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ABSTRACT 
 
 
 

DIFFERENTIAL RESPONSE FROM SELECTION FOR LOW BIRTH WEIGHT VERSUS 
 

HIGH CALVING EASE IN BEEF CATTLE 
 
 
 

The economic importance of calving ease is derived from the reduction in costs 

associated with dystocia. However, the genetic improvement of calving ease did and still does 

rely upon the downward selection for a trait with no direct economic relevance (i.e., birth 

weight). Given the antagonistic genetic relationship between calving ease and postnatal growth 

traits, such a strategy could result in production of lighter animals with uncertain gain in calving 

ease. Therefore, we hypothesized that direct selection for high calving ease would reduce 

performance losses associated with selection for low birth weight. Thus, the main objective of 

our study was to compare two selection approaches: 1.selection for high calving ease; and 2. 

selection for low birth weight.  To evaluate these approaches, we used both simulated data and 

American Simmental Association field data. Another complicating factor was the approach to 

evaluation of calving ease with a threshold versus a linear model. The advantages of the 

threshold model over the linear model, in the analysis of ordered categorical traits, were 

investigated in the literature. Results are varied with some supporting and others discounting the 

superiority of the threshold model. Therefore, another goal of the current study was the 

predictive ability of the threshold and linear methodologies used in the genetic evaluation of 

calving ease as an example of ordered categorical traits. 

Data on calving ease, birth weight, weaning weight, and yearling weight were obtained 

from the American Simmental Association (ASA). Given the multi-breed nature of the ASA 
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database, only animals with ≥87.5% Simmental composition (to avoid heterosis) were included 

in our study with data constructed from the base population of 2 year old dams as they provide 

the most relevant calving ease observations (N=95,791). Weaning and yearling weights were 

adjusted for age to 205 and 365 d, respectively. Further, 160-d postweaning gain was calculated 

from the adjusted weights. Four-generation pedigrees were constructed to estimate sire and 

maternal grandsire (co)variance components for calving ease (CE), birth weight (BWT), and 

205-d weight (205-d WT), and sire (co)variance components for 160-d postweaning gain (160-d 

gain) using threshold-linear sire and sire-maternal grandsire models with a Gibbs sampling 

algorithm. Following variance component estimation, the direct and maternal EBV for CE, 

BWT, and 205-d weight and direct EBV for 160-d gain and 365-d weight for 465,710 animals 

were calculated using a threshold-linear multivariate maternal animal model. Calving ease was 

modeled as a threshold trait (i.e., underlying continuous liability was assumed) with 3 observed 

categories (1 = Unassisted calving, 2 = minor assistance, and 3 = major assistance + caesarean). 

The 365-d weight direct EBV were calculated as the summation of the estimated EBV for 205-d 

weight and 160-d gain. A subpopulation of 2 year old (first-calf) Simmental heifers (n = 

277,897) was extracted under the restriction of including only progeny of first-calf heifers. This 

subpopulation was used for estimating genetic trends of Simmental, and was also used as a pool 

of data (control scenario) for different selection scenarios. Therefore, six selection scenarios, for 

low birth weight as opposed to selection for high calving ease, were created. Using the first-calf 

heifer data (the control), data for each selection scenario were created by selecting sires, within 

each year of birth, with EBV ≥ the average, then the top 75% of dams with progeny were 

selected. Six selection scenarios were evaluated with two single trait selection scenarios for both 

high calving ease (HCE) and low birth weight (LBWT) in addition to four different selection 



iv 
 

indices. The indexes were the all-purpose selection index (API = -1.8 BWT + 1.3 CE + 0.10 

WWT + 0.20 YWT) adopted by the ASA, two derivative sub-indices: (API1 = 1.3 CE + 0.20 YWT) 

and (API2 = -1.8 BWT + 0.20 YWT), and lastly Dickerson’s selection index (DSI = -3.2 BWT + 

YWT). For each selection scenario, EPD were standardized and then expressed as a deviation 

from the average EPD, within birth year, from the control scenario. Comparison between various 

selection scenarios involved that of the direct and maternal genetic trends of studied traits and 

the net profit from these scenarios. Here, the net profit was calculated for all selection scenarios 

using the API. Furthermore, we examined the threshold model suitability for the analysis of 

categorical traits as opposed to linear with the first-calf Simmental heifer calving ease as the trait 

of interest. We also addressed, not only the linearity of the trait, but also the number of trait 

categories, the number of fitted traits, and extended the comparison to include the animal model 

versus the sire model. Only direct (or sire effects in the sire model) genetic effects were fitted in 

all models. Using a balanced data with herd size ≥ 50 animals, the efficiency of models were 

determined by the predictive ability of each model using a cross validation “data splitting” 

technique. The model’s predictive ability was estimated using the correlations (Pearson’s and 

Spearman’s) between predicted CE EPD obtained from two complementary subsets. 

Two simulated data sets were created under two selection scenarios. Selection scenarios 

were first, selection for high calving ease (HCE) and second, selection for low birth weight 

(LBW). In both simulated populations, observations on calving ease (CE), birth weight (BWT), 

weaning weight (WWT), and postweaning gain (PWG) were created. Each population consisted 

of a base generation of 1,200 sires and 36,000 dams. The first generation was produced by 

random mating of founders (1,200 sires and 36,000 dams). Each of the three subsequent 

generations was produced by selecting the top 5% and 80% of sires and dams, respectively, from 
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previous generations. Parameter estimation was carried out using a multivariate threshold-linear 

model with Gibbs sampling algorithm. Fixed effects were herd (n = 120) and sex of calf. For 

both selection scenarios, direct genetic trends for CE, BWT, WWT, PWG, and YWT were 

estimated. Using the HCE data, the predictive ability of the threshold and linear models was 

compared using the same cross validation procedure described for Simmental field data.  

Results from simulated data using single trait selection for low birth weight versus high 

calving ease showed that the rate of genetic change of CE (% unassisted calving/yr) from the 

high calving ease selection scenario was higher (P < 0.001) than that from the low birth weight 

scenario. Both selection scenarios have reduced growth rate. However, genetic trends of growth 

traits obtained under the high calving ease selection scenario were higher (P < 0.001). Selection 

for high calving ease increased (P < 0.001) the annual genetic change for CE, WWT, and YWT 

over the low birth weight selection scenario by 0.37%, 1.65 kg, and 1.77 kg, respectively. 

Therefore, selection for high calving ease produced animals with better calving ease EPD and 

with higher growth rates at later ages. Both threshold and linear models had similar predictive 

ability (i.e., similar correlations). The similar predictive ability might be a result of the highly 

balanced data used in current study. Nonetheless, both models exhibited substantial increases in 

the accuracy of prediction for CE when BWT was incorporated as a correlated trait. 

Results from the American Simmental beef cattle field data resulted in direct heritabilities 

for CE (on the underlying scale), BWT, 205-d WT, 160-d gain, and 365-d WT within the 

literature estimates of the Simmental beef cattle. Maternal heritability estimates for CE, BWT, 

and 205-d WT were also in agreement with the Simmental estimates reported in the literature. 

The high negative genetic correlation between CE and BWT (-0.67) and the high heritability of 

BWT (0.52) justified the importance of incorporating BWT in the genetic evaluation of CE. The 
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moderate positive genetic correlations between BWT and subsequent growth traits exposed the 

genetic antagonistic relationship between CE and postnatal growth traits when selection for low 

birth weight is applied. 

Results obtained from the Simmental field data showed that all selection scenarios, for 

high calving ease versus low birth weight, compared to the control scenario, have reduced 

growth rate but increased ease of calving. Generally, the calving ease-based selection scenarios 

(HCE, API, and API1) had the highest net profit and showed higher genetic trends for calving 

ease and growth-related traits compared to the birth weight-based selection scenarios (LBWT, 

DSI, and API2). The calving ease-based selection scenarios shifted the intercept of the net profit 

of the control scenario by 13, 11.6, and 11.1 $, respectively; whereas, the birth weight-based 

selection scenarios showed lower intercepts of 8.2, 7.3, and 8.8 $, respectively. The single trait, 

HCE, selection scenario substantially improved calving ease and growth-related traits and 

resulted in a shift of the intercept of the net profit over the LBWT by 58%.  

The comparison of models predictive ability using threshold and linear or animal and sire 

approaches revealed that the threshold model outperformed the linear model. The highest 

predictive ability among all compared models was obtained from the threshold-linear sire model 

with calving ease fitted as a binary trait. The inclusion of linear trait(s) improved the prediction 

of categorical traits. Furthermore, the analysis of categorical traits with two continuous traits 

resulted in small differences between the threshold and linear models. The higher the number of 

categories, the better the linear model prediction; in contrast, the threshold-linear models showed 

better predictive ability when calving ease was fitted as a binary outcome.  
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CHAPTER I. 

 

1. INTRODUCTION AND OBJECTIVES 

 
 
 
1.1.  Introduction 

Traits measured on farm animals can be categorized into two groups. First, a trait that has a 

direct effect on profitability by being associated with a specific cost of production or income. 

Traits in this class are known as economically relevant traits or “ERT” (Golden et al., 2000). 

Second, a trait that does not affect profitability, as it indirectly influences profitability through a 

correlation with the ERT, is called an indicator trait. However, indicator traits (e.g., birth weight) 

are included in genetic evaluations to help predict the genetic merit of ERTs (e.g., calving ease) 

and improve accuracy of genetic prediction (Golden et al., 2000; Enns, 2010). An example of an 

economically relevant trait is calving difficulty which describes the difficulty of birth 

experienced by a cow. Calving difficulty is measured by a scoring system that gives subjective 

scores ranging from 1 (i.e., unassisted calving) to 5 (i.e., mal-presentation) where the higher the 

score the more difficult the birth (BIF, 2010). Calving ease is, by definition, the opposite of 

calving difficulty meaning that the lower the score the more likely the birth process to become 

easier. Basically, both are the same trait from two perspectives; therefore, they will be referenced 

synonymously and used interchangeably throughout this document. Numerous publications 

described the economic importance of calving difficulty resulting from the cost associated loss of 

calf, death of dam, labor and veterinary charges, and poor subsequent reproductive performance 

(Wiltbank et al., 1961; Laster et al., 1973; Meijering, 1984). In Holseins cattle, estimated costs 

associated with categories of calving difficulty were $0.00, $50.45, $96.48, $159.82, and 
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$379.61 for scores 1 to 5, respectively, (Dematawewa and Berger, 1997). These costs were 

estimated from losses in milk yield, fat yield, protein yield, days open, number of services, and 

calf deaths. However, the total cost associated with dystocia (i. e., within-parity sum of costs 

associated with dystocia scores weighted by the probability of occurrence) was $28.53 for an 

average heifer and about $10.00 for an average older cow. 

The most influential factors contributing to the incidence of calving difficulty are calf birth 

weight followed by pelvic area of dam (Bellows, 1993). Increasing birth weight by1 kg increased 

the incidence of calving difficulty by (2.3%; Laster et al., 1973) and (13% “Odds ratio”; 

Johanson and Berger, 2003). Birth weight accounted for 50% of total variance of calving 

difficulty while pelvic area accounted for 10% (Meijering, 1984). The undesirable combination 

of both factors is called feto-pelvic disproportion or incompatibility (FPD) which is the main 

cause of calving difficulty (Meijering, 1984).  

Calving ease has a high negative genetic correlation with birth weight (Koots et al., 1994b; 

Eriksson et al., 2004, among others). Therefore, in most genetic evaluations of calving ease, birth 

weight was incorporated as a correlated indicator trait. Over the years, in order to improve 

calving ease, animal breeders have put significant emphasis on selection for low birth weight. 

Nonetheless, a genetic antagonistic relationship may arise given the fact that birth weight has 

high positive genetic correlations with subsequent growth traits. Further, Burfening et al. (1978b) 

stated that selection for low birth weight would not be as effective in improving the ease of 

calving. MacNeil et al. (1998) suggested that direct selection for calving ease may be more 

effective than selecting for the indicator trait, birth weight. Hence, we hypothesize that selection 

for low birth weight would result in lower growth rates at later ages than would selection on 

calving ease. Calving ease has lower genetic correlations with later growth traits than birth 
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weight, and therefore we believe direct selection for high calving ease will improve the ease of 

calving and reduce the performance loss in postnatal growth traits. If true, the preferable 

approach would be to use calving ease as selection criteria as opposed to birth weight.  

The best linear unbiased prediction (BLUP), given its appealing properties, is considered 

the method of choice for the genetic evaluation of data that follow multivariate normal 

distribution. Nonetheless, when analyzing ordered categorical responses (e.g., calving ease) via 

linear methodology like BLUP, assumptions of: normality, homogeneous variance, and 

additivity of effects are violated. Gianola and Foulley (1983) described a method called the 

threshold methodology to be used for the analysis of such traits.  The threshold methodology has 

been validated, theoretically and by simulation studies, to be more suitable for analysis of 

ordered categorical traits than the linear approach. However, there have been relatively few 

citations comparing threshold and linear methodologies using field data which press the need to 

investigate and verify the superiority of the threshold model over the linear model using field 

data. The combination of the need to compare both methods of calculation and both approaches 

to selection using field data from the ASA is the motivation for this dissertation.     

1.2. Objectives 

The primary focus of this dissertation was to investigate the effect of selection for high 

calving ease compared to selection for low birth weight on other performance traits (e.g., 

yearling weight) and profitability in terms of net profit.  

Objectives of simulation studies and field data analyses are outlined as follow:  

Simulated data: 

1. Identify the best approach to reduce calving difficulty through quantifying performance 

losses using estimation of genetic trends for calving ease, birth weight, weaning weight, 
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postweaning gain, and yearling weight under two selection scenarios: selection for low 

birth weight versus high calving ease. 

2. Comparison of different animal models used in the genetic evaluation of calving ease 

where calving ease was fitted as a binary or polychotomous trait. Compared models 

included: univariate animal model fitted to calving ease (Threshold vs. linear), bivariate 

animal model fitted for calving ease and birth weight (threshold-linear vs. linear-linear), 

multivariate animal model fitted for calving ease, birth weight, and weaning weight 

(threshold-linear vs. linear-linear), and multivariate animal model fitted for calving ease, 

birth weight, weaning weight, and postweaning gain (threshold-linear vs. linear-linear).   

Simmental (field) data: 

1. Estimate genetic and residual parameters ((co)variances) for calving ease, birth weight, 

weaning weight, postweaning gain, and yearling weight of American Simmental beef 

cattle by means of the threshold methodology.  

2. Compare different models fitted to calving ease (binary versus polychotomous) using 

first parity Simmental heifer data including: threshold versus linear; animal model versus 

sire model.   

3. Compare genetic trends for calving ease, birth weight, weaning weight, postweaning 

gain, and yearling weight of American Simmental beef cattle under six different artificial 

selection scenarios: High calving ease (HCE), low birth weight (LBWT), Dickerson’s 

selection index (DSI), all purpose selection index recommended by the American 

Simmental Association (API), API1: includes only yearling weight and calving ease, and 

API2: includes only yearling weight and birth weight. 

4.  Compare profit between all selection scenarios applied to Simmental data.     
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CHAPTER II. 

 

2. LITERATURE REVIEW 

 
 
 

In this chapter, literature on topics considered the most relevant and essential for the 

study of ordered categorical traits (e.g., calving ease) were reviewed. These topics included: 

ordered categorical traits, factors influencing calving ease, the threshold model, Markov Chain 

Monte Carlo (MCMC) and the Gibbs sampling algorithm, model comparisons (threshold versus 

linear; and animal versus sire), genetic and residual parameters for calving ease and growth 

traits, selection index, and genetic trends estimated from selection trails for calving ease and 

birth weight.   

2.1. Ordered categorical traits  

Ordered categorical traits are traits that have phenotypes that can be assigned into ordered 

classes. Traits with only two categories are known as binary traits (e.g., disease susceptibility 

“infected vs. healthy” and pregnancy status as pregnant vs. non-pregnant). Calving ease is a 

traditional example of ordered categorical traits which has an observed distribution based on the 

discrete nature of its phenotype (Fig. 2.1) which is assigned to animals following a scoring 

system based on the degree of calving difficulty which ranges from 1 for unassisted calving to 5 

for mal-presentation. Since most ordered categorical traits in the field of animal science are in 

essence quantitative traits, categories of this kind of traits can be ordered along a hypothetical 

underlying continuous distribution in which the observed categories are transformed to an 

underlying continuous variate known as liability.  
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Calving ease is by definition the opposite of calving difficulty which is an ordered 

categorical trait measured by subjective scoring system in which the degree of calving difficulty 

is recorded as follow: 1 for unassisted calving, 2 for minor assistance, 3 for major assistance, 4 

for caesarian section, and 5 for abnormal presentation (BIF, 2010).  

Economically relevant traits (ERT) are “the traits that directly affect profitability by being 

associated with a specific cost of production or an income stream” (Golden et al., 2000). The 

economic importance of calving difficulty is documented in the literature (Wiltbank et al., 1961; 

Anderson and Bellows, 1967; Brinks et al., 1973; Laster et al., 1973). Because of its association 

with a cost of production such as loss of calf (Nix et al., 1998), death of dam, and the cost of 

labor and veterinary procedures (Philipsson, 1976b; Philipsson et al., 1979; Meijering, 1980, 

Liability 

Figure ‎2.1: The underlying continuous variate (liability) and the discrete observed scores 
of calving ease 

 t1                       t2         t3           t4          

2= Minor assistance 1= Unassisted 3= Major assistance 4= Cesarean 5= Mal-presentation 
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1984), calving difficulty can be classified as an ERT. Further, Thompson et al. (1983) reported a 

reduction in subsequent reproductive performance of cows experiencing calving difficulty. The 

economic importance of calving difficulty, in dairy cattle, was also confirmed and estimated by 

Dematawewa and Berger (1997). They evaluated the economic impact of dystocia on different 

production and reproductive traits. These authors estimated the cost associated with each 

category of calving difficulty to be $0.00, $50.45, $96.48, $159.82, and $379.61 per head for 

scores 1 to 5, respectively.   

2.2. Factors affecting calving difficulty 

Some factors have a direct effect on the incidence of calving difficulty such as calf birth 

weight and pelvic area of dam. Other factors have indirect effect on calving difficulty via 

affecting either birth weight or pelvic area of dam. Sex of calf, gestation length, and weight of 

dam during pregnancy are important factors that influence birth weight and consequently calving 

difficulty. Factors affecting pelvic area of dam are parity and age of dam at first calving. 

Literature describing the contributing factors that affect the incidence of calving difficulty are 

reviewed in the succeeding sections.    

Calf size: The incidence of calving difficulty is primarily driven by a combination of two major 

factors: size of calf (consequently, birth weight) and pelvic area of dam (Bellows et al., 1969; 

Prentiss, 1971; Rice and Wiltbank, 1972). Bellows (1993) reported that the most important 

factors that affect dystocia were precalving weight and pelvic area of the dam, as well as sex and 

birth weight of the calf. Further, he concluded that birth weight is the most important factor 

followed by the dam’s pelvic area. The incidence of calving difficulty is greatly influenced by 

the interactions of birth weight of calf and dam’s pelvic area (Fig. 2.2) where birth weight has a 

higher influence. As birth weight increased by 1 kg, the odds of calving difficulty increased by 
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13% (Johanson and Berger, 2003). Laster et al. (1973) and Burfening et al. (1978a) estimated 

increase in the percent of assisted calving as 2.3% (across breeds and different ages of dam) and 

4.5% (2 yr old Simmental heifers), respectively, when birth weight increased by 1 kg.  

Calf birth weight, as a measure calf size, is widely used in the genetic evaluation of 

calving difficulty. This is a result of its strong genetic correlation with calving difficulty which 

ranged from 0.72 to 0.78 (Burfening et al., 1981; Koots et al., 1994b; Eriksson et al., 2004; 

Phocas and Laloe, 2004; Jamrozik and Miller, 2014). Calf size is a function of genetic and 

environmental factors. These factors are breed of sire and dam, sex, gestation length, parity, age 

of dam, and dam’s nutrition during gestation. Each of these deserves additional investigation 

which follows. 

 

Figure ‎2.2: Relationships among pelvic area, calf birth weight and percent calving 
difficulty. Adapted from Bellows (1993). 
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Sex of calf: Bull calves are typically heavier at birth than heifers. Consequently, a higher 

incidence of calving difficulty is observed when the calf is a male. Everett and Magee (1965) and 

Smith et al. (1976) reported that male calves have longer gestation length (0.9 and 1.7 d, 

respectively) compared to female calves. The longer gestation length was associated with higher 

birth weight. A corresponding effect of sex on dystocia was confirmed in several studies 

(Bellows et al., 1971; Brinks et al., 1973; Naazie et al., 1989; Sieber et al., 1989; Klassen et al., 

1990; Dekkers, 1994; Johanson and Berger, 2003). Bull calves have a higher incidence of 

dystocia (P < 0.05) compared to heifers, consequently, they have higher mortality within 24 h of 

birth (Nix et al., 1998). Incidence of unassisted calving for males and females, from first parity 

heifers, were 48.9% and 55.6%, respectively (Dekkers, 1994). For later parities, the incidence of 

unassisted calving were 66.5% and 71.3% for their respective sex. Similar results were attained 

by Steinbock et al. (2003) who found that Swedish Holsteins heifers that gave births to males 

expressed higher incidence of calving difficulty comparing to heifers with female progeny. 

Gestation length: Cows with longer gestation length experienced more calving difficulty (Laster 

et al., 1973; Philipsson, 1976a). Gestation length has been investigated in relation to both calf 

size and sex (Everett and Magee, 1965; Smith et al., 1976). On the genetic level, moderate 

genetic correlations of 0.20 and -0.21 were estimated between gestation length and birth weight 

and calving ease, respectively, (Lee et al., 2002). This suggests an antagonistic relationship 

between gestation length and calving ease which is driven by the positive effect of gestation 

length on birth weight. Similar results were obtained by Jamrozik and Miller (2014) who 

reported that gestation length had genetic correlation estimates of 0.23 and -0.21 with birth 

weight and calving ease, respectively. Results from Kemp et al. (1988) showed that as gestation 

length increased, the incidence of calving difficulty increased. Mujibi and Crews (2009) 
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estimated strong genetic correlations of 0.43 and -0.38 between gestation length and birth weight 

and calving ease (transformed to Snell scores), respectively. In summary it appears that gestation 

length is consistently negatively related to calving ease and positively related to birth weight. 

Parity and age of dam at first parity: The total cost associated with calving difficulty was 

$28.53 for 2 year old heifers and about $10.00 for older cows (Dematawewa and Berger, 1997). 

Parity and age of dam within parity appeared to also influence incidence of calving difficulty; 

therefore, inclusion of parity in the genetic evaluation of calving difficulty has been emphasized 

by many researchers (Berger and Freeman, 1978; Harville and Mee, 1984). In general, first 

parity heifers, in both dairy and beef cattle, expressed higher incidences of calving difficulty than 

cows at later parities (Berger and Freeman, 1978; Thompson et al., 1983; Fiedlerová et al., 

2008). Furthermore, the odds of unassisted calving versus assisted calving with major difficulty 

were 11.58 times greater in older cows than in heifers (Berger et al., 1992). This trend was 

further reinforced when Nix et al. (1998) reported primiparous dams had a higher incidence (P < 

0.01) of calving difficulty (17%) compared to multiparous dams (4%). They found that calf 

mortality increased as the severity of calving difficulty increased. Further, loss of calves from 

primiparous dams within 24 h of birth was higher than (P < 0.01) those from multiparous dams 

with mortality rates of 7% and 4%, respectively, leading the authors to conclude that birth weight 

and parity of dam explained most observed variability in calving difficulty. Steinbock et al. 

(2003) concluded that first parity Swedish Holsteins heifers showed more variation in calving 

difficulty than second parity heifers. The incidence of calving difficulty was higher for first 

parity heifers at calving age <30 months and they recommended that first parity heifers should be 

bred at a moderate age (> 21 mo) to reduce the incidence of calving difficulty. Laster et al. 

(1973) reported that, when birth weight held constant, age of dam was the most important effect 
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(p<0.005) associated with calving difficulty. Similar results were reported by Brinks et al. (1973) 

in their study on Hereford.  

Pelvic area of dam: Calf birth weight and pelvic area of dam are the most important factors 

influencing the incidence of calving difficulty (Meijering, 1984). The author reported that both 

factors accounted for 50% and 10% of total variance of calving difficulty. Feto-pelvic 

disproportion (FPD) occurs when the fetus weight or size is not compatible with pelvic area of 

the dam. Pelvic area of dam is considered the most important maternal trait that affects calving 

difficulty (Price and Wiltbank, 1978; Morrison et al., 1985). Incidence of calving difficulty 

decreased by 11% when pelvic area increased by 1cm2 (Johanson and Berger, 2003). However, 

Laster (1974) and Naazie et al. (1991) found weak phenotypic and genetic correlations between 

calving difficulty and pelvic area of dam; however, in the latter study, authors speculated that the 

low correlations would be attributed to the above-threshold pelvic area observations (i.e., dams 

have pelvic area larger than the threshold at which calving difficulty would likely occur). Naazie 

et al. (1991), in a study on three synthetic breeds, suggested that pelvic area and birth weight 

combined would be a better predictor for calving difficulty than using only one of them. Johnson 

et al. (1988) suggested that ratio of heifer pelvic area to calf birth weight should have a minimum 

of 4.7 cm2/kg; however, estimation of birth weight will be critical because it is not available 

before calving. Bellows et al. (1982) reported that heifers are smaller than cows in pelvic height, 

width, and pelvic area, consequently they experienced more calving difficulty. In summary, 

estimation of breed-specific pelvic area threshold is not practical since the interaction with birth 

weight was evident; however, ratio between birth weight and pelvic area would be a viable 

option to consider. Further, as heifers are growing, age of heifer when pelvic area is measured is 

another important factor that should be considered. 
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Dam weight and prenatal nutrition: Level of nutrition during pregnancy affects directly dam 

weight and body condition score which in turn influence fetal growth. Since birth weight is the 

final weight of prenatal growth, any change in nutrition will accordingly change weight of dam 

and calf birth weight and eventually the incidence of calving difficulty. Cows with body 

condition score (BCS) of 4.7 gave birth to lighter calves (-4.3 kg) than those from cows with 

BCS of 5 (Houghton et al., 1990). Corah et al. (1975) found that heifers lost 5.8 kg of body 

weight gave birth to lighter calves (-2 kg) compared to calves produced by cows that gained 36.1 

kg in the last 100 d of gestation. Birth weight of calves from heifers with BCS of 2.5 was lower 

(-4.1 kg) than those from heifers with BCS of 5.5, however, nutrition level did not affect 

incidence of calving difficulty (Bellows and Short, 1978). Freetly et al. (2000) reported that cows 

on a low plane nutrition during pregnancy gave birth to calves with lighter birth weight 

compared to calves from cows with better nutrition. However, in a study on Angus, Hereford, 

Angus-Hereford, and Simmental-Angus, Morrison et al. (1999) found that weight and BCS of 

dam did not affect calf birth weight. 

Breed of sire and dam: Direct genetic effects, for different beef cattle breeds, can account for 

significant amounts of variation in birth weight ranging from26 to 66% of total variance (Koots 

et al., 1994a; Bennett and Gregory, 1996; Eriksson et al., 2004; Phocas and Laloe, 2004). For 

calving difficulty, heritability estimates were typically lower ( 6 to 26%; Kemp et al., 1988; 

Koots et al., 1994a; Matilainen et al., 2009). The genetic makeup of sire and dam, i.e., maternal 

grandsire of a calf can affect the incidence of calving difficulty (Laster et al., 1973; Meijering, 

1984). Laster et al. (1973) reported that calves sired by continental beef breeds expressed more 

difficult births than those sired by Hereford, Jersey, and Angus. Furthermore, breed of dam was 

another determinant factor for calving difficulty where Hereford dams experienced more calving 
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difficulty than Angus dams. Brinks et al. (1973) reported that line of sire and line of dam 

significantly influenced incidence of calving difficulty in a study with different Hereford lines. 

Smith et al. (1976) reported that breed of sire and breed of dam have significant effects on 

calving difficulty of Hereford and Angus cows with calves sired by Hereford, Angus, Jersey, 

South Devon, Limousin, Charolais, and Simmental sires. Results showed that interaction 

between breed of sire and age of dam (parity) had a highly significant effect on calving 

difficulty, especially for first parity dams. 

In summary, all genetic and environmental factors associated with calving difficulty, such 

as genetic makeup of calf, sex, gestation length, nutrition, parity and age of dam, directly affect 

birth weight, which is the most important factor influencing incidence of calving difficulty. The 

second most influential predictor of calving difficulty appears to be pelvic area of dam which 

interacts with birth weight to form Feto-pelvic disproportion (FPD), which is considered the 

main cause of calving difficulty.     

2.3. The threshold model for categorical traits 

Phenotypes of many traits in the field of animal science are recorded as ordered 

categories (e.g., calving ease and litter size in sheep). Categorical nature of such traits makes it 

difficult to be analyzed via means of linear methodologies where traits are assumed to follow a 

normal distribution. One of the earliest papers that provides a procedure to deal with categorical 

traits was that of Grizzle et al. (1969), who proposed a weighted regression procedure in which 

weights are based on population frequencies estimated from data. Authors assumed that 

subclasses, e.g. sex, age of dam, sire, and herd, are samples from separate populations; however, 

Schaeffer and Wilton (1976) reported that those assumptions were not suitable for sire evaluation 

of calving ease rather they assumed that subclasses are sampled from one population.  Berger 
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and Freeman (1978) transformed a categorical trait into a continuous trait through assigning K 

ordered numerical values to the K categories and then the transformed trait was treated as a linear 

trait that followed the general linear mixed model. Linear approaches, such as Henderson’s best 

linear unbiased prediction (BLUP; Henderson, 1953; Henderson, 1973, 1975), assume that data 

is normally distributed, additive effects, and variances are homogenous; however, when 

evaluating ordered categorical traits using linear methodologies, those assumptions are violated 

(Thompson, 1979; Gianola, 1982).  It has been suggested that categorical traits have a 

hypothetical underlying continuous scale “liability” which becomes discrete (observed scale) 

with fixed thresholds that determine the boundaries of the categories (Wright, 1934; Dempster 

and Lerner, 1950; Falconer, 1965). The assumption of normal distribution of liability appears 

true if polygenic inheritance with large number of loci is evident (Foulley et al., 1990). Theory of 

the threshold model was developed by Wright (1934), Bliss (1935), and Dempster and Lerner 

(1950); however, the statistical methodology for the model was developed by Gianola (1982), 

Foulley et al. (1983), Gianola and Foulley (1983), Harville and Mee (1984), Foulley et al. 

(1987), and Foulley and Manfredi (1991). The application of the threshold methodology from a 

Bayesian point of view was introduced by Gianola and Foulley (1983). The work of  Harville 

and Mee (1984) provided a procedure for the analysis of ordered categorical traits from the 

classical BLUP point of view.  

Development of the threshold methodology in the Bayesian framework: The work of Gianola 

and Foulley (1983) of fitting a threshold model in a Bayesian setting was extended by Foulley et 

al. (1983) to incorporate a continuous trait “birth weight” with equal design matrices (i.e., no 

missing values). Foulley and Gianola (1984) extended the threshold model of Foulley et al. 

(1983) to fit multiple categorical traits (calving difficulty and calf viability). Furthermore, 
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Foulley and Gianola (1986) handled the problem of missing data for sire evaluation of multiple 

binary traits, but without allowing missing fixed effects. On the other hand, Foulley (1987) 

derived equations for models with different fixed effects (i.e., unequal design matrices for fixed 

effects), but those models do not support missing data (as cited in  Janss and Foulley, 1993). 

Janss and Foulley (1993) developed a bivariate model for one continuous “birth weight” and one 

threshold binary trait “calving difficulty” with unequal design matrices (i.e., unbalanced layout) 

for both fixed effects and missing data. Hoeschele et al. (1995) extended the model of Janss and 

Foulley (1993) to fit one polychotomous trait (calving ease), rather than binary, and several 

continuous traits (birth weight, gestation length, and pelvic size), rather than one continuous trait, 

with missing data and unequal models (i.e., different fixed effects). 

The threshold methodology in a BLUP setting: A variety of approaches have been proposed to 

deal with ordered categorical responses in a BLUP setting. Several publications have translated 

categorical responses into quantitative responses by assigning K ordered numerical values to K 

categories (i.e., assigning a value to each category and then using the assigned values as 

observations). The analysis assumes the new discrete quantitative response follows a mixed 

linear model (Schaeffer and Wilton, 1976; Tong et al., 1976; Tong et al., 1977; Berger and 

Freeman, 1978). However, assumptions of additivity of effects and homogeneity of variances are 

much less reasonable and more likely to be violated in that approach (Gianola, 1982; Harville 

and Mee, 1984).  Gianola (1980a)  proposed a method based on the logistic distribution. 

Logarithmic transformations of counts are expressed as linear combinations of fixed effects and 

random variables whereas Quaas and Van Vleck (1980) proposed a procedure in which the 

probability of assignment to a particular category was assumed to be a random variable and the 

BLUP of the category frequencies of future progeny was obtained (Quaas and Van Vleck, 1980) 
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using that transformed data. The procedure proposed by Harville and Mee (1984) represented the 

threshold methodology applied to ordered categorical responses in a BLUP context. Authors 

described the procedure as “A mixed-model version of the threshold model in which it is 

assumed that the observed category is determined by the value of an underlying unobservable 

continuous response that follows a mixed linear model”.  

The procedure of Harville and Mee (1984) represents the BLUP version of the threshold 

methodology and the procedure of Gianola and Foulley (1983) resembles the Bayesian 

methodology. Both are “best-described” and fit the discrete nature of ordered categorical traits. 

Both procedures are equivalent, despite the fact each used different approaches to derive the 

equations for estimation and prediction. Furthermore, both methods involve a system of 

nonlinear equations which must be solved iteratively; consequently, they are computationally 

expensive compared to the linear models of Henderson’s BLUP (Djemali et al., 1987).  

Computational limitations of the threshold model: The computational demand of the threshold 

model analysis is about three to five times larger than the demand of the linear model (Misztal et 

al., 1989). The authors stated that solutions of the threshold model need to be obtained 

iteratively, and in each round a linear system of equations must be solved. The number of 

threshold computations is proportional to the number of thresholds and records (Misztal et al., 

1989). Because it requires solving a system of nonlinear equations iteratively, the threshold 

methodology is computationally more demanding than the linear approach (Djemali et al., 1987) 

and could therefore be problematic for very large data. Another limitation arises when all 

observations in a given class or level of a fixed effect fall in the same category. This situation is 

called the extreme category problem (ECP) where solutions of those fixed effects tend toward 

(±∞) (i.e., solutions for those classes would not converge). Further, denominators of some 



18 
 

formulae approach zero which cause division by zero errors. As a result, convergence rate 

becomes poor and eventually the system will be slow or not converge (Misztal et al., 1989). To 

avoid the ECP, Harville and Mee (1984) recommended treating fixed effects as random or 

removing the extreme observations causing the problem. However, discarding classes with 

observations in extreme categories may cause distorted inferences (i.e., data would not be 

representative “biased”) (Misztal et al., 1989). The authors proposed two methods to handle the 

ECP. First, to avoid division by zero, values that cause division by zero are restricted and should 

not drop below a specified value. Second, solutions, that are expected to approach plus or minus 

infinity, should be set to a large number (in absolute sense) which has normal integral close to 1 

or 0 (this technique is called intercepting). This technique does not affect the overall system of 

equations because observations in such fixed effects do not contribute to the coefficient matrix. 

 Sorensen and Gianola (2002) illustrated the application of the threshold model in the 

genetic evaluation of categorical traits as single trait and with a bivariate analysis jointly with 

continuous traits. Below we present the sampling model which described the transformation of 

the observed ordered categorical trait to an underlying liability scale. The notations are the same 

as those used by Sorensen and Gianola (2002). Liabilities (li) were presented by a vector (l) 

where                   and the ith observation is assumed to be 

                    ( 2.1) 

Where β were the fixed effects, a is a vector of additive effects, random residual ei ~ N (0,   ),             were incidence row vectors. The conditional distribution of vector (l) was: 

                             ( 2.2) 

The parameterization        was assumed. The vector y denoted the observed categorical data, 

where                   and each yi represents an assignment into one of (c) categories 
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which result from c + 1 hypothetical thresholds (ti) in the underlying scale. Those thresholds 

were as follow tmin < t1 < t2 < … < tc-1 < tmax. The two extreme thresholds were set to be tmin = t0 , 

tmax = tc , so the remaining (c-1) thresholds can take any value that falls between tmin and tmax. In 

order to center the distribution, one of the thresholds must be fixed, typically t1 was assigned to 

be zero. As a result of this setting, the conditional probability that yi falls in category j (j = 1,2, 

…,c), given β, a, and                           is 

                                                           

                                                       ( 2.3) 

where   is the standard cumulative distribution function of the normal distribution which gives 

the area under the normal curve up to and including the jth category. 

Since the data were conditionally independent, given β, a, and t. Therefore the sampling model 

can be written as 

                                       
   

 
             

                                                   
   

 
    ( 2.4) 

where I (yi = j) is an indicator that equals 1 if the observation falls in category j and 0 if not. 

 

Reviewed literature in this section, theoretically, revealed the superiority of the threshold 

model over the linear model resulting in a better fit of the ordered categorical responses. 

However, advantages of the threshold model over the linear model, applied to field data and via 

means of simulation studies, will be discussed later in this chapter.   
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2.4. Markov Chain Monte Carlo and Gibbs sampler 

Markov Chain Monte Carlo (MCMC) is a highly used Bayesian estimation methodology. 

The advantage of MCMC over other methods (e.g., Restricted Maximum Likelihood (REML) 

that require analytical or numerical integration techniques) is its capability to allow inferences to 

be drawn from complex posterior distributions. The concept of MCMC is in general that a 

Markov chain I generated via iterative Monte Carlo simulation which has the desired posterior 

distribution as its equilibrium (Sorensen and Gianola, 2002). The work of Metropolis et al. 

(1953) and Hastings (1970) was the foundation of a general MCMC named after them as “the 

Metropolis-Hastings algorithm”. In a later work, Geman and Geman (1984) proposed the Gibbs 

sampler algorithm which is considered a special case of Metropolis-Hastings. For variance 

components estimation (random variables) using MCMC algorithms, the Markov chains are 

assumed to have a continuous state spaces which means they are normally distributed.  

2.4.1. The Gibbs sampler 

The Gibbs sampler is a very highly used MCMC algorithm, because of its simplicity, 

compared to other MCMC algorithms. It was first introduced by Geman and Geman (1984) who 

named it after Josiah Willard Gibbs, an American mathematical physicist who introduced the 

Gibbs distribution which was used in the paper of Geman and Geman (1984).  The notation that 

will be used in this section are the standard ones found in the literature following the same 

notation used in Sorensen and Gianola (2002). 

Suppose we have a joint distribution               , where Ѳs were the parameters of 

interest, and the posterior distribution is                              where y was the 

response. Let the parameter vector with the ith parameter deleted be                           , then the fully conditional posterior distribution of    was  
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                                              ( 2.5) 

The parameter updates could be for one parameter at a time (single-site updating) or for several 

parameters (a block). The latter approach allows updating several parameters simultaneously, 

leading to a faster convergence rate (Liu et al., 1994). 

2.4.2.  The Gibbs sampling algorithm 

Consider a model with vector of parameters                   that have a posterior 

density                      Let the starting values be                        then sampling 

parameters from their prospective fully conditional distributions through the iterative process of 

the Gibbs sampler to convergence will be: 

Sampling       form                       
Sampling       form                                 
Sampling       form                                     
Then the new round of iterations begins with       attained from previous iteration and so forth. 

Samples are dependent on the starting values for a period of time called the burn-in period for 

which results are usually discarded. Burn-in period is determined by the visual examination of 

what is known as trace plots “or history plots” which plots the parameter value as a function of 

sample number. The discarded burn-in samples are the initial samples obtained during the search 

for the marginal posterior distribution of parameters. These samples (rounds) reveal trend and 
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fluctuation before the parameters posterior distribution is reached. After the burn in period, the 

samples are drawn from the normal posterior distribution with density  

                                          

 

Samples of       are regarded as draws from its marginal posterior distribution with density of                        
The joint distribution is uniquely determined by the fully conditional distributions, so Gibbs 

sampler draws samples from the joint distribution by sampling from all fully conditional 

distributions. If the model has converged, the trace plot will move up and down around the mode 

of the distribution. A clear sign of non-convergence occurs when we observe some trending in 

the trace plot.    

2.5. Threshold model versus linear model 

Problems associated with analyzing categorical traits using linear models were addressed 

by Gianola (1980a, 1980b, 1982). The author pointed out that fitting a linear model to categorical 

responses does not account for constraining the probability across all categories to unity. Further, 

he illustrated that additive genetic variance on the observed scale is not constant and depends on 

the incidence of the trait in subpopulations examined by the model.     

One of the first comparisons between a linear model and threshold model was presented 

in a simulation study of sire evaluation for categorical data by Meijering and Gianola (1985). 

The authors found that fitting a threshold model for binary traits and unbalanced data 

outperformed the linear model when heritability of the trait was moderate (0.2) or high (0.5) and 

the incidence of trait used for categorizing the underlying liability was 1% or 5%. Efficiency of 
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selection under both models was the comparison criterion. Efficiency was estimated as the 

realized genetic progress as a percentage of maximum genetic progress. Maximum genetic 

progress was defined as the genetic selection differential occurring if the true transmitting 

abilities of sires were observable. Differences between efficiencies of the two models ranged 

from 3.9%, when h2 = 0.5 and incidence = 5%, to 12.2%, when h2 = 0.2 and the binary trait 

incidence equaled 1%. However, they found that threshold and linear models did not differ under 

three scenarios: a very low heritability (0.05), incidence of binary response was 25% or greater, 

and a situation where the trait was tetrachotomous. That means the more categories the trait had, 

the more normally distributed it became.      

In another simulation study by Hoeschele (1988), Quasi Best Linear Unbiased Prediction 

(QBLUP) and Maximum A Posteriori Estimation (MAPE) were compared using two criteria: the 

correlation between true and estimated breeding values and the realized genetic response 

resulting from truncation selection. Results revealed that magnitude of the correlation between 

true and estimated breeding values was dependant on heritability, the differences in 

subpopulation averages, and the threshold locations on the underlying scale. MAPE 

outperformed QBLUP by 1-3% when the incidence of response was 93%, 6%, and 1%, and the 

heritability was either 0.2 or 0.5; however, there was no difference when heritability was 0.05. 

Correlation differences between MAPE and QBLUP, for binary data, decreased from 5-12% to 

0-1% when incidence of response reduced from 99% to be 77% (became more normally 

distributed). Moreover, higher differences between subpopulation means (fixed effects) resulted 

in superiority of MAPE over QBLUP. The author reported that the loss in accuracy of selection, 

resulted from using the categorical phenotype instead of the underlying variate, depended on 

both the threshold location, which reflect the incidence of the trait, and the heritability. Higher 
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incidence rates of greater than 0.90 combined with low heritability lead to inefficient estimation 

using the binary observed phenotype. On the other hand, evaluation of binary trait, on the 

observed scale, with low incidence (<0.90) and moderate heritability (0.20) resulted in higher 

accuracy.  Results obtained by Hoeschele (1988) were in agreement with those reported by 

Meijering and Gianola (1985). 

In a simulation study by Wang et al. (2005), they evaluated calving ease and birth weight 

for simulated beef cattle population using a bivariate linear-linear (LL) and a linear-threshold 

(LT) sire-maternal grandsire model. Results revealed that both models performed the same with 

respect to accuracy (Pearson correlation) and Spearman rank correlation between true and 

predicted breeding values.  

Abdel-Azim and Berger (1999) in a simulation study showed that the threshold model 

gave more accurate estimates of genetic parameters than the linear model. Given an expected 

heritability of 0.2, they found that estimated heritability using a threshold model was 0.22 

compared to an estimate of 0.10 using linear model. Authors stated that accuracy was increased 

with higher number of categories, higher heritability, more balanced data, and increasing 

incidence of the trait (i.e., more normally distributed). 

For field data, evidence supporting the threshold model superiority was inconclusive. 

Several studies did not find differences between the methodologies. Renand et al. (1990), in a 

study using Charolais data reported, no differences between threshold and linear models fitted to 

calving score (unassisted, easy assistance, hard pull or caesarean) and dystocia score (easy or 

difficult). However, when data was reduced using only 20% of the progeny per sire, the 

threshold model showed a better efficiency (Rank correlation between sire evaluations). Harville 

and Mee (1984), in a study using Hosltein bulls (n = 85), reported that dairy bulls ranked first 
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and last using a threshold model were also ranked the same under linear model. However, the re-

ranking of some bulls (n = 9), by the two models, were more than 20 places. Similarly, ranking 

of dairy sires by a threshold model did not differ from those by BLUP (Clutter et al., 1989). 

