoline 151 followed by
Somei oxidation (Scheme 4.26). In accord with Myers’ observations, dimerization
to stephacidin B occurred readily upon exposure to silica gel, triethylamine,
or on evaporation from dimethyl sulfoxide (DMSO) [24–26]. Myers has further
demonstrated that the observed biological activity of stephacidin B may be due to
the formation of 152 from 153 in vivo [22].

Stephacidin A is of particular biogenetic interest, as both enantiomers have
been isolated in nature: (+)-stephacidin A from Aspergillus ochraceus [27] and
from a marine-derived Aspergillus sp. [28] and (−)-stephacidin A from terrestrial
Aspergillus versicolor [29–31]. Operating under the assumption that the biosynthe-
sis of stephacidin A proceeds through a common, achiral intermediate, Williams
and coworkers have proposed notoamide S (154) as the point of divergence in the
two biosyntheses [32]. Oxidation of 154 could give achiral azadiene 155, which
is postulated to undergo intramolecular Diels–Alder reaction to give either (+)-
or (−)-stephacidin A depending on the enantiofacial selectivity of the reaction
(Scheme 4.27).

Tryptophan derivative 142 used in the above synthesis of stephacidin A was also
employed in the biomimetic total synthesis of marcfortine C (164) [33]. Pipecolic
acid derivative 156 was coupled to acid 142 to form amide 157, which underwent
cyclization to the dioxopiperazine following Fmoc-deprotection to give 158 as
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an inconsequential mixture of diastereomers (Scheme 4.28). The biomimetic
Diels–Alder reaction preferred the syn-diastereomer 160 in 2.4-fold excess, as
expected. Excess DIBAL-H selectively reduced the tertiary amide of 160, and amine
salt formation followed by a biomimetic oxidative rearrangement gave marcfortine
C (164).

Malbrancheamide and malbrancheamide B were synthesized via the biomimetic
Diels–Alder reaction of enamides 165 and 166 to afford both syn-cycloadducts 167
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and 169, as well as the anti-epimers 168 and 170 (Scheme 4.29) [34]. Treatment
of the syn-cycloadducts with excess DIBAL-H gave either malbrancheamide or
malbrancheamide B.

As the malbrancheamides were the first of this family of prenylated indole
alkaloids to possess a halogenated indole ring, Williams and coworkers probed the
biosynthesis to establish the timing of the chlorination event [35]. Malbrancheamide
is proposed to arise from tryptophan, proline, and dimethylallyl diphosphate,
leading to deoxybrevianamide E (18, Scheme 4.30). Oxidation of 18 could give
intermediate 174, which is expected to suffer intramolecular Diels–Alder reaction
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(IMDA) to cycloadduct 176. Reduction of the tertiary amide would provide premal-
brancheamide (177). Alternatively, 18 could suffer reduction of the tertiary amide
to 175, providing 177 directly upon cycloaddition. Premalbrancheamide is pro-
posed to undergo subsequent halogenation events to give both malbrancheamide
B and malbrancheamide. In feeding studies, labeled dioxopiperazine 176 and
premalbrancheamide (177) were added to separate cultures of Malbranchea au-
rantiaca, but interestingly only premalbrancheamide 177 was incorporated into
malbrancheamide B. This suggests that reduction of the tertiary amide must
precede Diels–Alder construction of the bicyclo[2.2.2]diazaoctane core through an
intermediate analogous to monooxopiperazine 175.

Williams has reported that–like stephacidin A and notoamide B, which are
produced in Nature as distinct enantiomers–the minor metabolite versicolamide
B is likewise produced as distinct enantiomers in different strains of Aspergillus sp.
The asymmetric syntheses of both (+)- and (−)-versicolamide B (182) have recently
been accomplished by deploying compound 145, previously used in the synthesis
of stephacidin A (Scheme 4.31). Oxaziridine oxidation of 145 and pinacol-type
rearrangement consequent to oxidation of the indole gave a 3 : 1 separable mixture
of 178 and 179 [36]. As previously reported, treatment with tributyl phosphine and
DEAD induced Mitsunobu dehydration to give enamides 180 and 181.

Treatment of 180 and 181 individually with potassium hydroxide in methanol
induced the intramolecular Diels–Alder reaction to afford either (+)- or
(−)-versicolamide B (182), along with the minor anti-diastereomers (+)-183 or
(−)-183 (Scheme 4.32). As previous biomimetic Diels–Alder reactions containing
indole-based azadienes display syn-selectivity (typically ∼2.5 : 1 syn : anti), the
exclusive selectivity for the anti-products in the versicolamide B syntheses is of
particular interest. The authors suggest that the anti-preference stems from a
stable transition state leading to the anti-cycloadduct when an oxindolic azadiene
is employed, whereas the syn- and anti-transition states arising from an indolic
azadiene are of roughly equal stability [14, 37].
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While the above syntheses have differed in the approach to the azadiene, all
share a common biomimetic intramolecular Diels–Alder reaction to give the
bicyclo[2.2.2]diazaoctane core featured in the molecules presented in this section.

4.3
Non-prenylated Indole Alkaloids

Hart and coworkers have expressed interest in the biosynthesis of the fumiquina-
zoline family of alkaloid natural products, and reported a biomimetic synthesis
of ent-alantrypinone as the initial effort at a synthetic program to access more
complex, related substances [38]. l-Tryptophan methyl ester was coupled to isatoic
anhydride to afford amide 184 in good yield (Scheme 4.33). Acylation of 184 with
acyl chloride 186 (prepared in two steps from S-methyl-l-cysteine, 185) under
Schotten–Baumann conditions furnished diamide 187, which underwent cyclode-
hydration to iminobenzoxazine 188. Treatment with excess Li[Me3AlSPh] effected
the rearrangement to quinazolinone 189, and Fmoc deprotection was accompanied
by amide formation to give 190. Oxidation of 190 provided the sulfoxide, which was
converted into enamide 191 upon heating in benzene with triphenylphosphine.
Trifluoroacetic acid induced the conversion into bicycle 192, presumably through
intramolecular electrophilic attack of an intermediate N-acyliminium ion onto
indole. Conversion into the oxindole proceeded via oxidative rearrangement of 192
with NBS to give the polybrominated indolinone, which was hydrogenolyzed
over platinum on carbon to give ent-alantrypinone (193), along with ent-17-
epi-alantrypinone (194).

Three dimeric tryptophan-derived dioxopiperazines have succumbed to
biomimetic total syntheses, all completed by Movassaghi and coworkers, namely,
(+)-WIN 64821, (−)-ditryptophenaline, and (+)-11,11′-dideoxyverticillin A [39, 40].
Syntheses of the former two began with cleavage of the Boc carbamate to effect the
cyclization to dioxopiperazine 196 (Scheme 4.34) [40]. Treatment with bromine
then gave a separable mixture of two diastereomers, endo-(+)-197 and exo-(−)-198.
endo-Bromide (+)-197 was carried on to (+)-WIN 64821 (201) by, first, treatment
with tris(triphenylphosphine)cobalt chloride to afford the dimerized product 199,
which was globally deprotected upon exposure to samarium diiodide. (+)-WIN
64821 was thus obtained in 75% yield. Similarly, (−)-ditryptophenaline (202) was
synthesized following methylation of exo-(−)-198, dimerization, and deprotection
to give the product in 79% yield.

