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ABSTRACT

DIFFERENTIAL RESPONSE FROM SELECTION FOR LOW BIRTH WEIGHERSUS

HIGH CALVING EASE IN BEEF CATTLE

The economic importance of calving ease is derivaanfrthe reduction in costs
associated with dystocia. However, the genetic imprare of calving ease did and still does
rely upon the downward selection for a trait with dioect economic relevance (i.e., birth
weight). Given the antagonistic genetic relationdtgpyeen calving ease and postnatal growth
traits, such a strategy could result in productiongsfter animals with uncertain gain in calving
ease. Therefore, we hypothesized that direct sele¢tiorhigh calving ease would reduce
performance losses associated with selection for low tigight. Thus, the main objective of
our study was to compare two selection approachededtisa for high calving ease; ariti
selection for low birth weight. To evaluate theppraaches, we used both simulated data and
American Simmental Association field data. Another pboating factor was the approach to
evaluation of calving ease with a threshold versusneali model. The advantages of the
threshold model over the linear model, in the analys ordered categorical traits, were
investigated in the literature. Results are varieth w@ime supporting and others discounting the
superiority of the threshold model. Therefore, anotgeal of the current study was the
predictive ability of the threshold and linear metblmgies used in the genetic evaluation of

calving ease as an example of ordered categoraitd.tr

Data on calving ease, birth weight, weaning weightl wearling weight were obtained

from the American Simmental Association (ASA). Givére tmulti-breed nature of the ASA



database, only animals with >87.5% Simmental composition (to avoid heterosis) were included
in our study with data constructed from the base populaif 2 year old dams as they provide
the most relevant calving ease observations (N=95,79&anilg and yearling weights were
adjusted for age to 205 and 3@5respectively. Further, 168postweaning gain was calculated
from the adjusted weights. Four-generation pedigreese wonstructed to estimate sire and
maternal grandsire (co)variance components for ogleiase (CE), birth weight (BWT), and
205-d weight (205d WT), and sire (co)variance components for tg@estweaning gain (160-
gain) using threshold-linear sire and sire-maternahdgie models with a Gibbs sampling
algorithm. Following variance component estimatitime direct and maternal EBV for CE,
BWT, and 205d weight and direct EBV for 168-gain and 36% weight for 465,710 animals
were calculated using a threshold-linear multivarraggernal animal model. Calving ease was
modeled as a threshold traite(, underlying continuous liability was assumed) witbl&erved
categories (1 = Unassisted calving, 2 = minor assistamck3 = major assistance + caesarean).
The 3656 weight direct EBV were calculated as the summatioh®festimated EBV for 208-
weight and 16@ gain. A subpopulation of 2 year old (first-calf) $mantal heifers (n =
277,897) was extracted under the restriction of oholy only progeny of first-calf heifers. This
subpopulation was used for estimating genetic trendsnoh8ntal, and was also used agoal

of data (control scenario) for different selection scesa Therefore, six selection scenarios, for
low birth weight as opposed to selection for high cejwease, were created. Using the first-calf
heifer data (the control), data for each selectiomate were created by selecting sires, within
each year of birth, with EBV > the average, then the top 75% of dams with progeny were
selected. Six selection scenarios were evaluated wiilsimgle trait selection scenarios for both

high calving ease (HCE) and low birth weight (LBWT)addition to four different selection



indices. The indexes were the all-purpose selectionxiid®l = -1.8BWT + 1.3CE + 0.10
VWWT + 0.20YWT) adopted by the ASA, two derivative sub-indicesP[A= 1.3CE + 0.20YWT)
and (AP} = -1.8 BWT + 0.20YWT), and lastly Dickerson’s selection index (DSI = -3.2 BWT +
YWT). For each selection scenario, EPD were standardizedhandexpressed as a deviation
from the average EPD, within birth year, from thetoarscenario. Comparison between various
selection scenarios involved that of the direct andemat genetic trends of studied traits and
the net profit from these scenarios. Here, the nettpsafs calculated for all selection scenarios
using the API. Furthermore, we examined the threshwddlel suitability for the analysis of
categorical traits as opposed to linear with the fiedt-8immental heifer calving ease as the trait
of interest. We also addressed, not only the linearfitthe trait, but also the number of trait
categories, the number of fitted traits, and extertdeccomparison to include the animal model
versus the sire model. Only direct (or sire effecthendire model) genetic effects were fitted in
all models. Using a balanced datih herd size > 50 animals, the efficiency of models were
determined by the predictive ability @achmodel using a cross validation “data splitting”
technique. The model’s predictive ability was estimated using the correlations (Pearson’s and

Spearman’s) between predicted CE EPD obtained from two complementary subsets.

Two simulated data sets were created under two s®iestienarios. Selection scenarios
were first, selection for high calving ease (HCE) aedond, selection for low birth weight
(LBW). In both simulated populations, observations olwicg ease (CE), birth weight (BWT),
weaning weight (WWT), and postweaning gain (PWG)enaeated. Each population consisted
of a base generation of 1,200 sires and 36,000 danesfifBh generation was produced by
random mating of founders (1,200 sires and 36,000 daEe)h of the three subsequent

generations was produced by selecting the top 5% @¥dd sires and dams, respectively, from



previous generations. Parameter estimation was carutedsing a multivariate threshold-linear
model with Gibbs sampling algorithm. Fixed effects wkeed (n = 120) and sex of calf. For
both selection scenarios, direct genetic trends for BE,T, WWT, PWG, and YWT were

estimated. Using the HCE data, the predictive abditythe threshold and linear models was

compared using the same cross validation procedure dagéoib8immental field data

Results from simulated data using single trait selediwonow birth weight versus high
calving ease showed that the rate of genetic chan@EdqPo unassisted calving/yr) from the
high calving ease selection scenario was higRes 0.001) than that from the low birth weight
scenario. Both selection scenarios have reduced gratghHowever, genetic trends of growth
traits obtained under the high calving ease selectiomasicewere higherR < 0.001). Selection
for high calving ease increasdd € 0.001) the annual genetic change @&, WWT, and YWT
over the low birth weight selection scenario by 0.37265 kg, and 1.77 kg, respectively.
Therefore, selection for high calving ease produmeithals with better calving ease EPD and
with higher growth rates at later ages. Both threshold linear models had similar predictive
ability (i.e., similar correlations). The similar pretive ability might be a result of the highly
balanced data used in current study. Nonetheless, badklsnexhibited substantial increases in

the accuracy of prediction f@E when BWT was incorporated as a correlated trait.

Results from the American Simmental beef cattle fath resulted in direct heritabilities
for CE (on the underlying scale), BWT, 2@6WT, 160d gain, and 36% WT within the
literature estimates of the Simmental beef cattletekal heritability estimates for CE, BWT
and 205d WT were also in agreement with the Simmental estimaesrted in the literature.
The high negative genetic correlation betw&@hand BWT (-0.67) and the high heritability of
BWT (0.52) justified the importance of incorporatiByVT in the genetic evaluation &fE. The

\Y



moderate positive genetic correlations between BWH satbsequent growth traits exposed the
genetic antagonistic relationship betweégh and postnatal growth traits when selection for low

birth weight is applied.

Results obtained from the Simmental field data showedl &ll selection scenarios, for
high calving ease versus low birth weight, comparedht control scenario, have reduced
growth rate but increased ease of calving. Generakycalving ease-based selection scenarios
(HCE, API, and APJ) had the highest net profit and showed higher gernetnds for calving
ease and growth-related traits compared to the bidightrbased selection scenarios (LBWT,
DSI, and APJ). The calving ease-based selection scenarios shiftadtdreept of the net profit
of the control scenario by 13, 11.6, and 11.1 $, eetsgely; whereas, the birth weight-based
selection scenarios showed lower intercepts of 8.2,an®,8.8 $, respectively. The single trait,
HCE, selection scenario substantially improved calvingeeand growth-related traits and

resulted in a shift of the intercept of the net pgrofier the LBWT by 58%.

The comparison of models predictive ability usingegiold and linear or animal and sire
approaches revealed that the threshold model outpeztb the linear model. The highest
predictive ability among all compared models was ioleth from the threshold-linear sire model
with calving ease fitted as a binary trait. The in@asof linear trait(s) improved the prediction
of categorical traits. Furthermore, the analysis ategorical traits with two continuous traits
resulted in small differences between the thresholdliaedr models. The higher the number of
categories, the better the linear model predictiocpntrast, the threshold-linear models showed

better predictive ability when calving ease was fiisda binary outcome
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CHAPTER I.

INTRODUCTION AND OBJECTIVES

1.1. Introduction

Traits measured on farm animals can be categorizedwat groups. First, a trait that has a
direct effect on profitability by being associatedhwa specific cost of production or income.
Traits in this class are known as economically relevant traits or “ERT” (Golden et al., 2000)
Second, a trait that does not affect profitabildg, it indirectly influences profitability through a
correlation with the ERT, is called an indicatorttreiowever, indicator traitse(g., birth weight)
are included in genetic evaluations to help preithietgenetic merit of ERT.§)., calving ease)
and improve accuracy of genetic prediction (Goldeal., 2000; Enns, 2010). An example of an
economically relevant trait is calving difficulty vdim describes the difficulty of birth
experienced by a cow. Calving difficulty is measubgda scoring system that gives subjective
scores ranging from 1.€., unassisted calving) to &, mal-presentation) where the higher the
score the more difficult the birth (BIF, 2010). Calyiease is, by definition, the opposite of
calving difficulty meaning that the lower the scohe tmore likely the birth process to become
easier. Basically, both are the same trait from tespectives; therefore, they will be referenced
synonymously and used interchangeably throughout dbisument Numerous publications
described the economic importance of calving difficuésulting from the cost associated loss of
calf, death of dam, labor and veterinary charged, @or subsequent reproductive performance
(Wiltbank et al., 1961; Laster et al., 1973; Meipgyi 1984) In Holseins cattle, estimated costs

associated with categories of calving difficulty we$6.00, $50.45, $96.48, $159.82, and



$379.61 for scores 1 to 5, respectively, (Demataweveh Berger, 1997)These costs were
estimated from losses in milk yield, fat yield, pratgield, days open, number of services, and
calf deaths. However, the total cost associated dg#tocia (i. e., within-parity sum of costs
associated with dystocia scores weighted by the piiitlgatf occurrence) was $28.53 for an
average heifer and about $10.00 for an average otoe.

The most influential factors contributing to the ohemnce of calving difficulty are calf birth
weight followed by pelvic area of dam (Bellows, 1998creasing birth weight byl kg increased
the incidence of calving difficulty by (2.3% aster et al 1973) and(13% “Odds ratio”;
Johanson and Berge2003) Birth weight accounted for 50% of total varianck calving
difficulty while pelvic area accounted for 10% (Maing, 1984). The undesirable combination
of both factors is called feto-pelvic disproportionincompatibility (FPD) which is the main

cause of calving difficulty (Meijering, 1984)

Calving ease has a higlegative genetic correlation with birth weight (Koots et 41994b;
Eriksson et al., 2004, among others). Therefore, in g@sttic evaluations of calving ease, birth
weight was incorporated as a correlated indicatait. tOver the years, in order to improve
calving ease, animal breeders have put significamthesis on selection for low birth weight.
Nonetheless, a genetic antagonistic relationship miag given the fact that birth weight has
high positive genetic correlations with subsequent growth traitsthiény Burfening et al. (1978b)
stated that selection for low birth weight would et as effective in improving the ease of
calving. MacNeil et al. (1998) suggested that disslection for calving ease may be more
effective than selecting for the indicator traititbbiweight. Hence, we hypothesize that selection
for low birth weight would result in lower growthtes at later ages than would selection on

calving ease. Calving ease has lower genetic corretatrath later growth traits than birth



weight, and therefore we believe direct selectianhigh calving ease will improve the ease of
calving and reduce the performance loss in postrgraith traits. If true, the preferable

approach would be to use calving ease as selection catedpposed to birth weight.

The best linear unbiased prediction (BLUP), givemajppealing properties, is considered
the method of choice for the genetic evaluationdata that follow multivariate nornha
distribution. Nonetheless, when analyzing orderedgoaieal responses.(., calving ease) via
linear methodology like BLUP, assumptions of: normalityomogeneous variance, and
additivity of effects are violated. Gianola and Hewl(1983) described a method called the
threshold methodology to be used for the analysis of sadh. The threshold methodology has
been validated, theoretically and by simulation ®sdto be more suitable for analysis of
ordered categorical traits than the linear approathwever, there have been relatively few
citations comparing threshold and linear methodokging field data which press the need to
investigate and verifghe superiority of the threshold model over the lineardel using field
data. The combination of the need to compare beathods of calculation and both approaches

to selection using field data from the ASA is the wattion for this dissertation

1.2.0bjectives
The primary focus of this dissertation was to investigage effect of selection for high
calving ease compared to selection for low birth weigh other performance traite.g.,
yearling weight) and profitability in terms of netfit.
Objectives of simulation studies and field data aresyare outlined as follow:
Simulated data:
1. Identify the best approach to reduce calving diffic through quantifying performance

losses using estimation of genetic trends for calving ééadl,weight, weaning weight,

3



postweaning gain, and yearling weight under two $elecscenarios: selection for low
birth weight versus high calving ease.

2. Comparison of different animal models used in the geretaluation of calving ease
where calving ease was fitted as a binary or polyhots trait. Compared models
included: univariate animal model fitted to calviegse (Threshold vs. linear), bivariate
animal model fitted for calving ease and birth wei@hteshold-linear vs. liearlinear),
multivariate animal model fitted for calving ead®rth weight, and weaning weight
(threshold-linear vs. linear-linear), and multivariatemal model fitted for calving ease,

birth weight, weaning weight, and postweaning gtineshold-linear vs. linear-linear).

Simmental (field) data:

1. Estimate genetic and residual parameters ((co)variafcesplving ease, birth weight,
weaning weight, postweaning gain, and yearling we@fhAmerican Simmental beef
cattle by means of the threshold methodology.

2. Compare different models fitted to calving ease (lyingrsus polychotomous) using
first parity Simmental heifer data including: threkhweersus linear; animal model versus
sire model.

3. Compare genetic trends for calving ease, birth weigleaning weight, postweaning
gain, and yearling weight of American Simmental besfle under six different artificial
selection scenarios: High calving ease (HCE), low birth weight (LBWT), Dickerson’s
selection index (DSI), all purpose selection index meo@nded by the American
Simmental Association (API), ARlincludes only yearling weight and calving ease, and
API,: includes only yearling weight and birth weight.

4. Compare profit between all selection scenarios apppieSimmental data.
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CHAPTER II.

LITERATURE REVIEW

In this chapter, literature on topics considered thastnmelevant and essential for the
study of ordered categorical traite.(f,, calving ease) were reviewed. These topics included
ordered categorical traits, factors influencing cadvease, the threshold model, Markov Chain
Monte Carlo (MCMC) and the Gibbs sampling algorithmodel comparisons (threshold versus
linear, and animal versus sire), genetic and residual parasn&ie calving ease and growth
traits, selection index, and genetic trends estimétat selection trails for calving ease and

birth weight

2.1.0Ordered categorical traits

Ordered categorical traits are traits that have piypes that can be assignietb ordered
classes. Traits with only two categories are known aspinaits (e.g., disease susceptibility
“infected vs. healthy” and pregnancy status as pregnant vs. non-pregn@alying ease is a
traditional example of ordered categorical traiticl has an observed distribution based on the
discrete nature of its phenotype (Fig. 2.1) which isgagsl to animals following a scoring
system based on the degree of calving difficulty whaaiges from 1 for unassisted calving to 5
for mal-presentation. Since most ordered categoma#ktin the field of animal science are in
essence quantitative traits, categories of this kindaifstcan be ordered along a hypothetical
underlying continuous distribution in which the observeategories are transformed to an

underlying continuous variate known as liability.



1= Unassisted | | 2= Minor assistanc| | 3= Major assistanc| 4= Cesarean | | 5= Mal-presentatiol
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Figure 2.1: The underlying continuous variate (liability) arm tdiscrete observed score:
of calving ease

Calving ease is by definition the opposite of calvidifficulty which is an ordered
categorical trait measured by subjective scoring systewhich the degree of calving difficulty
is recorded as follow: 1 for unassisted calving, 2 foramassistance, 3 for major assistance, 4
for caesarian section, and 5 for abnormal presentatién 2810)

Economically relevant traits (ERT) are “the traits that directly affect profitability by being
associated with a specific cost of production or an income stream” (Golden et al., 2000). The
economic importance of calving difficulty is docunteash in the literature (Wiltbank et al., 1961;
Anderson and Bellows, 1967; Brinks et al., 1973; Lasteal.,1973) Because of its association
with a cost of production such as loss of calf (Nivakt 1998), death of dam, and the cost of

labor and veterinary procedures (Philipsson, 1976lljpBson et al., 1979; Meijering, 1980,



1984), calving difficulty can be classified as an ERtUrther, Thompson et al. (1983) reported a
reduction in subsequent reproductive performance wka@xperiencing calving difficulty. The
economic importance of calving difficulty, in daicattle, was also confirmed and estimated by
Dematawewa and Berger (1997). They evaluated theoaeic impact of dystocia on different
production and reproductive traits. These authorgmastd the cost associated with each
category of calving difficulty to be $0.00, $50.4806.48, $159.82, and $379.61 per head for

scores 1 to 5, respectively.

2.2.Factors affecting calving difficulty

Some factors have a direct effect on the incideriamlving difficulty such as calf birth
weight and pelvic area of dam. Other factors hawbrest effect on calving difficulty via
affecting either birth weight or pelvic area of dasex of calf, gestation length, and weight of
dam during pregnancy are important factors thati@rfte birth weight and consequently calving
difficulty. Factors affecting pelvic area of dam gvarity and age of dam at first calving.
Literature describing the contributing factors thdeetf the incidence of calving difficulty are

reviewed in the succeeding sections.

Calf size: The incidence of calving difficulty is primarily iden by a combination of two major
factors: size of calf (consequently, birth weight) gredvic area of dam (Bellows et al., 1969;
Prentiss, 1971; Rice and Wiltbank, 197Bellows (1993) reported that the most important
factors thatffect dystocia were precalving weight and pelvic atthe dam, as well as sex and
birth weight of the calf. Further, he concludedtthath weight is the most important factor
followed bythe dam’s pelvic area. The incidence of calving difficulty is greatly lnénced by
the interactions of birth weight of calf and dam’s pelvic area (Fig. 2.2) where birth weight has a
higher influence. As birth weight increased by 1 #kg odds of calving difficulty increased by
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13% (Johanson and Berger, 200B33ster et al. (1973) and Burfening et al. (1978a)exed
increase in the percent of assisted calving as 2.3%s&breeds and different ages of dam) and

4.5% (2 yr old Simmental heifers), respectively, whigthlweight increased by 1 kg.

Calf birth weight, as a measure calf size, is widedgd in the genetic evaluation of
calving difficulty. This is a result of its strong geieecorrelation with calving difficulty which
ranged from 0.72 to 0.78 (Burfening et al., 198bots et al.,, 1994b; Eriksson et al., 2004;
Phocas and Laloe, 2004; Jamrozik and Miller, 2014)f €lak is a function of genetic and
environmental factors. These factors are breed ofasidedam, sex, gestation length, parity, age

of dam, and dam’s nutrition during gestation. Each of these deserves additiomatiigation

which follows.

o, Calving difficulty

Figure 2.2 Relationships among pelvic area, calf birth weigltt parcent calving
difficulty. Adapted from Bellows (1993).



Sex of calf: Bull calves are typically heavier at birth thanfees. Consequently, a higher
incidence of calving difficulty is observed when tladf ¢s a maleEverett and Magee (1965) and
Smith et al. (1976) reported that male calves hawmdr gestation length (0.9 and 1.7 d,
respectively) compared to female calves. The longstagion length was associated with higher
birth weight. A corresponding effect of sex on dystowias confirmed in several studies
(Bellows et al., 1971; Brinks et al., 1973; Naazialet1989; Sieber et al., 1989; Klassen et al.,
1990; Dekkers, 1994; Johanson and Berger, 2003). &VMes have a higher incidence of
dystocia P < 0.05) compared to heifers, consequently, they hagleer mortality within 24 h of
birth (Nix et al., 1998). Incidence of unassistedvice for males and females, from first parity
heifers, were 48.9% and 55.6%, respectively (Dekkers})1%r later parities, the incidence of
unassisted calving were 66.5% and 71.3% for their réspesex. Similar results were attained
by Steinbock et al.2003) who found that Swedish Holsteins heifers that gaviadito males

expressed higher incidence of calving difficulty commpgito heifers with female progeny.

Gestation length: Cows with longer gestation length experienced mateirg difficulty (Laster

et al., 1973; Philipsson, 19&p Gestation length has been investigated in relaboboth calf
size and sex (Everett and Magee, 1965; Smith et @r.6)1 On the genetic level, moderate
genetic correlations of 0.20 and -0.21 were estimb&tdieen gestation length and birth weight
and calving ease, respectively, (Lee et al.,, 2002)s Shggest an antagonistic relationship
between gestation length and calving ease whichiverdiby the positive effect of gestation
length on birth weight. Similar results were obtaingg Jamrozik and Miller (2014) who
reported that gestation length had genetic correlagstimates of 0.23 and -0.21 with birth
weight and calving ease, respectively. Results from Ketrgd. (1988) showed that as gestation

length increased, the incidence of calving diffiguincreased Mujibi and Crews (2009)
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estimated strong genetic correlations of 0.43 an@-Be?ween gestation length and birth weight
and calving ease (transformed to Snell scores), resplctim summary it appears that gestation

length is consistently negatively related to calvingeesand positively related to birth weight.

Parity and age of dam at first parity. The total cost associated with calving difficulty was
$28.53 for 2 year old heifers and about $10.00 lderocows (Dematawewa and Berger, 1997)
Parity and age of dam within parity appeato also influence incidence of calving difficulty;
therefore, inclusion of parity in the genetic evéla of calving difficulty has been emphasized
by many researchers (Berger and Freeman, 1978; lldaarid Mee, 1984). In general, first
parity heifers, in both dairy and beef cattle, @gsed higher incidences of calving difficulty than
cows at later parities (Berger and Freeman, 197@&mfson et al., 1983; Fiedlerova et al.,
2008). Furthermorehe odds of unassisted calving versus assisted calvingmwéjbr difficulty
were 11.58 times greater in older cows than in heif@®erger et al., 199. This trend was
further reinforced when Nix et al. (1998) reporfgdniparous dams had a higher incidenee<(
0.01) of calving difficulty (17%) compared to mulippus dams (4%). They found that calf
mortality increased as the severity of calving diffiguhcreased. Further, loss of calves from
primiparous dams within 24 h of birth was higher tfgr< 0.01) those from multiparous dams
with mortality rates of 7% and 4%, respectively, leadigyduthors to conclude that birth weight
and parity of dam explained most observed variabifitycalving difficulty. Steinbock et al.
(2003) concluded that first parity Swedish Holsteie#fdrs showed more variation in calving
difficulty than second parity heifers. The incidendecalving difficulty was higher for first
parity heifers at calving age <30 months and thegmsuended that first parity heifers should be
bred at a moderate age (> 21 mo) to reduce thednce of calving difficulty. Laster et al.

(1973) reported that, when birth weight held constage of dam was the most important effect
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(p<0.005) associated with calving difficulty. Similasults were reported by Brinks et al. (1973)

in their study on Hereford

Pelvic area of dam: Calf birth weight and pelvic area of dam are thestrimportant factors
influencing the incidence of calving difficulty (Mering, 1984). The author reported that both
factors accoumd for 50% and 10% of total variance of calving difligu Feto-pelvic
disproportion (FPD) occurs when the fetus weight og 8znot compatible with pelvic area of
the dam. Pelvic area of dam is considered the mostriart maternal trait that affects calving
difficulty (Price and Wiltbank, 1978; Morrison et al., 1985). ittence of calving difficulty
decreased by 11% when pelvic area increased by (lwhanson and Berger, Z)0However,
Laster (1974) and Naazie et al. (1991) found wdanptypic and genetic correlations between
calving difficulty and pelvic area of dam; howevir the latter study, authors speculated that the
low correlations would be attributed to the aboveeshold pelvic area observations (i.e., dams
have pelvic area larger than the threshold at weédhing difficulty would likely occur)Naazie

et al. (1991), in a study on three synthetic bresdggested that pelvic area and birth weight
combined would be a better predictor for calviniicllty than using only one of them. Johnson
et al. (1988) suggested that ratio of heifer pelvéado calf birth weight should have a minimum
of 4.7 cnf/kg; however, estimation of birth weight will be tiral because it is not available
before calving. Bellows et al. (1982) reported theifers are smaller than cows in pelvic height,
width, and pelvic area, consequently they experienoede calving difficulty. In summary,
estimation of breed-specific pelvic area thresholdotspmactical since the interaction with birth
weight was evident; however, ratio between birthglveiand pelvic area would be a viable
option to consider. Further, as heifers are growigg, & heifer when pelvic area is measured is

another important factor that should be considered.
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Dam weight and prenatal nutrition: Level of nutrition during pregnancy affects dirgctlam
weight and body condition score which in turn infloerfetal growth. Since birth weight is the
final weight of prenatal growth, any change in itioin will accordingly change weight of dam
and calf birth weight and eventually the inciderufe calving difficulty. Cows with body
condition score (BCS) of 4.7 gave birth to lightelvea (-4.3 kg) than those from cows with
BCS of 5 (Houghton et al., 1990Forah et al. (1975) found that heifers lost 5.8 kdpady
weight gave birth to lighter calves (-2 kg) comparedalves produced by cows that gained 36.1
kg in the last 100 d of gestation. Birth weightcafves from heifers with BCS of 2.5 was lower
(-4.1 kg) than those from heifers with BCS of 5.5, bwer, nutrition level did not affect
incidence of calving difficulty (Bellows and ShotQ78) Freetly et al. (2000) reported that cows
on a low plane nutrition during pregnancy gave birth dalves with lighter birth weight
compared to calves from cows with better nutritiBlowever, in a study on Angus, Hereford
Angus-Hereford, and Simmental-Angus, Morrison et(B3299) found that weight and BCS of

dam did not affect calf birth weight.

Breed of sire and dam: Direct genetic effects, for different beef cattleedxuls, can account for
significant amounts of variation in birth weight ramg from26 to 66% of total variance (Koots
et al., 1994a; Bennett and Gregory, 1996; Erikssaal.eR004; Phocas and Laloe, 2004). For
calving difficulty, heritability estimates were tyailly lower ( 6 to 26%; Kemp et al., 1988;
Koots et al., 1994a; Matilainen et al., 2009). Teagic makeup of sire and dang,, maternal
grandsire of a calf can affect the incidence of iogidifficulty (Laster et al., 1973; Meijering,
1984) Laster et al. (1973) reported that calves sired mfigental beef breeds expressed more
difficult births than those sired by Hereford, Jersey, Andus. Furthermore, breed of dam was

another determinant factor for calving difficultynere Hereford dams experienced more calving
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difficulty than Angus dams. Brinks et al. (1973) rdpdrthat line of sire and line of dam
significantly influenced incidence of calving diffity in a study with different Hereford lines.
Smith et al. (1976) reported that breed of sire brekd of dam have significant effects on
calving difficulty of Hereford and Angus cows witlalees sired by Hereford, Angus, Jersey,
South Devon, Limousin, Charolais, and Simmental sifRssults showed that interaction
between breed of sire and age of dam (parity) haudghly significant effect on calving
difficulty, especially for first parity dams.

In summary, all genetic and environmental factors agtetiwith calving difficulty, such
as genetic makeup of calf, sex, gestation lengthitioat, parity and age of dam, directly affect
birth weight, which is the most important factor ughcing incidence of calving difficulty. The
second most influential predictor of calving diffigulhppears to be pelvic area of dam which
interacts with birth weight to form Feto-pelvic disportion (FPD), which is considered the

main cause of calving difficulty.

2.3.The threshold model for categorical traits

Phenotypes of many traits in the field of animal saeree recorded as ordered
categories€g., calving ease and litter size in sheep). Categorigaira of such traits makes it
difficult to be analyzed via means of linear methHod@s where traits are assumed to follow a
normal distribution. One of the earliest papers ghavides a procedure to deal with categorical
traits was that of Grizzle et al. (1969), who proposegieighted regression procedure in which
weights are based on population frequencies estimated ftata. Authors assumed that
subclasses.g. sex, age of dam, sire, and herd, are samples from sepagailations; however,
Schaeffer and Wilton (1976) reported that those assungptiere not suitable for sire evaluation

of calving ease rather they assumed that subclasses arkeddmm one population. Berger
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and Freeman (1978) transformed a categorical tmta continuous trait through assignikg
ordered numerical values to tKecategories and then the transformed trait was tteste linear
trait that followed the general linear mixed modeahear appraches, such as Henderson’s best
linear unbiased prediction (BLUP; Henderson, 1953;ddeson, 1973, 1975), assume that data
is normally distributed, additive effects, and vades are homogenous; however, when
evaluating ordered categorical traits using lineatheaologies, those assumptions are violated
(Thompson, 1979; Gianola, 1982). It has been suggesiatd categorical traits have a
hypothetical underlying continususcale “liability” which becomes discrete (observed scale)
with fixed thresholds that determine the boundariethefcategories (Wright, 1934; Dempster
and Lerner, 1950; Falconer, 1965). The assumptionoohal distribution of liability appears
true if polygenic inheritance with large numbetai is evident (Foulley et al., 1990). Theory of
the threshold model was developed by Wright (1984iss (1935), anddempster and Lerner
(1950); however, the statistical methodology for thedel was developed by Gianola (1982)
Foulley et al. (1983)Gianola and Foulley (1983Harville and Mee (1984)Foulley et al.
(1987), ad Foulley and Manfredi (1991). The application of theeshold methodology from a
Bayesian point of view was introduced Byanola and Foulley (1983). The work of Harville
and Mee (1984) provided a procedure for the analysierdered categorical traits from the
classical BLUP point of view.

Development of the threshold methodology in the Bayesian framework: The work of Gianola
and Foulley (1983) of fitting a threshold model iBayesian setting was extended by Foulley et
al. (1983) to incorporate a enuous trait “birth weight” with equal design matrices (i.e., no
missing values)Foulley and Gianola (1984) extended the thresholdiehof Foulley et al.

(1983) to fit multiple categorical traits (calvingjfficulty and calf viability). Furthermore,
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Foulley and Gianola (1986) handled the problem w@sing data for sire evaluation of multiple
binary traits, but without allowing missing fixed effts. On the other hand, Foulley (1987)
derived equations for models with different fixedeefs (i.e., unequal design matrices for fixed
effects), but those models do not support missing dataif@d in Janss and Foulley, 1993)
Janss and Foulley (1993) developedsautite model for one continuous “birth weight” and one
threshold binary trait “calving difficulty” with unequal design matrices (i.e., unbalanced layout)

for both fixed effects and missing data. Hoeschele. €6.885) extended the model of Janss and
Foulley (1993) to fit one polychotomous trait (calyiease), rather than binary, and several
continuous traits (birth weight, gestation length, palyic size), rather than one continuous trait,

with missing data and unequal models (i.e., diffefixet effects).

The threshold methodology in a BLUP setting: A variety of approaches have been proposed to
deal with ordered categorical responses in a BLUP seffiageral publications have translated
categorical responses into quantitative responses by aggi§rordered numerical values K
categories (i.e., assigning a value to each categodythen using the assigned values as
observations). The analysis assumes the new discreteitgtramtresponse follows a mixed
linear model (Schaeffer and Wilton, 1976; Tong kt 8976; Tong et al., 1977; Berger and
Freeman, 1978). However, assumptions of additivityffeices and homogeneity of variances are
much less reasonable and more likely to be violatetthat approach (Gianola, 1982; Harville
and Mee, 1984). Gianola (1980aproposed a method based on the logistic distribution.
Logarithmic transformations of counts are expressed aarlicombinations of fixed effects and
random variables whereas Quaas and Van Vleck (198@oged a procedure in which the
probability of assignment to a particular categogsvassumed to be a random variable and the

BLUP of the category frequencies of future progemgwbtained (Quaas and Van Vleck, 1980)
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using that transformed data. The procedure proposéthbylle and Mee (1984) represented the
threshold methodology applied to ordered categoriegponses in a BLUP context. Authors
described the procedure as “A mixed-model version of the threshold model in which it is
assumed that the observed category is determined byathe of an underlying unobservable
continuous response that follows a mixed linear model”.

The proceduref Harville and Mee (1984) represents the BLUP versiothefthreshold
methodology and the procedure of Gianola and Fpu(E983) resembles the Bayesian
methodology. Both are “best-describd” and fit the discrete nature of ordered categorieatst
Both procedures are equivalent, despite the fact aaell different approaches to derive the
equations for estimation and prediction. Furthermdreth methods involve a system of
nonlinear equations which must be solved iterativebnsequently, they are computationally

expensive compared the linear models of Henderson’s BLUP (Djemali et al., 1987)

Computational limitations of the threshold model: The computational demand of the threshold
model analysis is about three to five times larger thardemand of the linear model (Misztal et
al., 1989). The authors stated that solutions of ttireshold model need to be obtained
iteratively, and in each round a linear system afatigns must be solved. The number of
threshold computations is proportional to the numidehi@sholds and records (Misztal et al.,
1989). Because it requires solving a system of nornliegaations iteratively, the threshold
methodology is computationally more demanding ttenlinear approach (Djemali et al., 1987)
and could therefore be problematic for very larggad Another limitation arises when all
observations in a given class or level of a fixed effaitin the same category. This situation is
called the extreme category problem (ECP) where isakitof those fixed effects tend toward

(x) (i.e., solutions for those classes would not convergelth&y denominators of some
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formulae approach zero which cause division by zerorer As a result, convergence rate
becomes poor and eventually the system will be slowot converge (Misztal et al., 1989). To
avoid the ECP, Harville and Mee (1984) recommendedtihg fixed effects as random or
removing the extreme observations causing the probldéowever, discarding classes with
observations in extreme categories may cause distorfecemees (i.e., data would not be
representative “biased”) (Misztal et al., 1989)The authors proposed two methods to handle the
ECP. First, to avoid division by zero, values that caligsion by zero are restricted and should
not drop below a specified value. Second, solutidred, dre expected to approach plus or minus
infinity, should be set to a large number (in absobaiese) which has normal integral close to 1
or O (this technique is called intercepting). Thashnique does not affect the overall system of

eqguations because observations in such fixed effects dominibute to the coefficient matrix.

Sorensen and Gianola (2002) illustrated the appmicadf the threshold model in the
genetic evaluation of categorical traits as single &ad with a bivariate analysis jointly with
continuous traits. Below we present the sampling madhéth described the transformation of
the observed ordered categorical trait to an undawyliyability scale. The notations are the same
as those used by Sorensen and Gianola (2002). Liab{lifjeswere presented by a vector (l)
wherel = {[;}(i = 1,2, ...,n) and theth observation is assumed to be

li= x{B+ zja+ ¢ (2.1)
Wherep were the fixed effectsa is a vector of additive effects, random residgat N (0,62),

x; and z; were incidence row vectors. The conditional distimubf vector (l) was:

(118,a,62)~ N(XB + Za,162) (2.2)
The parameterizatiow? = 1 was assumed. The vectpdenoted the observed categorical data,

wherey = {y;}(i = 1,2, ...,n) and eachy; represents an assignment into one @fcategories
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which result from ¢ + 1 hypothetical threshold3 (h the underlying scale. Those thresholds
were as followtmin < t1 < tp < " < teg < tmax The two extreme thresholds weedt to betmi, = to,
tmax= tc , SO the remaininge{l) thresholds can take any value that falls betvigg@ndtmax In
order to center the distribution, one of the thredtiohust be fixed, typicallts was assigned to
be zero. As a result of this setting, the conditiomabpbility thaty; falls in category (j = 1,2,

...,C), giveng, a, andt = (tin, t1, r teets tmax) ' 1S

Pr(yi =j|/3,a, t) = Pr(tj_l < ;< tj|,8, a,t)

= ®(t; — xif — zja) — ®(tj-1 — x;f — zja) =p (ilB.a,V) (2.3)

where® is the standard cumulative distribution function & tiormal distribution which gives
the area under the normal curve up to and incluttiegth category.

Since the data were conditionally independent,gfjea, andt. Therefore the sampling model

can be written as

p (yIB,a,t) = Hzl i = PDr (yilB,a, t)

i=1 j=1

= [D.10: = ple( - xip = zia) - (4~ xip - zia)] (2.4)

i=1 j=1

wherel (yi = j) is an indicator that equals 1 if the observatiorsfaicategory and O if not.

Reviewed literature in this section, theoreticallye@ed the superiority of the threshold
model over the linear model resulting in a bettérofi the ordered categorical responses.
However, advantages of the threshold model overitlear model, applied to field data and via

means of simulation studies, will be discussed later sndhapter.
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2.4.Markov Chain Monte Carlo and Gibbs sampler

Markov Chain Monte Carlo (MCMC) is a highly used Bagasestimation methodology.
The advantage of MCMC over other methodg).( Restricted Maximum Likelihood (REML)
that require analytical or numerical integratioohtieiques) is its capability to allow inferences to
be drawn from complex posterior distributions. Thexaapt of MCMC is in general that a
Markov chain | generated via iterative Monte Cagilmulation which has the desired posterior
distribution as its equilibrium (Sorensen and Gian@@02). The work of Metropolis et al.
(1953) and Hastings (1970) was the foundatiom géneral MCMC named after them as “the
MetropolisHastings algorithm”. In a later work, Geman and Geman (1984) proposed the Gibbs
sampler algorithm which is considered a special case effddolis-Hastings. For variance
components estimation (random variables) using MCM@rdlgns, the Markov chains are
assumed to have a continuous state spaces which meaasdaimsymally distributed.
2.4.1.The Gibbs sampler

The Gibbs sampler is a very highly used MCMC algorithntabse of its simplicity,
compared to other MCMC algorithms. It was first intiodd by Geman and Geman (1984) who
named it after Josiah Willard Gibbs, an American matatical physicist who introduced the
Gibbs distribution which was used in the paper of GearahGeman (1984). The notation that
will be used in this section are the standard onesdfonrthe literature following the same
notation used in Sorensen and Gianola (2002).

Suppose we have a joint distributipr(el, 0,, ...,Bp), where®s were the parameters of
interest, and the posterior distribution ip (61,...,6i_1, Hi,9i+1,...,6p|y) wherey was the
response. Let the parameter vector with th&gh parameter deleted be

0_; = (64, ...,0i_1,0i11, .., 0,), then the fully conditional posterior distributioh® was
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p (91' L] ei—lJ ei' 9i+1' AR ley)
D (01, 161,01, 0121, 6, 7)d0;

p (6;16_;,y) = T

% P (01, ) 0i—1, 61, 0111, ) BpY) (2.5)
The parameter updates could be for one parametetiie (single-site updating) or for several
parameters (a block). The latter approach allows tipgl@everal parameters simultaneously,
leading to a faster convergence rate (Liu et aB4)9
2.4.2. The Gibbs sampling algorithm

Consider a model with vector of parametpréel,ez,93, ...,Hp) that have a posterior

density p (6, 65,65, ...,6,|y). Let the starting values bé@l(o),ez(o),..., 5

9(0)), then sampling
parameters from their prospective fully conditionaskibutions through the iterative process of

the Gibbs sampler to convergence will be:

Samplings™ form (61|62(0), . 9150),31),

Samplingez(l) form (92 |91(1), 0350), Héo),y),

Sam pIingG,Sl) form (ep |91(1), 62(1), 93(1), . 0,51_)1, y>,

Then the new round of iterations begins V\Bfﬁ) attained from previous iteration and so forth.
Samples are dependent on the starting values foriedpaf time called the burn-in period for
which results are usually discarded. Burn-in period terdaned by the visual examination of
what is known as trace plots “or history plots” which plots the parameter value as a function of
sample number. The discarded burn-in samples are tha satnples obtained during the search

for the marginal posterior distribution of paramstefrhese samples (rounds) reveal trend and
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fluctuation before the parameters posterior distridsuts reached. After the burn in period, the
samples are drawn from the normal posterior distribwtitin density

1% (91, 92, ey ley)
fp (91, 92; ey gply)dgl 92)

Samples oﬂj(i) are regarded as draws from its marginal posteriantaligion with density of

p (6;1y)
v (6;]y)de;

The joint distribution is uniquely determined by theély conditional distributions, so Gibbs
sampler draws samples from the joint distribution by sargpfrom all fully conditional
distributions. If the model has converged, the trdoewaill move up and down around the mode
of the distribution. A clear sign of non-convergemoeurs when we observe some trending in
the trace plot.
2.5.Threshold model versus linear model

Problems associated with analyzing categorical traitsguinear models were addressed
by Gianola (1980a, 1980b, 1982). The author pointddhat fitting a linear model to categorical
responses does not account for constraining the prolyadilioss all categories to unity. Further,
he illustrated that additive genetic variance andbserved scale is not constant and depends on

the incidence of the trait in subpopulations examimgthe model.

One of the first comparisons between a linear modglthreshold model was presented
in a simulation study of sire evaluation for categaridata by Meijering and Gianola (1985)
The authors found that fitting a threshold model fonary traits and unbalanced data
outperformed the linear model when heritabilitytlod trait was moderate (0.2) or high (0.5) and

the incidence of trait used for categorizing the ulydwey liability was 1% or 5%. Efficiency of
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selection under both models was the comparison crtefidficiency was estimated as the
realized genetic progress as a percentage of maximamatig progress. Maximum genetic
progress was defined as the genetic selection diffateaticurring if the true transmitting
abilities of sires were observable. Differences betwdiaemcies of the two models ranged
from 3.9%, when h= 0.5 and incidence = 5%, to 12.2%, wheér=H0.2 and the binary trait
incidence equaled 1%. However, they found that thidsdd linear models did not differ under
three scenarios: a very low heritability (0.05), derice of binary response was 25% or greater,
and a situation where the trait was tetrachotomoligt means the more categories the trait had

the more normally distributed it became.

In another simulation study by Hoeschele (1988), QBast Linear Unbiased Prediction
(QBLUP) and Maximum A Posteriori Estimation (MAPE) wemmpared using two criteria: the
correlation between true and estimated breedingesalnd the realized genetic response
resulting from truncation selection. Results revealet magnitude of the correlation between
true and estimated breeding values was dependant atabiiy, the differences in
subpopulation averages, and the threshold locationsthen underlying scale. MAPE
outperformed QBLUP by 1-3% when the incidence spomse was 93%, 6%, and 1%, and the
heritability was either 0.2 or 0.5; however, theraswio difference when heritability was 0.05.
Correlation differences between MAPE and QBLUP, fiolaby data, decreased from 5-12% to
0-1% when incidence of response reduced from 99% td7Mé (became more normally
distributed). Moreover, higher differences betweenpspulation means (fixed effects) resulted
in superiority of MAPE over QBLUP. The author repdrtlat the loss in accuracy of selection,
resulted from using the categorical phenotype instdaithe underlying variate, depended on

both the threshold location, which reflect the imeide of the trait, and the heritability. Higher
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incidence rates of greater than 0.90 combined withHeritability lead to inefficient estimation
using the binary observed phenotype. On the other,hewvaluation of binary trait, on the
observed scale, with low incidence (<0.90) and modédratgability (0.20) resulted in higher
accuracy. Results obtained by Hoeschele (1988) wewgieement with those reported by

Meijering and Gianola (1985).

In a simulation study by Wang et al. (2005), theylgatd calving ease and birth weight
for simulated beef cattle population using a bivarignear-linear (LL) and a linear-threshold
(LT) sire-maternal grandsire model. Results revealatilibth models performed the same with
respect to accuracy (Pearson correlation) and Speamank correlation between true and
predicted breeding values.