Other studies by Jensen (1986), Djemali et al. (1987), Weller et al. (1988), Hagger and Hofer 

(1989), Ron et al. (1990), McGuirk et al. (1999), Andersen-Ranberg et al. (2005), Marcondes et 

al. (2005), and Guerra et al. (2006) reported very high correlations (>0.9) between sire solutions 

from threshold and linear models.  

Most studies used the correlations between sire solutions from both threshold and linear 

models as a means of evaluating approaches. This method may give high correlations even if 

both models are inefficient. A study of dairy cattle  by Hagger and Hofer (1989) was the first to 

apply data splitting methodology (i.e. cross validation, for models evaluating dystocia). The 

study by Olesen et al. (1994) on Norwegian sheep was one of the first studies to use the cross 

validation technique, which yielded correlations between estimated and predicted sire solutions 

(breeding values). The cross validation procedure was done by sampling 50% of data (sample 1) 

and the remaining data was used as sample 2. This technique examines the predictive ability of 

the model (i.e., the model’s ability to repeatedly produce the same breeding values). The higher 

the correlation the better the model ranks sires. Even though results of this study showed that 

threshold and linear models were not different in their predictive ability and goodness of fit, it 

provided new means for models comparison.  Another study of sheep by Matos et al. (1997) also 

did not find differences between threshold and linear models with respect to their goodness of fit 

and their predictive ability. 

Most studies evaluated threshold model versus linear model only for categorical traits; 

however, studies by Varona et al. (1999b) and Ramirez-Valverde et al. (2001) incorporated 
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correlated continuous traits in the genetic evaluation of the discrete traits. Therefore, the model 

comparison expands to become threshold-linear versus linear-linear instead of merely threshold 

versus linear. In a study using Gelbvieh data, Varona et al. (1999b) compared univariate 

threshold animal models with linear animal models for calving ease and then also compared 

bivariate models which were threshold-linear animal model versus the linear-linear animal model 

for calving ease and birth weight. Authors then used two criteria to compare the predictive ability 

of models fitted to Gelbvieh data (n = 26,006) and also simulated data (n = 6,200). Those criteria 

were mean square error (MSE), for both field data and simulated data, and the correlation 

between simulated and predicted breeding values for simulated data. Results from the simulation 

study showed that the average MSE for linear, threshold, linear-linear, and threshold-linear were 

0.39, 0.37, 0.32, and 0.29, respectively, with correlations between simulated and predicted 

breeding values of 0.45, 0.47, 0.51, and 0.52, respectively. For Gelbvieh data, the MSE was 0.40, 

0.39, 0.33, and 0.31, respectively. These results revealed that the threshold methodology 

outperformed the linear method. 

Ramirez-Valverde et al. (2001) in their study of calving difficulty and birth weight in 

Gelbvieh cattle, compared the predictive ability of threshold, linear, linear-linear, threshold-

linear animal and sire-maternal grandsire models. The comparison criterion was the average 

correlation between five replicates of two complementary data subsets. The sampling procedure 

was done by randomly sampling 50% of data (sample 1) with the remaining records used as 

sample (2). Five replicates, each consisting of two complementary samples, were created by re-

sampling from data. Correlation estimates between estimated and predicted calving difficulty 

breeding values for sires with progeny (n ≤ 50) were 0.64, 0.68, 0.87, and 0.90 for linear, 

threshold, linear-linear, and threshold-linear animal models, respectively. For sires with progeny 
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(50 < n ≤ 100), correlations were 0.71, 0.70, 0.87, and 0.90, respectively. For sires with progeny 

(n >100), correlations were 0.80, 0.81, 0.88, and 0.91, respectively. Correlation estimates from 

sire-maternal grandsire model, for sires with (n ≤ 50), were 0.45, 0.42, 0.56, and 0.56 for their 

respective models. For sires with progeny (50 < n ≤ 100), correlations were 0.70, 0.68, 0.86, and 

0.86, respectively. For sires with progeny (n >100), correlations were 0.80, 0.80, 0.87, and 0.88, 

respectively. Authors concluded that the threshold model out preformed the linear model when 

animal model was fitted. However, they did not find differences when the sire-maternal 

grandsire model was fitted. Authors suggested that the threshold-linear animal model is the 

model of choice for genetic prediction of both direct and maternal effects.  

In a study of litter size and days to lambing in Ripollesa ewes, Casellas et al. (2007) used 

mean square error (MSE) and correlation between observed and predicted records as criteria for 

models comparison in terms of goodness of fit and predictive ability. Litter size was fitted as a 

binary trait. The threshold model appeared superior to linear model, furthermore, bivariate 

models showed a better accuracy, as expected, compared to univariate models. Authors 

concluded that the genetic evaluation of litter size using threshold-linear model was justified. 

Data on clinical mastitis (CM), somatic cell score (SCS), 305-day milk (MY), and protein 

(PY) and fat yield (FY) in first-lactation Finnish Ayrshire cows were analyzed fitting the 

following models: threshold (TM), linear (LM), linear-linear (LLM), and threshold-linear (TLM) 

(Negussie et al., 2008). Clinical mastitis was either fitted as a discrete or a continuous trait. The 

correlation between estimated breeding values for CM from replicates of randomly split data sets 

was used to assess the predictive ability of models. Results from TLM, LLM, TM and LM 

indicated better performance of TLM compared to LLM. Superiority of bivariate models (i.e. 

higher correlations between estimated breeding values for CM from replicates of randomly split 
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data sets, was noted compared to univariate models for clinical mastitis). However, univariate 

models did not yield differences for correlations between EBV for CM, except for sires with low 

accuracy. 

Gevrekci et al. (2011) evaluated dystocia in Holsteins using different models. They 

compared threshold sire model (TS), threshold sire-maternal grandsire (TS-MGS), and linear 

sire-maternal grandsire (L). Authors concluded that the threshold model was superior to the 

linear model in the genetic evaluation of dystocia with the sire-MGS being the best approach. 

 De Maturana et al. (2009) evaluated the predictive ability of threshold and linear models 

for calving difficulty (CD) and gestation length (GL) in US Holsteins. Four criteria were used to 

evaluate the predictive ability of the alternative models. Comparison criteria were mean squared 

error of the difference between observed and predicted CD scores, a Kullback-Leibler 

divergence measure between the observed and predicted distributions of CD scores, Pearson’s 

correlation between observed and predicted CD scores, and ability to correctly classify bulls as 

above or below average for incidence of CD. Authors concluded that all the models had similar 

predictive ability, even though, the bivariate models showed slight improvement over univariate 

models with respect to model predictive ability. They justified the similar predictive ability of 

models by the number of categories (3 and 4 categories) used for calving difficulty which 

provides more information compared to a binary scoring approach. 

In a study of Czech Charolais cattle, Vostrý et al. (2014) compared predictive ability of 

threshold and linear models for the genetic evaluation of birth weight and calving ease. Fitted 

models were linear-linear animal model (L-LM) with calving ease score, linear-linear animal 

model (SC-LM) in which calving ease scores transformed into Snell scores, bivariate threshold-

linear animal model (T-LM) with calving ease scores. Correlations between split data sets for 
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calving ease fitting L-LM, SC-LM, and T-LM were 0.41, 0.63, and 0.75, respectively. The 

authors found that the threshold model was superior; however, because of its advantages in terms 

of computation time and practical considerations, they recommended the use of linear model 

with calving ease scores transformed to Snell scores.    

In summary, results from literature related to the superiority of the threshold model vary. 

Several studies from reviewed literature suggest threshold model superiority, either from 

theoretical perspective or from using simulated and field data. However, there were many studies 

that showed no difference between threshold and linear models. The superiority of the threshold 

model depends basically on the data structure and the categorical trait of interest. A categorical 

trait is expected to be better evaluated using the threshold model methodology if it has the 

following characteristics: high incidence, small number of categories (i.e., a binary trait), large 

proportion of sires with few progeny, and large differences in subpopulations averages (i.e., 

herds) (Meijering and Gianola, 1985; Hoeschele, 1988; Abdel-Azim and Berger, 1999).  

Consequently, when data and trait of interest are lacking those characteristics, the threshold 

model is expected to produce genetic predictions close or similar to those produced by the linear 

model with no apparent superiority to the threshold model.    

2.6. Phenotypic averages of calving ease, postweaning gain, and weights at birth, weaning, 

and yearling  

The ultimate goal of the genetic improvement of farm animals is producing animals with 

the best genetic makeup for performance traits. However, information on animals is provided as 

phenotypic records which are used to predict animals genetic merit (i.e., EBV); therefore, the 

selection of animals that have the best genetic makeup relies on phenotypic information and will 

correspondingly results in producing animals with better phenotypes. Phenotype is a function 
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(i.e., heritability) of genotype and vice versa. Therefore, any change in the average breeding 

value of a trait, e.g. due to selection, is associated with a change in its phenotypic average. The 

phenotypic average is the simplest and easiest statistic to interpret when describing the 

phenotype of performance traits. Thus, estimates of phenotypic averages of studied traits were 

reviewed in this section. 

Roughsedge et al. (2005) reported that the average observed calving ease score of 

Simmental was 1.18 on a 5 point scale. Other studies, on different beef cattle breeds, have 

reported average calving ease score ranged from 1.04 to 1.64 (Pribyl et al., 2003; Eriksson et al., 

2004; Phocas and Laloe, 2004; Roughsedge et al., 2005; Gutierrez et al., 2007; Matilainen et al., 

2009). However, the average observed score could be a misleading statistic because of the 

different scoring systems used in some studies. Changing the observed calving ease scores by 

merging different categories to be one category will result in a change in the average, even for 

the same data set. The percentage of unassisted calvings, regardless the number of other 

categories, may be a better way to represent calving ease scores. Percentage of unassisted calving 

of Simmental cattle reported by Bennett and Gregory (2001) and Brandt et al. (2010) and were 

43% and 87.6%, respectively.   

 Koots et al. (1994b) reported a weighted average birth weight of 35.1 kg for beef cattle. 

Several studies reported average birth weight for different beef cattle breeds ranging from 34.58 

to 47.3 kg (Lee, 2002; Pribyl et al., 2003; Eriksson et al., 2004; Phocas and Laloe, 2004; Iwaisaki 

et al., 2005b; Gutierrez et al., 2007; Matilainen et al., 2009; Mujibi and Crews, 2009; Brandt et 

al., 2010). For Simmental cattle, Brandt et al. (2010) reported an average birth weight of 44.3 kg. 

In the current study, the average birth weight of the Simmental beef cattle was 40.1 kg. 
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  In his review paper, Koots et al. (1994b) estimated a weighted average weaning weight of 

203 kg for beef cattle. For Simmental beef cattle, the average weaning weight estimated by 

Roughsedge et al. (2005) and Brandt et al. (2010) was 297 and 271 kg, respectively. A relatively 

low weaning weight average of 229.2 kg for Hereford cattle was reported by Meyer et al. (1994), 

but was estimated over a decade earlier than the other reports. Iwaisaki et al. (2005a) published 

average weaning weights of 271.9 and 246 kg for Gelbvieh and Limousin cattle, respectively.  

Postweaning daily gain weighted average of 0.978 kg/d was estimated by Koots et al. 

(1994b). For Simmental cattle, postweaning average daily gain ranged from 0.43 to 1.46 kg/d 

(Benyshek and Little, 1982; Wright, 1987; Stålhammar and Philipsson, 1997; Eriksson et al., 

2003). The 160-d postweaning gain for Simmental averaged from 71.8 to 200 kg (Benyshek and 

Little, 1982; Wright, 1987). Stålhammar and Philipsson (1997), in their study of Simmental 

cattle, reported total postweaning gain of 191 and 131 kg for males and females, respectively, 

and their respective average daily gain were 1.16 and 0.79 kg.   

Average yearling weight of 12 breeds of beef cattle was 361.9 kg (Pribyl et al., 2003). 

Roughsedge et al. (2005) in their study of Simmental cattle, they reported an average of 534 kg 

at age of 400 days. Koots et al. (1994a) in their review of published genetic parameter estimates 

for beef production traits, estimated an average yearling weight of 345 kg. For Gelbvieh and 

Angus cattle, the average yearling weights were 432.3 and 410 kg, respectively, (Iwaisaki et al., 

2005b; Costa et al., 2011). 

2.7. Genetic and residual parameters 

2.7.1. Heritability 

Heritability is defined as “a measure of the strength of the relationship between 

performance (phenotypic values) and breeding values for a trait in a population” (Bourdon, 



32 
 

1999).  Genetic improvement of beef cattle breeds is mainly driven by selection of best animals 

to be parents of the next generations. Response to selection depends on several factors that are 

summarized in what is known as the key equation. The rate of genetic change, based on the key 

equation, is affected by accuracy of selection, selection intensity, and genetic variability 

(Bourdon, 1999). The higher the genetic variation the higher the heritability, which leads to 

increased response to selection. In this section, heritability estimates from literature are 

summarized and reviewed. 

2.7.1.1. Direct heritability 

Heritability estimates of calving difficulty, on the underlying scale, for Charolais and 

Hereford first parity heifers were 0.22 and 0.23, respectively, (Eriksson et al., 2004). However, 

heritability estimates, on the observed scale, from the same study were 0.12 and 0.16, 

respectively. Estimated calving ease heritabilities, on the observed scale, for Canadian 

Simmental heifers were 0.06 and 0.07 (Kemp et al., 1988; Jamrozik and Miller, 2014), 

respectively. Several studies involving Simmental cattle, Burfening et al. (1978b), Burfening et 

al. (1981), Trus and Wilton (1988), and Dong et al. (1991) reported calving ease heritability 

estimates of 0.25, 0.2, 0.21, and 0.18, respectively. Matilainen et al. (2009) reported an estimate 

of 0.26, on the underlying scale, for heifer calving ease heritability in Limousin beef cattle. 

Roughsedge et al. (2005) estimated heritabilities of calving difficulty, on the observed scale, for 

Angus, Limousin, Simmental, and South Devon cattle to be 0.26, 0.12, 0.35, and 0.19, 

respectively. Estimated weighted average heritability of heifer calving ease was 0.13 (Koots et 

al., 1994a). Heritability for beef heifer (different breeds) calving difficulty was 0.18 (Splan et al., 

1998). Carnier et al. (2000) and Albera et al. (2004) in their study of Piemontese cattle, estimated 

calving ease heritability for heifers of 0.19 and 0.16, respectively. Reviewed literature of calving 
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ease heritability revealed that, on the observed scale, calving ease has a low heritability; 

however, when heritability estimated on the underlying scale, it notably increased which was a 

reflection of the added information when calving ease was fitted as a threshold trait. 

 Because of abundance of birth weight data collected by the beef industry, genetic 

parameters for birth weight were some of the most estimated in literature. Heritability of birth 

weight is considered relatively high compared to other growth traits such as weaning and 

yearling weight. Birth weight heritability estimates for Charolais and Hereford first calving 

heifers were 0.50 and 0.51, respectively, (Eriksson et al., 2004). Koots et al. (1994a) reported, in 

their review of published genetic parameter estimates for beef production traits, a weighted 

average of 0.31 which is relatively low compared to most estimates in other citations. Similarly, 

Phocas and Laloe (2004) reported relatively low estimates for Charolais and Limousin cattle 

birth weight heritabilities (0.33 and 0.38, respectively). Heritability estimates for nine different 

beef cattle breeds ranged from 0.26 to 0.66 with an average heritability estimate of 0.47 (Bennett 

and Gregory, 1996) in another study. However, in a study of Simmental beef cattle by Brandt et 

al. (2010), a low heritability estimate of 0.23 which could be a result of their small data (n = 568) 

was reported. Similarly, estimated birth weight heritabilities for Canadian Simmental heifers 

were 0.19 and 0.23 (Kemp et al., 1988; Jamrozik and Miller, 2014), respectively. Several studies 

of Simmental cattle, Burfening et al. (1978b), Benyshek and Little (1982), Quaas et al. (1985), 

Elzo et al. (1987), Trus and Wilton (1988), Garrick et al. (1989), Dong et al. (1991), Redman and 

Brinks (1991), Woodward et al. (1992), Swalve (1993), Rust et al. (1998), and Eriksson et al. 

(2002 as cited in (Eriksson et al., 2004)), reported heritability estimates of 0.4, 0.18, 0.16, 0.14, 

0.34, 0.44, 0.18, 0.52, 0.28, 0.33, 0.30, and 0.37, respectively. Iwaisaki et al. (2005b) in their 

study of Gelbvieh cattle reported birth weight heritability estimate of 0.52. Estimated heritability 
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for Charolais was 0.46 (Mujibi and Crews, 2009). Estimated birth weight heritability for Angus 

was 0.4 (Carter et al., 1990). In summary, estimates of birth weight heritability from literature 

were moderate to high which, along with the trait linearity, justify the incorporation of birth 

weight in the analysis of calving ease.  

 The weighted average of weaning weight heritability was estimated as 0.27 by Koots et 

al. (1994a) in their review of published genetic parameter estimates for beef production traits. 

Several studies of Simmental cattle, Burfening et al. (1978b), Benyshek and Little (1982), Elzo 

et al. (1987), Wright et al. (1987), Garrick et al. (1989), Mrode and Thompson (1990), Boldman 

et al. (1991), Redman and Brinks (1991), Woodward et al. (1992), Swalve (1993), Bennett and 

Gregory (1996), Lee and Pollak (1997), Lee et al. (1997), Rust et al. (1998), Dodenhoff et al. 

(1999), and Roughsedge et al. (2005), reported weaning weight heritability estimates of 0.28, 

0.34, 0.14, 0.12, 0.36, 0.19, 0.17, 0.48, 0.34, 0.34, 0.24, 0.28, 0.21, 0.26, 0.22 and 0.26, 

respectively, with an overall average of 0.26. Estimates of weaning weight heritability for 

different beef cattle breeds ranged from 0.13 to 0.49 (Meyer et al., 1994; Bennett and Gregory, 

1996; Phocas and Laloe, 2004; Iwaisaki et al., 2005a,b; Roughsedge et al., 2005). For Angus 

cattle, heritability estimate was 0.22 (Carter et al., 1990). Bertrand and Benyshek (1987) reported 

a heritability estimate of 0.28 for Brangus cattle. It is worth noting that most heritability 

estimates for beef cattle breeds fall within the range 0.2-0.4; however, weaning weight 

heritability estimate for Charolais have been relatively low (0.16 estimated by Bennett and 

Gregory (1996) and 0.13 Phocas and Laloe (2004). Reviewed literature revealed that weaning 

weight has a low to a moderate (0.2-0.4) heritability. For Simmental cattle, estimates ranged 

from 0.12 to 0.48 with an average of 0.26. Beef cattle breeds appear to have different weaning 

weight heritability estimates and weaning weight has a low heritability compared to birth weight. 
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 Heritability estimates for post weaning gain of different beef cattle breeds averaged 0.31 

in the review of Koots et al. (1994a). For Simmental cattle, several articles by Benyshek and 

Little (1982), Quaas et al. (1985), Wright (1987), Garrick et al. (1989), Woodward et al. (1992), 

and Eriksson et al. (2003) reported heritability estimates of 0.13, 0.2, 0.23, 0.26, 0.27 and 0.29, 

respectively, with an overall average of 0.23. Bennett and Gregory (1996), in a study of nine 

different beef cattle breeds, reported heritability estimates for post weaning gain (168 days) 

ranging from 0.39 to 0.51 with an average of 0.46 and heritability of postweaning gain for 

Simmental cattle was 0.5 (n = 1494). Stålhammar and Philipsson (1997) reported that heritability 

for Simmental males (0.19) was lower than that for females (0.22). Studies of Angus cattle 

reported postweaning gain heritability estimates of 0.26 0.28 and 0.26 (Carter et al., 1990; Arthur 

et al., 2001; MacNeil et al., 2011), respectively. Researchers Koch et al. (1973), Mavrogenis et 

al. (1978), and Fan et al. (1995) in their studies of Hereford, reported postweaning gain 

heritabilities of 0.29, 0.23, and 0.16, respectively. Studies of Charolais cattle by Meyer (1993) 

and Eriksson et al. (2003) reported heritability estimates of 0.22 and 0.37, respectively. 

Generally, postweaning gain has a low heritability where the average postweaning gain of 

Simmental cattle was 0.23. Heritability of postweaning gain was the lowest compared to other 

growth-related traits. Clear differences were reported amongst beef cattle breeds. Further, 

different estimates were obtained for males and females. 

 Yearling weight heritability estimates for Simmental cattle were 0.33, 0.27, 0.27, 0.27, 

0.37, 0.41, and 0.34 (Benyshek and Little, 1982; Elzo et al., 1987; Wright, 1987; Mrode and 

Thompson, 1990; Swalve, 1993; Bennett and Gregory, 1996; Roughsedge et al., 2005), 

respectively, with an overall average of 0.32. A weighted average estimated by Koots et al. 

(1994a) was 0.33 for different beef cattle breeds. However, yearling weight heritability for 
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Gelbvieh cattle estimated by Iwaisaki et al. (2005b) was higher (0.59). Yearling weight (400 

days) heritability estimates for Angus, Limousin, Simmental, and South Devon were 0.36, 0.35, 

0.34, and 0.29, respectively, (Roughsedge et al., 2005). Bennett and Gregory (1996), in a study 

of Angus, Braunvieh, Charolais, Gelbvieh, Hereford, Limousin, Pinzgauer, Red Poll, and 

Simmental, reported yearling weight (averaging 368 days) heritability estimates ranged from 

0.27 to 0.62 with an average of 0.44. Yearling weight heritability estimates for Angus cattle, by 

Carter et al. (1990), Fan et al. (1995), and Arthur et al. (2001) were 0.36, 0.45, and 0.28, 

respectively. For Hereford, estimates by Mavrogenis et al. (1978) and Fan et al. (1995) were 0.49 

and 0.43, respectively. Meyer (1993) in a study on Charolais reported an estimate of 0.32 for 

yearling weight heritability. Reviewed literature on yearling weight heritability revealed that 

yearling weight, as anticipated, has a higher heritability compared to its component traits (i.e., 

weaning weight and postweaning gain). The Simmental beef cattle, on average, have a yearling 

weight heritability of 0.32. Heritability estimates for yearling weight were more diverse than 

other growth traits. This might be a result of the assumption of homogeneous residual variance 

which does not hold when yearling weight measured at different ages. When the homogeneity of 

residual variance is assumed, the residual variance estimates will be biased which results in 

biased heritability estimates (Olori et al., 1999).    

2.7.1.2. Maternal heritability 

A considerable amount of literature has been published on maternal heritability of calving 

ease. Estimates in Simmental cattle ranged from 0.05 to 0.28 (Burfening et al., 1981; Trus and 

Wilton, 1988; Dong et al., 1991; Bennett and Gregory, 2001; Jamrozik and Miller, 2014). 

Furthermore, Wright (1987) reported estimates of 0.10 and 0.05 for American and Canadian 

Simmental, respectively. Maternal heritability estimates for other beef cattle breeds range from 
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0.03 to 0.18 (Albera et al., 1999; Varona et al., 1999a; Carnier et al., 2000; Eriksson et al., 2003; 

Phocas and Laloe, 2003; Albera et al., 2004; Eriksson et al., 2004; Phocas and Laloe, 2004; 

Roughsedge et al., 2005). Reported maternal heritability estimates using threshold model 

approaches were 0.19, 0.09, 0.28, 0.048, and 0.14 (Dong et al., 1991; Varona et al., 1999a; 

Bennett and Gregory, 2001; Wiggans et al., 2003; Gevrekci et al., 2011), respectively. Generally, 

calving maternal heritabilities estimated using the threshold models were higher than those 

estimated using the linear model. The higher maternal heritability estimates under the threshold 

model were a result of fitting calving ease as a threshold trait (i.e., an underlying continuous 

liability) .    

Several studies of Simmental cattle by Quaas et al. (1985), Wright (1987), Trus and 

Wilton (1988), Garrick et al. (1989), Swalve (1993), Marques et al. (2000), and Jamrozik and 

Miller (2014) reported birth weight maternal heritability estimates of 0.057, 0.05, 0.2, 0.12, 0.07, 

0.05, and 0.04, respectively. For other beef cattle breeds, estimates ranged from 0.03 to 0.18 

(Bertrand and Benyshek, 1987; Waldron et al., 1993; Meyer, 1995; Snelling et al., 1996; 

Dodenhoff et al., 1998; Varona et al., 1999a; Eriksson et al., 2004; Meyer et al., 2004; Phocas 

and Laloe, 2004; Iwaisaki et al., 2005b; Brandt et al., 2010). Literature review revealed that the 

maternal effects on birth weight represent a small and important proportion of the total variance 

of the trait. Therefore, birth weight maternal effects should be accounted for in the genetic 

evaluation of birth weight.  

Weaning weight maternal heritability for Simmental cattle ranged from 0.05 to 0.2 

(Graser and Hammond, 1985; Quaas et al., 1985; Wright, 1987; Wright et al., 1987; Garrick et 

al., 1989; Boldman et al., 1991; Swalve, 1993; Lee and Pollak, 1997; Lee et al., 1997; Marques 

et al., 2000). Several studies of other beef cattle breeds reported estimates that ranged from 0.03 
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to 0.2 (Bertrand and Benyshek, 1987; Cantet et al., 1993; Meyer, 1993; Waldron et al., 1993; 

Meyer, 1995; Arthur et al., 2001; Meyer et al., 2004; MacNeil, 2005). These studies revealed that 

the weaning weight maternal effects should be fitted in the analysis of the trait. Here, the 

maternal component of weaning weight total variation is mainly due to the milk production of 

the dam; therefore, the weaning weight maternal breeding value is also known as the milk 

breeding value.    

2.7.2. Direct genetic correlations 

Historically, the high genetic correlation between calving ease and birth weight was, and 

is still used, as a tool to improve the ease of calving. Some studies reported correlations between 

birth weight and calving difficulty, but not calving ease, and as this relationship is discussed, 

those correlations are reported with negative signs in this section. Koots et al. (1994b) estimated 

a weighted average of -0.74 for the genetic correlation between calving ease and birth weight. 

Estimated genetic correlations between calving ease, on observed scale, and birth weight for 

Simmental cattle were -0.33, -0.76, and -0.85 (Burfening et al., 1978b; Burfening et al., 1981; 

Jamrozik and Miller, 2014), respectively. Genetic correlation between birth weight and calving 

ease estimated by Eriksson et al. (2004) as -0.62 and -0.72 for Charolais and Hereford cattle, 

respectively. Phocas and Laloe (2004) obtained estimates of -0.66, -0.4, -0.72, and -0.78 for 

Charolais, Limousin, Blonde d’Aquitaine, and Maine-Anjou, respectively. Lee (2002) in a study 

of Gelbvieh heifers estimated a higher correlation (-0.82). Calving ease for Charolais cattle has a 

correlation of -0.66 with birth weight, however, the estimate was lower (-0.4) for Limousin. 

Results obtained from reviewed literature on genetic correlation between calving ease and birth 

weight can be summarized as follow: The strong genetic correlation between the two traits 

justifies the use of birth weight as an indicator trait for calving ease and the inclusion of birth 
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weight as a linear trait in the genetic evaluation of calving ease which increases the accuracy of 

the genetic evaluation.  

Calving ease has genetic correlation of -0.08 and -0.2 with weaning weight of Simmental 

beef cattle (Burfening et al., 1978b; Roughsedge et al., 2005), respectively. Similarly, in review 

of published genetic parameter estimates for beef production traits by Koots et al. (1994b) they 

estimated a weighted average of -0.21. Bennett and Gregory (2001) obtained a higher estimate (-

0.41) between calving ease and 200-d WT. Estimates of genetic correlations between calving 

ease and weaning weight for different beef cattle breeds ranged from -0.12 to -0.44 (Phocas and 

Laloe, 2004; Roughsedge et al., 2005). The genetic correlation between calving ease and 

weaning weight was considerably lower than the correlation between birth and weaning weights. 

This supports the hypothesis: selection for high calving ease instead of selection for low birth 

weight could reduce the loss in the correlated response of weaning weight.   

 Koots et al. (1994b) in their review of genetic correlation estimates, reported a weighted 

average of -0.54 for genetic correlation between calving ease and post weaning gain while 

Bennett and Gregory (2001), in their study on several beef cattle breeds, obtained a weaker 

correlation of -0.36 between calving ease and postweaning gain. Gregory et al. (1995) estimated 

genetic correlation of -0.11 between calving ease and postweaning gain of male progeny of 2 

year old heifers from different purebred and composite beef cattle. 

The genetic correlation between calving ease and yearling weight as estimated by 

Roughsedge et al. (2005) for Angus, Limousin, Simmental, and South Devon cattle were -0.2, -

0.33, -0.19, and -0.46, respectively. A weighted average (-0.29) reported by Koots et al. (1994b) 

falls within the range of estimates reported by Roughsedge et al. (2005). Calving ease has 
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correlation of -0.27 with 368-d WT for population of different beef cattle breeds (Gregory et al., 

1995). From reviewed literature, calving ease, as oppose to birth weight, showed a weaker 

genetic correlation with yearling weight which supports the hypothesis that selection for calving 

ease would result in smaller changes in yearling weight.    

Estimates from literature for different beef cattle breeds show a high genetic correlation 

between birth weight and weaning weight which ranged from 0.26 to 0.56 (Koch et al., 1973; 

Meyer, 1993; Bennett and Gregory, 1996, 2001; Phocas and Laloe, 2004; Iwaisaki et al., 2005b; 

Gutierrez et al., 2007). Koots et al. (1994b) estimated a weighted average of 0.5 for the genetic 

correlation between birth and weaning weights. In the literature, several reports involving 

Simmental cattle had estimated the genetic correlation between birth and weaning weights. 

These correlation estimates were 0.33, 0.29, 0.43, 0.43, 0.49, 0.33, and 0.58 (Burfening et al., 

1978b; Benyshek and Little, 1982; Quaas et al., 1985; Elzo et al., 1987; Garrick et al., 1989; 

Woodward et al., 1992; Swalve, 1993), respectively. Further, Wright (1987), in his study of 

Simmental cattle, reported estimates of 0.43 and 0.64 for American and Canadian Simmental, 

respectively. The high genetic correlation between birth and weaning weight would cause great 

loss in weaning weight when downward selection on birth weight is applied. Conversely, the 

lower genetic correlation between calving ease and weaning weight is a promising means to 

improve calving ease by the direct selection for calving ease without major loss in yearling 

weight.  

Birth weight has a weighted average genetic correlation of 0.32 with post weaning gain 

(Koots et al., 1994b) which is in line with Bennett and Gregory (1996) who reported the same 

estimate as an average for nine purebred beef cattle breeds. Carter et al. (1990) published an 

estimate of 0.16 for Angus beef cattle.  For Simmental cattle, Benyshek and Little (1982), Quaas 
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et al. (1985), and Garrick et al. (1989) found that birth weight and postweaning gain have genetic 

correlations of 0.57, 0.36, and 0.32, respectively. Wright (1987) in another study of Simmental 

cattle reported estimates of 0.39 and 0.45 for the American and Canadian cattle, respectively. 

Results from reviewed literature showed that the genetic correlation between birth weight and 

postweaning gain for Simmental beef cattle ranged from 0.32 to 0.57 with an overall average of 

0.41. Therefore, a moderate postweaning gain correlated response would be expected when 

selection for low birth weight is practiced.  

Estimates of genetic correlation between birth and yearling weights for Simmental cattle 

by Benyshek and Little (1982), Elzo et al. (1987), and Swalve (1993), were 0.61, 0.47, and 0.4, 

respectively; while another study of Simmental cattle by Wright (1987) reported correlations of 

0.47 and 0.6 for the American and Canadian cattle, respectively. Estimates of genetic correlation 

between birth weight and both weaning weight and postweaning gain in a study of Simmental by 

Garrick et al. (1989) resulted in a genetic correlation between birth weight and yearling weight 

was 0.47. Iwaisaki et al. (2005b) in a study of Gelbvieh, reported a genetic correlation of 0.5 

between birth and yearling weights. Bennett and Gregory (1996) reported a genetic correlation of 

0.47. However, Koots et al. (1994b) estimated a higher correlation (0.55) between birth weight 

and yearling weight. Correlations obtained by Carter et al. (1990) and Meyer (1993) were 0.59 

(Angus) and 0.66 (Charolais), respectively. In summary, birth weight showed a moderate genetic 

correlation with yearling weight. This strong correlation was a result of the strong correlations 

between birth weight and the component traits of yearling weight (i.e., weaning weight and 

postweaning gain). Therefore, selection for low/high birth weight would cause a high correlated 

response in the subsequent growth traits.  
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A positive genetic correlation of 0.56 was estimated between weaning weight and post 

weaning gain (Bennett and Gregory, 1996) with  Koots et al. (1994b) reporting similar genetic 

correlation of 0.44 with post weaning gain. Quaas et al. (1985), Wright (1987), and Garrick et al. 

(1989), in their studies of American Simmental cattle, found that weaning weight and 

postweaning gain have genetic correlation of 0.53, 0.52, and 0.51, respectively. Further, Wright 

(1987) obtained a relatively higher estimate of 0.66 for Canadian Simmental. However, Carter et 

al. (1990) obtained a lower genetic correlation (0.22) for Angus beef cattle. In summary, 

weaning weight and postweaning gain are moderately correlated traits. Thus, any genetic 

changes (positive or negative) in either one will be reflected on the other trait which eventually 

results in similar changes in yearling weight. 

Genetic evaluation for yearling weight is usually done by evaluating its component traits, 

weaning weight and post weaning gain. Yearling weight genetic (co)variances are calculated as 

summation of those of weaning weight and post weaning gain. This approach is a result of the 

high genetic correlation between yearling weight and its component traits which make it hard to 

reach convergence when estimating variance components. Estimates from literature for genetic 

correlation between weaning and yearling weight ranged from 0.70 to 0.92 (Carter et al., 1990; 

Koots et al., 1994b; Gregory et al., 1995; Bennett and Gregory, 1996; Arthur et al., 2001; 

Roughsedge et al., 2005; Costa et al., 2011). For Simmental beef cattle, three different studies in 

Canada, Australia, and United Kingdom by Wright (1987), Swalve (1993), and Roughsedge et 

al. (2005), respectively, found that weaning weight and yearling weight have genetic correlations 

of 0.91, 0.83, and 0.87, respectively. Articles describing American Simmental by Benyshek and 

Little (1982), Elzo et al. (1987), and Wright (1987) reported estimates of 0.87, 0.83, and 0.84, 

respectively. Calculated genetic correlation between weaning weight and yearling weight for 
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Simmental cattle, given genetic (co)variances for weaning weight and postweaning gain, was 

0.89 (Garrick et al., 1989). Reviewed literature showed a very high genetic correlation between 

weaning and yearling weights. Therefore, the upward/downward selection for either trait is 

expected to substantially change the other trait in same direction. 

 Wright (1987) in his study of Simmental cattle reported a correlation of 0.91 between 

postweaning gain and yearling weight. From (co)variance components between postweaning 

gain and weaning weight, Garrick et al. (1989) estimated a genetic correlation of 0.84 between 

postweaning gain and yearling weight. Correlation estimates reported by Koch et al. (1973), 

Mavrogenis et al. (1978), and Bennett and Gregory (1996) ranged from 0.71 to 0.92. The 

weighted average genetic correlation estimate of 0.81 by Koots et al. (1994b) in their review of 

published genetic parameters estimates for beef production traits was very similar. Generally, 

postweaning gain, as a component trait for yearling weight, has a strong positive genetic 

correlation with yearling weight. The positive and strong genetic correlations amongst growth 

traits are a useful means to improve weight gain in the beef industry; however, it should be used 

with caution because of the dystocia problems associated with heavier animals.  

2.7.3. Direct-Maternal genetic correlations 

Estimated direct-maternal correlations for calving ease, on the observed scale, were -

0.023 and -0.008 for American and Canadian Simmental cattle (Wright, 1987). On the 

underlying scale, the correlation estimate for Simmental was -0.16 (Dong et al., 1991). However, 

Jamrozik and Miller (2014), fitting a univariate model, reported a lower correlation (-0.05) for 

Canadian Simmental. For other beef cattle breeds, estimates from literature using the threshold 

model methodology (i.e., on the underlying scale) ranged from -0.087 to -0.28 (Varona et al., 

1999a; Wiggans et al., 2003; Gevrekci et al., 2011).   
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Literature shows that direct-maternal genetic correlation estimates for Simmental cattle 

ranged from -0.04 to -0.43 (Quaas et al., 1985; Trus and Wilton, 1988; Garrick et al., 1989; 

Swalve, 1993; Marques et al., 2000; Eriksson et al., 2002). Several studies of Limousin, Brangus, 

Hereford, Gelbvieh, and composite beef cattle breeds reported direct-maternal correlations for 

birth weight that ranged from -0.05 to -0.35 (Bertrand and Benyshek, 1987; Snelling et al., 1996; 

Varona et al., 1999a; MacNeil, 2005). Snelling et al. (1996), in their study on Hereford, they 

obtained a correlation of -0.14. 

Results from several studies of Simmental cattle found that direct-maternal genetic 

correlation for weaning weight has ranged between -0.01 and -0.39 (Quaas et al., 1985; Garrick 

et al., 1989; Boldman et al., 1991; Swalve, 1993; Lee and Pollak, 1997; Lee et al., 1997; 

Dodenhoff et al., 1999; Marques et al., 2000). Further, Wright (1987) obtained estimates of -

0.023 and -0.008 for American and Canadian Simmental cattle, respectively. Estimates for 

Limousin, Brangus, and Angus cattle ranged from -0.17 to -0.31 (Bertrand and Benyshek, 1987; 

Cantet et al., 1993; Arthur et al., 2001). However, MacNeil (2005) reported a lower estimate of -

0.06 for composite beef cattle (50% Red Angus, 25% Charolais, and 25% Tarentaise). 

2.7.4. Residual correlations 

Residual correlation estimate, on the observed scale, between calving ease and birth 

weight for Charolais and Hereford cattle in a study by Eriksson et al. (2004) were -0.25 and -

0.27, respectively. Similarly, Koots et al. (1994b), in their review paper, estimated a weighted 

average residual correlation of -0.28. For American Simmental cattle, residual correlation 

between calving ease and birth weight was -0.29 (Burfening et al., 1978a). However, Varona et 

al. (1999a) and Bennett and Gregory (2001) estimated higher residual correlations (-0.5 and -
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0.41, respectively). Given the high genetic correlation between calving ease and birth weight, the 

research to date has tended to focus on evaluation of calving ease with birth weight and 

marginalized other growth traits such as weaning weight, postweaning gain, and yearling weight. 

Consequently, there has been relatively few studies that published genetic and residual 

correlations between calving ease and postnatal growth traits. 

Residual correlations between calving ease and weaning weight for American Simmental 

cattle was -0.02 (Burfening et al., 1978a). Similarly, Bennett and Gregory (2001), in a study of 

composite and parental populations of beef cattle, found that calving ease had a residual 

correlation of -0.02 with weaning weight (200-d WT). Those estimates show a very weak 

environmental association between calving ease and weaning weight which tends to be close to 

zero. 

Estimates of residual correlation between calving ease and postweaning gain are expected 

to be very small and close to those for calving ease and weaning weight. Bennett and Gregory 

(2001) found that calving ease has a residual correlation of -0.03 with 168-d gain across several 

composite and parental beef cattle populations. 

In the literature, several articles reported that the residual correlation between birth 

weight and weaning weight for Simmental beef cattle ranged from 0.18 to 0.51 (Burfening et al., 

1978a; Benyshek and Little, 1982; Wright, 1987; Garrick et al., 1989; Woodward et al., 1992). 

Bennett and Gregory (1996) reported residual correlation of 0.29 between birth and weaning 

weights for nine beef cattle breeds. For Charolais cattle, Meyer (1993) reported residual 

correlation estimate of 0.19 which was near the lower limit of estimates described in literature. 
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The literature of American Simmental beef cattle reported that birth weight and 

postweaning gain have residual correlation estimates of 0.07 and 0.10 (Benyshek and Little, 

1982; Garrick et al., 1989), respectively. Further, a study by Wright (1987) reported estimates of 

0.10 and 0.03 for American and Canadian Simmental, respectively. Birth weight in purebred 

beef cattle has residual correlation of 0.12 with postweaning gain (Bennett and Gregory, 1996). 

In a study of American Simmental cattle by Benyshek and Little (1982), the residual 

correlation between birth weight and yearling weight was 0.42. Similarly, estimates from Wright 

(1987) for American and Canadian Simmental were 0.31 and 0.39, respectively. However, 

calculated residual correlation between birth weight and yearling weight for American 

Simmental cattle, given (co)variance components for birth weight with both weaning weight and 

postweaning gain, was relatively lower (0.21; Garrick et al., 1989). The estimated residual 

correlation between birth weight and yearling weight of Gelbvieh and Charolais cattle were 0.14 

and 0.12, respectively, (Meyer, 1993; Iwaisaki et al., 2005b). However, Bennett and Gregory 

(1996), in their study for nine beef cattle breeds, reported that birth weight has a higher residual 

correlation (0.28) with yearling weight. 

Studies of American Simmental by Benyshek and Little (1982), Wright (1987), and 

Garrick et al. (1989) reported residual correlation estimates (-0.18, -0.10, and -0.17, respectively) 

between weaning weight and postweaning gain. For Canadian Simmental cattle, the correlation 

estimate was -0.15 (Wright, 1987) and for Angus, MacNeil et al. (2011) reported a correlation of 

-0.18 between weaning weight and postweaning BW gain. However, Bennett and Gregory 

(1996) estimated a positive residual correlation (0.08) between weaning weight and postweaning 

gain for nine beef cattle breeds. 
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Residual correlation between weaning weight and yearling weight for American 

Simmental cattle were 0.64 and 0.67 (Benyshek and Little, 1982; Wright, 1987), respectively. 

Additionally, the later study reported an estimate of 0.72 for Canadian Simmental cattle. 

Furthermore, calculated correlation from another study on American Simmental by Garrick et al. 

(1989) was 0.57. Residual correlation estimates from articles on different beef cattle breeds 

ranged from 0.55 to 0.75 (Meyer, 1993; Bennett and Gregory, 1996; Iwaisaki et al., 2005b; Costa 

et al., 2011). 

In Studies of American Simmental cattle by Benyshek and Little (1982) and Wright 

(1987), residual correlation estimates between postweaning gain and yearling weight were 0.57 

and 0.68, respectively. The latter study also reported a correlation estimate of 0.58 for Canadian 

Simmental cattle. Using (co)variance estimates from Garrick et al. (1989) between weaning 

weight and postweaning gain, a calculated residual correlation between postweaing gain and 

yearling weight for American Simmental was 0.7. The estimate of residual correlation between 

postweaning gain and yearling weight reported by Bennett and Gregory (1996) was 0.72.  

Review of literature on direct genetic, maternal genetic, and residual parameters for 

calving ease, birth weight, weaning weight, postweaning gain, and yearling weight can be 

summarized as follow: 1) Birth weight has the highest heritability among all traits. 2) Heritability 

estimates for other growth traits were moderate. 3) For calving ease, estimates of heritability on 

the underlying scale were higher than those on the observed scale which means capturing more 

variation on liability scale. 4) There is a high negative genetic correlation between calving ease 

and birth weight. 5) The continuous distribution of birth weight justifies the importance of 

incorporating birth weight in the genetic evaluation of calving ease. 6) Moderate positive genetic 

correlations between birth weight and subsequent growth traits unveil the antagonistic 



48 
 

relationship between calving ease and postnatal growth traits when selection for birth weight is 

applied. 7) The importance of incorporating maternal effects in the genetic evaluations of calving 

ease, birth weight, and weaning weight.    

2.8. Selection index 

Candidate animals for selection should be evaluated on overall genetic merit. Hence, 

genetic evaluation should involve multiple traits on animals selected to produce progeny in the 

next generation. Selection index is a widely used and a powerful tool to achieve optimal genetic 

gain that ultimately maximizes profitability through selection of animals with best genetic 

makeup to be parents. Selection index is a linear combination of phenotypic information and 

weighting factors that is used for genetic prediction of net merit. Selection index was first 

introduced by Hazel and Lush (1942) and Hazel (1943). For the selection index of Hazel (Eq. 

2.6), the index value is calculated for one trait based on (n) different phenotypic sources of 

information (Xi), (e.g., animal’s own record, ancestors, progeny, half-sibs, and full-sibs), and 

weighting coefficients (bi) for those sources of information. However, instead of selection index 

for one trait, multiple traits can be combined into one selection index which represents the 

aggregate genotype. 