4.3.1
Epidithiodioxopiperazines

(+)-11,11′-Dideoxyverticillin A (211) differs from dimers 201 and 202 in that it is
likely derived from l-tryptophan and l-alanine, rather than from l-phenylalanine.
Additionally, the dioxopiperazines are bridged by a disulfide, adding a difficult
challenge to the synthetic construction of the molecule. Similar to their previous
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Scheme 4.35 Biomimetic total synthesis of (+)-11,11′-dideoxyverticillin A.

work, Movassaghi and coworkers showed that cleavage of the N-Boc carbamate was
accompanied by cyclization to dioxopiperazine 204 (Scheme 4.35) [39]. Exposure of
204 to bromine produced the 3-bromopyrroloindoline, and the amides were sub-
sequently methylated upon treatment with iodomethane. Reductive dimerization
with the cobalt(I) complex as before gave the desired dimeric intermediate 206. The
dimer was oxidized with bis(pyridine)-silver(I) permanganate to octacycle 207, and
exposure to Fu’s (R)-(+)-4-pyrrolidinopyridinyl(pentamethylcyclopentadienyl)iron
(PPY) catalyst with t-butyldimethylsilyl chloride (TBSCl) gave selectively the
alanine-derived protected hemiaminals of 208. Removal of the benzenesulfonyl
groups with sodium amalgam revealed diaminodiol 209. Treatment of 209 with
K2CS3 followed by ethanolamine gave diaminotetrathiol 210, which readily oxi-
dized to (+)-11,11′-dideoxyverticillin A (211) when partitioned between aqueous
hydrochloric acid and dichloromethane and treated with potassium triiodide.
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The total synthesis of sporidesmin A was completed by Kishi and coworkers
in 1973. In a series of communications, Kishi described a novel strategy for the
synthesis of epidithiodioxopiperazines using a dithioacetal moiety as a protecting
group for the disulfide bridge [41–43]. Thus protected, the dithioacetal is stable
to acidic, basic, and reducing conditions, allowing for the introduction of thiol
groups at an early stage in a total synthesis. Synthesis of the sporidesmins be-
gan with the treatment of dioxopiperazine 212 with the dithiane derivative of
p-anisaldehyde in the presence of acid to afford dithioacetal-protected dioxopiper-
azine 213 (Scheme 4.36) [43]. Condensation with acid chloride 214 and subsequent
methoxymethyl deprotection gave compound 215. Treatment of ketone 215 with
DIBAL-H at −78 ◦C resulted in stereoselective reduction to the alcohol, which was
then converted into acetate 216 in 80% yield. Cyclization to the diacetate (217)
proceeded upon addition of iodosobenzene diacetate, and hydrolysis of the acetates
gave the corresponding diol. Treatment of the diol with m-chloroperbenzoic acid
(mCPBA) afforded an intermediate sulfoxide, which decomposed to the disulfide
upon exposure to strong Lewis acid, revealing (±)-sporidesmin A (218).
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Scheme 4.36 Total synthesis of (±)-sporidesmin A.

The biosynthesis of gliotoxin is believed to proceed through the intramolecular
nucleophilic ring-opening of a phenylalanine-derived arene oxide and has been
the subject of considerable speculation and interest. Kishi and coworkers drew
inspiration from these biogenetic hypotheses in devising a brilliant total synthesis
of gliotoxin. The total synthesis of (±)-gliotoxin was completed in 1976 utilizing
the same disulfide protecting strategy as deployed above for the sporidesmins,
and was re-engineered in 1981 by the same route starting from optically pure
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dithioacetal 219 obtained from resolution (Scheme 4.37) [44, 45]. Coupling of 219
with t-butoxy arene oxide 220 in the presence of triton B afforded 221 and 222 in a
2 : 1 ratio. Acylation, deprotection, mixed anhydride formation, and reduction gave
alcohol 223 in 77% yield. Alcohol 223 was converted into the chloride following
mesylation, and then deprotected to reveal alcohol 224. The key stereoselective
cyclization–alkylation reaction was achieved upon addition of phenyllithium to 224
and phenoxymethyl chloride, affording cycloadduct 225 in modest yield (53%). The
primary alcohol was revealed upon removal of the benzyl ether, and the thioacetal
oxidatively removed to afford either (±)- or (+)-gliotoxin (226).

4.4
Conclusion

Dioxopiperazine alkaloids cover an astonishing array of molecular architecture
and, with that, corresponding synthetic challenges to construct such substances.
The biosynthesis of many of the natural substances touched on in this chapter has,
in some instances, been studied going back several decades, and many workers
have sought to exploit insights from Nature’s strategic bond constructions in a
synthetic laboratory context. Advances in whole genome sequencing have brought
new and invigorated interest in elucidating the biosynthesis of structurally intrigu-
ing and biomedically relevant secondary metabolites. The insights to be gained
from educated guess work on what specific compounds might lie along a pos-
sible biosynthetic pathway, traditionally accomplished by isolation and structural
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elucidation to map metabolite co-occurrence in conjunction with isotopically la-
beled precursor incorporation experiments, is in the process of giving way to a
much higher resolution picture of secondary metabolism in microorganisms and
plants. With the advent of powerful new genomics and proteomics tools to study
and manipulate secondary metabolite production, advances in our understanding
of Nature’s creative synthetic palette will surely explode in the coming years.
The fruits of these insights will undoubtedly be extensively exploited by synthetic
chemists working at the forefront of complex molecule synthesis. In addition, many
new natural products–the biosynthetic intermediates themselves, often isolated in
trace amounts if at all–will provide and constitute worthy new synthetic targets
and substrates for various important applications.
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The biomimetic total syntheses of both malbrancheamide and malbrancheamide B are reported. The
synthesis of the two monochloro species enabled the structure of malbrancheamide B to be unambiguously
assigned. The syntheses each feature an intramolecular Diels-Alder reaction of a 5-hydroxypyrazin-
2(1H)-one to construct the bicyclo[2.2.2]diazaoctane core, which has also been proposed as the biosynthetic
route to these compounds.

Introduction

Our research group has exhibited a long-standing interest in
the synthesis and biosynthetic study of a number of unique
prenylated indole alkaloids containing a characteristic bicyclo-
[2.2.2]diazaoctane core.1 This class of natural products includes
such highly biologically active fungal metabolites as the
paraherquamides,2 brevianamides,3 notamides,4 and stephaci-
dins,5 among others, which we have shown all arise biogeneti-
cally from tryptophan, mevalonate-derived isoprene units, and

proline or derivatives of proline.1 Sammes originally proposed
that the bicyclo[2.2.2]diazaoctane core common to all of these
natural products arises in Nature via an intramolecular hetero-
Diels-Alder reaction of a 5-hydroxypyrazin-2(1H)-one,6 and
work from this laboratory has extensively supported such a
proposal.1 In fact, we have applied such a [4+2] hetero-Diels-
Alder cycloaddition strategy to the total synthesis of several of
these prenylated indole alkaloids, including stephacidin A,7
brevianamide B,8 marcfortine C,9 notoamide B,7b and VM55599.10

Malbrancheamide (1)11 and malbrancheamide B (2) were
recently isolated from Malbranchea aurantiaca RRC1813, a† Colorado State University.

‡ The University of Michigan.
§ University of Colorado Cancer Center.
(1) (a) Williams, R. M.; Cox, R. J. Acc. Chem. Res. 2003, 36, 127. (b)
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L. J. Antibiot. 1990, 43, 1375. (c) Liesch, J. M.; Wichmann, C. F. J. Antibiot.
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fungus collected on bat detritus collected in a cave in Mexico
by Mata and co-workers. These new substances are the first
alkaloids in this class of prenylated indole alkaloids to contain
a halogenated indole ring (Figure 1). The lack of a tertiary amide
in the bicyclo[2.2.2]diazaoctane core also serves to characterize
the malbrancheamides. In addition to these notable structural
features, malbrancheamide has been shown to be a calmodulin
(CaM) antagonist that inhibits the activity of CaM-dependent
phosphodiesterase (PDE1) in a concentration dependent man-
ner.11 The chemotherapeutic potential of PDE1 inhibitors
includes applications in the treatment of neurodegenerative
diseases, cancers, and vascular diseases, due to the effect on
intracellular cAMP and cGMP concentrations.12 New pharma-
cological properties of malbrancheamide may be discovered
through the study of malbrancheamide, malbrancheamide B, and
other analogs, as specific PDE1 inhibitors are scarce and the
exact function of the enzyme has not been fully characterized.

Although compelling spectroscopic evidence indicated that
the structure of 1 was as shown,11 the precise structure of
malbrancheamide B (2) was less certain. Isolation and structural
characterization of 2 indicated the presence of a single chlorine
on the indole ring, and further, preliminary biosynthetic experi-
ments indicated that malbrancheamide B (2) is a putative
biosynthetic precursor to 1,13 which is thought to arise by
sequential halogenation events. However, the question as to
whether malbrancheamide B (2) was constituted as the 5-chloro
or the 6-chloro derivative was unclear from the preliminary
characterization data due to the scarce supply of the natural
material. With these issues at the forefront, we undertook the
synthesis of both natural substances to determine the exact
identity of malbrancheamide B. To this end, we envisioned that
malbrancheamide (1) and malbrancheamide B (2) would arise
from the aforementioned hetero-IMDA of the 5-hydroxypyrazin-
2(1H)-one 3, which we could access by enolization and
tautomerization of the enamide 4 (Scheme 1). Using chemistry
previously established in our laboratory,7a we planned on
assembling the enamide 4 from a reverse prenylated tryptophan
5, which could be obtained in a few steps from the correspond-
ing chlorinated indole 6.