Abdel-Azim and Berger (1999) in a simulation studpwhd that the threshold model
gave more accurate estimates of genetic parametarghbdinear model. Given an expected
heritability of 0.2, they found that estimated haditity using a threshold model was 0.22
compared to an estimate of 0.10 using linear modeihdks stated that accuracy was increased
with higher number of categories, higher heritapilimore balanced data, and increasing

incidence of the traiti ., more normally distributed).

For field data, evidence supporting the threshold ehadiperiority was inconclusive.
Several studies did not find differences betweenntle¢thodologies. Renand et al. (1990), in a
study using Charolais data reported, no differencesdsat threshold and linear models fitted to
calving score (unassisted, easy assistance, hard pcdlesarean) and dystocia score (easy or
difficult). However, when data was reduced using oB0@f6 of the progeny per sire, the
threshold model showed a better efficiency (Rankedation between sire evaluationklarville
and Mee (1984), in a study using Hosltein bulls (n5¥, 8eported that dairy bulls ranked first
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and last using a threshold model were also rankegame under linear model. However, tke
ranking of some bulls (n = 9), by the two modelsremmore than 20 places. Similarly, ranking
of dairy sires by a threshold model did not differnfréthose by BLUP (Clutter et al., 1989)
Other studies by Jensen (1986), Djemali et al. (1987)leYVet al. (1988), Hagger and Hofer
(1989), Ron et al. (1990), McGuirk et al. (1999nd&rsen-Ranberg et al. (2005), Marcondes et
al. (2005), and Guerra et al. (2006) reported Vg correlations (>0.9) between sire solutions

from threshold and linear models.

Most studies used the correlations between sire solufioms both threshold and linear
models as a means of evaluating approaches. This methgdjive high correlations even if
both models are inefficient. A stuay dairy cattle by Hagger and Hofer (1989) was trs fo
apply data splitting methodology (i.e. cross validatidor, models evaluating dystocia). The
study by Olesen et al. (1994) on Norwegian sheep wa®btie first studies to use the cross
validation technique, which yielded correlationsween estimated and predicted sire solutions
(breeding values). The cross validation procedure was thy sampling 50% of data (sample 1)
and the remaining data was used as sample 2. This taehexgmines the predictive ability of
the model (.e., the model’s ability to repeatedly produce the same breeding values). The higher
the correlation the better the model ranks sires. Eweagh results of this study showed that
threshold and linear models were not different inrtpeedictive ability and goodness of fit, it
provided new means for models comparison. Anotheysitidheep by Matos et al. (1997) also
did not find differences between threshold and limeadels with respect to their goodness of fit

and their predictive ability.

Most studies evaluated threshold model versus lineateimanly for categorical traits;

however, studies by Varona et al. (1999b) and Ranrvedezerde et al. (2001) incorporated
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correlated continuous traits in the genetic evaluatibthe discrete traits. Therefore, the model
comparison expands to become threshold-linear versearlimear instead of merely threshold
versus linear. In a study using Gelbvieh data, Varanal.e(1999b) compared univariate
threshold animal models with linear animal models dalving ease and then also compared
bivariate models which were threshold-linear animatiegl versus the linear-linear animal model
for calving ease and birth weight. Authors then usealdriteria to compare the predictive ability
of models fitted to Gelbvieh data (n = 26,006) alst aimulated data (n = 6,200). Those criteria
were mean square error (MSE), for both field data sintulated data, and the correlation
between simulated and predicted breeding valuesrfariated data. Results from the simulation
study showed that the average MSE for linear, threshiohr-linear, and threshold-linear were
0.39, 0.37, 0.32, and 0.29, respectively, with datiens between simulated and predicted
breeding values of 0.45, 0.47, 0.51, and 0.52, otisiedy. For Gelbvieh data, the MSE was 0.40,
0.39, 0.33, and 0.31, respectively. These results mdetlat the threshold methodology

outperformed the linear method.

Ramirez-Valverde et al. (2001) in their studiy calving difficulty and birth weightn
Gelbvieh cattle, compared the predictive ability tbfeshold, linear, linear-linear, threshold-
linear animal and sire-maternal grandsire models. ddrmaparison criterion was the average
correlation between five replicates of two completaey data subsets. The sampling procedure
was done by randomly sampling 50% of data (sample 1) twéhremaining records used as
sample (2). Five replicates, each consisting of twoptementary samples, were created by re-
sampling from data. Correlation estimates between esttihmand predicted calving difficulty
breeding values for sires with progeny (n < 50) were 0.64, 0.68, 0.87, and 0.90 for linear,

threshold, linear-linear, and threshold-linear animablels, respectively. For sires with progeny
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(50 <n < 100), correlations were 0.71, 0.70, 0.87, and 0.90, respectively. For sires with progeny

(n >100), correlations were 0.80, 0.81, 0.88, a®d Orespectively. Correlation estimates from
sireimaternal grandsire model, for sires with (n < 50), were 0.45, 0.42, 0.56, and 0.56 for their
respective models. For sires with progeny (50 <n < 100), correlations were 0.70, 0.68, 0.86, and
0.86, respectively. For sires with progeny (n >1@0)relations were 0.80, 0.80, 0.87, and 0.88,
respectively. Authors concluded that the threshold ehodt preformed the linear model when
animal model was fitted. However, they did not fididferences when the sire-maternal
grandsire model was fitted. Authors suggested that tireshold-linear animal model is the

model of choice for genetic prediction of both dirand maternal effects.

In a study of litter size and days to lambing in Rlgga ewesCasellas et al. (2007) used
mean square error (MSE) and correlation between obdemd predicted records as criteria for
models comparison in terms of goodness of fit and piediability. Litter size was fitted as a
binary trait. The threshold model appeared supenofinear model, furthermore, bivariate
models showed a better accuracy, as expected, compareshivariate models. Authors

concluded that the genetic evaluation of litter sigeg threshold-linear model was justified.

Data on clinical mastitis (CM), somatic cell score (S@GBp-day milk (MY), and protein
(PY) and fat yield (FY)in first-lactation Finnish Ayrshire cows were analyzetding the
following models: threshold (TM), linear (LM), linedinear (LLM), and threshold-linear (TLM)
(Negussie et al., 2008¢linical mastitis was either fitted as a discrete oomtiouous trait. The
correlation between estimated breeding values forflol replicates of randomly split data sets
was used to assess the predictive ability of models. Resaits TLM, LLM, TM and LM
indicated better performance of TLM compared to LLMiperiority of bivariate models (i.e.

higher correlations between estimated breeding vdtreSM from replicates of randomly split
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data sets, was noted compared to univariate modeldifiorat mastitis). However, univariate
models did not yield differences for correlations kestw EBV for CM, except for sires with low
accuracy.

Gevrekci et al. (2011) evaluated dystocia in Hofsteusing different models. They
compared threshold sire model (TS), threshold sireemat grandsire (TS-MGS), and linear
sire-maternal grandsire (L). Authors concluded that treshold model was superior to the
linear model in the genetic evaluation of dystocithhe sire-MGS being the best approach.

De Maturana et al. (2009) evaluated the predicivéity of threshold and linear models
for calving difficulty (CD) and gestation length (in US Holsteins. Four criteria were used to
evaluate the predictive ability of the alternatimedels. Comparison criteria were mean squared
error of the difference between observed and pretic@® scores, a Kullback-Leibler
divergence measure between the observed and predicted distributions of CD scores, Pearson’s
correlation between observed and predicted CD scordsalality to correctly classify bulls as
above or below average for incidence of CD. Autlumnscluded that all the models had similar
predictive ability, even though, the bivariate misdghowed slight improvement over univariate
models with respect to model predictive ability. Thastified the similar predictive ability of
models by the number of categories (3 and 4 categjoused for calving difficulty which
provides more information compared to a binary scpapproach.

In a study of Czech Charolais cattiéostry et al. (2014) compared predictive ability of
threshold and linear models for the genetic evalanatibbirth weight and calving ease. Fitted
models were lirarlinear animal model (L-LM) with calving ease scoliegar-linear animal
model (SC-LM) in which calving ease scores transforiméal Snell scores, bivariate threshold-

linear animal model (T-LM) with calving ease scoresrr€lations between split data sets for
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calving ease fitting L-LM, SC-LM, and T-LM were 0.40,63, and 0.75, respectively. The
authors found that the threshold model was superiavetier, because of its advantages in terms
of computation time and practical considerationgythecommended the use of linear model
with calving ease scores transformed to Snell scores.

In summary, results from literature related to the sopgr of the threshold model vary.
Several studies from reviewed literature suggest thléshwodel superiority, either from
theoretical perspective or from using simulated aeld filata. However, there were many studies
that showed no difference between threshold andrlimeaels. The superiority of the threshold
model depends basically on the data structure andatiegorical trait of interest. A categorical
trait is expected to be better evaluated using thestiold model methodology if it has the
following characteristics: high incidence, small numbgcategories (i.e., a binary trait), large
proportion of sires with few progeny, and large @liénces in subpopulations averages (i.e.,
herds) (Meijering and Gianola, 1985; Hoeschele, 198Bdel-Azim and Berger, 1999)
Consequently, when data and trait of interest areingcthose characteristics, the threshold
model is expected to produce genetic predictions dosamilar to those produced by the linear

model with no apparent superiority to the threshodaiet.

2.6.Phenotypic averages of calving ease, postweaning gain, ameights at birth, weaning,

and yearling

The ultimate goal of the genetic improvement ofrfaanimals is producing animals with
the best genetic makeup for performance traits. ewenformation on animals is provided as
phenotypic records which are used to predict animafetc merit (i.e., EBV); therefore, the
selection of animals that have the best genetic npakaies on phenotypic information and will

correspondingly results in producing animals with bepieenotypes. Phenotype is a function
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(i.e., heritability) of genotype and vice versa. There any change in the average breeding
value of a trait, e.g. due to selection, is associaitid a change in its phenotypic average. The
phenotypic average is the simplest and easiest gstatistiinterpret when describing the
phenotype of performance traits. Thus, estimateshehptypic averages of studied traits were
reviewed in this section.

Roughsedge et al. (2005) reported that the averagerna calving ease score of
Simmental was 1.18 on a 5 point scale. Other studiegjiftarent beef cattle breeds, have
reported average calving ease score ranged fromtd D44 (Pribyl et al., 2003; Eriksson et al.,
2004; Phocas and Laloe, 2004; Roughsedge et al., Bidkrrez et al., 2007; Matilainen et al.,
2009). However, the average observed score could bmesleading statistic because of the
different scoring systems used in some studies. Changingltberved calving ease scores by
merging different categories to be one category rgsult in a change in the average, even for
the same data set. The percentage of unassisted calvaygsdless the number of other
categories, may be a better way to represent calasg scores. Percentage of unassisted calving
of Simmental cattle reported by Bennett and Gred@001) and Brandt et al. (2010) and were
43% and 87.6%, respectively.

Koots et al. (1994b) reported a weighted averagé kieight of 35.1 kg for beef cattle.
Several studies reported average birth weight fdemdiht beef cattle breeds ranging from 34.58
to 47.3 kg (Lee, 2002; Pribyl et al., 2003; Erikssbalg 2004; Phocas and Laloe, 2004; Iwaisaki
et al., 2005b; Gutierrez et al., 2007; Matilainerale 2009; Mujibi and Crews, 2009; Brandt et
al., 2010). For Simmental cattlBrandt et al. (2010) reported an average birth katedf 44.3 kg.

In the current study, the average birth weight ef$immental beef cattle was 40.1 kg.
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In his review paper, Koots et al. (1994b) estimatekighted average weaning weight of
203 kg for beef cattle. For Simmental beef catttes average weaning weight estimated by
Roughsedge et al. (2005) and Brandt et al. (2010)2@@sand 271 kg, respectively. A relatively
low weaning weight average of 229.2 kg for Herefoattle was reported by Meyer et al. (1994)
but was estimated over a decade earlier than the perts. Iwaisaki et al. (2005a) published
average weaning weights of 271.9 and 246 kg for @Geitband Limousin cattle, respectively.

Postweaning daily gain weighted average of 0.978 kegds estimated by Koots et al.
(1994b). For Simmental cattle, postweaning averagly gain ranged from 0.43 to 1.46 kg/d
(Benyshek and Little, 1982; Wright, 1987; Stalhamraad Philipsson, 1997; Eriksson et al.,
2003) The 160d postweaning gain for Simmental averaged from 713tbkg (Benyshek and
Little, 1982; Wright, 1987) Stalhammar and Philipsson (1997), in their study ofirSéntal
cattle, reported total postweaning gain of 191 a8d kg for males and females, respectively,
and their respective average daily gain were 1.860ar0O kg.

Average yearling weight of 12 breeds of beef cattés 361.9 kg (Pribyl et al., 2003)
Roughsedge et al. (2005) in their study of Simmentilecdahey reported an average of 534 kg
at age of 400 days. Koots et al. (1994a) in theirexe\of published genetic parameter estimates
for beef production traits, estimated an averagelipgaweight of 345 kg. For Gelbvieh and
Angus cattle, the average yearling weights were3138d 410 kg, respectively, (lwaisaki et al.,

2005b; Costa et al., 2011).

2.7.Genetic and residual parameters
2.7.1.Heritability
Heritability is defined as “a measure of the strength of the relationship between

performance (phenotypic values) and breeding values for a trait in a population” (Bourdon,
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1999). Genetic improvement of beef cattle breeasasly driven by selection of best animals
to be parents of the next generations. Response tdigeldepends on several factors that are
summarized in what is known as the key equation. @teaf genetic change, based on the key
equation, is affected by accuracy of selection, selecintensity, and genetic variability
(Bourdon, 1999). The higher the genetic variatibe higher the heritability, which leads to
increased response to selection. In this section, heityal@stimates from literature are

summarized and reviewed.

2.7.1.1.Direct heritability

Heritability estimates of calving difficulty, on thenderlying scale, for Charolais and
Hereford first parity heifers were 0.22 and 0.23, eesipely, (Eriksson et al., 2004). However,
heritability estimates, on the observed scale, from ghme study were 0.12 and 0.16,
respectively. Estimated calving ease heritabilities, on tiserved scale, for Canadian
Simmental heifers were 0.06 and 0.07 (Kemp et al881amrozik and Miller, 2014)
respectively. Several studies involvisgmmental cattle, Burfening et al. (1978b), Burfenetg
al. (1981), Trus and Wilton (1988), and Dong et(&D91) reported calving ease heritability
estimates of 0.25, 0.2, 0.21, and 0.18, respectiwfitilainen et al. (2009) reported an estimate
of 0.26, on the underlying scale, for heifer calvie@se heritabilityin Limousin beef cattle.
Roughsedge et al. (2005) estimated heritabilities Wwirga difficulty, on the observed scale, for
Angus, Limousin, Simmental, and South Devon cattlebé& 0.26, 0.12, 0.35, and 0.19,
respectively. Estimated weighted average heritabalithheifer calving ease was 0.13 (Koots et
al., 1994a). Heritability for beef heifer (diffetteloreeds) calving difficulty was 0.18 (Splan et al.,
1998) Carnier et al. (2000) and Albera et al. (2004 it study of Piemontese cattle, estimated

calving ease heritability for heifers of 0.19 and QrE8pectively. Reviewed literature of calving
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ease heritability revealed that, on the observed scaleing ease has a low heritability;
however, when heritability estimated on the undegyscale, it notably increased which weas

reflection of the added information when calvingewas fitted as a threshold trait.

Because of abundance of birth weight data collettgdthe beef industry, genetic
parameters for birth weight were some of the mostmadéid in literature. Heritability of birth
weight is considered relatively high compared to otgewth traits such as weaning and
yearling weight. Birth weight heritability estimatdor Charolais and Hereford first calving
heifers were 0.50 and 0.51, respectively, (Erikssoh,e2@04) Koots et al. (1994a) reported, in
their review of published genetic parameter estimdite beef production traits, a weighted
average of 0.31 which is relatively low comparedntost estimates in other citations. Similarly,
Phocas and Laloe (2004) reported relatively low ety for Charolais and Limousin cattle
birth weight heritabilities (0.33 and 0.38, respealiy). Heritability estimates for nine different
beef cattle breeds ranged from 0.26 to 0.66 withemage heritability estimate of 0.47 (Bennett
and Gregory, 1996) in another study. However, itudysof Simmental beef cattle by Brandt et
al. (2010), a low heritability estimate of 0.23 whioould be a result of their small data (n = 568)
was reported. Similarly, estimated birth weight tadgilities for Canadian Simmental heifers
were 0.19 and 0.23 (Kemp et al., 1988; Jamrozik aitlery2014) respectively. Several studies
of Simmental cattleBurfening et al. (1978b), Benyshek and Little (198Quaas et al. (1985),
Elzo et al. (1987), Trus and Wilton (1988), Garratlkal. (1989), Dong et al. (1991), Redman and
Brinks (1991), Woodward et al. (1992), Swalve (19F)st et al. (1998), and Eriksson et al.
(2002 as cited in (Eriksson et al., 2004)), reportatdirlity estimates of 0.4, 0.18, 0.16, 0.14,
0.34, 0.44, 0.18, 0.52, 0.28, 0.33, 0.30, and O:&3pectively. Iwaisaki et al. (2005b) in their

study of Gelbvieh cattle reported birth weight tadyility estimate of 0.52. Estimated heritability
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for Charolais was 0.46 (Mujibi and Crews, 2009). Estedairth weight heritability for Angus
was 0.4 (Carter et al., 1990). In summary, estimatdsrtsf weight heritability from literature
were moderate to high which, along with the traiedrity, justify the incorporation of birth

weight in the analysis of calving ease.

The weighted average of weaning weight heritabits estimated as 0.27 by Koots et
al. (1994a) in their review of published geneticgmaeter estimates for beef production traits.
Several studies of Simmental cattBurfening et al. (1978b), Benyshek and Little (19820
et al. (1987), Wright et al. (1987), Garrick et(@989), Mrode and Thompson (1990), Boldman
et al. (1991), Redman and Brinks (1991), Woodwardl.et1992), Swalve (1993), Bennett and
Gregory (1996), Lee and Pollak (1997), Lee et H39{), Rust et al. (1998), Dodenhoff et al.
(1999), and Roughsedge et al. (2005), reported wegameight heritability estimates of 0.28,
0.34, 0.14, 0.12, 0.36, 0.19, 0.17, 0.48, 0.344,0824, 0.28, 0.21, 0.26, 0.22 and 0.26,
respectively, with an overall average of 0.26. Es@wabf weaning weight heritability for
different beef cattle breeds ranged from 0.13 t® @Meyer et al., 1994; Bennett and Gregory,
1996; Phocas and Laloe, 2004; Iwaisaki et al., 2003cighsedge et al., 2005). For Angus
cattle, heritability estimate was 0.22 (Carter etZ8190) Bertrand and Benyshek (1987) reported
a heritability estimate of 0.28 for Brangus cattlé.id worth noting that most heritability
estimates for beef cattle breeds fall within the rarfig2-0.4; however, weaning weight
heritability estimate for Charolais have been re&yi low (0.16 estimated by Bennett and
Gregory (1996) and 0.13 Phocas and Laloe (2004)ieRRed literature revealed that weaning
weight has a low to a moderate (0.2-0.4) heritabilkor Simmental cattle, estimates ranged
from 0.12 to 0.48 with an average of 0.26. Beefledireeds appear to have different weaning

weight heritability estimates and weaning weight &dsw heritability compared to birth weight.
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Heritability estimates for post weaning gain of diffiet beef cattle breeds averaged 0.31
in the review of Koots et al. (1994a). For Simmertatle, several articles by Benyshek and
Little (1982), Quaas et al. (1985), Wright (1987arfick et al. (1989), Woodward et al. (1992),
and Eriksson et al. (2003) reported heritability estamaf 0.13, 0.2, 0.23, 0.26, 0.27 and 0.29,
respectively, with an overall average of 0.23. Bénaed Gregory (1996), in a study of nine
different beef cattle breeds, reported heritabiggtimates for post weaning gain (168 days)
ranging from 0.39 to 0.51 with an average of 0.4@ &eritability of postweaning gain for
Simmental cattle was 0.5 (n = 1494). Stalhammar dmilgb&son (1997) reported that heritability
for Simmental males (0.19) was lower than that fondkes (0.22). Studies of Angus cattle
reported postweaning gain heritability estimates 6 @.28 and 0.26 (Carter et al., 1990; Arthur
et al.,, 2001; MacNeil et al., 2011), respectivelgs®archers Koch et al. (1973), Mavrogenis et
al. (1978), and Fan et al. (1995) in their studiesHefreford, reported postweaning gain
heritabilities of 0.29, 0.23, and 0.16, respectiv8tudies of Charolais cattle by Meyer (1993)
and Eriksson et al. (2003) reported heritability eates of 0.22 and 0.37, respectively.
Generally, postweaning gain has a low heritabilityevehthe average postweaning gain of
Simmental cattle was 0.23. Heritability of postweangagn was the lowest compared to other
growth-related traits. Clear differences were reggbramongst beef cattle breeds. Further,

different estimates were obtained for males and fesnal

Yearling weight heritability estimates for Simmencalttle were 0.33, 0.27, 0.27, 0.27,
0.37, 0.41, and 0.34 (Benyshek and Little, 1982pHr al., 1987; Wright, 1987; Mrode and
Thompson, 1990; Swalve, 1993; Bennett and Gregof86;]1 Roughsedge et al., 2005)
respectively, with an overall average of 0.32. Agided average estimated by Koots et al.

(1994a) was 0.33 for different beef cattle breedswéi@r, yearling weight heritability for
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Gelbvieh cattle estimated by Iwaisaki et al. (200®fas higher (0.59). Yearling weight (400
days) heritability estimates for Angus, Limousin, Simmaérdnd South Devon were 0.36, 0.35,
0.34, and 0.29, respectively, (Roughsedge et al5)2@8@nnett and Gregory (1996), in a study
of Angus, Braunvieh, Charolais, Gelbvieh, Hereford, dursin, Pinzgauer, Red Poll, and
Simmental, reported yearling weight (averaging 3@§sgl heritability estimates ranged from
0.27 to 0.62 with an average of 0.44. Yearling \Weigeritability estimates for Angus cattle, by
Carter et al. (1990), Fan et al. (1995), and Arteural. (2001) were 0.36, 0.45, and 0.28,
respectively. For Hereford, estimates by Mavrogens.€i978) and Fan et al. (1995) were 0.49
and 0.43, respectively. Meyer (1993) in a study omarGlais reported an estimate of 0.32 for
yearling weight heritability. Reviewed literatur@ gearling weight heritability revealed that
yearling weight, as anticipated, has a higher helityaltompared to its component traitse,
weaning weight and postweaning gain). The Simmene&d teattle, on average, have a yearling
weight heritability of 0.32. Heritability estimatesrfyearling weight were more diverse than
other growth traits. This might be a result of the aggtion of homogeneous residual variance
which does not hold when yearling weight measurediffgrent ages. When the homogeneity of
residual variance is assumed, the residual variance ateinwill be biased which results in

biased heritability estimates (Olori et al., 1999)

2.7.1.2 Maternal heritability

A considerable amount of literature has been publisinethaternal heritability of calving
ease. Estimates in Simmental cattle ranged from 0.022& (Burfening et al., 1981; Trus and
Wilton, 1988; Dong et al., 1991; Bennett and Grggd@001; Jamrozik and Miller, 2014)
Furthermore, Wright (1987) reported estimates of Gah@i 0.05 for American and Canadian

Simmental, respectively. Maternal heritability estiesator other beef cattle breeds range from
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0.03 to 0.18 (Albera et al., 1999; Varona et #899a; Carnier et al., 2000; Eriksson et al., 2003;
Phocas and Laloe, 2003; Albera et al., 2004; Erikssaal.,e2004; Phocas and Laloe, 2004,
Roughsedge et al., 2005). Reported maternal heiiyalbtimates using threshold model
approaches were 0.19, 0.09, 0.28, 0.048, and 0.bhg@t al., 1991; Varona et al.,, 1999a;
Bennett and Gregory, 2001; Wiggans et al., 2003r&ev et al., 2011), respectively. Generally,
calving maternal heritabilities estimated using theeshold models were higher than those
estimated using the linear model. The higher matdreatability estimates under the threshold
model were a result of fitting calving ease as a thidstrait (i.e., an underlying continuous

liability) .

Several studies of Simmental cattle by Quaas et 8BSl Wright (1987), Trus and
Wilton (1988), Garrick et al. (1989), Swalve (199B)arques et al. (2000), and Jamrozik and
Miller (2014) reported birth weight maternal hebilay estimates of 0.057, 0.05, 0.2, 0.12, 0.07,
0.05, and 0.04, respectively. For other beef céditéeds, estimates ranged from 0.03 to 0.18
(Bertrand and Benyshek, 1987; Waldron et al., 1998yer, 1995; Snelling et al., 1996;
Dodenhoff et al., 1998; Varona et al., 1999a; Erikssbal., 2004; Meyer et al., 2004; Phocas
and Laloe, 2004; Iwaisaki et al., 2005b; Brandalet2010). Literature review revealed that the
maternal effects on birth weight represent a smallispidbrtant proportion of the total variance
of the trait. Therefore, birth weight maternal ette should be accounted for in the genetic

evaluation of birth weight.

Weaning weight maternal heritability for Simmentaltte ranged from 0.05 to 0.2
(Graser and Hammond, 1985; Quaas et al., 1985; WdA@BL/; Wright et al., 1987; Garrick et
al., 1989; Boldman et al., 1991; Swalve, 1993; ard Pollak, 1997; Lee et al., 1997; Marques
et al., 2000). Several studies of other beef catdeds reported estimates that ranged from 0.03
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to 0.2 (Bertrand and Benyshek, 1987; Cantet etl8P3; Meyer, 1993; Waldron et al., 1993;
Meyer, 1995; Arthur et al., 2001; Meyer et al., 200MacNeil, 2005) These studies revealed that
the weaning weight maternal effects should be fiitedhe analysis of the trait. Here, the
maternal component of weaning weight total varraii® mainly due to the milk production of
the dam; therefore, the weaning weight maternaéding value is also known as the milk

breeding value.

2.7.2.Direct genetic correlations

Historically, the high genetic correlation betwesaiving ease and birth weight was, and
is still used, as a tool to improve the ease of cahMdmne studies reported correlations between
birth weight and calving difficulty, but not caignease, and as this relationship is discussed,
those correlations are reported with negative signsisnsection. Koots et al. (1994b) estimated
a weighted average of -0.74 for the genetic caiiceldbetween calving ease and birth weight.
Estimated genetic correlations between calving easebserved scale, and birth weight for
Simmental cattle were -0.33, -0.76, and -0.85 (Bunig et al., 1978b; Burfening et al., 1981;
Jamrozik and Miller, 2014), respectively. Genetic elation between birth weight and calving
ease estimated by Eriksson et al. (2004) as -0.62 and f&. Charolais and Hereford cattle
respectively. Phocas and Laloe (2004) obtained essnat -0.66, -0.4, -0.72, and -0.78 for
Charolais, Limousin, Blonde d’Aquitaine, and Maine-Anjou, respectively. Lee (2002) study
of Gelbvieh heifers estimated a higher correlation8@)) Calving ease for Charddecattle has a
correlation of -0.66 with birth weight, however etlestimate was lower (-0.4) for Limousin.
Results obtained from reviewed literature on genatitelation between calving ease and birth
weight can be summarized as follow: The strong gersticelation between the two traits

justifies the use of birth weight as an indicator tfaitcalving ease and the inclusion of birth
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weight as a linear trait in the genetic evaluatibcalving ease which increases the accuracy of

the genetic evaluation.

Calving ease has genetic correlation of -0.08 ariwith weaning weight of Simmental
beef cattle (Burfening et al., 1978b; Roughsedgé. eP@05), respectively. Similarly, in review
of published genetic parameter estimates for beefustamh traits by Koots et al. (1994b) they
estimated a weighted average of -0.21. Bennett ardddy (2001) obtained a higher estimate (-
0.41) between calving ease and 200-d WT. Estimategeétic correlations between calving
ease and weaning weight for different beef cattledseanged from -0.12 to -0.44 (Phocas and
Laloe, 2004; Roughsedge et al.,, 2005). The geneticelation between calving ease and
weaning weight was considerably lower than the ¢atioe between birth and weaning weights.
This supports the hypothesis: selection for high calegage instead of selection for low birth

weight could reduce the loss in the correlated respdnseaning weight.

Koots et al. (1994b) in their review of geneticredation estimates, reported a weighted
average of -0.54 for genetic correlation betweelvimg ease and post weaning gain while
Bennett and Gregory (2001), in their study on seveeaf cattle breeds, obtained a weaker
correlation of -0.36 between calving ease and postwgayain. Gregory et al. (1995) estimated
genetic correlation of -0.11 between calving ease @osiweaning gain of male progeny of 2

year old heifers from different purebred and compgdséef cattle.

The genetic correlation between calving ease andliygaweight as estimated by
Roughsedge et al. (2005) for Angus, Limousin, Simmeatal, South Devon cattle were -0.2, -
0.33, -0.19, and -0.46, respectively. A weightedrage (-0.29) reported by Koots et al. (1994b)

falls within the range of estimates reported by Raeglge et al. (2005). Calving ease has
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correlation of -0.27 with 368-d WT for populatiohdifferent beef cattle breeds (Gregory et al.,
1995). From reviewed literature, calving ease, as oppmdarth weight, showed a weaker
genetic correlation with yearling weight which sugpdhe hypothesis that selection for calving

ease would result in smaller changes in yearling weight.

Estimates from literature for different beef cattledats show a high genetic correlation
between birth weight and weaning weight which rahtem 0.26 to 0.56 (Koch et al., 1973;
Meyer, 1993; Bennett and Gregory, 1996, 2001; Phaca Laloe, 2004; Iwaisaki et al., 2005b;
Gutierrez et al., 2007Koots et al. (1994b) estimated a weighted averageSofor the genetic
correlation between birth and weaning weights. la titerature, several reports involving
Simmental cattle had estimated the genetic correlatetween birth and weaning weights.
These correlation estimates were 0.33, 0.29, 0.43, 0.49, 0.33, and 0.58 (Burfening et al.,
1978b; Benyshek and Little, 1982; Quaas et al., 188%0 et al., 1987; Garrick et al., 1989;
Woodward et al.,, 1992; Swalve, 1993), respectivelyther, Wright (1987), in his study of
Simmental cattle, reported estimates of 0.43 and fa6American and Canadian Simmental,
respectively. The high genetic correlation betwekth land weaning weight would cause great
loss in weaning weight when downward selection orhhiveight is applied. Conversely, the
lower genetic correlation between calving ease andnimg weight is a promising means to
improve calving ease by the direct selection for ioglvease without major loss in yearling

weight.

Birth weight has a weighted average genetic coroglatf 0.32 with post weaning gain
(Koots et al., 1994b) which is in line with BennetidaGregory (1996) who reported the same
estimate as an average for nine purebred beef ¢attds. Carter et al. (1990) published an

estimate of 0.16 for Angus beef cattle. For Simmetuétle Benyshek and Little (1982), Quaas
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et al. (1985), and Garrick et al. (1989) found thah weight and postweaning gain have genetic
correlations of 0.57, 0.36, and 0.32, respectivelyigif (1987) in another study of Simmental
cattle reported estimates of 0.39 and 0.45 for theergan and Canadian cattle, respectively.
Results from reviewed literature showed that the gemetrelation between birth weight and
postweaning gain for Simmental beef cattle rangeohf0.32 to 0.57 with an overall average of
0.41. Therefore, a moderate postweaning gain coecbleesponse would be expected when

selection for low birth weight is practiced.

Estimatesof genetic correlation between birth and yearlingghis for Simmental cattle
by Benyshek and Little (1982), Elzo et al. (1987), &wahalve (1993), were 0.61, 0.47, and 0.4,
respectively; while another stua)yf Simmental cattle by Wright (1987) reported correlagi of
0.47 and 0.6 for the American and Canadian catkpectively. Estimates of genetic correlation
between birth weight and both weaning weight anstyweaning gain in a study of Simmental by
Garrick et al. (1989) resulted in a genetic corretabetween birth weight and yearling weight
was 0.47. lwaisaki et al. (2005b) in a study of Gelbyieported a genetic correlation of 0.5
between birth and yearling weights. Bennett and @ne(l996) reported a genetic correlation of
0.47. However, Koots et al. (1994b) estimated a igberelation (0.55) between birth weight
and yearling weight. Correlations obtained by Caeteal. (1990) and Meyer (1993) were 0.59
(Angus) and 0.66 (Charolais), respectively. In summiairth weight showed a moderate genetic
correlation with yearling weight. This strong cortela was a result of the strong correlations
between birth weight and the component traits dciriyjigg weight (i.e., weaning weight and
postweaning gain). Therefore, selection for low/Hagith weight would cause a high correlated

response in the subsequent growth traits.

41



A positive genetic correlation of 0.56 was estimatetivieen weaning weight and post
weaning gain (Bennett and Gregory, 1996) with Kaettal. (1994b) reporting similar genetic
correlation of 0.44 with post weaning gain. Quaaal.gt1985), Wright (1987), and Garrick et al.
(1989), in their studies of American Simmental cattleund that weaning weight and
postweaning gain have genetic correlation of 0.582,0and 0.51, respectively. Furth&vright
(1987) obtained a relatively higher estimate of G@8Canadian Simmental. However, Carter et
al. (1990) obtained a lower genetic correlation22).for Angus beef cattle. In summary,
weaning weight and postweaning gain are moderatetyelated traits. Thus, any genetic
changes (positive or negative) in either one wilréigected on the other trait which eventually

results in similar changes in yearling weight.

Genetic evaluation for yearling weight is usually edny evaluating its component traits,
weaning weight and post weaning gain. Yearling weggnetic (co)variances are calculated as
summation of those of weaning weight and post weaniirg @ais approach is a result of the
high genetic correlation between yearling weighd &8 component traits which make it hard to
reach convergence when estimating variance compangstimates from literature for genetic
correlation between weaning and yearling weighgeahfrom 0.70 to 0.92 (Carter et al., 1990;
Koots et al., 1994b; Gregory et al., 1995; Bennetl &regory, 1996; Arthur et al., 2001,
Roughsedge et al., 2005; Costa et al., 2011). Fom8imal beef cattle, three different studies in
Canada, Australia, and United Kingdom by Wright (29&walve (1993), and Roughsedge et
al. (2005), respectively, found that weaning wemhdl yearling weight have genetic correlations
of 0.91, 0.83, and 0.87, respectively. Articles desugilAmerican Simmental by Benyshek and
Little (1982), Elzo et al. (1987), and Wright (198€ported estimates of 0.87, 0.83, and 0.84,

respectively. Calculated genetic correlation betwesaning weight and yearling weight for
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Simmental cattle, given genetic (co)variances forniea weight and postweaning gain, was
0.89 (Garrick et al., 1989). Reviewed literaturevedd a very high genetic correlation between
weaning and yearling weights. Therefore, the upwianshward selection for either trait is

expected to substantially change the other trait iresdinection.

Wright (1987) in his study of Simmental cattle repdra correlation of 0.91 between
postweaning gain and yearling weight. From (co)vemacomponents between postweaning
gain and weaning weight, Garrick et al. (1989) eated a genetic correlation of 0.84 between
postweaning gain and yearling weight. Correlationmestes reported by Koch et al. (1973),
Mavrogenis et al. (1978), and Bennett and Grego80§) ranged from 0.71 to 0.92. The
weighted average genetic correlation estimate df By8Koots et al. (1994b) in their review of
published genetic parameters estimates for beef pioduthits was very similar. Generally,
postweaning gain, as a component trait for yearlirejgiat, has a strong positive genetic
correlation with yearling weight. The positive astilong genetic correlations amongst growth
traits are a useful means to improve weight gain énbtkef industry; however, it should be used

with caution because of the dystocia problems associatiedheavier animals.

2.7.3.Direct-Maternal genetic correlations

Estimated direct-maternal correlations for calvingegeon the observed scale, were -
0.023 and -0.008 for American and Canadian Simmeogdlle (Wright, 1987). On the
underlying scale, the correlation estimate for Simalemas -0.16 (Dong et al., 1991). However,
Jamrozik and Miller (2014), fitting a univariate madeported a lower correlation (-0.05) for
Canadian Simmental. For other beef cattle breedspasts from literature using the threshold
model methodologyif., on the underlying scale) ranged from -0.087 to -q\2&ona et al.,

1999a; Wiggans et al., 2003; Gevrekci et al., 2011).
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Literature shows that direct-maternal genetic coti@iaestimates for Simmental cattle
ranged from -0.04 to -0.43 (Quaas et al., 1985; Bn Wilton, 1988; Garrick et al., 1989;
Swalve, 1993; Marques et al., 2000; Eriksson eR@D2). Several studies of Limousin, Brangus,
Hereford, Gelbvieh, and composite beef cattle breedsrted direct-maternal correlations for
birth weight that ranged from -0.05 to -0.35 (Bantl and Benyshek, 1987; Snelling et al., 1996;
Varona et al., 1999a; MacNeil, 2005gnelling et al. (1996), in their study on Herefotldey

obtained a correlation of -0.14.

Results from several studies of Simmental cattle fourat tlirect-maternal genetic
correlation for weaning weight has ranged betweedl-@nd -0.39 (Quaas et al., 1985; Garrick
et al.,, 1989; Boldman et al., 1991; Swalve, 1998¢ land Pollak, 1997; Lee et al., 1997,
Dodenhoff et al., 1999; Marques et al., 2000). FartWright (1987) obtained estimates of -
0.023 and -0.008 for American and Canadian Simmetd#tle, respectively. Estimates for
Limousin, Brangus, and Angus cattle ranged from -@01-D.31 (Bertrand and Benyshek, 1987;
Cantet et al., 1993; Arthur et al., 2001). HowewdacNeil (2005) reported a lower estimate of -

0.06 for composite beef cattle (50% Red Angus, 25% Chiar@nd 25% Tarentaise).

2.7.4.Residual correlations

Residual correlation estimate, on the observed scalejebet calving ease and birth
weight for Charolais and Hereford cattle in a stughyBoiksson et al. (2004) were -0.25 and -
0.27, respectively. Similarly, Koots et al. (1994in) their review paper, estimated a weighted
average residual correlation of -0.28. For AmericGimmental cattle, residual correlation
between calving ease and birth weight was -0.29 (Bumfeet al., 1978a). However, Varona et

al. (1999a) and Bennett and Gregory (2001) estimhigler residual correlations (-0.5 and -
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0.41, respectively). Given the high genetic coriefabetween calving ease and birth weight, the
research to date has tended to focus on evaluatioraleing ease with birth weight and
marginalized other growth traits such as weaning westweaning gain, and yearling weight.
Consequently, there has been relatively few studies plblished genetic and residual

correlations between calving ease and postnatal grivaits.

Residual correlations between calving ease and wgavaenght for American Simmental
cattle was -0.02 (Burfening et al., 1978a). SimyiaBennett and Gregory (2001), in a study of
composite and parental populations of beef cattlandothat calving ease had a residual
correlation of -0.02 with weaning weight (200-d WT)hose estimates show a very weak
environmental association between calving ease andingeareight which tends to be close to

Zero.

Estimates of residual correlation between calving aaslgpostweaning gain are expected
to be very small and close to those for calving easevwaraning weight. Bennett and Gregory
(2001) found that calving ease has a residual comelati -0.03 with 168-d gain across several

composite and parental beef cattle populations.

In the literature, several articles reported that thsidual correlation between birth
weight and weaning weight for Simmental beef catileged from 0.18 to 0.5Burfening et al.,
1978a; Benyshek and Little, 1982; Wright, 1987; @&&ret al., 1989; Woodward et al., 1992)
Bennett and Gregory (1996) reported residual caticel of 0.29 between birth and weaning
weights for nine beef cattle breeds. For CharolaiglecaMeyer (1993) reported residual

correlation estimate of 0.19 which was near the |dim@t of estimates described in literature.
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The literature of American Simmental beef cattlgported that birth weight and
postweaning gain have residual correlation estimate8.@f and 0.10 (Benyshek and Little,
1982; Garrick et al., 1989), respectively. Furtlzestudy by Wright (1987) reported estimates of
0.10 and 0.03 for American and Canadian Simmengapactively. Birth weight in purebred

beef cattle has residual correlation of 0.12 with\weahing gain (Bennett and Gregory, 1996).

In a study of American Simmental cattle by Benyshe# aittle (1982), the residual
correlation between birth weight and yearling weilas 0.42. Similarly, estimates frovkright
(1987) for American and Canadian Simmental were @B8d 0.39, respectively. However,
calculated residual correlation between birth weigimd yearling weight for American
Simmental cattle, given (co)variance components ifth kveight with both weaning weight and
postweaning gain, was relatively lower (0.21; Garretkal., 1989). The estimated residual
correlation between birth weight and yearling weighGelbvieh and Charolais cattle were 0.14
and 0.12, respectively, (Meyer, 1993; Iwaisaki et 2005b). However, Bennett and Gregory
(1996), in their study for nine beef cattle brea@ported that birth weight has a higher residual

correlation (0.28) with yearling weight.

Studies of American Simmental by Benyshek and Li(ll682), Wright (1987), and
Garrick et al. (1989) reported residual correlagstimates (-0.18, -0.10, and -0.17, respectively)
between weaning weight and postweaning gain. Foadlan Simmental cattle, the correlation
estimate was -0.15 (Wright, 1987) and for Angus, Makéteal. (2011) reported a correlation of
-0.18 between weaning weight and postweaning BW.gdmwever, Bennett and Gregory
(1996) estimated a positive residual correlation§plEtween weaning weight and postweaning

gain for nine beef cattle breeds.
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Residual correlation between weaning weight and liggarweight for American
Simmental cattle were 0.64 and 0.67 (Benyshek artte L982; Wright, 1987), respectively.
Additionally, the later study reported an estimateOof2 for Canadian Simmental cattle
Furthermore, calculated correlation from anothedytn American Simmental by Garrick et al.
(1989) was 0.57. Residual correlation estimates frotcles on different beef cattle breeds
ranged from 0.55 to 0.75 (Meyer, 1993; Bennett@negory, 1996; lwaisaki et al., 2005b; Costa

et al., 2011).

In Studies of American Simmental cattle by Benyshel &ittle (1982) and Wright
(1987), residual correlation estimates between posimgayain and yearling weight were 0.57
and 0.68, respectively. The latter study also redaateorrelation estimate of 0.58 for Canadian
Simmental cattle. Using (co)variance estimates fronriGaet al. (1989) between weaning
weight and postweaning gain, a calculated residuakletion between postweaing gain and
yearling weight for American Simmental was 0.7. Tk@neate of residual correlation between

postweaning gain and yearling weight reported byrgérand Gregory (1996) was 0.72.

Review of literature on direct genetic, maternaheje, and residual parameters for
calving ease, birth weight, weaning weight, postwearga@, and yearling weight can be
summarized as follow: 1) Birth weight has the highesitability among all traits. 2) Heritability
estimates for other growth traits were moderate. 8)chtving ease, estimates of heritability on
the underlying scale were higher than those on tlserebd scale which means capturing more
variation on liability scale. 4) There is a high négaigenetic correlation between calving ease
and birth weight. 5) The continuous distribution ofth weight justifies the importance of
incorporating birth weight in the genetic evaluatmf calving ease. 6) Moderate positive genetic
correlations between birth weight and subsequent groindgfis unveil the antagonistic
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relationship between calving ease and postnatal grtvaitis when selection for birth weight is
applied. 7) The importance of incorporating mateefcts in the genetic evaluations of calving

ease, birth weight, and weaning weight.