                     ( 2.6) 

However, after Henderson (1973, 1975) introduced BLUP methodology, which has 

become the standard procedure of the genetic evaluation, the classical economic selection index 

of Hazel was replaced with the economic selection index that uses BLUP solutions. The 

economic selection index is defined as combination of weighting factors or “economic weights” 

and genetic information on more than one trait (Bourdon, 1999). The optimal properties of 

BLUP solutions allow adjustment for fixed effects and account for inbreeding making it the 
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preferred method of genetic prediction. Yet, use of these predictions in the economic selection 

index gives a measure of the aggregate genetic merit of an animal for multiple traits in the 

selection objective and/or their indicator traits. The same formula as that used for the classic 

selection index is also used for the economic selection index. Nonetheless, phenotypic sources of 

information are replaced with the genetic predictions from BLUP (e.g., estimated breeding 

values “EBV” or expected progeny differences “EPD”) weighting coefficients are replaced with 

relative economic values in the “new” selection index.  

Considerations in selection index implementation: Level of production, goals of production, 

and production resources such as labor, management, etc., may vary by enterprise. Consequently, 

the relative economic value will vary amongst production systems. Therefore, industry-wide 

selection indexes are not suggested but rather indexes should be specific for each enterprise or 

production unit (MacNeil et al., 1997). Given the nonlinear relationships between profit and 

performance or any other changes in economic circumstances, selection indices should be 

subject to periodic recalculation (Hazel et al., 1994). In the case of a generation interval of 5 

years, relative economic values should be calculated using average prices over the past 10 to 15 

years (MacNeil et al., 1997). 

 A widely used example of selection index is that described by Dickerson et al. (1974) 

who published a selection index for efficient beef production (Eq. 2.7). This index was expected 

to increase economic efficiency of beef production by 6% higher than the single trait selection 

for yearling weight. This increase was due to decreasing mature cow size and thus feed 

requirements, reducing calf birth weight and thus calving difficulty and associated mortality 

relative to selection on yearling weight. However, calf weights at weaning and yearling would be 

expected to decrease by only approximately 10%. Dickerson’s selection index was adopted by 
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MacNeil (2003) to improve efficiency of beef production. Results showed that, despite the 

genetic antagonism that commute selection response for lower birth weight and increased 

postnatal weights, the index yielded positive correlated responses for direct genetic effects on 

weight traits at all ages.  

                     ( 2.7) 

 

In summary, selection index is a powerful method that helps animal breeders make 

selection decisions to improve profitability of their enterprises through maximizing economic 

response of multiple trait selection programs. This is a result of its unique capabilities to combine 

genetic information on multiple traits weighted by their economic weights into one value of the 

aggregate merit of the animal. The importance of each trait in the selection index is determined 

by its contribution to profitability either by its effect on cost of production (i.e., negative weight) 

or its effect on profit (i.e., positive weight).       

2.9. Genetic trends 

Genetic change in a trait, over time (per year or per generation), is primarily driven by the 

genetic variability, accuracy of selection, generation interval, and selection intensity and, in 

multiple trait selection programs, by genetic correlations with other traits of interest. Here, 

genetic trend of a trait can be expressed in the trait’s actual units or in standard deviation units. 

In selection programs, selection goals vary and tools to achieve those goals vary accordingly. 

Therefore, selection could be applied via means of single trait selection or multiple traits 

selection in which selection indexes are preferred, but independent culling levels used as well.  

In this section, beef cattle selection trials and their different selection approaches are reviewed.    
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Simmental beef cattle: Elzo et al. (1985) estimated direct and maternal genetic trends for 

Simmental cattle during the 1972-1983 time period. Difference in means between 1983 and 1972 

of direct birth weight, weaning weight, yearling weight were -0.6, 0.6, and 11.1 kg, respectively. 

For maternal genetic effects, mean differences for maternal birth and weaning weights were -0.2 

and 1.1 kg, respectively. Despite the positive genetic correlations between birth weight and 

postnatal growth traits, a negative genetic trend for birth weight was achieved. Elzo et al. (1987) 

also estimated genetic trends of Simmental sires (1973-1984) for first-parity calving ease, birth 

weight, weaning weight, and yearling weight. Direct genetic trends for calving ease, weaning 

and yearling weights were positive while that for birth weight was negative. Maternal genetic 

trends for first-parity calving ease and birth weight were positive and that for weaning weight did 

not show significant change. Wright (1987) estimated genetic trends (1973-1985) for growth 

traits and calving ease of Canadian Simmental cattle. The author concluded that breeders were 

mainly selecting for weaning and yearling weight which resulted in heavier calves at birth. In 

their study on different beef cattle breeds, Sullivan et al. (1999) reported estimates of genetic 

trends for Simmental. They found that regression lines for birth and weaning weights were 

broken (i.e., two different regression lines). As a result, genetic trend estimates were reported for 

two periods: 1985-1990 and 1990-1995. Corresponding genetic trends for birth weight were 

0.125 and 0.048 kg/yr and those for weaning gain were 0.87 and 0.72 kg/yr. However, the 

genetic trend (1985-1995) for yearling gain was 1.46 kg/yr.  

Single trait selection experiments (selection for high growth traits): In a study involving 

Hereford cattle, two lines were selected for high weaning weight (WWL) and high yearling 

weight (YWL) (Frahm et al., 1985a,b). Estimated genetic gains in standard deviation units per 

generation of the two lines, respectively, were 0.29, 0.26 for birth weight; 0.22, 0.19 for weaning 
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weight; -0.02, 0.04 for postweaning average daily gain; 0.08, 0.14 for yearling weight. Hough et 

al. (1985), in a selection study of Hereford cattle, estimated the difference in response to 

selection for high yearling weight versus control. Difference in selection response between the 

two lines for calving difficulty, birth weight, 205-d weight, postweaning average daily gain and 

yearling weight were 0.05 score/yr, 0.27 kg/yr, 5 kg/yr, 0.009 kg/d per yr, and 6.2 kg/yr, 

respectively. Irgang et al. (1985a, 1985b, 1985c) developed three Hereford lines selected for 

increased weaning weight (WWL), postweaning gain (PGL), and a control line (CTL). Results 

revealed that selection for either increased weaning weight or postweaning gain improved 

yearling weight; however, selection for increased postweaning gain produced higher correlated 

responses in all other growth traits. Birth weight increased in PGL, but it did not show correlated 

response in WWL. Aaron et al. (1986a, 1986b) established four lines of Angus cattle which were 

selected for increased weaning weight (WWL), increased yearling weight (YWL), increased 

combination of animal and its progeny weaning weight (PTL), (i.e., five bulls were selected on 

the basis of individual 205-d weaning weight and then two bulls were subsequently selected on 

the basis of progeny weaning weight), and a control line (CL). Estimated genetic responses in 

standard deviation units per generation in WWL, YWL and PTL, respectively, were: birth 

weight, 0.24, .47, .42; weaning weight, 0.28, 0.30, 0.51; postweaning gain, 0.12, 0.36, 0.16; 

yearling weight, 0.26, 0.44, 0.41. Results revealed that selection for yearling weight produced 

heavier animals at all ages; consequently, incidence of calving difficulty is expected to be high. 

Mrode et al. (1990a, 1990b) established two selected lines and a control line of Hereford beef 

cattle. Animals were selected for lean growth rate (LGR) from birth to 400 days of age and lean 

food conversion ratio (LFCR) from 200 to 400 days of age. Corresponding correlated responses 
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for birth weight were 0.127 and 0.105 kg/yr. Corresponding correlated responses for first-parity 

calving difficulty score were -0.018 and 0.018. 

Single trait selection experiments (selection for high calving ease): Bennett (2008) used 

selection (1993-1999) to create two lines: select and control lines within 4 purebred (Charolais, 

Gelbvieh, Hereford, and Angus) and 3 composite cattle (MARC I, II, and III) populations. 

Selection was for lower 2-yr-old heifer calving difficulty score EBV in the select lines and 

animals in the control lines were selected for average birth weight EBV. The difference in 

average EBV between select and control lines for calving difficulty and birth weight across 

populations were -1.06 and -3.5 kg, respectively. However, both lines did not show differences 

in maternal calving difficulty, maternal birth weight, weaning weight and postweaning gain. 

Results revealed that selection for lower calving difficulty reduced birth weight and the 

incidence of calving difficulty and did not affect growth at later ages. 

Selection index experiments: Three Hereford lines resulted from selection for weaning weight 

(WWL), yearling weight (YWL), and an index of yearling weight and muscling score (IXL) 

(Buchanan et al., 1982a,b). Response to selection in standard deviation units per generation for 

birth weight were 0.26, 0.27, 0.29; for weaning weight were 0.24, 0.24, 0.21; for postweaning 

gain were 0.21, 0.4, 0.33; and for yearling weight were 0.29, 0.39, 0.34, for their respective 

selection lines. Dickerson’s selection index was adopted by Doornbos et al. (1994) who 

estimated genetic trends for birth, weaning, and yearling weights of Hereford beef cattle. Rates 

of genetic change for weights at birth, weaning, and yearling were 0.011, 1.17, and 1.97 kg/yr, 

respectively. Results showed that weaning and yearling weight can be improved with little 

change in birth weight. Koch et al. (1994) practiced selection in three lines of Hereford cattle. 

They selected for increased weaning weight (WWL), yearling weight (YWL), and an index of 
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yearling weight and muscle score (IXL). For WWL, YWL, and IXL, reported annual genetic 

responses were: birth weight, 0.22, 0.24, 0.27 kg; weaning weight, 0.98, 0.63, 1.26 kg; and 

yearling weight, 2.43, 2.64, 3.44 kg, respectively. Respective responses to selection in standard 

deviation units were: birth weight, 0.22, 0.23, 0.27; weaning weight, 0.20, 0.12, 0.22; yearling 

weight, 0.31, 0.32, 0.40. In all three lines, the traits showed positive trends and responses from 

IXL which were the highest. In a simulation study, Gould (1996) simulated four selected lines. 

Two of those were selected for increased yearling weight (GT) and Dickerson’s selection index 

(ET). Corresponding genetic trends were, for first-parity direct calving ease, 0.001 and 0.011 

SD/yr; for birth weight, 0.08 and -0.005 kg/yr; for direct weaning weight, 2.14 and 2.13 kg/yr; 

for maternal weaning weight, 0.009 and -0.01 kg/yr; for yearling weight, 4.77 and 4.65 kg/yr. 

For both selected lines, trends for direct weaning and yearling weights were significantly 

different from zero. However, in the ET line, calving ease was significantly improved and birth 

weight did not show a trend. Conversely, selection for increased yearling weight increased birth 

weight and did not affect calving ease. MacNeil et al. (1998) created two selected lines via 

independent culling levels for below-average birth weight and high yearling weight (YB) and a 

single-trait mass selection for high yearling weight (YW) in the inbred population of Line 1 

Hereford cattle. Corresponding estimated genetic trends for birth weight were -0.014 and 0.105 

kg/yr. For yearling weight, corresponding genetic trends were 0.91 and 1.5 kg/yr. However, 

maternal genetic trends were similar for both selection lines. First-parity calving difficulty was 

less frequent in YB line. However, in order to improve calving ease, authors suggested that direct 

selection for the trait should be applied.   

 MacNeil et al. (2000) used the same lines in MacNeil et al. (1998) to characterize genetic 

changes in age-weight relationships of females resulting from these selection lines. They 
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reported genetic gain of females per generation of 8 and 10.1 kg for BY and YW lines, 

respectively. Corresponding intercepts of growth curves (i.e., birth weight) were -0.00134 and -

0.00116 kg. MacNeil (2003) implemented Dickerson’s selection index to improve efficiency of 

beef production for a stabilized composite population (CGC): ½ Red Angus, ¼ Charolais, and ¼ 

Tarentaise. A control line without selection was also established. For the selected line, estimates 

of direct genetic changes for the index, birth weight, 200-d weight, 365-d weight, and cow 

weight were 6.0, 0.45, 3.42, and 7.74 kg/generation, respectively. Enns and Nicoll (2008) 

evaluated genetic trends of New Zealand Angus which selected (1976-1993) using an 

economically based, multi-trait breeding objective. Traits were slaughter weight and dressing 

percentage of harvest progeny and cull cows, and the number of calves weaned in the lifetime of 

each cow. Correlated responses for genetic changes for weaning weight direct and maternal 

breeding value were 0.43 and 0.03 kg/yr, respectively. Corresponding genetic trends for 

postweaning gain and yearling weight were 0.29 and 0.72 kg/yr, respectively. 

  Generally, selection for increased postnatal growth traits resulted in heavier births which 

are expected to raise the incidence of calving difficulty. However, selection for low birth weight 

and high postnatal growth traits reduced birth weight, but not necessarily calving difficulty. 

Selection for increased postnatal growth traits and calving ease should be considered as means of 

effectively reducing calving difficulty and increases growth at later ages. 
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CHAPTER III. 

 

3. PERFORMANCE LOSSES DUE TO SELECTION FOR LOW BIRTH WEIGHT 

VERSUS HIGH CALVING EASE: A SIMULATION STUDY IN BEEF CATTLE 

 
 
 
3.1. Introduction 

The economic importance of calving difficulty is well documented (Wiltbank et al., 1961; 

Laster et al., 1973; Meijering, 1984; Dematawewa and Berger, 1997). Costs associated with 

extreme dystocia (i.e., animals with score of 3, 4, and 5) in primiparous Holsteins cows were 

estimated to be $96.48, $159.82, and $379.61, respectively, (Dematawewa and Berger, 1997). 

These costs were estimated from losses in milk yield, fat yield, protein yield, days open, number 

of services, and calf deaths. However, the total cost associated with dystocia (i. e., sum of costs 

associated with dystocia scores weighted by the probability of occurrence) was $28.53 for an 

average heifer and about $10.00 for an average older cow. Amongst genetic and environmental 

factors that affect the incidence of calving difficulty, birth weight is considered most important 

(Bellows, 1993). Incidence of dystocia increases by 2.3-13% when birth weight increases by 1 

kg (Laster et al., 1973; Johanson and Berger, 2003). Therefore, historically genetic improvement 

of calving ease relied heavily on selection of animals with low birth weight. Such a strategy 

could potentially reduce beef cattle efficiency in two different ways. First, given the fact that the 

genetic correlation between calving ease and birth weight is not one, selection for low birth 

weight does not necessarily improve the ease of calving. Second, selection for low birth weight 

can reduce growth at later ages given the unfavorable genetic relationship with those traits. 

Several researchers reported that selection for low birth weight did not improve calving ease and 



68 
 

they suggested that direct selection for calving ease would be more effective (Burfening et al., 

1978b; MacNeil et al., 1998). Compared to selection for lower birth weight, we hypothesize that 

direct selection for high calving ease would result in animals with lower incidence of calving 

difficulty and higher growth rates at later ages. Therefore, the first objective of this study was to 

determine the consequences of alternative selection criteria for either low birth weight or high 

calving ease. 

Although calving ease is recorded as an ordered categorical trait (i.e., discrete), it is a 

quantitative trait with a hypothetical underlying continuous “liability” scale which has the 

characteristic of normally distributed variables. Gianola (1980a, 1980b, 1982) reported that 

assumptions of linear methodologies were violated when used for the analysis of ordered 

categorical responses (i.e., observed scores were treated as a linear variable). Gianola and 

Foulley (1983) suggested a nonlinear method, called the threshold methodology, to analyze 

ordered categorical traits which are also known as threshold traits. For such traits, polygenic 

inheritance and large number of loci must be evident to justify the assumption of the underlying 

normal distribution, which is essential for the evaluation of such traits using the threshold 

methodology (Foulley et al., 1990). Results from reports of superiority of the threshold model 

over the linear model with respect to their goodness of fit and their predictive ability have varied. 

Several researchers have supported the hypothesis that the threshold model is a better fit to 

categorical traits (Varona et al., 1999b; Ramirez-Valverde et al., 2001; Casellas et al., 2007; 

Gevrekci et al., 2011). However, other studies found that the two methodologies performed 

similarly (Renand et al., 1990; Olesen et al., 1994; Wang et al., 2005). Therefore, the second 

objective of the present study was to compare the threshold model with the linear model in terms 

of their predictive ability of calving ease EPD using the cross validation technique.         
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3.2. Materials and Methods 

Studied traits were calving ease (CE), birth weight (BWT), weaning weight (WWT), 

postweaning gain (PWG), and yearling weight (YWT). Two selection scenarios were simulated 

to compare rates of genetic change resulting from selection for high calving ease (HCE) versus 

selection for low birth weight (LBW). Weighted means for phenotypic averages and genetic and 

residual (co)variances of studied traits were required to create data for the two selection 

scenarios. Furthermore, genetic and residual parameters of studied traits were estimated, using a 

multivariate threshold-linear animal model with Gibbs sampling algorithm, to predict EPD for 

those traits. For both selection scenarios, genetic trends of studied traits EPD by birth year were 

estimated. Threshold animal model and linear animal models were compared in terms of their 

predictive ability. Models were compared in terms of linearity “threshold vs. linear” with calving 

ease fitted either as a binary or polychotomous trait. The criteria used to compare the predictive 

ability of models were Spearman’s rank correlation and Pearson’s correlation between observed 

and predicted EPD from two complementary subsets in which 50% of the data was used.      

3.2.1. Estimation of weighted means of (co)variances and phenotypic averages from 

literature 

One of the aims of the current study is to generate data that mimic real field situations, as 

such weighted averages of (co)variance components from literature were estimated. Weighted 

means of trait averages required to create data sets for the two selection scenarios were estimated 

as shown in Eq. (3.1).  

                       ( 3.1) 

where     was the weighted mean,    was the number of records in the ith study, and k was the 

number of studies.  
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(Co)variance component estimation is a very crucial step in genetic evaluation 

procedures. Genetic predictions acquired from BLUP procedures (e.g., breeding values “EBV” 

or expected progeny differences “EPD”) require (co)variance components to be known. The 

latter are the dispersion parameters that describe the random blocks (i.e., genetic and residual 

effects) of Henderson’s mixed models equations. In particular, genetic (co)variances describe the 

genetic variation within (i.e., direct or maternal variance) and between traits (i.e., genetic 

correlations amongst traits in multi-trait genetic evaluations). Furthermore, residual 

(co)variances describe environmental variation within and between traits. Hence, we need to 

estimate both genetic and residual (co)variances, which are the elements of two respective 

matrices known as G and R. In simulation studies, (co)variance components depend on the 

objective of the simulation. First, if the objective of the simulation study was for example to test 

the effect of a theoretical incremental change in a heritability of a trait on correlated response of 

another trait, genetic (co)variances would take arbitrarily assumed values (i.e., incremental 

values). Second, if the objective of the simulation requires data that mimics field data, 

(co)variance components used to create such data should be either estimates of a specific field 

data or weighted averages from literature. Since the aim of the current study required mimicking 

field data, weighted averages of (co)variance components from literature were estimated. 

Estimates from literature included direct genetic and phenotypic variances, heritabilities, 

direct genetic and residual correlations for calving ease, birth weight, weaning weight, and 

postweaning gain. These values were compiled and weighted averages and their respective 

standard errors (Table 3.1) were estimated. Weighted means were estimated for direct 

heritability, direct genetic variance, and genetic and residual correlations. However, weighted 

means for phenotypic and residual variances were calculated given the weighted mean estimates 
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of direct heritabilities and direct genetic variances. Residual covariances were directly calculated 

from their respective residual correlations and residual variances.  

Published heritability estimates were averaged (Eq. 3.2; Koots et al. 1994a) using the 

inverse of the sampling variance for each estimate (Eq. 3.3; Koots et al. 1994a) as a weighting 

factor.  Standard errors for heritability weighted means (   ) were estimated by taking the 

square root of the summation of weighting factors (Eq. 3.4; Koots et al. 1994a). 

                                       ( 3.2) 

where     is the weighted mean for heritability,     is the heritability estimate from the ith 

cited source, and       is the corresponding estimated standard error. 

                         
( 3.3) 

 

                  
    ( 3.4) 

To remove the dependency of the variance on the estimate, genetic and residual 

correlations and direct genetic variances were transformed to an approximate normal scale using 

Fisher’s Z transformation (Steel and Torrie, 1960) as shown in Eq. (3.5). Next, weighted means 

of the Z transformed correlations were calculated using Eq. (3.2). Then, resulted weighted means 

were back transformed using Eq. (3.6).  

                   ( 3.5) 

where Z was the transformed correlation and r was untransformed correlation from literature. 

               ( 3.6) 
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where rw was the weighted mean correlation (phenotypic or genetic) and z was the weighted 

mean for the Z transformed correlations. 

Table ‎3.1: Number of literature estimates (n) and estimated weighted mean (Es.) with standard 
error (S.E. X100) in parenthesis for direct genetic variance (bold faced on diagonal), genetic 
correlation (above diagonal), residual correlation (below diagonal), and heritability (h2) for 
calving ease (CE), birth weight (BWT), weaning weight (WWT), and postweaning gain (PWG) 
with source cited. 
Trait CE BWT WWT PWG 
 

Sourcea n 
Es. 

(S.E.) 
Sourcea n 

Es. 
(S.E.) 

Sourcea n 
Es. 

(S.E.) 
Sourcea n 

Es. 
(S.E.) 

CE - - 0.24b 7,9,13,14,18 10 
0.73 
(1) 

9,13, 
18,19 

9 
0.22 
(0.5) 

2, 8 2 
0.21 
(6) 

BWT 7 1 
0.25 
(3) 

1,9,11,17 4 
9.67 
(39) 

1,9,11, 
13,18 

6 
0.5 

(0.5) 
1,13 2 0.32 

WWT 2,4 2 0.02 1 1 
0.29 
(0.8) 

1,5,9,10,11, 
16,18,19, 

16 
221 

(262) 
1,13 2 

0.47 
(0.4) 

PWG 2 1 0.03 1 1 
0.12 
(0.8) 

1 1 
0.08 
(0.8) 

1 1 216.9 

             

h2 6,7 3 
0.19 
(0.9) 

3,7,9,11,12, 
15,17,18 

16 
0.32 
(0.2) 

1,9,10,11, 
16,18,19 

28 
0.29 
(1) 

1 10 
0.45 
(0.4) 

a1 = Bennett and Gregory (1996), 2 = Bennett and Gregory (2001), 3 = Brandt et al. (2010), 4 = Burfening et al. 
(1978a), 5 = Costa et al. (2011), 6 = Dong et al. (1991), 7 = Eriksson et al. (2004), 8 = Gregory et al. (1995), 9 = 
Gutierrez et al. (2007), 10 = Iwaisaki et al. (2005a), 11 = Iwaisaki et al. (2005b), 12 = Koots et al. (1994a), 13 = 
Koots et al. (1994b), 14 = Lee (2002), 15 = Matilainen et al. (2009), 16 = Meyer et al. (1994), 17 = Mujibi and 
Crews (2009), 18 = Phocas and Laloe (2004), 19 = Roughsedge et al. (2005) 
bDirect genetic variance of calving ease was calculated given the weighted average of heritability (0.19) and residual 
variance of one. 

  
3.2.2. Simulated data 

Two data sets were simulated using weighted means of genetic and residual (co)variances 

(Table 3.1) and phenotypic averages for calving ease (CE), birth weight (BWT), weaning weight 

(WWT), and postweaning gain (PWG). Schematic representation of the data simulation process 

is presented in Fig. 3.1. The base population consisted of 1,200 sires randomly mated to 36,000 

dams (30 dams/sire) to produce 36,000 F1 progeny. Animals were then partitioned into 120 herds 

of 300 cows/herd. Two populations were selected for three generations under two selection 

scenarios: 1) selection for high calving ease (HCE) 2) selection for low birth weight (LBW). For 
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each selection scenario, the selection criteria was the true breeding values (TBV) for either 

calving ease on the underlying scale or birth weight where top 5% (TBV ≤ male average TBV - 

1.65SD) males across the generations were selected and randomly mated to the top 80% (TBV ≤ 

female average TBV + 0.85 SD) females (i.e., 2 year old) from previous generation (Fig. 3.2).  

In order to create observations, year and season of birth effects were assumed to be 

constant; however, sex and herd effects were used to create observations. Based on R code 

written by Larry Schaeffer (http://www.aps.uoguelph.ca/~lrs/Summer2012Full/MTiter.R), 

observations for studied traits were created, using R program (R Core Team, 2014), as a linear 

function of trait average, sex, herd, TBV, and residual error (Eq. 3.7). For details about simulated 

data see appendix B. 

                            ( 3.7) 

where       was the observation for the jth trait on the ith animal,    was the average of the jth 

trait,      was the sex effect,    was the herd effect,        was the true breeding value, and       
was residual. Resulted observations for calving ease on the continuous underlying scale were 

transformed to an observed categorical scale of four categories using fixed thresholds 0, 1, and 

1.4 SD.   

Elements of G and R matrices represent the weighted means of genetic and residual 

(co)variances from literature and were used to create observations for CE, BWT, WWT, and 

PWG, respectively. Summary statistics and data structure of simulated data sets resulted from 

selection for high calving ease and selection for low birth weight are presented in Table 3.2.  
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Base population 
120 herds (300 animal/herd) 

1,200 sires x 36,000 dams randomly mated to produce 36,000 F1 progeny 

F2 

top 5% sires x top 80% dams 

F3 

top 5% sires x top 80% dams 

F4 

top 5% sires x top 80% dams 

F2 

top 5% sires x top 80% dams 

F3 

top 5% sires x top 80% dams 

F4 

top 5% sires x top 80% dams 

Selection for low BWT 
LBW  

Selection for High CE 
HCE 

Figure ‎3.1: Schematic representation of two simulated data sets for two selection 
scenarios: High calving ease (HCE) and Low birth weight (LBW)  
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Table ‎3.2: Data structure of simulated beef cattle populations. 

 Selection scenario1 

Item HCE LBW 

No. of animals in pedigree  105,950 105,830 

No. of animals with records  68,853 68,733 

No. of dams  68,853 68,733 

No. of sires  3,794 3,808 

No. of dams/sire  18.14 18.04 

No. of herds  120 120 

Herd size  573.7 572.7 

Calving Ease     Mean (SD) 1.66 (0.76) 1.67 (0.76) 

BWT, Kg           Mean (SD) 35.8 (6.94) 34.7 (7.62) 

WWT, Kg          Mean (SD) 242 (31) 236.4 (33.2) 

PWG, Kg/day    Mean (SD) 0.97 (0.023) 0.97 (0.024) 
1HCE: Selection for high calving ease; LBW: Selection for low birth weight. 

 

Males TBV Females TBV 

Selected 
Sires 

(Top 5%) 

Figure ‎3.2: Selected sires (top 5%: TBV ≤ male average TBV - 1.65SD) across 
generations (A) and selected 2 yrs old dams (top 80%: TBV ≤ female average TBV + 
0.85 SD) from previous generation (B) for high calving ease (HCE) and low birth 
weight (LBW) 

A B 

Selected 
Dams 

(Top 80%) 
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3.2.3. (Co) variance components estimation 

For both selection scenarios, (co)variance components for calving ease, birth weight, 

weaning weight, and postweaning gain were estimated with Bayesian inference via means of 

Gibbs sampling algorithm with a threshold-linear animal model (Eq. 3.8). Here, calving ease was 

modeled as a threshold trait with four categories (Eq. 3.9) which were: 1 = unassisted calving, 2 

= minor assistance, 3 = major assistance and 4 = caesarean. Frequencies (in percentage) 

of calving ease scores in HCE data were 1 = 52, 2 = 30.2, 3 = 9.8, and 4 = 8%; while calving 

ease frequencies in the LBW were 1 = 51, 2 = 30, 3 = 9, and 4 = 10%. However, because of 

convergence problems, categories 3 and 4 were subsequently merged. The program 

THRGIBBS1F90 from the BLUPF90 family of programs by Misztal et al. (2002) was employed 

to estimate (co)variance components and breeding values of studied traits. The THRGIBBS1F90 

program uses the probit link function to transform observed incidence to liability. Yearling 

weight breeding values were estimated as the summation of breeding values of WWT and PWG. 

For both data sets, the analysis was carried out with a single chain of 120,000 iterations with a 

burn in period of 20,000 samples. Out of the remaining 100,000 samples, only 10,000 samples 

(i.e., every 10th sample) were used to obtain posterior means of (co)variance components and 

their respective posterior standard deviations. The multiple trait model equation used in the 

analysis is presented below.   

                       
                                  

                                                        ( 3.8) 

In the above equation,    were effects associated with sex of calf and herd subclasses; u were 

direct breeding values; e were the residuals; and X and Z were incidence matrices that link data 

with fixed effects and random effects, respectively. Y was vector of observations for respective 
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trait. An underlying distribution (L) of the calving ease was assumed, where calving ease was 

modeled with the following distribution: 

 
                  

                       
                      

                                       
 

 

( 3.9) 

 

where t1, t2, and t3 were thresholds that defined the four categories of CE. However, prior to 

(co)variance components estimation, calving ease observations (3 and 4) were merged.  

The (co)variance structure of random effects was defined as:                         
where G = a 4×4 additive genetic (co)variance matrix, A = additive genetic relationship 

matrix, R = a 4×4 residual (co)variance matrix, I  = identity matrix of order appropriate to the 

numbers of observations, and  =Kronecker product. 

3.2.4. Comparison of models: Threshold versus Linear 

Data of high calving ease selection scenario (HCE) was used to compare the predictive 

ability of the threshold animal model versus the linear animal model with calving ease fitted 

either as a binary or polychotomous (3 categories) trait. A total of 12 different models were fitted 

to calving ease and growth traits (Table 3.3). Based on the complexity of models, there were 

three general categories: univariate, bivariate, and multivariate animal models. Here, four 

different models within each category are result of calving ease being fitted either as a threshold 

trait (with 2 or 3 categories) or as a linear trait (with 2 or 3 categories).  

(Co)variance components (Table 3.4) and solutions (breeding values) for all models were 

estimated via Gibbs sampling using THRGIBBS1F90 program by Misztal et al. (2002).  
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Table ‎3.3: Models fitted to calving ease and growth traits from the high calving ease data (HCE) 
to compare them in terms of their predictive ability of EPD.  

Model1 CE2 Fitted traits3 Model representation4 

Univariate    
L-UAM- CE2 L+B CE                       
L-UAM- CE3 L+P CE                       
T-UAM-CE2 T+B CE                       
T-UAM-CE3 T+P CE                       

Bivariate    

LL-BAM-CE2 L+B CE + BWT                                                       
LL-BAM-CE3 L+P CE + BWT                                                       
TL-BAM-CE2 T+B CE + BWT                                                       
TL-BAM-CE3 T+P CE + BWT                                                       
Multivariate    

LL-MAM- CE2 L+B CE + BWT + WWT + PWG                      
                                  

                                                     
LL-MAM- CE3 L+P CE + BWT + WWT + PWG                      

                                  
                                                     

TL-MAM- CE2 T+B CE + BWT + WWT + PWG                      
                                  

                                                     
TL-MAM- CE3 T+P CE + BWT + WWT + PWG                      

                                  
                                                     

1L = linear; T = threshold; UAM = univariate animal model; BAM = bivariate animal model; MAM = 
multivariate animal model; CE2 = 2 categories; CE3 = 3 categories. 
2L = linear; T = threshold; B = binary; P = polychotomous. 
3CE = calving ease; BWT = birth weight; WWT = weaning weight; PWG = postweaning gain. 
4Models terms are illustrated in Equations 3.8 and 3.9, except for     which was a vector of calving ease 
scores (2 or 3) on the observed scale. 
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Table ‎3.4 : Posterior mean and posterior standard deviation (in parentheses) for (co)variance 
components1 of calving ease (CE), birth weight (BWT), weaning weight (WWT), and post 
weaning gain (PWG) for the high calving data (HCE) under different models. 

Model2 Effect3 Trait 
CE4 

BWT WWT PWG L-CE2 L-CE3 T-CE2 T-CE3 
Univar.          

 Dir.         

  CE 0.02(0.001) 0.06(0.003) 0.16(0.01) 0.18(0.01)    

 Resid.         

  CE 0.22(0.001) 0.51(0.004) 1(0.007) 1.13(0.01)    

          

Bivar.          

 Dir.         

  CE 0.015(0.001) 0.044(0.003) 0.10(0.009) 0.13(0.009)    

  BWT 0.38(0.013) 0.61(0.022) 1.02(0.038) 1.08(0.039) 21.55(0.31)   

 Resid.         

  CE 0.23(0.001) 0.52(0.004) 1(0.007) 1.17(0.016)    

  BWT 0.44(0.013) 0.74(0.021) 1.18(0.034) 1.30(0.037) 16.17(0.20)   

          

Multivar.          

 Dir.         

  CE 0.015(0.001) 0.045(0.003) 0.11(0.008) 0.13(0.01)    

  BWT 0.38(0.014) 0.62(0.022) 1.02(0.036) 1.08(0.03) 21.51(0.30)   

  WWT 0.66(0.067) 1.14(0.110) 1.76(0.180) 1.98(0.18) 48.27(1.11) 305.9(7.25)  

  PWG 0.35(0.062) 0.60(0.010) 0.93(0.170) 1.04(0.17) 22.64(0.91) 133.7(4.65) 256.8(5.43) 
          

 Resid.         

  CE 0.23(0.001) 0.53(0.003) 1(0.007) 1.17(0.01)    

  BWT 0.44(0.013) 0.74(0.021) 1.18(0.034) 1.29(0.03) 16.20(0.20)   

  WWT 0.73(0.070) 1.15(0.108) 1.97(0.184) 2.02(0.18) 23.69(0.80) 544.2(5.90)  

  PWG 0.62(0.057) 1(0.090) 1.67(0.155) 1.75(0.15) 7.57(0.64) 37.98(3.44) 292.6(3.89) 
1variances (bold faced) and covariances (below diagonal of effect block). 
2Univar. = univariate animal model; Bivar. = bivariate animal model; and Multivar. = multivariate animal 
model. 
3Dir. = direct genetic effect; and Resid. = residual effect. 
4L-CE2 = calving ease was fitted as a linear binary trait; L-CE3 = calving ease was fitted as a linear trait 
with 3 categories; T-CE2 = calving ease was fitted as a threshold binary trait; and T-CE3 = calving ease 
was fitted as a threshold trait with 3 categories. 
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Models were compared in terms of their predictive ability using cross validation 

procedure (i.e., data splitting technique). This procedure was performed by duplicating the HCE 

data (selection for high calving ease), which results in two identical data sets. In one of these 

data, 50% of calving ease observations were randomly set to be missing. Further, the remaining 

calving ease observations in this data were discarded in the other data.  This splitting technique 

results in two complementary data sets in which one half of animals have calving ease 

observations and the same animals do not have calving ease observations in the other data. For 

each model, solutions were obtained for both complementary data sets and correlations between 

solutions (EBV were transformed to EPD) from were calculated to evaluate the predictive ability 

of models. Here, Pearson’s and Spearman’s (Rank correlation) correlation coefficients were 

calculated between predicted EPD from two complementary data sets. 

3.2.5. Genetic trends 

For both selection scenarios, solutions (EPD) for calving ease (% unassisted calving) and 

growth traits (kg) obtained from a threshold-linear multivariate model were regressed on year of 

birth. Since selection was applied to produce F2, F3, and F4 generations, year of birth for F1 

generation, which is produced by random mating of founders, was considered year zero. Under 

the constraint of allowing only the 2 year old dams to produce the next generation, a period of 2 

years was assumed to take measurements on the following generation; therefore, average EPD 

for all traits were calculated for every other year. Genetic trends (slope of regression line) of 

studied traits were estimated as rates of change in average EPD per year.  

3.3. Results and Discussion 

Estimates of posterior mean and posterior standard deviation of (co)variance components 

obtained using Bayesian inference via means of a Gibbs sampling algorithm with a threshold-
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linear animal model (Eq. 3.8), for both selection scenarios; high calving ease (HCE) and low 

birth weight (LBW), are presented in Tables 3.5 and 3.6, respectively. These values were used to 

estimate direct genetic effects (i.e., EPD) from which genetic trends were calculated. 

Table ‎3.5: Posterior means (from 10,000 Gibbs samples) and posterior standard deviations (in 
parentheses) for (co)variance components1 from the threshold-linear multivariate animal 
model using Gibbs sampling analysis of calving ease (CE, liability2), birth weight (BWT, kg2), 
weaning weight (WWT, kg2), and post weaning gain (PWG, kg2/d2) for high calving ease 
selection scenario (HCE). 
Effect Trait CE BWT WWT PWG 
Direct genetic      

 CE 0.13(0.01)    
 BWT 1.08(0.03) 21.51(0.30)   
 WWT 1.98(0.18) 48.27(1.11) 305.9(7.25)  
 PWG 1.04(0.17) 22.64(0.91) 133.7(4.65) 256.8(5.43) 

Residual      
 CE 1.17(0.01)    
 BWT 1.29(0.03) 16.20(0.20)   
 WWT 2.02(0.18) 23.69(0.80) 544.2(5.90)  
 PWG 1.75(0.15) 7.57(0.64) 37.98(3.44) 292.6(3.89) 

1variances (on diagonal) and covariances (below diagonal). 

 
Table ‎3.6: Posterior means (from 10,000 Gibbs samples) and posterior standard deviations (in 
parentheses) for co-variance components1 from the threshold-linear multivariate animal model 
using Gibbs sampling analysis of calving ease (CE, liability2), birth weight (BWT, kg2), 
weaning weight (WWT, kg2), and post weaning gain (PWG, kg2/d2) for low birth weight 
selection scenario (LBW). 
Effect Trait CE BWT WWT PWG 
Direct genetic      

 CE 0.21(0.01)    
 BWT 0.98(0.04) 25.54(0.31)   
 WWT 1.15(0.19) 67.75(1.12) 366.9(6.85)  
 PWG 1.02(0.18) 29.87(0.90) 159.4(4.51) 260.7(5.27) 

Residual      
 CE 1.11(0.01)    
 BWT 1.33(0.03) 14.91(0.20)   
 WWT 2.37(0.18) 15.79(0.77) 526.6(5.55)  
 PWG 1.59(0.16) 5.26(0.62) 30.03(3.36) 294.5(3.84) 

1variances (on diagonal) and covariances (below diagonal). 
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Average EPD for calving ease and growth traits corresponding to four generations of 

selection are presented in Table 3.7 and depicted in Fig. 3.3. Both selection scenarios showed 

increases in calving ease average EPD. However, Table 3.8 shows that rate of genetic change of 

calving ease (% unassisted calving/yr) from HCE selection scenario (1.56 ± 0.05) was higher (P 

< 0.001) than that from LBW selection scenario (1.20 ± 0.07). Average EPD for birth weight 

from both selection scenarios showed decreases (Figure 3.3). Nevertheless, the decrease from 

LBW selection scenario was (P < 0.001) more severe (-1.17 ± 0.03 kg/yr) compared to (-0.86 ± 

0.02 kg/yr) HCE. These results were in agreement with Bennett (2008) who reported that 

selection for higher calving ease reduced birth weight and the incidence of calving difficulty and 

did not affect growth at later ages. For weaning weight, average EPD showed a decrease in both 

selection populations; however, the rate of genetic change of WWT EPD in the LBW selection 

scenario experienced (P < 0.001) a steeper decline, -3.55 ± 0.10 kg/yr, compared to the -1.90 ± 

0.09 kg/yr for HCE selection scenario. Similarly, postweaning gain average EPD from the LBW 

selection scenario had (P < 0.001) a faster rate of decrease at -0.25 ± 0.01 kg/yr compared to a -

0.13 ± 0.01 kg/yr for PWG from HCE selection scenario. Even though both selection scenarios 

yielded decreasing rates for yearling weight average EPD, the difference between the two 

scenarios was more pronounced (P < 0.001) where smaller losses in yearling weight average 

EPD were found in HCE selection scenario versus LBW selection scenario. 

Compared to selection for low birth weight, selection for high calving ease increased (P < 

0.001) the annual genetic gain for the studied traits. These increases in the rate genetic change, 

(i.e., slope differences between HCE and LBW), were 0.37%, 1.65 kg, and 1.77 kg for CE, 

WWT, and YWT, respectively, which correspond to 30.83, 46.47, and 46.45% annual increase 

for these traits. Therefore, selection for the economically relevant trait (CE) instead of its 
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indicator trait (BWT) reduced losses by producing animals with a lower incidence of dystocia 

and heavier weights at marketing age. Conversely, in both selection scenarios, all growth-related 

traits showed negative genetic trends. These negative trends were a result of the single trait 

selection procedure applied. Such a procedure is not typically used as means for genetic 

improvement; but rather, multiple trait selection programs are the preferred method to achieve 

selection goals. Nonetheless, the use of single trait selection in the current study is justified by 

the need to exclusively quantify response to selection attributed to selection for high calving ease 

as opposed to low birth weight.   

In conclusion, it appears that selection for high calving ease (HCE) produces cattle with 

improved calving ease EPD and higher growth rates at later ages compared to selection for low 

birth weight (LBW); therefore, we accept the hypothesis that direct selection for high calving 

ease would results in animals with lower incidence of calving difficulty and higher growth rate. 

However, both selection scenarios resulted in negative genetic trends for growth-related traits. 

These results were expected because of applying single trait selection schemes and the genetic 

correlations amongst the traits. Incorporating economically relevant traits, (e.g., weaning and 

yearling weights), with calving ease in a multitrait selection program would produce cattle with 

low incidence of dystocia and higher growth rates. 

Table ‎3.7: Average EPD for calving ease (% unassisted calving) and growth traits (kg) under two 
selection scenarios1. 

 

HCE  LBW 
Year of birth  Year of birth 

Trait2 0 2 4 6  0 2 4 6 
CE 0.04 3.84 6.63 8.75  0.03 2.64 5.00 6.87 

BWT -0.03 -2.20 -3.69 -4.74  -0.05 -2.93 -5.02 -6.54 
WWT -0.09 -5.12 -8.23 -10.26  -0.17 -8.95 -15.28 -19.65 
PWG -0.008 -0.33 -0.58 -0.76  -0.01 -0.60 -1.08 -1.44 
YWT -0.10 -5.45 -8.82 -11.03  -0.18 -9.56 -16.37 -21.09 

1HCE = selection for high calving ease; LBW = selection for low birth weight 
2CE = calving ease; BWT = birth weight; WWT = weaning weight; PWG = postweaing gain; YWT=yearling weight. 
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Table ‎3.8: Rate of genetic change1 (EPD/yr) for calving ease (% unassisted calving) and growth 
traits (kg) under two selection scenarios2. 

 HCE  LBW 
Slope 

Difference Trait3 Intercept Slope  Intercept Slope 

CE -1.42 ± 0.15 1.56 ± 0.05  0.06 ± 0.14 1.20 ± 0.07 0.37 ± 0.09 

BWT 0.76 ± 0.06 -0.86 ± 0.02  -0.13 ± 0.05 -1.17 ± 0.03 0.31 ± 0.03 

WWT 1.63 ± 0.20 -1.9 ± 0.09  -0.42 ± 0.21 -3.55 ± 0.10 1.65 ± 0.13 

PWG -0.01 ± 0.03 -0.13 ± 0.01  -0.02 ± 0.03 -0.25 ± 0.01 0.12 ± 0.02 

YWT 1.75 ± 0.27 -2.04 ± 0.10  -0.44 ± 0.22 -3.81 ± 0.11 1.77 ± 0.15 
1All estimates were different from zero (P < 0.001) 
2HCE= selection for high calving ease; LBW  = selection for low birth weight 
3CE = calving ease; BWT = birth weight; WWT = weaning weight; PWG = postweaing gain; YWT = 
yearling weight. 