Results and Discussion

Installation of the reverse prenyl group at the indole 2-position
was carried out using a two-step protocol developed by
Danishefsky and co-workers.14 Chlorination at the 3-position

of indoles 6a-c15 using NCS in DMF gave 7a-c (Scheme 2),
which were treated with prenyl-9-BBN in the presence of Et3N
to afford the reverse prenylated indoles 8a-c.14 The corre-
sponding gramines 9a-c were prepared by treating 8a-c with
formaldehyde and dimethylamine, and subsequent Somei-
Kametani coupling16 and imine hydrolysis gave the tryptophan
derivatives 5a-c in good yields.

The free amine moieties in 5a-c were protected as the
corresponding BOC-carbamates followed by ester hydrolysis
under standard conditions to yield acids 10a-c (Scheme 3).
Coupling of cis-3-hydroxyproline ethyl ester with the tryptophan
derivatives 10a-c in the presence of HATU delivered the
amides 11a-c as inseparable mixtures of diastereomers. Treat-
ment of 11a-c with TFA led to carbamate deprotection and
the resulting amino esters were immediately cyclized to the
corresponding diketopiperazines 12a-c after refluxing with
2-hydroxypyridine. Dehydration of 12a-c under Mitsunobu
conditions gave the enamides 4a-c, which would serve as the
respective IMDA substrates.17

Treatment of the enamides 4a-c with aqueous KOH in
MeOH gave intermediate hydroxy-azadienes by enolization and
tautomerizaion, and subsequent IMDA gave mixtures of 13a-c
and 14a-c favoring the desired syn-isomers 13a-c in ratios of
(2-1.6):1 (Scheme 4). The observed preference for the IMDA
to provide the syn-isomers 13a-c as the major products mirrors

(11) (a) Martinez-Luis, S.; Rodriguez, R.; Acevedo, L.; Gonzalez, M.
C.; Lira-Rocha, A.; Mata, R. Tetrahedron 2006, 62, 1817. (b) Figueroa,
M.; del Carmen González, M.; Mata, R. Unpublished results.

(12) (a) Zhu, H. J.; Wang, J. S.; Guo, Q. L.; Jiang, Y.; Liu, G. Q. Biol.
Pharm. Bull. 2005, 28, 1974. (b) Leisner, T. M.; Liu, M. J.; Jaffer, Z. M.;
Chernoff, J.; Parise, L. V. J. Cell Biol. 2005, 170, 465.

(13) Ding, Y.; Sherman, D. H.; Williams, R. M. Unpublished results.
(14) Schkeryantz, J. M.; Woo, J. C. G.; Siliphaivanh, P.; Depew, K. M.;

Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11964.

(15) For the preparation of 5,6-dichloroindole see: Bromidge, S. M.; et
al. J. Med. Chem. 1998, 41, 1598.

(16) (a) Somei, M.; Karasawa, Y.; Kaneko, C. Heterocycles 1981, 16,
941. (b) Kametani, T.; Kanaya, N.; Ihara, M. J. Chem. Soc., Perkin Trans.
1 1981, 959.

(17) Curiously, attempts to effect the one-step dehydration/IMDA reaction
sequence from 12a-c directly to 13a-c + 14a-c failed under the same
conditions used successfully for stephacidin A (ref 7a) and marcfortine C
(ref 9).

FIGURE 1. Malbrancheamide and malbrancheamide B.

SCHEME 1. Retrosynthetic Plan

SCHEME 2. Reverse Prenylated Tryptophan Derivatives

Synthesis of Malbrancheamide and Malbrancheamide B

J. Org. Chem, Vol. 73, No. 8, 2008 3117

379



the preference we have noted for this cycloaddition in the
past.7-9 Considering that previous optimization efforts to
improve the syn:anti ratio in related IMDAs were not productive
when a variety of solvents and temperatures were studied, we
elected to simply separate the major isomers 13a-c and continue
the total syntheses without further optimization.7-9

Completion of the syntheses required selective reduction of
the tertiary amide in the presence of the secondary amide, and
to that end, 13a-c were treated with excess DIBAL-H,18 which
cleanly provided malbrancheamide (1) from 12a (80%) and
malbrancheamide B (2) from 12c (74%) (Scheme 5). Synthetic
1 was identical in all respects (1H, 13C, HRMS) to the natural
product.11 Comparison of the 1H NMR spectrum of 15, the
5-chloro derivative, to that of natural malbrancheamide B
revealed significant differences in the aromatic region revealing
that the correct structure contained a 6-chloroindole ring.

Gratifyingly, synthetic 2 was identical in all respects (1H,
HRMS) to natural malbrancheamide B.

It is striking that the initial halogenation of the indole ring
during the biosynthesis of malbrancheamide B, occurs at the
less-activated 6-position as opposed to the more electron-rich
5-position. Studies to clone and express the putative halogenase
from M. aurantiaca are currently under investigation in these
laboratories.

In summary, the first total synthesis of malbrancheamide (1)
and malbrancheamide B (2) have been completed in twelve steps
in 5.3% and 8.2% overall yield, respectively. In addition, the
structure of malbrancheamide B (2) was confirmed though the
synthesis of both the 5-chloro and the 6-chloro regioisomers.
Experiments to establish the biosynthetic relationship between
1 and 2 and their putative progenitors are in progress and will
be reported in due course.

Experimental Section

Representative Procedure for the Hetero-Diels-Alder Reac-
tion of Enamides 4. Preparation of Cycloadducts 13a and 14a.
To a solution of 4a (86 mg, 0.21 mmol) in MeOH (16 mL) at 0 °C
was added 20% aqueous KOH (4 mL). The reaction was warmed
to room temperature (rt) and was stirred for 12 h. The reaction
was quenched with sat. NH4Cl (30 mL) and extracted with CH2-
Cl2 (3 × 30 mL). The combined organic layers were dried (Na2-
SO4) and concentrated under reduced pressure. The residue was
triturated with CHCl3 (30 mL), and the suspension was filtered to
provide 53 mg (60%) of 13a as a white amorphous solid.
Concentration of the filtrate gave 25 mg (29%) of 14a as a white
amorphous solid. Data for major isomer 13a: 1H NMR (300 MHz,
CD3OD) δ 7.55 (s, 1 H), 7.40 (s, 1 H), 3.57 (d, J ) 15.5 Hz, 1 H),
3.47 (m, 1 H), 2.74 (d, J ) 15.5 Hz, 1 H), 2.60 (m, 1 H), 2.20-
1.96 (comp, 6 H), 1.35 (s, 3 H), 1.11 (s, 3 H); 13C NMR (75 MHz,
CD3OD) δ 175.7, 171.3, 144.3, 137.2, 128.1, 125.4, 123.3, 119.8,
113.1, 104.8, 68.3, 61.6, 50.8, 45.2, 36.2, 31.7, 30.1, 28.6, 25.4,
24.9, 22.3; IR (neat) 1663, 1428 cm-1; HRMS (TOF+) calcd for
C21H22N3O2Cl2 (M + H) 418.1084, found 418.1084. Data for minor
isomer 14a: 1H NMR (300 MHz, CDCl3) δ 9.78 (s, 1 H), 7.49 (s,
1 H), 7.33 (s, 1 H), 3.71 (d, J ) 17.8 Hz, 1 H), 3.47 (comp, 2 H),
3.25 (s, 1 H), 2.78 (d, J ) 17.8 Hz, 1 H), 2.67 (m, 1 H), 2.18-
1.78 (comp, 6 H), 1.24 (s, 3H), 1.16 (s, 3 H); 13C NMR (75 MHz,
CD3OD /CDCl3 (1:9)) δ 173.7, 169.6, 142.6, 135.7, 127.1, 125.0,
122.9, 119.1, 112.4, 102.9 67.2, 61.5, 45.8, 44.3, 34.8, 32.6, 29.8,
29.1, 28.4, 24.5, 23.2; IR (neat) 1676, 1453 cm-1; HRMS (TOF+)
calcd for C21H22N3O2Cl2 (M + H) 418.1084, found 418.1079.