2.8.Selection index

Candidate animals for selection should be evaluatedwanall genetic merit. Hence,
genetic evaluation should involve multiple traits ammals selected to produce progeny in the
next generation. Selection index is a widely usedapdwerful tool to achieve optimal genetic
gain that ultimately maximizes profitability througdelection of animals with best genetic
makeup to be parents. Selection index is a linearbawation of phenotypic information and
weighting factors that is used for genetic predictidnnet merit. Selection index was first
introduced by Hazel and Lush (1942) and Hazel (19B8) the selection index of Hazel (Eq.
2.6), the index value is calculated for one traisdzhon (n) different phenotypic sources of
information X)), (e.g., animal’s own record, ancestors, progeny, half-sibs, and full-siasy
weighting coefficientslg) for those sources of information. However, insteadedéction index
for one trait, multiple traits can be combined imoe selection index which represents the
aggregate genotype.

I = b X; + by X, + -+ b, X, (2.6)
However, after Henderson (1973, 1975) introduced BLibethodology, which has

become the standard procedure of the genetic ei@ly#ite classical economic selection index
of Hazel was replaced with the economic selection xnth&at uses BLUP solutions. The
economic selection index is defined as combination of weighting factors or “economic weights”
and genetic information on more than one trait (Boun, 1999). The optimal properties of

BLUP solutions allow adjustment for fixed effects armtaunt for inbreeding making it the
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preferred method of genetic prediction. Yet, usehesé predictions in the economic selection
index gives a measure of the aggregate genetic wieah animal for multiple traits in the
selection objective and/or their indicator traits.eTéame formula as that used for the classic
selection index is also used for the economic seleatiex. Nonetheless, phenotypic sources of
information are replaced with the genetic predididrom BLUP é.g., estimated breeding
values “EBV” or expected progeny differences “EPD”) weighting coefficients are replaced with
relative economic values in the “new” selection index.

Considerations in selection index implementation: Level of production, goals of production,
and production resources such as labor, managementnpatcvary by enterprise. Consequently,
the relative economic value will vary amongst prdduc systems. Therefore, industry-wide
selection indexes are not suggested but rather inderedddbe specific for each enterprise or
production unit (MacNeil et al., 1997). Given theniinear relationships between profit and
performance or any other changes in economic ciramass, selection indices should be
subject to periodic recalculation (Hazel et al., 499n the case of a generation interval of 5
years, relative economic values should be calculadedywaverage prices over the past 10 to 15

years (MacNeil et al., 1997).

A widely used example of selection index is that dbedr by Dickerson et al. (1974)
who published a selection index for efficient beafduction (Eq. 2.7). This index was expected
to increase economic efficiency of beef production6Bly higher than the single trait selection
for yearling weight. This increase was due to decrgasmature cow size and thus feed
requirements, reducing calf birth weight and thuwingl difficulty and associated mortality
relative to selection on yearling weight. Howevelf gveights at weaning and yearling would be

expected to decrease by only approximately 10%. Dickerson’s selection index was adopted by
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MacNeil (2003) to improve efficiency of beef prodoat Results showed that, despite the
genetic antagonism that commute selection response \er lbirth weight and increased
postnatal weights, the index yielded positive coreglatesponses for direct genetic effects on

weight traits at all ages.

I = YWT — 32BWT (2.7)

In summary, selection index is a powerful method thelpsh animal breeders make
selection decisions to improve profitability of theinterprises through maximizing economic
response of multiple trait selection programs. This isaltref its unique capabilities to combine
genetic information on multiple traits weighted Imeit economic weights into one value of the
aggregate merit of the animal. The importance chedaait in the selection index is determined
by its contribution to profitability either by itsfett on cost of production (i.e., negative weight)

or its effect on profit (i.e., positive weight)

2.9.Genetic trends

Genetic change in a trait, over time (per yearergeneration), is primarily driven by the
genetic variability, accuracy of selection, generatinterval, and selection intensity and, in
multiple trait selection programs, by genetic comretes with other traits of interest. Here,
genetictrend of a trait can be expressed in the trait’s actual units or in standard deviation units.
In selection programs, selection goals vary and tookchieve those goals vary accordingly.
Therefore, selection could be applied via means dflesitrait selection or multiple traits
selection in which selection indexes are preferred,immgpendent culling levels used as well.

In this section, beef cattle selection trials and ttifierent selection approaches are reviewed.
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Simmental beef cattle: Elzo et al. (1985) estimated direct and maternalege trends for
Simmental cattle during the 1972-1983 time period.ddéhce in means between 1983 and 1972
of direct birth weight, weaning weight, yearling igiet were -0.6, 0.6, and 11.1 kg, respectively.
For maternal genetic effects, mean differences fdemal birth and weaning weights were -0.2
and 1.1 kg, respectively. Despite the positive geneticelations between birth weight and
postnatal growth traits, a negative genetic trendiidh weight was achieved. Elzo et al. (1987)
also estimated genetic trends of Simmental sires (1983) for first-parity calving ease, birth
weight, weaning weight, and yearling weight. Dirgenetic trends for calving ease, weaning
and yearling weights were positive while that forttbiweight was negative. Maternal genetic
trends for first-parity calving ease and birth weighteveositive and that for weaning weight did
not show significant change. Wright (1987) estimatedegc trends (1973-1985) for growth
traits and calving ease of Canadian Simmental cathie.alithor concluded that breeders were
mainly selecting for weaning and yearling weight ehresulted in heavier calves at birth. In
their study on different beef cattle breeds, Sullietral. (1999) reported estimates of genetic
trends for Simmental. They found that regression lifmesbirth and weaning weights were
broken (i.e., two different regression lines). As sule genetic trend estimates were reported for
two periods: 1985-1990 and 1990-1995. Correspondergtic trends for birth weight were
0.125 and 0.048 kg/yr and those for weaning gain v@e8& and 0.72 kg/yr. However, the

genetic trend (1985-1995) for yearling gain was kdg/fr.

Single trait selection experiments (selection for high growth traits): In a study involving
Hereford cattle, two lines were selected for high mueg weight (WWL) and high yearling
weight (YWL) (Frahm et al., 1983a), Estimated genetic gains in standard deviation umts p

generation of the two lines, respectively, were 0296 for birth weight; 0.22, 0.19 for weaning
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weight; -0.02, 0.04 for postweaning average daiin;ga.08, 0.14 for yearling weight. Hough et
al. (1985), in a selection study of Hereford cattetimated the difference in response to
selection for high yearling weight versus control.f@i&nce in selection response between the
two lines for calving difficulty, birth weight, 208-weight, postweaning average daily gain and
yearling weight were 0.05 score/yr, 0.27 kg/yr, 5ykg0.009 kg/d per yr, and 6.2 kglyr,
respectively. Irgang et al. (1985a, 1985b, 1985ckkbped three Hereford lines selected for
increased weaning weight (WWL), postweaning gain (R@hy a control line (CTL). Results
revealed that selection for either increased weameght or postweaning gain improved
yearling weight; however, selection for increased yweahing gain produced higher correlated
responses in all other growth traits. Birth weight iase=l in PGL, but it did not show correlated
response in WWL. Aaron et al. (1986a, 1986b) establistvedines of Angus cattle which were
selected for increased weaning weight (WWL), increaseatlipng weight (YWL), increased
combination of animal and its progeny weaning we($hiL), (i.e., five bulls were selected on
the basis of individual 205-d weaning weight and ttveo bulls were subsequently selected on
the basis of progeny weaning weight), and a coninel (CL). Estimated genetic responses in
standard deviation units per generation in WWL, YWhid aPTL, respectively, were: birth
weight, 0.24, .47, .42; weaning weight, 0.28, 0.8(G1; postweaning gain, 0.12, 0.36, 0.16;
yearling weight, 0.26, 0.44, 0.41. Results revedied selection for yearling weight produced
heavier animals at all ages; consequently, incideh@alving difficulty is expected to be high.
Mrode et al. (1990a, 1990b) established two seleated land a control line of Hereford beef
cattle. Animals were selected for lean growth r&ateR) from birth to 400 days of age and lean

food conversion ratio (LFCR) from 200 to 400 days gé.aCorresponding correlated responses
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for birth weight were 0.127 and 0.105 kg/yr. Corsting correlated responses for first-parity

calving difficulty score were -0.018 and 0.018.

Single trait selection experiments (selection for high calving ease): Bennett (2008) used
selection (1993-1999) to create two lines: select@drol lines within 4 purebred (Charolais,
Gelbvieh, Hereford, and Angus) and 3 composite cdMARC I, Il, and Ill) populations.
Selection was for lower 2¢old heifer calving difficulty score EBV in the setelnes and
animals in the control lines were selected for awerbgth weight EBV. The difference in
average EBV between select and control lines forimgldifficulty and birth weight across
populations were -1.06 and -3.5 kg, respectively. &l@v, both lines did not show differences
in maternal calving difficulty, maternal birth wéig weaning weight and postweaning gain.
Results revealed that selection for lower calvingidiffy reduced birth weight and the

incidence of calving difficulty and did not affegtowth at later ages.

Selection index experiments. Three Hereford lines resulted from selection for wegweight
(WWL), yearling weight (YWL), and an index of yeiad weight and muscling score (IXL)
(Buchanan et al., 19823, Response to selection in standard deviation unitg¢meration for
birth weight were 0.26, 0.27, 0.29; for weaning gieiwere 0.24, 0.24, 0.21; for postweamnin
gain were 0.21, 0.4, 0.33; and for yearling weiglgre 0.29, 0.39, 0.34, for their respective
selection lines. Dickerson’s selection index was adopted by Doornbos et al. (1994) who
estimated genetic trends for birth, weaning, andliygaweights of Hereford beef cattle. Rates
of genetic change for weights at birth, weaning, gearling were 0.011, 1.17, and 1.97 kgl/yr,
respectively. Results shed that weaning and yearling weight can be improveth vitle
change in birth weight. Koch et al. (1994) pradicelection in three lines of Hereford cattle
They selected for increased weaning weight (WWL), lyeaweight (YWL), and an index of
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yearling weight and muscle score (IXL). For WWL, YWand IXL, reported annual genetic
responses were: birth weight, 0.22, 0.24, 0.27 kg; imgaweight, 0.98, 0.63, 1.26 kg; and
yearling weight, 2.43, 2.64, 3.44 kg, respectivB®gspective responses to selection in standard
deviation units were: birth weight, 0.22, 0.23, Q.@2aning weight, 0.20, 0.12, 0.22; yearling
weight, 0.31, 0.32, 0.40. In all three lines, thatsr showed positive trends and responses from
IXL which were the highest. In a simulation study,u®b(1996) simulated four selected lines.
Two of those were selected for increased yearling weight (GT) and Dickerson’s selection index
(ET). Corresponding genetic trends were, for firstygadirect calving ease, 0.001 and 0.011
SDl/yr; for birth weight, 0.08 and -0.005 kg/yr; fdirect weaning weight, 2.14 and 2.13 kg/yr;
for maternal weaning weight, 0.009 and -0.01 kgfgr;yearling weight, 4.77 and 4.65 kg/yr
For both selected lines, trends for direct weaning gearling weights were significantly
different from zero. However, in the ET line, calyirase was significantly improved and birth
weight did not show a trend. Conversely, selectionrforeased yearling weight increased birth
weight and did not affect calving ease. MacNeil let(8998) created two selected lines via
independent culling levels for below-average birgight and high yearling weight (YB) and a
single-trait mass selection for high yearling weight\()Yin the inbred population of Line 1
Hereford cattle. Corresponding estimated genetidsdar birth weight were -0.014 and 0.105
kglyr. For yearling weight, corresponding genetientts were 0.91 and 1.5 kg/yr. However,
maternal genetic trends were similar for both seladiies. First-parity calving difficulty was
less frequent in YB line. However, in order to impemalving ease, authors suggested that direct

selection for the trait should be applied.

MacNeil et al. (2000) used the same lines in MacNeal.gt1998) to characterize genetic

changes in age-weight relationships of females resuliiogn these selection lines. They
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reported genetic gain of females per generation @&n8 10.1 kg for BY and YW lines,
respectively. Corresponding intercepts of growth cairfie., birth weight) were -0.00134 and -
0.00116 kgMacNeil (2003)implemented Dickerson’s selection index to improve efficiency of
beef production for a stabilized composite populafoGC): %2 Red Angus, ¥ Charolais, and Y4
Tarentaise. A control line without selection was aldaldshed. For the selected line, estimates
of direct genetic changes for the index, birth wgidt00-d weight, 365-d weight, and cow
weight were 6.0, 0.45, 3.42, and 7.74 kg/generatrespectively. Enns and Nicoll (2008)
evaluated genetic trends of New Zealand Angus whidectssl (1976-1993) using an
economically based, multi-trait breeding objectiveai® were slaughter weight and dressing
percentage of harvest progeny and cull cows, anduh#er of calves weaned in the lifetime of
each cow. Correlated responses for genetic changesdaning weight direct and maternal
breeding value were 0.43 and 0.03 kg/yr, respegtiv€lorresponding genetic trends for

postweaning gain and yearling weight were 0.29 aid Kg/yr, respectively.

Generally, selection for increased postnatal grdvetits resulted in heavier births which
are expected to raise the incidence of calving difffc However, selection for low birth weight
and high postnatal growth traits reduced birth weighit not necessarily calving difficulty.
Selection for increased postnatal growth traits andrag@lease should be considered as means of

effectively reducing calving difficulty and increaseswth at later ages.
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CHAPTER Il

PERFORMANCE LOSSES DUE TO SELECTION FOR LOW BIRTH WEIGHT

VERSUS HIGH CALVING EASE: A SIMULATION STUDY IN BEEF CATTLE

3.1.Introduction

The economic importance of calving difficulty is Wwebcumented (Wiltbank et al., 1961,
Laster et al., 1973; Meijering, 1984; Dematawewd &erger, 1997). Costs associated with
extreme dystocia (i.e., animals with score of 3, 4] &pin primiparous Holsteins cows were
estimated to be $96.48, $159.82, and $379.61, regplgct(Dematawewa and Berger, 1997).
These costs were estimated from losses in milk yieldjiééd, protein yield, days open, number
of services, and calf deaths. However, the total @sstciated with dystocia (i. e., sum of costs
associated with dystocia scores weighted by the prlityabf occurrence) was $28.53 fona
average heifer and about $10.00 for an average ome. Amongst genetic and environmental
factors that affect the incidence of calving diffigu birth weight is considered most important
(Bellows, 1993). Incidence of dystocia increases byl3% when birth weight increases by 1
kg (Laster et al., 1973; Johanson and Berger, 200®xefore, historically genetic improvement
of calving ease relied heavily on selection of aninvalh low birth weight. Such a strategy
could potentially reduce beef cattle efficiencywo different ways. First, given the fact that the
genetic correlation between calving ease and bieight is not one, selection for low birth
weight does not necessarily improve the ease of cal8agond, selection for low birth weight
can reduce growth at later ages given the unfavergbhetic relationship with those traits.

Several researchers reported that selection for law Wieight did not improve calving ease and
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they suggested that direct selection for calving @as@d be more effective (Burfening et al.,
1978b; MacNeil et al., 1998). Compared to select@rdwer birth weight, we hypothesize that
direct selection for high calving ease would resalanimals with lower incidence of calving
difficulty and higher growth rates at later agesefHfore, the first objective of this study was to
determine the consequences of alternative selectitariarfor either low birth weight or high
calving ease.

Although calving ease is recorded as an ordered catafdrait (i.e., discrete), it is a
guantitative trait with ahypothetical underlying continuous “liability” scale which has the
characteristic of normally distributed variables. r@ia (1980a, 1980b, 1982) reported that
assumptions of linear methodologies were violated wheed uor the analysis of ordered
categorical responses (i.e., observed scores were traated linear variable)Gianola and
Foulley (1983) suggested a nonlinear method, caledthreshold methodology, to analyze
ordered categorical traits which are also known assttold traits. For such traits, polygenic
inheritance and large number of loci must be evidenustify the assumption of the underlying
normal distribution, which is essential for the evélwa of such traits using the threshold
methodology (Foulley et al., 1990). Results from repof superiority of the threshold model
over the linear model with respect to their goodnés$s and their predictive ability have varied.
Several researchers have supported the hypothesishthdahreshold model is a better fit to
categorical traits (Varona et al., 1999b; Ramireiv®iae et al., 2001; Casellas et al., 2007;
Gevrekci et al.,, 2011). However, other studies fotimat the two methodologies performed
similarly (Renand et al., 1990; Olesen et al., 1994nW@/et al., 2005). Therefore, the second
objective of the present study was to compare the tbicbsimodel with the linear model in terms

of their predictive ability of calving ease EPD usihg tross validation technique.
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3.2.Materials and Methods

Studied traits were calving ease (CE), birth wei(BWT), weaning weight (WWT),
postweaning gain (PWG), and yearling weight (YWT\oTlselection scenarios were simulated
to compare rates of genetic change resulting froncsefefor high calving ease (HCE) versus
selection for low birth weight (LBW). Weighted medos phenotypic averages and genetic and
residual (co)variances of studied traits were requiedccreate data for the two selection
scenarios. Furthermore, genetic and residual paranwdtetsdied traits were estimated, using a
multivariate threshold-linear animal model with G#sampling algorithm, to predict EPD for
those traits. For both selection scenarios, genetic trémstacied traits EPD by birth year were
estimated. Threshold animal model and linear animadets were compared in terms of their
predictive ability. Models were compared in terms of linearity “threshold vs. linear” with calving
ease fitted either as a binary or polychotomous ffak. criteria used to compare the predictive
ability of models were Spearman’s rank correlation and Pearson’s correlation between observed

and predicted EPD from two complementary subsets in wB0éh of the data was used.

3.2.1.Estimation of weighted means of (co)variances and phetypic averages from

literature

One of the aims of the current study is to generage that mimic real field situations, as
such weighted averages of (co)variance components literature were estimated. Weighted
means of trait averages required to create data sdtsefowo selection scenarios were estimated
as shown in Eq. (3.1).

k —

7 = D=1 i

w = vk
i=1M

(3.1)

wherex,, was the weighted mean; was the number of records in ttike study, ank was the

number of studies.
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(Co)variance component estimation is a very crugdp in genetic evaluation
procedures. Genetic predictionsquired from BLUP procedures (e.g., breeding values “EBV”
or expected progeny differences “EPD”) require (co)variance components to be known. The
latter are the dispersion parameters that describeatidom blocks (i.e., genetic and residual
effects)of Henderson’s mixed models equations. In particular, genetic (co)variances describe the
genetic variation within (i.e., direct or maternadriance) and between traits (i.e., genetic
correlations amongst traits in multi-trait genetic leadons). Furthermore, residual
(co)variances describe environmental variation witlim between traits. Hence, we need to
estimate both genetic and residual (co)varianceschwhie the elements of two respective
matrices known a$ and R. In simulation studies, (co)variance components demendhe
objective of the simulation. First, if the objectiwéthe simulation study was for example to test
the effect of a theoretical incremental change lneatability of a trait on correlated response of
another trait, genetic (co)variances would take teabily assumed values (i.e., incremental
values). Second, if the objective of the simulati@yuires data that mimics field data,
(co)variance components used to create such data sbewdiher estimates of a specific field
data or weighted averages from literature. Sincetimeof the current study required mimicking

field data, weighted averages of (co)variance coraptafrom literature were estimated.

Estimates from literature included direct genetic phdnotypic variances, heritabilities,
direct genetic and residual correlations for calvease, birth weight, weaning weight, and
postweaning gain. These vatueiere compiled and weighted averages and their ragpect
standard errors (Table 3.1) were estimated. Weightedne were estimated for direct
heritability, direct genetic variance, and genetie residual correlations. However, weighted

means for phenotypic and residual variances were latdcugiven the weighted mean estimates
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of direct heritabilities and direct genetic variasicResidual covariances were directly calculated
from their respective residual correlations and residardances.

Published heritability estimates were averaged (Eg. I8odts et al.19943 using the
inverse of the sampling variance for each estimate (BgK®ots et al.19943 as a weighting
factor. Standard errors for heritability weightectans §E,,) were estimated by taking the
square root of theummation of weighting factors (Eq. 3.Koots et al19943.

L TEARE/SE)

=3 1/(SEp2)? (3:2)

whereh?, is the weighted mean for heritabilith? is the heritability estimate from ttith

cited source, an8E 2 is the corresponding estimated standard error.

. 2 _
weight of hi = (SEhiz)z (3.3)

Z 1/(SEj3)? (3.4)
i=1

To remove the dependency of the variance on the dstingenetic and residual
correlations and direct genetic variances were trams&fd to an approximate normal scale using
Fisher’s Z transformation (Steel and Torrie, 1960) as shown in Eq. (3.5). Nerighted means
of the Z transformed correlations were calculatedgugig. (3.2). Then, resulted weighted means

were back transformed using Eq. (3.6).

(3.5)

1+r]

Z=0.5*log[1_r

whereZ was the transformed correlation andas untransformed correlation from literature.

e?? -1

- - 3.6
ez +1 (3.6)

Tw
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wherer,, was the weighted mean correlation (phenotypic ewegic) andz was the weighted
mean for the Z transformed correlations.

Table 3.1: Number of literature estimates (n) and estimatedjed mean (Es.) with stande
error (S.E. X100) in parenthesis for direct genetidcaveee (bold faced on diagonal), gene
correlation (above diagonal), residual correlatitrelow diagonal), and heritability th for
calving ease (CE), birth weight (BWT), weaning weilWT), and postweaning gain (PW!
with source cited.

Trait CE BWT WWT WG

Sourcé n (52) Sourcé n (52) Sourcé n (52) Sourcé n (SE.SI;)
CE - 024 79131418 10 0('17)3 fslfg 9 (%_252) 28 2 0(-62)1
BWT 7 1 0('32)5 191117 4 ?:;,2; Sl © (8:; 113 2 0.32
T - T
PWG 2 1 003 1 1 (%.182) 1 1 (%-.C:g L1 2169
8 3 o hirh % on e 2 @ 1 G

%1 = Bennett and Gregory (1996), 2 = Bennett andy@me(2001), 3 = Brandt et al. (2010), 4 = Burfeniet al.
(1978a), 5 = Costa et al. (2011), 6 = Dong et al9{)97 = Eriksson et al. (2004), 8 = Gregory et #98§), 9 =
Gutierrez et al. (2007), 10 = Iwaisaki et al. (280511 = Iwaisaki et al. (2005b), 12 = Koots et &b94a), 13 =
Koots et al. (1994b), 14 = Lee (2002), 15 = Matilaireg al. (2009), 16 = Meyer et al. (1994), 17 = Muand
Crews (2009), 18 = Phocas and Laloe (2004), 19 = Rsrdgpe et al. (2005)

®Direct genetic variance of calving ease was calcdlgieen the weighted average of heritability (0.5 residua
variance of one.

3.2.2.Simulated data

Two data sets were simulated using weighted meansetigand residual (co)variances
(Table 3.1) and phenotypic averages for calving €888, birth weight (BWT), weaning weight
(WWT), and postweaning gain (PWG). Schematic reprasientof the data simulation process
is presented in Fig. 3.The base population consisted of 1,200 sires randomtgdria 36,000
dams (30 dams/sire) to produce 36,00@iegeny. Animals were then partitioned into 126dse
of 300 cows/herd. Two populations were selected lioeet generations under two selection

scenarios: 1) selection for high calving ease (HCEeBction for low birth weight (LBW). For
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each selection scenario, the selection criteria wadrtlee breeding values (TBV) for either
calving ease on the underlying scale or birth weight where top 5% (TBV < male average TBV -
1.65SD) males across the generations were selected and randomly mated to the top 80% (TBV <

female average TBV + 0.85 SD) females (i.e., 2 wddr from previous generation (Fig. 3.2).

In order to create observations, year and season ¢f déffécts were assumed to be
constant; however, sex and herd effects were used tte aoeaervations. Based dd code
written by Larry Schaeffer (http://www.aps.uoguet@i-Irs/'Summer2012Full/MTiter.R),
observations for studied traits were created, using Brano (R Core Team, 2014), as a linear
function of trait average, sex, herd, TBV, and resiguadr (Eqg. 3.7). For details about simulated
data see appendix B.

Yijlw = 1j + S+ hy + thvj + ejjig (3.7)
wherey; jx; was the observation for thth trait on theith animal,u; was the average of thth

trait, s, was the sex effech; was the herd effecttbv;; was the true breeding value, a#g,

was residual. Resulted observations for calving easd@mdntinuous underlying scale were
transformed to an observed categorical scale of fategories using fixed thresholds 0, 1, and
1.4 SD.

Elements ofG and R matrices represent the weighted means of geneticresidual
(co)variances from literature and were used to crebgervations for CE, BWT, WWT, and
PWG, respectively. Summary statistics and data steicitisimulated data sets resulted from

selection for high calving ease and selection for lathhveight are presented in Table 3.2.

c=|111 9.67 2311 14.65 1.13 205 3037 8.78
1.60 23.11 221 103 0.46 30.37 534 29.87

024 111 1.60 1.51 1 113 046 048
]’ R=[
151 14.65 103 217 048 878 29.87 261
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Base population
120 herds (300 animal/herd)
1,200 sires x 36,000 dams randomly mated to produ€@936; progeny

Selection for High CE
HCE

J L

top 5% sires x top 80% danm

S

top 5% sires x top 80% dan

L=
J L

top 5% sires x top 80% dam

L]

Selection for low BWT
LBW

J L

top 5% sires x top 80% dam

L= ]

top 5% sires x top 80% dan

L=
J L

top 5% sires x top 80% dam

L]

Figure 3.1: Schematic representation of tweimulated data sets for two selectis
scenarios: High calving ease (HCE) and Low birth weigBW)
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Selected
Dams

Selected
Sires

(Top 5%

(Top 80%)

Males TBV Females TBV

Figure 3.2 Selected sires (top 5%'BV < male average TBV - 1.65SD) across
generations (A) and selected 2 yrs old dams (top: 80 < female average TBV +
0.85 SD) from previous generation (B) for high cadviease (HCE) and low birt

Table 3.2: Data structure of simulated beef cattle populations.

Selection scenarto

Item HCE LBW

No. of animals in pedigree 105,950 105,830
No. of animals with records 68,853 68,733
No. of dams 68,853 68,733
No. of sires 3,794 3,808
No. of dams/sire 18.14 18.04
No. of herds 120 120
Herd size 573.7 572.7
Calving Ease  Mean (SD) 1.66 (0.76) 1.67 (0.76)
BWT, Kg Mean (SD) 35.8 (6.94) 34.7 (7.62)
WWT, Kg Mean (SD) 242 (31) 236.4 (33.2)
PWG, Kg/day Mean (SD) 0.97 (0.023) 0.97 (0.024)

THCE: Selection for high calving ease; LBW: Selection for low birth weight.
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3.2.3.(Co) variance components estimation

For both selection scenarios, (co)variance componentsalwing ease, birth weight,
weaning weight, and postweaning gain were estimatéud Bayesian inference via means of
Gibbs sampling algorithm with a threshold-linear animabel (Eq. 3.8). Here, calving ease was
modeled as a threshold trait with four categories g®). which were: 1 = unassisted calving, 2
= minor assistance, 3 = major assistance and 4 = caesdneajuencies (in percentage)
of caling ease scores in HCE data were 1 = 52, 2 = 30.29.8,=and 4 = 8%; while calving
ease frequencies in the LBW were 1 =51, 2 = 30, 3 anfl 4 = 10%. However, because of
convergence problems, categories 3 and 4 were subsiygqueerged. The program
THRGIBBS1F90 from the BLUPF90 family of programs bysktal et al. (2002) was employed
to estimate (co)variance components and breedingsaftistudied traits. The THRGIBBS1F90
program uses the probit link function to transform obseérincidence to liability. Yearling
weight breeding values were estimated as the summdtlmeeding values of WWT and PWG
For both data sets, the analysis was carried out wsihgle chain of 120,000 iterations with a
burn in period of 20,000 samples. Out of the remairlif0,000 samples, only 10,000 samples
(i.e., every 18 sample) were used to obtain posterior means of (co)eariaamponents and
their respective posterior standard deviations. Thétipfau trait model equation used in the

analysis is presented below.

Lece XceBce ZceUce
wat _ watBbwt watubwt ebwt

= 3.8
wat wat wat wwt Uwwt Cwwt [ ( )
e
Ypr Xpwg Bpwg pwgupwg pwg

In the above equatiorB were effects associated with sex of calf and herd asbesu were
direct breeding valueg were the residuals; anXl andZ were incidence matrices that link data

with fixed effects and random effects, respectivélywas vector of observations for respective
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trait. An underlying distributionLl() of the calving ease was assumed, where calving ease was

modeled with the following distribution:

n

f(y|L) = nf(YilLi) = H[I(Li <t)Illy; =1) +1(ty < Ly <tp)l(y; = 2)
i=1 i

i=1

+ 1(t; < Ly <ta)I(y; = 3) +1(t; < Ll(y; = 4) (3.9)

wheret, t;, andts were thresholds that defined the four categories Ef i@owever, prior to
(co)variance components estimation, calving ease obsmrsd® and 4) were merged.

G®A

The (co)variance structure of random effects wasddfas: var [2] = [ 0 R((jbl]

whereG = a 4x4 additive genetic (co)variance matAx,= additive genetic relationship
matrix,R = a 4x4 residual (co)variance matrixz= identity matrix of order appropriate to the

numbers of observations, a@kKronecker product.

3.2.4.Comparison of models: Threshold versus Linear

Data of high calving ease selection scenario (HCE) a8 to compare the predictive
ability of the threshold animal model versus the lin@aimal model with calving ease fitted
either as a binary or polychotomous (3 categorieg) &dotal of 12 different models were fitted
to calving ease and growth traits (Table 3.3). Basechercomplexity of models, there were
three general categories: univariate, bivariated amultivariate animal models. Here, four
different models within each category are resultatving ease being fitted either as a threshold

trait (with 2 or 3 categories) or as a linear traiitli 2 or 3 categories).

(Co)variance components (Table 3.4) and solutione(ing values) for all models were

estimated via Gibbs sampling using THRGIBBS1F90 programlisztal et al. (2002)
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Table 3.3 Models fitted to calving ease and growth traits from igh calving ease data (HC
to compare them in terms of their predictive abiityePD.

Modef* CF Fitted traits Model representatidn
Univariate
L-UAM-CE2 L+B CE Yee = XceBee + ZeelUce + €ce
L'UAM_ CE3 L+P CE Yce = XCEBCQ + Zceuce + ece
T-UAM-CE2 T+B CE Lee = XceBee + ZeeUce + €ce
-I-'U/A\I\/I'CE3 T+P CE Lce = Xcesce + Zceuce + ece
Bivariate
Y.l [ X 1. 12 1 1 €ce
LL-BAM-CE2 L+B CE + BWT ce | = [ XeePee 4|, feetlee | | [ “ee
[ Yowt [ XpwiBowtl | ZpwtUpwt ] [ €hwt
Yol [ X 112 1 T €ce
LL-BAM-CE3 L+P CE + BWT e | = [ KeePee ] [ Zeellce ] [ Cee
[Yowt]l [ XpwiBowtl  1ZpwtUbwel = LEbwtl
Lee] [ X 112 1 T €ce
TL-BAM-CE2 T+B CE + BWT ce | o [ Xeebee ] [ Zeellee ] 1 Cee
[ Yowt. .watBbwt. | ZpwiUpwt [€hwt.
Lee] [ X 112 1 T €ce
TL-BAM-CE3 T+P CE + BWT ce | = [ Xeebee | [ Zeellce ][ Cee
[Yowt]l [ XpweBowtl 1 ZpwtUbwel = LEbwtl
Multivariate
[ Yee 7 [ XceBece 17 [ ZeeUce ] [ €ce ]
Y, X Zpwil e
LL-MAM-CE2 L+B CE +BWT + WWT + PWC |"" [ = X"thbw‘ + [0+ e
wwt wwtPwwt wwtUwwt wwt
_prg. _XpwngWg_ -prgupwg_ [ €pweg |
[ Yee 7 [ XceBee ] [ ZceUce ] [ €ce ]
Y, X Zpwil e
LL-MAM-CE3 L+P CE +BWT + WWT +PWC [y | =1y bwiEbW‘t Lo Pt R P
WwW WW
Yowgl  [XpweBpwgl 1ZpwgUpwel 1®pwel
[ Lce ] [ XCBBCe ] [ Zceuce ] [ ece ]
wat _ watBbwt + watubwt + Chwt
TL-MAM-CE2 T+B CE + BWT + WWT + PWC | Yywwt| | XwwtBwwt ZivwitUwwt Cwwt
_prg_ _Xpwngwg_ _prgupwg_ _epr_
[ Lce 7 [ XceBee 1 [ ZceUce ] [ €ce ]
Yowt _ watBbwt + ZywiUpwt + Chwt
TL-MAM-CE3 T+P CE + BWT + WWT + PWC  [Yyuwe| ~ [ XwwtBwwt ZwrwtUwwt ewwt
Ypwgl  [XpweBpwgl 1ZpwgUpwel |Cpwel

! = linear; T = threshold; UAM = univariate animal model; BAM = bivariate animal model; MA
multivariate animal model; CE2 = 2 categories; CE3 = 3 categories.

?L = linear; T = threshold; B = binary; P = polychotomous.

3CE = calving ease; BWT = birth weight; WWT = weaning weight; PWG = postweaning gain.
*Models terms are illustrated in Equations 3.8 and 3.9, exceptfarhich was a vector of calving e
scoregq2 or 3) on the observed scale.
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Table 3.4: Posterior mean and posterior standard deviation (ianpl@eses) for (co)varian
components of calving ease (CE), birth weight (BWT), weaningigte (WWT), and pos
weaning gain (PWG) for the high calving data (HCE)er different models.

CE'

L-CE2 L-CE3 T-CE2 T-CE3 BWT WWT PWG

Modef Effect Trait

Univar.
Dir.
CE 0.02(0.001) 0.06(0.003) 0.16(0.01) 0.18(0.01)
Resid.
CE 0.22(0.001) 0.51(0.004) 1(0.007) 1.13(0.01)
Bivar.
Dir.
CE 0.015(0.0010.044(0.0030.10(0.009 0.13(0.009
BWT 0.38(0.013) 0.61(0.022)1.02(0.038 1.08(0.039 21.55(0.31
Resid.
CE 0.23(0.001) 0.52(0.004) 1(0.007) 1.17(0.016
BWT 0.44(0.013) 0.74(0.021)1.18(0.034 1.30(0.037 16.17(0.20
Multivar.
Dir.
CE 0.015(0.0010.045(0.0030.11(0.008 0.13(0.01)
BWT 0.38(0.014) 0.62(0.022)1.02(0.036 1.08(0.03) 21.51(0.30
WWT 0.66(0.067) 1.14(0.110)1.76(0.180 1.98(0.18) 48.27(1.11 305.9(7.25
PWG 0.35(0.062) 0.60(0.010)0.93(0.170 1.04(0.17) 22.64(0.91 133.7(4.65 256.8(5.43
Resid.

CE 0.23(0.001) 0.53(0.003) 1(0.007) 1.17(0.01)
BWT 0.44(0.013) 0.74(0.021)1.18(0.034 1.29(0.03) 16.20(0.20
WWT 0.73(0.070) 1.15(0.108)1.97(0.184 2.02(0.18) 23.69(0.80 544.2(5.90

PWG 0.62(0.057) 1(0.090) 1.67(0.155 1.75(0.15) 7.57(0.64) 37.98(3.44 292.6(3.89
lvariances (bold faced) and covariances (below diagonal of effect block).
“Univar. = univariate animal model; Bivar. = bivariate animal model; and Multivar. = multivariate
model.
3Dir. = direct genetic effect; and Resid. = residual effect.
L-CE2 = calving ease was fitted as a linear binary trait; L-CE3 = calving ease was fitted as a lir
with 3 categories; T-CE2 = calving ease was fitted as a threshold binary trait; and T-CE3 = cal
wasfitted as a threshold trait with 3 categories.
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Models were compared in terms of their predictivelitgbiusing cross validation
procedure (i.e., data splitting technique). This pcace was performed by duplicating the HCE
data (selection for high calving ease), which resultsvo identical data sets. In one of these
data, 50% of calving ease observations were randomly get moissing. Further, the remaining
calving ease observations in this data wadisearded in the other data. This splitting technique
results in two complementary data sets in which onié ¢faanimals have calving ease
observations and the same animals do not have calas® @bservations in the other data. For
each model, solutions were obtained for both compheang data sets and correlations between
solutions (EBV were transformed to EPD) from were cakad to evaluate the predictive ability
of models. Here, Pearson’s and Spearman’s (Rank correlation) correlation coefficients were

calculated between predicted EPD from two complenngiata sets.

3.2.5.Genetic trends

For both selection scenarios, solutions (EPD) for calesse (% unassisted calving) and
growth traits (kg) obtained from a threshold-linearltimariate model were regressed on year of
birth. Since selection was applied to produee B3, and k generations, year of birth for; F
generation, which is produced by random mating ahéters, was considered year zero. Under
the constraint of allowing only the 2 year old damgroduce the next generation, a period of 2
years was assumed to take measurements on the folloemegagion; therefore, average EPD
for all traits were calculated for every other ye@enetic trends (slope of regression line) of

studied traits were estimated as rates of change iage&PD per year.

3.3.Results and Discussion
Estimates of posterior mean and posterior standard taeviaf (co)variance components
obtained using Bayesian inference via means of a Ghbwling algorithm with a threshold-
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linear animal model (Eq. 3.8), for both selection sdesahigh calving ease (HCE) and low
birth weight (LBW), are presented in Tables 3.5 arfid @&spectively. These values were used to

estimate direct genetic effects (i.e., EPD) from wigehetic trends were calculated.

Table 3.5: Posterior means (from 10,000 Gibbs samples) and posséaindard deviations (i
parentheses) for (co)variance componeritsm the threshold-linear multivariate animr
model using Gibbs sampling analysis of calving ease ({@ility?), birth weight (BWT, k§),
weaning weight (WWT, kg, and post weaning gain (PWG,“kdf) for high calving east
selection scenario (HCE).

Effect Trait CE BWT WWT PWG

Direct genetic

CE 0.13(0.01)
BWT 1.08(0.03) 21.51(0.30)
WWT 1.98(0.18) 48.27(1.11) 305.9(7.25)
PWG 1.04(0.17) 22.64(0.91) 133.7(4.65) 256.8(5.43)
Residual
CE 1.17(0.01)
BWT 1.29(0.03) 16.20(0.20)
WWT 2.02(0.18) 23.69(0.80) 544.2(5.90)
PWG 1.75(0.15) 7.57(0.64) 37.98(3.44) 292.6(3.89)

'variances (on diagonal) and covariances (below diagonal).

Table 3.6: Posterior means (from 10,000 Gibbs samples) and posséaimdard deviations (i
parentheses) for co-variance componefitan the threshold-linear multivariate animal mb
using Gibbs sampling analysis of calving ease (CE, likgf), birth weight (BWT, kg),
weaning weight (WWT, K, and post weaning gain (PWG,df) for low birth weight
selection scenario (LBW).

Effect Trait CE BWT WWT PWG

Direct genetic

CE 0.21(0.01)
BWT 0.98(0.04) 25.54(0.31)
WWT 1.15(0.19) 67.75(1.12) 366.9(6.85)
PWG 1.02(0.18) 29.87(0.90) 159.4(4.51) 260.7(5.27)
Residual
CE 1.11(0.01)
BWT 1.33(0.03) 14.91(0.20)
WWT 2.37(0.18) 15.79(0.77) 526.6(5.55)
PWG 1.59(0.16) 5.26(0.62) 30.03(3.36) 294.5(3.84)

variances (on diagonal) and covariances (below diagonal).
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Average EPD for calving ease and growth traits correspgntb four generations of
selection are presented in Table 3.7 and depictedgin3E3. Both selection scenarios showed
increases in calving ease average EPD. However, Tab#h8v&s that rate of genetic change of
calving ease (% unassisted calving/yr) from HCE selesti@mario (1.56 + 0.05) was highét (
< 0.001) than that from LBW selection scenario (1#20.07). Average EPD for birth weight
from both selection scenarios showed decreases (FigureNe@ertheless, the decrease from
LBW selection scenario wa® (< 0.001) more severe (-1.17 = 0.03 kg/yr) compaoe@®.86 +
0.02 kg/yr) HCE. These results were in agreement withnBg (2008) who reported that
selection for higher calving ease reduced birth weagpial the incidence of calving difficulty and
did not affect growth at later ages. For weaninggiweiaverage EPD showed a decrease in both
selection populations; however, the rate of gendtamge of WWT EPD in the LBW selection
scenario experiencedP (< 0.001) a steeper decline, -3.55 + 0.10 kg/yr, marad to the -1.90 £
0.09 kg/yr for HCE selection scenario. Similarly, postniag gain average EPD from the LBW
selection scenario ha®  0.001) a faster rate of decrease at -0.25 = 0.04 kgmpared to a -
0.13 £ 0.01 kg/yr for PWG from HCE selection scenaieen though both selection scenarios
yielded decreasing rates for yearling weight averB§®, the difference between the two
scenarios was more pronouncdti< 0.001) where smaller losses in yearling weight ayer
EPD were found in HCE selection scenario versus LBW setestienario.

Compared to selection for low birth weight, selectfon high calving ease increased €
0.001) the annual genetic gain for the studiedstrdihese increases in the rate genetic change,
(i.e., slope differences between HCE and LBW), weB¥%, 1.65 kg, and 1.77 kg for CE,
WWT, and YWT, respectively, which correspond to 30.83.47, and 46.45% annual increase

for these traits. Therefore, selection for the econaliyicelevant trait (CE) instead of its
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indicator trait (BWT) reduced losses by producing atsnwath a lower incidence of dystocia
and heavier weights at marketing age. Converselyoth selection scenarios, all growth-related
traits showed negative genetic trends. These negagweldrwere a result of the single trait
selection procedure applied. Such a procedure istypitally used as means for genetic
improvement; but rather, multiple trait selectiomgnams are the preferred method to achieve
selection goals. Nonetheless, the use of single trattsah in the current study is justified by
the need to exclusively quantify response to selectinibated to selection for high calving ease
as opposed to low birth weight.

In conclusion, it appears that selection for high ioglvease (HCE) produces cattle with
improved calving ease EPD and higher growth ratéstett ages compared to selection for low
birth weight (LBW); therefore, we accept the hypsis that direct selection for high calving
ease would results in animals with lower incidence bficg difficulty and higher growth rate
However, both selection scenarios resulted in negagwetg trends for growth-related traits.
These results were expected because of applying singlsdlection schemes and the genetic
correlations amongst the traits. Incorporating ecanalty relevant traits, (e.g., weaning and
yearling weights), with calving ease in a multitraileson program would produce cattle with
low incidence of dystocia and higher growth rates.

Table 3.7. Average EPD for calving ease (% unassisted calving) and lgtoavts (kg) under twc
selection scenarios

HCE LBW
Year of birth Year of birth
Trait’ 0 2 4 6 0 2 4 6
CE 0.04 3.84 6.63 8.75 0.03 2.64 5.00 6.87
BWT -0.03 -2.20 -3.69 -4.74 -0.05 -2.93 -5.02 -6.54
WWT -0.09 -5.12 -8.23 -10.26 -0.17 -8.95 -15.28 -19.65
PWG -0.008 -0.33 -0.58 -0.76 -0.01 -0.60 -1.08 -1.44
YWT -0.10 -5.45 -8.82 -11.03 -0.18 -9.56 -16.37 -21.09

'HCE = selection for high calving ease; LBW = selecfmmow birth weight
’CE = calving ease; BWT = birth weight; WWT = weanimgight; PWG = postweaing gain; YWT=yearling weigt
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Figure 3.3 Genetic trends (average EPD) of calving ease (CE), elght (BWT),
weaning weight (WWT), postweaning gain (PWG), andripeg weight (YWT) under two
selection scenarios: selection for high calving easeE(|H@&rsus selection for low birtl
weight (LBW).