 

Figure ‎3.3: Genetic trends (average EPD) of calving ease (CE), birth weight (BWT), 
weaning weight (WWT), postweaning gain (PWG), and yearling weight (YWT) under two 
selection scenarios: selection for high calving ease (HCE) versus selection for low birth 
weight (LBW).  
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Table 3.9 shows correlations (Spearmen’s and Pearson’s) between predicted EPD from 

two complementary data sets (i.e., animal with a calving ease record in one data and has no 

calving ease observation in the other data) under different animal models. Here, the different 

models were 1) Calving ease fitted as a linear or a threshold trait with either of two approaches 

(i.e., as a binary), or three categories (i.e., as polychotomous trait), 2) Univariate and multivariate 

which considers fitting: calving ease as “univariate”, calving ease and birth weight as 

“bivariate”, and calving ease with all growth traits as “multivariate”. For the univariate animal 

models, fitting calving ease as a threshold or linear did not affect model predictive ability (0.27 

vs.0.27 and 0.28 vs. 0.28 rank correlations for binary and polychotomous calving ease, 

respectively); however, fitting calving ease with three categories improved the model predictive 

ability by 6.25% (0.32 vs. 0.34 rank correlation) and 9.4% (0.32 vs. 0.35 correlation) for sires 

with more than 20 progeny. Increasing the number of categories increases the amount of 

information obtained from the observed scores. These results were in agreement with those 

found in a simulation study by Meijering and Gianola (1985) who found that increasing the 

number of categories causes the categorical trait to become more normally distributed. Further, 

Abdel-Azim and Berger (1999), in a simulation study, reported that the accuracy of prediction 

increased when the number of categories increased. In a study of US Holsteins, De Maturana et 

al. (2009) justified the similar predictive ability of the threshold model versus the linear model 

by the number of categories (3 and 4 categories) used for calving difficulty which provide more 

information compared to a binary scoring approach. Neither linearity (threshold vs. linear) nor 

the number of categories affected the predictive ability of the bivariate models. Similar results 

were obtained by Wang et al. (2005) in a simulation study where they found that a linear-linear 

(LL) and a linear-threshold (LT) sire-maternal grandsire model performed the same with respect 
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to accuracy (Pearson correlation) and Spearman rank correlation between true and predicted 

breeding values. It is worth noting that adding a highly correlated continuous trait (e.g., birth 

weight) to the genetic evaluation of a categorical trait such as calving ease greatly improves the 

accuracy of genetic prediction. For all sires, the predictive ability of the univariate models, 

compared to birth weight added as correlated continuous trait, was poorer, but with the addition 

of the second trait the predictive ability improved by 210% (rank correlation) and 163% 

(correlation). This supported the results obtained by Foulley et al. (1983) and Janss and Foulley 

(1993) who showed the advantages of using a bivariate analysis for the genetic evaluation of 

calving ease, by incorporating birth weight as a correlated trait. Furthermore, for discrete traits, 

superiority of bivariate models over univariate models was also reported by Casellas et al. (2007) 

and Negussie et al. (2008). In the multivariate models, there were no differences between the 

different models. Furthermore, estimates of correlations did not differ from those obtained from 

the bivariate analysis. These results suggested that adding more correlated continuous traits (e.g., 

weaning weight and postweaning gain) to the genetic evaluation of calving ease did not or only 

slightly improved the accuracy of prediction. This could be explained by the strong genetic 

correlation between calving ease and birth weight, which indicates the incorporation of birth 

weight provides sufficient information to a achieve high accuracy and adding more traits has a 

little effect on the genetic evaluation of calving ease. 

Generally, superiority of the threshold model over the linear model was not evident in 

this study. Data in the current study was balanced (all animals had BWT, WWT, and PWG 

records) with large size herds (n=573) and number of records per sire was 18.4. Such data are not 

characteristic of field data that more likely to indicate the superiority of the threshold model over 

the linear approach. The threshold methodology typically outperforms the linear method when 
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data is highly unbalanced, high incidence of one category of the trait, and for a trait has few 

categories, i.e., binary (Meijering and Gianola, 1985; Hoeschele, 1988; Abdel-Azim and Berger, 

1999). The advantage of threshold models comes when dealing with unbalanced data with 

different incidence rates across levels of fixed effects; however, it may only offer a slight 

advantage in well designed progeny testing programs in which there are a large number of 

records per sire (McGuirk et al., 1999). The advantages of the threshold methodology over the 

linear methods would be more pronounced in beef cattle field data which is usually unbalanced 

with high incidence of calving ease and where sires have a relatively small number of progeny.   

Table ‎3.9: Estimates of Spearman’s (Rank) and Pearson’s (r) correlation coefficients between 
predicted EPD from complementary data sets under different models. 

Model1 

All sires Sires with progeny > 20 Sires with progeny < 20 
Rank r Rank r Rank r 

Univariate       

L-UAM- CE2 0.27 0.31 0.32 0.32 0.25 0.30 

T-UAM-CE2 0.27 0.31 0.32 0.32 0.25 0.30 

L-UAM- CE3 0.28 0.33 0.34 0.35 0.25 0.32 

T-UAM-CE3 0.28 0.33 0.34 0.35 0.25 0.32 

Bivariate       

LL-BAM-CE2 0.87 0.87 0.89 0.90 0.82 0.82 

TL-BAM-CE2 0.87 0.87 0.89 0.90 0.82 0.82 

LL-BAM-CE3 0.87 0.88 0.88 0.87 0.81 0.80 

TL-BAM-CE3 0.87 0.88 0.89 0.90 0.82 0.81 

Multivariate       

LL-MAM- CE2 0.87 0.87 0.89 0.90 0.82 0.83 

TL-MAM- CE2 0.87 0.87 0.89 0.90 0.82 0.83 

LL-MAM- CE3 0.87 0.87 0.89 0.90 0.81 0.82 

TL-MAM- CE3 0.87 0.88 0.89 0.89 0.82 0.83 
1L = linear; T = threshold; UAM = univariate animal model; BAM = bivariate animal model; MAM = 
multivariate animal model; CE2 = 2 categories; CE3 = 3 categories. 
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3.4. Summary 

Despite being an indicator trait, downward selection on birth weight is widely used as a 

tool to improve calving ease. However, the positive genetic correlation between birth weight and 

subsequent growth traits could lead to loss in performance at later age. The objectives of this 

study were 1) to assess performance losses under two scenarios in which selection for high 

calving ease (HCE) and selection for low birth weight (LBW) will be applied and 2) to compare 

the threshold model versus the linear model. Under the two selection scenarios (HCE and LBW), 

two populations with observations on calving ease (CE), birth weight (BWT), weaning weight 

(WWT), and postweaning gain (PWG) were simulated. Each population consisted of a base 

generation of 1,200 sires and 36,000 dams. The first generation was produced by random mating 

of founders (1,200 sires and 36,000 dams). Each of the three subsequent generations were 

produced by selecting the top 5% and 80% sires and dams, respectively, from previous 

generations. Simulation was carried out using a multivariate threshold-linear model with Gibbs 

sampling algorithm to estimate variance components. Fixed effects were herd (n = 120) and sex. 

Models predictive ability “threshold vs. linear” were compared using a cross validation 

procedure (i.e., data-splitting technique). The procedure was performed by duplicating the HCE 

data which resulted in two identical data sets. In one of those data, one half of calving ease 

observations was randomly set to be missing. The remaining calving ease observations in this 

data were discarded in the other data set. The procedure produced two complementary (for 

calving ease records) data sets. The criteria used to compare models predictive ability were 

Pearson’s and Spearman’s correlations between predicted calving ease EPD obtained from 

complementary data sets. Results showed that the rate of genetic change of CE (% unassisted 

calving/yr) from HCE selection scenario (1.56 ± 0.05) was higher (P < 0.001) than that from 
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LBW (1.20 ± 0.07). For yearling weight, the difference between the two scenarios was more 

pronounced (P < 0.001) where less losses in YWT average EPD were found in HCE selection 

scenario (-2.04 ± 0.10 kg/yr) versus (-3.81 ± 0.11 kg/yr) for LBW. Slope difference between 

both scenarios was significant (P < 0.001) for all traits. For HCE compared to LBW, the annual 

differences in CE, WWT, and YWT were 0.37%, 1.65 kg, and 1.77 kg, respectively. In 

conclusion, we accept the hypothesis that direct selection for high calving ease would results in 

animals with lower incidence of calving difficulty and higher growth rate at later ages. The 

predictive ability of the threshold model and the linear model were the same. A substantial 

increase in the accuracy of prediction for calving ease, when birth weight was incorporated as a 

correlated trait, was indicated. However, with birth weight already in the model, the addition of 

weaning weight and postweaning gain did not improve model’s predictive ability. In conclusion, 

both selection scenarios (HCE and LBW) increased calving ease average EPD and decreased the 

EPD for growth traits. However, selection for high calving ease produced animals with better 

calving ease EPD and have higher growth rates at later ages compared to those produced by 

selection for low birth weight. The similar predictive ability of the threshold and linear models 

might be a result of the highly balanced data used in current study. The use of unbalanced data 

with high incidence of calving ease, different incidences across levels of fixed effects, and small 

numbers of records per sire would be more appropriate to investigate the superiority of the 

threshold model over the linear model. 
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CHAPTER IV. 

 

4. PERFORMANCE LOSSES UNDER DIFFERENT SELECTION SCENARIOS FOR 

LOW BIRTH WEIGHT VERSUS HIGH CALVING EASE IN AMERICAN 

SIMMENTAL BEEF CATTLE 

 
 
 
4.1. Introduction 

Profitability of beef cattle enterprises are directly affected by costs associated with calving 

difficulty.  Attempts to reduce such costs historically have focused on another trait, birth weight, 

which has no direct economic importance. Nonetheless, birth weight is routinely used as an 

indicator trait for dystocia. The high genetic correlation with calving difficulty, a continuous 

measure (as opposed to categorical), and ease of measure are characteristics that have made birth 

weight the trait of choice for the genetic improvement of calving difficulty. To improve the 

efficiency of beef production, Dickerson et al. (1974) proposed a selection index in which birth 

and yearling weights were included as component traits with the purpose of incorporating birth 

weight to reduce the incidence of dystocia, yet a selection strategy that would improve growth 

through selection for higher yearling weight. However, the downward selection for birth weight 

would not certainly improve the ease of calving (Burfening et al., 1978b; MacNeil et al., 1998) 

as rapidly. Furthermore, given the high genetic correlation between birth weight and growth 

traits at later ages, selection for lower weight at birth might result in sacrificing growth at the 

marketing age. Therefore, we hypothesize that, instead of selection for low birth weight, direct 

selection for the trait of economic importance (i.e., calving ease) should be used as means to 

reduce both the incidence of calving difficulty and losses in performance of growth-related traits. 
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The objective of the current study was to quantify the performance losses in the American 

Simmental beef cattle under different selection scenarios for low birth weight as opposed to 

selection for high calving ease.  

4.2. Materials and Methods 

Data used in this study was provided by the American Simmental Association (ASA). In 

this section, we will be presenting the methodologies including: preparation of raw data for 

subsequent analysis; description of final data and models used for estimation of (co)variance 

components and calculation of direct and maternal genetic effects (EPD) for calving ease (CE), 

birth weight (BWT), 205-d weight, 160-d gain, and 365-d weight for Simmental beef cattle. 

Using these EPD we estimated genetic trends under different selection scenarios for high calving 

ease versus low birth weight and follow that with a comparison of predictive ability of “threshold 

vs. linear” models.  

4.2.1. Description of data: 

The ASA provided data and pedigree files of calving ease and growth traits for 

Simmental beef cattle. That data consisted of 11,640,735 records. Each record contained a 

unique animal ID, sire’s animal ID, dam’s animal ID, maternal grandsire ID, sex, multiple birth 

code, breeder, herd, calving ease score, birth weight, birth date, weaning weight, weaning date, 

weaning management code, weaning pasture unit, yearling weight, yearling date, and yearling 

feed unit. The pedigree and breed composition file consisted of 9,250,633 animals. Fields of the 

pedigree file were animal ID, sire ID, birth year, with the remaining fields representing 

proportions of 19 different breeds. 

To avoid the effects heterosis, data were edited so that only animals with ≥87.5% 

Simmental composition were used. Since heifers have a higher incidence of dystocia than older 
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cows, only records of progeny of 2-yr old heifers were used. The former two steps markedly 

reduced the number of animals included in this study due to the high use of crossbreeding by 

Simmental breeders and the small number of progeny produced by first-calf heifers. In the ASA 

standard coding system, the multiple birth code ranges from 1 to 9 where single birth is coded as 

“1”. Therefore, records of animals with other multiple birth codes were removed from the data. 

The ASA added 2 additional categories to the primary coding system recommended by the BIF 

guidelines (1= unassisted calving to 5 = malpresentation). The additional two categories were 

scores 6 and 7 representing animals dead on arrival and premature calving, respectively. Calving 

ease scores from malpresentation (5), dead on arrival (6), and premature calving (7) were 

eliminated for the purposes of this study.  

Adjusted 205-d and 365-d weights and adjusted 160-d postweaning gain: Weaning and yearling 

weights, and consequently postweaning gain, were adjusted to constant age endpoints of 205-d 

and 365-d, respectively. Adjusted weights were calculated and sifted as follows: 1) ages at 

weaning and yearling were calculated, 2) Records that did not fall within weaning and yearling 

age limits of 160 to 250 d and 320 to 410 d, respectively, were eliminated, 3) Weaning and 

yearling weights observations within ± 3 SD limits were used, 4) Weights were then regressed on 

their respective ages, 5) Regression coefficients were used to adjust weaning and yearling 

weights observations to constant age of 205-d and 365-d, respectively. Next, 160-d gain was 

obtained by subtracting the 205-d weight from the 365-d weight. Finally, weight measurement 

units were transformed from lb to kg. 

 Forming fixed effects (contemporary groups) and herd-year-season: Sex was fitted as a fixed 

effect (contemporary group) for both calving ease and birth weight. Weaning contemporary 

groups were constructed by combining sex, weaning management code, and weaning pasture 
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unit. Yearling contemporary groups for 160-d gain were formed using weaning contemporary 

group with the yearling feed unit code added. Since herds were coded within breeders, the two 

codes were combined to obtain a unique code for each herd. In other words, the breeder×herd 

code used in the ASA coding system were combined to form the herd code. Two birth seasons 

were formed as follow: animals born in the period from January to June were considered season 

1 while animals born between July and December were in season 2. For all studied traits, the 

herd-year-season effect was formed and fitted as a random effect in all models for variance 

components estimation and calculation of EPD (i.e., direct and maternal EPD).   

Estimation of (co)variance components for calving ease, birth weight, 205-d weight, and 160-d 

gain: Preliminary analyses were performed using an animal model with Gibbs sampling 

algorithm to estimate (co)variance components of studied traits. The program THRGIBBS1F90 

from the BLUPF90 family of programs by Misztal et al. (2002) was used to estimate 

(co)variance components. The THRGIBBS1F90 program uses the probit link function to 

transform observed incidence to a liability scale. Examination of Gibbs samples from their 

conditional distribution, using the animal model, showed that samples of parameters were not 

stable. Therefore, the estimated parameters from the animal model were not considered reliable. 

The inadequacy of the threshold animal model for the estimation of genetic parameters was 

reported by Moreno et al. (1997). Thus, the sire model was chosen to estimate (co)variance 

components for studied traits. For all analyses in the current study, a four-generation pedigree 

was used beginning with animals with at least one observation (i.e., animals in the data file). 

The dependence of 160-d gain observations on existence of observations for both 205-d 

weight and 365-d weight resulted in a smaller number of 160-d gain records (Table  4.1) 

compared to other traits. The absence of weaning weight observation, weaning date, yearling 
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weight observation, and yearling date, resulted in a missing 160-d gain observation. A 

multivariate sire model was fitted to all traits; however, the 160-d gain (co)variance components, 

especially the residual covariances with calving ease and birth weight and with other traits in the 

model did not converge. Here, Gibbs samples of these covariances fluctuated close to zero. The 

small residual correlations between 160-d gain and these two traits and the sparse 160-d gain 

data, which represented only 28.9, 30.7, and 40.5% of calving ease, birth weight, and 205-d 

weight observations, respectively, likely caused the instability in the system. Hence, a series of 

bivariate analyses were performed to estimate covariances between 160-d gain and the three 

other traits. Maternal grandsire variance and sire-maternal grandsire covariance for calving ease, 

birth weight, and 205-d weight were estimated using a univariate sire-maternal grandsire model. 

For all data sets, analyses were performed with a single chain of 120,000 iterations. The 

initial number of samples obtained via the Gibbs sampler algorithm, usually show fluctuation 

due to Gibbs samples not reaching their stationary distribution. This period is called the burn-in 

period and samples obtained during this period should be discarded. Therefore, for this study the 

initial 20,000 iterations from all analyses were discarded. Another characteristic of this approach 

is that the adjacent samples have high autocorrelations. Thus, samples were thinned by selecting 

every 10th sample out of the remaining 100,000 samples. This thinning procedure yielded 10,000 

samples which were subsequently used to obtain the posterior means of (co)variance components 

and their respective posterior standard deviations. Post-Gibbs analyses to examine the 

convergence of parameters and obtain the posterior means and standard deviations were 

performed using the program POSTGIBBSF90 from the BLUPF90 family of programs by 

Misztal et al. (2002). Parameters were then plotted as a function of the final 10,000 samples. In 

case of convergence, the plot will fluctuate around the mode of the distribution where samples 
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seem to be stable. However, when non-convergence occurs, the parameter value will show a 

clear trend.  

Models used for (co)variance components estimation for Simmental data: Three sire models 

were fitted to estimate (co)variance components required to build the fully structured G and R 

matrices required for subsequent to estimate direct genetic and maternal additive genetic 

solutions. The (co)variance components estimated by sire and sire-maternal grandsire models 

were the sire (co)variance components and the maternal grandsire (co)variance components, 

respectively. These were then transformed to direct and maternal genetic (co)variance 

components. The estimated (co)variance components, after transformation, included: Direct 

genetic and residual (co)variances for all traits and maternal genetic and direct-maternal 

covariance for calving ease, birth weight, and 205-d weight. Calving ease was fitted as a 

threshold trait with categories 3 and 4 merged. Models used to estimate (co)variance components 

for calving ease, birth weight, 205-d weight, and 160-d gain for Simmental beef cattle were: 1) A 

multivariate threshold-linear sire model was used to estimate sire and residual (co)variances 

between calving ease, birth weight, and 205-d weight. 2) A series of three bivariate sire models 

to estimate sire and residual covariances between 160-d gain and traits from the previous model. 

3) A series of three univariate sire-maternal grandsire models to estimate maternal grandsire 

variance and sire-maternal grandsire covariance for traits in the first model.  

Description of different models used in the analyses is presented below: 

1. A multivariate threshold-linear sire model used to estimate sire and residual 

(co)variances between calving ease, birth weight, and 205-d weight: 

A summary of data and pedigree information used for this analysis is presented in Table  4.1. 

Calving ease was fitted as a threshold trait with 3 categories. The fixed effect for both CE and 
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BWT was sex. For 205-d weight, the fixed was weaning contemporary group (sex, weaning 

management code, and weaning pasture unit). The equation of the multivariate threshold-linear 

sire model used in this analysis is presented below.   

                                                                                                              ( 4.1) 

In the above equation,    were effects associated with sex, and weaning contemporary group 

subclasses; s and h were sire and herd-year-season random effects, respectively; e were the 

residuals; and X, Z1, and Z2 were incidence matrices that link data with fixed effects, sire 

random effects, and herd-year-season random effects, respectively. Y was vector of observations 

for birth weight and weaning weight. Calving ease was assumed to follow an underlying 

continuous distribution (L) which is presented below: 

 
                  

                       
                      

                                       
 

 

( 4.2) 

In the above equation, t1, t2, and t3 were thresholds that defined the four categories of calving 

ease. 

The (co)variance structure of random effects was defined as:                                
where S = a 3×3 additive genetic (co)variance matrix for sires, A = additive genetic relationship 

matrix, H = a 3×3 diagonal matrix for herd-year-season random effects, R = a 3×3 residual 

(co)variance matrix, I  = identity matrix of order appropriate to the numbers of observations, and  =Kronecker product. 
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Table ‎4.1: Summary statistics of Simmental data used in a multivariate threshold-linear sire 
model to estimate (co)variance components for CE, BWT, and 205-d weight. 

Item1 N 

Calving difficulty score 

Mean SD Min. Max. 1 2 3 4 
Data file:          

Sire 12,199         
MGS 14,123         
CE 95,791 56,442 28,071 8,255 3,023 1.56 0.78 1 4 

Males 45,256 23,897 14,313 4,787 2,259 1.67 0.85 1 4 
Females 50,535 32,545 13,758 3,468 764 1.45 0.69 1 4 

BWT, kg 90,157     40.80 5.15 24.09 55.45 
Males 42,836     42.18 5.10 24.09 55.45 

Females 47,321     39.55 4.88 24.09 55.45 
205-d WT, kg 68,305     267.47 45.80 92.00 436.15 

Males 31,623     282.22 48.16 92.00 436.15 
Females 36,682     254.75 39.45 94.52 410.70 

160-d gain, kg 27,695     174.24 54.70 -29.06 387.84 
Males 14,986     208.07 45.27 30.91 387.83 

Females 12,709     134.34 34.13 -29.06 294.57 
WCG 7,524         
YCG 3,800         
HYS 14,533         

Pedigree:          
Sire 26,696         

Sire of sire 6,167         
MGS 5,367         

1CE = Calving ease; BWT = Birth weight; 205-d WT = 205 days adjusted weight; 160-d gain = 160 days 
adjusted total postweaning gain; WCG = Weaning contemporary groups; YCG = yearling contemporary 
groups; HYS = Herd-Year-Season; MGS = Maternal grandsire.  

2. Bivariate sire models to estimate sire and residual covariances between 160-d gain and 

each of CE, BWT, and 205-d weight: 

Sire and residual covariances between 160-d gain and other traits, using the complete data 

presented in Table  4.1, did not converge using a full model that included all studied traits. This 

might be caused by: 1) the weak residual correlations between 160-d gain and both CE and BWT 

2) the sparse 160-d gain data, relative to the other traits where missing observations are 

associated with 71.1, 69.3, and 59.5% of calving ease, birth weight, and 205-d weight 



101 
 

observations, respectively, (Table  4.1). As a result, three bivariate analyses were performed 

using two models: a) A bivariate threshold-linear sire model to estimate sire genetic and residual 

(co)variances between 160-d gain and calving ease; b) A bivariate linear-linear sire model used 

to perform the two other analyses to estimate sire and residual (co)variances for 160-d gain with 

birth weight and 205-d weight. Each of the models are described in more details as follows: 

a) The data for the bivariate threshold-linear sire model used to estimate sire and residual 

(co)variances between 160-d gain and calving ease are summarized in Table  4.2. Calving 

ease was fitted as a threshold trait with observed 3 categories transformed to an 

underlying continuous liability presented in Eq. 4.2. The fixed effects for CE and 160-d 

gain were sex and yearling contemporary group (sex, weaning management code, 

weaning pasture unit, and yearling feed unit), respectively. The bivariate threshold-linear 

sire model equation used in this analysis is presented as  

                                                                                          ( 4.3) 

In the above equation,    were effects associated with sex, and yearling contemporary group 

subclasses; s and h were sire and herd-year-season random effects, respectively; e were the 

residuals; and X, Z1, and Z2 were incidence matrices that link data with fixed effects, sire 

random effects, and herd-year-season random effects, respectively. Y was vector of observations 

for respective trait. L  was the underlying continuous liability. 

The (co)variance structure of random effects was:                                
where S = a 2×2 additive genetic (co)variance matrix for sires, A = additive genetic relationship 

matrix, H = a 2×2 diagonal matrix for herd-year-season random effects, R = a 2×2 residual 

(co)variance matrix, I  = identity matrix of order appropriate to the numbers of observations. 
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Using bivariate linear-linear sire model to estimate sire and residual (co)variances for 160-d gain 

with birth weight and 205-d weight, 

b) Two bivariate analyses were performed to estimate (co)variance components for 160-d 

gain with BWT and 205-d weight. Here, the same model was used for both analyses with 

the appropriate changes in fixed effects that correspond to either BWT or 205-d weight. 

The fixed effects for BWT, 205-d weight, and 160-d gain were sex, weaning and yearling 

contemporary groups. Structure of data sets and pedigree information used in these 

analyses are presented in Table  4.2. Data sets used in these analyses (Table  4.2) were 

balanced data and showed a substantial increase in the number of records compared to the 

160-d gain data presented in Table  4.1. The bivariate linear-linear sire model equation 

used in the two analyses is presented as follows:   

                                                                                          ( 4.4) 

In the above equation Y was vector of observations for respective trait; wt is either BWT or 205-

d WT;     were effects associated with sex, weaning and yearling contemporary group 

subclasses; s and h were sire and herd-year-season random effects, respectively; e were the 

residuals; and X, Z1, and Z2 were incidence matrices that link data with fixed effects, sire 

random effects, and herd-year-season random effects, respectively.  

The (co)variance structure of random effects was defined as:                                
where S = a 2×2 additive genetic (co)variance matrix for sires, A = additive genetic relationship 

matrix, H = a 2×2 diagonal matrix for herd-year-season random effects, R = a 2×2 residual 

(co)variance matrix, I  = identity matrix of order appropriate to the numbers of observations, and  =Kronecker product. 
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Table ‎4.2: Summary statistics of three data sets used in bivariate sire models to estimate sire 
(co)variance components of 160-d gain with CE, BWT, and 205-d weight. 

Item1 N 
Calving difficulty score 

Mean SD Min. Max. 1 2 3 4 
CE and 160-d gain          
Data file:    Sire & MGS 4,714 & 5,869         

CE 24,488 13,508 7,833 2,213 934 1.61 0.80 1 4 
Males 13,414 6,742 4,569 1,364 739 1.70 0.86 1 4 

Females 11,074 6,766 3,264 849 195 1.50 0.71 1 4 
160-d gain, kg 24,488 13,508 7,833 2,213 934 174.73 54.62 -29.06 387.84 

Males 13,414 6,742 4,569 1,364 739 208 46.52 30.91 387.84 
Females 11,074 6,766 3,264 849 195 134.34 35.12 -29.06 294.57 

YCG 3,349         
HYS 4,875         

Pedigree:                 Sire 13,811         
Sire of sire 3,555         

MGS 3,015         
BWT and 160-d gain          
Data file:    Sire & MGS 7,636 & 9,107         

BWT, kg 41,219     40.78 5.00 24.09 55.45 
Males 21,313     41.90 5.00 24.09 55.45 

Females 19,906     39.57 4.70 24.09 55.45 
160-d gain, kg 41,219     171.68 55.44 -29.06 423.81 

Males 21,313     206 46.85 8.95 423.81 
Females 19,906     134 35.67 -29.06 324.60 

YCG 6,392         
HYS 9,836         

Pedigree:                 Sire 19,539         
Sire of sire 4,674         

MGS 3,971         
205-d WT and 160-d gain          
Data file:    Sire & MGS 8,358 & 9,827         

205-d WT, kg 45,520     276.80 45.50 94.25 440.96 
Males      291.25 47.17 109.65 425 

Females      261.29 37.94 94.25 440.96 
160-d gain, kg 45,520     171 55.41 -29.06 423.81 

Males      205.78 47.22 30.91 423.81 
Females      133.70 35.82 -29.06 324.60 

WCG 6,782         
YCG 7,032         
HYS 10,986         

Pedigree:                 Sire 20,535         
Sire of sire 4,858         

MGS 4,097         
1CE = Calving ease; BWT = Birth weight; 205-d WT = 205 days adjusted weight; 160-d gain = 160 days adjusted 
total postweaning gain; WCG = Weaning contemporary groups; YCG = yearling contemporary groups; HYS = 
Herd-Year-Season; MGS = Maternal grandsire.  
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1. Univariate sire-maternal grandsire models used to estimate maternal grandsire variance 

and sire-maternal grandsire covariance for CE, BWT, and 205-d WT: 

The maternal grandsire (co)variance components for calving ease, birth weight, and 205-d 

weight, obtained from more complex models did not converge; therefore, univariate analyses 

were carried out to estimate the maternal grandsire (co)variance components for these traits. 

These univariate analyses were performed using two different (threshold and linear) univariate 

models. Calving ease was analyzed using the threshold model while birth and 205-d weight were 

analyzed using the linear model.   

The equations of models are described below.  

a) The threshold sire-maternal grandsire model used for calving ease maternal grandsire 

(co)variance components estimation: 

Calving ease was modeled as a threshold trait (i.e., underlying continuous liability was 

assumed) with 3 observed categories. Description of the data and pedigree used in this analysis is 

presented in Table  4.3. The threshold sire-maternal grandsire model is described below.                       
( 4.5) 

where L  was the underlying liability;    were fixed effects associated with sex; s, mgs, and h 

were the random effects of sire, maternal grandsire, and herd-year-season, respectively; e were 

the residual effects; and X, Z1, Z2, and Z3 were incidence matrices that link data with fixed 

effects, sire, maternal grandsire, and herd-year-season random effects, respectively. 

The (co)variance structure of random effects was defined as: 
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with                        denoting variances of sire, maternal grandsire, herd-year-season, and 

residual random effects,        was covariance between sire and maternal grandsire effects, A 

was the additive genetic relationship matrix. 

b) The linear sire-maternal grandsire model used to estimate maternal grandsire (co)variance 

components for birth weight and 205-d weight: 

The model was fitted in two separate univariate analyses to estimate maternal grandsire 

(co)variance components for birth and 205-d weights. The data and pedigrees used in both 

analyses are summarized in Table  4.3. The linear sire-maternal grandsire model is:                                 ( 4.6) 

Where Y i were vectors of observations with subscript i denoting either birth weight or 205-d 

weight;    were fixed effects associated with their respective trait; s, mgs, and h were the 

random effects of sire, maternal grandsire, and herd-year-season, respectively; e were the 

residual effects; and X, Z1, Z2, and Z3 were incidence matrices that link data with fixed effects, 

sire, maternal grandsire, and herd-year-season random effects, respectively. 

The (co)variance structure of random effects was defined as: 

                   
                                                         

  
 

with subscript i denoting either birth weight or 205-d weight;                            denoting 

variances of sire, maternal grandsire, herd-year-season, and residual random effects,          was 

covariance between sire and maternal grandsire effects, A was the additive genetic relationship 

matrix. 
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Table ‎4.3: Summary statistics of three data sets used in univariate sire-maternal grandsire 
models to estimate sire and maternal grandsire (co)variance components for calving ease, birth 
weight, and 205-d weight. 

Item1 N 
Calving difficulty score 

Mean SD Min. Max. 1 2 3 4 

CE           

Data file:          

CE 97,375 57,357 28,468 8,436 3,114 1.56 0.78 1 4 
Sire 12,388         

MGS 14,261         
Sex 2         
HYS 14,778         

          
Pedigree:             Sire 26,907         

Sire of sire 6,196         
MGS 5,400         

BWT           
Data file:          

BWT, kg 141,132     40.12 5.16 24.09 55.45 
Sire 18,078         

MGS 19,585         
Sex 2         
HYS 26,378         

          
Pedigree:             Sire 34,995         

Sire of sire 7,646         
MGS 6,610         

205-d WT          
Data file:          

205-d WT, kg 81,451     267.53 45 92 433.15 

Sire 10,762         
MGS 12,414         
WCG 3,015         
HYS 12,510         

          
Pedigree:             Sire 23,217         

Sire of sire 5,357         
MGS 4,663         

1CE = Calving ease; BWT = Birth weight; 205-d WT = 205 days adjusted weight; WCG = Weaning 
contemporary groups; HYS = Herd-Year-Season; MGS = Maternal grandsire.  
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4.2.2. Estimation of EPD for calving ease, birth weight, 205-d weight, 365-d weight, and 

160-d gain in American Simmental beef cattle: 

A multivariate threshold-linear maternal animal model was used to estimate direct and 

maternal EPD for CE, BWT, and 205-d weight and direct EPD for 160-d gain and 365-d weight. 

Direct and maternal genetic (co)variance components used in the model were obtained by the 

conversion of the formerly estimated sire and maternal grandsire (co)variance components using 

Equation (4.7) which is based on equating estimates of (co)variance components to their genetic 

expectation suggested by Kriese et al. (1991). The data and pedigree used in this analysis are 

summarized in Table  4.4. Calving ease was modeled as a threshold trait (i.e., underlying 

continuous liability was assumed; Eq. 4.2), with 3 observed categories. Observed categories were 

1 = unassisted, 2 =minor assistance, 3 = (categories 3and 4 merged). The 365-d weight was not 

included in the model; however, its direct EPD were calculated as the summation of the 

estimated EPD for 205-d weight and 160-d gain. For obtained calving ease EPD, the underlying 

liabilities of calving ease were multiplied by -1 to represent calving ease instead of calving 

difficulty.  

                                          
( 4.7) 

The equation of the multivariate threshold-linear maternal animal model used in the 

analysis is presented as follow: 

                            
                                              

                                                             
                                 

                            ( 4.8) 



108 
 

In the above equation, L  was the underlying continuous liability; Y was vector of observations 

for the respective traits;     were effects associated with fixed effects subclasses for respective 

trait; u, m, and h were direct, maternal, and herd-year-season random effects, respectively; e 

were the residuals; and X and Z1, Z2, and Z3 were incidence matrices that link data with fixed 

effects and direct, maternal, and herd-year-season random effects.  

The (co)variance structure of random effects was defined as: 

                               ,  
where  A = additive genetic relationship matrix, H = a 4×4 diagonal matrix for herd-year-season 

random effects, R = a 4×4 residual (co)variance matrix, I  = identity matrix of order appropriate 

to the numbers of observations,  =Kronecker product, and G = a 8×8 additive genetic 

(co)variance matrix with the following structure:  

   
   
   
   
           
                      

            
            
                      

              
                                                                 

                                                                            
                                                               

   
   
 
 

In the above matrix, u and m were direct and maternal genetic effects with subscripts 1, 2, 3, and 

4 denoting calving ease, birth weight, 205-d weight, and 160-d gain, respectively.  
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Table ‎4.4: Summary of Simmental cattle data and pedigree used in a multivariate threshold-
linear maternal animal model to estimate direct and maternal EPD for calving ease, birth 
weight, and 205-d weight, and direct EPD for 160-d gain. 

Item1 N 
Calving difficulty score2 

Mean SD Min. Max. 1 2 3 4 
Data file:          

Animal 155,898         

Dam 155,877         

          

CE 97,492 57,414 28,507 8,450 3,121 1.56 0.78 1 4 

Males 45,978 24,271 14,486 4,897 2,324 1.68 0.85 1 4 

Females 
51,514 33,143 14,021 3,553 797 1.45 0.69 1 4 

          

BWT, kg 
141,271 39.38(4.7) 42.10(4.8) 44.15(5.1) 45.60(5.2) 40.1 5.16 24.09 55.45 

205-d WT, kg 
126,722 265.6(44.8) 271.4(46.9) 264.5(46.5) 273(48.9) 266 45.5 86.33 440.96 

160-d gain, kg 45,545 170.1(54.3) 178.4(54.4) 178.6(55.1) 194.8(54.3) 171 55.4 -29.06 423.81 

365-d WT3, kg 
45,563 446.4(79.9) 460(82.4) 452.2(78.6) 477.8(81.4) 447 81.1 190.8 699.77 

 
         

WCG 
15,833         

YCG 7,040         

HYS 
29,393         

          

Pedigree: 
         

Animal 465,710         

Sire 
35,981         

Dam 
302,432         

1CE = Calving ease; BWT = Birth weight; 205-d WT = 205 days adjusted weight; 160-d gain = 160 
days adjusted total postweaning gain; 365-d WT = 365 days adjusted weight; WCG = Weaning 
contemporary groups; YCG = yearling contemporary groups; HYS = Herd-year-Season.  
2Growth traits were averaged (with SD in parenthesis) within calving ease score. 
3365-d WT was not included in the model rather its EPD were calculated by the summation of 205-d 
WT and 160-d gain EPD.   
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4.2.3. Genetic trends for calving ease, birth weight, 205-d weight, 160-d gain, and 365-d 

weight in American Simmental beef cattle and the selection scenarios for high 

calving ease versus low birth weight 

Since the four-generation pedigree (n = 465,710) used for EPD estimation included dams 

with age > 2 year old (Table  4.4), a subpopulation of 2 year old (first-calf) Simmental heifers (n 

= 277,897) was extracted by including only progeny of first-calf heifers for all analysis. This 

subpopulation was used for estimating genetic trends of Simmental and was also used as 

selection pool for various selection scenarios that will be described later. Therefore, this first-calf 

heifer Simmental population was treated as a control scenario for all selection scenarios. The 

estimated EPD for studied traits were used to produce genetic trends (EPD/yr) for the first-calf 

heifer American Simmental population (from 1969 “≤1969” to 2010). The rate of the genetic 

change for each of the studied traits was estimated by the regressing trait EPD on birth year.  

To quantify the performance losses resulted from selection for low birth weight instead of 

selection for calving ease, six artificial selection scenarios were derived from the first-calf heifers 

American Simmental population (the control scenario). The selection scenarios included 

selection for: 1) high calving ease (HCE), 2) low birth weight(LBWT ), 3) the Selection index of 

Dickerson et al. (1974), DSI = YWT - 3.2 BWT, 4) The all-purpose selection index of ASA, 

(Lauren Hyde, the American Simmental Association, personal communication), API  = -1.8 BWT 

+ 1.3 CE + 0.10 WWT + 0.20 YWT , in addition to two sub-selection indexes that we  derived 

from the API, which were 5) API 1 = 1.3 CE + 0.20 YWT, and 6) API 2 = -1.8 BWT + 0.20 YWT. 

In the above selection scenarios, CE, BWT, WWT, and YWT were EBV for calving ease, and 

birth, weaning (205-d WT), and yearling (365-d WT) weights, respectively.  
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Starting with animals born in 1970, selection was applied within each birth year. Animals 

born before 1970 (n = 1517) were considered a base population (selection pool) for animals born 

in 1970. The selection criteria, in these selection scenarios, were the estimated EBV for the 

respective trait. EBV estimates for growth traits were standardized by their respective genetic 

standard deviation. For direct and maternal calving ease, the estimated underlying liabilities 

(multiplied by -1 to represent calving ease instead of calving difficulty) were standardized by 

their respective genetic standard deviation and centered based on the average liability of animals 

born before 1970. Using the first-calf heifer data (the control), data for each selection scenario 

was created by selecting sires, within each year of birth, with EBV ≥ the average for the 6 

different methods of selection (either EBV or the index value), and then the top 75% of dams 

with progeny within selected sires were selected. This means selection was first applied to sires 

and then followed by selecting from the remaining dams after the culling of unselected sires 

along with their mates and progeny. The resulting data sets for all selection scenarios contained 

animals born in 1969 “≤1969” to 2004. In all selection scenarios, animals born after 2004 were 

discarded because of their small numbers.  

For all selection scenario data sets, the obtained EPD for all traits were calculated as a 

deviation from their respective average EPD from the control data. Graphs of genetic trends were 

produced by plotting the standardized average EPD deviation versus the year of birth. Further, 

the standardized EPD were regressed on the birth year to estimate the rate of genetic change per 

year (SD/yr). For each trait across selection scenarios, the significance of differences between 

slopes and between intercepts was also tested.   

Estimation of net profit for various selection scenarios using the API: The economic selection 

indexes measure the cumulative effect of the animal’s overall genetic merit on profit. Therefore, 
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selection strategies that using this methodology, produce cattle have the genetic makeup (i.e., 

economically relevant traits EPD) to increase profit. Shafer (2008) reported that the ASA 

published, in 2005, two economic selection indexes (terminal index “TI” and all-purpose index 

“API” which are presented in the equations below). These indexes were developed in 

collaboration with USDA research scientist, Dr. Mike MacNeil. The creation of these indexes 

was based on outcomes from a computer simulation program that mimics beef cattle production 

(i.e., cows conceive, gestate, calve, lactate, calves are weaned, heifers are retained and cull 

heifers and steers are placed on feed and eventually harvested). A simulated base herd was 

generated using: 1. Phenotypic averages of ERT in the index, 2. Salvage price, costs of feed 

(e.g., hay and pasture), and fixed costs, 3. Carcass prices (e.g., carcass, USDA beef grade, and 

yield grade). The average performance levels assumed in the creation of the ASA indexes can be 

found in Shafer (2008). The prices and cost data used were the averages over the last 5 years as 

reported by Cattle Fax at the time the indexes were created. Traits used in this simulation were 

weaning weight, feedlot gain, feedlot intake, cow size, milk production, pregnancy rate, 

incidence of dystocia, calf survival rate, harvest weight, dressing, carcass weight, marbling score, 

and yield grade. Economic weights for each ERT were estimated by changing each trait one unit 

while holding all others constant and comparing that with the base herd. Therefore, these 

weighting factors (i.e., economic weights), estimated based on the impact of the trait on profit, 

and were subsequently used to calculate the ASA economic indexes presented below.  

API = -1.8 BWT + 1.3 CE + 0.10 WWT + 0.20 YWT + 2 STAY + 55 MRB – 6 YG 

TI =-1.2 BWT + 0.9 CE + 0.50 WWT + 0.07 YWT + 25 MRB – 5 YG + 0.10 MLK 

where: BWT = birth weight, CE = calving ease, WWT =weaning weight, YWT = yearling 

weight, STAY = stayability, MRB = marbling, YG = yield grade, MLK = milk 
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The API evaluates sires being used on the entire cowherd (bred to both Angus first-calf 

heifers and mature cows) with a portion of their daughters being retained for breeding and the 

steers and remaining heifers being put on feed and sold on a grade and yield basis (Shafer, 2015). 

The API puts emphasis on stayability and calving ease. This is because calving ease is strongly 

associated with calf survivability and, to a lesser degree, female longevity. In the current study, 

we used a subset of the API considering only calving ease and growth-related traits (i.e., 

stayability, marbling, and yield grade were not included in the API). Another perspective from 

which to look at this, is that all other traits were held constant in the index. The API value can be 

interpreted as the estimated differences between bulls in net profit per cow exposed (Shafer, 

2015). For example, a bull with an API value of $10, as opposed to a bull with value of $0, is 

expected to worth extra $10 per cow exposed. The TI was designed for evaluating sire’s 

economic merit in situations where they are bred to mature Angus cows and all offspring are 

placed in the feedlot and sold on a grade and yield basis. Therefore, maternal traits such as milk, 

stayability and calving ease are not considered in the index. 

In this study, the net profit resulting from selection for low birth weight as opposed to 

selection for high calving ease was investigated. The net profit for each animal, from various 

selection scenarios, was calculated using the All-purpose selection index used by ASA. To 

estimate the API value in dollars, EPD of trait in the API were measured in their actual units 

(i.e., growth traits in “kg” and calving ease liabilities of calving ease were converted to 

probabilities of an unassisted calving). For each selection scenario, estimates of net profit were 

regressed on birth year to estimate its rate of change per year. Differences between various 

regression lines (i.e., differences between intercepts and differences between slopes) were also 

tested.  
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4.3. Results and Discussion  

 

4.3.1. (Co)variance components and genetic parameters estimation for calving ease and 

growth-related traits in American Simmental beef cattle: 

The estimation of (co)variance components is an essential step in genetic evaluation. 

Known (co)variance components are needed to predict the genetic (i.e., prediction of EBV or 

EPD) makeup of animals for these traits. 

Sire and maternal grandsire (co)variance components were estimated using sire and sire-

maternal grandsire models with a Gibbs sampling algorithm. Estimated posterior mean and 

posterior standard deviations of sire and maternal grandsire variance components for calving 

ease, birth weight, 205-d weight, and 160-d postweaning gain using the American Simmental 

Association beef cattle database are presented in Table 4.5. Fitting a sire-maternal grandsire 

model to predict EPD for studied traits will produce EPD for sires only. However, estimation of 

direct and maternal EPD for all animals in the pedigree requires fitting a direct-maternal animal 

model which requires the direct and maternal (co)variance components to be known; therefore, 

sire and maternal grandsire (co)variance components were transformed to their respective direct 

and maternal (co)variance components using Eq. ( 4.7). Posterior mean and posterior standard 

deviation of direct and maternal (co)variance components for calving ease, birth weight, 205-d 

weight, 160-d postweaning gain, and 365-d weight in American Simmental beef cattle are shown 

in Table 4.6. It is worth noting that (co)variance components of 365-d weight were calculated the 

summation of (co)variance components of 205-d weight and 160-d gain. Estimates of direct and 

maternal (co)variance components were used to estimate direct and maternal genetic effects of 

studied traits (i.e., EPD) from which genetic trends were calculated. Furthermore, posterior 



115 
 

means and their respective standard deviations of direct genetic, maternal genetic, and residual 

parameters (Table 4.7) were calculated from their corresponding direct and maternal 

(co)variance components. 

The heritabilities, genetic and residual correlations for calving ease and birth weight, 205-

d weight, 160-d postweaning gain, and 365-d weight in the American Simmental beef cattle are 

presented in Table 4.7.  

Direct heritability: The estimated posterior mean of calving ease direct heritability, on the 

underlying scale, (0.23) was within the limits of estimates of previous reports, which ranges from 

0.18 to 0.26 as reported by Dong et al. (1991), Eriksson et al. (2004), and Matilainen et al. 

(2009). The relatively high birth weight direct heritability of 0.52 was in the upper limit of the 

breed heritability estimates previously reported (0.28 to 0.52; Burfening et al., 1978b; Trus and 

Wilton, 1988; Garrick et al., 1989; Redman and Brinks, 1991; Woodward et al., 1992). A 

moderate posterior mean for 205-d WT direct heritability, 0.28, was similar to the Simmental 

estimates reported by Burfening et al. (1978b) and Lee and Pollak (1997). For 160-d 

postweaning gain, direct heritability was estimated to be 0.21 which falls within the previous 

reports range of 0.20 to 0.26 (Quaas et al., 1985; Wright, 1987; Garrick et al., 1989). Direct 

heritability of 365-d WT was 0.33 which is a similar estimate to what reported in a study of 

Simmental by Benyshek and Little (1982) and within the range (0.27 to 0.37) of the Simmental 

yearling weight heritability estimates reported in the literature (Elzo et al., 1987; Wright, 1987; 

Mrode and Thompson, 1990; Swalve, 1993). Generally, estimates of direct heritability obtained 

in the current study were in agreement with reported heritabilities of the Simmental breed in the 

literature. 
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Table ‎4.5: Posterior mean and posterior standard deviation (in parentheses) of sire and maternal grandsire variance components1 for 
calving ease and growth-related traits in American Simmental beef cattle. 