Cycloadducts 13b and 14b. Prepared from 4b in to give 43%
of 13b as a white amorphous solid and 27% of 14b as a white
amorphous solid according to the representative procedure described
above for 13a and 14a. Data for major isomer 13b: 1H NMR (300
MHz, CD3OD) δ 7.54 (s, 1 H), 7.44 (s, 1 H), 7.22 (d, J ) 8.6 Hz,
1 H), 7.04 (d, J ) 8.6 Hz, 1 H), 3.68 (d, J ) 15.4 Hz, 1 H), 3.55-
3.40 (comp, 2 H), 2.77 (d, J ) 15.4 Hz, 1 H), 2.76 (m, 1 H), 2.61
(m, 1 H), 2.25-1.92 (comp, 5 H), 1.37 (s, 3 H), 1.12 (s, 3 H); 13C
NMR (100 MHz, CD3OD) δ 175.8, 171.4, 143.4, 136.8, 129.2,
125.2, 122.1, 118.2, 112.8, 104.5, 68.3, 61.6, 50.8, 45.2, 36.2, 31.7,
30.1, 28.7, 25.5, 25.0, 22.4; IR (neat) 1678, 1441 cm-1; HRMS(18) Fukuyama, T.; Liu, G. J. Am. Chem. Soc. 1996, 118, 7426-7427.

SCHEME 3. Enamide Diels-Alder Precursors

SCHEME 4. Hetero-IMDA Reactions

SCHEME 5. Amide Reductions
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(TOF+) calcd for C21H23N3O2Cl (M + H) 384.1473, found
384.1460. Data for minor isomer 14b: 1H NMR (300 MHz, CD3-
OD) δ 7.91 (s, 1 H), 7.41 (d, J ) 2.0 Hz, 1 H), 7.23 (d, J ) 8.6
Hz, 1 H), 7.01 (dd, J ) 8.6, 2.0 Hz, 1H), 3.71 (d, J ) 17.6 Hz,
1H), 3.53 (comp, 2 H), 2.90 (d, J ) 17.6 Hz, 1 H), 2.70 (m, 1 H),
2.23-1.89 (comp, 6 H), 1.34 (s, 3 H), 1.27 (s, 3 H); 13C NMR
(100 MHz, CD3OD) δ 175.4, 171.7, 143.4, 136.8, 129.7, 125.3,
122.1, 118.1, 112.8, 103.8, 68.6, 62.7, 47.3, 45.2, 35.9, 33.3, 30.8,
29.9, 28.7, 25.4, 24.8, 23.8; IR (neat) 1675, 1461 cm-1; HRMS
(TOF+) calcd for C21H23N3O2Cl (M + H) 384.1473, found
384.1468.

Cycloadducts 13c and 14c. Prepared from 4c in to give 55%
of 13c as a white amorphous solid and 31% of 14c as a white
amorphous solid according to the representative procedure described
above for 13a and 14a; data for major isomer 13c: 1H NMR (400
MHz, DMSO-d6) δ 8.75 (s, 1 H), 7.40-6.98 (comp, 3 H), 3.42 (d,
J ) 15.3 Hz, 1 H), 3.30 (comp, 2 H), 2.68 (d, J ) 15.3 Hz, 1 H),
2.50 (comp, 1 H), 2.10-1.70 (comp, 6 H), 1.27 (s, 3 H), 0.99 (s,
3 H); 13C NMR (100 MHz, DMSO-d6) δ 173.0, 168.4, 142.0, 136.8,
125.3, 125.2, 118.9, 118.5, 110.4, 103.8, 66.0, 59.6, 48.9, 43.6,
34.6, 30.0, 28.7, 27.9, 24.0, 23.7, 21.6; IR (neat) 1671, 1409 cm-1;
HRMS (TOF+) calcd for C21H23N3O2Cl (M+H) 384.1473, found
384.1470. Data for minor isomer 14c: 1H NMR (400 MHz, CD3-
OD/CDCl3 (1:9)) δ 9.58 (s, 1 H), 7.33 (d, J ) 8.4 Hz, 1 H), 7.23
(d, J ) 1.8 Hz, 1 H), 6.97 (dd, J ) 8.4, 1.8 Hz, 1 H), 3.75 (d, J )
17.8 Hz, 1 H), 3.47 (comp, 2 H), 3.30 (bs, 1 H), 2.84 (d, J ) 17.8
Hz, 1 H), 2.70 (m, 1 H), 2.23-1.77 (comp, 6 H), 1.25 (s, 3 H),
1.18 (s, 3 H); 13C NMR (100 MHz, DMSO-d6) δ 172.43, 169.0,
142.0, 136.8, 125.8, 125.3, 119.0, 118.5, 110.4, 103.1, 79.2, 66.4,
60.5, 45.4, 43.7, 34.2, 31.6, 28.6, 27.7, 24.0, 22.5; IR (neat) 1672,
1410 cm-1; HRMS (TOF+) calcd for C21H23N3O2Cl (M + H)
384.1473, found 384.1468.

Representative Procedure for the Selective Reduction of
Tertiary Amides with Excess DIBAL-H. Synthesis of Mal-
brancheamide (1). DIBAL-H (0.70 mL, 1 M in toluene, 0.70
mmol) was added to a suspension of 13a (15 mg, 0.036 mmol) in
toluene (7 mL) at rt. The reaction was stirred at rt for 12 h,
whereupon finely powdered Na2SO4‚10H2O was added until
bubbling ceased. The mixture was filtered with a medium porosity
fritted funnel washing with EtOAc (50 mL) and MeOH (50 mL),
and the filtrate was concentrated under reduced pressure. The
residue was purified by flash chromatography eluting with MeOH/
CH2Cl2 (2:98) to give 12 mg (80%) of 1 as a white amorphous
solid: 1H NMR (400 MHz, CD3OD) δ 7.48 (s, 1 H), 7.40 (s, 1 H),
3.43 (d, J ) 10.3 Hz, 1 H), 3.06 (m, 1 H), 2.85 (comp, 2 H), 2.54
(m, 1 H), 2.27 (dd, J ) 10.2, 1.5 Hz, 1 H), 2.20-1.18 (comp, 6
H), 1.43 (s, 3 H), 1.34 (s, 3 H); 13C NMR (100 MHz, CD3OD) δ
176.6, 145.1, 137.3, 128.2, 125.3, 123.2, 119.6, 113.1, 104.7, 66.1,
59.4, 57.4, 55.4, 48.5, 35.5, 32.4, 30.6, 30.0, 28.1, 24.2, 23.5; IR

(neat) 3226, 1658, 1460 cm-1; HRMS (TOF+) calcd for C21H24N3-
OCl2 (M + H) 404.1291, found 404.1290.

Isomalbrancheamide B (15). Prepared from 13b in 68% yield
as a white amorphous solid according to the representative
procedure described above for 1: 1H NMR (400 MHz, DMSO-d6)
δ 8.39 (s, 1 H), 7.33 (s, 1 H), 7.26 (d, J ) 8.5 Hz, 1 H), 7.01 (d,
J ) 8.5 Hz, 1 H), 3.33 (d, J ) 7.2 Hz, 1 H), 3.26 (d, J ) 9.9 Hz,
1 H), 2.76 (s, 2 H), 2.42 (m, 1 H), 2.15-1.73 (comp, 7 H), 1.33 (s,
3 H), 1.27 (s, 3 H); 13C NMR (100 MHz, DMSO-d6) δ 173.1. 143.4,
134.9, 127.7, 122.8, 120.4, 116.7, 112.1, 103.4, 64.1, 58.6, 55.3,
53.9, 47.0, 34.0, 31.1, 30.0, 28.7, 26.6, 23.7, 22.5; IR (neat) 3311,
1637, 1458 cm-1; HRMS (TOF+) calcd for C21H25N3OCl (M +
H) 370.1680, found 370.1675.