Table 3.8: Rate of genetic changéEPD/yr) for calving ease (% unassisted calving) and #ro
traits (kg) under two selection scenafios

HCE LBW
@ Slope
Trai Intercept Slope Intercept Slope Difference
CE -1.42 +0.15 1.56 £ 0.05 0.06 £0.14 1.20 £ 0.07 0.37 £0.09
BWT 0.76 £ 0.06 -0.86 + 0.02 -0.13 £ 0.05 -1.17 +0.03 0.31+£0.03
WWT 1.63+0.20 -1.9 £ 0.09 -0.42£0.21 -3.55+£0.10 1.65+0.13
PWG -0.01 £0.03 -0.13+£0.01 -0.02 £0.03 -0.25+£0.01 0.12 +0.02
YWT 1.75+0.27 -2.04 £0.10 -0.44 £ 0.22 -3.81£0.11 1.77 £0.15

TAll estimates were different from zerB € 0.001)

’HCE= selection for high calving ease; LBW = selection for low birth weight
3CE = calving ease; BWT = birth weight; WWT = weaning weight; PWG = postweaing gain; Y\
yearling weight.
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Table 3.9shows correlations (Spearmen’s and Pearson’s) between predicted EPD from
two complementary data setise( animal with a calving ease record in one data laasl no
calving ease observation in the other data) underréiffeanimal models. Here, the different
models were 1) Calving ease fitted as a linear oreslimid trait with either of two approaches
(i.e., as a binary), or three categories (i.e., agchokomous trajt 2) Univariate and multivariate
which considers fitting: calving ease as “univariate”, calving ease and birth weight as
“bivariate”, and calving ease with all growth traits as “multivariate”. For the univariate animal
models, fitting calving ease as a threshold or lirtedmot affect model predictive ability (0.27
vs.0.27 and 0.28 vs. 0.28 rank correlations for binamgl polychotomous calving ease,
respectively); however, fitting calving ease witheth categories improved the model predictive
ability by 6.25% (0.32 vs. 0.34 rank correlation) @&hd% (0.32 vs. 0.35 correlation) for sires
with more than 20 progeny. Increasing the numbercaikgories increases the amount of
information obtained from the observed scores. These sesglte in agreement with those
found in a simulation study by Meijering and Gian¢l®85) who found that increasing the
number of categories causes the categorical traietorhbe more normally distributed. Further,
Abdel-Azim and Berger (1999), in a simulation studgparted that the accuracy of prediction
increased when the number of categories increasedstrdg of US Holsteins, De Maturana et
al. (2009) justified the similar predictive ability the threshold model versus the linear model
by the number of categories (3 and 4 categories) usezaliang difficulty which provide more
information compared to a binary scoring approadéither linearity (threshold vs. linear) nor
the number of categories affected the predictivéitalmf the bivariate models. Similar results
were obtained by Wang et al. (2005) in a simulastudy where they found that a linear-linear

(LL) and a lirearthreshold (LT) sire-maternal grandsire model perforiinedsame with respect

85



to accuracy (Pearson correlation) and Spearman carlation between true and predicted
breeding values. It is worth noting that adding ahlyigcorrelated continuous traie.§., birth
weight) to the genetic evaluation of a categoricat such as calving ease greatly improves the
accuracy of genetic prediction. For all sires, thedjctive ability of the univariate models,
compared to birth weight added as correlated coatigdrait, was poorer, but with the addition
of the second trait the predictive ability improveg B10% (rank correlation) and 163%
(correlation). This supported the results obtained dwylley et al. (1983) and Janss and Foulley
(1993) who showed the advantages of using a bivaaia#dysis for the genetic evaluation of
calving ease, by incorporating birth weight as a cateel trait. Furthermore, for discrete traits,
superiority of bivariate models over univariate medeés also reported by Casellas et al. (2007)
and Negussie et al. (2008). In the multivariate mmditlere were no differences between the
different models. Furthermore, estimates of corraiatidid not differ from those obtained from
the bivariate analysis. These results suggithiat adding more correlated continuous traatg. (
weaning weight and postweaning gain) to the gemstiduation of calving ease did not or only
slightly improved the accuracy of prediction. Thisutd be explained by the strong genetic
correlation between calving ease and birth weiglttich indicates the incorporation of birth
weight provides sufficient information to a achidvgh accuracy and adding more traits has a

little effect on the genetic evaluation of calviegse.

Generally, superiority of the threshold model over limear model was not evident in
this study. Data in the current study was balancddatamals had BWT, WWT, and PWG
records) with large size herds (n=573) and numbegauirds per sire was 18.4. Such data are not
characteristic of field data that more likely taicate the superiority of the threshold model over

the linear approach. The threshold methodology #flyicoutperforms the linear method when
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data is highly unbalanced, high incidence of onegaty of the trait, and for a trait has few
categoriesi.e., binary (Meijering and Gianola, 1985; Hoesch&®88; Abdel-Azim and Berger,
1999). The advantage of threshold models comes whalingewith unbalanced data with
different incidence rates across levels of fixed effettowever, it may only offer a slight
advantage in well designed progeny testing programwhich there are a large number of
records per sire (McGuirk et al., 1999). The advaedagf the threshold methodology over the
linear methods would be more pronounced in beelectid data which is usually unbalanced

with high incidence of calving ease and where sires haeéatively small number of progeny.

Table 3.9: Estimates of Spearman’s (Rank) and Pearson’s (r) correlation coefficients between
predicted EPD from complementary data sets undereliffenodels.

All sires Sires with progeny > 2( Sires with progeny < 2(
Model Rark r Rank r Rank r
Univariate
L-UAM- CE2 0.27 0.31 0.32 0.32 0.25 0.30
T-UAM-CE2 0.27 0.31 0.32 0.32 0.25 0.30
L-UAM-CE3 0.28 0.33 0.34 0.35 0.25 0.32
T-UAM-CE3 0.28 0.33 0.34 0.35 0.25 0.32
Bivariate
LL-BAM-CE2 0.87 0.87 0.89 0.90 0.82 0.82
TL-BAM-CE2 0.87 0.87 0.89 0.90 0.82 0.82
LL-BAM-CE3 0.87 0.88 0.88 0.87 0.81 0.80
TL-BAM-CE3 0.87 0.88 0.89 0.90 0.82 0.81
Multivariate
LL-MAM- CE2 0.87 0.87 0.89 0.90 0.82 0.83
TL-MAM-CE2 0.87 0.87 0.89 0.90 0.82 0.83
LL-MAM- CE3 0.87 0.87 0.89 0.90 0.81 0.82
TL-MAM-CE3 0.87 0.88 0.89 0.89 0.82 0.83

1L = linear; T = threshold; UAM = univariate animal model;: BAM = bivariate animal model; MA
multivariate animal model; CE2 = 2 categories; CE3 = 3 categories.
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3.4.Summary

Despite being an indicator trait, downward selectionbirth weight is widely used as a
tool to improve calving ease. However, the positiveegiercorrelation between birth weight and
subsequent growth traits could lead to loss in perfoomat later age. The objectives of this
study were 1) to assess performance losses under two ssemmakidich selection for high
calving ease (HCE) and selection for low birth weigh\(t) will be applied and 2) to compare
the threshold model versus the linear model. Undetwbeselection scenarios (HCE and LBW),
two populations with observations on calving ease (CHdh kveight (BWT), weaning weight
(WWT), and postweaning gain (PWG) were simulated. Eampulation consisted of a base
generation of 1,200 sires and 36,000 dams. The @rs¢rgition was produced by random mating
of founders (1,200 sires and 36,000 dams). Each ofhiee tsubsequent generations were
produced by selecting the top 5% and 80% sires and daesgectively, from previous
generations. Simulation was carried out using a nasiate threshold-linear model with Gibbs
sampling algorithm to estimate variance componentgdretfects were herd (n = 120) and sex.
Models predictive ability “threshold vs. linear” were compared using a cross validation
procedure (i.e., data-splitting technique). The pdore was performed by duplicating the HCE
data which resulted in two identical data sets. In ohéhose data, one half of calving ease
observations was randomly set to be missing. The rengagalving ease observations in this
data were discarded in the other data set. The puoeguroduced two complementary (for
calving ease records) data sets. The criteria used tpazemmodels predictive ability were
Pearson’s and Spearman’s correlations between predicted calving ease EPD obtained from
complementary data sets. Results showed that the frgienetic change of CE (% unassisted

calving/yr) from HCE selection scenario (1.56 + 0.9&)s higher R < 0.001) than that from
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LBW (1.20 = 0.07). For yearling weight, the diffec® between the two scenarios was more
pronounced R < 0.001) where less losses in YWT average EPD were foubktCE selection
scenario (-2.04 £ 0.10 kg/yr) versus (-3.81 + 0.11 Rgfgr LBW. Slope difference between
both scenarios was significar® € 0.001) for all traits. For HCE compared to LBW, theaal
differences in CE, WWT, and YWT were 0.37%, 1.65 kg, dnd7 kg, respectively. In
conclusion, we accept the hypothesis that direct setetor high calving ease would results in
animals with lower incidence of calving difficultyna higher growth rate at later ages. The
predictive ability of the threshold model and theedr model were the same. A substantial
increase in the accuracy of prediction for calvingegavhen birth weight was incorporated as a
correlated trait, was indicated. However, with ibwvteight already in the model, the addition of
weaning weight and postweaning gain did not improwelels predictive ability. In conclusion,
both selection scenarios (HCE and LBW) increased cakasg average EPD and decreased the
EPD for growth traits. However, selection for high aadvease produced animals with better
calving ease EPD and have higher growth rates at dafes compared to those produced by
selection for low birth weight. The similar prediaiability of the threshold and linear models
might be a result of the highly balanced data usexliirent study. The use of unbalanced data
with high incidence of calving ease, different incides across levels of fixed effects, and small
numbers of records per sire would be more appropt@tevestigate the superiority of the

threshold model over the linear model.
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CHAPTER IV.

PERFORMANCE LOSSES UNDER DIFFERENT SELECTION SCENARIOS FOR
LOW BIRTH WEIGHT VERSUS HIGH CALVING EASE IN AMERICAN

SIMMENTAL BEEF CATTLE

4.1.Introduction

Profitability of beef cattle enterprises are dirg@ffected by costs associated with calving
difficulty. Attempts to reduce such costs historicdlpve focused on another trait, birth weight,
which has no direct economic importance. Nonethelgish) weight is routinely used as an
indicator trait for dystocia. The high genetic ctation with calving difficulty, a continuous
measure (as opposed to categorical), and ease of maaswutearacteristics that have made birth
weight the trait of choice for the genetic improwarh of calving difficulty. To improve the
efficiency of beef production, Dickerson et al. (49proposed a selection index in which birth
and yearling weights were included as componenstvaith the purpose of incorporating birth
weight to reduce the incidence of dystocia, yetlacten strategy that would improve growth
through selection for higher yearling weight. Howewbe downward selection for birth weight
would not certainly improve the ease of calving (Barhg et al., 1978b; MacNeil et al., 1998)
as rapidly. Furthermore, given the high genetic elation between birth weight and growth
traits at later ages, selection for lower weight athbimight result in sacrificing growth at the
marketing age. Therefore, we hypothesize that, idstéaelection for low birth weight, direct
selection for the trait of economic importanée.{ calving ease) should be used as means to

reduce both the incidence of calving difficulty dondses in performance of growth-related traits.
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The objective of the current study was to quantifg performance losses in the American
Simmental beef cattle under different selection scesddr low birth weight as opposed to

selection for high calving ease.

4.2.Materials and Methods
Data used in this study was provided by the Americanr&@ntal Association (ASA). In

this section, we will be presenting the methodologieduding: preparation of raw data for
subsequent analysis; description of final data and madeld for estimation of (co)variance
components and calculation of direct and materna¢éte effects (EPD) for calving ease (CE),
birth weight (BWT), 205d weight, 160d gain, and 36% weight for Simmental beef cattle.
Using these EPD we estimated genetic trends under diffee&action scenarios for high calving
ease versus low birth weight and follohat with a comparison of predictive ability of “threshold

vs. linear” models.

4.2.1.Description of data:

The ASA provided data and pedigree files of calviegse and growth traits for
Simmental beef cattle. That data consisted of 11,880récords. Each record contained a
unique animal ID, sire’s animal ID, dam’s animal ID, maternal grandsire ID, sex, multiple birth
code, breeder, herd, calving ease score, birth wdigtth date, weaning weight, weaning date,
weaning management code, weaning pasture unitlingaveight, yearling date, and yearling
feed unit. The pedigree and breed composition bleststed of 9,250,633 animals. Fields of the
pedigree file were animal ID, sire ID, birth yearjttwthe remaining fields representing
proportions of 19 different breeds.

To avoid the effects heterosis, data were edited so that only animals with >87.5%
Simmental composition were used. Since heifers havghehincidence of dystocia than older
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cows, only records of progeny of 2-yr old heifers wased. The former two steps markedly
reduced the number of animals included in this study tduthe high use of crossbreeding by
Simmental breeders and the small number of progerdupeal by first-calf heifers. In the ASA
standard coding system, the multiple birth code rafrges 1 to 9 where single birth is coded as
“1”. Therefore, records of animals with other multiple birth codes were removed from the data.
The ASA added 2 additional categories to the printaging system recommended by the BIF
guidelines (1= unassisted calving to 5 = malpresentatiime additional two categories were
scores 6 and 7 representing animals dead on arrivalranthfure calving, respectively. Calving
ease scores from malpresentation (5), dead on arrivalaf@®) premature calving (7) were

eliminated for the purposes of this study.

Adjusted 205-d and 365-d weights and adjusted 160-d postweaning gain: Weaning and yearling
weights, and consequently postweaning gain, were adjusteonstant age endpoints of 205-
and 365d, respectively. Adjusted weights were calculated affiédsias follows: 1) ages at
weaning and yearling were calculated, 2) Recordsditganot fall within weaning and yearling
age limits of 160 to 250 d and 320 to 410 d, respelgti were eliminated, 3) Weaning and
yearling weights observations within £ 3 SD limits wased, 4) Weights were then regressed on
their respective ages, 5) Regression coefficients weesl wo adjust weaning and yearling
weights observations to constant age of 80&ad 365d, respectively. Next, 168-gain was
obtained by subtracting the 2@5weight from the 36% weight. Finally, weight measurement

units were transformed from Ib to kg.

Forming fixed effects (contemporary groups) and herd-year-season: Sex was fitted as a fixed
effect (contemporary group) for both calving easd &irth weight. Weaning contemporary

groups were constructed by combining sex, weaning neamegt code, and weaning pasture
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unit. Yearling contemporary groups for 180gain were formed using weaning contemporary
group with the yearling feed unit code added. Sineel$ were coded within breeders, the two
codes were combined to obtain a unique code for baoth. In other words, the breederxherd
code used in the ASA coding system were combinedrto fbe herd code. Two birth seasons
were formed as follow: animals born in the periazhifrJanuary to June were considered season
1 while animals born between July and December wereason 2. For all studied traits, the
herd-year-season effect was formed and fitted as @onareffect in all models for variance

components estimation and calculation of ER8, (direct and maternal EPD)

Estimation of (co)variance components for calving ease, birth weight, 205-d weight, and 160-d
gain: Preliminary analyses were performed using an animaleinaith Gibbs sampling
algorithm to estimate (co)variance components of stlthaits. The program THRGIBBS1F90
from the BLUPF90 family of programs by Misztal et §R002) was used to estimate
(co)variance components. The THRGIBBS1F90 program usesptobit link function to
transform observed incidence to a liability scale. riixation of Gibbs samples from their
conditional distribution, using the animal model, sbkdwhat samples of parameters were not
stable. Therefore, the estimated parameters fromrtineahmodel were not considered reliable.
The inadequacy of the threshold animal model for éegmation of genetic parameters was
reported by Moreno et al. (1997)hus, the sire model was chosen to estimate (co)variance
components for studied traits. For all analyses in thieentistudy, a four-generation pedigree

was used beginning with animals with at least one obsenv@.e., animals in the data file).

The dependence of 1@Dgain observations on existence of observations for 284
weight and 365 weight resulted in a smaller number of 1&Q3ain records (Tablet.1)

compared to other traits. The absence of weaning Wweigbervation, weaning date, yearling
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weight observation, and yearling date, resulted in iasing 160d gain observation. A
multivariate sire model was fitted to all traits; haweg the 160d gain (co)variance components,
especially the residual covariances with calving easEbirth weight and with other traits in the
model did not converge. Here, Gibbs samples of theseiaovas fluctuated close to zero. The
small residual correlations between 1b@ain and these two traits and the sparse d.gain
data, which represented only 28.9, 30.7, and 40.5%alving ease, birth weight, and 205-
weight observations, respectively, likely caused the llgtain the system. Hence, a series of
bivariate analyses were performed to estimate cawvees between 16f-gain and the three
other traits. Maternal grandsire variance and sireemat grandsire covariance for calving ease,

birth weight, and 205-d weight were estimated usingigariate sire-maternal grandsire model.

For all data sets, analyses were performed with aestitin of 120,000 iterations. The
initial number of samples obtained via the Gibbs samgdgorithm, usually show fluctuation
due to Gibbs samples not reaching their stationary lligtoin. This period is called the burn-in
period and samples obtained during this period shouttisoarded. Therefore, for this study the
initial 20,000 iterations from all analyses were didear Another characteristic of this approach
is that the adjacent samples have high autocorrelafldns, samples were thinned by selecting
every 10" sample out of the remaining 100,000 samples. Thisitignprocedure yielded 10,000
samples which were subsequently used to obtain the postexéos of (co)variance components
and their respective posterior standard deviations. -BGibdts analyses to examine the
convergence of parameters and obtain the posteri@nsnand standard deviations were
performed using the program POSTGIBBSF90 from théJBE9O family of programs by
Misztal et al. (2002). Parameters were then plotsed function of the final 10,000 samples. In

case of convergence, the plot will fluctuate aroum&l mhode of the distribution where samples
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seem to be stable. However, when non-convergence dtigr parameter value will show a

clear trend.

Models used for (co)variance components estimation for Simmental data: Three sire models
were fitted to estimate (co)variance componentsireduo build the fully structure® andR
matrices required for subsequent to estimate direcetgemnd maternal additive genetic
solutions. The (co)variance components estimated byasidesire-maternal grandsire models
were the sire (co)variance components and the méatgraadsire (co)variance components
respectively. These were then transformed to direat amaternal genetic (co)variance
components. The estimated (co)variance components, @énsformation, included: Direct
genetic and residual (co)variances for all traits amaternal genetic and direct-maternal
covariance for calving ease, birth weight, and #@0&eight. Calving ease was fitted as a
threshold trait with categories 3 and 4 merged. Nkodsed to estimate (co)variance components
for calving ease, birth weight, 2@bweight, and 16@ gain for Simmental beef cattle were: 1) A
multivariate threshold-linear sire model was used tamedé sire and residual (co)variances
between calving ease, birth weight, and 20beight. 2) A series of three bivariate sire models
to estimate sire and residual covariances betweerd Ign and traits from the previous model.
3) A series of three univariate sire-maternal grandsicglels to estimate maternal grandsire
variance and sire-maternal grandsire covariancedas in the first model.

Description of different models used in the analyses is piesd®low:

1. A multivariate threshold-linear sire model used to estimate sire and residual
(co)variances between calving ease, birth weight, and 205-d weight:
A summary of data and pedigree information used fardhalysis is presented in Talld.
Calving ease was fitted as a threshold trait with 3gcates. The fixed effect for both CE and
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BWT was sex. For 205-d weight, the fixed was weaningtesoporary group (sex, weaning
management code, and weaning pasture unit). Theiequsd the multivariate threshold-linear

sire model used in this analysis is presented below.

Lee XceBee Z1Sce Zyhee €ce
Yowt | = XpwtBowt |+ | ZiSowt |+ | Zzhpwe |+ [ €pwt ], (4.1)
Yz05wt X205wtB205wt Z1S205wt Zoho05wt €205wt )

In the above equatior were effects associated with sex, and weaning comempgroup
subclassess and h were sire and hergear-season random effects, respectivedywvere the
residuals; andX, Zi;, and Z, were incidence matrices that link data with fixetees, sire
random effects, and herd-year-season random effesfeatively.Y was vector of observations
for birth weight and weaning weight. Calving easesvessumed to follow an underlying

continuous distributionl() which is presented below:

n

f(y|L) = nf(YilLi) = H[I(Li <t)Iy; = 1D +1(ty < Ly < tp)I(y; = 2)
i=1

i=1

+ I(t; < Li <t)I(y; = 3) +1(t3 < L)I(y; = 4) 4.2)

In the above equation;, t;, andt; were thresholds that defined the four categoriesabfirg

ease.

S S®A 0 0
The (co)variance structure of random effects wasddfas: var Ihl =| 0 H®I 0
e 0 R®I

whereS = a 3x3 additive genetic (co)variance matrix foesjA = additive genetic relationship
matrix,H = a 3x3 diagonal matrix for herd-year-season randdectsf R = a 3x3 residual
(co)variance matrix, = identity matrix of order appropriate to the nwsrgof observations, and

®=Kronecker product.
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Table 4.1 Summary statistics of Simmental data used in a multieatiareshold-linear sir¢
model to estimate (co)variance components for CE, B&d,205d weight.

Calving difficulty score

ltem N 1 2 3 4 Mean  SD Min.  Max.
Datafile:
Sire 12,199
MGS 14,123
CE 95,791 56,442 28,071 8,255 3,023 1.56 0.78 1 4
Males 45,256 23,897 14,313 4,787 2,259 1.67 0.85 1 4
Females 50,535 32,545 13,758 3,468 764 1.45 0.69 1 4
BWT, kg 90,157 40.80 5.15 24.09 55.45
Males 42,836 42.18 5.10 24.09 55.45
Females 47,321 3955 488 24.09 55.45
205d WT, kg 68,305 267.47 45.80 92.00 436.15
Males 31,623 282.22 48.16 92.00 436.15
Females 36,682 254.75 39.45 9452 410.70
160-d gain, kg 27,695 174.24 54.70 -29.06 387.84
Males 14,986 208.07 45.27 30.91 387.83
Females 12,709 134.34 34.13 -29.06 294.57
WCG 7,524
YCG 3,800
HYS 14,533
Pedigree:
Sire 26,696
Sire of sire 6,167
MGS 5,367

ICE = Calving ease; BWT = Birth weight; 2@BA/'T = 205 days adjusted weight; 168@ain = 160 days
adjusted total postwearg gain; WCG = Weaning contemporary groups; YCG = yearling contempr
groups; HYS = HerctearSeason; MGS = Maternal grandsire.

2. Bivariate sire models to estimate sire and residual covariances between 160-d gain and

each of CE, BWT, and 205-d weight:

Sire and residual covariances between d@fxin and other traits, using the complete data
presented in Tabld.1, did not converge using a full model that inelddll studied traits. This
might be caused by: 1) the weak residual correlatiehsden 1603 gain and both CE and BWT

2) the sparse 160-gain data, relative to the other traits where mgsnbservations are

associated with 71.1, 69.3, and 59.5% of calving eas#) lieight, and 20% weight
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observations, respectively, (Tabfel). As a result, three bivariate analyses were pegdrm
using two modelsa) A bivariate threshold-linear sire model to estingite genetic and residual
(co)variances between 1@Dgain and calving easb) A bivariate linear-linear sire model used
to perform the two other analyses to estimate sireresidual (co)variances for 1@Dgain with
birth weight and 20%+weight. Each of the models are described in morelgeigifollows:

a) The data for the bivariate threshold-linear sire nhoded to estimate sire and residual
(co)variances between 1@0gain and calving ease are summarized in Tal#deCalving
ease was fitted as a threshold trait with observed 3g@ads transformed to an
underlying continuous liability presented in Eq. 4.ReTixed effects for CE and 160-
gain were sex and yearling contemporary group (sexhiwgamanagement code,
weaning pasture unit, and yearling feed unit), rebgedg. The bivariate threshold-linear

sire model equation used in this analysis is presented as

[ Lee ]: [ XceBee ]+[ Z1Sce ]+[ Zyhee ] [ €ce ]

Yi60gain X160gainB160gain Z15160gain Z;h160gain €160gain |’ (4.3)

In the above equatiorf were effects associated with sex, and yearling contempgroup
subclassess and h were sire and herd-year-season random effects, resggrie were the
residuals; andX, Z;, and Z, were incidence matrices that link data with fixetees, sire
random effects, and herd-year-season random effespeatevely.Y was vector of observations
for respective traitl was the underlying continuous liability.

S®A 0 0

0 H®I 0
0 0 R®I

S
The (co)variance structure of random effects wasgar lhl =
e

whereS = a 2x2 additive genetic (co)variance matrix foesjA = additive genetic relationship
matrix, H = a 2x2 diagonal matrix for herd-year-season randdectsf R = a 2x2 residual

(co)variance matrix, = identity matrix of order appropriate to the nuwarg of observations.
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Using bivariate linear-linear sire model to estimatte and residual (co)variances for 18@ain
with birth weight and 205+ weight,

b) Two bivariate analyses were performed to estimate &iaywce components for 1@D-
gain with BWT and 20% weight. Here, the same model was used for both analytes w
the appropriate changes in fixed effects that corme$po either BWT or 205 weight.
The fixed effects for BWT, 208-weight, and 16@ gain were sex, weaning and yearling
contemporary groups. Structure of data sets and pedigfermation used in these
analyses are presented in Ta#l@ Data sets used in these analyses (Td#¢ were
balanced data and showed a substantial increase inrtiteenof records compared to the
160d gain data presented in Tablel. The bivariate linear-linear sire model equation

used in the two analyses is presented as follows:

o] = cnpenrengan] * Exsrommin]* ot * escos]

Yi60gain X160gainB160gain Z15160gain Z;h160gain €160gain |’ (4.4)

In the above equatio¥i was vector of observations for respective tnattjs either BWT or 205-
d WT; B were effects associated with sex, weaning and yeadmrgemporary group
subclassess and h were sire and herd-year-season random effects, resggrie were the
residuals; andX, Z;, and Z, were incidence matrices that link data with fixetees, sire

random effects, and herd-year-season random effectectesby.

S
The (co)variance structure of random effects wasddfas: var [h
e

S®A 0 0
0 H®I 0
0 0 R®I

whereS = a 2x2 additive genetic (co)variance matrix foesjA = additive genetic relationship
matrix, H = a 2x2 diagonal matrix for herd-year-season randdectsf R = a 2x2 residual
(co)variance matrix, = identity matrix of order appropriate to the nwergof observations, and

®=Kronecker product.
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Table 4.2 Summary statistics of three data sets used in bivariatengidels to estimate si

(co)variance components of 160-d gain with CE, BWil] 2056 weight.

Calving difficulty score

ltem* N 1 2 3 4 Mean SD Min. Max.
CE and 160 gain
Datafilee Sire & MGS 4,714 & 5,869
CE 24,488 13,508 7,833 2,213 934 1.61 0.80 1 4
Males 13,414 6,742 4569 1,364 739 1.70 0.86 1 4
Females 11,074 6,766 3,264 849 195 1.50 0.71 1 4
160-d gain, kg 24,488 13,508 7,833 2,213 934 174.73 54.62 -29.06 387.84
Males 13,414 6,742 4569 1,364 739 208 46.52 30.91 387.84
Females 11,074 6,766 3,264 849 195 134.34 35.12 -29.06 294.57
YCG 3,349
HYS 4,875
Pedigree: Sire 13,811
Sire of sire 3,555
MGS 3,015
BWT and 160d gain
Datafiles Sire & MGS 7,636 & 9,107
BWT, kg 41,219 40.78 5.00 24.09 55.45
Males 21,313 4190 5.00 24.09 5545
Females 19,906 3957 470 24.09 55.45
160d gain, kg 41,219 171.68 55.44 -29.06 423.81
Males 21,313 206 46.85 8.95 42381
Females 19,906 134 35.67 -29.06 324.60
YCG 6,392
HYS 9,836
Pedigree: Sire 19,539
Sire of sire 4,674
MGS 3,971
205d WT and 160d gain
Datafilee Sire & MGS 8,358 & 9,827
205d WT, kg 45,520 276.80 4550 94.25 440.96
Males 291.25 47.17 109.65 425
Females 261.29 37.94 94.25 440.96
160-d gain, kg 45,520 171 55.41 -29.06 423.81
Males 205.78 47.22 3091 423.81
Females 133.70 35.82 -29.06 324.60
WCG 6,782
YCG 7,032
HYS 10,986
Pedigree: Sire 20,535
Sire of sire 4,858
MGS 4,097

ICE = Calving ease; BWT = Birth weight; 28BWT = 205 days adjusted weight; 168ayain = 160 days adjuste
total postweaning gain; WCG = Weaning contemporaougs; YCG = yearling contemporary groups; HY:
Herd-Year-Season; MGS = Maternal grandsire.
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1. Univariate sire-maternal grandsire models used to estimate maternal grandsire variance

and sire-maternal grandsire covariance for CE, BWT, and 205-d WT:

The maternal grandsire (co)variance components floingaease, birth weight, and 2@b-
weight, obtained from more complex models did natwerge; therefore, univariate analyses
were carried out to estimate the maternal grandsigvdriance components for these traits.
These univariate analyses were performed using two eiffdthreshold and linear) univariate
models. Calving ease was analyzed using the thresholdlmbde birth and 205 weight were
analyzed using the linear model.

The equations of models are described below.

a) The threshold sire-maternal grandsire model used fatincplease maternal grandsire

(co)variance components estimation:

Calving ease was modeled as a threshold trat (underlying continuous liability was
assumed) with 3 observed categories. Description ofdateeahd pedigree used in this analysis is
presented in Tabk.3. The threshold sire-maternal grandsire model is ibestcbelow.

L=XB+Z;s+Z,mgs +Zzh +e¢, (4.5)
whereL was the underlying liabilityB were fixed effects associated with sexmgs andh
were the random effects of sire, maternal grandsiré,heerd-year-season, respectivedywere
the residual effects; and, Z;, Z,, and Z3 were incidence matrices that link data with fixed
effects, sire, maternal grandsire, and herd-year-se@asdom effects, respectively.

The (co)variance structure of random effects wasddfas:

s [ 05A  OgmgsA 0 0]

A oA
var m}?s — Os,mgs Omgs 0 0
0 0 of 0
e’ | o 0 0 o2l
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with 02, o746, o?,and 62 denoting variances of sire, maternal grandsire,-fead-season, and
residual random effects ,,s Was covariance between sire and maternal grandseetss

was the additive genetic relationship matrix.

b) The linear sire-maternal grandsire model used tmat# maternal grandsire (co)variance

components for birth weight and 2@5~eight:

The model was fitted in two separate univariate e to estimate maternal grandsire
(co)variance components for birth and 20D%veights. The data and pedigrees used in both
analyses are summarized in Ta#l8. The linear sire-maternal grandsire model is:

Y; = XiBi + Z4;S; + Z,;mgs; + Z3;h; + €, (4.6)
WhereY; were vectors of observations with subscripgtenoting either birth weight or 2@b-
weight; B were fixed effects associated with their respectied;ts, mgs andh were the
random effects of sire, maternal grandsire, and headseason, respectively were the
residual effects; an¥, Z;, Z,, andZ; were incidence matrices that link data with fixées,

sire, maternal grandsire, and herd-year-season randeatseffespectively.

The (co)variance structure of random effects wasddfas:

Si f GgiAi 0_si.mgsiAi 0 O ]
Imgsi“ _ IGSi,mgSiAi angsiAi 0 0 I

var h. = )
1 0 0 O 0

with subscripti denoting either birth weight or 2abweight; 6%, 04,5, of,.,and o, denoting
variances of sire, maternal grandsire, herd-year-seasdmesidual random effects,, 1,5, Was

covariance between sire and maternal grandsire gffeatas the additive genetic relationship

matrix.
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Table 4.3 Summary statistics of three data sets used in univarisgemgiternal grandsir
models to estimate sire and maternal grandsire (caywaicomponents for calving ease, b
weight, and 20%} weight.

Calving difficulty score

ltem’ N 1 2 3 4 Mean SD Min. Max.
CE
Datafile:
CE 97,375 57,357 28,468 8,436 3,114 156 0.78 1 4
Sire 12,388
MGS 14,261
Sex 2
HYS 14,778
Pedigree: Sire 26,907
Sire of sire 6,196
MGS 5,400
BWT
Datafile:
BWT, kg 141,132 40.12 5.16 24.09 55.45
Sire 18,078
MGS 19,585
Sex 2
HYS 26,378
Pedigree: Sire 34,995
Sire of sire 7,646
MGS 6,610
205dWT
Datafile:
205d WT, kg 81,451 267.53 45 92 433.15
Sire 10,762
MGS 12,414
WCG 3,015
HYS 12,510
Pedigree: Sire 23,217
Sire of sire 5,357
MGS 4,663

'CE = Calving ease; BWT = Birth weight; 2@6WT = 205 days adjusted weight; WCG = Wean
contemporary groups; HYS = HelkarSeason; MGS = Maternal grandsire.
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4.2.2.Estimation of EPD for calving ease, birth weight, 205-aveight, 365-d weight, and

160d gain in American Simmental beef cattle:

A multivariate threshold-linear maternal animal miod@s used to estimate direct and
maternal EPD for CE, BWT, and 2@bweight and direct EPD for 16@¢gain and 36% weight.
Direct and maternal genetic (co)variance compones¢sl in the model were obtained by the
conversion of the formerly estimated sire and mategreaidsire (co)variance components using
Equation (4.7) which is based on equating estimatesoj¥ddance components to their genetic
expectation suggested by Kriese et al. (1991). The aladapedigree used in this analysis are
summarized in Tablet.4 Calving ease was modeled as a threshold traet, underlying
continuous liability was assumglq. 4.2), with 3 observed categories. Observed categyoeies
1 = unassisted, 2 =minor assistance, 3 = (categoriesBamgtged). The 368-weight was not
included in the model; however, its direct EPD werécudated as the summation of the
estimated EPD for 208-weight and 16@ gain. For obtained calving ease EPD, the underlying
liabilities of calving ease were multiplied by -@ tepresent calvinga® instead of calving
difficulty.

o} 4 0 0]
OpM| = 2 4 0 cYSMGS,
2 —4 4 (47)

OMm GMGS

The equation of the multivariate threshold-linearter@al animal model used in the

analysis is presented as follow:

Lee XceBce Ziuce Zymee Z3hce €ce

Ypwt [ XpwtBowt ] ZyUpyt ZoMpywt [ Zzhpwt ] Chwt

Yooswt | | Xz0swtBzoswe | Z1uz05wt + Zomygswt Z3h205th €205wt [ (4.8)
Y160gain le60ga1nBl60gamJ Z1U160gain 0 Z3hi60gain €160gain
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In the above equatioh, was the underlying continuous liability; was vector of observations
for the respective traitsp were effects associated with fixed effects subclassee$pective
trait; u, m, andh were direct, maternal, and herd-year-season rareftents, respectivelye
were the residuals; and andZ,, Z,, andZ3 were incidence matrices that link data with fixed

effects and direct, maternal, and herd-year-seasoomaetfects.

The (co)variance structure of random effects wasddfas:

var = 0 H®I 0 |,

(Y] [eem o o
2 0 0 R®I

where A = additive genetic relationship matri{,= a 4x4 diagonal matrix for herd-year-season
random effectsR = a 4x4 residual (co)variance matrixz identity matrix of order appropriate
to the numbers of observation®=Kronecker product, ands = a 8x8 additive genetic

(co)variance matrix with the following structure:

o2,

Ouy,u, Gﬁz

Ouyuz  Ouyug Gl213 Symm.

G = Oupu,  Ouyu, Ous,uy ‘51214
Ouym, O 0 0 O,

0 Ou,,m, 0 0 0 Glzn2
0 0 Ougz,m; 0 0 0 G%n3
0 0 0 0 0 0 0 0

In the above matrixy andm were direct and maternal genetic effects with subiscti®, 3, and

4 denoting calving ease, birth weight, 205-d weight, 260-d gain, respectively.
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Table 4.4 Summary of Simmental cattle data and pedigree usednmultivariate thresholc
linear maternal animal model to estimate direct ammternal EPD for calving ease, bi
weight, and 20% weight, and direct EPD for 16dgain.

Calving difficulty scoré

ltem’ N 1 2 3 4 Mean SD Min. Max.
Datafile:
Animal 155 898
Dam 155,877
CE 97,492 57,414 28,507 8,450 3121 156 078 1 4
Males 45978 24271 14,486 4,897 2324 168 085 1 4
Females o\ o1, 33143 14021 3,553 797 145 069 1 4
BWT, kg
141271 39.38(4.7) 42.10(4.8) 44.15(5.1) 45.60(5.2) 40.1 5.16 24.09 55.45
205dWT. kg 156 755 265.6(44.8) 271.4(46.9) 264.5(46.5) 273(48.9) 266 455 86.33 440.96
160d gain, k9 45545  170.1(54.3) 178.4(54.4) 178.6(55.1) 194.8(54.3) 171 55.4 -29.06 423.81
3
365dWT" kg 45 563 446.4(79.9) 460(82.4) 452.2(78.6) 477.8(81.4) 447 81.1 190.8 699.77
WCG 15,833
YCG 7,040
HYS 29393
Pedigree:
Animal  6e 710
Sire 35 981
Dam - 302 432

ICE = Calving ease; BWT = Birth weight; 206WT = 205 days adjusted weight; 160gain = 16C
days adjusted total postweaning gain; 86%YT = 365 days adjusted weight; WCG = Wear
contemporary groups; YCG = yearling contemporary groups; HYS = Herd-year-Season.
Growth traits were averaged (with SD in parenthesis) within calving ease score.

¥365-d WT was not included in the model rather its EPD were calculated by the summation
WT and 160d gain EPD.
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4.2.3.Genetic trends for calving ease, birth weight, 208-weight, 160€ gain, and 365d
weight in American Simmental beef cattle and the selé@on scenarios for high

calving ease versus low birth weight

Since the four-generation pedigree (n = 465,710) tmedPD estimation included dams
with age > 2 year old (Tabk4), a subpopulation of 2 year old (first-calf) &wental heifers (n
= 277,897) was extractday including only progeny of first-calf heifers for ahalysis. This
subpopulation was used for estimating genetic trendSimimental and was also used as
selection pool for various selection scenarios thdtheildescribed later. Therefore, this first-calf
heifer Simmental population was treated as a costehario for all selection scenarios. The
estimated EPD for studied traits were used to producetiggrends (EPD/yr) for the first-calf
heifer American Shmental population (from 1969 “<1969” to 2010). The rate of the genetic

change for each of the studied traits was estimatebdeosegressing trait EPD on birth year.

To quantify the performance losses resulted from selefdrdow birth weight insted of
selection for calving ease, six artificial selectionnsz@s were derived from the first-calf heifers
American Simmental population (the control scenarite selection scenarios included
selection for: 1) high calving easdCE), 2) low birth weighttBWT ), 3) the Selection indesf
Dickerson et al. (1974)DSI = YWT - 3.2 BWT, 4) The all-purpose selection index ASA,
(Lauren Hyde, the American Simmental Association, pealscommunication)API = -1.8 BWT
+ 1.3CE + 0.10WWT + 0.20YWT , in addition to two sub-selection indexes that werived
from the API, which were 5API; = 1.3CE + 0.20YWT, and 6)API, =-1.8 BWT + 0.20YWT.

In the above selection scenari®, BWT, WWT, and YWT were EBV for calving ease, and

birth, weaning (205 WT), and yearling (365-WT) weights, respectively.
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Starting with animals born in 1970, selection was igdplithin each birth year. Animals
born before 1970 (n = 1517) were considered a basdgimm (selection pool) for animals born
in 1970. The selection criteria, in these selection saenawere the estimated EBV for the
respective trait. EBV estimates for growth traits wstandardized by their respective genetic
standard deviation. For direct and maternal cahaage, the estimated underlying liabilities
(multiplied by -1 to represent calving ease insteadatving difficulty) were standardized by
their respective genetic standard deviation and cemhteased on the average liability of animals
born before 1970. Using the first-calf heifer datae(tontrol), data for each selection scenario
was created by selecting sires, withiich year of birth, with EBV > the average for the 6
different methods of selection (either EBV or the kdalue), and then the top 75% of dams
with progeny within selected sires were selected. Titeans selection was first applied to sires
and then followed by selecting from the remainingndaafter the culling of unselected sires
along with their mates and progeny. The resulting dats for all selection scenarios contained
animals born in 1969 “<1969” to 2004. In all selection scenarios, animals born after 2004 were

discarded because of their small numbers.

For all selection scenario data sets, the obtained EPBIlftraits were calculated as a
deviation from their respective average EPD fromabwtrol data. Graphs of genetic trends were
produced by plotting the standardized average EPDatiewiversus the year of birth. Further,
the standardized EPD were regressed on the birth yestitoate the rate of genetic change per
year (SD/yr). For each trait across selection scenahessignificance of differences between

slopes and between intercepts was also tested.

Estimation of net profit for various selection scenarios using the API: The economic selection

indexes measure the cumulative effect of the animal’s overall genetic merit on profit. Therefore,
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selection strategies that using this methodology, pmdattle have the genetic makeup (i.e.,
economically relevant traits EPD) to increase profttafér (2008) reported that the ASA
published, in 2005, two economic selection indexasnjtel index “TI” and all-purpose index
“API” which are presented in the equations below). These indexes were developed in
collaboration with USDA research scientist, Dr. Mike Mad. The creation of these indexes
was based on outcomes from a computer simulation protiraimmimics beef cattle production
(i.e., cows conceive, gestate, calve, lactate, cadwesweaned, heifers are retained and cull
heifers and steers are placed on feed and eventuatiyested). A simulated base herd was
generated using: 1. Phenotypic averages of ERT innithex, 2. Salvage price, costs of feed
(e.g., hay and pasture), and fixed costs, 3. Carcasssp(e.g., carcass, USDA beef grade, and
yield grade). The average performance levels assumtéé creation of the ASA indexes can be
found in Shafer (2008). The prices and cost data wsed the averages over the last 5 years as
reported by Cattle Fax at the time the indexes wezated. Traits used in this simulation were
weaning weight, feedlot gain, feedlot intake, cowesimilk production, pregnancy rate,
incidence of dystocia, calf survival rate, harvestghgidressing, carcass weight, marbling score,
and yield grade. Economic weights for each ERT wetienated by changing each trait one unit
while holding all others constant and comparing thith the base herd. Therefore, these
weighting factors (i.e., economic weights), estimdiaded on the impact of the trait on profit

andwere subsequently used to calculate the ASA economic @sdgresented below.

API = -1.8BWT + 1.3CE + 0.10WWT + 0.20YWT + 2 STAY + 55 MRB - 6 YG

Tl =-1.2BWT + 0.9CE + 0.50WWT + 0.07YWT + 25 MRB - 5 YG + 0.10 MLK
where: BWT = birth weight, CE = calving ease, WWT =wagnweight, YWT = yearling
weight, STAY = stayability, MRB = marbling, YG = yeegrade, MLK = milk
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The API evaluates sires being used on the entire cowbeed to both Angus first-calf
heifers and mature cows) with a portion of their ddars being retained for breeding and the
steers and remaining heifers being put on feed andsadgrade and yield basis (Shafer, 2015).
The API puts emphasis on stayability and calving ease. iSHiecause calving ease is strongly
associated with calf survivability and, to a lesseréegfemale longevity. In the current study,
we used a subset of the API considering only calving eadegeowth-related traits (i.e.,
stayability, marbling, and yield grade were not udigld in the API). Another perspective from
which to look at this, is that all other traits wéedd constant in the index. The API value can be
interpreted as the estimated differences betweels bulnet profit per cow exposed (Shafer,
2015). For example, a bull with an API value of $26 opposed to a bull with value of $0, is
expected to worth extra $10 per cow exposed. The ™ designed forevaluating sire’s
economic merit in situations where they are bred &une Angus cows and all offspring are
placed in the feedlot and sold on a grade and Yaasis Therefore, maternal traits such as milk,

stayability and calving ease are not considered imithex.