Trait2 CEs BWTs 205-d WTs 160-d gains CEmgs BWTmgs 205-d WTmgs 
CEs 0.069 (0.01) 1.883 (0.02) 0.992 (0.13) 1.731 (0.25)    

BWTs 0.320 (0.02) 3.303 (0.13) 26.63 (0.46) 11.74 (0.68)    
205-d WTs 0.721 (0.11) 9.425 (0.67) 73.97 (5.29) -18.52 (3.7)    
160-d gains 0.230 (0.21) 4.968 (0.92) 32.42 (5.03) 55.01 (6.86)    

CEmgs 0.030 (0.01)    0.058 (0.01)   
BWTmgs  1.524 (0.05)    1.007 (0.06)  

205-d WTmgs   35.30 (2.73)    31.35 (2.78) 
        

HYS3 0.075 3.8 304 360    
1sire and maternal grandsire variances are on the diagonal (bold faced); sire and sire-maternal grandsire covariances are below the diagonal; 
residual covariances are above the diagonal 
2CEs = sire (co)variance component for calving ease; BWTs = sire (co)variance component for birth weight; 205-d WTs = sire (co)variance 
component for 205-d weight; 160-d gains = sire (co)variance component for 160-d postweaning gain; CEmgs = maternal grandsire (co)variance 
component for calving ease; BWTmgs = maternal grandsire (co)variance component for birth weight; 205-d WTmgs = maternal grandsire 
(co)variance component for 205-d weight. 
3HYS = variance of herd-year-season 
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Table ‎4.6: Posterior mean and posterior standard deviation (in parentheses) of direct and maternal (co)variance components1 for 
calving ease and growth-related traits in American Simmental beef cattle. 

Trait2 CEd BWTd 205-d WTd 160-d gaind 365-d WTd CEm BWTm 205-d WTm 
CEd 0.397 (.03) 1.31 (0.03) 0.81 (0.10) 1.50 (0.21) 2.31 (0.24)    

BWTd 1.53 (0.10) 13.2 (0.54) 15  (0.53) 6.96 (0.47) 22 (0.78)    
205-d WTd 3.45 (0.57) 37.7 (2.68) 296 (21.1) -12.9 (2.66) 395.5 (14)    
160-d gaind 1.10 (1.01) 19.87 (3.7) 129.7 (20) 220 (27.44) 441 (21.38)    
365-d WTd 4.55 (1.14) 57.5 (4.64) 425.6 (30) 349.7 (34) 775.3 (54)    

CEm -0.022(.02)     0.255 (.01)   
BWTm  -0.51(0.34)     1.23 (0.34)  

205-d WTm   -6.76 (5.27)     58.2 (16.3) 
         

HYS3 0.1072 3.8 304 360     
1Direct and maternal genetic variances are on the diagonal (bold faced); direct genetic and direct-maternal genetic covariances are below the 
diagonal; residual covariances are above the diagonal 
2CEd = direct calving ease; BWTd = direct birth weight; 205-d WTd = direct 205-d weight; 160-d gaind = direct 160-d postweaning gain; 365-d 
WTd = direct 365-d weight; CEm = maternal calving ease; BWTm = maternal birth weight; 205-d WTm = maternal 205-d weight. 
3HYS = variance of herd-year-season 
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Table ‎4.7: Posterior mean and posterior standard deviation (in parentheses) of direct, maternal, and residual parameters1 for calving 
ease and growth-related traits in American Simmental beef cattle. 

Trait2 CEd BWTd 205-d WTd 160-d gain 365-d WT CEm BWTm 205-d WTm 
CEd 0.23 (0.01) 0.48 (0.01) 0.04 (0.01) 0.07 (0.01) 0.08 (0.01)    

BWTd 0.67 (0.02) 0.52 (0.02) 0.27 (0.01) 0.12 (0.01) 0.28 (0.01)    
205-d WTd 0.32 (0.05) 0.60 (0.03) 0.28 (0.02) -0.03(0.01) 0.67 (0.01)    
160-d gain 0.12 (0.11) 0.37 (0.06) 0.51 (0.08) 0.21 (0.02) 0.71 (0.01)    
365-d WT 0.26 (0.06) 0.57 (0.04) 0.89 (0.02) 0.84 (0.03) 0.33 (0.02)    

CEm -0.064(0.03)     0.14 (0.02)   
BWTm  -0.12 (0.07)     0.049 (0.01)  

205-d WTm   -0.04 (0.01)     0.055 (0.01) 
1Direct and maternal heritability estimates are on the diagonal (bold faced); direct genetic and direct-maternal genetic correlation estimates are 
below the diagonal; residual correlation estimates are above the diagonal 
2CEd = direct calving ease; BWTd = direct birth weight; 205-d WTd = direct 205-d weight; 160-d gaind = direct 160-d postweaning gain; 365-d 
WTd = direct 365-d weight CEm = maternal calving ease; BWTm = maternal birth weight; 205-d WTm = maternal 205-d weight. 
3HYS = variance of herd-year-season 
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Maternal heritability: Calving ease, birth and 205-d weights have a maternal component 

influencing expression of the trait. The posterior mean of calving ease maternal heritability was 

0.14 (Table 4.7).  Reported maternal heritability estimates using the threshold model approach 

ranged from 0.048 to 0.19 in previous reports (Dong et al., 1991; Varona et al., 1999a; Wiggans 

et al., 2003; Gevrekci et al., 2011). For birth weight, our estimate of maternal heritability was 

0.05. Similar estimates from studies of Simmental were reported (Quaas et al., 1985; Wright, 

1987; Jamrozik and Miller, 2014) and ranged from 0.05 to 0.057. The estimated posterior mean 

of 205-d weight maternal heritability was, 0.055, in the lower limit of reported weaning weight 

maternal heritability (0.05 to 0.2) for the Simmental breed (Quaas et al., 1985; Wright, 1987; 

Wright et al., 1987; Boldman et al., 1991; Marques et al., 2000). 

Direct-Maternal genetic correlation: Direct and maternal genetic effects within CE, BWT, and 

205-d WT had weak negative correlations (Table 4.7). For calving ease, the estimated direct-

maternal genetic correlation was, -0.064, within the range (-0.05 to -0.16) of the breed reported 

estimates on the underlying scale (Dong et al., 1991; Jamrozik and Miller, 2014). Posterior mean 

of birth weight direct-maternal genetic correlation was, -0.12, within the wide range (-0.04 to -

0.43) of the Simmental reported estimates (Quaas et al., 1985; Swalve, 1993; Marques et al., 

2000; Eriksson et al., 2002).  A weak negative direct-maternal genetic correlation was obtained 

(-0.04) for the Simmental 205-d weight. However, the estimate from the current study was 

similar to the correlation reported by Quaas et al. (1985) for the American Simmental beef cattle 

breed. Results from several studies of Simmental cattle have shown that direct-maternal genetic 

correlation for weaning weight has widely ranged between -0.01 and -0.32 (Garrick et al., 1989; 

Boldman et al., 1991; Lee et al., 1997; Dodenhoff et al., 1999). 
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Direct genetic correlation: Since the scoring system of calving ease in the current study is 

actually a measure of calving difficulty rather than ease of calving, by definition, the positive 

correlations between calving ease and growth traits presented in Table 4.7 are in fact negative. 

From Table 4.7, calving ease had a strong negative genetic correlation (-0.67) with birth weight; 

nonetheless, direct correlations with subsequent growth traits have ranged between weak (-0.12 

with 160-d gain) and moderate (-0.32 and -0.26 with 205-d WT and 365-d WT, respectively) 

relationships. The estimated correlation between calving ease and birth weight was in agreement 

with the findings of Burfening et al. (1978b) and Burfening et al. (1981) in their studies of 

Simmental cattle where they reported estimates of -0.33 and -0.76, respectively. However, 

calving ease direct correlation (-0.32) with 205-d WT was stronger than that reported by 

Burfening et al. (1978b; -0.08). Conversely, estimated calving ease direct correlations with 160-d 

gain and 365-d WT, in the present study, were less than those estimated by Koots et al. (1994b) 

and Roughsedge et al. (2005), respectively.  

Birth weight had strong positive direct genetic correlations of 0.60 and 0.57 with 205-d 

WT and 365-dWT, respectively. However, with 160-d gain, the genetic correlation was moderate 

(0.37). Given those moderate positive correlations between birth weight and subsequent growth 

traits and the strong negative genetic correlation with calving ease, indicates the antagonistic 

genetic relationship between calving ease and both weaning and yearling weights, which might 

have consequences for selection for low birth weight. Genetic correlation estimates of BWT with 

160-d gain and 365-d WT, from the current study, were in agreement with the breed estimates 

from the literature (Benyshek and Little, 1982; Quaas et al., 1985; Elzo et al., 1987; Wright, 

1987; Garrick et al., 1989; Swalve, 1993). Nonetheless, the direct genetic correlation between 

BWT and 205-d WT estimated here (0.60) was slightly higher than reported estimates (ranged 
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from 0.29 to 0.58) for the Simmental breed (Burfening et al., 1978b; Benyshek and Little, 1982; 

Quaas et al., 1985; Elzo et al., 1987; Garrick et al., 1989; Woodward et al., 1992; Swalve, 1993). 

The 205-d WT direct genetic correlation with 160-d gain was a strong positive 

correlation (0.51). Moreover, the genetic correlation with the 365-d WT was even higher with a 

posterior mean of 0.89. This strong genetic correlation is probably occurred because 205-d WT is 

a component trait of 365-d WT. Several studies of American Simmental cattle described similar 

estimates of the direct genetic correlation between weaning weight and postweaning gain   

(Quaas et al., 1985; Wright, 1987; Garrick et al., 1989). However, the direct genetic correlation 

between 205-d WT and 365-d WT was slightly higher than the estimates from other studies in 

this breed (Benyshek and Little, 1982; Elzo et al., 1987; Wright, 1987) which have ranged from 

0.84 to 0.87.  

Table 4.7 showed that 160-d gain had a strong positive direct genetic correlation of 0.84 

with 365-d WT. This was expected since the 365-d WT is a function (summation) of both 205-d 

WT and 160-d gain. The estimated correlation from the present study was within the range of 

estimates obtained by Wright (1987) and Koots et al. (1994b) who reported correlations of 0.91 

and 0.81, respectively. 

 Residual correlation: Calving ease, on the underlying scale, had a strong residual correlation 

with birth weight (-0.48); however, the residual correlations of -0.04, -0.07, and -0.08 with 205-d 

WT, 160-d gain, and, 365-d WT, respectively, were markedly weak. The estimated residual 

correlation between CE and BWT was in agreement with the reported estimates in the literature 

which ranged from -0.28 to -0.50 (Burfening et al., 1978a; Koots et al., 1994b; Varona et al., 
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1999a). Calving ease residual correlations with 205-d WT and 160-d gain were higher than those 

obtained by Burfening et al. (1978a) and Bennett and Gregory (2001).  

Birth weight had moderate residual correlations, 0.27 and 0.28, with 205-d WT and 365-d 

WT, respectively. Conversely, the residual correlation with 160-d gain was weak (0.12). The 

estimated residual correlation between birth weight and weaning weight (205-d WT) was within 

the estimates range (0.18 to 0.51) of the breed (Burfening et al., 1978a; Benyshek and Little, 

1982; Wright, 1987; Garrick et al., 1989; Woodward et al., 1992). Nonetheless, the residual 

correlation with 160-d gain (0.12) was slightly higher than the breed estimates (0.07 to 0.10) 

reported by Benyshek and Little (1982), Wright (1987), and Garrick et al. (1989). The posterior 

mean of the residual correlation (0.28) between BWT and 365-d WT was less than the 

correlations obtained by Benyshek and Little (1982) and Wright (1987), in their studies on the 

American Simmental, who reported estimates of 0.42 and 0.31, respectively. 

The posterior means of 205-d weight residual correlations with 160-d gain and 365-d 

weight were -0.03 and 0.67, respectively, (Table 4.7). The 205-d weight residual correlation with 

160-d gain was less than the American Simmental estimates (-0.10 to -0.18) reported in previous 

reports (Benyshek and Little, 1982; Wright, 1987; Garrick et al., 1989). Estimated residual 

correlation between 205-d weight and 365-d weight was in agreement with the breed estimates 

reported by Benyshek and Little (1982) and Wright (1987).   

The 160-d postweaning gain showed a strong positive residual correlation of 0.71 with 

365-d weight (Table 4.7). This correlation was slightly higher than the American Simmental 

estimates obtained by Benyshek and Little (1982) and Wright (1987) who reported residual 

correlations of 0.57 and 0.68, respectively. 
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Generally, results of the direct genetic, maternal genetic, and residual parameters for 

calving ease, birth weight, weaning weight, postweaning gain, and yearling weight showed that: 

1) Birth weight has the highest heritability among all traits while other traits showed moderate 

heritability. 2) The high negative genetic correlation between calving ease and birth weight, high 

heritability of birth weight, and its linearity justify the importance of incorporating birth weight 

in the genetic evaluation of calving ease. 3) High positive genetic correlations between birth 

weight and subsequent growth traits expose the genetic antagonistic relationship between calving 

ease and postnatal growth traits. 

4.3.2. Genetic trends for calving ease, birth weight, 205-d weight, 160-d gain, and 365-d 

weight in American Simmental first-calf heifer and selection scenarios for high 

calving ease versus low birth weight 

 

Genetic trends for calving ease, birth weight, 205-d weight, 160-d gain, and 365-d weight in 

American Simmental first-calf heifer: The average EPD, expressed in units of genetic standard 

deviations, of 277,897 calves born to first-calf Simmental heifers from 1969 (≤ 1969) to 2010 

were used to assess additive genetic trends for calving ease direct (CEd), birth weight direct 

(BWTd), 205-d weight direct (205-d WTd), 160-d postweaing gain direct (160-d gain), and 365-

d weight direct (365-d WT). Maternal genetic trends were also obtained for calving ease (CEm), 

birth weight (BWTm), and 205-d weight (205-d WTm). Genetic trends for calving ease and 

growth traits in the first-calf Simmental heifer are depicted in Figure 4.1. Further, the 

standardized EPD of studied traits were regressed on the year of birth to estimate the annual 

genetic change (SD/yr) (Table 4.8). Intercepts and slopes for all traits (Table 4.8) were 
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significantly different (P < 0.001) from zero. In subsequent analyses, different selection 

scenarios were derived from this population as this was considered the control scenario. 

Trends of direct effects (SD/yr) for growth-related traits increased from 1969 to 2010, 

whereas maternal effects showed decreased trends and remained relatively flat throughout the 

period of study (Fig. 4.1). In contrast, the direct effects for calving ease showed a decreased 

trend while the maternal effects increased (Fig. 4.1). The standardized calving ease direct EPD 

showed a negative trend of -0.0032 SD/yr; on the other hand, the maternal EPD were increased 

with genetic change of 0.0131 SD/yr (Table 4.8). In contrast, Elzo et al. (1987) , in a study on 

Simmental sires (1973-1984), reported a positive genetic trend for first-parity direct calving ease 

and a negative trend for maternal calving ease. Unlike the current study where we used data from 

purebred animals (87.5% Simmental), data used in Elzo et al. (1987) consisted of 23 base breeds 

represented in the base dam population which was upgraded using Simmental sires. Therefore, 

heterosis effects may have clouded reported results by Elzo et al. (1987).  

For growth traits, direct genetic EPD consistently increased with rates of 0.0160, 0.0255, 

0.0192, and 0.0447 SD/yr for birth weight, 205-d weaning weight, 160-d postweaning gain, and 

365-d yearling weight, respectively. These findings, with respect to weaning and yearling 

weights, were in agreement with those of Elzo et al. (1985) and Elzo et al. (1987) in their studies 

of the American Simmental in the 1980s. Furthermore, Sullivan et al. (1999) reported estimates 

of positive genetic trends for birth weight, weaning weight, and yearling weight in Canadian 

Simmental cattle. Compared to the direct EPD, the maternal EPD of birth and weaning weights 

were also increased with lower rates of genetic change (0.0023 and 0.0057, respectively). Elzo et 

al. (1985) estimated the maternal genetic trends, expressed as the difference in means between 

1983 and 1972, for birth weight (-0.2 kg) and weaning weight (1.1 kg) of the Simmental breed. 
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The positive trend of the maternal 205-d WT estimated in the current study agreed with the 

positive trend reported by Elzo et al. (1985); in contrast, the positive genetic change of maternal 

birth weight, in the present study, contradicts that reported by Elzo et al. (1985). While results 

from this study for maternal additive effects on birth weight were similar to those reported by 

Elzo et al. (1987). Results have shown that the direct genetic components of growth-related traits 

in the American Simmental first-calf heifer increased during the period of 1969-2010 while the 

maternal genetic component for birth and weaning weights also increased, but only slightly. 

 

Table ‎4.8: Regression coefficients estimates1 (in SD units) with SE for calving ease and 
growth-related traits EPD of first-calf Simmental heifers2

   

Trait3 intercept SE (×103) Slope SE (×103) 

CEd -0.0640 0.83 -0.0032 0.04 

BWTd -0.1066 1.19 0.0160 0.06 

205-d WTd -0.1800 1.00 0.0255 0.05 

160-d gaind -0.1404 0.84 0.0192 0.04 

365-d WTd -0.3201 1.73 0.0447 0.09 

CEm 0.0118 0.85 0.0131 0.04 

BWTm -0.0450 0.80 0.0023 0.04 

205-d WTm -0.1513 0.70 0.0057 0.04 
1EPD were regressed on birth year; all regression coefficients were significantly different from zero (P 
< 0.001) 
2first-calf Simmental heifers is considered the control selection scenario 
3CEd = direct calving ease; BWTd = direct birth weight; 205-d WTd = direct 205-d weight; 160-d 
gaind = direct 160-d postweaning gain; 365-d WTd = direct 365-d weight; CEm = maternal calving 
ease; BWTm = maternal birth weight; 205-d WTm = maternal 205-d weight. 
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Figure ‎4.1: Genetic trend (1969-2010) of  standardized average EPD  for  direct calving 
ease (CEd), direct birth weight (BWTd), direct 205-d weight (205-d WTd), direct 160-d 
postweaning gain (160-d gain), 365-d weight (365-d WT), maternal calving ease (CEm), 
maternal birth weight (BWTm), and maternal 205-d weight  (205-d WTm) for first-calf 
Simmental heifers 
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Selection scenarios for high calving ease versus low birth weight in American Simmental first-

calf heifers: Six artificial selection scenarios were derived from the first-calf heifers in the 

American Simmental population, depicted in Fig. 4.1, (the control scenario). Our goal was to 

quantify the performance losses resulting from selection for low birth weight instead of selection 

for calving ease. The scenarios investigated include selection for:  

1) High calving ease (HCE), 2) low birth weight (LBWT ), 3) the Selection index of Dickerson 

et al. (1974), DSI = YWT - 3.2 BWT, 4) The all-purpose selection index of the ASA, API  = -1.8 

BWT + 1.3 CE + 0.10 WWT + 0.20 YWT, and two sub-selection indexes derived from the API: 5) 

API 1 = 1.3 CE + 0.20 YWT, and 6) API 2 = -1.8 BWT + 0.20 YWT. Here, CE, BWT, WWT, and 

YWT were calving ease, and birth, weaning, and yearling weights, respectively. The first-calf 

American Simmental heifers (Fig. 4.1) were used as a selection pool “control scenario” for the 

six selection scenarios. Starting with animals born in 1970, selection was applied within each 

birth year. For example, animals born before 1970 (n = 1517) were considered a base population 

(selection pool) for animals born in 1970. Sires with EBV ≥ the average (either EBV in the 

single trait selection or the index value in the multiple trait selection) were selected, then the top 

75% of dams with progeny within selected sires were selected. This procedure was repeated for 

each birth year. The selection criteria, in these selection scenarios, were the standardized EBV 

for the respective trait. For direct and maternal calving ease, the estimated underlying liabilities 

were standardized by their respective genetic standard deviation and centered on the average 

liability of animals born before 1970. The resulting data for all selection scenarios contained 

animals born in 1969 “≤1969” to 2004. In all selection scenarios, animals born after 2004 were 

discarded because of their limited numbers. EBV were transformed to EPD then expressed as a 

deviation from their birth year average EPD of the control scenario. 
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Regression coefficients of studied traits standardized EPD, expressed as a deviation from 

the respective average EPD in the control population, regressed on birth year under the different 

selection scenarios are presented in Table 4.9. Differences between slopes (genetic trends in SD 

units) and between intercepts of the direct EPD of each studied trait under all selection scenarios 

are shown in Table 4.10. Differences between slopes and between intercepts of the maternal EPD 

of CE, BWT, and 205-d WT under all selection scenarios are shown in Table 4.11. 

Table ‎4.9: Regression coefficients1,2 of standardized EPD (expressed as a deviation from their 
respective average EPD of the control population) for traits of interest regressed on birth year 
estimated from different selection scenarios in first-calf Simmental heifers. 

Trait3 

 

Selection Scenario4 

HCE LBWT DSI API API1 API2 

CEd 
b0 0.1199 0.0760 0.0616 0.1048 0.0985 0.0789 
b1 0.0025 0.0036 0.0038 0.0029 0.0027 0.0035 

        BWT 
b0 -0.1063 -0.1135 -0.0725 -0.1178 -0.0682 -0.1111 
b1 -0.0049 -0.0068 -0.0071 -0.0059 -0.0047 -0.0066 

        205-d WTd 
b0 -0.0612 -0.0790 -0.0081 -0.0621 -0.0130 -0.0601 
b1 -0.0020 -0.0032 -0.0033 -0.0027 -0.0018 -0.0032 

        160-d gain 
b0 -0.0090 -0.0405 0.0260 -0.0136 0.0352 -0.0206 
b1 -0.0021 -0.0025 -0.0026 -0.0024 -0.0019 -0.0025 

        365-d WT 
b0 -0.0702 -0.1195 0.0179 -0.0757 0.0222 -0.0807 
b1 -0.0041 -0.0057 -0.0058 -0.0051 -0.0037 -0.0057 

        CEm 
b0 -0.0192 -0.0483 -0.0006NS -0.0308 0.0067 -0.0395 
b1 0.0005 0.0005 -0.0004 0.0004 0.0001NS 0.0003 

        BWTm 
b0 -0.0022NS -0.0049** 0.0103 -0.0019 NS 0.0210 -0.0018 NS 
b1 -0.0011 -0.0009 -0.0009 -0.0008 -0.0015 -0.0008 

        205-d WTm 
b0 0.0195 -0.0168 0.0237 0.0086 0.0402 -0.0061 
b1 -0.0004 0.0010 -0.0002 0.0002* -0.0011 0.0008 

1 b0 = intercept; b1 = Slope “rate of genetic change” expressed in standard deviation units per year 
2NS = estimate is not significantly different (P > 0.05) from the control population; * = P < 0.05; ** = P < 0.01; 
estimate with no superscript is significantly different (P > 0.001) from the control population. 
3CEd = calving ease standardized direct EPD; BWTd = birth weight standardized direct EPD; 205-d WTd = 205-d 
weight standardized direct EPD; 160-d gain = 160-d postweaning gain standardized direct EPD; 365-d WT = 365-
d weight standardized direct EPD; CEm = calving ease standardized maternal EPD; BWTm = birth weight 
standardized maternal EPD; 205-d WTm = 205-d weight standardized maternal EPD 
4HCE = high calving ease selection scenario; LBWT = low birth weight selection scenario; DSI = Dickerson’s 
selection index; API = All-purpose index; API1 = 0.2 YWT + 1.3 CE; API2 = 0.2 YWT – 1.8 BWT 
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Table ‎4.10: Difference (X100) between regression coefficients1,2 (intercept above the 
diagonal, slope below the diagonal) of studied traits standardized direct EPD regressed on birth 
year estimated from different selection scenarios in first-calf Simmental heifers. 
Trait3 Selection scenario4 HCE LBWT DSI API API1 API2 

CEd 

HCE 
 

4.39 5.83 1.51 2.14 4.10 
LBWT -0.11 

 
1.44 -2.88 -2.25 -0.29 

DSI -0.13 -0.02NS 
 

-4.32 -3.69 -1.73 
API -0.04 0.07 0.09 

 
0.63* 2.59 

API1 -0.02NS 0.09 0.11 0.02NS 
 

1.96 
API2 -0.10 0.02NS 0.03** -0.06 -0.08 

         

BWTd 

HCE 
 

0.72NS -3.38 1.15 -3.81 0.48NS 
LBWT 0.19 

 
-4.09 0.43NS -4.53 -0.23NS 

DSI 0.22 0.03NS 
 

4.53 -0.43NS 3.86 
API 0.10 -0.09 -0.12 

 
-4.96 -0.67NS 

API1 -0.02NS -0.20 -0.23 -0.12 
 

4.29 
API2 0.17 -0.02NS -0.05** 0.07 0.19 

         

205-d 
WTd 

HCE 
 

1.78 -5.30 0.09NS -4.82 -0.1 NS 
LBWT 0.12 

 
-7.08 -1.69 -6.60 -1.89 

DSI 0.13 0.01NS 
 

5.40 0.48NS 5.19 
API 0.07 -0.05 -0.06 

 
-4.91 -0.20NS 

API1 -0.02NS -0.14 -0.15 -0.09 
 

4.71 
API2 0.12 0.01NS -0.01 NS 0.05** 0.14 

         

160-d 
gaind 

HCE 
 

3.15 -3.50 0.46NS -4.42 1.16 
LBWT 0.04** 

 
-6.65 -2.69 -7.57 -1.99 

DSI 0.05 0.01NS 
 

3.96 -0.92 4.66 
API 0.03NS -0.01NS -0.02NS 

 
-4.88 0.70* 

API1 -0.02NS -0.05 -0.06 -0.05 
 

5.58 
API2 0.04** 0.01NS -0.01NS 0.01NS 0.06 

         

365-d 
WTd 

HCE 
 

4.93 -8.80 0.55NS -9.24 1.05NS 
LBWT 0.16 

 
-13.73 -4.38 -14.17 -3.88 

DSI 0.17 0.01NS 
 

9.35 -0.43NS 9.85 
API 0.10 -0.06NS -0.08** 

 
-9.79 0.50NS 

API1 -0.04NS -0.20 -0.21 -0.14 
 

10.29 
API2 0.16 0.01NS -0.02NS 0.06NS 0.20 

 1 Differences between slopes = column-row; intercept differences = row-column 
2NS = estimate is not significantly different (P > 0.05) from the control population; * = P < 0.05; ** = 
P < 0.01; no superscription = P > 0.001. 
3CEd = calving ease standardized direct EPD; BWTd = birth weight standardized direct EPD; 205-d 
WTd = 205-d weight standardized direct EPD; 160-d gaind = 160-d postweaning gain direct EPD; 365-
d WTd = 365-d weight standardized direct EPD 
4HCE = high calving ease selection scenario; LBWT = low birth weight selection scenario; DSI = 
Dickerson’s index; API = All-purpose index; API1 = 0.2YWT + 1.3CE; API2 = 0.2YWT – 1.8BWT 
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Table ‎4.11: Difference (X100) between regression coefficients1,2 (intercept above the 
diagonal, slope below the diagonal) of studied traits standardized maternal EPD regressed on 
birth year estimated from different selection scenarios in first-calf Simmental heifers. 

Trait3 Selection scenario4 HCE LBWT DSI API API1 API2 

CEm 

HCE 
 

2.91 -1.85 1.16 -2.58 2.03 

LBWT 0.01NS 
 

-4.76 -1.75 -5.49 -0.88 

DSI 0.09 0.09 
 

3.01 -0.73** 3.89 

API 0.01NS 0.01NS -0.08 
 

-3.74 0.87 

API1 0.04* 0.03* -0.05 0.03NS 
 

4.61 

API2 0.02NS 0.01NS -0.08 0.01NS -0.02NS 
 

 
       

BWTm 

HCE 
 

0.27NS -1.24 -0.03NS -2.32 -0.04NS 

LBWT -0.01NS 
 

-1.51 -0.30NS -2.59 -0.31NS 

DSI -0.02NS 0.01NS 
 

1.21 -1.08 1.20 

API -0.02NS -0.01NS -0.01NS 
 

-2.29 -0.01NS 

API1 0.05 0.06 0.06 0.07 
 

2.28 

API2 -0.03NS -0.01NS -0.01NS -0.01NS -0.08 
 

 
       

205-d 
WTm 

HCE 
 

3.63 -0.43NS 1.09 -2.07 2.55 

LBWT -0.14 
 

-4.05 -2.54 -5.69 -1.07 

DSI -0.01NS 0.13 
 

1.52 -1.64 2.98 

API -0.05 0.09 -0.04 
 

-3.16 1.46 

API1 0.07 0.21 0.08 0.12 
 

4.62 

API2 -0.12 0.02NS -0.10 -0.06 -0.19 
 1 Differences between slopes = column-row; differences between intercepts = row - column 

2NS = estimate is not significantly different (P > 0.05) from the control population; * = P < 
0.05; ** = P < 0.01; estimate with no superscription is significantly different (P > 0.001) from 
the control population. 
3CEm = calving ease standardized maternal EPD; BWTm = birth weight standardized maternal 
EPD; 205-d WTm = 205-d weight standardized maternal EPD 
4HCE = high calving ease selection scenario; LBWT = low birth weight selection scenario; 
DSI = Dickerson’s selection index; API = All-purpose index; API1 = 0.2 YWT + 1.3 CE; API2 
= 0.2 YWT – 1.8 BWT 
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Selection for high calving ease (HCE) versus selection for low birth weight (LBWT): Genetic 

trends (1969-2004) of standardized average EPD for CEd, BWTd, 205-d WTd, 160-d gain, 365-

d WT, CEm, BWTm, and 205-d WTm under two selection scenarios: HCE vs. LBWT are 

presented in Fig. 4.2. In both selection scenarios, the direct effects of calving ease selection 

showed positive trends compared to the control. Here, the HCE substantially shifted the intercept 

(0.1199 SD) and the slope (0.0025 SD/yr) of the regression line (Table 4.9). The HCE intercept 

estimate was 57.7% higher than (P < 0.001) that obtained from the LBWT; however the CE 

slope from the HCE was lower (P < 0.001) by 30.5% (Table 4.10).  

Conversely, the growth-related direct effects estimated from both selection scenarios 

decreased (Table 4.9). The estimated direct genetic trends for BWT, 205-d WT, and 160-d gain, 

and 365-d WT under the HCE were 27.9, 37.5, 16, and 28%, respectively, higher than (P < 

0.001) those obtained from the LBWT selection scenario (Tables 4.9 and 4.10) but lower than 

control. For maternal effects, the genetic trends of CE in both selection scenarios were positive 

(P < 0.001) with similar rates of 0.0005 and 0.0005 SD/yr, respectively; however, the intercept 

from the HCE was, 60%, higher (P < 0.001) than that under the LBWT (Tables 4.9 and 4.10). 

Maternal genetic trends of birth weight from both selection scenarios showed decreasing rates of 

-0.0011 (HCE) and -0.0009 (LBWT) SD/yr. Maternal trends for 205-d WT under HCE decreased 

with a rate of -0.0004 SD/yr while an increasing rate of 0.0010 SD/yr was estimated under the 

LBWT scenario (Tables 4.9 and 4.11). Bennett (2008) used selection (1993-1999) to create two 

different lines, a select and a control line within each of 4 purebred (Charolais, Gelbvieh, 

Hereford, and Angus) and 3 composite cattle (MARC I, II, and III) populations. Selection for 

lower 2-yr-old heifer calving difficulty score EBV was applied in the select lines; whereas, 

animals in the control lines were selected for average birth weight EBV. The author reported  
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that selection for calving ease decreased the average EBV for calving difficulty and birth weight 

across populations by -1.06 and -3.5 kg, respectively. These results were in agreement with the 

current study where selection for high calving ease produced animals with lower birth weight 

and higher calving ease. However, in contrast to our results, Bennett (2008) reported that both 

lines did not show differences in maternal additive genetic effects on calving difficulty and birth 

weight; and direct genetic effects on weaning weight and postweaning gain. This was because of 

the selection for higher calving ease (select line) was compared to the control line, which was 

selected to maintain the average of birth weight (Bennett, 2008); whereas, in our study, the two 

lines (i.e., selection scenarios) were actually two selected lines. Therefore, the differences 

between scenarios in the present study are expected to be higher in magnitude. To our 

knowledge, there is no study that applied single trait selection for low birth weight as in this 

evaluation. In previous reports, selection for low birth weight was always accompanied by 

selection for high weaning or yearling weight (Doornbos et al., 1994; Gould, 1996; MacNeil, 

2003). However, the study closest in design to this was one that selected for below-average birth 

weight (MacNeil et al., 1998). In that report, there were two selected lines with the first applying 

independent culling levels for below-average birth weight and high yearling weight (YB) and a 

second single-trait mass selection for high yearling weight (YW) in the inbred population of Line 

1 Hereford cattle. Authors suggested that direct selection for calving ease would be more 

effective than selection for low birth weight. Results from the current study revealed that 

selection for high calving ease (HCE) produced heavier animals with lower incidence of dystocia 

than selection for low birth weight (LBWT). Selection for low birth weight improved calving 

ease, but caused losses in growth at later ages which was a result of the high genetic correlations 

between birth weight and subsequent growth traits. 
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Figure ‎4.2: Genetic trend (1969-2004) of standardized average EPD for direct calving 
ease (CEd), direct birth weight (BWTd), direct 205-d weight (205-d WTd), direct 160-d 
postweaning gain (160-d gain), 365-d weight (365-d WT), maternal calving ease (CEm), 
maternal birth weight (BWTm), and maternal 205-d weight (205-d WTm) estimated from 
two selection scenarios: HCE Versus LBWT 
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The all-purpose selection index (API) versus Dickerson’s selection index (DSI): The direct and 

maternal genetic trends for calving ease (CE), birth weight (BWT), and weaning weight (205-d 

WT) and the direct genetic trends for postweaning gain (160-d gain) and yearling weight (365-d 

WT) under the API and DSI selection scenarios are presented in Fig. 4.3. Even though the slope 

value for CE direct was higher (P < 0.001; Table 4.10) in the DSI, the API shifted the intercept 

(i.e., gave higher average EPD) by 70% more than the intercept obtained from the DSI (0.1048 

vs. 0.0616 SD, respectively; Table 4.9).  

For growth traits, both selection scenarios reduced growth compared to the control. 

Despite the steeper trends (slopes) estimated from the DSI selection scenario, intercepts of the 

direct genetic trends for BWT, 205-d WT, and 365-d WT estimated from the API were lower 

than those of the DSI (Table 4.9 and 4.10). However, there were no differences (P > 0.05) 

between slopes for 160-d gain under both selection scenarios (Table 4.10). For maternal genetic 

trends of growth traits, maternal trends obtained from API and DSI showed decreasing rates 

(API vs. DSI) of (-0.0008 vs. -0.0009 SD/yr) and (-0.0002 vs. -0.0002 SD/yr) for BWT and 205-

d WT, respectively (Table 4.9). Further, there were no differences (P > 0.05) between these 

estimates. The genetic trend of calving ease maternal under the API had an increasing rate; 

whereas, a negative trend was estimated under the DSI (Table 4.9). The decrease in growth-

related genetic trends under both selection scenarios, compared to the control scenario, reflected 

the emphasis of Simmental breeders on selection for faster growing animals. Similar to the 

present results, Gould (1996) and MacNeil et al. (1998) reported that the DSI improved calving 

ease; however, MacNeil et al. (1998) recommended the direct selection for calving ease instead 

of selection for lower birth weight. The current results showed that, despite the lower growth 

rates of animals selected using API, the incidence of dystocia was much less than that in the DSI.   
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Figure ‎4.3: Genetic trend (1969-2004) of  standardized average EPD  for  direct calving 
ease (CEd), direct birth weight (BWTd), direct 205-d weight (205-d WTd), direct 160-d 
postweaning gain (160-d gain), 365-d weight (365-d WT), maternal calving ease (CEm), 
maternal birth weight (BWTm), and maternal 205-d weight  (205-d WTm) estimated 
from two selection scenarios: All purposes Index (API ) = 0.2 YWT -1.8 BWT + 0.1 
WWT + 1.3 CE Versus Dickerson's selection index (DSI) = YWT - 3.2 BWT 
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The all-purpose sub-selection index (API1) versus Dickerson’s selection index (DSI): The API1 

is a sub-selection index of the API where yearling weight and calving ease are the only traits 

included in the API1. Therefore, the comparison between the API1 and DSI can be thought of as 

a comparison between a calving ease-based selection index (API1) versus a birth weight-based 

selection index (DSI). Figure 4.4 depicts the direct and maternal average EPD of studied traits 

under both selection scenarios. In spite of the higher slope “rate of change” under the DSI, the 

regression line (b0 + b1*birth year) of estimated direct calving ease EPD under the API1 scenario 

was higher than that obtained under the DSI (Tables 4.9 and 4.10). Here, selection using the 

API1, in the early years of the study, greatly increased the average calving ease EPD which 

resulted in a higher intercept; therefore, the obtained rate of change “slope” was lower than that 

obtained under the DSI. This is a result of the rapid genetic change under the API1, in the early 

years, which is constrained in the subsequent years by the already selected “low CE” animals in 

the data (See Fig. 4.1).  

Direct genetic effects, for all growth traits, obtained under the API1 were higher than (P < 

0.001) the estimated direct effects under the DSI (Tables 4.9 and 4.10). Table 4.11 showed that 

maternal CE under the API1 did not show a trend (P > 0.05) while a negative trend (P < 0.001) of 

-0.0004 SD/yr was estimated for maternal CE under the DSI. For maternal BWT and 205-d WT, 

negative trends were estimated under both selection scenarios (Tables 4.9 and 4.11). The 

superiority of API1 “CE-based selection index” over DSI “BWT-based selection index”, across 

all traits,  supports the speculation of MacNeil et al. (1998) that selection for higher calving ease 

would be more effective than selection for birth weight. The economic efficiency, in terms of 

profit, of both selection scenarios will be investigated later in this section.  
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Figure ‎4.4: Genetic trend (1969-2004) of  standardized average EPD  for  direct calving 
ease (CEd), direct birth weight (BWTd), direct 205-d weight (205-d WTd), direct 160-d 
postweaning gain (160-d gain), 365-d weight (365-d WT), maternal calving ease (CEm), 
maternal birth weight (BWTm), and maternal 205-d weight  (205-d WTm) estimated 
from two selection scenarios: Dickerson's selection index (DSI) = YWT - 3.2 BWT 
Versus API1 = 0.2 YWT + 1.3 CE  
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The all-purpose sub-selection index (API2) versus Dickerson’s selection index (DSI): The API2 

is a sub-selection index of the API where yearling weight and birth weight are the only traits 

included in the API2. Therefore, the comparison here is between two birth weight-based selection 

indices. Figure 4.5 shows genetic trends (1969-2004) of standardized average EPD for direct and 

maternal calving ease, birth weight, 205-d weight, and direct 160-d postweaning gain and 365-d 

weight under the API2 and DSI selection scenarios. For direct and maternal trends for calving 

ease, the API2 produced higher (P < 0.001) direct calving ease EPD and lower (P < 0.001) 

maternal calving ease EPD compared to the DSI (Tables 4.9 and 4.10). However, differences 

between DSI and API2 were less than those between DSI and both API and API1. This was 

expected since DSI and API2 were both focus on lower birth weight whereas API and API1 were 

selecting for higher calving ease. As compared to DSI, lower direct genetic trends were 

estimated for all growth-related traits under the API2. The lower direct trends for 205-d WT 160-

d gain, and 365-d WT obtained under the API2 were essentially a result of the lower intercepts (P 

< 0.001) while slopes were not different (P > 0.05) between the two selection scenarios. The low 

direct trends for growth traits were a result of the higher downward selection for birth weight 

(the negative weight of BWT in the API2 was 281% “-9 vs. -3.2” higher than that in the DSI). 

 Generally, results showed that the API2 selection scenario, compared to the DSI, 

produced animals with higher calving ease and lower growth rates. Furthermore, these 

differences resulted from the higher selection pressure placed on birth weight under the API2. 

Even though the differences between DSI and API2 were significant, the magnitude of these 

differences was smaller than that of the differences between DSI, API and API1. This illustrates 

the difference between the calving ease-based selection and birth weight-based selection indices 

where the former produced animals with higher calving ease and better growth rates.   
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Figure ‎4.5: Genetic trend (1969-2004) of standardized average EPD for direct calving 
ease (CEd), direct birth weight (BWTd), direct 205-d weight (205-d WTd), direct 160-d 
postweaning gain (160-d gain), 365-d weight (365-d WT), maternal calving ease (CEm), 
maternal birth weight (BWTm), and maternal 205-d weight  (205-d WTm) estimated 
from two selection scenarios: Dickerson's selection index (DSI) = YWT - 3.2 BWT 
Versus API2 = 0.2 YWT - 1.8 BWT  
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The all-purpose selection index (API) versus all-purpose sub-selection index (API1): the API 

selection index (API  = -1.8 BWT + 1.3 CE + 0.10 WWT + 0.20 YWT) with its sub-index API1 

(API 1 = 1.3 CE + 0.20 YWT) were compared in terms of the genetic trends of studied traits 

resulted under both selection scenarios. Figure 4.6 shows genetic trends (1969-2004) of 

standardized average EPD for direct and maternal calving ease, birth weight, 205-d weight, and 

direct 160-d postweaning gain and 365-d weight under the API and API1 selection scenarios.  

Estimates of intercepts and slopes of studied traits are presented in Table 4.9. As shown in Fig. 

4.6 and Table 4.9, both selection scenarios produced similar slopes (P > 0.05) for direct CE; 

however, the intercept of the regression line was higher (P < 0.001) under the API meaning that 

API produced higher average calving ease EPD. For growth traits direct genetic trends, API1 

consistently produced higher genetic trends across all growth traits. Rates of direct genetic 

change for BWT, 205-d WT, 160-d gain, and 365-d WT, under the API1, were 20, 33, 20.8, and 

27.4%, respectively, higher (P < 0.001) than their respective estimates under API (Tables 4.9 and 

4.10). Positive average EPD for maternal CE were estimated under API1 were positive (i.e., 

positive intercept) and did not show a trend (P > 0.05); however, under the API, maternal CE 

EPD were negative and increased with a rate of 0.0004 SD/yr (Table 4.9). Maternal effects for 

BWT, under both scenarios, showed decreasing rates with higher EPD estimated under the API1 

selection scenario. Nonetheless, maternal effects for 205-d WT showed a decreasing rate of -

0.0011 SD/yr under the API1 while increased with a rate of 0.0002 SD/yr under the API (Table 

4.9). These results showed that both selection scenarios produced animals with high CE EPD 

with a slight advantage for the API; however both scenarios reduced growth rate with higher 

EPD estimated under the API1. The higher CE EPD under the API and the higher growth rates 

under the API1 were a result of incorporating BWT in the former and excluding it from the latter. 
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Figure ‎4.6: Genetic trend (1969-2004) of  standardized average EPD  for  direct calving 
ease (CEd), direct birth weight (BWTd), direct 205-d weight (205-d WTd), direct 160-d 
postweaning gain (160-d gain), 365-d weight (365-d WT), maternal calving ease (CEm), 
maternal birth weight (BWTm), and maternal 205-d weight  (205-d WTm) estimated 
from two selection scenarios: All purposes Index (API) = 0.2 YWT - 1.8 BWT + 0.1 
WWT + 1.3 CE Versus API1 = 0.2 YWT + 1.3 CE  



142 
 

The all-purpose selection index (API) versus all-purpose sub-selection index (API2): the direct 

and maternal genetic trends of studied traits under the API selection index (API  = -1.8 BWT + 

1.3 CE + 0.10 WWT + 0.20 YWT) with its BWT-based sub-index API2 (API 2 = -1.8 BWT + 0.20 

YWT) were compared (Fig. 4.7 and Tables 4.10 and 4.11). Results showed that direct genetic 

trends for CE, BWT, and 205-d WT in the API were significantly (P < 0.001) higher than those 

under the API2 (Table 4.10). Despite the similar slopes (P > 0.05) for the direct 160-d gain under 

both scenarios, higher (P < 0.05) average EPD (i.e., higher intercept) were obtained from the API 

scenario. Genetic trends for direct 365-d WT were similar (P > 0.05) under both selection 

scenarios.   

For maternal trends, the API maintained the superiority for maternal calving ease and 

maternal 205-d WT (Table 4.11). Conversely, there were no differences (P > 0.05), between the 

two scenarios, in the genetic trends of maternal birth weight (Table 4.11). These results showed 

that the absence of calving ease in the API2 produced cattle with lower calving ease and growth 

trait EPD while the absence of birth weight in the API1 (see Fig. 4.6) resulted in higher calving 

ease and growth trait EPD compared to the API selection scenario.  