Malbrancheamide B (2). Prepared from 13c in 74% yield as a
white amorphous solid according to the representative procedure
described above for 1: 1H NMR (400 MHz, DMSO-d6) δ 8.41 (s,
1 H), 7.32 (d, J ) 8.4 Hz, 1 H), 7.27 (d, J ) 1.7 Hz, 1 H), 6.95
(dd, J ) 8.4, 1.7 Hz, 1 H), 3.36 (s, 1 H), 3.27 (d, J ) 10.0 Hz, 1
H), 2.95 (m, 1 H), 2.76 (s, 2 H), 2.43 (m, 1 H), 2.13 (d, J ) 9.9
Hz, 1 H), 2.10-1.70 (comp, 6 H), 1.32 (s, 3 H), 1.26 (s, 3 H); 13C
NMR (100 MHz, DMSO-d6) δ 173.1, 142.6, 136.8, 125.3, 125.2,
118.7, 118.5, 110.3, 103.7, 64.1, 58.5, 55.3, 53.9, 47.0, 34.0, 31.1,
30.0, 28.7, 26.6, 23.7, 22.5; IR (neat) 3297, 1652, 1457 cm-1;
HRMS (TOF+) calcd for C21H25N3OCl (M + H) 370.1680, found
370.1670.
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B. Research Plan: Targeting STAT5 in Prostate Cancer Cells with DNA Binding Polyamides 
 

I. Specific Aims 
  
 Prostate cancer was responsible for approximately 33720 deaths in 2011.1 While patients with 
metastatic prostate cancer typically respond to surgical or medicinal androgen deprivation initially, all will 
eventually progress to an androgen independent state termed castration-resistant prostate cancer 
(CRPC). The progression of prostate cancer cells to the androgen independent phenotype occurs 
concomitantly with an increase in the constitutive activation of the transcription factors androgen receptor 
(AR) and signal transducer and activator of transcription 5 (STAT5).2 AR is established as a relevant 
target for the treatment of CRPC, and several therapies targeting the AR signaling pathway are available 
or in development.3,4 While the exact role of STAT5 in CRPC is not as well defined, it appears to be 
equally important to prostate cancer cell growth and survival, as evidenced by the following: (1) STAT5 is 
overactive in 95% of CRPCs,5 (2) STAT5 activity is associated with highly aggressive (high Gleason 
grade) prostate cancers,6,7 and (3) inhibition of STAT5 by siRNA results in massive apoptotic cell death in 
human prostate cancer cell lines.8 STAT5 represents a promising target for the treatment of CRPC, a 
disease for which no effective therapy currently exists. To date, no small molecule inhibitors of STAT5 
transcriptional activity have been reported. 
 
 Our long term goal is to develop small molecule inhibitors of STAT5 function for the treatment of 
malignancies displaying aberrant STAT5 activity. The overall objective of this proposal is to determine the 
therapeutic potential of DNA binding pyrrole-imidazole polyamides that target STAT5 for the treatment of 
CRPC. We hypothesize that polyamides can be designed to downregulate the expression of a subset of 
genes required for CRPC cell survival. Polyamides containing N-methylpyrrole (Py) and N-
methylimidazole (Im) comprise the only known class of programmable small molecules capable of 
binding specific DNA sequences.9,10 Previous studies from the Dervan group have shown that polyamides 
are cell permeable,11-13 access nuclear chromatin,14-16 inhibit specific protein–DNA interfaces,17 and 
modulate gene expression in cell culture.18-23 Polyamides represent a promising approach toward the 
pursuit of small molecule inhibitors of STAT5 transcription for the treatment of CRPC. The specific aims 
proposed below will determine the suitability of this approach while contributing to the overall 
understanding of STAT5 signaling in prostate cancer. 
 

AIM 1. Synthesize a series of Py/Im polyamides designed to target the STAT5 response 
element and evaluate their DNA binding interactions in vitro. Polyamides designed to 
target the consensus STAT5 binding sequence 5’-TTCNNNGAA-3’† will be synthesized by 
solid phase methodology. DNA binding interactions of the polyamides will be evaluated in vitro 
using melting temperature analysis and electrophoretic mobility shift assay (EMSA).  

 
AIM 2. Examine nuclear localization and characterize gene regulatory potency of polyamides. 

Laser-scanning confocal microscopy will be used to examine cellular uptake and localization 
of high-affinity polyamides in several cancer cell lines. The expression of STAT5 regulated 
oncogenes BCL-2,24-27 BCL-XL,28,29 and CYCLIN-D12,8,30 in prostate cancer cells will be 
examined following polyamide treatment using quantitative real-time RT-PCR (qRT-PCR). The 
global effects of polyamides that are shown to modify gene expression will then be studied 

                                                             
† Abbreviations for degenerate nucleotides: N = any base; W = A or T. 
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with chromatin immunoprecipitation coupled with sequencing (ChIP-seq) and mRNA 
sequencing (RNA-seq). 

 
AIM 3. Investigate polyamide induced apoptosis in prostate cancer cell lines and in mice 

bearing xenograft tumors. General cell death will be analyzed following polyamide treatment 
in both normal and prostate cancer cell lines. Polyamide effects on C4-2 tumor growth will be 
studied in a murine model at the Caltech Animal Facility. 

  
 The aims in this proposal represent a new approach toward the development of inhibitors of STAT5 
regulated gene expression. The proposed experiments will provide thorough and systematic 
understanding of the activity, mechanism, and specificity of polyamides in prostate cancer. If successful, 
the proposed research could produce the first known specific inhibitors of STAT5 regulated gene 
expression for the treatment of CRPC. 
 
II. Background and Significance 
 
 A limited set of transcription factors has been 
implicated in a large number of diverse oncogenic 
signaling pathways.31 Selective inhibition of a single 
transcription factor would thus influence the expression 
of numerous upstream oncogenes, many of which are 
currently individually targeted by discrete inhibitors. 
Signal transducer and activator of transcription (STAT) 
proteins are overactive in a variety of cancers, promote 
cancer cell survival and proliferation, and are 
susceptible to inhibition, making them ideal targets for 
cancer therapy.32-34 STATs are latent cytoplasmic 
proteins that, once activated by tyrosine kinase 
phosphorylation, dimerize, traffic to the nucleus, and 
bind specific response elements of target gene 
promoters (Figure 1).32,35-37 In normal cells, STAT 
activation has a role in cell survival, angiogenesis, 
immune function, and in controlling cell growth.38,39 
However, disregulation of this activity can contribute to 
tumor cell growth and proliferation.32,40 
 
 Persistent activity of STAT5, a member of the 
STAT family of proteins, is associated with prostate 
cancer,5,6,8,41,42 lung, head, and neck cancers,43 and 
several types of leukemia44-47 and lymphomas.35,48 The 
link to prostate cancer is particularly strong, with 95% 
of castration-resistant prostate cancers (CRPC) 
displaying constitutive STAT5 activity.5 Active STAT5 in prostate cancer predicts early disease recurrence 
and is associated with high Gleason grade prostate cancers characterized by an aggressive phenotype 
and poor patient outcome.6,7 Furthermore, active STAT5 has been shown to increase the motility of 
prostate cancer cells, enhancing the intrinsic ability of the disease to metastasize.49 STAT5 is a generic 
term for two highly homologous protein isoforms, 94-kDa STAT5a and 92-kDa STAT5b.50 Both isoforms 
share a conserved DNA binding domain that permits binding of STAT5 to consensus motifs (5’-
TTCNNNGAA-3’) found in target gene promoters, including the oncogenes encoding anti-apoptotic (BCL-
XL, BCL-2) and pro-proliferative (Cyclin-D1) proteins.2,8,24-30,51 STAT5 binding to this consensus motif 

Figure 1. Canonical STAT5 signaling pathway. 
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found at non-canonical recognition sites has additionally been shown to activate several novel and 
potentially oncogenic genes, including TNFRSF13b, MKP-1, and C3ar1.52 
 
  Numerous studies have shown that inhibition of STAT5 results in massive apoptotic cell death in 
human prostate cancer cell lines, regardless of the inhibitory method employed (adenoviral expression of 
dominant-negative mutants of STAT5, siRNA, or antisense oligonucleotides).2,8,41,53 STAT5 inhibition by 
antisense oligonucleotides has specifically been shown to suppress the expression of Cyclin-D1 and 
BCL-XL in LNCaP, C4-2, and DU145 prostate cancer cell lines at both the mRNA and protein levels, 
resulting in increased apoptotic death and decreased cell growth.2,8 In mouse xenograft models, the 
progression of CRPC was delayed significantly by STAT5 inhibition with antisense oligonucleotides.2 
These findings imply prostate cancers depend on persistent STAT5 activation for cell growth and survival. 
Chemotherapeutic small molecules targeting STAT5 signaling could thus have a substantial impact on 
the treatment of CRPC, a disease for which no effective pharmacological therapy currently exists. STAT5 
inhibitors published to date indiscriminately downregulate STAT5 regulated transcription and lack 
practical therapeutic potential. Herein, we describe a new, promising approach for the selective inhibition 
of STAT5 mediated gene expression in prostate cancer, using DNA binding polyamides to disrupt the 
STAT5–DNA interface. 
 