In this study, the net profit resulting from selection low birth weight as opposed to
selection for high calving ease was investigated. fidéeprofit for each animal, from various
selection scenarios, was calculated using the All-purge$ection index used by ASA. To
estimate the API value in dollars, EPD of trait in el were measured in their actual units
(i.e., growth traits in “kg” and calving ecase liabilities of calving ease were converted to
probabilities ofan unassisted calug). For each selection scenario, estimates of net profit were
regressed on birth year to estimate its rate of chaegeygar. Differences between various
regression lines (i.e., differences between intercapdsdiferences between slopes) were also

tested.
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4 .3.Results and Discussion

4.3.1.(Co)variance components and genetic parameters estimatidor calving ease and
growth-related traits in American Simmental beef catte:
The estimation of (co)variance components is an estetdip in genetic evaluation
Known (co)variance components are needed to préuicgenetic (i.e., prediction of EBV or

EPD) makeup of animals for these traits.

Sire and maternal grandsire (co)variance componegits estimated using sire and sire-
maternal grandsire models with a Gibbs sampling alguritestimated posterior mean and
posterior standard deviations of sire and maternaldgies variance components for calving
ease, birth weight, 208-weight, and 16@ postweaning gain using the American Simmental
Association beef cattle database are presented in BableFitting a sire-maternal grandsire
model to predict EPD for studied traits will produce Ef®Dsires only. However, estimation of
direct and maternal EPD for all animals in the pedigexjuires fitting a direct-maternal animal
model which requires the direct and maternal (atgmae components to be known; therefore,
sire and maternal grandsire (co)variance components tnansformed to their respective direct
and maternal (co)variance components using Ef.).( Posterior mean and posterior standard
deviation of direct and maternal (co)variance congms for calving ease, birth weight, 205-
weight, 160d postweaning gain, and 3@bweightin American Simmental beef cattle are shown
in Table 4.6. It is worth noting that (co)variancengmnents of 36%+weight were calculated the
summation of (co)variance components of 20beight and 16@ gain. Estimates of direct and
maternal (co)variance components were used to estuiratet and maternal genetic effects of

studied traits (i.e., EPD) from which genetic trends weaieulated. Furthermore, posterior
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means and their respective standard deviations oftdienetic, maternal genetic, and residual
parameters (Table 4.7) were calculated from theirresponding direct and maternal

(co)variance components.

The heritabilities, genetic and residual correlatifmmsalving ease and birth weight, 205-
d weight, 160d postweaning gain, and 3@bweightin the American Simmental beef cattle are

presented in Table 4.7.

Direct heritability: The estimated posterior mean of calving ease diredtability, on the
underlying scale, (0.23) was within the limits ofiesttes of previous reports, which ranges from
0.18 to 0.26 as reported by Dong et al. (1991), Eriksstoal. (2004), and Matilainen et al.
(2009). The relatively high birth weight direct hability of 0.52 was in the upper limit of the
breed heritability estimates previously reporte®@0to 0.52; Burfening et al., 1978b; Trus and
Wilton, 1988; Garrick et al., 1989; Redman and Bsin1991; Woodward et al., 1992). A
moderate posterior mean for 205-d WT direct hellitghi0.28, was similar to the Simmental
estimates reported by Burfening et al. (1978b) am land Pollak (1997). For 1@D-
postweaning gain, direct heritability was estimated@00.21 which falls within the previous
reports range of 0.20 to 0.26 (Quaas et al., 1988ght, 1987; Garrick et al., 1989). Direct
heritability of 365 WT was 0.33 which is a similar estimate to what reggbiin a studyof
Simmental by Benyshek and Little (1982) and withie thnge (0.27 to 0.37) of the Simmental
yearling weight heritability estimates reported he titerature (Elzo et al., 1987; Wright, 1987;
Mrode and Thompson, 1990; Swalve, 1993). Generadliimates of direct heritability obtained
in the current study were in agreement with reponedtabilities of the Simmental breed in the

literature.
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Table 4.5: Posterior mean and posterior standard deviation (ientizeses) of sire and maternal grandsire variance c@mpbfor
calving ease and growth-related traits in Americemn$ental beef cattle.

Trait’ CEs BWTs 205-d WTls  160-d gais CEmgs BWTmgs 205-d WTmgs
CEs 0.069 (0.01) 1.883(0.02) 0.992 (0.13) 1.731 (0.25)
BWTs 0.320 (0.02) 3.303 (0.13) 26.63 (0.46) 11.74 (0.68)
205-d WTs 0.721 (0.11) 9.425(0.67) 73.97 (5.29) -18.52(3.7)
160-d gairs 0.230 (0.21) 4.968 (0.92) 32.42 (5.03) 55.01 (6.86)
CEmgs 0.030 (0.01) 0.058 (0.01)
BWTmgs 1.524 (0.05) 1.007 (0.06)
205-d WTngs 35.30 (2.73) 31.35 (2.78)
HYS? 0.075 3.8 304 360

Isire and maternal grandsire variances are on the diagonal (bold faced); siiee-anaternal grandsire covariances are below the diag
residual covariances are above the diagonal

’CEs = sire (co)variance component for calving ease; BWTsire (co)variance component for birth weight; 205-dS/#¢Tsire (co)varianci
component for 205-d weight; 160-d gam sire (co)variance component for 160-d postweaning gaimgSE maternal grandsire (co)varian
component for calving ease; BWis = maternal grandsire (co)variance component for birth weight; 205-thgd/ maternal grandsir
(co)variance component for 205-d weight.

®HYS = variance of érd-year-season
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Table 4.6: Posterior mean and posterior standard deviation gierftheses) of direct and maternal (co)variance coemsnfor
calving ease and growth-related traits in Americenngental beef cattle.

Trait CEd BWTd 205-d W0~ 160-d gai  365-d WTd CEm BWTm  205-d WTn
CEd 0.397 (03) 1.31(0.03) 0.81(0.10) 1.50 (0.21)  2.31(0.24)
BWTd 1.53(0.10) 13.2(0.54) 15 (0.53)  6.96 (0.47)  22(0.78)

205-d WTd  3.45(0.57) 37.7(2.68) 296 (21.1) -12.9(2.66)  395.5 (14)
160-d gai  1.10 (1.01) 19.87 (3.7)  129.7 (20) 220 (27.44) 441 (21.38)
365-d W0 4.55(1.14) 57.5(4.64) 425.6(30)  349.7(34)  775.3 (54)

CEm -0.022(.02) 0.255 (.01)
BWTm -0.51(0.34) 1.23 (0.34)

205-d WTn -6.76 (5.27) 58.2 (16.3)
HYS® 0.1072 3.8 304 360

!Direct and maternal genetic variances are on the diagonal (bold faced); direct genetic andatémeett genetic covariances are below
diagonal; residual covariances are above the diagonal

’CEd = direct calving eas®WTd = direct birth weight; 205-d W= direct 205-d weight; 160-d gairr direct 160-d postweaning gain; 36
WTd = direct 365-d weight; Offi = maternal calving ease; BWT= maternal birth weight; 205-d WiT= maternal 205-d weight.

®HYS = variance of érd-year-season
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Table 4.7: Posterior mean and posterior standard deviatiopdientheses) of direct, maternal, and residual pareshée calving
ease and growth-related traits in American Simmental dsadé.

Traif CEd BWTd  205-d WK 160-d gain 365-d WT 205-d WTm
CEd 0.23 (0.01) 0.48 (0.01) 0.04(0.01)  0.07 (0.01)  0.08 (0.01)
BWTd 0.67 (0.02) 0.52 (0.02) 0.27 (0.01)  0.12 (0.01)  0.28 (0.01)
205-d WTd 0.32 (0.05) 0.60 (0.03) 0.28 (0.02)  -0.03(0.01)  0.67 (0.01)
160-d gain 0.12 (0.11) 0.37 (0.06) 0.51(0.08)  0.21(0.02)  0.71(0.01)
365-d WT 0.26 (0.06) 0.57 (0.04) 0.89 (0.02)  0.84 (0.03)  0.33(0.02)
CEm -0.064(0.03) 0.14 (0.02)
BWTm -0.12 (0.07) 0.049 (0.01)
205-d WTm -0.04 (0.01) 0.055 (0.01)

Direct and maternal heritability estimates are on the diagonal (bold faced); direct genetic anuatzewd! genetic correlation estimates
below the diagonal; residual correlation estimates are above the diagonal
CEd = direct calving ease; BWIT= direct birth weight; 205-d Wi'= direct 205-d weight; 160-d gairr direct 160-d postweaning gain; 36

WTd = direct 365-d weight Off = maternal calving ease; BWT= maternal birth weight; 205-d WiT= maternal 205-d weight.

®HYS = variance of érd-year-season
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Maternal heritability: Calving ease, birth and 2@b-weights have a maternal component
influencing expression of the trait. The posterior mefcalving ease maternal heritability was
0.14 (Table 4.7). Reported maternal heritabilgyireates using the threshold model approach
ranged from 0.048 to 0.19 in previous reports (Denhgl., 1991; Varona et al., 1999a; Wiggans
et al., 2003; Gevrekci et al., 2011). For birth gi®j our estimate of maternal heritability was
0.05. Similar estimates from studies Simmental were reported (Quaas et al., 1985; Wright
1987; Jamrozik and Miller, 2014) and ranged from QdB.057. The estimated posterior mean
of 205d weight maternal heritability was, 0.055, in the éwimit of reported weaning weight
maternal heritability (0.05 to 0.2) for the Simmedritreed (Quaas et al., 1985; Wright, 1987;

Wright et al., 1987; Boldman et al., 1991; Marquieale 2000).

Direct-Maternal genetic correlation: Direct and maternal genetic effects within CE, BVehd
205d WT had weak negative correlations (Table 4.7). éaving ease, the estimated dire
maternal genetic correlation was, -0.064, within ridwege (-0.05 to -0.16) of the breed reported
estimates on the underlying scale (Dong et al., 1991;0¥krand Miller, 2014). Posterior mean
of birth weight direct-maternal genetic correlatias, -0.12, within the wide range (-0.04 to -
0.43) of the Simmental reported estimates (Quaas.,e1385; Swalve, 1993; Marques et al.,
2000; Eriksson et al., 2002). A weak negative direaternal genetic correlation was obtained
(-0.04) for the Simmental 20&-weight. However, the estimate from the current studs
similar to the correlation reported by Quaas etl#186) for the American Simmental beef cattle
breed. Results from several stude#sSimmental cattle have shown that direct-maternakte
correlation for weaning weight has widely rangedugetn -0.01 and -0.32 (Garrick et al., 1989;

Boldman et al., 1991; Lee et al., 1997; Dodenhoéfle 1999).
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Direct genetic correlation: Since the scoring system of calving ease in the wcustidy is
actually a measure of calving difficulty rather theaise of calving, by definition, the positive
correlations between calving ease and growth traitsepted in Table 4.7 are in fact negative.
From Table 4.7, calving ease had a strong negativetigazorrelation (-0.67) with birth weight;
nonetheless, direct correlations with subsequent growaits have ranged between weak (-0.12
with 160d gain) and moderate (-0.32 and -0.26 with 208/T and 365d WT, respectively)
relationshipsThe estimated correlation between calving ease attdweight was in agreement
with the findings of Burfening et al. (1978b) andrigming et al. (1981) in their studiex
Simmental cattle where they reported estimates of3-@3d -0.76, respectively. However,
calving ease direct correlation (-0.32) with 205-d W/as stronger than that reported by
Burfening et al. (1978Db; -0.08Fonversely, estimated calving ease direct correlatiotis 60
gain and 365-d WT, in the present study, were lesstti@se estimated by Koots et al. (1994b)

and Roughsedge et al. (2005), respectively

Birth weight had strong positive direct genetic etations of 0.60 and 0.57 with 2@b-
WT and 365-dWT, respectively. However, with 160-thgéhe genetic correlation was moderate
(0.37). Given those moderate positive correlations éetwbirth weight and subsequent growth
traits and the strong negative genetic correlatiah walving ease, indicates the antagonistic
genetic relationship between calving ease and be#inmg and yearling weights, which might
have consequences for selection for low birth weigknetic correlation estimates of BWT with
160-d gain and 36% WT, from the current study, were in agreement \ilid breed estimates
from the literature (Benyshek and Little, 1982; Quad al., 1985; Elzo et al., 1987; Wright,
1987; Garrick et al., 1989; Swalve, 1993). Nonetbg| the direct genetic correlation between

BWT and 205d WT estimated here (0.60) was slightly higher tharomega estimates (ranged
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from 0.29 to 0.58) for the Simmental breed (Burfgnat al., 1978b; Benyshek and Little, 1982;

Quaas et al., 1985; Elzo et al., 1987; Garrick etl@89; Woodward et al., 1992; Swalve, 1993).

The 205d WT direct genetic correlation with 160-gain was a strong positive
correlation (0.51). Moreover, the genetic correlatwith the 365d WT was even higher with a
posterior mean of 0.89. This strong genetic correlas@robably occurred becaud@5d WT is
a component trait of 368-WT. Several studiesf American Simmental cattle described similar
estimates of the direct genetic correlation betweeanwmg weight and postweaning gain
(Quaas et al., 1985; Wright, 1987; Garrick et H.89). However, the direct genetic correlation
between 20% WT and 365d WT was slightly higher than the estimates from ottedies in
this breed (Benyshek and Little, 1982; Elzo et al§7tQ\right, 1987) which have ranged from

0.84t0 0.87.

Table 4.7 showed that 1@Dgain had a strong positive direct genetic corratatib0.84
with 365d WT. This was expected since the 368VT is a function (summation) of both 205-
WT and 160d gain. The estimated correlation from the preserdystuas within the range of
estimates obtained by Wright (1987) and Koots et1®94b) who reported correlations of 0.91

and 0.81, respectively.

Residual correlation: Calving ease, on the underlying scale, had a strong edstdurelation
with birth weight (-0.48); however, the residuatredations of -0.04, -0.07, and -0.08 with 205-
WT, 1604d gain, and, 36% WT, respectively, were markedly weak. The estimatsidual
correlation between CE and BWT was in agreement thighreported estimates in the literature

which ranged from -0.28 to -0.50 (Burfening et 4B,78a; Koots et al., 1994b; Varona et al.,
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1999a). Calving ease residual correlations with @087 and 160d gain were higher than those

obtained by Burfening et al. (1978a) and Bennedt@regory (2001)

Birth weight had moderate residual correlations, @2d 0.28, with 20%WT and 365d
WT, respectively. Conversely, the residual correlatioth 160d gain was weak (0.12). The
estimated residual correlation between birth weigldt weaning weight (208-WT) was within
the estimates range (0.18 to 0.51) of the breed éBunf) et al., 1978a; Benyshek and Little,
1982; Wright, 1987; Garrick et al., 1989; Woodwaatdal., 1992). Nonetheless, the residual
correlation with 1604 gain (0.12) was slightly higher than the breed eseém#0.07 to 0.10)
reported by Benyshek and Little (1982), Wright (19&hd Garrick et al. (1989). The posterior
mean of the residual correlation (0.28) between BWAH 365d WT was less than the
correlations obtained by Benyshek and Little (198&) ®right (1987), in their studies on the

American Simmental, who reported estimates of 0.420eB, respectively.

The posterior means of 2@bweight residual correlations with 1@Dgain and 365}
weight were -0.03 and 0.67, respectively, (Tablg.4lie 205d weight residual correlation with
160-d gain was less than the American Simmental estimatek0(t0 -0.18) reported in previous
reports (Benyshek and Little, 1982; Wright, 1987;rrigk et al., 1989). Estimated residual
correlation between 208+weight and 365 weight was in agreement with the breed estimates

reported by Benyshek and Little (1982) and Wrig!3().

The 160-d postweaning gain showed a strong positive residuaéledion of 0.71 with
365d weight (Table 4.7). This correlation was slightly leg than the American Simmental
estimates obtained by Benyshek and Little (1982) andjtw/ (1987) who reported residual

correlations of 0.57 and 0.68, respectively.
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Generally, resultof the direct genetic, maternal genetic, and resigaahmeters for
calving ease, birth weight, weaning weight, postweageig, and yearling weight showed that:
1) Birth weight has the highest heritability amonptedits while other traits showed moderate
heritability. 2) The high negative genetic corriglatbetween calving ease and birth weight, high
heritability of birth weight, and its linearity jutithe importance of incorporating birth weight
in the genetic evaluation of calving ease. 3) Higkitpe genetic correlations between birth
weight and subsequent growth traits expose the gesrggonistic relationship between calving

ease and postnatal growth traits.

4.3.2.Genetic trends for calving ease, birth weight, 208-weight, 160€ gain, and 365d
weightin American Simmental first-calf heifer and selection scearios for high

calving ease versus low birth weight

Genetic trends for calving ease, birth weight, 205-d weight, 160-d gain, and 365-d weight in
American Simmental first-calf heifer: The average EPD, expressed in units of genetic standard
deviations, of 277,897 calves born to ficatf Simmental heifers from 1969 (< 1969) to 2010

were used to assess additive genetic trends for calvireydiiaect (CEHl), birth weight direct
(BWTd), 2054d weight direct (205-d Wd), 1604 postweaing gain direct (1aDgain), and 365-

d weight direct (365-d WT). Maternal genetic trendsrevalso obtained for calving ease (QE

birth weight (BWTm), and 205d weight (205-d Wm). Genetic trends for calving ease and
growth traits in the first-calf Simmental heifer are depicted in Ufiy 4.1. Further, the
standardized EPD of studied traits were regressed ogetlreof birth to estimate the annual

genetic change (SD/yr) (Table 4.8). Intercepts ammped for all traits (Table 4.8) were
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significantly different P < 0.001) from zero. In subsequent analyses, differentctsale

scenarios were derived from this population as this wasidered the control scenario.

Trendsof direct effects (SD/yr) for growth-related traits ieased from 1969 to 2010,
whereas maternal effects showed decreased trends raathee relatively flat throughout the
period of study (Fig. 4.1). In contrast, the direffees for calving ease showed a decreased
trend while the maternal effects increased (Fig. 4 hg standardized calving ease direct EPD
showed a negative trend of -0.0032 SD/yr; on therdtland, the maternal EPD were increased
with genetic change of 0.0131 SD/yr (Table 4.8)camtrast, Elzo et al. (1987) , in a study on
Simmental sires (1973-1984), reported a positive getretnd for first-parity direct calving ease
and a negative trend for maternal calving ease. Uthigeurrent study where we used data from
purebred animals (87.5% Simmental), data used in Elab €987) consisted of 23 base breeds
represented in the base dam population which was uphresieg Simmental sires. Therefore,

heterosis effects may have clouded reported resultdzoyeEal. (1987)

For growth traits, direct genetic EPD consistently élased with rates of 0.0160, 0.0255,
0.0192, and 0.0447 SDl/yr for birth weight, 2@%veaning weight, 16@-postweaning gain, and
365d yearling weight, respectively. These findings, witlspect to weaning and yearling
weights, were in agreement with those of Elzo etl®18%) and Elzo et al. (1987) in their studies
of the American Simmental in the 1980s. Furtherm8rdlivan et al. (1999) reported estimates
of positive genetic trends for birth weight, weaningight, and yearling weight in Canadian
Simmental cattle. Compared to the direct EPD, the mailt&PD of birth and weaning weights
were also increased with lower rates of genetic ch@@©23 and 0.0057, respectively). Elzo et
al. (1985) estimated the maternal genetic trends,esspd as the difference in means between
1983 and 1972, for birth weight (-0.2 kg) and wegniveight (1.1 kg) of the Simmental breed.
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The positive trend of the maternal 205-d WT estimatethe current study agreed with the
positive trend reported by Elzo et al. (1985); imtcast, the positive genetic change of maternal
birth weight, in the present study, contradicts thpbreed by Elzo et al. (1985). While results
from this study for maternal additive effects on bithight were similar to those reported by
Elzo et al. (1987). Results have shown that the dgexetic components of growth-related traits
in the American Simmental first-calf heifer increaskoting the period of 1969-2010 while the

maternal genetic component for birth and weaningis also increased, but only slightly.

Table 4.8: Regression coefficients estimdtgin SD units) with SE for calving ease a
growth-related traits EPD of first-calf Simmental hesfe

Trait’ intercept SE 10% Slope SE 10%)
CHd -0.0640 0.83 -0.0032 0.04
BWTd -0.1066 1.19 0.0160 0.06

205d WTd -0.1800 1.00 0.0255 0.05

160-d gaird -0.1404 0.84 0.0192 0.04

365d WTd -0.3201 1.73 0.0447 0.09

CEm 0.0118 0.85 0.0131 0.04
BWTm -0.0450 0.80 0.0023 0.04

205d WTm -0.1513 0.70 0.0057 0.04
iEg’govi/)ere regressed on birth year; all regression coefficients were significantly different froR .

First-calf Simmental heifers is considered the control selection scenario
3CEd = direct calving ease; BWIT= direct birth weight; 205-d W& = direct 205-d weight; 166-
gaind = direct 160-d postweaning gain; 365-d W¥ direct 365-d weight; G = maternal calvinc
ease; BWm = maternal birth weight; 205-d WiT= maternal 205-d weight.
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Figure 4.1: Genetic trend (1969-2010) of standardized average Ed?Ddirect calving
ease (CH), direct birth weight (BW), direct 205d weight (205d WTd), direct 160d
postweaning gain (16@-gain), 365d weight (365d WT), maternal calving ease (@1,
maternal birth weight (BWih), and maternal 208-weight (205d WTm) for first-calf
Simmental heifers
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Selection scenarios for high calving ease versus low birth weight in American Simmental first-

calf heifers: Six artificial selection scenarios were derived frdme first-calf heifers in the
American Simmental population, depicted in Fig. 4the control scenario). Our goal was to
guantify the performance losses resulting from seledtiofow birth weight instead of selection
for calving ease. The scenarios investigated include s@idot:

1) High calving easeHCE), 2) low birth weight (BWT ), 3) the Selection indeg&f Dickerson

et al. (1974)DSI = YWT - 3.2BWT, 4) The all-purpose selection index of the AS%I =-1.8
BWT + 1.3CE + 0.10WWT + 0.20YWT, and two sub-selection indexes derived from the API:
APIl; = 1.3CE + 0.20YWT, and 6)API; =-1.8 BWT + 0.20YWT. Here,CE, BWT, WWT, and
YWT were calving ease, and birth, weaning, and yearlie@ghts, respectively. The first-calf
American Simmental heifers (Fig. 4.1) wered as a selection pool “control scenario” for the

six selection scenarios. Starting with animals born iA01%election was applied within each
birth year. For example, animals born before 1978 {%517) were considered a base population
(selection pool) for animals born in 1970. Sires with EBV > the average (either EBV in the
single trait selection or the index value in the ipléttrait selection) were selected, then the top
75% of dams with progeny within selected sires were teled his procedure was repeated for
each birth year. The selection criteria, in these 8elescenarios, were the standardized EBV
for the respective trait. For direct and maternéling ease, the estimated underlying liabilities
were standardized by their respective genetic stdndaviation and centered on the average
liability of animals born before 1970. The resultidgta for all selection scenarios contained
animals born in 1969 “<1969” to 2004. In all selection scenarios, animals born after 2004 were
discarded because of their limited numbers. EBV were wansd to EPD then expressed as a

deviation from their birth year average EPD of tbatool scenario.

127



Regression coefficients of studied traits standardized, ERRressed as a deviation from
the respective average EPD in the control populategressed on birth year under the different
selection scenarios are presented in Table 4.9. Diffeschetween slopes (genetic trends in SD
units) and between intercepts of the direct EPD of sagtied trait under all selection scenarios
are shown in Table 4.10. Differences between slopedeaiwcten intercepts of the maternal EPD
of CE, BWT, and 20% WT under all selection scenarios are shown in Tallg.4.

Table 4.9 Regression coefficient$ of standardized EPD (expressed as a deviation from
respective average EPD of the control population}rfats of interest regressed on birth y
estimated from different selection scenarios in first-8ammental heifers.

Selection Scenarfo
Trait® HCE LBWT DSI API API; API,

CEd bo 0.1199 0.0760 0.0616 0.1048 0.0985 0.0789
b: 0.0025 0.0036 0.0038 0.0029 0.0027 0.0035

bo -0.1063 -0.1135 -0.0725 -0.1178 -0.0682 -0.1111

BWT 00049 -00068 -0.0071  -0.0059  -0.0047  -0.0066
bo -0.0612 -0.0790 -0.0081 -0.0621 -0.0130 -0.0601

205d WTd by -0.0020 -0.0032 -0.0033 -0.0027 -0.0018 -0.0032
160.d gain bo -0.0090 -0.0405 0.0260 -0.0136 0.0352 -0.0206
9 by -0.0021 -0.0025 -0.0026 -0.0024 -0.0019 -0.0025
365d WT bo -0.0702 -0.1195 0.0179 -0.0757 0.0222 -0.0807
by -0.0041 -0.0057 -0.0058 -0.0051 -0.0037 -0.0057

CEm bo -0.0192 -0.0483  -0.0008° -0.0308 0.0067 -0.0395
by 0.0005 0.0005 -0.0004 0.0004 0.0001'S 0.0003

BWTm by  -0.0022"°  -0.0049* 0.0103  -0.0019% 0.0210  -0.0018'S
by -0.0011 -0.0009 -0.0009 -0.0008 -0.0015 -0.0008

205d WTm 0.0195 -0.0168 0.0237 0.0086 0.0402 -0.0061

b, -0.0004 0.0010 -0.0002 0.0002* -0.0011 0.0008
o = intercept; = Slope “rate of genetic change” expressed in standard deviation units per year
NS = estimate is not significantly differer® & 0.05) from the control population; *B < 0.05; **= P < 0.01;
estimate with no superscript is significantly differeat<0.001) from the control population.
3CEd = calving ease standardized direct EPD; BWTbirth weight standardized direct EPD; 205-d 2054
weight standardized direct EPD; 160-d gain = 160-styeaning gain standardized direct EPD; 368/ = 365-
d weight standardized direct EPD; @E= calving ease standardized maternal EPD; BWH birth weight
standardized maternal EPD; 205-d W¥ 205-d weight standardized maternal EPD
*HCE = high calving ease selection scenario; LBWT = low birth weight selection scenario; DSI = Dickerson’s
selection index; API = All-purpose index; ARt 0.2 YWT + 1.3 CE; ARI= 0.2 YWT- 1.8 BWT
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Table 410 Difference (X100) between regression coefficiéAtgintercept above th
diagonal, slope below the diagonal) of studieddrsindardizedirect EPD regressed on biri
year estimated from different selection scenariogat-falf Simmental heifers.

Traitt  Selection scenaffo HCE  LBWT DSI API IN-IH API,
HCE 4.39 5.83 1.51 2.14 4.10
LBWT -0.11 1.44 -2.88  -2.25 -0.29
CEd DSI -0.13  -0.02% -4.32 -3.69 -1.73
AP -0.04 0.07 0.09 0.63* 2.59
AP, -0.02%*  0.09 0.11  0.02% 1.96
API, -0.10 0.02* 0.03*  -0.06 -0.08
HCE 0.72%°  -3.38 1.15 -3.81 0.48°
LBWT 0.19 -4.09 043% 453 -0.23%
BWTd DSI 0.22  0.03% 453 -043% 386
API 0.10 -0.09 -0.12 -4.96 -0.67"°
AP, -0.02%*  -0.20 -0.23 -0.12 4.29
API, 0.17 -0.02* -0.05*  0.07 0.19
HCE 1.78 530 0.09° 482 -01M
LBWT 0.12 -7.08 -1.69  -6.60 -1.89
205d DSI 0.13 0.0 540  0.48% 5.19
WTd API 0.07 -0.05 -0.06 -4.91  -0.20%
AP, -0.02%  -0.14 -0.15 -0.09 4.71
API, 0.12 0.0 -0.01" 0.05* 0.14
HCE 3.15 -3.50 0.46%  -4.42 1.16
LBWT 0.04** -6.65 269  -7.57 -1.99
160d DSI 0.05 0.0 3.96 -0.92 4.66
gaind API 0.03%* .0.01% -0.02° -4.88  0.70*
AP, -0.02%*  -0.05 -0.06 -0.05 5.58
API, 0.04* 0.0 -0.0™ 0.01" 0.06
HCE 4.93 -8.80 058° 924 1.08°
LBWT 0.16 -13.73  -4.38  -14.17 -3.88
365d DSI 0.17 0.0 9.35 -0.43% 985
WTd API 0.10 -0.08° -0.08** -9.79 0.50°
AP, -0.04"  -0.20 -0.21 -0.14 10.29
API, 0.16 0.0 -0.02 0.08° 0.20

! Differences bateen slopes = columrew; intercept differences Fow-column

NS = estimate is not significantly differer® & 0.05) from the control population; * B < 0.05; ** =
P < 0.01; no superscription”> 0.001.

3CEd = calving ease standardized direct EPD; BWThirth weight standardized direct EPD; 20F
WTd = 205-d weight standardized direct EPD; 160-d g&iri60-d postweaning gain direct EPD; 3¢
d WTd = 365-d weight standardized direct EPD

*HCE = high calving ease selection scenario; LBWT = low birth weight selection scenario;
Dickerson’s index; API = All-purpose index; ARI= 0.2YWT + 1.3CE; ARI= 0.2YWT - 1.8BWT
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Table 4.11: Difference (X100) between regression coefficiéAtgintercept above th
diagonal, slope below the diagonal) of studiedgratandardizednaternal EPD regressed o
birth year estimated from different selection scendndsst-calf Simmental heifers.

Trait  Selection scenafo HCE LBWT  DSI AP| APy AP,
HCE 291 -185 116 -258  2.03
LBWT 0.01"° -476  -1.75 549  -0.88
CEm DSI 0.09 0.09 3.01 -0.73*  3.89
AP| 0.0 0.0 -0.08 -3.74  0.87
APl 0.04* 0.03* -0.05 0.03" 4.61
API, 0.02* 0.0 -0.08 0.0 -0.02%
HCE 027 124 -0.03° -232 -0.04"%
LBWT -0.01"° -1.51  -0.30*° -259 -0.31°
BWTm DSI -0.02*  0.01"° 1.21  -1.08 1.20
API -0.02*  -0.0" -0.01" 229 -0.01%
APy 0.05 0.06 0.06 0.07 2.28
API, -0.03*° -0.0™ -0.01™ -0.0"° -0.08
HCE 363 -043° 109 -207 255
LBWT -0.14 -405 254 569  -1.07
205d DSI 0.0 0.13 152  -1.64 2098
WTm AP 005 009 -0.04 316 1.46
APy 0.07 0.21 0.08 0.12 4.62
API, -0.12 0.02*® 010 -0.06 -0.19

! Differences between slopesaiumnyow; differences between interceptsow - column

’NS = estimate is not significantly differer® & 0.05) from the control population; * B <

0.05; ** = P < 0.01; estimate with no superscription is significadifferent P > 0.001) from
the control population.

3CEm = calving ease standardized maternal EPD; BV¥¢Tbirth weight standardized materr
EPD; 205-d W = 205-d weight standardized maternal EPD

*HCE = high calving ease selection scenario; LBWT = hirth weight selection scenaric
DSI = Dickerson’s selection index; API = All-purpose index; ARI= 0.2 YWT + 1.3 CE; ARl

=0.2 YWT- 1.8 BWT
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Slection for high calving ease (HCE) versus selection for low birth weight (LBWT): Genetic
trends (1969-2004) of standardized average EPD fat, B&/Td, 205d WTd, 1604 gain, 365-
d WT, CBm, BWTm, and 205d WTm under two selection scenarios: HCE vs. LBWT are
presented in Fig. 4.2. In both selection scenariosditext effects of calving ease selection
showed positive trends compared to the control. HeeeHCE substantially shifted the intercept
(0.1199 SD) and the slope (0.0025 SD/yr) of theesgjon line (Table 4.9). The HCE intercept
estimate was 57.7% higher tha € 0.001) that obtained from the LBWT; however (DE

slope from the HCE was lowelP € 0.001) by 30.5% (Table 4.10).

Conversely, the growth-related direct effects estichdtem both selection scenarios
decreased (Table 4.9). The estimated direct genetidérfor BWT, 205 WT, and 160d gain,
and 365d WT under the HCE were 27.9, 37.5, 16, and 28%, réspg higher than P <
0.001) those obtained from the LBWT selection scendrables 4.9 and 4.10) but lower than
control. For maternal effects, the genetic trend€Bfin both selection scenarios were positive
(P < 0.001) with similar rates of 0.0005 and 0.0005y8Dkspectively; however, the intercept
from the HCE was, 60%, higheP (< 0.001) than that under the LBWT (Tables 4.9 arid®}.
Maternal genetic trends of birth weight from both sete scenarios showed decreasing rates of
-0.0011 (HCE) and -0.0009 (LBWT) SD/yr. Maternahuls for 205d WT under HCE decreased
with a rate of -0.0004 SD/yr while an increasingraf 0.0010 SD/yr was estimated under the
LBWT scenario (Tables 4.9 and 4.11). Bennett (2008) gstattion (1993-1999) to create two
different lines, a select and a control line withiacle of 4 purebred (Charolais, Gelbvieh,
Hereford, and Angus) and 3 composite cattle (MARG, land 1ll) populations. Selection for
lower 2yr-old heifer calving difficulty score EBV was applied the select lines; whereas,

animals in the control lines were selected for avetagd weight EBV. The author reported

131



that selection for calving ease decreased the averagddR¥Iving difficulty and birth weight
across populations by -1.06 and -3.5 kg, respectivéigse results were in agreement with the
current study where selection for high calving easelyced animals with lower birth weight
and higher calving ease. However, in contrast to asulise Bennett (2008) reported that both
lines did not show differences in maternal additiveeagie effects on calving difficulty and birth
weight; and direct genetic effects on weaning weaid postweaning gain. This was because of
the selection for higher calving ease (select line) emspared to the control line, which was
selected to maintain the average of birth weighin(it, 2008); whereas, in our study, the two
lines (.e., selection scenarios) were actually two selected linbrefore, the differences
between scenarios in the present study are expected toigher in magnitude. To our
knowledge, there is no study that applied single saiéction for low birth weight as in this
evaluation. In previous reports, selection for lowthhiweight was always accompanied by
selection for high weaning or yearling weight (Ddaoa et al., 1994; Gould, 1869MacNeil,
2003). However, the study closest in design to thisamasthat selected for below-average birth
weight (MacNeil et al., 1998). In that report, thevere two selected lines with the first applying
independent culling levels for below-average birgght and high yearling weight (YB) and a
second single-trait mass selection for high yearling mgigW) in the inbred population of Line

1 Hereford cattle. Authors suggested that direct seledor calving ease would be more
effective than selection for low birth weight. Resufitem the current study revealed that
selection for high calving ease (HCE) produced heavienas with lower incidence of dystocia
than selection for low birth weight (LBWT). Selectidor low birth weight improved calving
ease, but caused losses in growth at later ages which wadtaofehe high genetic correlations

between birth weight and subsequent growth traits.
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Figure 4.2 Genetic trend (1969-2004) of standardized average tePDirect calving
ease (CH), direct birth weight (BW), direct 205d weight (205d WTd), direct 160d
postweaning gain (166-gain), 365d weight (365d WT), maternal calving ease (Gt
maternal birth weight (BWi), and maternal 208-weight (205 WTm) estimated from
two selection scenarios: HCE Versus LBWT
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The all-purpose selection index (API) versus Dickerson’s selection index (DSI): The direct and
maternal genetic trends for calving ease (CE), birtlgltgBWT), and weaning weight (20&b-
WT) and the direct genetic trends for postweaning ¢a60+€ gain) and yearling weight (365b-
WT) under the API and DSI selection scenarios are pregeémtFig. 4.3. Even though the slope
value for CE direct was higheP (< 0.001; Table 4.10) in the DSI, the API shifted thtercept
(i.e., gave higher average EPD) by 70% more than the egeabtained from the DSI (0.184

vs. 0.0616 SD, respectively; Table 4.9).

For growth traits, both selection scenarios reducedvtpracompared to the control.
Despite the steeper trends (slopes) estimated from $ies@ection scenario, intercepts of the
direct genetic trends for BWT, 2@bWT, and 365d WT estimated from the API were lower
than those of the DSI (Table 4.9 and 4.10). Howevestet were no differenced? (> 0.05)
between slopes for 1adgain under both selection scenarios (Table 4.10)nfasernal genetic
trends of growth traits, maternal trends obtained fidRi and DSI showed decreasing rates
(API vs. DSI) of (-0.0008 vs. -0.0009 SD/yr) and Q@02 vs. -0.0002 SD/yr) for BWT and 205-
d WT, respectively (Table 4.9). Further, there weoedifferences P > 0.05) between these
estimates. The genetic trend of calving ease matemddruthe APl had an increasing rate;
whereas, a negative trend was estimated under thg TaBle 4.9). The decrease in growth-
related genetic trends under both selection scenanogared to the control scenario, reflected
the emphasis of Simmental breeders on selection feerfgsowing animals. Similar to the
present results, Gould (1996) and MacNeil et al. (1988drted that the DSI improved calving
ease; however, MacNeil et al. (1998) recommendeditketdelection for calving ease instead
of selection for lower birth weight. The current rksishowed that, despite the lower growth

rates of animals selected using API, the incidencegstibdia was much less than that in the DSI.
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Figure 4.3: Genetic trend (1969-2004) of standardized aveERje for direct calving
ease (CH), direct birth weight (BW), direct 205d weight (205d WTd), direct 160d
postweaning gain (160-gain), 365d weight (365d WT), maternal calving ease (Gt
maternal birth weight (BWif), and maternal 208-weight (205d WTm) estimated
from two selection scenarios: All purposes Index (API(0.2 YWT -1.8 BWT + 0.1
WWT + 1.3 CE Versus Dickerson's selection index (DSI)WTY- 3.2 BWT
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The all-purpose sub-selection index (APl 1) versus Dickerson’s selection index (DSl): The APk

is a sub-selection index of the APl where yearling wemid calving ease are the only traits
included in the ARL Therefore, the comparison between the;AfPld DSI can be thought of as
a comparison between a calving ease-based selection (AB&Y versus a birth weight-based
selection index (DSI). Figure 4.4 depicts the dimaod maternal average EPD of studied traits
under both dection scenarios. In spite of the higher slope “rate of change” under the DSI, the
regression linelg + by*birth year) of estimated direct calving ease EPD unlderAPL scenario
was higher than that obtained under the DSI (Ta#lésand 4.10). Here, selection using the
APIly, in the early years of the study, greatly increased average calving ease EPD which
resulted in a higher intercept; therefore, the obtained rate of change “slope” was lower than that
obtained under the DSI. This is a result of the rg@idetic change under the APin the early
years, which is constrained in the subsequent years by the already selected “low CE” animals in

the data (See Fig. 4.1).

Direct genetic effects, for all growth traits, ob&dnunder the ARIwere higher thanR <
0.001) the estimated direct effects under the DSblEEa4.9 and 4.10). Table 4.11 showed that
maternal CE under the ARlid notshow a trendR > 0.05) while a negative tren& & 0.001) of
-0.0004 SD/yr was estimated for maternal CE undefxBl. For maternal BWT and 205-d WT,
negative trends were estimated under both selectionagsoen(Tables 4.9 and 4.11). The
superiority of AP] “CE-based selection index” over DSI “BWT-based selection index”, across
all traits, supports the speculatiaf MacNeil et al. (1998) that selection for higher aadvease
would be more effective than selection for birth giti The economic efficiency, in terms of

profit, of both selection scenarios will be investigaegdr in this section.
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Figure 4.4: Genetic trend (1969-2004) of standardized aveERfe for direct calving
ease (CH), direct birth weight (BW), direct 205d weight (205d WTd), direct 160
postweaning gain (160-gain), 365d weight (365 WT), maternal calving ease (@1
maternal birth weight (BWm), and maternal 208-weight (205d WTm) estimated
from two selection scenarios: Dickerson's selection in@%l) = YWT - 3.2 BWT

Versus AP{=0.2 YWT + 1.3 CE
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The all-purpose sub-selection index (API,) versus Dickerson’s selection index (DSl): The APb

is a sub-selection index of the APl where yearling wemyhd birth weight are the only traits
included in the ARIL Therefore, the comparison here is between two bidiight-based selection
indices. Figure 4.5 shows genetic trends (1969-2004janidardized average EPD for direct and
maternal calving ease, birth weight, 205veight, and direct 16@-postweaning gain and 3@b-
weight under the ARBland DSI selection scenarios. For direct and matereati$r for calving
ease, the ABRIlproduced higherR < 0.001) direct calving ease EPD and lower< 0.001)
maternal calving ease EPD compared to the DSI (Tab&snrd 4.10). However, differences
between DSI and ARIwere less than those between DSI and both API and. ARis was
expected since DSI and ARVere both focus on lower birth weight whereas ARI aRl; were
selecting for higher calving ease. As compared to D&Aelt direct genetic trends were
estimated for all growth-related traits under the APhe lower direct trends for 2G6WT 160-

d gain, and 36% WT obtained under the APWere essentially a result of the lower intercepts (
< 0.001) while slopes were not differeft¥ 0.05) between the two selection scenarios. The low
direct trends for growth traits were a result of tlighlr downward selection for birth weight

(the negative weight of BWT in the APWas 281% “-9 vs. 3.2” higher than that in the DSI).

Generally, results showed that the ARelection scenario, compared to the DSI,
produced animals with higher calving ease and loweawtyr rates. Furthermore, these
differences resulted from the higher selection presplased on birth weight under the API
Even though the differences between DSI and,Af#dre significant, the magnitude of these
differences was smaller than that of the differencéwdsn DSI, APl and ARI This illustrates
the difference between the calving ease-based selextbmirth weight-based selection indices

where the former produced animals with higher cahaase and better growth rates.
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Figure 4.5: Genetic trend (1969-2004) of standardized average t6P@direct calving
ease (CH), direct birth weight (BW), direct 205d weight (205d WTd), direct 160d
postweaning gain (160-gain), 365d weight (365 WT), maternal calving ease (Gt
maternal birth weight (BWif), and maternal 208-weight (205d WTm) estimated
from two selection scenarios: Dickerson's selection in@xl) = YWT - 3.2 BWT

Versus AP4 =0.2 YWT - 1.8 BWT
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The all-purpose selection index (API) versus all-purpose sub-selection index (API;): the API
selection indexAPI = -1.8 BWT + 1.3CE + 0.10VWWT + 0.20YWT) with its sub-index ARI
(API1; = 1.3CE + 0.20 YWT) were compared in terms of the genetic trends daietutraits
resulted under both selection scenarios. Figure 4.6 shyggmetic trends (1969-2004) of
standardized average EPD for direct and maternalngpkase, birth weight, 20bweight, and
direct 160d postweaning gain and 3&bweight under the APl and APkelection scenarios.
Estimates of intercepts and slopes of studied traitsrasepted in Table 4.9. As shown in Fig.
4.6 and Table 4.9, both selection scenarios produceithsistopes P > 0.05) for direct CE
however, the intercept of the regression line wakdrig® < 0.001) under the APl meaning that
API produced higher average calving ease EPD. Famtprdraits direct genetic trends, API
consistently produced higher genetic trends acrossrallitly traits. Rates of direct genetic
change for BWT, 208 WT, 1604 gain, and 36% WT, under the AR| were 20, 33, 20.8, and
27.4%, respectively, higheP ( 0.001) than their respective estimates under AR3IE€EA4.9 and
4.10). Positive average EPD for maternal CE were estanahder APl were positive (i.e.,
positive intercept) and did not show a treid> 0.05); however, under the API, maternal CE
EPD were negative and increased with a rate of 0.000¥r $Table 4.9). Maternal effects for
BWT, under both scenarios, showed decreasing rates ighlerhEPD estimated under the API
selection scenario. Nonetheless, maternal effects ford20B showed a decreasing rate of -
0.0011 SD/yr under the APWhile increased with a rate of 0.0002 SD/yr underARe¢ (Table
4.9). These results shed that both selection scenarios produced animals wih €E EPD
with a slight advantage for the API; however botersgios reduced growth rate with higher
EPD estimated under the APIThe higher CE EPD under the API and the higher droates

under the APlwere a result of incorporating BWT in the former axadluding it from the latter.
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Figure 4.6: Genetic trend (1969-2004) of standardized aveERe for direct calving
ease (CH), direct birth weight (BW), direct 205d weight (205d WTd), direct 160
postweaning gain (160-gain), 365d weight (365 WT), maternal calving ease (@1
maternal birth weight (BWM), and maternal 208-weight (205d WTm) estimated
from two selection scenarios: All purposes Index (API).2 YWT - 1.8 BWT + 0.1
WWT + 1.3 CE Versus AR 0.2 YWT + 1.3 CE
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The all-purpose selection index (API) versus all-purpose sub-selection index (API,): the direct
and maternal genetic trends of studied traits undeAfl selection indexAPI = -1.8 BWT +
1.3 CE + 0.10VWWT + 0.20YWT) with its BWT-based sub-index AP(API, = -1.8 BWT + 0.20
YWT) were compared (Fig. 4.7 and Tables 4.10 and 4Rd3ults showed that direct genetic
trends for CE, BWT, and 208 WT in the API were significantlyR < 0.001) higher than those
under the ARJI(Table 4.10). Despite the similar slop&X 0.05) for the direct 160-d gain under
both scenarios, higheP (< 0.05) average EPD.&., higher intercept) were obtained from the API
scenario. Genetic trends for direct 33A/T were similar P > 0.05) under both selection

scenarios.