 

The all-purpose sub-selection index (API1) versus all-purpose sub-selection index (API2):  The 

two sub-selection indices of the API were compared. The API1 (API 1 = 1.3 CE + 0.20 YWT) was 

considered the calving ease-based selection scenario while the API2 (API 2 = -1.8 BWT + 0.20 

YWT) was considered the birth weight-based selection scenario. Direct and maternal genetic 

trends of calving ease and growth-related traits under API1 and API2 are shown in Fig. 4.8.  
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Results showed that the direct genetic trend for calving ease and all growth traits obtained 

under the API1 were significantly higher than those estimated from the API2 (Table 4.10). 

Further, The API1 showed higher (P < 0.001) maternal genetic trends for calving ease and 205-d 

WT. However, birth weight maternal genetic trends were not different (P > 0.05) between the 

two selection scenarios. These findings were similar to those comparing the API and API2. 

However, the API1, compared to both API and API2, produced animals with the highest average 

EPD for growth traits. The superiority of the API1 was a result of the absence of restrictions on 

birth weight which is eventually reflected on growth rates at subsequent ages.  

 Results obtained from both calving ease-based and low birth weight-based selection 

scenarios showed that the various selection scenarios, compared to the control scenario, 

increased the ease of calving and reduced growth rate, which suggest that selection for heavier 

animals was practiced in the first-calf Simmental heifers (i.e., control; see Fig 4.1). However, 

since 1999, a noticeable improvement in calving ease was evident.  

Generally, the calving ease-based selection scenarios (HCE, API, and API1) showed 

higher genetic trends for calving ease and growth-related traits compared to the birth weight-

based selection scenarios (LBWT, DSI, and API2). The single trait, HCE, selection scenario has 

substantially improved calving ease and produced heavier animals compared to LBWT selection 

scenario. The API and API1 were considered the more effective selection scenarios amongst the 

various selection indexes. In summary, we accept the hypothesis that direct selection for calving 

ease, as opposed to selection for low birth weight, improves the ease of calving and growth-

related traits reduces the performance losses resulted from the indirect selection using birth 

weight. 
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Figure ‎4.7: Genetic trend (1969-2004) of  standardized average EPD  for  direct calving 
ease (CEd), direct birth weight (BWTd), direct 205-d weight (205-d WTd), direct 160-d 
postweaning gain (160-d gain), 365-d weight (365-d WT), maternal calving ease (CEm), 
maternal birth weight (BWTm), and maternal 205-d weight  (205-d WTm) estimated 
from two selection scenarios: All purposes Index (API) = 0.2 YWT - 1.8 BWT + 0.1 
WWT + 1.3 CE Versus API2 = 0.2 YWT - 1.8 BWT  
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Figure ‎4.8: Genetic trend (1969-2004) of  standardized average EPD  for  direct calving 
ease (CEd), direct birth weight (BWTd), direct 205-d weight (205-d WTd), direct 160-d 
postweaning gain (160-d gain), 365-d weight (365-d WT), maternal calving ease (CEm), 
maternal birth weight (BWTm), and maternal 205-d weight  (205-d WTm) estimated 
from two selection scenarios: API1 = 0.2 YWT + 1.3 CE Versus API2=0.2YWT-1.8BWT  
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Net Profit for various selection scenarios: The profit for all selection scenarios was estimated 

using the API selection index (API  = -1.8 BWT + 1.3 CE + 0.10 WWT + 0.20 YWT). In order to 

estimate the profit, the unstandardized EPD of traits were used in the API (i.e., growth traits EPD 

were expressed in kg and calving ease EPD were expressed in % of unassisted calving with 

economic weights modified accordingly). The prices of production inputs were assumed to be 

constant throughout the period of study; consequently, the economic weights in the API were 

assumed to be constant. Therefore, for each selection scenario, the estimates of net profit were 

regressed on birth year. Intercepts and slopes ($/yr) are presented in Table 4.12. The differences 

between intercepts and between slopes of different selection scenario were tested for significance 

(Table 4.13). Selection scenarios can be classified into 2 groups: 1) high calving ease selection 

scenarios which include the single trait selection scenario for high calving ease (HCE), the all-

purpose selection index (API), and the all-purpose sub-selection index (API1), and 2) low birth 

weight selection scenarios which include the single trait selection scenario for low birth weight 

(LBWT), Dickerson’s selection index (DSI), and the all-purpose sub-selection index (API2).  

For high calving ease selection scenarios (Group 1), the HCE, API, and API1 selection 

scenarios showed the highest net profit with intercept estimates of $13.01, $11.58, and $11.09, 

respectively, and their estimated rates of change were 0.28, 0.33, and 0.30 $/yr, respectively 

(Table 4.12). Rates of change in the profit for both API and API1 selection scenarios (Table 4.13) 

did not significantly differ (P > 0.05). Compared to the LBWT selection scenario, selection for 

high calving (HCE) ease showed higher annual averages of net profit (Fig. 4.9) where it shifted 

the intercept by 58% (Table 4.12). The low birth weight selection scenarios (Group 2) can be 

ordered from the highest to the lowest net profit as follow: API2, LBWT, and DSI. Table 4.13 

showed that the differences between the slope of LBWT and slopes of API2 and DSI were not 
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different (P > 0.05). Nonetheless, differences between intercepts of the three selection scenarios 

were different. Intercepts estimates for API2, LBWT, and DSI were 8.81, 8.23, and 7.36$, 

respectively (Table 4.12). 

Table ‎4.12: Regression coefficients1 of the net profit2 ($) of various selection scenarios 
regressed on birth year in first-calf Simmental heifers 

Item 

Selection scenario3 

HCE LBWT DSI API API1 API2 

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE 

Intercept, $ 13.010 0.174 8.228 0.163 7.357 0.153 11.580 0.169 11.090 0.165 8.811 0.163 
Slope, $/yr 0.280 0.009 0.407 0.009 0.426 0.008 0.328 0.009 0.303 0.009 0.389 0.009 
1All estimates were significantly different (P  < 0.001) from the control  
2Estimated net profit was estimated using the All-purpose selection index implemented by the ASA 
3HCE = high calving ease selection scenario; LBWT = low birth weight selection scenario; DSI = 
Dickerson’s selection index; API = All-purpose index; API1 = 0.2 YWT + 1.3 CE; API2 = 0.2 YWT – 
1.8 BWT 

 

Table ‎4.13: Differences between regression coefficients1,2 of the net profit ($) of different 
selection scenarios regressed on birth year in first-calf Simmental heifers 

Selection 
Scenario3  

HCE LBWT DSI API API1 API2 
Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE 

HCE 
  

4.78 (0.21) 5.66 (0.20) 1.43 (0.21) 1.92 (0.21) 4.20 (0.21) 
LBWT -0.13 (0.01) 

  
0.87 (0.19) -3.35 (0.20) -2.86 (0.20) -0.58* (0.20) 

DSI -0.15 (0.01) -0.02NS (0.01) 
  

-4.22 (0.20) -3.73 (0.19) -1.45 (0.19) 
API -0.05 (0.01) 0.08 (0.01) 0.10 (0.01) 

  
0.49NS (0.21) 2.77 (0.20) 

API1 -0.02NS (0.01) 0.10 (0.01) 0.12 (0.01) 0.02NS (0.01) 
  

2.28 (0.20) 

API2 -0.11 (0.01) 0.02NS (0.01) 0.04**  (0.01) -0.06 (0.01) -0.09 (0.01) 
  1 Differences between slopes are below the diagonal; differences between intercepts are above the 

diagonal 
2NS = estimate is not significantly different (P > 0.05) from the control population; * = P < 0.05; ** = P < 
0.01; estimate with no superscription is significantly different (P < 0.001) from the control population. 
3HCE = high calving ease selection scenario; LBWT = low birth weight selection scenario; DSI = 
Dickerson’s selection index; API = All-purpose index; API1 = 0.2 YWT + 1.3 CE; API2 = 0.2 YWT – 1.8 
BWT 
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Generally, calving ease-based selection scenarios (HCE, API, and API1) showed higher 

profit than the birth weight-based selection scenarios (LBWT, DSI, and API2). Selection for high 

calving ease (HCE), as opposed to the LBWT selection scenario, shifted the intercept of the net 

returned by 58%, respectively. The highest change in profit was estimated from both HCE and 

API selection scenarios while the DSI selection scenario showed the least profit. 

4.4. Summary 

Costs associated with calving difficulty have a direct impact on the profitability of beef 

cattle operations. Traditionally, selection for low birth weight was used as means to reduce the 

incidence of dystocia. Nonetheless, the genetic antagonistic relationships between calving ease 

Figure ‎4.9: Average net profit (1969-2004) of various selection scenarios: HCE = 
selection for high calving ease; All-purpose selection index: API = -1.8 BWT + 1.3 CE + 
0.10 WWT + 0.20 YWT; API1 = 1.3 CE + 0.20 YWT; API2 = -1.8 BWT + 0.20 YWT; 
LBWT = selection for low birth weight; DSI = YWT - 3.2 BWT 
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and postnatal growth traits press the question about the appropriateness of using birth weight 

instead of calving ease as a selection tool. Therefore, we hypothesize that, instead of selection for 

low birth weight, direct selection for calving ease should be used as means to reduce both the 

incidence of calving difficulty and losses in growth-related traits. Our objective was to quantify 

the performance losses in the first-calf heifer population of the American Simmental beef cattle 

under six different selection scenarios for either low birth weight or selection for high calving 

ease. In order to quantify the performance losses under the different selection scenarios, genetic 

trends and the net profit were estimated for each scenario. Data on calving ease, birth weight, 

weaning weight, and yearling weight were obtained from the American Simmental Association 

(ASA). Given the multi-breed nature of the ASA database, only animals with ≥87.5% Simmental 

were included in our study with data constructed beginning with a base population of 2 year old 

dams as they provide the most relevant calving ease observations (N=95,791). Weaning and 

yearling weights were adjusted to 205 and 365 d of age, respectively. Further, 160-d 

postweaning gain was calculated from the adjusted weights. Four-generation pedigrees were 

constructed to estimate sire and maternal grandsire (co)variance components for calving ease 

(CE), birth weight (BWT ), and 205-d weight (205-d WT), and sire (co)variance components for 

160-d postweaning gain (160-d gain) using the threshold-linear sire-maternal grandsire model 

with a Gibbs sampling algorithm. Following variance component estimation, the direct and 

maternal EPD for CE, BWT, and 205-d weight and direct EBV for 160-d gain and 365-d weight 

for 465,710 animals were estimated using a threshold-linear multivariate maternal animal model. 

Calving ease was modeled as a threshold trait (i.e., underlying continuous liability was assumed) 

with 3 observed categories. The 365-d weight was not included in the model; however, its direct 

EBV were calculated as the summation of the estimated EBV for 205-d weight and 160-d gain. 
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A subpopulation of 2 year old (first-calf) Simmental heifers (n = 277,897) was extracted under 

the restriction of including only progeny of first-calf heifers. This subpopulation was used for 

estimating genetic trends of Simmental cattle, and was also used as a selection pool (control 

scenario) for different selection scenarios. Furthermore, six different selection scenarios, for low 

birth weight as opposed to selection for high calving ease, were created. Using the first-calf 

heifers data (the control), data for each selection scenario was created by selecting sires, within 

each year of birth, with EBV ≥ the average (either EBV in the single trait selection or the index 

value in the multiple trait selection), along with the top 75% of dams with progeny. Selection 

scenarios were two single trait selection approaches for both high calving ease (HCE) and low 

birth weight (LBWT ) in addition to  four alternate selection indices which were the all-purpose 

selection index (API  = -1.8 BWT + 1.3 CE + 0.10 WWT + 0.20 YWT) of the ASA, and its two 

derived sub-indices: (API 1 = 1.3 CE + 0.20 YWT), and (API 2 = -1.8 BWT + 0.20 YWT), and 

lastly the Dickerson’s selection index (DSI = -3.2 BWT + YWT; Dickerson et al. (1974)). For 

each selection scenario, EPD for studied traits were standardized by their respective genetic 

standard deviation and then expressed as a deviation from the average EPD, within birth year, of 

the control scenario. Comparison between different selection scenarios involved evaluating the 

direct and maternal genetic trends of studied traits and profit from these scenarios. Here, profit 

was calculated for all selection scenarios using the API. 

Results showed that the estimated posterior means of the direct heritability for CE, on the 

underlying scale, BWT, 205-d WT, 160-d gain, and 365-d WT of the American Simmental were 

0.23, 0.52, 0.28, 0.21, and 0.33, respectively. Maternal heritability estimates for CE, BWT, and 

205-d WT were 0.14, 0.05, and 0.055, respectively. The high negative genetic correlation 

between calving ease and birth weight (-0.67) justified the importance of incorporating birth 
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weight in the genetic evaluation of calving ease. The moderate positive genetic correlations 

between birth weight and subsequent growth traits exposed the genetic antagonistic relationship 

between calving ease and postnatal growth traits when selection for birth weight is applied. 

Results obtained from the comparisons of different selection scenarios for high calving 

ease and low birth weight showed that all selection scenarios, compared to the control scenario, 

produced reduced growth rate and increased the ease of calving suggesting selection for heavier 

animals was practiced on the first-calf Simmental heifer population. However, since 1999, a 

noticeable improvement in calving ease was evident. Generally, the calving ease-based selection 

scenarios (HCE, API, and API1) had the highest profit and showed higher genetic trends for 

calving ease and growth-related traits compared to the birth weight-based selection scenarios. 

The single trait, HCE, selection scenario, as opposed to LBWT, improved calving ease and 

growth-related traits which resulted in shifting the intercept of profit by 58%. The DSI selection 

scenario showed the least genetic trend for calving ease and the least profit. Therefore, we accept 

the hypothesis that direct selection for high calving ease, as opposed to selection for low birth 

weight, produces cattle with higher calving ease and growth rates. 
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CHAPTER V. 

 

5. STATISTICAL MODEL COMPARISONS: THRESHOLD VESUS LINEAR AND 

ANIMAL VERSUS SIRE USING AMERICAN SIMMENTAL FIELD DATA 

 
 
 
5.1. Introduction 

Although calving ease is a polygenic trait, it is classified as an ordered categorical trait 

since it is recorded in a data scoring system ranging from 1 = unassisted calving to 5 = mal-

presentation. The categorical nature of calving ease phenotypes poses the question of how 

suitable the linear methods are for the evaluation/analysis of such traits. The appropriateness of 

applying linear methodologies to such traits was intensively investigated by Thompson (1979) 

and Gianola (1982). Nonlinear methods were proposed to evaluate ordered categorical traits on 

the underlying continuous liability scale (Gianola and Foulley, 1983; Harville and Mee, 1984) 

and many studies have examined the advantages of the threshold methodology over the linear 

approach when used in genetic evaluation of ordered categorical trait. Most studies used either 

simulated or field data, yet few used both kinds of data to evaluate the threshold methodology. 

Results varied between supporting (Varona et al., 1999b; Ramirez-Valverde et al., 2001) and 

rejecting (Weller et al., 1988; Matos et al., 1997) the hypothesis that the threshold model is more 

suitable for the analysis of categorical responses. The objective of this study was to compare 

suitability of the threshold model versus the linear model in analysis of heifer calving ease score 

field data from the American Simmental Association.  
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5.2. Materials and Methods 

In this section, the threshold model was compared to the linear model applied to heifer 

calving ease field data from the American Simmental Association. We also extended the 

comparison to include those between the animal and the sire model. Further, within these 

models, calving ease was analyzed using a univariate model, a bivariate model (with birth 

weight), and a multivariate model (with both birth and 205-d weights). In addition, calving ease 

was fitted either as a binary or polychotomous trait (i.e., multiple categories (3 categories)). Only 

the direct genetic effects were fitted in all models. The total number of analyses required to 

compare all models was 240. Description of these analyses is presented in Table  5.1. The 

criterion of comparison was the model predictive ability estimated using a cross validation “data 

splitting” technique, followed by the calculation of correlations (Pearson’s and Spearman’s 

correlation coefficients) between predicted EPD obtained from two complementary data sets.  

A balanced data was created for the analysis (Table  5.2). The data was prepared so that 

observations on all traits within animal were available and only large herd data were included (n 

≥ 50). Once accumulated, a data-splitting procedure was performed. First, data were duplicated 

(Data 1 and Data 2). Second, in data 1, 50% of calving ease observations was randomly set to be 

missing. Third, in data 2, the other 50% of calving ease observations were set to be missing. This 

procedure produced two complementary data subsets in term of calving ease observations. This 

sampling procedure was repeated for another four times resulting in a total of 5 pairs of 

complementary data subsets. Each animal, in each pair of data subsets, had a calving ease 

observation in one subset and missing observation in the other subset.  
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Description of models: Six models were used to perform all analyses. Models were: 1) 

Univariate linear model for calving ease 2) Univariate threshold model for calving ease 3) 

Bivariate linear-linear model for calving ease and birth weight 4) Bivariate threshold-linear 

model for calving ease and birth weight 5) Multivariate linear-linear-linear model for calving 

ease, birth weight, and 205-d weight; and 6) Multivariate threshold-linear-linear model for 

calving ease, birth weight, and 205-d weight. Each of the six models was fitted as both an animal 

model and a sire model with an additional 2 combinations super-imposed on the above where 

calving ease was fitted as a binary or a polychotomous outcome. Therefore, for each model, one 

through 6, four different analyses were performed. Applied to the five pairs of complementary 

data subsets (total of 10 subsets), each of the former analyses was replicated 10 times. This 

resulted in a total of 240 analyses to compare all different models (Table  5.1). Models and their 

equations are described as follow: 

1) Univariate linear model:  

The equation of the univariate linear model is described below.                                  ( 5.1) 

Where Yce was vector of observations with subscript ce denoting calving ease either with 2 

categories or 3 categories;    were sex fixed effects; a were the random effects of either animal 

or sire; h were the random effects of herd-year-season; e were the residual effects; and X, Z1, 

and Z2 were incidence matrices that link data with fixed effects, animal or sire random effects, 

and herd-year-season random effects, respectively.  

The (co)variance structure of random effects was defined as: 
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with                  denoting variances, on the observed scale, for either direct additive (under 

animal model) or sire (under sire model), herd-year-season, and residual random effects, A was 

the additive genetic relationship matrix. 

2) Univariate threshold model:  

This model was fitted in the same manner of fitting the preceding model with the exception of 

fitting calving ease as a threshold trait (i.e., on the underlying continuous scale described in Eq. 

4.2). The univariate threshold model is described as follow:  

                                ( 5.2) 

Where L ce was vector of liabilities with subscript ce denoting calving ease either with 2 

categories or 3 categories;    were sex fixed effects; a were the random effects of either animal 

or sire; h were the random effects of herd-year-season; e were the residual effects; and X, Z1, 

and Z2 were incidence matrices that link data with fixed effects, animal or sire random effects, 

and herd-year-season random effects, respectively. 

The (co)variance structure of random effects was defined as: 

                            
with                  denoting variances, on the underlying scale, for either direct additive (under 

animal model) or sire (under sire model), herd-year-season, and residual random effects, A was 

the additive genetic relationship matrix. 
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3) Bivariate linear-linear model fitted for calving ease and birth weight:  

The observed categories of calving ease were assumed to be normally distributed “continuous”; 

therefore, calving ease was evaluated on the observed scale. The model was fitted in both animal 

and sire model settings. Under each setting calving ease was evaluated twice with 2 and 3 

categories. The model equation is represented below. 

                                                                  ( 5.3) 

In the above equation, Y were vectors of observations for respective trait; subscriptions ce and 

bwt were calving ease (2 or 3 categories) and birth weight;     were effects associated with sex; 

a were animal or sire random effects; h were herd-year-season random effects, respectively; e 

were the residuals; and X, Z1, and Z2 were incidence matrices that link data with fixed effects, 

animal or sire random effects, and herd-year-season random effects, respectively. 

The (co)variance structure of random effects was defined as:  

                           
where G = a 2×2 genetic (co)variance matrix, with CE on the observed scale, for either direct 

genetic (animal model) or sires (sire model) random effects, A = additive genetic relationship 

matrix, H = a 2×2 diagonal matrix for herd-year-season random effects, R = a 2×2 residual 

(co)variance matrix, I  = identity matrix of order appropriate to the numbers of observations, and  =Kronecker product. 

4) Bivariate threshold-linear model fitted for calving ease and birth weight:  

An underlying normal distribution “liability” was assumed for calving ease which was evaluated 

as a threshold trait. The model was fitted in both animal and sire model sittings. Under each 
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setting calving ease was evaluated twice with 2 and 3 categories. The model equation is 

described as follow: 

                                                                  ( 5.4) 

In the above equation, L  was a victor of underlying liabilities for calving ease; Y was a vector of 

observations for birth weight; subscriptions ce and bwt were calving ease (2 or 3 categories) and 

birth weight;     were effects associated with sex; a were animal or sire random effects; h were 

herd-year-season random effects, respectively; e were the residuals; and X, Z1, and Z2 were 

incidence matrices that link data with fixed effects, animal or sire random effects, and herd-year-

season random effects, respectively. 

The (co)variance structure of random effects was defined as:  

                           
where G = a 2×2 genetic (co)variance matrix, with CE on the underlying scale, for either direct 

genetic (animal model) or sires (sire model) random effects, A = additive genetic relationship 

matrix, H = a 2×2 diagonal matrix for herd-year-season random effects, R = a 2×2 residual 

(co)variance matrix, I  = identity matrix of order appropriate to the numbers of observations, and  =Kronecker product. 

5) Multivariate linear-linear model fitted for calving ease, birth weight, and 205-d weight: 

As in models 1 and 3, calving ease was fitted as a linear trait. Under both animal and sire models, 

calving ease observations were fitted twice with 2 and 3 categories. The multivariate linear-linear 

model used in these analyses is presented in Eq. 5.5 below.   
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                                                                                                              ( 5.5) 

In the above equation,    were effects associated with sex, and weaning contemporary group 

subclasses; a were sire or animal random effects; h were herd-year-season random effects, 

respectively; e were the residuals; and X, Z1, and Z2 were incidence matrices that link data with 

fixed effects, animal or sire random effects, and herd-year-season random effects, respectively. Y 

was vector of observations for respective trait. 

The (co)variance structure of random effects was defined as:  

                           
where G = a 3×3 genetic (co)variance matrix, with CE on the observed scale, for either direct 

genetic (animal model) or sires (sire model) random effects, A = additive genetic relationship 

matrix, H = a 3×3 diagonal matrix for herd-year-season random effects, R = a 3×3 residual 

(co)variance matrix, I  = identity matrix of order appropriate to the numbers of observations, and  =Kronecker product. 

6) Multivariate threshold-linear model fitted for calving ease, birth weight, and 205-d 

weight: 

As in models 2 and 4, calving ease was fitted as a threshold trait with an underlying distribution 

described in Eq. 4.2. Under both animal and sire models, calving ease observations were fitted 

twice with 2 and 3 categories. The multivariate threshold-linear model used in these analyses is 

presented in Eq. 5.6 below.   
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                                                                                                              ( 5.6) 

In the above equation,    were effects associated with sex, and weaning contemporary group 

subclasses; a were sire or animal random effects; h were herd-year-season random effects, 

respectively; e were the residuals; and X, Z1, and Z2 were incidence matrices that link data with 

fixed effects, animal or sire random effects, and herd-year-season random effects, respectively: L  

was a victor of calving ease liabilities; Y was vector of observations for birth weight and 

weaning weight. 

The (co)variance structure of random effects was defined as:  

                           
where G = a 3×3 genetic (co)variance matrix, with CE on the underlying scale, for either direct 

genetic (animal model) or sires (sire model) random effects, A = additive genetic relationship 

matrix, H = a 3×3 diagonal matrix for herd-year-season random effects, R = a 3×3 residual 

(co)variance matrix, I  = identity matrix of order appropriate to the numbers of observations, and  =Kronecker product. 
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Table ‎5.1: Description of models used in analyses to compare their predictive ability of calving 
ease EPD of Simmental data.  

   Sire model Animal model 

Model1 CE2 Fitted traits3 Subset pairs Analyses Subset pairs analyses 

Univariate 
 

 
 

 
 

 

L-CE2 L+B CE 5 10 5 10 

L-CE3 L+P CE 5 10 5 10 

T-CE2 T+B CE 5 10 5 10 

T-CE3 T+P CE 5 10 5 10 

Bivariate 
 

 
    

LL-CE2 L+B CE 
BWT 

5 10 5 10 

LL-CE3 L+P CE 
BWT 

5 10 5 10 

TL-CE2 T+B CE 
BWT 

5 10 5 10 

TL-CE3 T+P CE 
BWT 

5 10 5 10 

Multivariate 
 

 
    

LLL -CE2 L+B 
CE 

BWT 
205-d WT 

5 10 5 10 

LLL -CE3 L+P 
CE 

BWT 
205-d WT 

5 10 5 10 

TLL-CE2 T+B 
CE 

BWT 
205-d WT 

5 10 5 10 

TLL-CE3 T+P 
CE 

BWT 
205-d WT 

5 10 5 10 

Total   60 120 60 120 
1L = linear; T = threshold; CE2 = 2 categories; CE3 = 3 categories. 
2L = linear; T = threshold; B = binary; P = polychotomous. 
3CE = calving ease; BWT = birth weight; 205-d WT = adjusted 205-d weight. 
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Table ‎5.2: Summary statistics of Simmental data used in model comparisons “threshold vs. 
linear” and “Animal vs. sire”. 

Item1 N 

Calving difficulty score 

Mean SD Min. Max. 1 2 3 4 
Data file:          

Animal 19,012         

Dam 19,012         

CE 19,012 11,661 5,407 1,372 572 1.51 0.75 1 4 

Males 9,272 4,944 2,998 832 453 1.65 0.83 1 4 

Females 9,785 6,717 2,409 540 119 1.39 0.65 1 4 

BWT, kg 19,012 11,661 5,407 1,372 572 40.91 5.04 24.09 55.45 

Males 9,272 4,944 2,998 832 453 42.28 5.00 24.09 55.45 

Females 9,785 6,717 2,409 540 119 39.61 4.74 24.09 55.45 

205-d WT, kg 19,012 11,661 5,407 1,372 572 270.96 44.81 104.94 433.15 

Males 9,272 4,944 2,998 832 453 285.26 47.56 113.50 433.15 

Females 9,785 6,717 2,409 540 119 257.47 37.34 104.94 407.48 
          

WCG 347         

HYS 1,737         

Pedigree:          

Animal Model          

Animal 80,007         

Sire 9,011         

Dam 54,118         

Sire Model          

Sire 9,011         

Sire of sire 2,490         

MGS 2,128         
1CE = Calving ease; BWT = Birth weight; 205-d WT = 205 days adjusted weight; WCG = Weaning 
contemporary group; HYS = Herd-Year-Season; MGS = Maternal grandsire.  
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5.3. Results and Discussion 

In the present study, we examined the threshold model suitability for the analysis of 

categorical traits as opposed to linear approaches for calving ease. Furthermore, we addressed 

not only the linearity of the trait, but also the number of the trait categories, model complexity 

(i.e., the number of fitted traits) and extended the comparison to include the comparison of the 

animal model versus the sire model. Efficiency of each model was determined by assessing the 

predictive ability of the model. The predictive ability of model was estimated using the 

correlation between predicted calving ease EPD from two complementary data sets under each 

model (see section 5.2 for further explanation). The distribution of calving ease scores of first-

calf Simmental heifers was: 61.33% unassisted calving, 28.44% minor assistance, 7.22% major 

assistance, and 3% Cesarean. However for this study, the last two categories (major assistance + 

Cesarean = 10.22%) were merged. Effects included in both animal and sire models were the 

fixed effects of sex and weaning contemporary group (included only in the multivariate models), 

herd-year-season random effects, and either direct additive genetic random effects in the animal 

model or sire random effects in the sire model. Description of analyses used to compare the 

predictive ability of models for the estimation of calving ease EPD of the American Simmental 

beef cattle is presented in Table  5.1. 

Estimates of posterior means for sire and residual (co)variance components, obtained using 

Bayesian inference via means of a Gibbs sampling algorithm, of calving ease (CE), birth weight 

(BWT), and 205-d weight (205-d WT) for the American Simmental data under different sire 

models are presented in Table 5.3. Estimates of posterior means for direct genetic and residual 

(co)variance components for the same data under different animal models are presented in Table 



166 
 

5.4. These values were used to estimate EPD of these traits, in the complementary data set, 

between which correlations were calculated to estimate each model’s predictive ability. 

 

Table ‎5.3: Posterior means for sire and residual (co)variance components1 of calving ease (CE), 
birth weight (BWT), and 205-d weight (205-d WT) for the American Simmental data using 
different sire models. 

Model Effect Trait 
CE2 

BWT 205-d WT L-CE2 L-CE3 T-CE2 T-CE3 
Univariate         
 Sire CE 0.011 0.020 0.068 0.060   
 Residual CE 0.210 0.395 1.000 0.856   
Bivariate         
 

Sire 
CE 0.020 0.395 0.067 0.056   

 BWT 0.107 0.943 0.293 0.238 3.147  
         
 

Residual 
CE 0.210 0.020 1.000 0.852   

 BWT 0.631 0.139 1.820 1.694 15.09  
Multivariate         

 

Sire 

CE 0.008 0.018 0.061 0.052   
 BWT 0.105 0.135 0.281 0.227 3.346  
 205-d WT 0.078 0.071 0.173 0.116 11.11 89.07 
         

 

Residual 

CE 0.210 0.395 1.000 0.851   
 BWT 0.631 0.943 1.816 1.688 15.11  
 205-d WT 0.423 0.429 1.305 0.967 25.58 638.6 

1variances (bold faced) and covariances (below diagonal of the effect block). 
2L-CE2 = calving ease is fitted as a linear binary trait; L-CE3 = calving ease is fitted as a linear trait with 3 
categories; T-CE2 = calving ease is fitted as a threshold binary trait; and T-CE3 = calving ease is fitted as 
a threshold trait with 3 categories. 
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Table ‎5.4: Posterior means for direct genetic and residual (co)variance components1 of calving 
ease (CE), birth weight (BWT), and 205-d weight (205-d WT) for the American Simmental data 
using different animal models. 

Model Effect Trait 
CE2 

BWT 205-d WT L-CE2 L-CE3 T-CE2 T-CE3 
Univariate         
 Direct CE 0.046 0.105 0.491 0.301   
 Residual CE 0.175 0.318 1.000 0.632   
Bivariate         
 

Direct 
CE 0.047 0.104 0.521 0.306   

 BWT 0.372 0.516 1.210 0.882 10.39  
         
 

Residual 
CE 0.175 0.319 1.000 0.625   

 BWT 0.372 0.580 1.292 1.066 7.970  
Multivariate         

 

Direct 
CE 0.045 0.100 0.500 0.298   

 BWT 0.373 0.516 1.217 0.892 10.65  
 205-d WT 0.260 0.436 0.754 0.582 30.15 291.3 
         

 

Residual 
CE 0.176 0.321 1.000 0.630   

 BWT 0.370 0.578 1.269 1.053 7.842  
 205-d WT 0.660 0.816 2.232 1.512 5.427 437.1 

1variances (bold faced) and covariances (below diagonal of the effect block). 
2L-CE2 = calving ease is fitted as a linear binary trait; L-CE3 = calving ease is fitted as a linear trait with 
3 categories; T-CE2 = calving ease is fitted as a threshold binary trait; and T-CE3 = calving ease is fitted 
as a threshold trait with 3 categories. 

 

Comparison of models was done using Pearson’s correlation (r) and Spearman rank 

Correlation (R) between observed and estimated calving ease EPD is presented in Table 5.5. The 

correlations presented in Table 5.5 were the averages of correlations obtained from 5 replicates 

of complementary subset pairs. 

The acronyms for models used in the results were previously described in Table  5.1. 

Here, traits were ordered so that calving ease was first followed by BWT and 205-d WT, 

respectively. Models were defined as follows:  
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L  = the trait was fitted as a linear trait, T = the trait was fitted as a threshold trait, CE2 = calving 

ease is measured as 2 categories, and CE3 = calving ease is measured as 3 categories. Therefore, 

the univariate models (only CE) fitted under either animal model or sire model were L-CE2, L-

CE3, T-CE2, and T-CE3. The bivariate models (CE and BWT) fitted under either animal model or 

sire model were LL-CE2, LL-CE3, TL-CE2, and TL-CE3. The multivariate models (CE, BWT, 

and 205-d WT) fitted under either animal model or sire model were LLL-CE2, LLL-CE3, TLL-

CE2, and TLL-CE3. 

Comparison of “threshold vs. linear” with a sire model:  

Regardless of the number of calving ease categories, the average correlation (R and r) 

obtained from the univariate threshold models were higher than their counterparts from the linear 

models. The superiority of the threshold models was consistent across sires groups, except for 

sires with large number of progeny (sires >100 progeny). In those instances, there were smaller 

differences between the two methodologies. The superiority of the threshold model was more 

pronounced in the low accuracy sires (<50 records). This was in agreement with reports of 

Clutter et al. (1989) who speculated that sires with limited number of records might be ranked 

differently when the threshold model is used instead of the linear model. The largest differences 

in average rank correlations were between the L-CE2 and T-CE2 (0.42 vs. 0.45), respectively, 

which represented 7.14% increase in the average rank correlation. These results were consistent 

with those reported by Varona et al. (1999b) who showed that the threshold model outperformed 

the linear. Further, Gevrekci et al. (2011) evaluated dystocia in Holsteins under different models. 

They compared threshold sire (TS), threshold sire-maternal grandsire (TS-MGS), and linear sire-

maternal grandsire (L) models. Authors concluded that the threshold model was superior to the 

linear model for the genetic evaluation of dystocia. Nonetheless, these findings were in contrast 
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with those by Ramirez-Valverde et al. (2001) who reported an increase of 7.14% in favor of the 

linear model for the average correlation of sires with <50 progeny (low accuracy sires). Results 

of the current study revealed that, within the same model, when the number of calving ease 

categories increased (from 2 to be 3), both R and r  for sires with >100 progeny were notably 

increased. The rank correlations of the linear and the threshold models were increased by 6.45 

and 4.76%, respectively; however, other sire groups did not show any change.  

In all bivariate sire models, incorporating birth weight substantially increased the 

predictive ability of the model (Table 5.5).  Furthermore, the threshold models (TL-CE2 and TL-

CE3) showed the highest improvement in the model predictive ability increasing the rank of sires 

by 77 and 68%, respectively. The bivariate threshold models (TL-CE2 and TL-CE3) showed 

considerable increase in model predictive ability compared to the linear models. The average R 

and r  of the TL-CE2 were 41% (0.79 vs. 0.56) and 40% (0.84 vs. 0.60), respectively, higher than 

that of the LL-CE2. For high accuracy sires (sire > 100 progeny), all models performed the same 

with the exception of LL-CE2 which had average R and r  that were 14.3 and 13.3%, 

respectively, lower than the average of other bivariate models. This illustrates the inadequacy of 

the linear model when calving ease is fitted as a binary trait even with birth weight included in 

the analysis of calving ease as a second trait. When the number of calving ease categories was 

increased, the linear-linear model has the highest improvement in predictive ability (R and r  

were increased by 14.3 and 13.3%, respectively). This improvement is a result of the calving 

ease distribution moving toward normality. These results agreed with those obtained by 

Ramirez-Valverde et al. (2001) who found that including birth weight in the analysis of calving 

difficulty greatly improved the model predictive ability, especially for low accuracy sires (sires < 

50). Nonetheless, they did not report differences in the model predictive ability between the 
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threshold-linear and the linear-linear sire-maternal grandsire models. Several studies using field 

data reported similar results relative to the superiority of the threshold-linear over the linear-

linear model (Casellas et al., 2007; Negussie et al., 2008; Vostrý et al., 2014). 

Even though the predictive ability of all models was improved when another continuous 

trait (205-d WT) was added to the model, the linear models for calving ease exhibited the most 

significant increase (bivariate linear vs. multivariate linear). The average R and r  of the LL-CE2 

were increased by 46.4 and 45%, respectively, when 205-d WT was included in the model (LLL-

CE2) in addition to BWT. The TLL-CE2 maintained the superiority over other models; however, 

the difference with the LLL-CE2 was the smallest and they performed similarly with respect to 

the high accuracy sires (sires > 100). Under the sire model, the inclusion of two continuous traits 

in the genetic evaluation of categorical traits overcame the inadequacy of the linear 

methodologies for the analysis of such traits. However, since the data used in the present study 

was a balanced data, an analysis using unbalanced data could give larger differences between the 

multivariate threshold-linear model and the multivariate linear-linear model as suggested by 

Meijering and Gianola (1985) who found that the threshold model is more efficient than the 

linear when unbalanced data is used. To our knowledge, the comparison of the threshold and 

linear models that include the analysis of one categorical trait with two Gaussian traits in a 

multivariate setting has not been reported in the literature. 

Comparison of “threshold vs. linear” with an animal model:  

Results from the univariate animal models (Table 5.5) were very consistent with the 

hypotheses of: 1) the threshold model superiority in the analysis of categorical traits 2) The 

higher the number of categories, regardless of the trait linearity, the better the model predictive 

ability. The average rank correlation from the T-CE2 was 2.17% higher than the L-CE2.
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Table ‎5.5: Comparison of models “Threshold vs. linear” and “Animal vs. sire”  using Pearson’s correlation (r) and Spearman rank 
Correlation (R) between predicted calving ease EPD obtained from two complementary data sets of American Simmental cattle 
 Model1 

  Sire  Animal  
 L-CE2 L-CE3 T-CE2 T-CE3  L-CE2 L-CE3 T-CE2 T-CE3  
 R r R r R r R r  R r R r R r R r  

Univariate2                    
All sires  0.42 0.48 0.42 0.48 0.45 0.52 0.44 0.50  0.46 0.51 0.47 0.52 0.47 0.52 0.48 0.54  

Sires ≤ 50  0.42 0.47 0.42 0.47 0.45 0.51 0.44 0.49  0.45 0.49 0.47 0.51 0.46 0.51 0.48 0.53  
50 < Sires ≤ 100  0.49 0.55 0.51 0.57 0.50 0.58 0.50 0.58  0.58 0.60 0.62 0.64 0.59 0.61 0.62 0.64  

Sires > 100  0.62 0.67 0.66 0.69 0.63 0.69 0.66 0.70  0.72 0.72 0.75 0.75 0.73 0.73 0.76 0.75  
Bivariate3                    

All sires  0.56 0.60 0.72 0.76 0.79 0.84 0.74 0.78  0.68 0.72 0.66 0.71 0.67 0.72 0.66 0.71  
Sires ≤ 50  0.57 0.60 0.72 0.76 0.80 0.84 0.74 0.78  0.68 0.72 0.66 0.70 0.67 0.72 0.66 0.71  

50 < Sires ≤ 100  0.58 0.62 0.70 0.74 0.78 0.81 0.72 0.76  0.69 0.72 0.70 0.73 0.68 0.72 0.69 0.73  
Sires > 100  0.70 0.72 0.80 0.80 0.81 0.84 0.80 0.81  0.78 0.79 0.79 0.80 0.77 0.78 0.78 0.79  

Multivariate4                    
All sires  0.82 0.87 0.74 0.79 0.83 0.88 0.77 0.82  0.75 0.79 0.72 0.76 0.74 0.78 0.72 0.77  

Sires ≤ 50  0.82 0.87 0.74 0.79 0.83 0.88 0.77 0.82  0.75 0.79 0.72 0.76 0.74 0.78 0.72 0.76  
50 < Sires ≤ 100  0.84 0.86 0.74 0.77 0.85 0.86 0.77 0.80  0.77 0.78 0.75 0.77 0.76 0.77 0.75 0.77  

Sires > 100  0.86 0.87 0.81 0.82 0.86 0.87 0.83 0.84  0.83 0.83 0.82 0.82 0.82 0.82 0.82 0.82  
1L = calving ease fitted as a linear trait; T = calving ease fitted as a threshold trait; CE2 = calving ease fitted as a binary trait; CE3 = calving ease 
fitted as a polychotomous trait (3 categories). 
2Univariate = model included calving ease only 
3Bivariate = model included calving ease and birth weight 
4Multivariate = model included calving ease, birth weight, and 205-d weight. 
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Furthermore, the average rank correlation from the T-CE3 was 2.12% higher than the L-CE3. 

However, correlations estimated from all univariate animal models were relatively low, except 

for sires with progeny > 100 which showed the highest correlations with small differences 

between the different models. The current results were consistent with those reported in the 

literature (Varona et al., 1999b; Ramirez-Valverde et al., 2001; Casellas et al., 2007; Gevrekci et 

al., 2011). 

As anticipated, the inclusion of birth weight “Gaussian trait” in the genetic evaluation of 

calving ease as a “categorical trait” improved the predictive ability of all models independent of 

CE linearity (threshold or linear). The linear models, especially the LL-CE2, had a considerable 

gain in their predictive ability when birth weight was included. The average rank correlations of 

LL-CE2, LL-CE3, TL-CE2, and TL-CE3 were increased by 47.82, 40.42, 42.55, and 37.50%, 

respectively. Generally, all bivariate animal models showed similar performance with a slight 

advantage of the linear models. Ramirez-Valverde et al. (2001), in their study of Gelbvieh cattle, 

reported similar findings. They found that the threshold-linear animal model did not outperform 

the linear-linear animal model. Conversely, Varona et al. (1999b), Casellas et al. (2007), and 

Negussie et al. (2008) reported that the threshold-linear model outperformed the linear-linear 

model based on their assessment parameters which were: MSE (Varona et al., 1999b) and 

correlation between EBV (Casellas et al., 2007; Negussie et al., 2008). 

In multivariate animal models, in terms of the improved predictive ability compared to 

the bivariate models, results were similar to those obtained from the sire model. The increase in 

average rank correlations of LLL-CE2, LLL-CE3, TLL-CE2, and TLL-CE3 were 10.3, 9.1, 10.4, 

and 9.1%, respectively, over the bivariate analysis. Further, all multivariate models “threshold-

linear vs. linear-linear” produced similar correlations. Here, the added information, when two 
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continuous traits were incorporated in the genetic evaluation of the threshold trait, compensated 

for the deficiency of the linear approach.  

Generally, the comparison of predictive ability of threshold versus Linear, and animal 

versus sire models using Pearson’s correlation (r) and Spearman rank Correlation (R) between 

predicted calving ease EPD indicated that: 1) There was superiority of the univariate threshold 

model “animal or sire” over the univariate linear model, 2) The inclusion of linear trait(s) 

improved the prediction of categorical traits, 3) Analysis of categorical trait data with two 

continuous traits resulted in small differences between the threshold and linear models, 4) The 

higher the number of categories the better the linear model prediction; in contrast, the threshold-

linear models had better predictive ability when calving ease was fitted as a binary outcome, 5) 

Differences between the threshold and linear models were more pronounced in low accuracy 

(progeny < 50) sires and were the least in high accuracy (progeny > 100) sires, 6) The predictive 

ability of all univariate animal models was higher than that of the univariate sire models; 

however, in the more complex models (bivariate and multivariate), the predictive ability of the 

sire models was greatest, 7) The highest predictive ability among all models was obtained from 

the threshold-linear models with CE fitted as a binary trait. In conclusion, we accept the 

hypothesis that the threshold model is more suitable than the linear model for the analysis of 

categorical traits.    

5.4. Summary 

The categorical nature of calving ease phenotypes poses the question of how suitable the 

linear methods are to be implemented in the analysis of such traits. Researchers have 

investigated the advantages of the threshold model over the linear model. Obtained results varied 

between supporting and opposing the superiority of the threshold model in the analysis of 
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categorical traits. Therefore, our second objective was to compare the threshold model to the 

linear model applied to heifer calving ease field data from the American Simmental Association. 

We examined the threshold model suitability for the analysis of categorical traits as opposed to 

linear methods for calving ease. Furthermore, we addressed not only the linearity of the trait, but 

also the number of the trait categories, model complexity (i.e., the number of fitted traits) and 

extended the comparison to include evaluation of the animal model versus the sire model. Only 

the direct genetic effects were fitted in all models. Using a balanced data with herd size ≥ 50 

animals, the efficiency of models was determined by the predictive ability of the model using the 

cross validation “data splitting” technique. The predictive ability of models was estimated using 

the correlations (Pearson’s and Spearman’s) between predicted calving ease EPD obtained from 

two complementary data sets.   