 Polyamides containing N-methylpyrrole (Py) and N-methylimidazole (Im) comprise a class of 
programmable small molecules that can be designed to bind specific DNA sequences with affinities 

Figure 2. Molecular recognition of the minor groove of DNA by a hairpin polyamide. (A) Model of an eight ring 
hairpin polyamide (ImImPyPy-(R)H2N-!-PyPyPyPy-"-IPA) bound to a 5’-TGGAAA-3’ sequence. Putative 
hydrogen bonds are represented by dashed lines. (B) X-ray crystal structure of a cyclic polyamide (blue) in 
complex with dsDNA (0.95Å resolution). (C) Ball-and-stick model of the polyamide in 2A. Closed and open 
circles represent N-methylimidazole and N-methylpyrrole monomers, respectively. Diamonds, "-alanine; triangle 
with positive charge, triamine linker; curved line substituted with positive charge, #-amino-substituted !-turn. The 
isophthalic acid derived tail is represented by a hexagon. 
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comparable to native DNA binding proteins.9 Sequence specificity of Py/Im polyamides is determined by 
side-by-side pairing of the heterocyclic amino acids to form distinct hydrogen bonds to nucleotides in the 
minor groove of DNA (Figure 2).54 Im/Py pairs distinguish G!C from C!G, whereas Py/Py pairs 
degenerately bind A!T and T!A.10 Hairpin polyamides designed as such have been shown to bind DNA 
with high affinities,55 inhibit interactions with DNA binding proteins,17 bind chromatin,14-16 and traffic to 
the nucleus in a variety of cell types.11-13 Recently, analyses have shown that 8-ring cyclic polyamides 
allosterically perturb the DNA helix through a 4Å widening of the minor groove and consequent major 
groove compression.56 This significant change provides a mechanistic basis for disruption of protein–
DNA interfaces by hairpin polyamides.  
 
 To evaluate the specific inhibition of STAT5 mediated gene expression by cell permeable, 
sequence specific DNA binding polyamides, we propose the synthesis, biochemical evaluation, and 
biological study of a small library of Py/Im polyamides designed to specifically disrupt the interactions of 
STAT5 with regulatory regions of pro-proliferative and anti-apoptotic genes. 
 
III. Preliminary Studies 
  
 This proposal builds upon known chemical and biological 
techniques developed in the Dervan group. The study highlighted here 
shows precedence for the use of polyamides in the modulation of 
endogenous gene expression (Figure 3). In the study, hypoxia 
inducible factor (HIF-1#) binding to the sequence 5’-WWWCGW-3’ 
found in the vascular endothelial growth factor (VEGF) hypoxia 
response element (HRE) was perturbed by a hairpin polyamide.21,22 
The polyamide reduced occupancy of HIF-1# at the VEGF HRE and 
suppressed VEGF mRNA expression. Only a subset of genes induced 
by deferoxamine (DFO)—a small molecule used to mimic hypoxia in 
cells—was inhibited by polyamide, whereas HIF-1# siRNA and the 
DNA-binding natural product echinomycin inhibited most of the DFO 
induced transcripts. This demonstrated the relative selectivity of Py/Im 
polyamides compared to other methods used to perturb HIF-1# 
activity. 
 
 A second investigation key to the design of this proposal was detailed in a series of publications from 
the Dervan group in which the nuclear localization of a library of over 120 polyamide-fluorophore 
conjugates was described.11-13 Cellular uptake profiles of the polyamides were assayed in 13 cell lines 
using confocal microscopy. The reported nuclear uptake trends suggest the following structural features 
to be conducive to uptake: an eight-ring hairpin or cyclic core, a positive charge on the amino substituent 
of the !-aminobutyric acid (GABA) turn, and either a conjugated fluorescein fluorophore (FITC) or 
isophthalic acid (IPA) moiety on the hairpin tail. Polyamides targeting 5’-WGWWGW-3’ and 5’-
WGGWWW-3’ similar to those proposed below were shown to have strong nuclear localization in PC-3 
and LNCaP prostate cancer cell lines.11,12 
 
 The transition from cell culture work to murine models is an important next step in Py/Im polyamide 
research that is focused on biomedical applications of the technology. Recent studies undertaken in the 
Dervan laboratory have provided basic pharmacokinetic analyses of polyamides in C57/BL6 wild type 
mice.57 Micromolar blood levels of Py/Im polyamides were achieved for multiple hours following a single 
injection of the compound subcutaneously or intraperitoneally. An example is shown in Figure 4a (a 
representative HPLC trace) and 4B (a representative pharmacokinetic profile for a hairpin Py/Im 
polyamide). Decline in hairpin polyamide concentration was observed over the course of multiple hours, 

Figure 3. Polyamide mediated 
inhibition of HIF-1 DNA binding 
to the HRE suppresses VEGF 
expression. (The square symbol 
represents chlorothiophene.) 
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with a peak concentration noted between 1-3h depending on route of administration. Compound 
plasma levels were below detection level 24h after the injection. The polyamide was well tolerated by 
the animals. Multiple administrations (i.p. or s.c. at 120 nmol per injection per animal) did not result in 
any significant reduction in body weight. Weight loss is a commonly used criterion for health 
deterioration in mice (Figure 4C, D).57 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The Dervan group has recently gained broad experience with xenograft experimentation in 
immunocompromised mice, encompassing the engraftment of human cancer cell lines A549, LNCaP, 
U251, and T47D. FITC-labeled polyamides injected subcutaneously on the flank opposite the tumor 
were shown by confocal microscopy to access the tumor derived cell nuclei. Moreover, gene 
expression changes have been observed in engrafted A549 tumors following polyamide treatment.58  
 
 The studies outlined above demonstrate the validity of targeting the transcription factor–DNA interface 
as a means of modulating gene expression. Furthermore, evaluation of nuclear uptake trends allows for 
the rational design of new polyamides that are structurally optimized for nuclear localization. The Dervan 
group has also recently developed a gram-scale synthesis of hairpin polyamides and shown that 
polyamides are bioavailable in mice, eliminating two major obstacles in the evaluation of polyamides in 
animal models.59,60 Tumor engraftment protocols, established tolerable dosing conditions, and general 
animal care and handling expertise found in the Dervan group will be invaluable during in vivo testing of 
the proposed STAT5-targeting polyamides. We are confident the methods established by these studies 
can be extended to the proposed research and will increase the probability of success.  
 
IV. Research Design and Methods  
 
 An estimated timeline for completion of the specific aims is given in Figure 5. The proficiency of the 
Dervan group with these techniques coupled with the outstanding equipment, facilities, and expertise 
found at Caltech will provide strong support for the success of this research project. We are confident that 
the proposed objectives will be thoroughly pursued during the planned three year period.  

A B

C D

Figure 4. Pharmacokinetic data for 
hairpin polyamide 1 in C57/BL6 
wild type mice. (A) HPLC analysis 
of a blood sample collected retro-
orbitally 1.5 h post intraperitoneal 
(i.p.) injection of 1. Plasma was 
isolated by centrifugation and pre-
cleared from protein by methanol 
precipitation. (4 = internal reference 
standard). (B) Plasma levels of 1 
as a percent of reference standard 
4 following i.p. or subcutaneous 
(s.c.) injection. (C, D)  Weight of 
four individual mice in response to 
polyamide dosing regimen. 120 
nmol doses were administered 
either i.p. (C) or s.c. (D) at intervals 
denoted by arrows in the plot. The 
solid red line indicates the 15% 
weight loss mark considered an 
endpoint criterion for the mice. 
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AIM 1. Synthesize a series of Py/Im polyamides designed to target the STAT5 response element 

and evaluate their DNA binding interactions in vitro. 
 
 Three oncogenes shown in the 
literature to be functionally activated 
by STAT5 and to contain a STAT5 
binding site characterized at the 
sequence level were selected as 
targets for polyamide inhibition 
(Table 1). The three degenerate 
base pairs found in the middle of the 
consensus STAT5 binding 
sequence (5’-TTCNNNGAA-3’) represent the great degree of diversity of the binding sequences on target 
genes, allowing for the design of polyamides with greater DNA site sequence specificity than the native 
transcription factor. Three polyamides (Figure 6) are proposed to bind the sequences 5’-WGWWGW-3’ 
(1, found in BCL-XL), 5’-WWCGGW-3’ (2, found in BCL-XL), and 5’-WGGWWW-3’ (3, found in BCL-2 and 
CYCLIN-D1).27,30 Polyamide 3 is also expected to bind non-canonical STAT5 binding sites found in MKP-
1, TNFRSF13b, and C3ar1.52 Mismatch controls will be prepared for each compound by substituting a Py 
for an Im (structures not shown). Polyamides 1-3 and the three mismatch controls will be synthesized 
using solid-phase methodology established in the Dervan laboratory.18,61,62 Preparative reverse-phase 
high performance liquid chromatography (RP-HPLC) will be used to purify crude reaction products. 
Chemical purity of polyamides will be determined by analytical HPLC and the chemical composition of 
each confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-
TOF). 