For maternal trends, the APl maintained the supégyidor maternal calving ease and
maternal 2054 WT (Table 4.11). Conversely, there were no diffeenP > 0.05), between the
two scenarios, in the genetic trends of maternal kelght (Table 4.11). These results showed
that the absence of calving ease in the AfPbduced cattle with lower calving ease and growth
trait EPD while the absence of birth weight in the A@ke Fig. 4.6) resulted in higher calving

ease and growth trait EPD compared to the API selectiomscen

The all-purpose sub-selection index (API1) versus all-purpose sub-selection index (API): The
two sub-selection indices of the API were compare@. ARL (API; = 1.3CE + 0.20YWT) was
considered the calving ease-based selection scenario twhildPL (API, = -1.8 BWT + 0.20
YWT) was considered the birth weight-based selection scerfamect and maternal genetic

trends of calving ease and growth-related traits undéy &Rl AP} are shown in Fig. 4.8.
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Results showed that the direct genetic trend for mglease and all growth traits obtained
under the APRI were significantly higher than those estimated from &PL (Table 4.10).
Further, The ARIshowed higherR < 0.001) maternal genetic trends for calving eage205¢d
WT. However, birth weight maternal genetic trendgsemeot different P > 0.05) between the
two selection scenarios. These findings were similar ¢sethcomparing the APl and API
However, the AR compared to both APl and ARproduced animals with the highest average
EPD for growth traits. The superiority of the ARlas a result of the absence of restrictions on

birth weight which is eventually reflected on growses at subsequent ages.

Results obtained from both calving ease-based and Idiv Weight-based selection
scenarios showed that the various selection scenarios, acethfgo the control scenario,
increased the ease of calving and reduced growthwaieh suggest that selection for heavier
animals was practiced in the first-calf Simmental draif(i.e., control; see Fig 4.1). However,

since 1999, a noticeable improvemb@ calving ease was evident

Generally, the calving ease-based selection scenariog,(A€I, and APJ) showed
higher genetic trends for calving ease and growldited traits compared to the birth weight-
based selection scenarios (LBWT, DSI, andZ\PThe single trait, HCE, selection scenario has
substantially improved calving ease and produced heamienals compared to LBWT selection
scenario. The API and APWere considered the more effective selection scenanmsgst the
various selection indexes. In summary, we accept tpethgsis that direct selection for calving
ease, as opposed to selection for low birth weight, ingerdhe ease of calving and growth-
related traits reduces the performance losses resutted tfte indirect selection using birth

weight.

143



Average EPD (SD) for Calving Ease and Growth Traits

-04

-0.2

-0.4

-0.4

0.4

02

—o—API (365-d WT)

== API; (365-d WT)

—x—API (160-d gain)

—*— API, (160-d gain)

04

0.2

e

= W3 e M e e B g K T g ol e

..

—a— API (205-d WTd)

—&— API, (205-d WId)

-=%--API (205-d WTm)

==%==A4P[, (205-d WIm)

0.4

—+—A4PI (CEd)
—+— API, (CEd)
—=+-=-API (CEm)
--+-- API, (CEm)
—o— API (BWTd)
—©— API, (BWTd)
==0==API (BWTm)

--e-- AP[, (BWIm)

1969

Birth Year

1974 1979 1984 1989 1994 1999 2004

Figure 4.7: Genetic trend (1969-2004) of standardized aveERe for direct calving
ease (CH), direct birth weight (BW), direct 205d weight (205d WTd), direct 160
postweaning gain (160-gain), 365d weight (365 WT), maternal calving ease (@1
maternal birth weight (BWm), and maternal 208-weight (205d WTm) estimated
from two selection scenarios: All purposes Index (API).2 YWT - 1.8 BWT + 0.1
WWT + 1.3 CE Versus ARI= 0.2 YWT - 1.8 BWT
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Figure 4.8: Genetic trend (1969-2004) of standardized aveERe for direct calving
ease (CH), direct birth weight (BW), direct 205d weight (205d WTd), direct 160
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Net Profit for various selection scenarios. The profit for all selection scenarios was estimated
using the API selection indeAPIl = -1.8 BWT + 1.3CE + 0.10WWT + 0.20YWT). In order to
estimate the profit, the unstandardized EPD of traite weed in the APIli ., growth traits EPD
were expressed in kg and calving ease EPD were expres$édofnunassisted calving with
economic weights modified accordingly). The pricegpadduction inputs were assumed to be
constant throughout the period of study; consequetitéy/,economic weights in the APl were
assumed to be constant. Therefore, for each selectioargzethe estimates of net profit were
regressed on birth year. Intercepts and slopes ($&mprasented in Table 4.12. The differences
between intercepts and between slopes of differeatts@h scenario were tested for significance
(Table 4.13). Selection scenarios can be classified2rgooups: 1) high calving ease selectio
scenarios which include the single trait selection scerfarihigh calving ease (HCE), the all-
purpose selection index (API), and the all-purpose sulstsmieindex (AP]), and 2) low birth
weight selection scenarios which include the singlg sedection scenario for low birth weight

(LBWT), Dickerson’s selection index (DSI), and the all-purpose sub-selection index (ARI

For high calving ease selection scenarios (Group &)HGBE, API, and ARl selection
scenarios showed the highest net profit with intercepinates of $13.01, $11.58, and $11.09
respectively, and their estimated rates of change @£®, 0.33, and 0.30 $/yr, respectively
(Table 4.12). Rates of change in the profit for b&H and AP{ selection scenarios (Table 4.13)
did not significantly differ P > 0.05). Compared to the LBWT selection scenaritecsien for
high calving (HCE) ease showed higher annual averdgest @rofit (Fig. 4.9) where it shifted
the intercept by 58% (Table 4.12). The low birth gi®tiselection scenarios (Group 2) can be
ordered from the highest to the lowest net profifaiew: APIl,, LBWT, and DSI. Table 4.13

showed that the differences between the slope of LEAMT slopes of ARBland DSI were not
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different @ > 0.05). Nonetheless, differences between intercdtse three selection scenarios
were different. Intercepts estimates for APLBWT, and DSI were 8.81, 8.23, and 7.36$,

respectively (Table 4.12).

Table 4.12: Regression coefficierltsof the net profft ($) of various selection scenar
regressed on birth year in first-calf Simmental heifers

Selection scenario
HCE LBWT DSI API APl APl
Item Est SE Estt SE Estt SE Estt SE Estt SE Est. SE
Intercept, $ 13.01C 0.174 8.228 0.163 7.357 0.153 11.580 0.169 11.09C 0.165 8.811 0.163

Slope, $/yr 0.280 0.009 0.407 0.009 0.426 0.008 0.328 0.009 0.303 0.009 0.389 0.009
TAll estimates were significantly differeri (< 0.001) from the control

“Estimated net profit was estimated using the All-purpose selection index implemented by the A¢
*HCE = high calving ease selection scenario; LBWT = low birth weight selection scenario; DSI =
Dickerson’s selection index; API = All-purpose index; ARI= 0.2 YWT + 1.3 CE; ARI= 0.2 YWT-
1.8 BWT

Table 4.13 Differences between regression coefficiéhtsf the net profit ($) of differer
selection scenarios regressed on birth year in firstSiaimental heifers

Selection  HCE LBWT DSI AP| APl API,
Scenarid Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE
HCE 4.78(0.21) 5.66(0.20) 1.43(0.21) 1.92(0.21) 4.20(0.21)
LBWT  -0.13(0.01) 0.87(0.19) -3.35(0.20) -2.86(0.20)-0.58* (0.20)
DSI -0.15(0.01)-0.02*° (0.01) -4.22(0.20) -3.73(0.19) -1.45(0.19)
API -0.05(0.01) 0.08(0.01) 0.10(0.01) 0.49'°(0.21) 2.77(0.20)
APl; -0.02%°(0.01) 0.10(0.01) 0.12(0.01)0.02*° (0.01) 2.28(0.20)

APl,  -0.11(0.01) 0.02'S (0.01)0.04* (0.01) -0.06(0.01) -0.08(0.01)

! Differences between slopes are below the diagonal; differences between intercepts are ¢
diagonal

NS = estimate is not significantly differe® & 0.05) from the control population; *R-< 0.05; ** =P <
0.01; estimate with no superscription is significantly differ& (©.001) from the control population.
®HCE = high calving ease selection scenario; LBWT = low birth weight selection scenario;
Dickerson’s selection index; API = All-purpose index; ARI= 0.2 YWT + 1.3 CE; ARI=0.2 YWT- 1.8
BWT
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Figure 4.9: Average net profit (1969-2004) of various selection scenarios: HC
selection for high calving ease; All-purpose selection index: APl =B\WW8B + 1.3CE +
0.10 WWT + 0.20 YWT; API; = 1.3 CE + 0.20 YWT; API, = -1.8 BWT + 0.20 YWT,;
LBWT = selection for low birth weight; DSI ¥WT - 3.2BWT

Generally, calving ease-based selection scenarios (HCE,aABIAP}{) showed higher
profit than the birth weight-based selection scenari®NI, DSI, and APJ). Selection for high
calving ease (HCE), as opposed to the LBWT selection soesifted the intercept of the net
returned by 58%, respectively. The highest changeofitpras estimated from both HCE and

API selection scenarios while the DSI selection scenagwst the least profit.

4.4.Summary
Costs associated with calving difficulty have a direegpact on the profitability of beef
cattle operations. Traditionally, selection for lowtlo weight was used as means to reduce the

incidence of dystocia. Nonetheless, the genetic antstic relationships between calving ease
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and postnatal growth traits press the question abouappeopriateness of using birth weight
instead of calving ease as a selection tool. Thereforbypeathesize that, instead of selection for
low birth weight, direct selection for calving easteould be used as means to reduce both the
incidence of calving difficulty and losses in growthated traits. Our objective was to quantify
the performance losses in the first-calf heifer popatatf the American Simmental beef cattle
under six different selection scenarios for either hovth weight or selection for high calving
ease. In order to quantify the performance losses undatiffierent selection scenarios, genetic
trends and the net profit were estimated for each sceridata on calving ease, birth weight,
weaning weight, and yearling weight were obtainexinf the American Simmental Association
(ASA). Given the multibreed nature of the ASA database, only animals with >87.5% Simmental
were included in our study with data constructed to@gig with a base population of 2 year old
dams as they provide the most relevant calving easewvalbieeis (N=95,791). Weaning and
yearling weights were adjusted to 205 and 365of age, respectively. Further, 160-
postweaning gain was calculated from the adjusted higig-our-generation pedigrees were
constructed to estimate sire and maternal grandsip@aigance components for calving ease
(CE), birth weight BWT), and 205d weight 05d WT), and sire (co)variance components for
160-d postweaning gainl160-d gain) using the threshold-linear sire-maternal grandsireleho
with a Gibbs sampling algorithm. Following variancemgmnent estimation, the direct and
maternal EPD for CE, BWT, and 2@bweight and direct EBV for 168-gain and 36% weight
for 465,710 animals were estimated using a threshioéiiimultivariate maternal animal model.
Calving ease was modeled as a threshold firait (nderlying continuous liability was assumed)
with 3 observed categories. The 36Breight was not included in the model; however, iteat

EBV were calculated as the summation of the estimaid for 205d weight and 16@ gain.
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A subpopulation of 2 year old (first-calf) Simmentaifers (n = 277,897) was extracted under
the restriction of including only progeny of firsticheifers. This subpopulation was used for
estimating genetic trends of Simmental cattle, and alao used as a selection pool (control
scenario) for different selection scenarios. Furtherpgiredifferent selection scenarios, for low
birth weight as opposed to selection for high calviagee were created. Using the first-calf
heifers data (the control), data for each selecdmenario was created by selecting sires, within
each year of bik, with EBV > the average (either EBV in the single trait selection or the index
value in the multiple trait selection), along witrettop 75% of dams with progeny. Selection
scenarios were two single trait selection approacheldibr high calving easeHCE) and low
birth weight LCBWT ) in addition to four alternate selection indicesichhwere the all-purpose
selection indexAPl = -1.8 BWT + 1.3CE + 0.10WWT + 0.20YWT) of the ASA, and its two
derived sub-indices:APl; = 1.3CE + 0.20 YWT), and API, = -1.8 BWT + 0.20 YWT), and
lastly the Dickerson’s selection index (DSI = -3.2 BWT + YWT; Dickerson et al. (1974)). For
each selection scenario, EPD for studied traits weredatdized by their respective genetic
standard deviation and then expressed as a deviationtfieaverage EPD, within birth year, of
the control scenario. Comparison between differeniciete scenarios involved evaluating the
direct and maternal genetic trends of studied traitk @ofit from these scenarios. Here, profit

was calculated for all selection scenarios using the API.

Results showed that the estimated posterior means dirte heritability for CE, on the
underlying scale, BWT, 208-WT, 1604 gain, and 365 WT of the American Simmental were
0.23, 0.52, 0.28, 0.21, and 0.33, respectively. Maleheritability estimates for CE, BWT, and
205d WT were 0.14, 0.05, and 0.055, respectively. Thgh hmegative genetic correlation

between calving ease and birth weight (-0.67) justifiee importance of incorporating birth
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weight in the genetic evaluation of calving ease. hhalerate positive genetic correlations
between birth weight and subsequent growth traits seghthe genetic antagonistic relationship

between calving ease and postnatal growth traits whkattion for birth weight is applied.

Results obtained from the comparisons of differeneci®n scenarios for high calving
ease and low birth weight showed that all selection smenaompared to the control scenario,
produced reduced growth rate and increased the éasdvimg suggesting selection for heavier
animals was practiced on the first-calf Simmental dreffopulation. However, since 1999, a
noticeable improvement in calving ease was evideaherally, the calving ease-based selection
scenarios (HCE, API, and APlhad the highest profit and showed higher geneénds for
calving ease and growth-related traits compared tditile weight-based selection scenarios.
The single trait, HCE, selection scenario, as opposed WTBmproved calving ease and
growth-related traits which resulted in shifting théercept of profit by 58%. The DSI selection
scenario showed the least genetic trend for calvisg aml the least profitTherefore, we accept
the hypothesis that direct selection for high cahéage, as opposed to selection for low birth

weight, produces cattle with higher calving ease andtfroates.
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CHAPTER V.

STATISTICAL MODEL COMPARISONS: THRESHOLD VESUS LINEAR AND

ANIMAL VERSUS SIRE USING AMERICAN SIMMENTAL FIELD DATA

5.1.Introduction

Although calving ease is a polygenic trait, it is clasdias an ordered categorical trai
since it is recorded i data scoring system ranging from 1 = unassisted calartg$ mal-
presentation. The categorical nature of calving easnqifipes poses the question of how
suitable the linear methods are for the evaluati@iyais of such traits. The appropriateness of
applying linear methodologies to such traits was int@hgiinvestigated by Thompson (1979)
and Gianola (1982). Nonlinear methods were proposeydtuate ordered categorical traits on
the underlying continuous liability scale (Gianola drallley, 1983; Harville and Mee, 1984)
and many studies have examined the advantages dfirghold methodology over the linear
approach when used in genetic evaluation of ordeaéehorical trait. Most studies used either
simulated or field data, yet few used both kinds dada evaluate the threshold methodology.
Results varied between supporting (Varona et al., B9B@&mirez-Valverde et al., 2001) and
rejecting (Weller et al., 1988; Matos et al., 198 hypothesis that the threshold model is more
suitable for the analysis of categorical responses. Thextole of this study was to compare
suitability of the threshold model versus the lineadeian analysis of heifer calving ease score

field data from the American Simmental Association.
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5.2.Materials and Methods

In this section, the threshold model was compared ddittear model applied to heifer
calving ease field data from the American Simmentalogisgion. We also extended the
comparison to include those between the animal &edsire model. Further, within these
models, calving ease was analyzed using a univariateelmadbivariate model (with birth
weight), and a multivariate model (with both bighd 205d weights). In addition, calving ease
was fitted either as a binary or polychotomous tiaet, (multiple categories (3 categories)). Only
the direct genetic effects were fitted in all moddlke total number of analyses required to
compare all models was 240. Description of these analgs@sesented in Tabl6.1. The
criterion of comparison was the model predictive ability estimated using a cross validation “data
splitting” technique, followed by the calculation of correlations (Pearson’s and Spearman’s

correlation coefficients) between predicted EPD olet@iftom two complementary data sets.

A balanced data was created for the analysis (Tal2lp The data was prepared so that
observations on all traits within animal were availadne only large herd data were included (n
> 50). Once accumulated, a data-splitting procedure was performed. First, data wenglidated
(Data 1 and Data 2). Second, in data 1, 50% of mglgase observations was randomly set to be
missing. Third, in data 2, the other 50% of calvingeealsservations were set to be missing. This
procedure produced two complementary data subsetsninaiecalving ease observations. This
sampling procedure was repeated for another four tiresslting in a total of 5 pairs of
complementary data subsets. Each animal, in each palata subsets, had a calving ease

observation in one subset and missing observation in tee sibset.
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Description of models. Six models were used to perform all analyses. Modelsee:wg)
Univariate linear model for calving ease 2) Univeridhreshold model for calving ease 3)
Bivariate linear-linear model for calving ease andhbiweight 4) Bivariate threshold-linear
model for calving ease and birth weight 5) Multivegidinear-linear-linear model for calving
ease, birth weight, and 2@bweight; and 6) Multivariate threshold-linear-linearodel for
calving ease, birth weight, and 2@5eight. Each of the six models was fitted as bothramal
model and a sire model with an additional 2 comlmnat super-imposed on the above where
calving ease was fitted as a binary or a polychotomatome. Therefore, for each model, one
through 6, four different analyses were performed. liédpto the five pairs of complementary
data subsets (total of 10 subsets), each of the formeysasalvas replicated 10 times. This
resulted in a total of 240 analyses to compare H#rént models (Tabl&.1). Models and their

equations are described as follow:

1) Univariate linear mode:
The equation of the univariate linear model is describelow.

Yce = XceBce + Zlceace + ZZcehce + €ces (51)

Where Y. was vector of observations with subscrgat denoting calving ease either with 2
categories or 3 categorie; were sex fixed effectsg were the random effects of either animal
or sire;h were the random effects of herd-year-seagonere the residual effects; axd Z1,
andZ, were incidence matrices that link data with fixétbes, animal or sire random effects,
and herd-year-season random effects, respectively.

The (co)variance structure of random effects wasddfas:

2 [o2A 0 0
var [hl =0 of O
e 0 0 o3
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with 62,0%,and 62 denoting variances, on the observed scale, for ailinect additive (under
animal model) or sire (under sire model), herd-yemsen, and residual random effeétsyas

the additive genetic relationship matrix.

2) Univariate threshold model:
This model was fitted in the same manner of fitting pheceding model with the exception of
fitting calving ease as a threshold trait (i.e., lo@ tinderlying continuous scale described in Eq.

4.2). The univariate threshold model is describeabm:

Lce = XceBce + Z1ceace + Z2cehce + €ces (52)

Where L. was vector of liabilities with subscripte denoting calving ease either with 2
categories or 3 categorie; were sex fixed effectsg were the random effects of either animal
or sire;h were the random effects of herd-year-seagonere the residual effects; and Zi,
andZ, were incidence matrices that link data with fixéfit@s, animal or sire random effects,
and herd-year-season random effects, respectively.

The (co)variance structure of random effects wasddfas:

2 [o2A 0 0
var [hl =l 0 of O
e 0 0 o3

with 02, 6%,and 62 denoting variances, on the underlying scale, ftreeitlirect additive (under
animal model) or sire (under sire model), herd-yemsen, and residual random effeétsyas

the additive genetic relationship matrix.
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3) Bivariate linear-linear model fitted for calving ease and birth weight:
The observed categories of calving ease were assumed to be normally distributed “continuous”;
therefore, calving ease was evaluated on the observerd $bal model was fitted in both animal
and sire model settings. Under each setting calving easeevaluated twice with 2 and 3

categories. The model equation is represented below.

Yce] _ [ ceBce ] [Zlace] [Zz ce] [ece

Yowel  [XowtBowtl  1Z1apwel * 1Zohpue ebwt (5.3)
In the above equatiory, were vectors of observations for respective trait; sybtswnis ce and
bwt were calving ease (2 or 3 categories) and birth weighwere effects associated with sex;
a were animal or sire random effectswere herd-year-season random effects, respectieely;
were the residuals; andl, Z;, andZ, were incidence matrices that link data with fixeftects,

animal or sire random effects, and herd-year-seasalomaeffects, respectively.

The (co)variance structure of random effects wasddfas:

a
var lhl =
e

whereG = a 2x2 genetic (co)variance matrix, with CE on dbserved scale, for either direct

G®A 0 0

genetic (animal model) or sires (sire model) randofactsf,A = additive genetic relationship
matrix, H = a 2x2 diagonal matrix for herd-year-season randfiette, R = a 2x2 residual
(co)variance matrix, = identity matrix of order appropriate to the nwsrgof observations, and

®=Kronecker product.

4) Bivariate threshold-linear model fitted for calving ease and birth weight:
An underlying normal distribution “liability”” was assumed for calving ease which was evaluated

as a threshold trait. The model was fitted in bothmahiand sie model sittings. Under each
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setting calving ease was evaluated twice with 2 ancat8gories. The model equation is

described as follow:

Lce] _ [ ceBce ] [Zlace ] [Zz ce ] [ece

Yowt]  XpwtBowtl  [Z1apwel * [Zzhpwt ebwt (5.4)

In the above equatioh, was a victor of underlying liabilities for calving®e;Y was a vector of
observations for birth weight; subscriptiocessandbwt were calving ease (2 or 3 categories) and
birth weight; B were effects associated with sexywere animal or sire random effeckswere
herd-year-season random effects, respectivehrere the residuals; and, Z;, andZ, were
incidence matrices that link data with fixed effeasimal or sire random effects, and herd-year-

season random effects, respectively.

The (co)variance structure of random effects wasddfas:

a
var lhl =
e

whereG = a 2x2 genetic (co)variance matrix, with CE on thneerlying scale, for either direct

G®A 0 0

genetic (animal model) or sires (sire model) randofacef,A = additive genetic relationship
matrix, H = a 2x2 diagonal matrix for herd-year-season randfiette, R = a 2x2 residual
(co)variance matrix, = identity matrix of order appropriate to the nwrgof observations, and

®=Kronecker product.

5) Multivariate linear-linear model fitted for calving ease, birth weight, and 205-d weight:
As in models 1 and 3, calving ease was fitted as arlimait. Under both animal and sire models,
calving ease observations were fitted twice with 2 andt&8gories. The multivariate linear-linear

model used in these analyses is presented in Eq. 5.5 below.
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Yee XceBee Ziace Zhee €ce
Yowt | = XpwtBowt |+ | Ziapwe |+ | Zohpwe |+ [ €bwt ], (5.5)
Y205wt X205wtB205wt Z1az05wt Zoho05wt €205wt '

In the above equatiory were effects associated with sex, and weaning comempgroup
subclassesa were sire or animal random effects;were herd-year-season random effects,
respectivelye were the residuals; arXl, Z,, andZ, were incidence matrices that link data with
fixed effects, animal or sire random effects, andiherar-season random effects, respectivély.

was vector of observations for respective trait.
The (co)variance structure of random effects wasddfas:

H _

e

G®A 0 0
0 H®I 0
0 0 R®I

whereG = a 3x3 genetic (co)variance matrix, with CE on d¢served scale, for either direct
genetic (animal model) or sires (sire model) randofactf,A = additive genetic relationship
matrix,H = a 3x3 diagonal matrix for herd-year-season randfiects, R = a 3x3 residual

(co)variance matrix, = identity matrix of order appropriate to the nwsrgof observations, and

®=Kronecker product.

6) Multivariate threshold-linear model fitted for calving ease, birth weight, and 205-d
weight:
As in models 2 and 4, calving ease was fitted as a tHcesld with an underlying distribution
described in Eg. 4.2. Under both animal and sire modalsing ease observations were fitted
twice with 2 and 3 categories. The multivariate shuad-linear model used in these analyses is

presented in Eq. 5.6 below.
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Lee XceBee Ziace Zhee €ce
Yowt | = XpwtBowt |+ | Ziapwe |+ | Zohpwe |+ [ €bwt ], (5.6)
Y205wt X20swtB205wt Z1az05wt Z;ho05wt €205wt '

In the above equatiory were effects associated with sex, and weaning contempgraup
subclassesa were sire or animal random effects;were herd-year-season random effects,
respectivelye were the residuals; arXl, Z,, andZ, were incidence matrices that link data with
fixed effects, animal or sire random effects, andlhgrar-season random effects, respectively:
was a victor of calving ease liabilitie¥; was vector of observations for birth weight and

weaning weight.
The (co)variance structure of random effects wasddfas:

H _

e

G®A 0 0
0 H®I 0
0 0 R®I

whereG = a 3x3 genetic (co)variance matrix, with CE on tinelerlying scale, for either direct
genetic (animal model) or sires (sire model) randofactf,A = additive genetic relationship
matrix,H = a 3x3 diagonal matrix for herd-year-season randfiects, R = a 3x3 residual
(co)variance matrix, = identity matrix of order appropriate to the nwsrgof observations, and

®=Kronecker product.

162



Table 5.1: Description of models used in analyses to compare thedligtive ability of calving
ease EPD of Simmental data.

Sire model Animal model
Modef* CE? Fitted trait§ Subset pairs  Analyses Subset pairs  analyses
Univariate
L-CE L+B CE 5 10 5 10
L-CEK L+P CE 5 10 5 10
T-CE T+B CE 5 10 5 10
T-CEk T+P CE 5 10 5 10
Bivariate
LL-CE, L+B CE 5 10 5 10
BWT
LL-CE; L+P CE 5 10 5 10
BWT
TL-CE, T+B CE 5 10 5 10
BWT
TL-CE; T+P CE 5 10 5 10
BWT
Multivariate
CE
LLL-CE; L+B BWT 5 10 5 10
205dWT
CE
LLL-CE, L+P  BWT 5 10 5 10
205d WT
CE
TLL-CE, T+B  BwWT 5 10 5 10
205d WT
CE
TLL-CEs  T+P  BWT 5 10 5 10
205d WT
Total 60 120 60 120

L =linear; T = threshold; CE= 2 categories; GE&= 3 categories.
?L = linear; T = threshold; B = binary; P = polychotomous.
3CE = calving ease; BWT = birth weight; 288A'T = adjusted 205-d weight.
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Table 5.2 Summary statistics of Simmental data used in model caosgoa threshold vs.
linear” and “Animal vs. Siré.

Calving difficulty score

lten N 1 2 3 4 Mean SD  Min. Max.
Datafile:
Animal 19,012
Dam 19,012
CE 19,012 11,661 5,407 1,372 572 1.51 0.75 1 4
Males 9,272 4,944 2,998 832 453 1.65 0.83 1 4
Females 9,785 6,717 2,409 540 119 1.39 0.65 1 4
BWT, kg 19,012 11,661 5,407 1,372 572 4091 5.04 24.09 55.45

Males 9,272 4,944 2998 832 453 4228 5.00 24.09 55.45
Females 9,785 6,717 2,409 540 119 39.61 4.74 24.09 5545

205d WT, kg 19,012 11,661 5,407 1,372 572 270.96 44.81 104.94 433.15
Males 9,272 4,944 2,998 832 453 285.26 47.56 113.50 433.15
Females 9,785 6,717 2,409 540 119 257.47 37.34 104.94 407.48

WCG 347
HYS 1,737
Pedigree:

Animal Model
Animal 80,007
Sire 9,011
Dam 54,118

SireModel

Sire 9,011
Sire of sire 2,490
MGS 2,128

ICE = Calving ease; BWT = Birth weight; 2@5WT = 205 days adjusted weight; WCG = Wean
contemporary group; HYS = HerdearSeason; MGS = Maternal grandsire.
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5.3.Results and Discussion

In the present study, we examined the threshold modigbdity for the analysis of
categorical traits as opposed to linear approachesafeing ease. Furthermore, we addressed
not only the linearity of the trait, but also thenmber of the trait categories, model complexity
(i.e., the number of fitted traiteyd extended the comparison to include the comparisdheof
animal model versus the sire model. Efficiency of eaduel was determined by assessing the
predictive ability of the model. The predictive l#lgi of model was estimated using the
correlation between predicted calving ease EPD fnmomdomplementary data sets under each
model (see section 5.2 for further explanation). Tis&ridution of calving ease scores of first-
calf Simmental heifers was: 61.33% unassisted calvidg42 minor assistance, 7.22% major
assistance, and 3% Cesarean. However for this study stievtacategories (major assistance +
Cesarean = 10.22%) were merged. Effects included in dathal and sire models were the
fixed effects of sex and weaning contemporary graugyded only in the multivariate models),
herd-year-season random effects, and either direliivael genetic random effects in the animal
model or sire random effects in the sire model. Desoripdf analyses used to compare the
predictive ability of models for the estimation @fidng ease EPD of the American Simmental

beef cattle is presented in Tabld.

Estimates of posterior means for sire and residual (dajy@ components, obtained using
Bayesian inference via means of a Gibbs sampling algoriof calving ease (CE), birth weight
(BWT), and 205d weight (205d WT) for the American Simmental data under différsine
models are presented in Table 5.3. Estimates of postagans for direct genetic and residual

(co)variance components for the same data underehffenimal models are presented in Table
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5.4. These values were used to estimate EPD of these itnattee complementary data set,

between which correlations were calculated to estimate each model’s predictive ability.

Table 5.3: Posterior means for sire and residual (co)varianogpoaents of calving ease (CE
birth weight (BWT), and 20% weight (205d WT) for the American Simmental data us
different sire models.

2
Model Effect Trait CE
L-CE; L-CEs T-CE T-CEs BWT 205d WT
Univariate
Sire CE 0.011 0.020 0.068 0.060
Residual CE 0.210 0.395 1.000 0.856
Bivariate
) CE 0.020 0.395 0.067 0.056
Sire

BWT 0.107 0.943 0.293 0.238 3.147

. CE 0.210 0.020 1.000 0.852
Residual
BWT 0.631 0.139 1.820 1.694 15.09
Multivariate
CE 0.008 0.018 0.061 0.052
Sire BWT 0.105 0.135 0.281 0.227 3.346
205dWT 0.078 0.071 0.173 0.116 11.11 89.07
CE 0.210 0.395 1.000 0.851
Residual BWT 0.631 0943 1.816 1.688 15.11

205dWT  0.423 0.429 1.305 0.967 25.58 638.6

variances (bold faced) and covariances (below diagonal of the effect block).

’-CE, = calving ease is fitted as a linear binary traiCEz = calving ease is fitted as a linear trait wi
categories; TGE; = calving ease is fitted as a threshold binary trait; al@Ed = calving ease is fitted .
a threshold trait with 3 categories.
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Table 5.4: Posterior means for direct genetic and residual &@rce componenitsf calving
ease (CE), birth weight (BWT), and 2@5veight (205d WT) for the American Simmental da
using different animal models.

. CF?
Model  Effect Tt I CE LCE TCE TCE BWT 205dWT
Univariate
Direct CE 0.046 0.105 0.491 0.301
Residual CE 0.175 0.318 1.000 0.632
Bivariate
. CE 0.047 0.104 0.521 0.306
Direct

BWT 0.372 0.516 1.210 0.882 10.39

Residual CE 0.175 0.319 1.000 0.625
BWT 0.372 0580 1.292 1.066 7.970
Multivariate
CE 0.045 0.100 0.500 0.298
Direct BWT 0.373 0.516 1.217 0.892 10.65
205dWT 0.260 0.436 0.754 0.582 30.15 291.3
CE 0.176 0.321 1.000 0.630
Residual BWT 0.370 0578 1.269 1.053 7.842

205dWT 0.660 0.816 2.232 1.512 5.427 437.1

variances (bold faced) and covariances (below diagonal of the effect block).

?L-CE; = calving ease is fitted as a linear binary traiCEs = calving ease is fitted as a linear trait v
3 categories; TGE, = calving ease is fitted as a threshold binary trait; altEd = calving ease is fitte
as a threshold trait with 3 categories.

Comparison of models was domeing Pearson’s correlation (r) and Spearman rank
Correlation (R) between observed and estimated cabasg EPD is presented in Table 5.5. The
correlations presented in Table 5.5 were the averdgesrr@lations obtained from 5 replicates

of complementary subset pairs.

The acronyms for models used in the results were prglyiagiescribed in Tabl®.1
Here, traits were ordered so that calving ease was ftilswed by BWT and 20% WT,

respectively. Models were defined as follows:
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L = the trait was fitted as a linear trait,= the trait was fitted as a threshold tr&@l, = calving

ease is measured as 2 categories,Gag calving ease is measured as 3 categories. Therefore,
the univariate models (only CE) fitted under eitheimeal model or sire model were CE;, L-

CEs, T-CE,, and TCE;. The bivariate models (CE and BWT) fitted undereagitanimal model or

sire model were LICE,, LL-CE;, TL-CE;, and TLCEs. The multivariate models (CE, BWT,
and 205d WT) fitted under either animal model or sire modere LLL-CE,, LLL-CE;, TLL-

CE, and TLLCEs.

Comparison of “threshold vs. linear” with a sire mode:

Regardless of the number of calving ease categohiesaverage correlation (R and r)
obtained from the univariate threshold models wégkdr than their counterparts from the linear
models. The superiority of the threshold models was stardi across sires groups, except for
sires with large number of progeny (sires >100 progdnythose instances, there were smaller
differences between the two methodologies. The sujigriof the threshold model was more
pronounced in the low accuracy sires (<50 recordsis Was in agreement with reports of
Clutter et al. (1989) who speculated that sires withitéd number of records might be ranked
differently when the threshold model is used instdathe linear model. The largest differences
in average rank correlations were between tHeéE:-and TCE; (0.42 vs. 0.45), respectively,
which represented 7.14% increase in the average raniatan. These results were consistent
with those reported by Varona et al. (1999b) who slibthat the threshold model outperformed
the linear. Further, Gevrekci et al. (2011) evadadystocia in Holsteins under different models.
They compared threshold sire (TS), threshold sire-makgrandsire (TS-MGS), and linear sire-
maternal grandsire (L) models. Authors concluded ttatthreshold model was superior to the

linear model for the genetic evaluation of dystotlanetheless, these findings were in contrast
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with those by Ramirez-Valverde et al. (2001) who reggban increase of 7.14% in favor of the
linear model for the average correlation of sirethwi50 progeny (low accuracy sires). Results
of the current study revealed that, within the samelehavhen the number of calving ease
categories increased (from 2 to be 3), bRtlandr for sires with >100 progeny were notably
increased. The rank correlations of the linear andhheshold models were increased by 6.45

and 4.76%, respectively; however, other sire groupsaighow any change.

In all bivariate sire models, incorporating birth glai substantially increased the
predictive ability of the model (Table 5.5). Fuetmore, the threshold models (TAE, and TL-
CEs3) showed the highest improvement in the model priedictbility increasing the rank of sires
by 77 and 68%, respectively. The bivariate thresholdietso(TL-CE, and TLCE;) showed
considerable increase in model predictive ability cared to the linear models. The averd&je
andr of the TL-CE;were 41% (0.79 vs. 0.56) and 40% (0.84 vs. 0.60), réspsg higher than
that of the LLCE,. For high accuracy sires (sire > 100 progeny), alieperformed the same
with the exception of LLEE, which had averagdk and r that were 14.3 and 13.3%,
respectively, lower than the average of other batarmodels. This illustrates the inadequacy of
the linear model when calving ease is fitted as a pitrait even with birth weight included in
the analysis of calving ease as a second trait. Whenumber of calving ease categories was
increased, the linear-linear model has the highestawepnent in predictive abilityR andr
were increased by 14.3 and 13.3%, respectively). Thsawement is a result of the calving
ease distribution moving toward normality. These resufiseeal with those obtained by
Ramirez-Valverde et al. (2001) who found that idahg birth weight in the analysis of calving
difficulty greatly improved the model predictiveiltly, especially for low accuracy sires (sires <

50). Nonetheless, they did not report differencesha model predictive ability between the
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threshold-linear and the linear-linear sire-mategrahdsire models. Several studies using field
data reported similar results relative to the supeyiaf the threshold-linear over the linear-

linear model (Casellas et al., 2007; Negussie €2@08; Vostry et al.2014)

Even though the predictive ability of all models waproved when another continuous
trait (205d WT) was added to the model, the linear models fluirag ease exhibited the most
significant increase (bivariate linear vs. multivégifinear). The average andr of the LL-CE;
were increased by 46.4 and 45%, respectively, when 209-@vas included in the model (LLL-
CE,) in addition to BWT. The TLLEE, maintained the superiority over other models; howeve
the difference with the LLICE, was the smallest and they performed similarly with eespo
the high accuracy sires (sires > 100). Under the sigemthe inclusion of two continuous traits
in the genetic evaluation of categorical traits oaeme the inadequacy of the linear
methodologies for the analysis of such traits. Howesiace the data used in the present study
was a balanced data, an analysis using unbalancedaidthgive larger differences between the
multivariate threshold-linear model and the multiaggi linear-linear model as suggested by
Meijering and Gianola (1985) who found that theetifrold model is more efficient than the
linear when unbalanced data is used. To our knowletigecomparison of the threshold and
linear models that include the analysis of one categlotrait with two Gaussian traits in a

multivariate setting has not been reported in thealitee.

Comparison of “threshold vs. linear” with an animal model:

Results from the univariate animal models (Table) 5vBre very consistent with the
hypotheses of: 1) the threshold model superiority inahalysis of categorical traits 2) The
higher the number of categories, regardless of thielitraarity, the better the model predictive
ability. The average rank correlation from theCE; was 2.17% higher than the CE..
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Table 5.5 Comparison of models “Threshold vs. linear” and “Animal vs. siré using Pearson’s correlation (r) and Spearman rank
Correlation (R) between predicted calving ease EPDradatdrom two complementary data sets of American Samal cattle

Modelt

Sire Animal
L-CE L-CE; T-CE T-CE L-CE L-CE; T-CE T-CE;
R r R r R r R r R r R r R r R r

Univariaté
All sires 0.42 0.48 0.42 0.48 0.45 0.52 0.44 0.50 0.46 051 0.47 052 047 052 0.48 0.54
Sires<50 0.42 0.47 042 047 045 051 0.44 0.49 0.45 049 047 051 046 051 0.48 0.53
50 <Sires<100 0.49 055 051 057 050 058 0.50 0.58 0.58 0.60 0.62 0.64 059 0.61 0.62 0.64
Sires >10( 0.62 0.67 0.66 0.69 0.63 0.69 0.66 0.70 0.72 0.72 0.75 0.75 0.73 0.73 0.76 0.75
Bivariate’
Allsires 056 0.60 0.72 0.76 0.79 0.84 0.74 0.78 0.68 0.72 0.66 0.71 0.67 0.72 0.66 0.71
Sires<50 057 0.60 0.72 0.76 080 084 0.74 0.78 0.68 0.72 0.66 0.70 0.67 0.72 0.66 0.71
50<Sires<100 0.58 0.62 0.70 0.74 0.78 0.81 0.72 0.76 0.69 0.72 0.70 0.73 0.68 0.72 0.69 0.73
Sires >10( 0.70 0.72 0.80 0.80 0.81 0.84 0.80 0.81 0.78 0.79 0.79 0.80 0.77 0.78 0.78 0.79
Multivariate*
All sires 0.82 0.87 0.74 0.79 0.83 0.88 0.77 0.82 0.75 0.79 0.72 0.76 0.74 0.78 0.72 0.77
Sires<50 0.82 0.87 0.74 0.79 0.83 0.88 0.77 0.82 0.75 0.79 0.72 0.76 0.74 0.78 0.72 0.76
50<Sires<100 0.84 0.86 0.74 0.77 085 0.86 0.77 0.80 0.77 0.78 0.75 0.77 0.76 0.77 0.75 0.77
Sires >10( 0.86 0.87 0.81 0.82 0.86 0.87 0.83 0.84 0.83 0.83 0.82 0.82 0.82 0.82 0.82 0.82

b= calving ease fitted as a linear trait; T = calving ease fitted as a threshold teait;ca@ling ease fitted as a binary trait; {GEcalving eae
fitted as a polychotomous trait (3 categories).

Univariate = model included calving ease only

®Bivariate = model included calving ease and birth weight

*Multivariate = model included calving ease, birth weight, and @@&ight.
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Furthermore, the average rank correlation from Th@E; was 2.12% higher than the QE:.
However, correlations estimated from all univariatemal models were relatively low, except
for sires with progeny > 100 which showed the highmstelations with small differences
between the different models. The current results weresistent with those reported in the
literature (Varona et al., 1999b; Ramirez-Valveedal., 2001; Casellas et al., 2007; Gevrekci et

al., 2011).

As anticimted, the inclusion of birth weight “Gaussian trait” in the genetic evaluation of
calving ease as a “categorical trait” improved the predictive ability of all models independent of
CE linearity (threshold or linear). The linear modelspecially the LLEE,, had a considerable
gain in their predictive ability when birth weighs included. The average rank correlations of
LL-CE,, LL-CE;, TL-CE,, and TLCE; were increased by 47.82, 40.42, 42.55, and 37.50%,
respectively. Generally, all bivariate animal modgt®wed similar performance with a slight
advantage of the linear models. Ramirez-Valverdd.2001), in their study of Gelbvieh caitle
reported similar findings. They found that the thrddHmear animal model did not outperform
the linear-linear animal model. Converseliarona et al. (1999b), Casellas et al. (2007), and
Negussie et al. (2008) reported that the thresho&htirmodel outperformed the linear-linear
model based on their assessment parameters which were: M$&gVet al., 1999b) and

correlation between EBV (Casellas et al., 2007; Neguetsal., 2008).

In multivariate animal models, in terms of the impdwredictive ability compared to
the bivariate models, results were similar to those oétafrom the sire model. The increase in
average rank correlations of LLCE,, LLL-CE; TLL-CE;, and TLL-CE; were 10.3, 9.1, 10.4,
and 9.1%, respectively, over the bivariate analysisthEr, all multivariate model“threshold-
linear vs. lineaidinear” produced similar correlations. Here, the added information ewhwo
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continuous traits were incorporated in the genetauation of the threshold trait, compensated

for the deficiency of the linear approach.