The comparison of models predictive ability using Pearson’s correlation (r) and 

Spearman rank Correlation (R) between predicted calving ease EPD revealed that: 1) The 

univariate threshold model, either animal or sire, was superior to the univariate linear model, 2) 

The inclusion of linear trait(s) has improved the prediction of categorical traits (CE), 3) Analysis 

of categorical traits with two additional continuous traits results in small differences between the 

threshold and linear models, 4) The higher the number of categories the better the linear model 

prediction, 5) Differences between the threshold and linear models were more pronounced in low 

accuracy (progeny < 50) sires and were the least in high accuracy (progeny > 100) sires, 6) The 

predictive ability of all univariate animal models was higher than that of the univariate sire 

models; however, in the more complex models (bivariate and multivariate) the predictive ability 

of the sire models was the highest,7) The highest predictive ability among all compared models 

was obtained from the threshold-linear sire model with calving ease fitted as a binary outcome. 
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In conclusion, we accept the hypothesis that the threshold model is more suitable than the linear 

model for the analysis of ordered categorical traits.     
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CHAPTER VI. 

 

6. CONCLUSIONS 

 
 
 

Results from simulated data using single trait selection for low birth weight versus high 

calving ease revealed that the rate of genetic change in calving ease (% unassisted calving/yr) 

from the high calving ease selection scenario was higher (P < 0.001) than that from the low birth 

weight scenario. Both selection scenarios reduced growth rate. The decrease in growth rate 

genetic trend, from the single trait selection, was expected, since postnatal growth traits were not 

included in the selection. However, genetic trends of growth traits obtained from the high calving 

ease selection scenario were higher (P < 0.001) than those when selection occurred for low birth. 

Selection for high calving ease increased (P < 0.001) the annual genetic change for calving ease, 

weaning weight, and yearling weight over selection for low birth weight by 0.37%, 1.65 kg, and 

1.77 kg, respectively. Therefore, selection for high calving ease produced animals with better 

calving ease EPD and higher growth rates at later ages. In conclusion, we accept the hypothesis 

that direct selection for high calving ease, as opposed to selection for low birth weight, produces 

cattle with higher calving ease and growth rates. 

In the simulation study, both the threshold and linear approaches to evaluating calving ease 

showed similar predictive ability. In this case, these results were likely due to the highly 

balanced data used in current simulation study and might not reflect typical calving ease field 

data where observations are likely skewed with high incidences of calving ease, different 

incidences across levels of fixed effects, and potentially small numbers of records per sire. This 

was evident when Simmental field data was used to compare models.  
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 Results from the American Simmental beef cattle field data showed that the estimated direct 

heritabilities for calving ease (on the underlying scale), birth weight, 205-d weight, 160-d 

postweaning gain, and 365-d weight were within the literature estimates of the Simmental beef 

cattle. Maternal heritability estimates for calving ease, birth weight, and 205-d weight were also 

in agreement with the Simmental estimates reported in the literature. The highest genetic 

correlations amongst studied traits were between the 365-d weight and its component traits (i.e., 

205-d weight and 160-d gain). The high negative genetic correlation between calving ease and 

birth weight (-0.67) and the high heritability of birth weight (0.52) justify the importance of 

incorporating birth weight in the genetic evaluation of calving ease, especially given relatively 

high reporting rates in most seedstock herds. The moderate positive genetic correlations between 

birth weight and subsequent growth traits exposed the genetic antagonistic relationship between 

calving ease and postnatal growth traits when selection for birth weight is applied. 

Results obtained from the Simmental field data showed that all selection scenarios 

compared to the control scenario, reduced growth rate and increased the ease of calving, which 

suggested that, in the first generations of Simmental breed, selection for heavier animals was 

practiced. However, since 1999, a noticeable improvement in calving ease was evident in the 

breed. Generally, the calving ease-based selection scenarios (HCE, API, and API1) had the 

highest net profit and showed higher genetic trends for calving ease and growth-related traits 

compared to the birth weight-based selection scenarios (LBWT, DSI, and API2). The calving 

ease-based selection scenarios (HCE, API, and API1) shifted the intercept of the net profit of the 

control scenario by 13, 11.6, and 11.1 $, respectively; whereas, the birth weight-based selection 

scenarios (LBWT, DSI, and API2) showed lower intercepts of 8.2, 7.3, and 8.8 $, respectively. 

The single trait selection scenario (HCE) substantially improved calving ease over LBWT and 
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resulted in shifting the intercept of the net profit by 58% in the favorable direction. The DSI 

selection scenario showed the least genetic improvement in calving ease and the least net profit. 

Therefore, we accept the hypothesis that direct selection for high calving ease, as opposed to 

selection for low birth weight, produces cattle with higher calving ease and growth rates. 

The comparison of threshold and linear models, and comparisons of animal versus sire 

models using Pearson’s and Spearman’s correlations between predicted calving ease EPD 

revealed that the univariate threshold model was superior to the univariate linear model, no 

matter whether the animal or sire relationships were used. The inclusion of linear trait(s) 

improved the prediction of categorical traits (e.g. BW with CE). Furthermore, the analysis of 

categorical traits with two continuous traits resulted in small differences between the threshold 

and linear models. The higher the number of categories the better the linear model prediction; in 

contrast, the threshold-linear models showed better prediction ability when calving ease was 

fitted as a binary outcome. Differences between the threshold and linear models were more 

pronounced in low accuracy sires and were the least in high accuracy sires. The predictive ability 

of all univariate animal models was higher than that of the univariate sire models; however, in 

the more complex models (bivariate and multivariate) the predictive ability of the sire models 

was the highest. The highest predictive ability among all compared models was in the threshold-

linear sire model with calving ease as a binary outcome. In conclusion, we accept the hypothesis 

that the threshold model is more suitable than the linear model for the analysis of ordered 

categorical traits. 
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APPENDIXES 

 

 

 

 

 

APPENDIX A: THE THRGIBBS1F90 PARAMETER FILE USED TO ESTIMATE E PD 

FOR CALVING EASE AND GROWTH-RELATED TRAITS OF FIRST-CALF HEIFER 

POPULATION OF THE AMERICAN SIMMENTAL BEEF CATTLE UNDER THE 

MULTIVARIATE MATERNAL ANIMAL MODEL 
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DATAFILE 
 allanimdata 
NUMBER_OF_TRAITS 
           4 
NUMBER_OF_EFFECTS 
           6 
OBSERVATION(S) 
    3 4 5 6 
WEIGHT(S) 
 
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS 
TYPE_OF_EFFECT[EFFECT NESTED] 
  7 7 0 0     2 cross 
  0 0 8 0     15833 cross 
  0 0 0 9     7040 cross 
  1 1 1 1     465710 cross 
  2 2 2 0     465710 cross 
  10 10 10 10     29393 cross 
RANDOM_RESIDUAL VALUES 
  1 1.26 0.81 1.49 
  1.26 7.463 14.91 6.99 
  0.81 14.91 408.35 -12.92 
  1.49 6.99 -12.92 454.4 
 RANDOM_GROUP 
     4   5 
 RANDOM_TYPE 
 add_animal 
 FILE 
pedanimVC1 
(CO)VARIANCES 
  0.396 1.53 3.46 1.12 -0.03 0 0 0 
  1.53 13.212 37.52 19.96 0 -0.486 0 0 
  3.46 37.52 295.92 130.12 0 0 -7.32 0 
  1.12 19.96 130.12 220 0 0 0 0 
  -0.03 0 0 0 0.2588 0 0 0 
  0 -0.486 0 0 0 1.211 0 0 
  0 0 -7.32 0 0 0 58.74 0 
  0 0 0 0 0 0 0 0 
 RANDOM_GROUP 
     6 
 RANDOM_TYPE 
 diagonal 
 FILE 
 
(CO)VARIANCES 
  0.09 0 0 0 
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  0 3.406 0 0 
  0 0 310.1 0 
  0 0 0 521.5 
OPTION cat 3 0 0 0 
OPTION fixed_var mean 
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APPENDIX B: R CODE USED TO CREATE THE SIMULATED DATA FOR HIG H 

CALVING EASE SELECTION SCENARIO 
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#R code based on Dr. Larry Schaeffer’s R code for multiple trait models 
#Creating a simulated data (Selection for high calving ease) 
## Traits were: Calving eas (CE), birth weight (BW), weaning weight (WW), and postweaning 
gain (PWG) 
# First creating the base population and its F1 progeny (No selection) 
 
library(MASS) 
 
set.seed(1234) 
# Herd effects (120 herds) on CE, BWT, WWT, and PWG 
herdCE=(rnorm(120,0))*0.05 
set.seed(1234) 
herdBW=(rnorm(120,0)) 
set.seed(1234) 
herdWW=(rnorm(120,0))*2 
set.seed(1234) 
herdPWG=(rnorm(120,0))*0.1 
herd=matrix(data=c(herdCE,herdBW,herdWW,herdPWG),byrow=TRUE,nrow=4) 
# sex effects (120 herds) on CE, BWT, WWT, and PWG 
sex=matrix(data=c(0.108,-0.108,2,-1,10,-7,0.060,-0.040),byrow=TRUE,nrow=4) 
# Residual matrix 
R=matrix(data=c(1,1.13,0.46,0.48,1.13,20.5,30.37,8.78,0.46,30.37,534,29.87,0.48,8.78,29.87,26
1),byrow=TRUE,nrow=4)  
# G matrix  
G=matrix(data=c(0.24,1.11,1.6,1.51,1.11,9.67,23.11,14.65,1.6,23.11,221,103,1.51,14.65,103,217
),byrow=TRUE,nrow=4) 
# Traits averages 
mu=c(1.73,39,250,980) 
## ID for F1 animals with record (n=36000) 
anwr=c(37201:73200) 
#ID for all animals (founders (36000 dams, 1200 sires) and their F1 progeny (36000)) 
aid = c(1:73200) 
##ctreating fields in the data file for sire (30 progeny each), dams (1 progeny each), herds (size 
of 300 each), sex (60% females and 40% males) 
sid = c(numeric(37200),rep(1:1200, by=1, each=30)) 
did <- c(numeric(37200),1201:37200) 
bi=c(rep(1,37200),rep(0.5,36000)) 
set.seed(1234) 
iherd=c(sample(rep(1:120, by=1, each=300),36000,replace=F)) 
set.seed(1234) 
isex=(rbinom(36000, 1, 0.6))+1 
 
# heritability of traits 
gd=diag(G) 
rd=diag(R) 
h2=gd/(gd+rd) 
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h2 
 
# correlations among traits 
# Function to calculate correlations from a covariance matrix 
CORMAT=function(Q) { 
  D = diag(Q) 
  D = sqrt(D) 
  B = diag(1/D) 
  HC = B %*% Q %*% B 
  HC } 
CORMAT(R) 
CORMAT(G) 
# Get cholesky decompositions of G and R 
LG = t(chol(G)) 
LR = t(chol(R)) 
 
nam=73200 
# Simulate true breeding values for all animals (founders and their F1 progeny) 
#  J MATRIX FUNCTION 
jd = function(n,m){ 
  matrix(c(1),nrow=n,ncol=m)} 
 
tbv = jd(nam,4)*0 
for(i in 1:nam){ 
  x = LG %*% (sqrt(bi[i])*rnorm(4,0,1)) 
  if(sid[i]>0){ 
    ks=sid[i] 
    kd=did[i] 
    x = x + 0.5*(tbv[ks, ]+tbv[kd, ])  } 
  tbv[i, ] = x  } 
nrec=36000 
# Make an observation for all traits for animals (only F1 progeny) 
## observations were acreated by combining (trait average, herd effect, sex effect, TBV, 
residual) 
obs = jd(nrec,4)*0 
for(k in 1:nrec){ 
  kanm=anwr[k] 
  kherd=iherd[k] 
  ksex=isex[k] 
   
  obs[k, ]=mu + herd[ ,kherd] + sex[ ,ksex] + tbv[kanm, ] 
  res = LR %*% rnorm(4,0,1) 
  obs[k, ]=obs[k, ] + res 
} 
## scale CE and create the observed categories 
obs[ ,1] = scale(obs[ ,1], center = TRUE, scale = FALSE) 
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obs[ ,1] = cut(obs[ ,1], c(-Inf, 0, 1, 1.4, Inf), labels = FALSE, ordered = TRUE) 
#(1=50%, 2=34.13%, 3=7.79%, 4=8.08%) 
## rounding observations 
#obs[ ,1] = round(obs[ ,1], digits=5) 
obs[ ,2] = round(obs[ ,2], digits=2) 
obs[ ,3] = round(obs[ ,3], digits=2) 
obs[ ,4] = round(obs[ ,4]) 
################################################################## 
################################################################### 
ped <- data.frame (id = aid, sire = sid, dam = did) 
attach(ped) 
########## 
# creating data file for animals with records(F1) 
dataped <- ped[ped$id>37200,] 
animtbv <- tbv[37201:73200, ] 
simulateddata <- data.frame (id = dataped$id, sire = dataped$sire, dam = dataped$dam, sex = 
isex, herd = iherd, CE = obs[ ,1], BW = obs[ ,2], ww = obs[ ,3], pwg = obs[ ,4],CEtbv = 
animtbv[ ,1], BWtbv = animtbv[ ,2], wwtbv = animtbv[ ,3], pwgtbv = animtbv[ ,4]) 
attach(simulateddata) 
 
BWave=mean(BW) 
BWave 
BWsd=sd(BW) 
BWsd 
BWave-(3*BWsd) 
BWave+(3*BWsd) 
## using only BW observations that fall within 3 standard deviations 
simudata <- subset(simulateddata, BW > (BWave-(3*BWsd))) 
simulateddata <- subset(simudata, BW < (BWave+(3*BWsd))) 
summary(BW) 
animlist = c(simulateddata[ ,1],simulateddata[ ,2], simulateddata[ ,3]) 
detach(simulateddata) 
uniqueanimlist = c(sort(unique(animlist))) 
pedigree=ped[uniqueanimlist,] 
attach(pedigree) 
length(pedigree[,1]) 
length(uniqueanimlist) 
########################################## 
# creating data file for all animals "including founders which will have TBV, but missing 
observations" 
#Header:  id sire dam sex herd CE BW ww pwg CEtbv BWtbv wwtbv pwgtbv 
sexofparents = c(rep(1,1200),rep(2,36000)) 
herdofparents = c(rep(NA,1200),iherd) 
allsimdata <- data.frame (id = ped$id, sire = ped$sire, dam = ped$dam, sex = 
c(sexofparents,isex), herd = c(herdofparents,iherd), CE = c(rep(NA,37200),obs[ ,1]), BW = 
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c(rep(NA,37200),obs[ ,2]), ww = c(rep(NA,37200),obs[ ,3]), pwg = c(rep(NA,37200),obs[ ,4]), 
CEtbv = tbv[ ,1], BWtbv = tbv[ ,2], wwtbv = tbv[ ,3], pwgtbv = tbv[ ,4]) 
basepopdata <- allsimdata[allsimdata[ ,1] %in% pedigree[ ,1],  ] 
attach(basepopdata) 
 
##############################################################################
############################################################################## 
############################################################################## 
###SELECTION FOR CALVING EASE 
############################################################################## 
#   1   2   3   4   5    6  7  8  9   10    11     12     13 
#  id sire dam sex herd CE BW ww pwg CEtbv BWtbv wwtbv pwgtbv 
############################################################# 
## creating F2 
############################################################# 
## redefine the total number of all animals and number of base population in previous simulation 
############################## 
#total number of all animals 
nam = 73200 
#number of sires and dams(founders) (1200+36000) in base population 
nbase = 37200 
############################## 
## selecting top 5% sirs and 80% dams (TBV for CE is the selection criteria) 
## selection of sires 
## average CE TBV for sires and dams 
averages=by( basepopdata$CEtbv, basepopdata$sex, mean) 
ave1males=averages[1] 
ave1females=averages[2] 
##  standard deviation of CE TBV for sires and dams 
SDs=by( basepopdata$CEtbv, basepopdata$sex, sd) 
sd1males=SDs[1] 
sd1females=SDs[2] 
## selecting top 5% of sires 
males <- subset(basepopdata, sex == 1) 
kull2males= (males[ ,10]>(ave1males-(1.65*sd1males))) 
males[kull2males,11]=0 
selectedmales <- subset(males, males[ ,11] != 0) 
summary(selectedmales[ ,7], na.rm=TRUE) 
nrow(males) 
nrow(selectedmales) 
nrow(selectedmales)/nrow(males) 
 
######################### 
## selection of dams 
females <- subset(basepopdata, sex == 2) 
kull2females= (females[ ,10]>(ave1females+(0.85*sd1females))) 
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females[kull2females,11]=0 
# all selected females (females with progeny (base pop.) and 2 years (F1)females without 
progeny) 
selectedallfemales <- subset(females, females[ ,11] != 0) 
summary(selectedallfemales[ ,7], na.rm=TRUE) 
nrow(females) 
nrow(selectedallfemales) 
nrow(selectedallfemales)/nrow(females) 
## only 2 years old females 
selectedfemales <- subset(selectedallfemales, selectedallfemales[ ,1] > nbase) 
nrow(selectedfemales) 
nrow(selectedfemales)/nrow(females) 
damlistf2 = c(selectedallfemales[ ,1]) 
######################### 
####  783 selected males and 46130 selected females 
n_sel_males = nrow(selectedmales) 
n_sel_females = nrow(selectedallfemales) 
n_progeny = n_sel_females 
# number of females per sire = 58.9 
n_females_per_sire = n_sel_females/n_sel_males 
n_females_per_sire 
# because number of dams per sire is 58.9, then sires will have different numbers of progeny 
(some will have 58 and others will have 59 progeny) 
rounded_n_females_per_sire = round(n_females_per_sire) 
rounded_n_females_per_sire 
 
if(rounded_n_females_per_sire < n_females_per_sire) { 
      n1records_per_sire = (rounded_n_females_per_sire) 
      n2records_per_sire = (n1records_per_sire)+1 
    } else { 
      n1records_per_sire = (rounded_n_females_per_sire)-1 
      n2records_per_sire = (rounded_n_females_per_sire) 
    } 
 
#number of sires with 58 progeny (67 out of 783) 
nsires_with_n1records = (n_sel_males)-((n_sel_females)-(n_sel_males*n1records_per_sire)) 
#number of sires with 59 progeny (716 out of 783) 
nsires_with_n2records = (n_sel_males)-(nsires_with_n1records) 
##pulling out the first 67 sires of sire list(783) 
own_record_sires_with_n1records = selectedmales[1:nsires_with_n1records, ] 
## replicate each sire 58 times 
selectedmales1=own_record_sires_with_n1records[rep(seq_len(nrow(own_record_sires_with_n
1records)), each=n1records_per_sire),] 
##pulling out the remained 716 sires of sire list(783) 
own_record_sires_with_n2records = selectedmales[((nsires_with_n1records)+1):n_sel_males, ] 
## replicate each sire 59 times 
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selectedmales2=own_record_sires_with_n2records[rep(seq_len(nrow(own_record_sires_with_n
2records)), each=n2records_per_sire),] 
## Create random list os sires with length of 46130 which is number of selected dams 
allselectedmales=rbind(selectedmales1,selectedmales2) 
randomlymatedsires=allselectedmales[sample(nrow(allselectedmales)),] 
sirelistf2 = randomlymatedsires[ ,1] 
 
#################### 
selectedparents=rbind(selectedmales, selectedallfemales) 
sortedselectedparents <- selectedparents[order(selectedparents[ ,1]),] 
 # pulling out selected parents and their pedigree 
animlist = c(selectedparents[ ,1],selectedparents[ ,2], selectedparents[ ,3]) 
uniqueanimlist = c(sort(unique(animlist))) 
uniqueanimlist = uniqueanimlist[-1] 
subdata <- basepopdata[basepopdata[ ,1] %in% uniqueanimlist,  ] 
subdata <- data.matrix(subdata) 
 
length(subdata[,1]) 
length(uniqueanimlist) 
## creating F2 pedigree which include(selected parents and their pedigree+ new F2 ID with their 
selected parents) 
pedf2 = rbind(subdata[ 
,1:3],cbind(c((nam+1):(nam+n_progeny)),sirelistf2[1:n_progeny],damlistf2[1:n_progeny])) 
################## 
## calculating averages of traits of selected parents to create F2 observations 
CEave=mean(selectedparents[ ,6], na.rm=TRUE) 
CEave 
BWave=mean(selectedparents[ ,7], na.rm=TRUE) 
BWave 
WWave=mean(selectedparents[ ,8], na.rm=TRUE) 
WWave 
PWGave=mean(selectedparents[ ,9], na.rm=TRUE) 
PWGave 
############## 
## For F2 progeny, repeating the same code used to ctreate F1. 
 
library(MASS) 
 
set.seed(1234) 
herdCE=(rnorm(120,0))*0.05 
set.seed(1234) 
herdBW=(rnorm(120,0)) 
set.seed(1234) 
herdWW=(rnorm(120,0))*2 
set.seed(1234) 
herdPWG=(rnorm(120,0))*0.1 
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herd=matrix(data=c(herdCE,herdBW,herdWW,herdPWG),byrow=TRUE,nrow=4) 
sex=matrix(data=c(0.108,-0.108,2,-1,10,-7,0.060,-0.040),byrow=TRUE,nrow=4) 
# Residual matrix 
R=matrix(data=c(1,1.13,0.46,0.48,1.13,20.5,30.37,8.78,0.46,30.37,534,29.87,0.48,8.78,29.87,26
1),byrow=TRUE,nrow=4)  
# G matrix  
G=matrix(data=c(0.24,1.11,1.6,1.51,1.11,9.67,23.11,14.65,1.6,23.11,221,103,1.51,14.65,103,217
),byrow=TRUE,nrow=4) 
 
####averages:  
mu=c(CEave,BWave,WWave,PWGave) 
anwr=c((nam+1):(nam+n_progeny)) 
aid = c(pedf2[ ,1]) 
sid = c(pedf2[ ,2]) 
did <- c(pedf2[ ,3]) 
 
#number of herds 
length(unique(selectedallfemales[ ,5])) 
iherd=c(selectedallfemales[ ,5]) 
set.seed(123) 
isex=(rbinom(n_progeny, 1, 0.6))+1 
 
# heritability of traits 
gd=diag(G) 
rd=diag(R) 
h2=gd/(gd+rd) 
h2 
 
# correlations among traits 
# Function to calculate correlations from a covariance matrix 
CORMAT=function(Q) { 
  D = diag(Q) 
  D = sqrt(D) 
  B = diag(1/D) 
  HC = B %*% Q %*% B 
  HC } 
CORMAT(R) 
CORMAT(G) 
# Get cholesky decompositions of G and R 
LG = t(chol(G)) 
LR = t(chol(R)) 
 
# Simulate true breeding values for all animals 
#  J MATRIX FUNCTION 
jd = function(n,m){ 
  matrix(c(1),nrow=n,ncol=m)} 
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nam1=n_progeny 
mendelian = jd(nam1,4)*0 
for(i in 1:nam1){ 
  mendelian[i, ] = LG %*% (rnorm(4,0,1)) 
} 
damtbv= selectedallfemales[ ,10:13] 
siretbv= randomlymatedsires[ ,10:13] 
parentsaveragetbv=0.5*(damtbv + siretbv) 
tbv=mendelian+parentsaveragetbv 
 
nrec=n_progeny 
# Make an observation for all traits for all animals 
obser = jd(nrec,4)*0 
for(k in 1:nrec){ 
  kherd=iherd[k] 
  ksex=isex[k] 
   
  obser[k, ]=mu + herd[ ,kherd] + sex[ ,ksex]  
  res = LR %*% rnorm(4,0,1) 
  obser[k, ]=obser[k, ] + res 
} 
obs = obser + tbv 
obs[ ,1] = scale(obs[ ,1], center = TRUE, scale = FALSE) 
obs[ ,1] = cut(obs[ ,1], c(-Inf, 0, 1, 1.4, Inf), labels = FALSE, ordered = TRUE) 
obs[ ,2] = round(obs[ ,2], digits=2) 
obs[ ,3] = round(obs[ ,3], digits=2) 
obs[ ,4] = round(obs[ ,4]) 
################################################################## 
pedigree1 <- data.frame (id = aid, sire = sid, dam = did) 
attach(pedigree1) 
dataped <- pedigree1[pedigree1$id>nam,] 
simdataf2 <- data.frame (id = dataped$id, sire = dataped$sire, dam = dataped$dam, sex = isex, 
herd = iherd, CE = obs[ ,1], BW = obs[ ,2], ww = obs[ ,3], pwg = obs[ ,4], CEtbv = tbv[ ,1], 
BWtbv = tbv[ ,2], wwtbv = tbv[ ,3], pwgtbv = tbv[ ,4]) 
attach(simdataf2) 
nrow(simdataf2) 
## pulling out only the 2 yr old dams data 
two_year_females_list <- c(sort(selectedfemales[ ,1])) 
length(two_year_females_list) 
simdataf2 <- simdataf2[simdataf2[ ,3] %in% two_year_females_list,  ] 
nrow(simdataf2) 
## combine the data file of (base+F1) with F2 data file (This file include 1. founders with no 
observations, but with TBV 2. F1 progeny observations and TBV 3. F2 progeny with 
observations and TBV) 
f2andbasepopdata <- rbind(basepopdata,simdataf2) 
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## Data file for F1 and F2 (has both observations and TBV) 
f2andbasepopdata <- subset(f2andbasepopdata, f2andbasepopdata[ ,1] > nbase) 
# keeping BW observations within 3 SD 
BWave_f1_f2=mean(f2andbasepopdata$BW) 
 BWave_f1_f2 
 
BWsd_f1_f2=sd(f2andbasepopdata$BW) 
 BWsd_f1_f2 
 BWave_f1_f2-(3*BWsd_f1_f2) 
 BWave_f1_f2+(3*BWsd_f1_f2) 
f2andbasepopdata <- subset(f2andbasepopdata, BW > (BWave_f1_f2-(3*BWsd_f1_f2))) 
 f2andbasepopdata <- subset(f2andbasepopdata, BW < (BWave_f1_f2+(3*BWsd_f1_f2))) 
 summary(f2andbasepopdata$BW)                                                  
nrow(f2andbasepopdata) 
 
simdataf2 <- subset(f2andbasepopdata, f2andbasepopdata[ ,1] > nam) 
summary(simdataf2$BW)                                                  
nrow(simdataf2) 
 N_sires = length(c(sort(unique(simdataf2$sire)))) 
 N_sires 
basepop_f2_data <- rbind(basepopdata,simdataf2) 
 
pedigreef2 <- data.frame (id = simdataf2$id, sire = simdataf2$sire, dam = simdataf2$dam) 
pedigreef2andbase<- rbind(pedigree,pedigreef2) 
 
##############################################################################
##############################################################################
## Creating F3 
#   1   2   3   4   5    6  7  8  9   10    11     12     13 
#  id sire dam sex herd CE BW ww pwg CEtbv BWtbv wwtbv pwgtbv 
 
############################################################# 
############################################################# 
## redefine (the total number of all animals) and (number of base population and F1+F2) in 
previous simulation 
############################## 
#total number of all animals (Used unique IDs up to now) 
nam2 = nam+nam1 
#number of sires and dams in base population (1200+36000) and in f1 generartion (36000) 
nbaseandf1 = nam = 73200 
############################## 
## selecting top 5% sirs and 80% dams 
## selection of sires 
averages=by( basepop_f2_data$CEtbv, basepop_f2_data$sex, mean) 
ave1males=averages[1] 
ave1females=averages[2] 
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SDs=by( basepop_f2_data$CEtbv, basepop_f2_data$sex, sd) 
sd1males=SDs[1] 
sd1females=SDs[2] 
 
males <- subset(basepop_f2_data, sex == 1) 
kull2males= (males[ ,10]>(ave1males-(1.7*sd1males))) 
males[kull2males,11]=0 
selectedmales <- subset(males, males[ ,11] != 0) 
summary(selectedmales[ ,7], na.rm=TRUE) 
nrow(males) 
nrow(selectedmales) 
nrow(selectedmales)/nrow(males) 
######################### 
## selection of dams 
females <- subset(basepop_f2_data, sex == 2) 
kull2females= (females[ ,10]>(ave1females+(0.85*sd1females))) 
females[kull2females,11]=0 
# all selected females (females with progeny (base pop.and F1) and 2 years (F2)females without 
progeny) 
selectedallfemales <- subset(females, females[ ,11] != 0) 
summary(selectedallfemales[ ,7], na.rm=TRUE) 
nrow(females) 
nrow(selectedallfemales) 
nrow(selectedallfemales)/nrow(females) 
## only 2 years old females 
selectedfemales <- subset(selectedallfemales, selectedallfemales[ ,1] > nbaseandf1) 
nrow(selectedfemales) 
nrow(selectedfemales)/nrow(females) 
damlistf3 = c(selectedallfemales[ ,1]) 
######################### 
#### 1110 selected males and 54565 selected females 
n_sel_males = nrow(selectedmales) 
n_sel_females = nrow(selectedallfemales) 
n_progeny = n_sel_females 
# number of females per sire = 49.15 
n_females_per_sire = n_sel_females/n_sel_males 
n_females_per_sire 
# because number of dams per sire is 49.15, then sires will have different numbers of progeny 
(some will have 49 and others will have 50 progeny) 
rounded_n_females_per_sire = round(n_females_per_sire) 
rounded_n_females_per_sire 
 
if(rounded_n_females_per_sire < n_females_per_sire) { 
      n1records_per_sire = (rounded_n_females_per_sire) 
      n2records_per_sire = (n1records_per_sire)+1 
    } else { 
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      n1records_per_sire = (rounded_n_females_per_sire)-1 
      n2records_per_sire = (rounded_n_females_per_sire) 
    } 
 
nsires_with_n1records = (n_sel_males)-((n_sel_females)-(n_sel_males*n1records_per_sire)) 
nsires_with_n2records = (n_sel_males)-(nsires_with_n1records) 
own_record_sires_with_n1records = selectedmales[1:nsires_with_n1records, ] 
selectedmales1=own_record_sires_with_n1records[rep(seq_len(nrow(own_record_sires_with_n
1records)), each=n1records_per_sire),] 
own_record_sires_with_n2records = selectedmales[((nsires_with_n1records)+1):n_sel_males, ] 
selectedmales2=own_record_sires_with_n2records[rep(seq_len(nrow(own_record_sires_with_n
2records)), each=n2records_per_sire),] 
allselectedmales=rbind(selectedmales1,selectedmales2) 
randomlymatedsires=allselectedmales[sample(nrow(allselectedmales)),] 
sirelistf3 = randomlymatedsires[ ,1] 
 
#################### 
selectedparents=rbind(selectedmales, selectedallfemales) 
sortedselectedparents <- selectedparents[order(selectedparents[ ,1]),] 
  
animlist = c(selectedparents[ ,1],selectedparents[ ,2], selectedparents[ ,3]) 
uniqueanimlist = c(sort(unique(animlist))) 
uniqueanimlist = uniqueanimlist[-1] 
subdata <- basepop_f2_data[basepop_f2_data[ ,1] %in% uniqueanimlist,  ] 
subdata <- data.matrix(subdata) 
 
length(subdata[,1]) 
length(uniqueanimlist) 
pedf3 = rbind(subdata[ 
,1:3],cbind(c((nam2+1):(nam2+n_progeny)),sirelistf3[1:n_progeny],damlistf3[1:n_progeny])) 
 
################## 
CEave=mean(selectedparents[ ,6], na.rm=TRUE) 
CEave 
BWave=mean(selectedparents[ ,7], na.rm=TRUE) 
BWave 
WWave=mean(selectedparents[ ,8], na.rm=TRUE) 
WWave 
PWGave=mean(selectedparents[ ,9], na.rm=TRUE) 
PWGave 
############## 
library(MASS) 
 
set.seed(1234) 
herdCE=(rnorm(120,0))*0.05 
set.seed(1234) 
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herdBW=(rnorm(120,0)) 
set.seed(1234) 
herdWW=(rnorm(120,0))*2 
set.seed(1234) 
herdPWG=(rnorm(120,0))*0.1 
herd=matrix(data=c(herdCE,herdBW,herdWW,herdPWG),byrow=TRUE,nrow=4) 
sex=matrix(data=c(0.108,-0.108,2,-1,10,-7,0.060,-0.040),byrow=TRUE,nrow=4) 
# Residual matrix 
R=matrix(data=c(1,1.13,0.46,0.48,1.13,20.5,30.37,8.78,0.46,30.37,534,29.87,0.48,8.78,29.87,26
1),byrow=TRUE,nrow=4)  
# G matrix  
G=matrix(data=c(0.24,1.11,1.6,1.51,1.11,9.67,23.11,14.65,1.6,23.11,221,103,1.51,14.65,103,217
),byrow=TRUE,nrow=4) 
 
####averages:  
mu=c(CEave,BWave,WWave,PWGave) 
anwr=c((nam2+1):(nam2+n_progeny)) 
aid = c(pedf3[ ,1]) 
sid = c(pedf3[ ,2]) 
did <- c(pedf3[ ,3]) 
 
#number of herds 
length(unique(selectedallfemales[ ,5])) 
iherd=c(selectedallfemales[ ,5]) 
set.seed(123) 
isex=(rbinom(n_progeny, 1, 0.6))+1 
 
# heritability of traits 
gd=diag(G) 
rd=diag(R) 
h2=gd/(gd+rd) 
h2 
 
# correlations among traits 
# Function to calculate correlations from a covariance matrix 
CORMAT=function(Q) { 
  D = diag(Q) 
  D = sqrt(D) 
  B = diag(1/D) 
  HC = B %*% Q %*% B 
  HC } 
CORMAT(R) 
CORMAT(G) 
# Get cholesky decompositions of G and R 
LG = t(chol(G)) 
LR = t(chol(R)) 
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# Simulate true breeding values for all animals 
#  J MATRIX FUNCTION 
jd = function(n,m){ 
  matrix(c(1),nrow=n,ncol=m)} 
 
nam3=n_progeny 
mendelian = jd(nam3,4)*0 
for(i in 1:nam3){ 
  mendelian[i, ] = LG %*% (rnorm(4,0,1)) 
} 
damtbv= selectedallfemales[ ,10:13] 
siretbv= randomlymatedsires[ ,10:13] 
parentsaveragetbv=0.5*(damtbv + siretbv) 
tbv=mendelian+parentsaveragetbv 
 
nrec=n_progeny 
# Make an observation for all traits for all animals 
obser = jd(nrec,4)*0 
for(k in 1:nrec){ 
  kherd=iherd[k] 
  ksex=isex[k] 
   
  obser[k, ]=mu + herd[ ,kherd] + sex[ ,ksex]  
  res = LR %*% rnorm(4,0,1) 
  obser[k, ]=obser[k, ] + res 
} 
obs = obser + tbv 
obs[ ,1] = scale(obs[ ,1], center = TRUE, scale = FALSE) 
obs[ ,1] = cut(obs[ ,1], c(-Inf, 0, 1, 1.4, Inf), labels = FALSE, ordered = TRUE) 
obs[ ,2] = round(obs[ ,2], digits=2) 
obs[ ,3] = round(obs[ ,3], digits=2) 
obs[ ,4] = round(obs[ ,4]) 
 
################################################################## 
pedigree2 <- data.frame (id = aid, sire = sid, dam = did) 
attach(pedigree2) 
dataped <- pedigree2[pedigree2$id>nam2,] 
simdataf3 <- data.frame (id = dataped$id, sire = dataped$sire, dam = dataped$dam, sex = isex, 
herd = iherd, CE = obs[ ,1], BW = obs[ ,2], ww = obs[ ,3], pwg = obs[ ,4], CEtbv = tbv[ ,1], 
BWtbv = tbv[ ,2], wwtbv = tbv[ ,3], pwgtbv = tbv[ ,4]) 
attach(simdataf3) 
nrow(simdataf3) 
 
two_year_females_list <- c(sort(selectedfemales[ ,1])) 
length(two_year_females_list) 
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simdataf3 <- simdataf3[simdataf3[ ,3] %in% two_year_females_list,  ] 
nrow(simdataf3) 
 
 
## data file for all animals (base population,animals with records): contains true breeding values 
for all animal which will be needed for calculating rank correlation (TBV with EBV from 
thrgibbs1f90) 
all_data_basepop_f2_f3 <- rbind(basepop_f2_data,simdataf3) 
all_data_basepop_f2_f3 <- subset(all_data_basepop_f2_f3, all_data_basepop_f2_f3[ ,1] > nbase) 
 
BWave_f1_f2_f3=mean(all_data_basepop_f2_f3$BW) 
 BWave_f1_f2_f3 
 
BWsd_f1_f2_f3=sd(all_data_basepop_f2_f3$BW) 
 BWsd_f1_f2_f3 
 BWave_f1_f2_f3-(3*BWsd_f1_f2_f3) 
 BWave_f1_f2_f3+(3*BWsd_f1_f2_f3) 
all_data_basepop_f2_f3 <- subset(all_data_basepop_f2_f3, BW > (BWave_f1_f2_f3-
(3*BWsd_f1_f2_f3))) 
 all_data_basepop_f2_f3 <- subset(all_data_basepop_f2_f3, BW < 
(BWave_f1_f2_f3+(3*BWsd_f1_f2_f3))) 
 summary(all_data_basepop_f2_f3$BW)                                                  
nrow(all_data_basepop_f2_f3) 
 
simdataf3 <- subset(all_data_basepop_f2_f3, all_data_basepop_f2_f3[ ,1] > nam2) 
summary(simdataf3$BW)                                                  
nrow(simdataf3) 
 N_sires = length(c(sort(unique(simdataf3$sire)))) 
 N_sires 
basepop_f2_f3_data <- rbind(basepop_f2_data,simdataf3) 
 
pedigreef3 <- data.frame (id = simdataf3$id, sire = simdataf3$sire, dam = simdataf3$dam) 
base_f2_f3_ped <- rbind(pedigreef2andbase,pedigreef3) 
##############################################################################
##############################################################################  
# Creating F4 
#   1   2   3   4   5    6  7  8  9   10    11     12     13 
#  id sire dam sex herd CE BW ww pwg CEtbv BWtbv wwtbv pwgtbv 
############################################################# 
############################################################# 
## redefine (the total number of all animals) and (number of base population, F1, F2 and F3) in 
previous simulation 
############################## 
#total number of all animals (Used unique IDs up to now) 
nam4 = nam+nam1+nam3 
 



198 
 

nbaseandf1f2 = nam2  
 
############################## 
## selecting top 5% sirs and 80% dams 
## selection of sires 
averages=by( basepop_f2_f3_data$CEtbv, basepop_f2_f3_data$sex, mean) 
ave1males=averages[1] 
ave1females=averages[2] 
SDs=by( basepop_f2_f3_data$CEtbv, basepop_f2_f3_data$sex, sd) 
sd1males=SDs[1] 
sd1females=SDs[2] 
 
males <- subset(basepop_f2_f3_data, sex == 1) 
kull2males= (males[ ,10]>(ave1males-(1.75*sd1males))) 
males[kull2males,11]=0 
selectedmales <- subset(males, males[ ,11] != 0) 
summary(selectedmales[ ,7], na.rm=TRUE) 
nrow(males) 
nrow(selectedmales) 
nrow(selectedmales)/nrow(males) 
 
######################### 
## selection of dams 
females <- subset(basepop_f2_f3_data, sex == 2) 
kull2females= (females[ ,10]>(ave1females+(0.85*sd1females))) 
females[kull2females,11]=0 
# all selected females (females with progeny (base pop., F1 and F2) and 2 years (F3)females 
without progeny) 
selectedallfemales <- subset(females, females[ ,11] != 0) 
summary(selectedallfemales[ ,7], na.rm=TRUE) 
nrow(females) 
nrow(selectedallfemales) 
nrow(selectedallfemales)/nrow(females) 
## only 2 years old females 
selectedfemales <- subset(selectedallfemales, selectedallfemales[ ,1] > nbaseandf1f2) 
nrow(selectedfemales) 
nrow(selectedfemales)/nrow(females) 
damlistf4 = c(selectedallfemales[ ,1]) 
######################### 
#### 1310 selected males and 59473 selected females 
n_sel_males = nrow(selectedmales) 
n_sel_females = nrow(selectedallfemales) 
n_progeny = n_sel_females 
# number of females per sire = 45.3 
n_females_per_sire = n_sel_females/n_sel_males 
n_females_per_sire 
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# because number of dams per sire is 45.3, then sires will have different numbers of progeny 
(some will have 45 and others will have 46 progeny) 
rounded_n_females_per_sire = round(n_females_per_sire) 
rounded_n_females_per_sire 
if(rounded_n_females_per_sire < n_females_per_sire) { 
      n1records_per_sire = (rounded_n_females_per_sire) 
      n2records_per_sire = (n1records_per_sire)+1 
    } else { 
      n1records_per_sire = (rounded_n_females_per_sire)-1 
      n2records_per_sire = (rounded_n_females_per_sire) 
    } 
 
nsires_with_n1records = (n_sel_males)-((n_sel_females)-(n_sel_males*n1records_per_sire)) 
nsires_with_n2records = (n_sel_males)-(nsires_with_n1records) 
own_record_sires_with_n1records = selectedmales[1:nsires_with_n1records, ] 
selectedmales1=own_record_sires_with_n1records[rep(seq_len(nrow(own_record_sires_with_n
1records)), each=n1records_per_sire),] 
own_record_sires_with_n2records = selectedmales[((nsires_with_n1records)+1):n_sel_males, ] 
selectedmales2=own_record_sires_with_n2records[rep(seq_len(nrow(own_record_sires_with_n
2records)), each=n2records_per_sire),] 
allselectedmales=rbind(selectedmales1,selectedmales2) 
randomlymatedsires=allselectedmales[sample(nrow(allselectedmales)),] 
sirelistf4 = randomlymatedsires[ ,1] 
 
#################### 
selectedparents=rbind(selectedmales, selectedallfemales) 
sortedselectedparents <- selectedparents[order(selectedparents[ ,1]),] 
  
animlist = c(selectedparents[ ,1],selectedparents[ ,2], selectedparents[ ,3]) 
uniqueanimlist = c(sort(unique(animlist))) 
uniqueanimlist = uniqueanimlist[-1] 
subdata <- basepop_f2_f3_data[basepop_f2_f3_data[ ,1] %in% uniqueanimlist,  ] 
subdata <- data.matrix(subdata) 
 
length(subdata[,1]) 
length(uniqueanimlist) 
pedf4 = rbind(subdata[ 
,1:3],cbind(c((nam4+1):(nam4+n_progeny)),sirelistf4[1:n_progeny],damlistf4[1:n_progeny])) 
 
################## 
CEave=mean(selectedparents[ ,6], na.rm=TRUE) 
CEave 
BWave=mean(selectedparents[ ,7], na.rm=TRUE) 
BWave 
WWave=mean(selectedparents[ ,8], na.rm=TRUE) 
WWave 
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PWGave=mean(selectedparents[ ,9], na.rm=TRUE) 
PWGave 
############## 
library(MASS) 
 
set.seed(1234) 
herdCE=(rnorm(120,0))*0.05 
set.seed(1234) 
herdBW=(rnorm(120,0)) 
set.seed(1234) 
herdWW=(rnorm(120,0))*2 
set.seed(1234) 
herdPWG=(rnorm(120,0))*0.1 
herd=matrix(data=c(herdCE,herdBW,herdWW,herdPWG),byrow=TRUE,nrow=4) 
sex=matrix(data=c(0.108,-0.108,2,-1,10,-7,0.060,-0.040),byrow=TRUE,nrow=4) 
# Residual matrix 
R=matrix(data=c(1,1.13,0.46,0.48,1.13,20.5,30.37,8.78,0.46,30.37,534,29.87,0.48,8.78,29.87,26
1),byrow=TRUE,nrow=4)  
# G matrix  
G=matrix(data=c(0.24,1.11,1.6,1.51,1.11,9.67,23.11,14.65,1.6,23.11,221,103,1.51,14.65,103,217
),byrow=TRUE,nrow=4) 
 
####averages: 1.36198 34.59145 235.868 977.412 
mu=c(CEave,BWave,WWave,PWGave) 
anwr=c((nam4+1):(nam4+n_progeny)) 
aid = c(pedf4[ ,1]) 
sid = c(pedf4[ ,2]) 
did <- c(pedf4[ ,3]) 
 
#number of herds 
length(unique(selectedallfemales[ ,5])) 
iherd=c(selectedallfemales[ ,5]) 
set.seed(123) 
isex=(rbinom(n_progeny, 1, 0.6))+1 
 
# heritability of traits 
gd=diag(G) 
rd=diag(R) 
h2=gd/(gd+rd) 
h2 
 
# correlations among traits 
# Function to calculate correlations from a covariance matrix 
CORMAT=function(Q) { 
  D = diag(Q) 
  D = sqrt(D) 
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  B = diag(1/D) 
  HC = B %*% Q %*% B 
  HC } 
CORMAT(R) 
CORMAT(G) 
# Get cholesky decompositions of G and R 
LG = t(chol(G)) 
LR = t(chol(R)) 
 