 The ability of synthesized polyamides 1-3 to bind DNA will be determined using melting temperature 
(Tm) analysis. The degree to which both match and mismatch polyamides stabilize 14 base pair DNA 
duplexes containing the appropriate match sequence will be measured. Previous results have shown a 
correlation between the increase in Tm of DNA duplexes and DNA binding affinity.63-65 Polyamides 

Gene Function STAT5 Binding Sequence 
BCL-XL anti-apoptotic 5’-GCATTTCGGAGAAGACG-3’ 
BCL-2 anti-apoptotic 5’-CAAGTTCCAGGAAAGCG-3’ 

CYCLIN-D1 pro-proliferative 5’-GGCGTTCTTGGAAATGC-3’ 

Table 1. Promoter sequences for selected genes demonstrated to 
be STAT5 dependent. The consensus sequence is 
specified in bold. 

Figure 6. Proposed library of polyamide inhibitors of STAT5. Structural abbreviations are defined in 
Figure 2. 
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identified to bind DNA with high affinity will be subjected to electrophoretic mobility shift assay (EMSA) to 
evaluate their ability to disrupt STAT5 binding to their cognate sequences. Published protocols from the 
Dervan laboratory will be followed using commercially available STAT5 and 32P-labelled oligonucleotides 
purchased from Abcam and Integrated DNA Technologies, respectively.19-21,63 

 
AIM 2. Examine nuclear localization and characterize gene regulatory potency of polyamides. 
 
 Fluorescent (FITC) derivatives of polyamides 1-3 will be evaluated in cell culture to examine their 
uptake and localization properties. Cells treated with varying concentrations of fluorescent polyamides will 
be examined using confocal microscopy as previously described.11-13 Several prostate cancer cell lines 
will be studied to establish general cellular uptake trends, including LNCaP, C4-2, DU145, and PC-3 
(Table 2). All have been previously used in the Dervan laboratory or are commercially available and will 
be cultured and propagated according to recommended American Type Culture Collection (ATCC) 
procedures. 
 
 Polyamides will then be screened for the ability to suppress gene expression in cells by quantitative 
real-time RT-PCR (qRT-PCR).22 Specifically, we will examine the mRNA expression profiles of STAT5 
regulated genes BCL-XL, BCL-2, and CYCLIN-D1 in the presence of polyamides following induction of 
STAT5 activity by interleukin 3 (IL-3) in four different prostate cancer cell lines. A reduction in IL-3 induced 
expression is expected if a polyamide disrupts STAT5 activation of the gene under investigation. 
Mismatch polyamides will serve as a negative control, while STAT5 siRNA known to inhibit expression of  
all three target genes will be used as a positive control for comparison.8 Since constitutive STAT5 
activation is most prevalent in cells expressing an 
androgen independent phenotype, cell lines for 
this experiment were selected based on 
androgen dependence (Table 2). Polyamide 
binding is expected to impart a greater change on 
gene expression in androgen independent cell 
lines C4-2 and DU145 than on androgen 
sensitive LNCaP cells. PC-3 cells do not express 
STAT5 and are included as a negative control for 
STAT5 regulated gene expression.  
 
 The global effects of polyamide treatment on prostate cancer cells will be investigated through 
chromatin-immunoprecipitation coupled with sequencing (ChIP-seq) and cellular mRNA sequencing 
(RNA-seq). To probe the mechanism of polyamide induced gene suppression in prostate cancer cells, 
ChIP-seq will be conducted to assess STAT5 occupancy in nuclear chromatin. In the absence of 
polyamide or in the presence of the mismatched control, amplification of DNA isolated from anti-STAT5 
antibody (purchased from Santa Cruz) pull-down is expected, demonstrating normal STAT5–DNA 
binding. A decrease in pull-down efficiency from polyamide treated cells would support an inhibitory 
mechanism in which displacement of STAT5 is attributable to polyamide binding to gene promoters. 
Isolated DNA will be submitted to high throughput sequencing using the Illumina Genome Analyzer at 
Caltech. Sequencing results mapped to the human genome will be compared between the untreated, 
mismatch control, and match polyamide experiments to identify specific genomic sites susceptible to 
polyamide-mediated STAT5 displacement. A consensus polyamide binding site will also be 
characterized, providing valuable insight as to the sequence specificity of the polyamide. The global effect 
of polyamides on gene expression can be evaluated using RNA-seq. STAT5 activity will be induced in 
cells with IL-3, then either (1) left untreated, or treated with (2) mismatch polyamide, (3) polyamide, or (4) 
STAT5 siRNA. Total mRNA will be isolated from each experiment, sequenced, and scanned for a 2-fold 
or greater alteration in expression. Our hypothesis that polyamides can be designed to selectively inhibit 

Cell 
Line 

Androgen 
Dependence 

STAT5 
(+/-) 

Commercial 
source 

LNCaP sensitive + ATCC 
C4-2 independent + UroCor Labs 

DU145 independent + ATCC 
PC-3 independent - ATCC 

Table 2. Proposed prostate cancer cell lines. 
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a subset of STAT5 regulated genes will be supported if fewer IL-3 induced transcripts are affected by 
polyamide than by siRNA. A sequence specific mechanism of polyamide mediated perturbation is also 
supported if the mismatch control suppresses fewer induced gene transcripts than the matched 
polyamide. 
 
AIM 3. Investigate polyamide induced apoptosis in prostate cancer cell lines and in mice bearing 

xenograft tumors. 
 
 The effect on cell apoptosis of the proposed polyamides will be evaluated in each of the prostate 
cancer cell lines mentioned above. Cells will be incubated with varying concentrations of polyamide, then 
the effect on cell cycle population analyzed by flow cytometry, caspase-3 activity, and cleaved poly ADP 
ribose polymerase (PARP) expression.2,53 Polyamide induced apoptosis would be characterized by dose-
dependent increases in the fraction of cells in the sub-G0/G1 phases of the cell cycle, caspase-3 activity, 
and in the expression of cleaved PARP. STAT5-negative PC-3 cells will serve as a necessary negative 
control. The selectivity of polyamide induction of apoptosis in cancerous versus normal cell lines will be 
determined by comparing these results to those found in an analogous experiment on HUVEC and NHDF 
cell lines.  
 
 Polyamide effects on the C4-2 cell line will be further studied in an in vivo murine model. All 
experiments are to be conducted at the Caltech Animal Facility following the experimental procedures 
outlined in the IACUC protocol of the Dervan laboratory (#1638-11, date of approval: 9/21/11). Male 
immunocompromised mice will be injected subcutaneously (s.c.) with up to 107 C4-2 cells in PBS. 
Following a 1-2 week tumor engraftment period, Py/Im polyamides will be injected intraperitoneally (i.p.) 
at doses not exceeding 40 mg/kg over the course of up to 12 weeks. The animals will be injected with 
polyamide up to three times a week with a resting period of at least onea day between injections. A 
vehicle-treated reference control group will be maintained throughout the experiment. Recent 
investigations conducted in the Dervan laboratory showed that micromolar concentrations of polyamide in 
murine blood could be achieved following i.p. injection of polyamides with varying sequences.57,58 Tumor 
volume will be monitored at least once a week using caliper measurements. Retro-orbital blood samples 
will be collected weekly and levels of tumor-specific secreted factor PSA measured by enzyme-linked 
immunosorbent assay (ELISA). After four weeks of polyamide treatment, the mice will be sacrificed by 
asphyxiation (CO2 chamber, 60%). Tumors will be excised and sectioned for histological blood vessel 
quantification. RNA-seq experiments will further be conducted to determine global polyamide effects on 
the tumor transcriptome in comparison to the vehicle treated group. 
  
Potential Problems with this Proposal 
 
 Three possible problems with this proposal are presented and addressed. 
 
(i) The proposed polyamides are not sufficiently specific to be considered therapeutic candidates for the 

selective inhibition of STAT5 in the context of the human genome. 
 