Generally, the comparison of predictive ability bfdshold versus Linear, and animal
versus siranodels using Pearson’s correlation (r) and Spearman rank Correlation (R) between
predicted calving ease EPD indicated that: 1) Theas superiority of the univariate threshold
model “animal or sir€ over the univariate linear model, 2) The inclusion of linear trait(s)
improved the prediction of categorical traits, 3)afysis of categorical trait data with two
continuous traits resulted in small differences betwihenthreshold and linear models, 4) The
higher the number of categories the better the dimeadel prediction; in contrast, the threshold-
linear models had better predictive ability whervicey ease was fitted as a binary outcome, 5)
Differences between the threshold and linear modete weore pronounced in low accuracy
(progeny < 50) sires and were the least in high acgyogeny > 100) sires, 6) The predictive
ability of all univariate animal models was highearththat of the univariate sire models;
however, in the more complex models (bivariate andtivariate), the predictive ability of the
sire models was greatest, 7) The highest predictiugyalamong all models was obtained from
the threshold-linear models with CE fitted as a bingyt. In conclusion, we accept the
hypothesis that the threshold model is more suitable tf@rinear model for the analysis of

categorical traits.

5.4.Summary

The categorical nature of calving ease phenotypessptbgequestion of how suitable the
linear methods are to be implemented in the analy$isuch traits. Researchers have
investigated the advantages of the threshold modeltbedinear model. Obtained results varied
between supporting and opposing the superiority ofttineshold model in the analysis of

173



categorical traits. Therefore, our second objective wwacompare the threshold model to the
linear model applied to heifer calving ease fieddadfrom the American Simmental Association.
We examined the threshold model suitability for thalgsis of categorical traits as opposed to
linear methods for calving ease. Furthermore, weessegd not only the linearity of the trait, but
also the number of the trait categories, model conitglé¢ke., the number of fitted traits) and
extended the comparison to include evaluation ofatiienal model versus the sire model. Only
the direct genetic effects were fitted in all modélsing a balanced dataith herd size > 50
animals, the efficiency of models was determinedneypredictive ability of the model using the
cross validation “data splitting” technique. The predictive ability of models was estimated using
the correlations (Pearson’s and Spearman’s) between predicted calving ease EPD obtained from

two complementary data sets.

The comparison ofmodels predictive ability using Pearson’s correlation (r) and
Spearman rank Correlation (R) between predictedircplease EPD revead that: 1) The
univariate threshold model, either animal or sires waperior to the univariate linear model, 2)
The inclusion of linear trait(s) has improved the jp#oh of categorical traits (CE), 3) Analysis
of categorical traits with two additional continowaits results in small differences between the
threshold and linear models, 4) The higher the nurobentegories the better the linear model
prediction, 5) Differences between the thresholdlar&hr models were more pronounced in low
accuracy (progeny < 50) sires and were the leasigim &tcuracy (progeny > 100) sires, 6) The
predictive ability of all univariate animal modelas higher than that of the univariate sire
models; however, in the more complex models (bivargatd multivariate) the predictive abylit
of the sire models was the highest,7) The highest pgregliability among all compared models

was obtained from the threshold-linear sire model wélving ease fitted as a binary outcome

174



In conclusion, we accept the hypothesis that theskttold model is more suitable than the linear

model for the analysis of ordered categorical traits.
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CHAPTER VL.

CONCLUSIONS

Results from simulated data using single trait selediborlow birth weight versus high
calving ease revealed that the rate of genetic éhangalving ease (% unassisted calving/yr)
from the high calving ease selection scenario was highe€r0.001) than that from the low birth
weight scenario. Both selection scenarios reduced grostth The decrease in growth rate
genetic trend, from the single trait selection, wegseeted, since postnatal growth traits were not
included in the selection. However, genetic trendgrowth traits obtained from the high calving
ease selection scenario were highek(0.001) than those when selection occurred for loti bi
Selection for high calving ease increasBd(0.001) the annual genetic change for calving ease,
weaning weight, and yearling weight over selectionléw birth weight by 0.37%, 1.65 kg, and
1.77 kg, respectively. Therefore, selection for hagliving ease produced animals with better
calving ease EPD and higher growth rates at later dgesnclusion, we accept the hypothesis
that direct selection for high calving ease, as spddo selection for low birth weight, produces

cattle with higher calving ease and growth rates.

In the simulation study, both the threshold and lireggroaches to evaluating calving ease
showed similar predictive ability. In this case, these teswkre likely due to the highly
balanced data used in current simulation study and trmigihreflect typical calving ease field
data where observations are likely skewed with highdemres of calving ease, different
incidences across levels of fixed effects, and potgnsenall numbers of records per sire. This
was evident when Simmental field data was used to campadels.
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Results from the American Simmental beef cattlel fadta showed that the estimated direct
heritabilities for calving ease (on the underlying sgahérth weight, 205d weight, 160d
postweaning gain, and 3&bweight were within the literature estimates of thmr8ental beef
cattle. Maternal heritability estimates for calviegse, birth weight, and 2@bweight were also
in agreement with the Simmental estimates repontedhe literature. The highest genetic
correlations amongst studied traits were betwee3@3a weight and its component traitise(,
205-d weight and 16@ gain). The high negative genetic correlation betwealving ease and
birth weight (-0.67) and the high heritability oirth weight (0.52) justify the importance of
incorporating birth weight in the genetic evaluatiof calving ease, especially given relatively
high reporting rates in most seedstock herds. The miedeoaitive genetic correlations between
birth weight and subsequent growth traits exposed thetigeantagonistic relationship between

calving ease and postnatal growth traits when selefdrnirth weight is applied.

Results obtained from the Simmental field data showweat all selection scenarios
compared to the control scenario, reduced growtth aad increased the ease of calving, which
suggesd that, in the first generations of Simmental bresglection for heavier animals was
practiced. However, since 1999, a noticeable imprmré in calving ease was evident in the
breed. Generally, the calving ease-based selection sxer(®tCE, API, and AR) had the
highest net profit and showed higher genetic trendsdédving ease and growth-related traits
compared to the birth weight-based selection scenariB8V{L, DSI, and APJ). The calving
ease-based selection scenarios (HCE, API, and) ARifted the intercept of the net profit of the
control scenario by 13, 11.6, and 11.1 $, respectiwvethereas, the birth weight-based selection
scenarios (LBWT, DSI, and ARlIshowed lower intercepts of 8.2, 7.3, and 8.8 $,aethyely.

The single trait selection scenario (HCE) substantiatigroved calving ease over LBWT and
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resulted in shifting the intercept of the net prdiyt 58% in the favorable direction. The DSI
selection scenario showed the least genetic improvemealving ease and the least net profit
Therefore, we accept the hypothesis that direct sehefor high calving ease, as opposed to

selection for low birth weight, produces cattle wiijher calving ease and growth rates.

The comparison of threshold and linear models, andpaoisons of animal versus sire
models using Pearson’s and Spearman’s correlations between predicted calving ease EPD
reveaéd that the univariate threshold model was superioth&o univariate linear model, no
matter whether the animal or sire relationships wesedu The inclusion of linear trait(s)
improved the prediction of categorical traits (eByV with CE). Furthermore, the analysis of
categorical traits with two continuous traits resultegmall differences between the threshold
and linear models. The higher the number of categdhie better the linear model prediction; in
contrast, the threshold-linear models showed bettatigiien ability when calving ease was
fitted as a binary outcome. Differences betweenthreshold and linear models were more
pronounced in low accuracy sires and were the iedsgh accuracy sires. The predictive ability
of all univariate animal models was higher than tifathe univariate sire models; however, in
the more complex models (bivariate and multivaridie) predictive ability of the sire models
was the highest. The highest predictive ability amalhgompared models was in the threshold-
linear sire model with calving ease as a binarya@ute. In conclusion, we accept the hypothesis
that the threshold model is more suitable than theatirmodel for the analysis of ordered

categorical traits.
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APPENDIXES

APPENDIX A: THE THRGIBBS1F90 PARAMETER FILE USED TO ESTIMATE E PD

FOR CALVING EASE AND GROWTH-RELATED TRAITS OF FIRST-CALF HEIFER

POPULATION OF THE AMERICAN SIMMENTAL BEEF CATTLE UNDER THE

MULTIVARIATE MATERNAL ANIMAL MODEL
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DATAFILE
allanimdata
NUMBER_OF _TRAITS
4
NUMBER_OF_EFFECTS
6
OBSERVATION(S)
3456
WEIGHT(S)

EFFECTS: POSITIONS IN_DATAFILE
TYPE_OF_EFFECT[EFFECT NESTED]
7700 2cross
0080 15833 cross
0009 7040 cross
1111 465710 cross
2220 465710 cross
10101010 29393 cross
RANDOM_RESIDUAL VALUES
11.260.811.49
1.26 7.463 14.91 6.99
0.81 14.91 408.35 -12.92
1.496.99 -12.92 454 .4
RANDOM_GROUP
4 5
RANDOM_TYPE
add_animal
FILE
pedanimVC1l
(CO)VARIANCES
0.3961.533.46 1.12-0.03000
1.5313.212 37.5219.960-0.48600
3.46 37.52 295.92 130.1200-7.320
1.12 19.96 130.122200000
-0.030000.2588000
0-0.4860001.21100
00-7.3200058.740
000000O0O
RANDOM_GROUP
6
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
0.09000
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03.40600

00310.10

0005215
OPTIONcat3000
OPTION fixed_var mean
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APPENDIX B: R CODE USED TO CREATE THE SIMULATED DATA FOR HIG H

CALVING EASE SELECTION SCENARIO
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#R code based on Ditarry Schaeffer’s R code for multiple trait models

#Creating a simulated data (Selection for highinglease)

## Traits were: Calving eas (CE), birth weight (BWganing weight (WW), and postweaning
gain (PWG)

# First creating the base population and its F1 pro@dnyselection)

library(MASS)

set.seed(1234)

# Herd effects (120 herds) on CE, BWT, WWT, and PWG
herdCE=(rnorm(120,0))*0.05

set.seed(1234)

herdBW=(rnorm(120,0))

set.seed(1234)

herdWW=(rnorm(120,0))*2

set.seed(1234)

herdPWG=(rnorm(120,0))*0.1

herd=matrix(data=c(herdCE,herdBW,herdWW ,herdPWGpNvr#TRUE,nrow=4)

# sex effects (120 herds) on CE, BWT, WWT, and PWG
sex=matrix(data=c(0.108,-0.108,2,-1,10,-7,0.060,@).04row=TRUE,nrow=4)

# Residual matrix
R=matrix(data=c(1,1.13,0.46,0.48,1.13,20.5,30.38,8.46,30.37,534,29.87,0.48,8.78,29.87,26
1),byrow=TRUE,nrow=4)

# G matrix
G=matrix(data=c(0.24,1.11,1.6,1.51,1.11,9.67,234.65,1.6,23.11,221,103,1.51,14.65,103,217
),byrow=TRUE,nrow=4)

# Traits averages

mu=c(1.73,39,250,980)

## 1D for F1 animals with record (n=36000)

anwr=c(37201:73200)

#1D for all animals (founders (36000 dams, 1200 siaes)) their F1 progeny (36000))
aid = ¢(1:73200)

##ctreating fields in the data file for sire (30 peny each), dams (1 progeny each), herds (size
of 300 each), sex (60% females and 40% males)

sid = c(numeric(37200),rep(1:1200, by=1, each=30))

did <- c(numeric(37200),1201:37200)

bi=c(rep(1,37200),rep(0.5,36000))

set.seed(1234)

iherd=c(sample(rep(1:120, by=1, each=300),36000¢cepk))

set.seed(1234)

isex=(rbinom(36000, 1, 0.6))+1

# heritability of traits
gd=diag(G)
rd=diag(R)
h2=gd/(gd+rd)
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h2

# correlations among traits
# Function to calculate correlations from a covar@amatrix
CORMAT=function(Q) {
D = diag(Q)
D = sqrt(D)
B = diag(1/D)
HC =B %*% Q %*% B
HC }
CORMAT(R)
CORMAT(G)
# Get cholesky decompositions of G and R
LG = t(chol(G))
LR =t(chol(R))

nam=73200
# Simulate true breeding values for all animals (faracnd their F1 progeny)
# J MATRIX FUNCTION
jd = function(n,m){
matrix(c(1),nrow=n,ncol=m)}

tbv = jd(nam,4)*0
for(i in 1:nam){
X = LG %*% (sqrt(bi[i])*rnorm(4,0,1))
if(sid[i]>0){
ks=sid[i]
kd=did[i]
X = X + 0.5*%(tbv[ks, ]+tbv[kd, ]) }
tbv[i,]=x }
nrec=36000
# Make an observation for all traits for animals (dflyprogeny)
## observations were acreated by combining (traiteaxernerd effect, sex effect, TBV,
residual)
obs =jd(nrec,4)*0
for(k in 1:nrec){
kanm=anwr[K]
kherd=iherd[k]
ksex=isex[K]

obs[k, ]=mu + herd[ ,kherd] + sex[ ,ksex] + tbv[kanm, ]
res = LR %*% rnorm(4,0,1)
obslk, ]=obs[k, ] + res

}

## scale CE and create the observed categories

obs[ ,1] = scale(obs][ ,1], center = TRUE, scale = FALSE)
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obs[ ,1] = cut(obs[ ,1], c(-Inf, 0, 1, 1.4, Inf), b = FALSE, ordered = TRUE)
#(1=50%, 2=34.13%, 3=7.79%, 4=8.08%)

## rounding observations

#obs[ ,1] = round(obs[ ,1], digits=5)

obs[ ,2] = round(obs] ,2], digits=2)

obs[ ,3] = round(obs] ,3], digits=2)

obs[ ,4] = round(obs] ,4])

HHHH R R R R R R R R R A R
R T R
ped <- data.frame (id = aid, sire = sid, dam = did)

attach(ped)

HHHH R

# creating data file for animals with records(F1)

dataped <- ped[ped$id>37200,]

animtbv <- tbv[37201:73200, ]

simulateddata <- data.frame (id = dataped$id, sitataped$sire, dam = dataped$dam, sex =
isex, herd = iherd, CE = obs[ ,1], BW = obsg][ ,2], wwhsp,3], pwg = obs[ ,4],CEtbv =
animtbv[ ,1], BWtbv = animtbv[ ,2], wwtbv = animtpy3], pwgtbv = animtbv[ ,4])
attach(simulateddata)

BWave=mean(BW)

BWave

BWsd=sd(BW)

BWsd

BWave-(3*BWsd)

BWave+(3*BWsd)

## using only BW observations that fall within 3 stamlddeviations
simudata <- subset(simulateddata, BW > (BWave-(3*BWsd)))
simulateddata <- subset(simudata, BW < (BWave+(3*BWsd)))
summary(BW)

animlist = c(simulateddata[ ,1],simulateddata] ,2], dateddata( ,3])
detach(simulateddata)

uniqueanimlist = c(sort(unique(animlist)))

pedigree=ped[uniqueanimlist,]

attach(pedigree)

length(pedigreel,1])

length(uniqueanimlist)
AR R R R

# creating data file for all animals "including fouward which will have TBV, but missing
observations"

#Header: id sire dam sex herd CE BW ww pwg CEtbv BWitiwbv pwgtbv
sexofparents = c(rep(1,1200),rep(2,36000))

herdofparents = c(rep(NA,1200),iherd)

allsimdata <- data.frame (id = ped$id, sire = ped$siam = ped$dam, sex =
c(sexofparents,isex), herd = c(herdofparents,iherd), Cep(NA,37200),0bs[ ,1]), BW =
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c(rep(NA,37200),0bs[ ,2]), ww = c(rep(NA,37200),083]), pwg = c(rep(NA,37200),0bs][ ,4]),
CEtbv = tbv[ ,1], BWtbv = tbv[ ,2], wwtbv = tbv[ ,3pwgtbv = tbv[ ,4])

basepopdata <- allsimdata[allsimdata[ ,1] %in% pedigfde][]

attach(basepopdata)

AR R R R
ARR R R R R R R R R R R R S R A S R AR R R R
AR R T T T A R R T
###SELECTION FOR CALVING EASE

AR R R A A R R R
# 1 2 3 45 6789 10 112 13

# id sire dam sex herd CE BW ww pwg CEtbv BWtbv wwtlgbv

P HHHHH R

## creating F2

AR T R R

## redefine the total number of all animals and nein@b base population in previous simulation
AR R T

#total number of all animals

nam = 73200

#number of sires and dams(founders) (1200+36000) in basgagion

nbase = 37200

HHERTHE RS SRR

## selecting top 5% sirs and 80% dams (TBV for CE is the g@lexiteria)

## selection of sires

## average CE TBV for sires and dams

averages=by( basepopdata$CEtbv, basepopdata$sex, mean)

avelmales=averages[1]

avelfemales=averages|2]

## standard deviation of CE TBV for sires and dams

SDs=by( basepopdata$CEtbv, basepopdata$sex, sd)

sd1lmales=SDs[1]

sd1lfemales=SDs|[2]

## selecting top 5% of sires

males <- subset(basepopdata, sex == 1)

kull2Zmales= (males[ ,10]>(avelmales-(1.65*sd1males)))

males[kull2males,11]=0

selectedmales <- subset(males, males[ ,11] != 0)

summary(selectedmales[ ,7], na.rm=TRUE)

nrow(males)

nrow(selectedmales)

nrow(selectedmales)/nrow(males)

HHHHHHHHHHHH

## selection of dams

females <- subset(basepopdata, sex == 2)

kull2females= (females[ ,10]>(avelfemales+(0.85*sd1ier)y
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females[kull2females,11]=0

# all selected females (females with progeny (base pop.p years (F1)females without
progeny)

selectedallfemales <- subset(females, females[ ,11] != 0)
summary(selectedallfemales| ,7], na.rm=TRUE)

nrow(females)

nrow(selectedallfemales)

nrow(selectedallfemales)/nrow(females)

## only 2 years old females

selectedfemales <- subset(selectedallfemales, selecteddéfd ,1] > nbase)
nrow(selectedfemales)

nrow(selectedfemales)/nrow(females)

damlistf2 = c(selectedallfemales] ,1])

AR R R T

#### 783 selected males and 46130 selected females

n_sel_males = nrow(selectedmales)

n_sel_females = nrow(selectedallfemales)

n_progeny = n_sel_females

# number of females per sire = 58.9

n_females_per_sire = n_sel females/n_sel_males

n_females_per_sire

# because number of dams per sire is 58.9, then siresawdldifferent numbers of progeny
(some will have 58 and others will have 59 progeny)
rounded_n_females_per_sire = round(n_females_per_sire)
rounded_n_females_per_sire

if(rounded_n_females_per_sire < n_females_per_sire) {
nlrecords_per_sire = (rounded_n_females_per_sire)
n2records_per_sire = (nlrecords_per_sire)+1
} else {
nlrecords_per_sire = (rounded_n_females_per_sire)-1
n2records_per_sire = (rounded_n_females_per_sire)

}

#number of sires with 58 progeny (67 out of 783)

nsires_with_nlrecords = (n_sel_males)-((n_sel females)-(matds*nlrecords_per_sire))
#number of sires with 59 progeny (716 out of 783)

nsires_with_n2records = (n_sel_males)-(nsires_with_nlrsrord

##pulling out the first 67 sires of sire list(783)

own_record_sires_with_nlrecords = selectedmales[1:nsirés ndrecords, ]

## replicate each sire 58 times
selectedmalesl=own_record_sires_with_nlrecords[rep(s€qrde/(own_record_sires_with_n
lrecords)), each=nlrecords_per_sire),]

##pulling out the remained 716 sires of sire list(783)

own_record_sires_with_n2records = selectedmales[((nsirts_ntirecords)+1):n_sel _males, ]
## replicate each sire 59 times
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selectedmales2=own_record_sires_with_n2records[rep(séqrdev(own_record_sires_with_n
2records)), each=n2records_per_sire),]

## Create random list os sires with length of 4613zkvts number of selected dams
allselectedmales=rbind(selectedmalesl,selectedmales2)
randomlymatedsires=allselectedmales[sample(nrow(alleelectles)),]

sirelistf2 = randomlymatedsires| ,1]

ARAHHHHHAH R

selectedparents=rbind(selectedmales, selectedallfemales)
sortedselectedparents <- selectedparents[order(seleartipat]),]

# pulling out selected parents and their pedigree

animlist = c(selectedparents| ,1],selectedparentsfectedparents| ,3])
uniqueanimlist = c(sort(unique(animlist)))

uniqueanimlist = uniqueanimlist{}

subdata <- basepopdata[basepopdata[ ,1] %in% uniqueanimlist,
subdata <- data.matrix(subdata)

length(subdata[,1])

length(uniqueanimlist)

## creating F2 pedigree which include(selected pa@md their pedigree+ new F2 ID with their
selected parents)

pedf2 = rbind(subdata[
,1:3],cbind(c((nam+1):(nam+n_progeny)),sirelistf2{1progeny],damlistf2[1:n_progeny]))
P HHHHHHHH

## calculating averages of traits of selected parerteetite F2 observations
CEave=mean(selectedparents| ,6], na.rm=TRUE)

CEave

BWave=mean(selectedparents| ,7], na.rm=TRUE)

BWave

WWave=mean(selectedparents| ,8], na.rm=TRUE)

WWave

PWGave=mean(selectedparents[ ,9], na.rm=TRUE)

PWGave

R

## For F2 progeny, repeating the same code used &becté.

library(MASS)

set.seed(1234)
herdCE=(rnorm(120,0))*0.05
set.seed(1234)
herdBW=(rnorm(120,0))
set.seed(1234)
herdWW=(rnorm(120,0))*2
set.seed(1234)
herdPWG=(rnorm(120,0))*0.1
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herd=matrix(data=c(herdCE,herdBW,herdWW,herdPWGpwwTRUE,nrow=4)
sex=matrix(data=c(0.108,-0.108,2,-1,10,-7,0.060,@).04row=TRUE,nrow=4)

# Residual matrix
R=matrix(data=c(1,1.13,0.46,0.48,1.13,20.5,30.38,8.46,30.37,534,29.87,0.48,8.78,29.87,26
1),byrow=TRUE,nrow=4)

# G matrix
G=matrix(data=c(0.24,1.11,1.6,1.51,1.11,9.67,234.65,1.6,23.11,221,103,1.51,14.65,103,217
),byrow=TRUE,nrow=4)

#it#Htaverages:
mu=c(CEave,BWave,WWave,PWGave)
anwr=c((nam+1):(nam+n_progeny))

aid = c(pedf2[ ,1])

sid = c(pedf2[ ,2])

did <- c(pedf2[ ,3])

#number of herds
length(unique(selectedallfemales| ,5]))
iherd=c(selectedallfemales| ,5])
set.seed(123)
isex=(rbinom(n_progeny, 1, 0.6))+1

# heritability of traits
gd=diag(G)
rd=diag(R)
h2=gd/(gd+rd)

h2

# correlations among traits
# Function to calculate correlations from a covar&amatrix
CORMAT=function(Q) {
D = diag(Q)
D = sqrt(D)
B = diag(1/D)
HC =B %*% Q %*% B
HC }
CORMAT(R)
CORMAT(G)
# Get cholesky decompositions of G and R
LG = t(chol(G))
LR = t(chol(R))

# Simulate true breeding values for all animals

# J MATRIX FUNCTION

jd = function(n,m){
matrix(c(1),nrow=n,ncol=m)}
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naml=n_progeny
mendelian = jd(nam1,4)*0
for(i in 1:nam1){

mendelian(i, ] = LG %*% (rnorm(4,0,1))
}
damtbv= selectedallfemales| ,10:13]
siretbv= randomlymatedsires[ ,10:13]
parentsaveragetbv=0.5*(damtbv + siretbv)
tbov=mendelian+parentsaveragetbv

nrec=n_progeny
# Make an observation for all traits for all animals
obser = jd(nrec,4)*0
for(k in 1:nrec){

kherd=iherd[K]

ksex=isex[K]

obser[k, ]=mu + herd[ ,kherd] + sex[ ,ksex]
res = LR %*% rnorm(4,0,1)
obser[k, ]=obserk, ] + res
}
obs = obser + tbv
obs[ ,1] = scale(obs[ ,1], center = TRUE, scale = FALSE)
obs[ ,1] = cut(obs][ ,1], c(-Inf, 0, 1, 1.4, Inf), laBet FALSE, ordered = TRUE)
obs[ ,2] = round(obs[ ,2], digits=2)
obs[ ,3] = round(obs[ ,3], digits=2)
obs[ ,4] = round(obs] ,4])
AR R R R R R R R
pedigreel <- data.frame (id = aid, sire = sid, dadid¥
attach(pedigreel)
dataped <- pedigreel[pedigreel$id>nam,]
simdataf2 <- data.frame (id = dataped$id, sire apkd$sire, dam = dataped$dam, sex = isex,
herd = iherd, CE = obs][ ,1], BW = obs[ ,2], ww = ol pwg = obs[ ,4], CEtbv = tbv[ ,1],
BWitbv = tbv[ ,2], wwtbv = tbv[ ,3], pwgtbv = tbvf])
attach(simdataf2)
nrow(simdataf2)
## pulling out only the 2 yr old dams data
two_year females_list <- c(sort(selectedfemales| ,1]))
length(two_year_females_list)
simdataf2 <- simdataf2[simdataf2[ ,3] %in% two_year fergalist, ]
nrow(simdataf2)
## combine the data file of (base+F1) with F2 da&(filhis file include 1. founders with no
observations, but with TBV 2. F1 progeny observationsTdsM 3. F2 progeny with
observations and TBV)
f2andbasepopdata <- rbind(basepopdata,simdataf2)
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## Data file for F1 and F2 (has both observations &) T
f2andbasepopdata <- subset(f2andbasepopdata, f2andbasapdjdanhbase)
# keeping BW observations within 3 SD

BWave fl1_f2=mean(f2andbasepopdata$BW)

BWave f1 f2

BWsd_f1_f2=sd(f2andbasepopdata$BW)

BWsd_f1_f2

BWave fl f2-(3*BWsd_f1_f2)

BWave fl1 f2+(3*BWsd_fl f2)

f2andbasepopdata <- subset(f2andbasepopdata, BW > (BWaf2 (8*BWsd_f1_f2)))
f2andbasepopdata <- subset(f2andbasepopdata, BW < (B¥Wafz+(3*BWsd_f1_f2)))
summary(f2andbasepopdata$BW)

nrow(f2andbasepopdata)

simdataf2 <- subset(f2andbasepopdata, f2Zandbasepopdatajaf])
summary(simdataf2$BW)

nrow(simdataf2)

N_sires = length(c(sort(unique(simdataf2$sire))))

N_sires

basepop_f2_data <- rbind(basepopdata,simdataf2)

pedigreef2 <- data.frame (id = simdataf2$id, sire =dsitaf2$sire, dam = simdataf2$dam)
pedigreef2andbase<- rbind(pedigree,pedigreef2)

HHHHH R R R A R R
HHHBHH AR R H R AR
## Creating F3

#1 2 3 45 6789 10 112 13

# id sire dam sex herd CE BW ww pwg CEtbv BWtbv wwtlaxgfov

R R

AR R T R R R

## redefine (the total number of all animals) anghtber of base population and F1+F2) in
previous simulation

AR

#total number of all animals (Used unique IDs up to now)

nam2 = nam+nam1l

#number of sires and dams in base population (1200+3@d@0y f1 generartion (36000)
nbaseandfl = nam = 73200

HEEREHH AR SRR

## selecting top 5% sirs and 80% dams

## selection of sires

averages=by( basepop_f2_data$CEtbv, basepop_f2_data$seny, me
avelmales=averages[1]

avelfemales=averages|2]
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SDs=by( basepop_f2_data$CEtbv, basepop_f2_data$sex, sd)
sdlmales=SDs[1]
sdlfemales=SDs[2]

males <- subset(basepop_f2_data, sex == 1)

kullzmales= (males[ ,10]>(avelmales-(1.7*sd1males)))
males[kull2males,11]=0

selectedmales <- subset(males, males[ ,11] != 0)
summary(selectedmales| ,7], na.rm=TRUE)

nrow(males)

nrow(selectedmales)

nrow(selectedmales)/nrow(males)
HHHHHHHHHHH

## selection of dams

females <- subset(basepop_f2_data, sex == 2)
kull2females= (females[ ,10]>(avelfemales+(0.85*sd1fer)y
females[kull2females,11]=0

# all selected females (females with progeny (base pop-4) and 2 years (F2)females without
progeny)

selectedallfemales <- subset(females, females[ ,11] != 0)
summary(selectedallfemales[ ,7], na.rm=TRUE)
nrow(females)

nrow(selectedallfemales)
nrow(selectedallfemales)/nrow(females)

## only 2 years old females

selectedfemales <- subset(selectedallfemales, selectetdéfd ,1] > nbaseandfl)
nrow(selectedfemales)
nrow(selectedfemales)/nrow(females)

damlistf3 = c(selectedallfemales][ ,1])
R

#### 1110 selected males and 54565 selected females
n_sel_males = nrow(selectedmales)

n_sel females = nrow(selectedallfemales)

n_progeny = n_sel_females

# number of females per sire = 49.15

n_females_per_sire = n_sel_females/n_sel_males
n_females_per_sire

# because number of dams per sire is 49.15, then sirdsawaldifferent numbers of progeny
(some will have 49 and others will have 50 progeny)
rounded_n_females_per_sire = round(n_females_per_sire)
rounded_n_females_per_sire

if(rounded_n_females_per_sire < n_females_per_sire) {
nlrecords_per_sire = (rounded_n_females_ per_sire)
n2records_per_sire = (nlrecords_per_sire)+1
} else {
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nlrecords_per_sire = (rounded_n_females_per_sire)-1
n2records_per_sire = (rounded_n_females_per_sire)

}

nsires_with_nlrecords = (n_sel_males)-((n_sel females)-(matds*nlrecords_per_sire))
nsires_with_n2records = (n_sel_males)-(nsires_with_nlrgrord
own_record_sires_with_nlrecords = selectedmales[1:nsirés ndrecords, ]
selectedmalesl=own_record_sires_with_nlrecords[rep(s€nqrdev(own_record_sires_with_n
lrecords)), each=nlrecords_per_sire),]

own_record_sires_with_n2records = selectedmales[((nsirts_Mlirecords)+1):n_sel _males, ]
selectedmales2=own_record_sires_with_n2records[rep(ségrde/(own_record_sires_with_n
2records)), each=n2records_per_sire),]
allselectedmales=rbind(selectedmalesl,selectedmales?2)
randomlymatedsires=allselectedmales[sample(nrow(alleelectles)),]

sirelistf3 = randomlymatedsires| ,1]

HHHHHAH AR
selectedparents=rbind(selectedmales, selectedallfemales)
sortedselectedparents <- selectedparents[order(selecntiat]),]

animlist = c(selectedparents[ ,1],selectedparentsgefdctedparents| ,3])
uniqueanimlist = c(sort(unique(animlist)))

uniqueanimlist = uniqueanimlisi}

subdata <- basepop_f2_data[basepop f2_data[ ,1] %in% amiguiest, ]
subdata <- data.matrix(subdata)

length(subdatal,1])

length(uniqueanimlist)

pedf3 = rbind(subdata[
,1:3],cbind(c((nam2+1):(nam2+n_progeny)),sirelistfB[Iprogeny],damlistf3[1:n_progeny]))

HEHHH T
CEave=mean(selectedparents[ ,6], na.rm=TRUE)
CEave

BWave=mean(selectedparents| ,7], na.rm=TRUE)
BWave

WWave=mean(selectedparents[ ,8], na.rm=TRUE)
WWave

PWGave=mean(selectedparents[ ,9], na.rm=TRUE)
PWGave

HHHHEHHHHHHHHHH

library(MASS)

set.seed(1234)

herdCE=(rnorm(120,0))*0.05
set.seed(1234)
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herdBW=(rnorm(120,0))

set.seed(1234)

herdWW=(rnorm(120,0))*2

set.seed(1234)

herdPWG=(rnorm(120,0))*0.1
herd=matrix(data=c(herdCE,herdBW,herdWW,herdPWGplwTRUE ,nrow=4)
sex=matrix(data=c(0.108,-0.108,2,-1,10,-7,0.060,@.04row=TRUE,nrow=4)

# Residual matrix
R=matrix(data=c(1,1.13,0.46,0.48,1.13,20.5,30.38,8.46,30.37,534,29.87,0.48,8.78,29.87,26
1),byrow=TRUE,nrow=4)

# G matrix
G=matrix(data=c(0.24,1.11,1.6,1.51,1.11,9.67,234.65,1.6,23.11,221,103,1.51,14.65,103,217
),byrow=TRUE,nrow=4)

#i#H#averages:
mu=c(CEave,BWave,WWave,PWGave)
anwr=c((nam2+1):(nam2+n_progeny))
aid = c(pedf3[ ,1])

sid = c(pedf3[ ,2])

did <- c(pedf3[ ,3])

#number of herds
length(unique(selectedallfemales] ,5]))
iherd=c(selectedallfemales| ,5])
set.seed(123)
isex=(rbinom(n_progeny, 1, 0.6))+1

# heritability of traits
gd=diag(G)
rd=diag(R)
h2=gd/(gd+rd)

h2

# correlations among traits
# Function to calculate correlations from a covareamatrix
CORMAT=function(Q) {
D = diag(Q)
D =sqrt(D)
B = diag(1/D)
HC =B %*% Q %*% B
HC }
CORMAT(R)
CORMAT(G)
# Get cholesky decompositions of G and R
LG = t(chol(G))
LR =t(chol(R))
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# Simulate true breeding values for all animals

# J MATRIX FUNCTION

jd = function(n,m){
matrix(c(1),nrow=n,ncol=m)}

nam3=n_progeny
mendelian = jd(nam3,4)*0
for(i in 1:nam3){

mendelian[i, ] = LG %*% (rnorm(4,0,1))
}
damtbv= selectedallfemales[ ,10:13]
siretbv=randomlymatedsires[ ,10:13]
parentsaveragetbv=0.5*(damtbv + siretbv)
tbv=mendelian+parentsaveragetbv

nrec=n_progeny
# Make an observation for all traits for all animals
obser = jd(nrec,4)*0
for(k in 1:nrec){
kherd=iherd[k]
ksex=isex[K]

obser[k, ]=mu + herd[ ,kherd] + sex[ ,ksex]
res = LR %*% rnorm(4,0,1)
obser[k, ]=obser[k, ] + res
}
obs = obser + tbv
obs[ ,1] = scale(obs][ ,1], center = TRUE, scale = FALSE)
obs[ ,1] = cut(obs[ ,1], c(-Inf, 0, 1, 1.4, Inf), kel = FALSE, ordered = TRUE)
obs[ ,2] = round(obs[ ,2], digits=2)
obs[ ,3] = round(obs] ,3], digits=2)
obs[ ,4] = round(obs[ ,4])

AR R R R T R R R R R A T R R R

pedigree2 <- data.frame (id = aid, sire = sid, dadid¥

attach(pedigree?2)

dataped <- pedigree2[pedigree2$id>nam2,]

simdataf3 <- data.frame (id = dataped$id, sire apkd$sire, dam = dataped$dam, sex = isex,
herd = iherd, CE = obs][ ,1], BW = obs[ ,2], ww = ol8j| pwg = obs[ ,4], CEtbv = tbv[ ,1],
BWtbv = tbv[ ,2], wwtbv = tbv[ ,3], pwgtbv = tbvf])

attach(simdataf3)

nrow(simdataf3)

two_year_females_list <- c(sort(selectedfemales[ ,1]))
length(two_year_females_list)
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simdataf3 <- simdataf3[simdataf3[ ,3] %in% two_year fergalist, ]
nrow(simdataf3)

## data file for all animals (base population,animatk wecords): contains true breeding values
for all animal which will be needed for calculatirenk correlation (TBV with EBV from
thrgibbs1f90)

all_data_basepop f2 3 <- rbind(basepop_f2_data,sin8jataf

all_data_basepop_f2_f3 <- subset(all_data_basepop_f2 i$ata basepop_f2_f3[,1] > nbase)

BWave fl f2 f3=mean(all_data_basepop_f2_f3$BW)
BWave f1 f2 {3

BWsd_f1_f2_f3=sd(all_data_basepop_f2_{f3$BW)

BWsd_f1 f2 {3

BWave f1_f2_f3-(3*BWsd_f1_f2_f3)

BWave fl1 2 f3+(3*BWsd_f1 2 f3)

all_data_basepop f2_f3 <- subset(all_data_basepop_f2W3> BWave fl1 {2 {3-
(3*BWsd_f1_f2_f£3)))

all_data_basepop_ f2_f3 <- subset(all_data_basepop BW3;
(BWave_f1_f2_f3+(3*BWsd_f1_f2_f3)))
summary(all_data_basepop_f2_f3$BW)

nrow(all_data basepop f2 f3)

simdataf3 <- subset(all_data_basepop_f2_f3, all_data_has@pd3[ ,1] > nam?2)
summary(simdataf3$BW)

nrow(simdataf3)

N_sires = length(c(sort(unique(simdataf3$sire))))

N_sires

basepop_f2_f3_data <- rbind(basepop_f2_data,simdataf3)

pedigreef3 <- data.frame (id = simdataf3$id, sire =dsitaf3$sire, dam = simdataf3$dam)

base f2_f3 ped <- rbind(pedigreef2andbase,pedigreef3)

R R R R
AR R T R R R A A R B R R R A
# Creating F4

# 1 2 3 45 6789 10 112 13

# id sire dam sex herd CE BW ww pwg CEtbv BWtbv wwtlaxgtov

HRRR T R R R R R R AR AR R A R e

AR T R R

## redefine (the total number of all animals) anahtber of base population, F1, F2 and F3) in
previous simulation

HHHHHHHHHHHHHH

#total number of all animals (Used unique IDs up to now)

nam4 = nam+naml+nam3
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nbaseandfl1f2 = nam?2

HHHHH T T

## selecting top 5% sirs and 80% dams

## selection of sires

averages=by( basepop_f2_f3_data$CEtbv, basepop_f2_f3sdatanean)
avelmales=averagd3[

avelfemales=averages|2]

SDs=by( basepop_f2_f3_data$CEtbv, basepop_f2_f3_databhex,
sdlmales=SDs[1]

sdlfemales=SDs[2]

males <- subset(basepop_f2_f3_data, sex == 1)
kull2Zmales= (males|[ ,10]>(avelmales-(1.75*sd1males)))
males[kull2males,11]=0

selectedmales <- subset(males, males[ ,11] != 0)
summary(selectedmales| ,7], na.rm=TRUE)
nrow(males)

nrow(selectedmales)

nrow(selectedmales)/nrow(males)

HRHERRHHERRh AR

## selection of dams

females <- subset(basepop_f2_f3 data, sex == 2)
kull2females= (females[ ,10]>(avelfemales+(0.85*sd1ier)d
females[kull2females,11]=0

# all selected females (females with progeny (base p&pand F2) and 2 years (F3)females
without progeny)

selectedallfemales <- subset(females, females[ ,11] = 0)
summary(selectedallfemales[ ,7], na.rm=TRUE)
nrow(females)

nrow(selectedallfemales)
nrow(selectedallfemales)/nrow(females)

## only 2 years old females

selectedfemales <- subset(selectedallfemales, selectausdéfd ,1] > nbaseandfl1f2)
nrow(selectedfemales)
nrow(selectedfemales)/nrow(females)

damlistf4 = c(selectedallfemales| ,1])

HRARRHHERRh AR

#### 1310 selected males and 59473 selected females
n_sel _males = nrow(selectedmales)

n_sel_females = nrow(selectedallfemales)

n_progeny = n_sel_females

# number of females per sire = 45.3

n_females_per_sire = n_sel _females/n_sel_males
n_females_per_sire
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# because number of dams per sire is 45.3, then siresawd|different numbers of progeny
(some will have 45 and others will have 46 progeny)
rounded_n_females_per_sire = round(n_females_per_sire)
rounded_n_females_per_sire
if(rounded_n_females_per_sire < n_females_per_sire) {

nlrecords_per_sire = (rounded_n_females_per_sire)

n2records_per_sire = (nlrecords_per_sire)+1

} else {
nlrecords_per_sire = (rounded_n_females_per_sire)-1
n2records_per_sire = (rounded_n_females_per_sire)

}

nsires_with_nlrecords = (n_sel_males)-((n_sel females)-(matds*nlrecords_per_sire))
nsires_with_n2records = (n_sel_males)-(nsires_with_nlrsgrord
own_record_sires_with_nlrecords = selectedmales[1:nsirés ndrecords, ]
selectedmalesl=own_record_sires_with_nlrecords[rep(sdqrdev(own_record_sires_with_n
lrecords)), each=nlrecords_per_sire),]

own_record_sires_with_n2records = selectedmales[((nsirts_ndirecords)+1):n_sel_males, ]
selectedmales2=own_record_sires_with_n2records[rep(s€qrde/(own_record_sires_with_n
2records)), each=n2records_per_sire),]
allselectedmales=rbind(selectedmalesl,selectedmales2)
randomlymatedsires=allselectedmales[sample(nrow(allselectles)),]

sirelistf4 = randomlymatedsires][ ,1]

HHHHHH AR
selectedparents=rbind(selectedmales, selectedallfemales)
sortedselectedparents <- selectedparents[order(selecartipat]),]

animlist = c(selectedparents| ,1],selectedparentsgelctedparents| ,3])
uniqueanimlist = c(sort(unique(animlist)))

uniqueanimlist = uniqueanimlist{}

subdata <- basepop_f2_f3_data[basepop_f2_ {3 data[ ,2pWimqueanimlist, ]
subdata <- data.matrix(subdata)

length(subdatal,1])

length(uniqueanimlist)

pedf4 = rbind(subdata[
,1:3],cbind(c((nam4+1):(nam4+n_progeny)),sirelisttA[Jprogeny],damlistf4[1:n_progeny]))

AAAHHHHHH
CEave=mean(selectedparents[ ,6], na.rm=TRUE)
CEave

BWave=mean(selectedparents| ,7], na.rm=TRUE)
BWave

WWave=mean(selectedparents| ,8], na.rm=TRUE)
WWave

199



PWGave=mean(selectedparents[ ,9], na.rm=TRUE)
PWGave

HEBAAHHERRE A

library(MASS)

set.seed(1234)

herdCE=(rnorm(120,0))*0.05

set.seed(1234)

herdBW=(rnorm(120,0))

set.seed(1234)

herdWW=(rnorm(120,0))*2

set.seed(1234)

herdPWG=(rnorm(120,0))*0.1
herd=matrix(data=c(herdCE,herdBW,herdWW,herdPWGpwwTRUE,nrow=4)
sex=matrix(data=c(0.108,-0.108,2,-1,10,-7,0.060,@).04row=TRUE,nrow=4)

# Residual matrix
R=matrix(data=c(1,1.13,0.46,0.48,1.13,20.5,30.38,8.46,30.37,534,29.87,0.48,8.78,29.87,26
1),byrow=TRUE,nrow=4)

# G matrix
G=matrix(data=c(0.24,1.11,1.6,1.51,1.11,9.67,234.65,1.6,23.11,221,103,1.51,14.65,103,217
),byrow=TRUE,nrow=4)

#i##averages: 1.36198 34.59145 235.868 977.412
mu=c(CEave,BWave,WWave,PWGave)
anwr=c((nam4+1):(nam4+n_progeny))

aid = c(pedf4] ,1])

sid = c(pedf4[ ,2])

did <- c(pedf4[ ,3])

#number of herds
length(unique(selectedallfemales| ,5]))
iherd=c(selectedallfemales| ,5])
set.seed(123)
isex=(rbinom(n_progeny, 1, 0.6))+1

# heritability of traits
gd=diag(G)
rd=diag(R)
h2=gd/(gd+rd)

h2

# correlations among traits
# Function to calculate correlations from a covare&amatrix
CORMAT=function(Q) {

D = diag(Q)