# Simulate true breeding values for all animals 
#  J MATRIX FUNCTION 
jd = function(n,m){ 
  matrix(c(1),nrow=n,ncol=m)} 
 
nam5=n_progeny 
mendelian = jd(nam5,4)*0 
for(i in 1:nam5){ 
  mendelian[i, ] = LG %*% (rnorm(4,0,1)) 
} 
damtbv= selectedallfemales[ ,10:13] 
siretbv= randomlymatedsires[ ,10:13] 
parentsaveragetbv=0.5*(damtbv + siretbv) 
tbv=mendelian+parentsaveragetbv 
 
nrec=n_progeny 
# Make an observation for all traits for all animals 
obser = jd(nrec,4)*0 
for(k in 1:nrec){ 
  kherd=iherd[k] 
  ksex=isex[k] 
   
  obser[k, ]=mu + herd[ ,kherd] + sex[ ,ksex]  
  res = LR %*% rnorm(4,0,1) 
  obser[k, ]=obser[k, ] + res 
} 
obs = obser + tbv 
obs[ ,1] = scale(obs[ ,1], center = TRUE, scale = FALSE) 
obs[ ,1] = cut(obs[ ,1], c(-Inf, 0, 1, 1.4, Inf), labels = FALSE, ordered = TRUE) 
obs[ ,2] = round(obs[ ,2], digits=2) 
obs[ ,3] = round(obs[ ,3], digits=2) 
obs[ ,4] = round(obs[ ,4]) 
 
################################################################## 
 
pedigree3 <- data.frame (id = aid, sire = sid, dam = did) 
attach(pedigree3) 
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dataped <- pedigree3[pedigree3$id>nam4,] 
simdataf4 <- data.frame (id = dataped$id, sire = dataped$sire, dam = dataped$dam, sex = isex, 
herd = iherd, CE = obs[ ,1], BW = obs[ ,2], ww = obs[ ,3], pwg = obs[ ,4], CEtbv = tbv[ ,1], 
BWtbv = tbv[ ,2], wwtbv = tbv[ ,3], pwgtbv = tbv[ ,4]) 
attach(simdataf4) 
nrow(simdataf4) 
 
two_year_females_list <- c(sort(selectedfemales[ ,1])) 
length(two_year_females_list) 
simdataf4 <- simdataf4[simdataf4[ ,3] %in% two_year_females_list,  ] 
nrow(simdataf4) 
 
## data file for all animals (base population,animals with records): contains true breeding values 
for all animal which will be needed for calculating rank correlation  
all_data_basepop_f2_f3_f4 <- rbind(basepop_f2_f3_data,simdataf4) 
all_data_basepop_f2_f3_f4 <- subset(all_data_basepop_f2_f3_f4, all_data_basepop_f2_f3_f4[ 
,1] > nbase) 
 
BWave_f1_f2_f3_f4=mean(all_data_basepop_f2_f3_f4$BW) 
 BWave_f1_f2_f3_f4 
 
BWsd_f1_f2_f3_f4=sd(all_data_basepop_f2_f3_f4$BW) 
 BWsd_f1_f2_f3_f4 
 BWave_f1_f2_f3_f4-(3*BWsd_f1_f2_f3_f4) 
 BWave_f1_f2_f3_f4+(3*BWsd_f1_f2_f3_f4) 
all_data_basepop_f2_f3_f4 <- subset(all_data_basepop_f2_f3_f4, BW > ((BWave_f1_f2_f3_f4)-
(3*BWsd_f1_f2_f3_f4))) 
 all_data_basepop_f2_f3_f4 <- subset(all_data_basepop_f2_f3_f4, BW < 
((BWave_f1_f2_f3_f4)+(3*BWsd_f1_f2_f3_f4))) 
 summary(all_data_basepop_f2_f3_f4$BW)                                                  
nrow(all_data_basepop_f2_f3_f4) 
 
simdataf4 <- subset(all_data_basepop_f2_f3_f4, all_data_basepop_f2_f3_f4[ ,1] > nam4) 
summary(simdataf4$BW)                                                  
nrow(simdataf4) 
 N_sires = length(c(sort(unique(simdataf4$sire)))) 
 N_sires 
basepop_f2_f3_f4_data <- rbind(basepop_f2_f3_data,simdataf4) 
nrow(basepop_f2_f3_f4_data) 
pedigreef4 <- data.frame (id = simdataf4$id, sire = simdataf4$sire, dam = simdataf4$dam) 
base_f2_f3_f4_ped <- rbind(base_f2_f3_ped,pedigreef4) 
 
##############################################################################
##############################################################################  
## see how many records per sire 
try <- subset(basepop_f2_f3_f4_data, basepop_f2_f3_f4_data[ ,1] > nbase) 
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nrow(try) 
ones = c(rep(1,(nrow(try)))) 
try = data.matrix(try) 
try = cbind(try,ones) 
ham=sort(by( try[ ,14], try[ ,2], length)) 
head(ham) 
##############################################################################
############################################ 
## Final data files (2 and 3 calving ease categories) 
## pedigree file 
 ## data file for animals with records (will be used for thrgibbs1f90) 
data_anim_with_record <- subset(basepop_f2_f3_f4_data, basepop_f2_f3_f4_data[ ,1] > nbase) 
summary(data_anim_with_record$CE) 
## change CE scores to be 3 categories 
data_anim_with_record$CE <- replace(data_anim_with_record$CE, data_anim_with_record$CE 
== 4,3) 
## Final data (3 categories) ready for thrgibbs1f90 
sel_CE_3cat_data <- data_anim_with_record 
summary(sel_CE_3cat_data$CE) 
 
## pedigree file 
sel_CE_pedigree<- base_f2_f3_f4_ped 
 
## change CE scores to be 2 categories (binary) 
sel_CE_3cat_data$CE <- replace(sel_CE_3cat_data$CE, sel_CE_3cat_data$CE == 3,2) 
sel_CE_bin_data <- sel_CE_3cat_data 
summary(sel_CE_bin_data$CE)  
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APPENDIX C: AVERAGE STANDARDIZED EPD FOR CALVING EASE AND 

GROWTH-RELATED TRAITS OF FIRST-CALF HEIFER POPULATION OF THE 

SIMMENTAL BEEF CATTLE 
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Table C.1: Average standardized EPD for calving ease and growth-related traits of first-calf 
Simmental heifers 

Birth 
year 

Traiteffect
1 

CEd BWTd 
205-d 
WTd 

160-d 
gain 

365-d 
WT CEm BWTm 

205-d 
WTm 

≤ 1969 0.00001 0.00834 -0.01357 -0.01335 -0.02692 0.00001 -0.01276 -0.02982 
1970 0.04789 -0.03613 -0.10249 -0.06637 -0.16886 -0.06885 -0.05867 -0.14234 
1971 0.01398 -0.02843 -0.08225 -0.05290 -0.13515 -0.06096 -0.04233 -0.11976 
1972 -0.02130 -0.03226 -0.09273 -0.08329 -0.17602 -0.05126 -0.04569 -0.11699 
1973 -0.04084 -0.03303 -0.08706 -0.07945 -0.16651 -0.01867 -0.06067 -0.12290 
1974 -0.07218 -0.02244 -0.07249 -0.07772 -0.15022 0.01171 -0.07012 -0.13064 
1975 -0.08460 -0.01729 -0.06044 -0.05552 -0.11596 0.03129 -0.06169 -0.12780 
1976 -0.08846 -0.01593 -0.03328 -0.03759 -0.07087 0.05133 -0.03632 -0.11077 
1977 -0.09817 -0.00872 -0.00822 -0.01782 -0.02604 0.07717 -0.03662 -0.10320 
1978 -0.09151 -0.00069 0.01196 0.00657 0.01853 0.11021 -0.03111 -0.09787 
1979 -0.09893 0.00941 0.02850 0.01682 0.04533 0.13272 -0.03055 -0.09055 
1980 -0.09992 0.02848 0.06416 0.04500 0.10916 0.16106 -0.02432 -0.08458 
1981 -0.11005 0.05349 0.09211 0.05442 0.14653 0.17761 -0.01491 -0.08149 
1982 -0.11706 0.07764 0.12573 0.08517 0.21091 0.21070 -0.01296 -0.08174 
1983 -0.12037 0.09843 0.15457 0.10949 0.26406 0.23553 -0.00878 -0.07013 
1984 -0.13006 0.13072 0.19201 0.13940 0.33142 0.26449 0.00128 -0.06617 
1985 -0.12902 0.14962 0.23025 0.17552 0.40578 0.28748 0.01428 -0.06217 
1986 -0.14431 0.17920 0.26511 0.20628 0.47139 0.30032 0.01645 -0.05678 
1987 -0.14059 0.19365 0.29605 0.23604 0.53210 0.31258 0.02330 -0.05647 
1988 -0.14978 0.21649 0.33647 0.25846 0.59494 0.32295 0.01265 -0.05479 
1989 -0.14923 0.23361 0.37138 0.29107 0.66245 0.34083 0.01818 -0.04934 
1990 -0.14598 0.24740 0.40096 0.31089 0.71185 0.35094 0.01909 -0.04491 
1991 -0.14537 0.25706 0.42701 0.32623 0.75324 0.36169 0.01551 -0.04129 
1992 -0.14560 0.28967 0.47646 0.36164 0.83810 0.37392 0.02574 -0.03775 
1993 -0.15632 0.31891 0.50371 0.38018 0.88389 0.38087 0.03064 -0.03762 
1994 -0.14977 0.33445 0.52217 0.39548 0.91765 0.38300 0.02215 -0.02411 
1995 -0.15943 0.36738 0.54570 0.41242 0.95812 0.38769 0.01710 -0.02217 

1CEd = calving ease direct; BWTd = birth weight direct; 205-d WTd = 205-d weight direct; 160-d gain 
= 160-d postweaning gain direct; 365-d WT = 365-d weight direct; 1CEm = calving ease maternal; 
BWTm = birth weight maternal; 205-d WTm = 205-d weight maternal  
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Table C.1 (cont.) 

Birth 
year 

Traiteffect
1 

CEd BWTd 
205-d 
WTd 

160-d 
gain 

365-d 
WT CEm BWTm 

205-d 
WTm 

1996 -0.16494 0.39318 0.56706 0.41922 0.98628 0.39146 0.01869 -0.00010 

1997 -0.17093 0.41368 0.58362 0.43351 1.01712 0.38761 0.02497 0.00823 

1998 -0.17534 0.42649 0.60148 0.43736 1.03883 0.38286 0.01796 0.02371 

1999 -0.18387 0.44720 0.62055 0.44683 1.06738 0.37938 0.01319 0.03185 

2000 -0.15738 0.42365 0.61613 0.44415 1.06028 0.36007 0.01076 0.04474 

2001 -0.15978 0.43007 0.62390 0.45547 1.07936 0.34418 -0.00201 0.05184 

2002 -0.13122 0.40222 0.61694 0.45289 1.06983 0.33829 0.00601 0.06975 

2003 -0.13003 0.39308 0.60706 0.44519 1.05225 0.31294 -0.01165 0.07981 

2004 -0.10288 0.35681 0.60029 0.44580 1.04609 0.30557 -0.00046 0.07171 

2005 -0.08362 0.32949 0.58302 0.42818 1.01119 0.28180 -0.01138 0.08001 

2006 -0.07916 0.31133 0.55908 0.41513 0.97420 0.26984 -0.00161 0.06932 

2007 -0.07758 0.30601 0.55471 0.39884 0.95355 0.27473 -0.01144 0.06727 

2008 -0.07942 0.30807 0.56059 0.39657 0.95716 0.25880 -0.02375 0.08398 

2009 -0.05169 0.26851 0.53637 0.38726 0.92363 0.24765 -0.01287 0.08567 

2010 -0.05541 0.27816 0.56471 0.39516 0.95987 0.25427 -0.02976 0.08913 
1CEd = calving ease direct; BWTd = birth weight direct; 205-d WTd = 205-d weight direct; 160-d gain 
= 160-d postweaning gain direct; 365-d WT = 365-d weight direct; 1CEm = calving ease maternal; 
BWTm = birth weight maternal; 205-d WTm = 205-d weight maternal  
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APPENDIX D: AVERAGE STANDARDIZED EPD FOR CALVING EASE AND 

GROWTH-RELATED TRAITS FROM DIFFERENT SELECTION SCENARIOS FOR 

LOW BIRTH WEIGHT VERSUS HIGH CALVING EASE 
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Table D.1: Average standardized EPD1 for calving ease and growth traits of first-calf 
Simmental heifers from the high calving ease selection scenario (HCE)2 

BY CEd BWTd 205-d WTd 160-d gain 365-d WT CEm BWTm 205-d WTm 
≤ 1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
1970 0.04141 -0.03455 -0.01964 -0.00637 -0.02602 0.00159 0.00308 0.00758 
1971 0.06829 -0.05773 -0.03064 -0.00102 -0.03166 0.00560 -0.01929 0.00453 
1972 0.08883 -0.07443 -0.03720 0.00007 -0.03713 0.01974 -0.02762 0.01736 
1973 0.10655 -0.07914 -0.04091 0.01260 -0.02831 0.00739 -0.01313 0.02123 
1974 0.13382 -0.10369 -0.05952 -0.00011 -0.05962 -0.02077 0.01560 0.03041 
1975 0.15336 -0.12328 -0.05788 -0.00350 -0.06138 -0.01806 0.00475 0.03478 
1976 0.15459 -0.13422 -0.07291 -0.02526 -0.09817 -0.01922 -0.00639 0.03825 
1977 0.15405 -0.13033 -0.07087 -0.01732 -0.08819 -0.01650 0.00055 0.02952 
1978 0.15551 -0.15078 -0.08029 -0.02652 -0.10681 -0.02230 -0.00341 0.02443 
1979 0.15625 -0.15414 -0.08122 -0.02469 -0.10591 -0.03020 0.00357 0.02739 
1980 0.15256 -0.16093 -0.08600 -0.02366 -0.10966 -0.02603 -0.00444 0.02059 
1981 0.15816 -0.17376 -0.09400 -0.02520 -0.11919 -0.02660 -0.00699 0.01163 
1982 0.16183 -0.18867 -0.09411 -0.02820 -0.12231 -0.01461 -0.01584 0.01936 
1983 0.15625 -0.18206 -0.09784 -0.03606 -0.13390 -0.01451 -0.00595 0.01069 
1984 0.15919 -0.19624 -0.09300 -0.03948 -0.13249 -0.01062 -0.02515 0.00753 
1985 0.16597 -0.20188 -0.09664 -0.04251 -0.13915 0.00382 -0.02364 -0.00114 
1986 0.16987 -0.21430 -0.10906 -0.05433 -0.16339 -0.00513 -0.02632 -0.00276 
1987 0.16949 -0.22313 -0.11566 -0.06316 -0.17883 -0.01258 -0.03572 0.00747 
1988 0.17656 -0.22827 -0.12859 -0.07158 -0.20017 -0.01447 -0.02756 0.00953 
1989 0.17863 -0.23799 -0.12857 -0.08032 -0.20890 -0.01607 -0.03675 0.00441 
1990 0.17795 -0.24286 -0.12822 -0.08177 -0.20998 -0.01518 -0.04403 0.00023 
1991 0.17880 -0.24238 -0.11610 -0.07556 -0.19165 -0.01404 -0.03283 0.00224 
1992 0.18175 -0.25185 -0.11610 -0.07309 -0.18919 -0.01378 -0.03034 0.00892 
1993 0.18758 -0.25953 -0.11718 -0.07180 -0.18898 -0.00944 -0.03447 0.00908 
1994 0.19059 -0.26754 -0.12171 -0.07124 -0.19294 -0.00805 -0.04016 0.01328 
1995 0.18375 -0.25210 -0.11867 -0.06830 -0.18698 -0.00498 -0.04710 0.01462 
1996 0.18804 -0.24334 -0.11739 -0.06644 -0.18383 0.00150 -0.05141 0.01298 
1997 0.17190 -0.22080 -0.11147 -0.06240 -0.17387 -0.00313 -0.04204 0.02621 
1998 0.17979 -0.22092 -0.11228 -0.05909 -0.17137 0.01319 -0.03034 0.00949 
1999 0.16050 -0.18748 -0.09164 -0.05111 -0.14275 0.01304 -0.01864 0.01467 
2000 0.17811 -0.20727 -0.09710 -0.05056 -0.14767 0.00485 -0.01204 0.01340 
2001 0.17135 -0.18865 -0.08150 -0.02916 -0.11065 0.00679 -0.00444 0.01568 
2002 0.16407 -0.17954 -0.07117 -0.03113 -0.10230 -0.00566 -0.00143 0.01600 
2003 0.16086 -0.17746 -0.07519 -0.02539 -0.10058 -0.00702 0.00184 0.01720 
2004 0.15716 -0.17432 -0.07733 -0.03850 -0.11583 -0.00399 -0.00465 0.01566 

1CEd = calving ease direct; BWTd = birth weight direct; 205-d WTd = 205-d weight direct; 160-d gain = 160-d 
postweaning gain direct; 365-d WT = 365-d weight direct; CEm = calving ease maternal; BWTm = birth weight 
maternal; 205-d WTm = 205-d weight maternal 
2HCE: selection for high CE (selecting above the average sires and the top 75% dams within sires) 
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Table D.2: Average standardized EPD1 for calving ease and growth traits of first-calf 
Simmental heifers  from the low birth weight selection scenario (LBWT)2 

BY CEd BWTd 205-d WTd 160-d gain 365-d WT CEm BWTm 205-d WTm 
≤ 1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
1970 0.02936 -0.03650 -0.03254 -0.02012 -0.05266 -0.01043 -0.01655 -0.02129 
1971 0.03356 -0.05470 -0.03948 -0.03149 -0.07097 -0.02109 -0.01271 -0.02297 
1972 0.03244 -0.07023 -0.06273 -0.06097 -0.12370 -0.02653 -0.01589 -0.02613 
1973 0.04998 -0.08301 -0.05774 -0.04074 -0.09848 -0.04623 0.00371 -0.02237 
1974 0.08440 -0.12329 -0.08702 -0.03871 -0.12574 -0.05596 0.00971 -0.02363 
1975 0.09929 -0.14175 -0.08986 -0.04467 -0.13453 -0.04781 -0.00442 -0.00821 
1976 0.10908 -0.15923 -0.10225 -0.05463 -0.15688 -0.04995 -0.00457 -0.00197 
1977 0.11002 -0.16191 -0.10642 -0.05825 -0.16467 -0.05135 -0.01013 -0.00716 
1978 0.12448 -0.18437 -0.11320 -0.06186 -0.17506 -0.04445 -0.00543 -0.00466 
1979 0.12696 -0.18702 -0.11054 -0.05735 -0.16789 -0.05667 -0.00607 0.00095 
1980 0.13342 -0.20326 -0.12490 -0.06568 -0.19057 -0.04905 -0.00996 -0.00425 
1981 0.14067 -0.22027 -0.13474 -0.06339 -0.19813 -0.05201 -0.01385 -0.00284 
1982 0.14621 -0.23189 -0.14301 -0.06756 -0.21057 -0.04593 -0.02087 0.00073 
1983 0.14363 -0.23083 -0.14072 -0.07631 -0.21703 -0.04496 -0.01349 0.00156 
1984 0.13952 -0.24373 -0.14710 -0.08461 -0.23171 -0.05788 -0.02911 -0.00239 
1985 0.14640 -0.25098 -0.14372 -0.08707 -0.23079 -0.04473 -0.02731 -0.00619 
1986 0.14213 -0.25215 -0.14899 -0.09885 -0.24784 -0.04522 -0.03149 -0.00705 
1987 0.14735 -0.26468 -0.15467 -0.10003 -0.25471 -0.04676 -0.03431 0.00324 
1988 0.15551 -0.27297 -0.16264 -0.10454 -0.26719 -0.03956 -0.02759 0.00371 
1989 0.15899 -0.28583 -0.16910 -0.11165 -0.28074 -0.03845 -0.03241 0.00184 
1990 0.15996 -0.29001 -0.16579 -0.11203 -0.27782 -0.03312 -0.03338 0.00348 
1991 0.15883 -0.29596 -0.15760 -0.10602 -0.26361 -0.02733 -0.02580 0.00011 
1992 0.16307 -0.30814 -0.16139 -0.11907 -0.28046 -0.04448 -0.01879 0.01492 
1993 0.17393 -0.32547 -0.17004 -0.11142 -0.28146 -0.03880 -0.02477 0.01098 
1994 0.17303 -0.32438 -0.16729 -0.11388 -0.28117 -0.03708 -0.02847 0.01794 
1995 0.18595 -0.33418 -0.18210 -0.11961 -0.30171 -0.03881 -0.04691 0.01716 
1996 0.18013 -0.30647 -0.17205 -0.10958 -0.28163 -0.03854 -0.04462 0.01348 
1997 0.16212 -0.28126 -0.16549 -0.10784 -0.27332 -0.03712 -0.04933 0.01811 
1998 0.16696 -0.27419 -0.16681 -0.11018 -0.27698 -0.02332 -0.03606 0.00605 
1999 0.14531 -0.23837 -0.15206 -0.10084 -0.25290 -0.02638 -0.02706 0.00367 
2000 0.15442 -0.23918 -0.13740 -0.09280 -0.23020 -0.01925 -0.02606 0.01190 
2001 0.15096 -0.22520 -0.12935 -0.07742 -0.20677 -0.01651 -0.00490 0.02217 
2002 0.14176 -0.21165 -0.11074 -0.06637 -0.17711 -0.02668 -0.00947 0.01671 
2003 0.14396 -0.21225 -0.11353 -0.06067 -0.17420 -0.02195 0.00161 0.00933 
2004 0.14137 -0.20735 -0.11271 -0.06661 -0.17933 -0.02485 -0.00848 0.01168 

1CEd = calving ease direct; BWTd = birth weight direct; 205-d WTd = 205-d weight direct; 160-d gain = 160-d 
postweaning gain direct; 365-d WT = 365-d weight direct; CEm = calving ease maternal; BWTm = birth weight 
maternal; 205-d WTm = 205-d weight maternal  
2LBWT: selection for high CE (selecting  below the average sires and the top 75% dams within sires)  
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Table D.3: Average standardized EPD1 for calving ease and growth traits of first-calf 
Simmental heifers  from Dickerson’s selection index scenario (DSI)2 

BY CEd BWTd 205-d WTd 160-d gain 365-d WT CEm BWTm 205-d WTm 
≤ 1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
1970 0.02729 -0.03806 0.00178 0.00982 0.01160 0.01102 -0.00461 0.03336 
1971 0.03184 -0.04553 0.00047 0.00669 0.00716 0.01272 -0.01010 0.01741 
1972 0.04952 -0.06004 0.01133 0.02296 0.03429 0.02136 -0.00768 0.03243 
1973 0.06412 -0.07240 0.00151 0.02270 0.02421 0.00224 0.00012 0.03011 
1974 0.06993 -0.08476 -0.01354 0.01997 0.00643 -0.00462 0.00376 0.02241 
1975 0.08766 -0.10022 -0.01761 0.01971 0.00210 0.00193 0.00754 0.03130 
1976 0.09015 -0.10812 -0.02013 0.01932 -0.00081 0.00486 0.01391 0.03898 
1977 0.09126 -0.11154 -0.02813 0.01307 -0.01506 -0.00643 0.01102 0.02921 
1978 0.10035 -0.13167 -0.03464 0.00940 -0.02524 -0.00455 0.01116 0.02549 
1979 0.10924 -0.14416 -0.03979 0.01483 -0.02496 -0.01014 0.01077 0.02693 
1980 0.11043 -0.15159 -0.04434 0.01014 -0.03420 -0.01499 0.00888 0.02320 
1981 0.11525 -0.16818 -0.05518 0.00387 -0.05132 -0.02062 0.00460 0.01712 
1982 0.12166 -0.17742 -0.05565 0.00352 -0.05213 -0.00891 0.00204 0.01463 
1983 0.11502 -0.17455 -0.05486 -0.00662 -0.06149 -0.00878 0.01302 0.01693 
1984 0.12144 -0.19362 -0.06066 -0.01512 -0.07578 -0.00906 -0.00414 0.01110 
1985 0.12411 -0.19790 -0.06300 -0.01650 -0.07950 -0.00078 -0.00115 0.01050 
1986 0.12580 -0.20671 -0.06793 -0.02389 -0.09182 -0.00258 -0.00580 0.00710 
1987 0.13223 -0.22604 -0.08286 -0.03461 -0.11747 -0.01203 -0.01874 0.01502 
1988 0.13244 -0.22990 -0.08723 -0.03556 -0.12279 -0.00833 -0.01598 0.01029 
1989 0.13663 -0.24499 -0.09021 -0.04400 -0.13421 -0.00778 -0.02263 0.01396 
1990 0.14401 -0.26203 -0.10383 -0.05113 -0.15495 -0.01112 -0.02191 0.01372 
1991 0.14485 -0.26265 -0.08955 -0.04358 -0.13314 -0.00083 -0.02052 0.00972 
1992 0.15840 -0.27945 -0.10049 -0.05977 -0.16027 -0.01752 -0.01195 0.01978 
1993 0.16750 -0.29398 -0.10542 -0.05196 -0.15738 -0.01478 -0.00801 0.01627 
1994 0.17185 -0.30285 -0.11187 -0.06213 -0.17400 -0.02039 -0.01841 0.02195 
1995 0.17757 -0.29491 -0.11588 -0.05685 -0.17273 -0.01614 -0.03293 0.02284 
1996 0.17262 -0.27512 -0.11430 -0.05307 -0.16737 -0.02155 -0.02682 0.01911 
1997 0.15860 -0.25414 -0.10459 -0.04820 -0.15278 -0.01731 -0.02875 0.02796 
1998 0.15928 -0.23580 -0.09503 -0.03829 -0.13331 -0.00106 -0.01139 0.01512 
1999 0.14504 -0.21391 -0.07436 -0.03051 -0.10487 -0.00092 -0.00637 0.02453 
2000 0.15031 -0.21113 -0.06796 -0.02406 -0.09202 -0.00023 -0.00597 0.02269 
2001 0.15772 -0.20656 -0.06141 -0.01778 -0.07919 -0.00222 0.00643 0.02232 
2002 0.14315 -0.18436 -0.04435 -0.00483 -0.04917 -0.00918 -0.00241 0.03460 
2003 0.14382 -0.18603 -0.04726 -0.00084 -0.04811 -0.00735 0.00896 0.02873 
2004 0.14109 -0.17960 -0.05014 -0.01184 -0.06199 -0.00400 0.00747 0.02123 

1CEd = calving ease direct; BWTd = birth weight direct; 205-d WTd = 205-d weight direct; 160-d gain = 
160-d postweaning gain direct; 365-d WT = 365-d weight direct; CEm = calving ease maternal; BWTm 
= birth weight maternal; 205-d WTm = 205-d weight maternal  
2DSI = YWT - 3.2BWT (selecting the above average sires and the top 75% dams within sires)  
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Table D.4: Average standardized EPD1 for calving ease and growth traits of first-calf 
Simmental heifers  from the all-purpose selection index scenario (API)2 

BY CEd BWTd 205-d WTd 160-d gain 365-d WT CEm BWTm 205-d WTm 
≤ 1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
1970 0.03463 -0.03928 -0.02504 -0.01169 -0.03672 -0.00243 -0.01080 -0.00513 
1971 0.05375 -0.05585 -0.02882 -0.00617 -0.03499 -0.00031 -0.01976 -0.00811 
1972 0.07921 -0.08639 -0.04105 -0.01696 -0.05801 0.01169 -0.02934 0.00814 
1973 0.09608 -0.09672 -0.04844 -0.00656 -0.05501 -0.00908 -0.00191 0.00973 
1974 0.11659 -0.12676 -0.07740 -0.00979 -0.08720 -0.04579 0.01868 0.00937 
1975 0.13575 -0.14870 -0.07638 -0.02183 -0.09821 -0.03742 -0.00283 0.01550 
1976 0.13852 -0.15654 -0.08220 -0.03351 -0.11571 -0.03932 -0.00559 0.02264 
1977 0.13850 -0.15341 -0.07893 -0.02546 -0.10439 -0.03120 -0.00222 0.02310 
1978 0.14304 -0.16919 -0.08059 -0.03099 -0.11158 -0.03206 -0.00036 0.01952 
1979 0.14539 -0.17436 -0.08014 -0.02343 -0.10357 -0.03956 -0.00049 0.01825 
1980 0.14713 -0.18447 -0.08688 -0.02653 -0.11341 -0.03924 0.00007 0.01359 
1981 0.15064 -0.20050 -0.10084 -0.03041 -0.13125 -0.03850 -0.00455 0.01001 
1982 0.15347 -0.21034 -0.10401 -0.03527 -0.13928 -0.02643 -0.01437 0.01255 
1983 0.14862 -0.20638 -0.10623 -0.04579 -0.15203 -0.02394 -0.00134 0.00990 
1984 0.14937 -0.22325 -0.10686 -0.05074 -0.15760 -0.02384 -0.02015 0.00741 
1985 0.15511 -0.22442 -0.10324 -0.04989 -0.15313 -0.01086 -0.01828 0.00082 
1986 0.15561 -0.23444 -0.11549 -0.06555 -0.18104 -0.01816 -0.01932 -0.00197 
1987 0.15881 -0.24862 -0.12584 -0.07091 -0.19676 -0.02473 -0.02910 0.00994 
1988 0.16686 -0.25946 -0.14027 -0.08035 -0.22063 -0.02235 -0.02472 0.00760 
1989 0.17002 -0.27107 -0.14031 -0.08622 -0.22653 -0.02459 -0.02996 0.00795 
1990 0.17265 -0.28191 -0.14937 -0.09160 -0.24097 -0.02288 -0.03424 0.00589 
1991 0.17106 -0.28493 -0.13434 -0.08589 -0.22024 -0.01684 -0.02658 0.00331 
1992 0.17520 -0.29581 -0.14101 -0.09580 -0.23682 -0.03073 -0.02058 0.01388 
1993 0.18632 -0.31131 -0.14290 -0.08920 -0.23210 -0.02617 -0.02522 0.01176 
1994 0.18531 -0.31241 -0.14435 -0.08829 -0.23264 -0.02491 -0.02877 0.01507 
1995 0.19060 -0.30724 -0.14800 -0.09113 -0.23912 -0.02639 -0.04621 0.01765 
1996 0.18926 -0.28794 -0.14412 -0.08221 -0.22633 -0.02167 -0.04164 0.01329 
1997 0.17297 -0.26402 -0.13687 -0.07993 -0.21680 -0.02265 -0.03795 0.02640 
1998 0.17823 -0.25469 -0.13137 -0.07389 -0.20526 -0.00422 -0.02526 0.01206 
1999 0.16048 -0.22097 -0.10954 -0.06247 -0.17201 -0.00608 -0.01528 0.01577 
2000 0.16915 -0.22625 -0.10733 -0.06223 -0.16956 -0.00491 -0.01657 0.01630 
2001 0.16952 -0.21294 -0.09464 -0.04261 -0.13725 -0.00262 -0.00059 0.01893 
2002 0.15945 -0.20099 -0.08283 -0.03687 -0.11970 -0.01514 0.00059 0.02313 
2003 0.15612 -0.19233 -0.08213 -0.03026 -0.11238 -0.01124 0.00644 0.01724 
2004 0.15243 -0.19215 -0.08249 -0.03831 -0.12080 -0.00678 0.00118 0.01819 

1CEd = calving ease direct; BWTd = birth weight direct; 205-d WTd = 205-d weight direct; 160-d gain = 
160-d postweaning gain direct; 365-d WT = 365-d weight direct; CEm = calving ease maternal; BWTm 
= birth weight maternal; 205-d WTm = 205-d weight maternal  
2API = 1.3CE + 0.1WWT+0.2YWT-1.8BWT (above average sires and the top 75% dams within sires)  
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Table D.5: Average standardized EPD1 for calving ease and growth traits of first-calf 
Simmental heifers from all-purpose sub-selection index scenario (API1)

2 

BY CEd BWTd 205-d WTd 160-d gain 365-d WT CEm BWTm 205-d WTm 
≤ 1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
1970 0.04260 -0.03270 -0.01428 -0.00146 -0.01574 0.00085 0.00666 0.01097 
1971 0.06213 -0.04758 -0.01548 0.01064 -0.00484 0.01446 -0.01526 0.00896 
1972 0.08537 -0.05718 -0.00189 0.02819 0.02630 0.03396 -0.01615 0.04298 
1973 0.09534 -0.06248 -0.00674 0.03545 0.02872 0.01291 0.00905 0.04031 
1974 0.10906 -0.06813 -0.01245 0.03281 0.02036 0.00977 0.02140 0.05232 
1975 0.12718 -0.08140 -0.00309 0.04512 0.04203 0.02100 0.02887 0.06110 
1976 0.12389 -0.08711 -0.01257 0.03396 0.02139 0.02178 0.02480 0.06265 
1977 0.12806 -0.09071 -0.02022 0.03135 0.01113 0.01244 0.02500 0.05321 
1978 0.13276 -0.11038 -0.02962 0.02146 -0.00816 0.00863 0.01514 0.04074 
1979 0.13330 -0.11750 -0.02739 0.02598 -0.00141 0.00271 0.01965 0.04024 
1980 0.13264 -0.12227 -0.03410 0.02552 -0.00858 -0.00177 0.01322 0.03230 
1981 0.13717 -0.13308 -0.04172 0.01793 -0.02379 -0.00754 0.00928 0.02479 
1982 0.14252 -0.14374 -0.03951 0.01664 -0.02287 0.00529 0.00460 0.02700 
1983 0.13438 -0.13979 -0.04376 0.00928 -0.03448 0.00138 0.01328 0.01769 
1984 0.13783 -0.14538 -0.03477 0.01051 -0.02426 0.00660 -0.00597 0.01237 
1985 0.14261 -0.15297 -0.04226 0.00612 -0.03615 0.01670 -0.00339 0.00526 
1986 0.14377 -0.16012 -0.04869 0.00008 -0.04862 0.01013 -0.00404 0.00819 
1987 0.14679 -0.16954 -0.05706 -0.00822 -0.06527 0.00584 -0.01885 0.00945 
1988 0.15207 -0.17350 -0.06401 -0.01074 -0.07476 0.00722 -0.01806 0.01095 
1989 0.15587 -0.18116 -0.06276 -0.02013 -0.08289 0.00427 -0.02386 0.00453 
1990 0.16000 -0.18999 -0.06186 -0.02184 -0.08370 0.00251 -0.03328 0.00415 
1991 0.16109 -0.19519 -0.05447 -0.02016 -0.07463 0.00739 -0.02445 0.00384 
1992 0.16603 -0.20675 -0.06010 -0.02526 -0.08537 0.00374 -0.02308 0.01192 
1993 0.17037 -0.21461 -0.06029 -0.02230 -0.08259 0.00675 -0.02114 0.01186 
1994 0.17752 -0.22513 -0.06864 -0.02633 -0.09497 0.00370 -0.03439 0.01393 
1995 0.17347 -0.21741 -0.07181 -0.02766 -0.09947 0.00955 -0.04164 0.01799 
1996 0.18033 -0.21362 -0.07437 -0.02594 -0.10031 0.01093 -0.03720 0.01326 
1997 0.16317 -0.18971 -0.06842 -0.02500 -0.09341 0.00857 -0.03612 0.02756 
1998 0.16829 -0.18354 -0.06371 -0.01588 -0.07959 0.02457 -0.02273 0.01233 
1999 0.15423 -0.16141 -0.04684 -0.01178 -0.05863 0.02759 -0.01256 0.01737 
2000 0.16297 -0.16162 -0.04350 -0.00677 -0.05027 0.02026 -0.00567 0.01675 
2001 0.15922 -0.15917 -0.04134 0.00177 -0.03957 0.02502 0.00123 0.01242 
2002 0.15248 -0.14581 -0.03029 0.00761 -0.02267 0.01392 0.00871 0.02529 
2003 0.14908 -0.14634 -0.03379 0.00905 -0.02474 0.00687 0.01234 0.02327 
2004 0.15219 -0.15105 -0.03765 -0.00115 -0.03880 0.01122 0.00711 0.02780 

1CEd = calving ease direct; BWTd = birth weight direct; 205-d WTd = 205-d weight direct; 160-d gain = 
160-d postweaning gain direct; 365-d WT = 365-d weight direct; CEm = calving ease maternal; BWTm 
= birth weight maternal; 205-d WTm = 205-d weight maternal 
2API1 = 1.3CE +0.2YWT (above average sires and the top 75% dams within sires) 
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Table D.6: Average standardized EPD1 for calving ease and growth traits of first-calf 
Simmental heifers from the all-purpose sub-selection index scenario (API2)

2 

BY CEd BWTd 205-d WTd 160-d gain 365-d WT CEm BWTm 205-d WTm 
≤ 1969 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
1970 0.03037 -0.04039 -0.03029 -0.01682 -0.04711 -0.00876 -0.01901 -0.01444 
1971 0.02957 -0.05152 -0.02909 -0.02365 -0.05274 -0.01223 -0.00938 -0.01317 
1972 0.05066 -0.07413 -0.03289 -0.02063 -0.05352 -0.00864 -0.01817 -0.00246 
1973 0.06568 -0.08983 -0.02736 -0.00404 -0.03140 -0.02361 -0.00249 0.00007 
1974 0.07858 -0.11373 -0.05556 -0.01636 -0.07192 -0.04608 0.00561 -0.01231 
1975 0.10358 -0.14148 -0.07699 -0.03129 -0.10828 -0.03960 -0.00005 0.00407 
1976 0.11089 -0.15488 -0.08978 -0.04284 -0.13263 -0.04429 -0.00397 0.00663 
1977 0.11177 -0.15632 -0.08586 -0.04015 -0.12601 -0.04103 -0.00785 0.00570 
1978 0.12381 -0.17591 -0.09232 -0.04075 -0.13308 -0.03956 0.00056 0.00410 
1979 0.12727 -0.17966 -0.09015 -0.03565 -0.12581 -0.04981 0.00057 0.00481 
1980 0.13309 -0.19386 -0.09881 -0.03918 -0.13799 -0.04767 -0.00069 0.00009 
1981 0.13819 -0.21064 -0.11268 -0.04335 -0.15603 -0.04826 -0.00871 0.00082 
1982 0.14252 -0.21992 -0.11735 -0.04729 -0.16464 -0.03707 -0.01667 0.00324 
1983 0.13927 -0.21901 -0.11814 -0.05776 -0.17590 -0.03609 -0.00680 0.00715 
1984 0.13465 -0.23084 -0.12042 -0.06190 -0.18232 -0.04510 -0.02044 0.00314 
1985 0.13887 -0.23454 -0.11545 -0.05943 -0.17488 -0.03688 -0.01128 0.00395 
1986 0.13839 -0.24274 -0.12427 -0.07347 -0.19774 -0.03612 -0.01676 -0.00060 
1987 0.14400 -0.25535 -0.13249 -0.07616 -0.20865 -0.03727 -0.02354 0.01124 
1988 0.15106 -0.26460 -0.14302 -0.08549 -0.22851 -0.03085 -0.01999 0.00754 
1989 0.15506 -0.27677 -0.14453 -0.08881 -0.23334 -0.03012 -0.02588 0.00816 
1990 0.15927 -0.29024 -0.15358 -0.09619 -0.24977 -0.02769 -0.02635 0.00719 
1991 0.15852 -0.29399 -0.13984 -0.08848 -0.22832 -0.02107 -0.02082 0.00352 
1992 0.16576 -0.30802 -0.14897 -0.10607 -0.25504 -0.03887 -0.01587 0.01704 
1993 0.17564 -0.32261 -0.15603 -0.09705 -0.25307 -0.03390 -0.02091 0.01342 
1994 0.17576 -0.32323 -0.15318 -0.10032 -0.25350 -0.03196 -0.02687 0.01999 
1995 0.18476 -0.32420 -0.16200 -0.10205 -0.26405 -0.03480 -0.04274 0.02190 
1996 0.17825 -0.29654 -0.15505 -0.09302 -0.24807 -0.03524 -0.04328 0.01665 
1997 0.16182 -0.27620 -0.14997 -0.09098 -0.24094 -0.03243 -0.04359 0.02521 
1998 0.16357 -0.26076 -0.14295 -0.08508 -0.22803 -0.01868 -0.02693 0.01287 
1999 0.14513 -0.23244 -0.12343 -0.07426 -0.19770 -0.01777 -0.01625 0.01743 
2000 0.15328 -0.23220 -0.11287 -0.06831 -0.18118 -0.01281 -0.01943 0.02257 
2001 0.16009 -0.22465 -0.10861 -0.05512 -0.16373 -0.01526 -0.00026 0.02310 
2002 0.14308 -0.20570 -0.09373 -0.04998 -0.14371 -0.02322 -0.00519 0.02149 
2003 0.14475 -0.20649 -0.09433 -0.04333 -0.13765 -0.01869 0.00487 0.01014 
2004 0.14210 -0.20236 -0.09364 -0.05058 -0.14422 -0.01856 -0.00301 0.01504 

1CEd = calving ease direct; BWTd = birth weight direct; 205-d WTd = 205-d weight direct; 160-d gain = 
160-d postweaning gain direct; 365-d WT = 365-d weight direct; CEm = calving ease maternal; BWTm 
= birth weight maternal; 205-d WTm = 205-d weight maternal 
 2API2 = 0.2YWT-1.8BWT (above average sires and the top 75% dams within sires)  
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APPENDIX E: AVERAGE NET PROFIT FROM VARIOUS SELECTION SCENARIOS 

EXPRESSED AS A DEVIATION FROM THE SIMMENTAL CATTLE NET PROFIT 

(CONTROL) 
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Table E.1: Average net profit1 ($), as deviation from Simmental cattle, for various selection 
scenarios 

BY 
Selection scenario2 

HCE LBWT DSI API API1 API2 
≤ 1969 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1970 4.5052 3.0670 3.4040 3.7772 4.6892 3.2646 
1971 7.5099 3.6008 3.9420 5.9683 6.9655 3.2996 
1972 9.7905 3.2731 6.1716 8.8121 9.7387 5.7591 
1973 11.7179 5.4288 7.7423 10.6757 10.8314 7.6753 
1974 14.5793 9.2275 8.3336 12.8657 12.2459 8.9581 
1975 16.8381 10.9420 10.3255 15.0633 14.4554 11.5930 
1976 16.8228 11.9934 10.6576 15.3209 14.0276 12.3220 
1977 16.7851 12.0605 10.6976 15.3589 14.4099 12.4875 
1978 17.0502 13.7529 11.8103 15.9817 14.9946 13.9138 
1979 17.1706 14.0967 12.8692 16.3403 15.1925 14.3711 
1980 16.8380 14.7758 13.0147 16.5628 15.1148 15.0455 
1981 17.4883 15.6552 13.5786 16.9651 15.5981 15.6206 
1982 18.0398 16.2652 14.3527 17.3225 16.3020 16.1159 
1983 17.2971 15.9588 13.5797 16.6881 15.3273 15.6993 
1984 17.8129 15.5898 14.3803 16.9494 15.8545 15.3308 
1985 18.5257 16.4111 14.6786 17.5962 16.3416 15.8788 
1986 18.8880 15.8644 14.8725 17.5588 16.4512 15.7626 
1987 18.8437 16.4979 15.5694 17.9335 16.7490 16.4022 
1988 19.4507 17.3341 15.5903 18.6939 17.2560 17.0844 
1989 19.7368 17.7500 16.1380 19.1341 17.7025 17.6183 
1990 19.7262 17.9361 16.9357 19.4181 18.2408 18.0879 
1991 19.9687 18.0176 17.2214 19.4849 18.5058 18.2473 
1992 20.4083 18.4945 18.6218 19.9220 19.0742 18.9740 
1993 21.0992 19.7881 19.7390 21.2793 19.6370 20.1547 
1994 21.4672 19.6959 20.1727 21.1806 20.3944 20.1854 
1995 20.6175 20.9555 20.6434 21.5979 19.8392 21.0157 
1996 20.9644 20.1633 19.9177 21.3021 20.4741 20.1143 
1997 19.1074 18.0701 18.3376 19.4154 18.4744 18.2341 
1998 19.9264 18.4463 18.3249 19.9237 19.0201 18.3189 
1999 17.7780 15.9666 16.8392 17.9608 17.4898 16.3237 
2000 19.7843 17.1105 17.4470 18.9414 18.4520 17.3010 
2001 19.1380 16.7483 18.2524 19.0532 18.1094 18.0227 
2002 18.3697 15.8844 16.7209 18.0220 17.3925 16.2145 
2003 18.0056 16.1231 16.8052 17.6144 17.0231 16.4300 
2004 17.4859 15.7659 16.3453 17.1822 17.3038 16.0680 

1 The net profit was calculated using the all-purpose selection index (API) 
2HCE = single trait selection for high calving ease; LBWT = single trait selection for low birth weight; DSI = YWT 
– 3.2 BWT; API = 1.3CE + 0.1WWT+0.2YWT-1.8BWT; API1 = 1.3CE + 0.2YWT; API2 = 0.2YWT-1.8BWT 

 