 The human genome likely contains over a million potential binding sites for a compound that targets 
six base pair sequences. However, many of these sites are inaccessible in the context of nuclear 
chromatin. Boyle and coworkers have shown using DNase I hypersensitivity maps that only 2.1% of the 
genome is accessible in CD4+ T-cells.66 Moreover, polyamide binding at non-promoter sequences of 
accessible DNA does not affect transcription, as RNA polymerase dislodges polyamides from DNA during 
transcription.67 Despite the prevalence of six base pair sequences targeted by 8-ring polyamides in the 
genome, the HIF-1 studied mentioned above shows that polyamides have a relatively small effect on 
global gene expression. 
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(ii) The STAT family of proteins share a similar DNA binding domain, so polyamides designed to target a 
six base pair STAT5 sequence will invariably target other members of the family of transcription 
factors. 
  
STAT5 and STAT3 site sequences share the most 

homology (5’-TTCNNNGAA-3’ and 5’-TTCCNGGAA-3’, 
respectively) among the STAT family.68 Polyamides 1 and 2 
target STAT consensus sequences with at least two 
mismatched sites and are expected to be selective for 
STAT5 over STAT3. Polyamide 3 matches the STAT3 
consensus when N=W and will likely inhibit some binding of 
both STAT3 and STAT5 to the cognate sequence. 
Comparison of the gene regulatory activity of polyamides 1-3 
will allow us to analyze selectivity of the proposed 
polyamides. Binding specificity could be improved by 
expanding the Py/Im core to target seven or eight base pair 
sequences (Figure 7).  However, disruption of STAT3 
activated gene expression would not necessarily be an 
undesired consequence of polyamide binding, as constitutive STAT3 activity has also been implicated in 
the malignant phenotype of numerous cancers.32 For this reason, polyamide 3 was deliberately included 
in this proposal.  

 
(iii) Inhibition of STAT5 target gene expression is not selective for cancer cells. 
 
 CRPC tumors are dependent upon persistent STAT5 activity for malignant cell growth and survival. It 
has been suggested that even partial inhibition of STAT5 mediated transcription would be fatal to tumor 
cells as a consequence of this increased STAT5 dependence.32 Normal cells could plausibly survive with 
low levels of active STAT5 or utilize other survival pathways. Indeed, even STAT5 null mice remain 
viable, despite impaired mammary gland development and abnormalities in hematopoiesis.36,69 
Conversely, disruption of STAT5 signaling in tumor cells causes massive apoptosis. Aim 3 will provide a 
direct comparison of polyamide treatment on normal versus cancerous cells. 
 
Closing Remarks 
 
 The primary aim of this proposal is the development of a small library of polyamides designed to 
inhibit the binding of STAT5 to its cognate promoter site sequences. We hypothesize that the disruption of 
STAT5 binding events should suppress gene expression necessary for tumor cell growth and survival, 
resulting in apoptosis of CRPC cells. Inhibition of STAT5 transcriptional activity at the protein–DNA 
interface represents a new approach toward the treatment of CRPC. Accordingly, extensive 
experimentation has been proposed to fully elucidate the binding affinities and specificities of polyamides 
1-3 for the cognate DNA sequences, to determine if the polyamides are able to traffic to the nucleus, and 
to quantify the effect of polyamide treatment on gene expression in prostate cancer cells. The ability of 
polyamides to reduce the viability of cancer cells will then be examined in cell lines and in mice bearing 
xenograft tumors. Results of these studies will reveal the therapeutic potential of polyamides in the 
treatment of CRPC and contribute to the understanding of STAT5 signaling in prostate cancer cells.  
 
 

Figure 7. Polyamide modifications: 
extended hairpins targeting 7 bp 
sequences of CYCLIN-D1 promoter. 
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LIST OF ABBREVIATIONS 

 

Ac2O    Acetic anhydride 

AcCl    Acetyl Chloride 

AcOH    Acetic acid   

AIBN    Azobisisobutyronitrile 

AQN    Anthraquinone 

ATP    Adenosine-5’-triphosphate 

9-BBN    9-Borabicyclo[3.3.1]nonane 

Bn    Benzyl 

BnBr    Benzyl bromide 

Boc    tert-Butoxycarbonyl 

Boc2O    Di-tert-butyldicarbonate  

BOMCl   Benzyloxymethyl chloride 

BOP (Benzotriazol-1-yloxy)tris(dimethylamino) phophonium 

hexafluorophosphate 

CbzCl    Benzyl chloroformate 

cod    1,5-Cyclooctadiene 

CREB    cAMP response element-binding 

d    Day 

Davis’s oxaziridine  2-(Phenylsulfonyl)-3-phenyloxaziridine 

DEAD    Diethyl azodicarboxylate 

Dess-Martin or DMP  Triacetoxy o-iodoxybenzoic acid 

DBU    1,8-Diazabicyclo[5.4.0]undec-7-ene 

DHQD    Dihydroquinidine 

DIBAL-H   Diisobutylaluminium hydride 

DMAP    4-(Dimethylamino)-pyridine 
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DMDO   Dimethyldioxirane 

DME    Dimethoxyethane 

DMF    Dimethylformamide 

DMS    Dimethylsulfide 

DMSO    Dimethyl sulfoxide 

dppf    1,1’-Bis(diphenylphosphino)ferrocene 

DTBMP   2,6-di-tert-butyl-4-methylpyridine 

EDCI    N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

ee    Enantiomeric excess 

e.r.    Enantiomeric ratio 

Et3N    Triethylamine 

EtOAc    Ethyl Acetate 

Et2O    Diethyl ether 

EtOH    Ethanol 

Fmoc    Fluorenylmethyloxycarbonyl 

FmocOSu 9-Fluorenylmethyl N-succinimidyl carbonate, N-(9-

fluorenylmethoxycarbonyloxy)succinimide 

GSH    Glutathione 

h    Hour 

HATU O-(7-Azabenzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium 

hexafluorophosphate 

HIF-1 Hypoxia-inducible factor 1 

hν Irradiation with light 

iBu    Isobutyl 

iPr    Isopropyl 

iPr2NEt   N,N-Diisopropylethylamine 

Imid    Imidazole 

KOtBu    Potassium tert-butoxide 

LDA    Lithium N,N-diisopropylamide 

LHMDS            Lithium bis(trimethylsilyl)amide 

mCPBA   m-Chloroperbenzoic acid 
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Me    Methyl 

MeCN    Acetonitrile 

MeI    Methyl iodide 

MeOH    Methanol 

min    Minute 

MOMCl   Methyl chloromethyl ether 

MRSA    Methicillin-resistant Staphylococcus aureus 

MsCl    Methanesulfonyl chloride 

NADPH   Nicotinamide adenine dinucleotide phosphate 

NaHMDS   Sodium bis(trimethylsilyl)amide 

NBS    N-Bromosuccinimide 

NCS    N-Chlorosuccinimide 

NIS    N-Iodosuccinimide 

nBuLi    n-Butyllithium 

N-PSP    Diphenyl diselenide 

O/N    Overnight 

Pd(OAc)2   Palladium(II) acetate 

Pd/C    Palladium on carbon 

Ph    Phenyl 

PhI(OAc)2   Iodobenzene diacetate 

PhMe    Toluene 

PPTS    Pyridinium p-toluenesulfonate 

PPY (R)-(+)-4-pyrrolidinopyridinyl(pentamethylcyclo-

pentadienyl)iron 

Py. or Pyr.   Pyridine 

No Rxn   No reaction was observed 

RT or r.t.   Room temperature 

Sat’d    Saturated aqueous solution 

T3P    Propane phosphonic acid anhydride 

TBAF    Tetrabutyl ammonium fluoride 

TBDMSCl or TBSCl  tert-Butyldimethylsilyl chloride 
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TBDPS   tert-Butyldiphenylsilyl 

TBSOTf   tert-Butyldimethylsilyl trifluoromethanesulfonate 

Teoc    2-(trimethylsilyl)ethoxycarbonyl 

TES    Triethylsilyl 

Tf    Trifluoromethanesulfonate 

TFA    Trifluoroacetic acid 

TFAA    Trifluoroacetic anhydride 

Tf2O    Trifluoromethanesulfonyl anhydride 

THF    Tetrahydrofuran 

TIPS    Triisopropylsilyl 

TLC    Thin layer chromatography 

TMS    Trimethylsilyl 

TMSOTf   Trimethylsilyl trifluoromethylsulfonate 

Tr    Trityl (triphenylmethyl) 

Triton B   Benzyltrimethylammonium hydroxide 

pTsOH or pTSA p-Toluenesulfonic acid 

µw  Microwave irradiation 

V-70  2,2’-Azobis(4-methoxy-2,4-dimethyl valeronitrile) 

VRE  Vancomycin-resistant Enterococcus 

	  