D = sqrt(D)
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B = diag(1/D)
HC =B %*% Q %*% B
HC }
CORMAT(R)
CORMAT(G)
# Get cholesky decompositions of G and R
LG = t(chol(G))
LR =t(chol(R))

# Simulate true breeding values for all animals

# J MATRIX FUNCTION

jd = function(n,m){
matrix(c(1),nrow=n,ncol=m)}

nam>5=n_progeny
mendelian = jd(nam5,4)*0
for(i in 1:nam5){

mendelian[i, ] = LG %*% (rnorm(4,0,1))
}
damtbv= selectedallfemales| ,10:13]
siretbv= randomlymatedsires[ ,10:13]
parentsaveragetbv=0.5*(damtbv + siretbv)
tbv=mendelian+parentsaveragetbv

nrec=n_progeny
# Make an observation for all traits for all animals
obser = jd(nrec,4)*0
for(k in 1:nrec){

kherd=iherd[K]

ksex=isex[K]

obser[k, ]=mu + herd[ ,kherd] + sex[ ,ksex]
res = LR %*% rnorm(4,0,1)
obser[k, ]=obser[k, ] + res

}

obs = obser + tbv

obs[ ,1] = scale(obs][ ,1], center = TRUE, scale = FALSE)
obs[ ,1] = cut(obs][ ,1], c(-Inf, 0, 1, 1.4, Inf), kel = FALSE, ordered = TRUE)

obs[ ,2] = round(obs[ ,2], digits=2)
obs[ ,3] = round(obs[ ,3], digits=2)
obs[ ,4] = round(obs[ ,4])

R HHHHHHHR R HHHH AR R

pedigree3 <- data.frame (id = aid, sire = sid, dadd¥
attach(pedigree3)
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dataped <- pedigree3[pedigree3$id>nam4,]

simdataf4 <- data.frame (id = dataped$id, sire apkd$sire, dam = dataped$dam, sex = isex,
herd = iherd, CE = obs][ ,1], BW = obs[ ,2], ww = ol8j| pwg = obs[ ,4], CEtbv = tbv[ ,1],
BWitbv = tbv[ ,2], wwtbv = tbv[ ,3], pwgtbv = tbvj])

attach(simdataf4)

nrow(simdataf4)

two_year_females_list <- c(sort(selectedfemales| ,1]))
length(two_year_females_list)

simdataf4 <- simdataf4[simdataf4[ ,3] %in% two_year_ femalist, |
nrow(simdataf4)

## data file for all animals (base population,animatk wecords): contains true breeding values
for all animal which will be needed for calculatirank correlation

all_data_basepop_f2_f3_f4 <- rbind(basepop_f2_f3_datdanfs)

all_data_basepop_f2_f3 f4 <- subset(all_data_basepop_f2, 88l data basepop_f2_f3 f4]
,1] > nbase)

BWave fl f2 f3 fA=mean(all_data_basepop_f2 {3 f4$BW)
BWave f1 f2 {3 f4

BWsd f1 f2 f3 f4=sd(all_data basepop f2 f3 f4$BW)

BWsd_f1_f2_f3_f4

BWave f1_f2_f3_f4-(3*BWsd_f1_f2_{3_f4)
BWave fl f2 f3 f4+(3*BWsd _f1 _f2 f3 f4)

all_data_basepop f2 f3 f4 <- subset(all_data_basepop_f2, BW > ((BWave_fl _f2 {3 f4)-
(3*BWsd_f1_f2_f3_f4)))

all_data_basepop f2_f3 f4 <- subset(all_data_basepop 2, BW <

((BWave f1_f2 {3 f4)+(3*BWsd_f1_f2_{3_f4)))
summary(all_data_basepop f2_f3 f4$BW)

nrow(all_data_basepop f2 3 f4)

simdataf4 <- subset(all_data_basepop_f2_f3 f4, all_dasepop_f2_f3_f4[ ,1] > nam4)
summary(simdataf4$BW)

nrow(simdataf4)

N_sires = length(c(sort(unique(simdataf4$sire))))

N_sires

basepop_f2_f3_f4 data <- rbind(basepop_f2_f3_data,safdjat
nrow(basepop_f2_f3 f4 data)

pedigreef4 <- data.frame (id = simdataf43$id, sire dsitaf4$sire, dam = simdataf4$dam)
base f2 3 f4 ped <- rbind(base_f2_f3 ped,pedigreef4)

HHHHHHHHHH R H
AR R R R R R R S T A
## see how many records per sire

try <- subset(basepop f2_ 3 f4 data, basepop_f2 {3 fd[ ddt> nbase)
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nrow(try)

ones = c(rep(1,(nrow(try))))

try = data.matrix(try)

try = cbind(try,ones)

ham=sort(by( try[ ,14], try[ ,2], length))

head(ham)

ARRR R R R R R R R R R R R S R A S R A R R
HH AR R R R R R R

## Final data files (2 and 3 calving ease categories)

## pedigree file

## data file for animals with records (will be usedtfogibbs1f90)

data_anim_with_record <- subset(basepop_f2_f3_f4 daseplop_f2_f3 f4_data[ ,1] > nbase)
summary(data_anim_with_record$CE)

## change CE scores to be 3 categories

data_anim_with_record$CE <- replace(data_anim_wétond$CE, data_anim_with_record$CE
==4,3)

## Final data (3 categories) ready for thrgibbs1f90

sel CE_3cat_data <- data_anim_with_record

summary(sel_CE_3cat_data$CE)

## pedigree file
sel CE_pedigree<- base f2 f3 f4 ped

## change CE scores to be 2 categories (binary)

sel CE_3cat_data$CE <- replace(sel_CE_3cat_data$CE, s@c&@Edata$CE == 3,2)
sel CE_bin_data <- sel CE_3cat_data

summary(sel_CE_bin_data$CE)
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APPENDIX C: AVERAGE STANDARDIZED EPD FOR CALVING EASE AND

GROWTH-RELATED TRAITS OF FIRST-CALF HEIFER POPULATION OF THE

SIMMENTAL BEEF CATTLE
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Table C.1: Average standardized EPD for calving ease and groddkecetraits of first-cal

Simmental heifers

Traiteect

Birth 205d 160d 365d 205d

year CEd BWTd WTd gain WT CEm BWTm WTm

<1969 0.00001 0.00834 -0.01357 -0.01335 -0.02692 0.00001 -0.01276 -0.02982
1970 0.04789 -0.03613 -0.10249 -0.06637 -0.16886 -0.06885 -0.05867 -0.14234
1971 0.01398 -0.02843 -0.08225 -0.05290 -0.13515 -0.06096 -0.04233 -0.11976
1972 -0.02130 -0.03226 -0.09273 -0.08329 -0.17602 -0.05126 -0.04569 -0.11699
1973 -0.04084 -0.03303 -0.08706 -0.07945 -0.16651 -0.01867 -0.06067 -0.12290
1974 -0.07218 -0.02244 -0.07249 -0.07772 -0.15022 0.01171 -0.07012 -0.13064
1975 -0.08460 -0.01729 -0.06044 -0.05552 -0.11596 0.03129 -0.06169 -0.12780
1976 -0.08846 -0.01593 -0.03328 -0.03759 -0.07087 0.05133 -0.03632 -0.11077
1977 -0.09817 -0.00872 -0.00822 -0.01782 -0.02604 0.07717 -0.03662 -0.10320
1978 -0.09151 -0.00069 0.01196 0.00657 0.01853 0.11021 -0.03111 -0.09787
1979 -0.09893 0.00941 0.02850 0.01682 0.04533 0.13272 -0.03055 -0.09055
1980 -0.09992 0.02848 0.06416 0.04500 0.10916 0.16106 -0.02432 -0.08458
1981 -0.11005 0.05349 0.09211 0.05442 0.14653 0.17761 -0.01491 -0.08149
1982 -0.11706 0.07764 0.12573 0.08517 0.21091 0.21070 -0.01296 -0.08174
1983 -0.12037 0.09843 0.15457 0.10949 0.26406 0.23553 -0.00878 -0.07013
1984 -0.13006 0.13072 0.19201 0.13940 0.33142 0.26449 0.00128 -0.06617
1985 -0.12902 0.14962 0.23025 0.17552 0.40578 0.28748 0.01428 -0.06217
1986 -0.14431 0.17920 0.26511 0.20628 0.47139 0.30032 0.01645 -0.05678
1987 -0.14059 0.19365 0.29605 0.23604 0.53210 0.31258 0.02330 -0.05647
1988 -0.14978 0.21649 0.33647 0.25846 0.59494 0.32295 0.01265 -0.05479
1989 -0.14923 0.23361 0.37138 0.29107 0.66245 0.34083 0.01818 -0.04934
1990 -0.14598 0.24740 0.40096 0.31089 0.71185 0.35094 0.01909 -0.04491
1991 -0.14537 0.25706 0.42701 0.32623 0.75324 0.36169 0.01551 -0.04129
1992 -0.14560 0.28967 0.47646 0.36164 0.83810 0.37392 0.02574 -0.03775
1993 -0.15632 0.31891 0.50371 0.38018 0.88389 0.38087 0.03064 -0.03762
1994 -0.14977 0.33445 0.52217 0.39548 0.91765 0.38300 0.02215 -0.02411
1995 -0.15943 0.36738 0.54570 0.41242 0.95812 0.38769 0.01710 -0.02217

'CEd = calving ease direct; BWAT= birth weight direct; 205-d W= 205-d weight direct; 160-d gain
= 160-d postweaning gain direct; 365-d WT = 365-d weight dit€&n = calving ease maternal;
BWTm = birth weight maternal; 205-d WiT= 205-d weight maternal
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Table C.1 (cont.)

Traliteffect”
Birth 205d 160d 365d 205d
year CH BWTd WTd gain WT CEm BWTm  WTm

1996 -0.16494 0.39318 0.56706 0.41922 0.98628 0.39146 0.01869 -0.00010
1997 -0.17093 0.41368 0.58362 0.43351 1.01712 0.38761 0.02497 0.00823
1998 -0.17534 0.42649 0.60148 0.43736 1.03883 0.3886 0.01796 0.02371
1999 -0.18387 0.44720 0.62055 0.44683 1.06738 0.37938 0.01319 0.03185
2000 -0.15738 0.42365 0.61613 0.44415 1.06028 0.36007 0.01076 0.04474
2001 -0.15978 0.43007 0.62390 0.45547 1.07936 0.34418 -0.00201 0.05184
2002 -0.13122 0.40222 0.61694 0.45289 1.06983 0.33829 0.00601 0.06975
2003 -0.13003 0.39308 0.60706 0.44519 1.05225 0.31294 -0.01165 0.07981
2004 -0.10288 0.35681 0.60029 0.44580 1.04609 0.30557 -0.00046 0.07171
2005 -0.08362 0.32949 0.58302 0.42818 1.01119 0.28180 -0.01138 0.08001
2006 -0.07916 0.31133 0.55908 0.41513 0.97420 0.26984 -0.00161 0.06932
2007 -0.07758 0.30601 0.55471 0.39884 0.95355 0.27473 -0.01144 0.06727
2008 -0.07942 0.30807 0.56059 0.39657 0.95716 0.25880 -0.02375 0.08398
2009 -0.05169 0.26851 0.53637 0.38726 0.92363 0.24765 -0.01287 0.08567
2010 -0.05541 0.27816 0.56471 0.39516 0.95987 0.25427 -0.02976 0.08913

ICEd = calving ease direct; BWIT= birth weight direct; 205-d Wi'= 205-d weight direct; 160-d gair
= 160-d postweaning gain direct; 365-d WT = 365-d weight dit€fmn = calving ease maternal;
BWTm = birth weight maternal; 205-d WiT= 205-d weight maternal
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APPENDIX D: AVERAGE STANDARDIZED EPD FOR CALVING EASE AND

GROWTH-RELATED TRAITS FROM DIFFERENT SELECTION SCENARIOS FOR

LOW BIRTH WEIGHT VERSUS HIGH CALVING EASE
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Table D.1: Average standardized EPCfor calving ease and growth traits of first-c
Simmental heifers from the high calving ease selectionasize(HCE§

BY CH BWTd 205-d WTd 160-d gair 365-d WT CEm BWTm 205-d WTm

<1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1970 0.04141 -0.03455 -0.01964 -0.00637 -0.02602 0.00159 0.00308 0.00758
1971 0.06829 -0.05773 -0.03064 -0.00102 -0.03166 0.00560 -0.01929 0.00453
1972 0.08883 -0.07443 -0.03720 0.00007 -0.03713 0.01974 -0.02762 0.01736
1973 0.10655 -0.07914 -0.04091 0.01260 -0.02831 0.00739 -0.01313 0.02123
1974  0.13382 -0.10369 -0.05952 -0.00011 -0.05962 -0.02077 0.01560 0.03041
1975 0.15336 -0.12328 -0.05788 -0.00350 -0.06138 -0.01806 0.00475 0.03478
1976 0.15459 -0.13422 -0.07291 -0.02526 -0.09817 -0.01922 -0.00639 0.03825
1977 0.15405 -0.13033 -0.07087 -0.01732 -0.08819 -0.01650 0.00055 0.02952
1978 0.15551 -0.15078 -0.08029 -0.02652 -0.10681 -0.02230 -0.00341 0.02443
1979 0.15625 -0.15414 -0.08122 -0.02469 -0.10591 -0.03020 0.00357 0.02739
1980 0.15256 -0.16093 -0.08600 -0.02366 -0.10966 -0.02603 -0.00444 0.02059
1981 0.15816 -0.17376 -0.09400 -0.02520 -0.11919 -0.02660 -0.00699 0.01163
1982 0.16183 -0.18867 -0.09411 -0.02820 -0.12231 -0.01461 -0.01584 0.01936
1983 0.15625 -0.18206 -0.09784 -0.03606 -0.13390 -0.01451 -0.00595 0.01069
1984 0.15919 -0.19624 -0.09300 -0.03948 -0.13249 -0.01062 -0.02515 0.00753
1985 0.16597 -0.20188 -0.09664 -0.04251 -0.13915 0.00382 -0.02364 -0.00114
1986 0.16987 -0.21430 -0.10906 -0.05433 -0.16339 -0.00513 -0.02632 -0.00276
1987 0.16949 -0.22313 -0.11566 -0.06316 -0.17883 -0.01258 -0.03572 0.00747
1988 0.17656 -0.22827 -0.12859 -0.07158 -0.20017 -0.01447 -0.02756 0.00953
1989 0.17863 -0.23799 -0.12857 -0.08032 -0.20890 -0.01607 -0.03675 0.00441
1990 0.17795 -0.24286 -0.12822 -0.08177 -0.20998 -0.01518 -0.04403 0.00023
1991 0.17880 -0.24238 -0.11610 -0.07556 -0.19165 -0.01404 -0.03283 0.00224
1992 0.18175 -0.25185 -0.11610 -0.07309 -0.18919 -0.01378 -0.03034 0.00892
1993 0.18758 -0.25953 -0.11718 -0.07180 -0.18898 -0.00944 -0.03447 0.00908
1994  0.19059 -0.26754 -0.12171 -0.07124 -0.19294 -0.00805 -0.04016 0.01328
1995 0.18375 -0.25210 -0.11867 -0.06830 -0.18698 -0.00498 -0.04710 0.01462
1996 0.18804 -0.24334 -0.11739 -0.06644 -0.18383 0.00150 -0.05141 0.01298
1997 0.17190 -0.22080 -0.11147 -0.06240 -0.17387 -0.00313 -0.04204 0.02621
1998 0.17979 -0.22092 -0.11228 -0.05909 -0.17137 0.01319 -0.03034 0.00949
1999 0.16050 -0.18748 -0.09164 -0.05111 -0.14275 0.01304 -0.01864 0.01467
2000 0.17811 -0.20727 -0.09710 -0.05056 -0.14767 0.00485 -0.01204 0.01340
2001 0.17135 -0.18865 -0.08150 -0.02916 -0.11065 0.00679 -0.00444 0.01568
2002  0.16407 -0.17954 -0.07117 -0.03113 -0.10230 -0.00566 -0.00143 0.01600
2003 0.16086 -0.17746 -0.07519 -0.02539 -0.10058 -0.00702 0.00184 0.01720
2004 0.15716 -0.17432 -0.07733 -0.03850 -0.11583 -0.00399 -0.00465 0.01566

ICEd = calving ease direct; BWIT= birth weight direct; 205-d W= 205-d weight direct; 160-d gain = 160-
postweaning gain direct; 365-d WT = 365-d weighediy CEn = calving ease maternal; BWA= birth weight
maternal; 205-d W = 205-d weight maternal

2HCE: selection for high CE (selecting above the avesags and the top 75% dams within sires)
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Table D.2: Average standardized EPCfor calving ease and growth traits of first-c
Simmental heifersrom the low birth weight selection scenario (LBWT)

BY CH BWTd 205-d WTd 160-d gair 365-d WT CEm BWTm 205-d WTm

<1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1970 0.02936 -0.03650 -0.03254 -0.02012 -0.05266 -0.01043 -0.01655 -0.02129
1971 0.03356 -0.05470 -0.03948 -0.03149 -0.07097 -0.02109 -0.01271 -0.02297
1972 0.03244 -0.07023 -0.06273 -0.06097 -0.12370 -0.02653 -0.01589 -0.02613
1973 0.04998 -0.08301 -0.05774 -0.04074 -0.09848 -0.04623 0.00371 -0.02237
1974 0.08440 -0.12329 -0.08702 -0.03871 -0.12574 -0.05596 0.00971 -0.02363
1975 0.09929 -0.14175 -0.08986 -0.04467 -0.13453 -0.04781 -0.00442 -0.00821
1976 0.10908 -0.15923 -0.10225 -0.05463 -0.15688 -0.04995 -0.00457 -0.00197
1977 0.11002 -0.16191 -0.10642 -0.05825 -0.16467 -0.05135 -0.01013 -0.00716
1978 0.12448 -0.18437 -0.11320 -0.06186 -0.17506 -0.04445 -0.00543 -0.00466
1979 0.12696 -0.18702 -0.11054 -0.05735 -0.16789 -0.05667 -0.00607 0.00095
1980 0.13342 -0.20326 -0.12490 -0.06568 -0.19057 -0.04905 -0.00996 -0.00425
1981 0.14067 -0.22027 -0.13474 -0.06339 -0.19813 -0.05201 -0.01385 -0.00284
1982 0.14621 -0.23189 -0.14301 -0.06756 -0.21057 -0.04593 -0.02087 0.00073
1983 0.14363 -0.23083 -0.14072 -0.07631 -0.21703 -0.04496 -0.01349 0.00156
1984 0.13952 -0.24373 -0.14710 -0.08461 -0.23171 -0.05788 -0.02911 -0.00239
1985 0.14640 -0.25098 -0.14372 -0.08707 -0.23079 -0.04473 -0.02731 -0.00619
1986 0.14213 -0.25215 -0.14899 -0.09885 -0.24784 -0.04522 -0.03149 -0.00705
1987 0.14735 -0.26468 -0.15467 -0.10003 -0.25471 -0.04676 -0.03431 0.00324
1988 0.15551 -0.27297 -0.16264 -0.10454 -0.26719 -0.03956 -0.02759 0.00371
1989 0.15899 -0.28583 -0.16910 -0.11165 -0.28074 -0.03845 -0.03241 0.00184
1990 0.15996 -0.29001 -0.16579 -0.11203 -0.27782 -0.03312 -0.03338 0.00348
1991 0.15883 -0.29596 -0.15760 -0.10602 -0.26361 -0.02733 -0.02580 0.00011
1992 0.16307 -0.30814 -0.16139 -0.11907 -0.28046 -0.04448 -0.01879 0.01492
1993 0.17393 -0.32547 -0.17004 -0.11142 -0.28146 -0.03880 -0.02477 0.01098
1994 0.17303 -0.32438 -0.16729 -0.11388 -0.28117 -0.03708 -0.02847 0.01794
1995 0.18595 -0.33418 -0.18210 -0.11961 -0.30171 -0.03881 -0.04691 0.01716
1996 0.18013 -0.30647 -0.17205 -0.10958 -0.28163 -0.03854 -0.04462 0.01348
1997 0.16212 -0.28126 -0.16549 -0.10784 -0.27332 -0.03712 -0.04933 0.01811
1998 0.16696 -0.27419 -0.16681 -0.11018 -0.27698 -0.02332 -0.03606 0.00605
1999 0.14531 -0.23837 -0.15206 -0.10084 -0.25290 -0.02638 -0.02706 0.00367
2000 0.15442 -0.23918 -0.13740 -0.09280 -0.23020 -0.01925 -0.02606 0.01190
2001 0.15096 -0.22520 -0.12935 -0.07742 -0.20677 -0.01651 -0.00490 0.02217
2002 0.14176 -0.21165 -0.11074 -0.06637 -0.17711 -0.02668 -0.00947 0.01671
2003 0.14396 -0.21225 -0.11353 -0.06067 -0.17420 -0.02195 0.00161 0.00933
2004 0.14137 -0.20735 -0.11271 -0.06661 -0.17933 -0.02485 -0.00848 0.01168

ICEd = calving ease direct; BWAT= birth weight direct; 205-d W= 205-d weight direct; 160-d gain = 160-
postweaning gain direct; 365-d WT = 365-d weighédiy CEn = calving ease maternal; BWA= birth weight
maternal; 205-d W = 205-d weight maternal

2LBWT: selection for high CE (selecting below the ageraires and the top 75% dams within sires)
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Table D.3: Average standardized EPCfor calving ease and growth traits of first-c
Simmental heifersrom Dickerson’s selection index scenario (DSI)?

BY CH BWTd 205-d WTd 160-d gair 365-d WT CEm BWTm 205-d WTm

<1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1970 0.02729 -0.03806 0.00178 0.00982 0.01160 0.01102 -0.00461 0.03336
1971 0.03184 -0.04553 0.00047 0.00669 0.00716 0.01272 -0.01010 0.01741
1972 0.04952 -0.06004 0.01133 0.02296 0.03429 0.02136 -0.00768 0.03243
1973 0.06412 -0.07240 0.00151 0.02270 0.02421 0.00224 0.00012 0.03011
1974  0.06993 -0.08476 -0.01354 0.01997 0.00643 -0.00462 0.00376 0.02241
1975 0.08766 -0.10022 -0.01761 0.01971 0.00210 0.00193 0.00754 0.03130
1976 0.09015 -0.10812 -0.02013 0.01932 -0.00081 0.00486 0.01391 0.03898
1977  0.09126 -0.11154 -0.02813 0.01307 -0.01506 -0.00643 0.01102 0.02921
1978 0.10035 -0.13167 -0.03464 0.00940 -0.02524 -0.00455 0.01116 0.02549
1979 0.10924 -0.14416 -0.03979 0.01483 -0.02496 -0.01014 0.01077 0.02693
1980 0.11043 -0.15159 -0.04434 0.01014 -0.03420 -0.01499 0.00888 0.02320
1981 0.11525 -0.16818 -0.05518 0.00387 -0.05132 -0.02062 0.00460 0.01712
1982 0.12166 -0.17742 -0.05565 0.00352 -0.05213 -0.00891 0.00204 0.01463
1983 0.11502 -0.17455 -0.05486 -0.00662 -0.06149 -0.00878 0.01302 0.01693
1984 0.12144 -0.19362 -0.06066 -0.01512 -0.07578 -0.00906 -0.00414 0.01110
1985 (0.12411 -0.19790 -0.06300 -0.01650 -0.07950 -0.00078 -0.00115 0.01050
1986 0.12580 -0.20671 -0.06793 -0.02389 -0.09182 -0.00258 -0.00580 0.00710
1987 0.13223 -0.22604 -0.08286 -0.03461 -0.11747 -0.01203 -0.01874 0.01502
1988 0.13244 -0.22990 -0.08723 -0.03556 -0.12279 -0.00833 -0.01598 0.01029
1989 0.13663 -0.24499 -0.09021 -0.04400 -0.13421 -0.00778 -0.02263 0.01396
1990 0.14401 -0.26203 -0.10383 -0.05113 -0.15495 -0.01112 -0.02191 0.01372
1991 0.14485 -0.26265 -0.08955 -0.04358 -0.13314 -0.00083 -0.02052 0.00972
1992  (0.15840 -0.27945 -0.10049 -0.05977 -0.16027 -0.01752 -0.01195 0.01978
1993 0.16750 -0.29398 -0.10542 -0.05196 -0.15738 -0.01478 -0.00801 0.01627
1994  0.17185 -0.30285 -0.11187 -0.06213 -0.17400 -0.02039 -0.01841 0.02195
1995 0.17757 -0.29491 -0.11588 -0.05685 -0.17273 -0.01614 -0.03293 0.02284
1996 0.17262 -0.27512 -0.11430 -0.05307 -0.16737 -0.02155 -0.02682 0.01911
1997 0.15860 -0.25414 -0.10459 -0.04820 -0.15278 -0.01731 -0.02875 0.02796
1998 0.15928 -0.23580 -0.09503 -0.03829 -0.13331 -0.00106 -0.01139 0.01512
1999 0.14504 -0.21391 -0.07436 -0.03051 -0.10487 -0.00092 -0.00637 0.02453
2000 0.15031 -0.21113 -0.06796 -0.02406 -0.09202 -0.00023 -0.00597 0.02269
2001 0.15772 -0.20656 -0.06141 -0.01778 -0.07919 -0.00222 0.00643 0.02232
2002 0.14315 -0.18436 -0.04435 -0.00483 -0.04917 -0.00918 -0.00241 0.03460
2003 0.14382 -0.18603 -0.04726 -0.00084 -0.04811 -0.00735 0.00896 0.02873
2004  0.14109 -0.17960 -0.05014 -0.01184 -0.06199 -0.00400 0.00747 0.02123

'CEd = calving ease direct; BWIT= birth weight direct; 205-d Wi'= 205-d weight direct; 160-d gain
160-d postweaning gain direct; 365-d WT = 365-d weight direcinEEalving ease maternal; BWT
= birth weight maternal; 205-d WiT= 205-d weight maternal

’DSI = YWT - 3.2BWT (selecting the above average sires and the top 75% dams within sires)
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Table D.4: Average standardized EPDor calving ease and growth traits of first-c
Simmental heifersrom the all-purpose selection index scenario (API)

BY CH BWTd 205-d WTd 160-d gair 365-d WT CEm BWTm 205-d WTm

<1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1970 0.03463 -0.03928 -0.02504 -0.01169 -0.03672 -0.00243 -0.01080 -0.00513
1971 0.05375 -0.05585 -0.02882 -0.00617 -0.03499 -0.00031 -0.01976 -0.00811
1972 0.07921 -0.08639 -0.04105 -0.01696 -0.05801 0.01169 -0.02934 0.00814
1973  0.09608 -0.09672 -0.04844 -0.00656 -0.05501 -0.00908 -0.00191 0.00973
1974 0.11659 -0.12676 -0.07740 -0.00979 -0.08720 -0.04579 0.01868 0.00937
1975 0.13575 -0.14870 -0.07638 -0.02183 -0.09821 -0.03742 -0.00283 0.01550
1976 0.13852 -0.15654 -0.08220 -0.03351 -0.11571 -0.03932 -0.00559 0.02264
1977 0.13850 -0.15341 -0.07893 -0.02546 -0.10439 -0.03120 -0.00222 0.02310
1978 0.14304 -0.16919 -0.08059 -0.03099 -0.11158 -0.03206 -0.00036 0.01952
1979 0.14539 -0.17436 -0.08014 -0.02343 -0.10357 -0.03956 -0.00049 0.01825
1980 0.14713 -0.18447 -0.08688 -0.02653 -0.11341 -0.03924 0.00007 0.01359
1981 0.15064 -0.20050 -0.10084 -0.03041 -0.13125 -0.03850 -0.00455 0.01001
1982 0.15347 -0.21034 -0.10401 -0.03527 -0.13928 -0.02643 -0.01437 0.01255
1983 0.14862 -0.20638 -0.10623 -0.04579 -0.15203 -0.02394 -0.00134 0.00990
1984 (0.14937 -0.22325 -0.10686 -0.05074 -0.15760 -0.02384 -0.02015 0.00741
1985 0.15511 -0.22442 -0.10324 -0.04989 -0.15313 -0.01086 -0.01828 0.00082
1986 0.15561 -0.23444 -0.11549 -0.06555 -0.18104 -0.01816 -0.01932 -0.00197
1987 0.15881 -0.24862 -0.12584 -0.07091 -0.19676 -0.02473 -0.02910 0.00994
1988 0.16686 -0.25946 -0.14027 -0.08035 -0.22063 -0.02235 -0.02472 0.00760
1989 0.17002 -0.27107 -0.14031 -0.08622 -0.22653 -0.02459 -0.02996 0.00795
1990 0.17265 -0.28191 -0.14937 -0.09160 -0.24097 -0.02288 -0.03424 0.00589
1991 0.17106 -0.28493 -0.13434 -0.08589 -0.22024 -0.01684 -0.02658 0.00331
1992  0.17520 -0.29581 -0.14101 -0.09580 -0.23682 -0.03073 -0.02058 0.01388
1993 0.18632 -0.31131 -0.14290 -0.08920 -0.23210 -0.02617 -0.02522 0.01176
1994 0.18531 -0.31241 -0.14435 -0.08829 -0.23264 -0.02491 -0.02877 0.01507
1995 0.19060 -0.30724 -0.14800 -0.09113 -0.23912 -0.02639 -0.04621 0.01765
1996 0.18926 -0.28794 -0.14412 -0.08221 -0.22633 -0.02167 -0.04164 0.01329
1997 0.17297 -0.26402 -0.13687 -0.07993 -0.21680 -0.02265 -0.03795 0.02640
1998 0.17823 -0.25469 -0.13137 -0.07389 -0.20526 -0.00422 -0.02526 0.01206
1999 0.16048 -0.22097 -0.10954 -0.06247 -0.17201 -0.00608 -0.01528 0.01577
2000 0.16915 -0.22625 -0.10733 -0.06223 -0.16956 -0.00491 -0.01657 0.01630
2001 0.16952 -0.21294 -0.09464 -0.04261 -0.13725 -0.00262 -0.00059 0.01893
2002  0.15945 -0.20099 -0.08283 -0.03687 -0.11970 -0.01514 0.00059 0.02313
2003 0.15612 -0.19233 -0.08213 -0.03026 -0.11238 -0.01124 0.00644 0.01724
2004 0.15243 -0.19215 -0.08249 -0.03831 -0.12080 -0.00678 0.00118 0.01819

'CEd = calving ease direct; BWIT= birth weight direct; 205-d W= 205-d weight direct; 160-d gain
160-d postweaning gain direct; 365-d WT = 365-d weight direcinEEalving ease maternal; BWT
= birth weight maternal; 205-d WiT= 205-d weight maternal

’AP| = 1.3CE + 0.1WWT+0.2YWT-1.8BWT (above average sires and the top 75% damsasivitkjn
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Table D.5: Average standardized EPDfor calving ease and growth traits of first-c
Simmental heifers from all-purpose sub-selection indemagie (APh)*

BY CH BWTd 205-d WTd 160-d gair 365-d WT CEm BWTm 205-d WTm

<1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1970 0.04260 -0.03270 -0.01428 -0.00146 -0.01574 0.00085 0.00666 0.01097
1971 0.06213 -0.04758 -0.01548 0.01064 -0.00484 0.01446 -0.01526 0.00896
1972 0.08537 -0.05718 -0.00189 0.02819 0.02630 0.03396 -0.01615 0.04298
1973 0.09534 -0.06248 -0.00674 0.03545 0.02872 0.01291 0.00905 0.04031
1974  0.10906 -0.06813 -0.01245 0.03281 0.02036 0.00977 0.02140 0.05232
1975 0.12718 -0.08140 -0.00309 0.04512 0.04203 0.02100 0.02887 0.06110
1976 0.12389 -0.08711 -0.01257 0.03396 0.02139 0.02178 0.02480 0.06265
1977 0.12806 -0.09071 -0.02022 0.03135 0.01113 0.01244 0.02500 0.05321
1978 0.13276 -0.11038 -0.02962 0.02146 -0.00816 0.00863 0.01514 0.04074
1979 0.13330 -0.11750 -0.02739 0.02598 -0.00141 0.00271 0.01965 0.04024
1980 0.13264 -0.12227 -0.03410 0.02552 -0.00858 -0.00177 0.01322 0.03230
1981 0.13717 -0.13308 -0.04172 0.01793 -0.02379 -0.00754 0.00928 0.02479
1982 (0.14252 -0.14374 -0.03951 0.01664 -0.02287 0.00529 0.00460 0.02700
1983 0.13438 -0.13979 -0.04376 0.00928 -0.03448 0.00138 0.01328 0.01769
1984 (0.13783 -0.14538 -0.03477 0.01051 -0.02426 0.00660 -0.00597 0.01237
1985 0.14261 -0.15297 -0.04226 0.00612 -0.03615 0.01670 -0.00339 0.00526
1986 0.14377 -0.16012 -0.04869 0.00008 -0.04862 0.01013 -0.00404 0.00819
1987 0.14679 -0.16954 -0.05706 -0.00822 -0.06527 0.00584 -0.01885 0.00945
1988 0.15207 -0.17350 -0.06401 -0.01074 -0.07476 0.00722 -0.01806 0.01095
1989 0.15587 -0.18116 -0.06276 -0.02013 -0.08289 0.00427 -0.02386 0.00453
1990 0.16000 -0.18999 -0.06186 -0.02184 -0.08370 0.00251 -0.03328 0.00415
1991 0.16109 -0.19519 -0.05447 -0.02016 -0.07463 0.00739 -0.02445 0.00384
1992  0.16603 -0.20675 -0.06010 -0.02526 -0.08537 0.00374 -0.02308 0.01192
1993 0.17037 -0.21461 -0.06029 -0.02230 -0.08259 0.00675 -0.02114 0.01186
1994 0.17752 -0.22513 -0.06864 -0.02633 -0.09497 0.00370 -0.03439 0.01393
1995 0.17347 -0.21741 -0.07181 -0.02766 -0.09947 0.00955 -0.04164 0.01799
1996 0.18033 -0.21362 -0.07437 -0.02594 -0.10031 0.01093 -0.03720 0.01326
1997 0.16317 -0.18971 -0.06842 -0.02500 -0.09341 0.00857 -0.03612 0.02756
1998 0.16829 -0.18354 -0.06371 -0.01588 -0.07959 0.02457 -0.02273 0.01233
1999 0.15423 -0.16141 -0.04684 -0.01178 -0.05863 0.02759 -0.01256 0.01737
2000 0.16297 -0.16162 -0.04350 -0.00677 -0.05027 0.02026 -0.00567 0.01675
2001 0.15922 -0.15917 -0.04134 0.00177 -0.03957 0.02502 0.00123 0.01242
2002 0.15248 -0.14581 -0.03029 0.00761 -0.02267 0.01392 0.00871 0.02529
2003 0.14908 -0.14634 -0.03379 0.00905 -0.02474 0.00687 0.01234 0.02327
2004 0.15219 -0.15105 -0.03765 -0.00115 -0.03880 0.01122 0.00711 0.02780

'CEd = calving ease direct; BWIT= birth weight direct; 205-d Wi'= 205-d weight direct; 160-d gain
160-d postweaning gain direct; 365-d WT = 365-d weight direcinEEalving ease maternal; BWT
= birth weight maternal; 205-d WiT= 205-d weight maternal

APl = 1.3CE +0.2YWT (above average sires and the top 75% dams within sires)
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Table D.6: Average standardized EPCfor calving ease and growth traits of first-c
Simmental heifes from the all-purpose sub-selection index scenario &PI

BY CH BWTd 205-d WTd 160-d gair 365-d WT CEm BWTm 205-d WTm

<1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1970 0.03037 -0.04039 -0.03029 -0.01682 -0.04711 -0.00876 -0.01901 -0.01444
1971 0.02957 -0.05152 -0.02909 -0.02365 -0.05274 -0.01223 -0.00938 -0.01317
1972 0.05066 -0.07413 -0.03289 -0.02063 -0.05352 -0.00864 -0.01817 -0.00246
1973 0.06568 -0.08983 -0.02736 -0.00404 -0.03140 -0.02361 -0.00249 0.00007
1974 0.07858 -0.11373 -0.05556 -0.01636 -0.07192 -0.04608 0.00561 -0.01231
1975 0.10358 -0.14148 -0.07699 -0.03129 -0.10828 -0.03960 -0.00005 0.00407
1976  0.11089 -0.15488 -0.08978 -0.04284 -0.13263 -0.04429 -0.00397 0.00663
1977  0.11177 -0.15632 -0.08586 -0.04015 -0.12601 -0.04103 -0.00785 0.00570
1978 0.12381 -0.17591 -0.09232 -0.04075 -0.13308 -0.03956 0.00056 0.00410
1979 0.12727 -0.17966 -0.09015 -0.03565 -0.12581 -0.04981 0.00057 0.00481
1980 0.13309 -0.19386 -0.09881 -0.03918 -0.13799 -0.04767 -0.00069 0.00009
1981 0.13819 -0.21064 -0.11268 -0.04335 -0.15603 -0.04826 -0.00871 0.00082
1982 0.14252 -0.21992 -0.11735 -0.04729 -0.16464 -0.03707 -0.01667 0.00324
1983 0.13927 -0.21901 -0.11814 -0.05776 -0.17590 -0.03609 -0.00680 0.00715
1984 (0.13465 -0.23084 -0.12042 -0.06190 -0.18232 -0.04510 -0.02044 0.00314
1985 0.13887 -0.23454 -0.11545 -0.05943 -0.17488 -0.03688 -0.01128 0.00395
1986 0.13839 -0.24274 -0.12427 -0.07347 -0.19774 -0.03612 -0.01676 -0.00060
1987 0.14400 -0.25535 -0.13249 -0.07616 -0.20865 -0.03727 -0.02354 0.01124
1988 0.15106 -0.26460 -0.14302 -0.08549 -0.22851 -0.03085 -0.01999 0.00754
1989 0.15506 -0.27677 -0.14453 -0.08881 -0.23334 -0.03012 -0.02588 0.00816
1990 0.15927 -0.29024 -0.15358 -0.09619 -0.24977 -0.02769 -0.02635 0.00719
1991 0.15852 -0.29399 -0.13984 -0.08848 -0.22832 -0.02107 -0.02082 0.00352
1992 0.16576 -0.30802 -0.14897 -0.10607 -0.25504 -0.03887 -0.01587 0.01704
1993 0.17564 -0.32261 -0.15603 -0.09705 -0.25307 -0.03390 -0.02091 0.01342
1994 0.17576 -0.32323 -0.15318 -0.10032 -0.25350 -0.03196 -0.02687 0.01999
1995 0.18476 -0.32420 -0.16200 -0.10205 -0.26405 -0.03480 -0.04274 0.02190
1996 0.17825 -0.29654 -0.15505 -0.09302 -0.24807 -0.03524 -0.04328 0.01665
1997 0.16182 -0.27620 -0.14997 -0.09098 -0.24094 -0.03243 -0.04359 0.02521
1998 0.16357 -0.26076 -0.14295 -0.08508 -0.22803 -0.01868 -0.02693 0.01287
1999 0.14513 -0.23244 -0.12343 -0.07426 -0.19770 -0.01777 -0.01625 0.01743
2000 0.15328 -0.23220 -0.11287 -0.06831 -0.18118 -0.01281 -0.01943 0.02257
2001 0.16009 -0.22465 -0.10861 -0.05512 -0.16373 -0.01526 -0.00026 0.02310
2002  0.14308 -0.20570 -0.09373 -0.04998 -0.14371 -0.02322 -0.00519 0.02149
2003  0.14475 -0.20649 -0.09433 -0.04333 -0.13765 -0.01869 0.00487 0.01014
2004  0.14210 -0.20236 -0.09364 -0.05058 -0.14422 -0.01856 -0.00301 0.01504

'CEd = calving ease direct; BWIT= birth weight direct; 205-d Wi'= 205-d weight direct; 160-d gain
160-d postweaning gain direct; 365-d WT = 365-d weight direcinEEalving ease maternal; BWT
= birth weight maternal; 205-d WiT= 205-d weight maternal

’AP1, = 0.2YWT-1.8BWT (above average sires and the top 75% dams within sires)
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APPENDIX E: AVERAGE NET PROFIT FROM VARIOUS SELECTION SCENARIOS
EXPRESSED AS A DEVIATION FROM THE SIMMENTAL CATTLE NET PROFIT

(CONTROL)
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Table E.1: Average net proftt($), as deviation from Simmental cattle, for variamedectior
scenarms

Selection scenarfo

BY HCE LBWT DS AP APl API,
<1969 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1970 4.5052 3.0670 3.4040 3.7772 4.6892 3.2646
1971 7.5099 3.6008 3.9420 5.9683 6.9655 3.2996
1972 9.7905 3.2731 6.1716 8.8121 9.7387 5.7591
1973 11.7179 5.4288 7.7423 10.6757 10.8314 7.6753
1974 14.5793 9.2275 8.3336 12.8657 12.2459 8.9581
1975 16.8381 10.9420 10.3255 15.0633 14.4554 11.5930
1976 16.8228 11.9934 10.6576 15.3209 14.0276 12.3220
1977 16.7851 12.0605 10.6976 15.3589 14.4099 12.4875
1978 17.0502 13.7529 11.8103 15.9817 14.9946 13.9138
1979 17.1706 14.0967 12.8692 16.3403 15.1925 14.3711
1980 16.8380 14.7758 13.0147 16.5628 15.1148 15.0455
1981 17.4883 15.6552 13.5786 16.9651 15.5981 15.6206
1982 18.0398 16.2652 14.3527 17.3225 16.3020 16.1159
1983 17.2971 15.9588 13.5797 16.6881 15.3273 15.6993
1984 17.8129 15.5898 14.3803 16.9494 15.8545 15.3308
1985 18.5257 16.4111 14.6786 17.5962 16.3416 15.8788
1986 18.8880 15.8644 14.8725 17.5588 16.4512 15.7626
1987 18.8437 16.4979 15.5694 17.9335 16.7490 16.4022
1988 19.4507 17.3341 15.5903 18.6939 17.2560 17.0844
1989 19.7368 17.7500 16.1380 19.1341 17.7025 17.6183
1990 19.7262 17.9361 16.9357 19.4181 18.2408 18.0879
1991 19.9687 18.0176 17.2214 19.4849 18.5058 18.2473
1992 20.4083 18.4945 18.6218 19.9220 19.0742 18.9740
1993 21.0992 19.7881 19.7390 21.2793 19.6370 20.1547
1994 21.4672 19.6959 20.1727 21.1806 20.3944 20.1854
1995 20.6175 20.9555 20.6434 21.5979 19.8392 21.0157
1996 20.9644 20.1633 19.9177 21.3021 20.4741 20.1143
1997 19.1074 18.0701 18.3376 19.4154 18.4744 18.2341
1998 19.9264 18.4463 18.3249 19.9237 19.0201 18.3189
1999 17.7780 15.9666 16.8392 17.9608 17.4898 16.3237
2000 19.7843 17.1105 17.4470 18.9414 18.4520 17.3010
2001 19.1380 16.7483 18.2524 19.0532 18.1094 18.0227
2002 18.3697 15.8844 16.7209 18.0220 17.3925 16.2145
2003 18.0056 16.1231 16.8052 17.6144 17.0231 16.4300
2004 17.4859 15.7659 16.3453 17.1822 17.3038 16.0680

1 The net profit was calculated using the all-purposecsiein index (API)
’HCE = single trait selection for high calving ease; LB®W/3ingle trait selection for low birth weight; DSNWT
— 3.2 BWT; APl = 1.3CE + 0.1WWT+0.2YWT-1.8BWT; AP+ 1.3CE + 0.2YWT; ARI= 0.2YWT-1.8BWT
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