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ABSTRACT

AN INVESTIGATION INTO THE FORMATION OF REPRESENTATIONAL ASSOCIAONS IN

VISUAL CATEGORY LEARNING

Category learning allows us to use previous information we have accumulated, and extend it to
new situations. Multiple systems are proposed to underlie learning, including: an expéditased
system, and an implicit, procedural system. Information integration tasks are thought to logdonéavil
the latter. In these tasks, a high degree of accuracy is reached only if participants caa integrat
incommensurable dimensions, often without being able to verbally describe how they are categorizing
each stimulus. Learning in this type of task is thought to occur as participants associate agiien st
with a category label, and then that label to a motor response. The present study sought to examine
whether there may be an additional associative stage in which a stimulus is first associated with a
“category representation” — a representation of the critical characteristics of a given categejch is
then associated with a category label. Two experiments were conducted which attempted to determine
whether this form of category representation is learned in information integiadlan Both experiments
reversed the category representatiarategory label association for a subset of stimuli and tested if
subjects would transfer this reversal to the remaining stimuli, as should happen if they learnedkte assoc
each label with a single abstract category representation. Experiment 1 trained sultjeets sats of
labels, each of which was associated with the same abstract category representatiorngicessiadf
one set of labels would alter the other. Experiment 2 trained subjects with 1 set of labeltednfl tes
learning to reverse half of the stimulus space would transfer to the remaining half. In athdition,
consistency of category label and motor response associations were manipulated in Experiment 2, with
the hypothesis that subjects learning under inconsistent mappings would be forced to learn category labels
and be more likely form an abstract category representation, whereas subjects learniognsmtent
conditions might only learn basic stimulusesponse associations. Subjects in Experiment 1 did not



transfer the reversal to the second set of category labels, inconsistent with the hypottmdifettta

would form an abstract category representation. However, over half the subjects in Experiment 2 did
transfer reversed category label associations to untrained stimuli. Furthermore, angrebtgrof

subjects transferred the reversals in the Inconsistent mapping condition. This is the first stuénto pres
evidence suggesting the existence of an abstract category representation and to provide a unique

dissociation between consistent and inconsistent mappings for an information-integration task.



TABLE OF CONTENTS

ABSTRACT .ttt s e e e e o e oo e oo oo e oo oo oo e e e e e e e e e e e e e e e e e eaeeeaaaaa e et e e e et e e e et e teaaeaaeaaaes B,
CHAPTER 1: INTRODUGCTION .....oiiiiiiiiiiiiiiii ittt e a e n e e e e e e e e e e e e e eeas 1
EIY TREOIIES ...ttt e e e e e e et e e e e e e e e r e e e e e e e e e e e nnnreee e 3
SiNgle VErsuS MUILIPIE SYSIEIMS ......vviiiiiiiiiiiiiiiiii e e e e e e e e e e e e aaaeaaaaaaaans 9
DISSOCIALION STUAIES .....ceeiiieeeiiiiete ettt e e e e e et e e e e e e e s r et e e e e e e e s asnbrnnreeeeeeeeaanns 14
IO TS = Vo [T T To [ PP 24
TRre@-Stage MOUEL.......ooi i et e e e e e e e et e e e e e e e e s e annnes 26
CHAPTER 2: EXPERIMENT L.ttt ettt s e e e e e e e bt s e e e e e e e aaaba e e e e e eeeaenanns 29
IMIEENOTS ...ttt e e et e e e e et e e e e e e r e e e n e r e e 30
RESUILS ..ttt oottt e e e oo e oo e ettt e e e e e e e e et e e e e e e e e r e e e e e e e e e aans 33
DT o1 U 1 (o] o PP PP P P PPPPPPP TP 36
CHAPTER 3: EXPERIMENT 2.ttt ettt e e e ettt a e e e e e e e atab e e e e e eeeaenanns 39
Y11 oo K ST PP P PP PPPPPPPPP 42
RESUILS ...ttt oot e et e e et e e e e e e e as 44
DISCUSSION ...ttt ettt ettt e e e o4 4okttt ettt e e o444 e R bbbt ettt e e e e e e e e e e e et e e e e e e e e nnnnne e 49
CHAPTER 4: GENERAL DISCUSSION ...ttt ettt e e e e e e e e e e e e eeees 53
CHAPTER 5: REFERENGCES ...ttt e e e e ettt s e e e e e e e e bbb s e e e e e e eeetenan s 60



CHAPTER 1: INTRODUCTION

Categorization is necessary for survival. In addition to helping us recognize threatdpizidivi
and locations, categorization is necessary for forming meaningful associations betwieeritsing, and
in the case of encountering something unknown, allowing us to extrapolate based on past experiences. We
can even use previously acquired representations from memory to imagine what the future could be like.
This is because our minds store commonalities in addition to specific representations. In general,
categorization is something humans can do quickly and effectively (Seger & Miller, 2010). While
research into how we learn to categorize stretches across several domains (e.g. somatosensory, auditory
emotion), visual categorization is the most studied area (Richler & Palmeri, 2014).

Categorization, decision making, and generalization may all be intertwined to a greater degree
than is currently emphasized in the literature (Seger & Peterson, 2013). Research into the latead,
therefore, may benefit through a greater understanding of category learning. For example, understanding
the mechanisms of how we learn to categorize stimuli might elucidate how we use this infotmati
make a decision to act. Furthermore, category representations allow us to generalize andtransf
knowledge to new situations and new task demands. Therefore, by adding to the available knowledge on
category learning, other applied research areas can benefit as well (e.g. neuroeconomics, top-down
mediation of perception).

| begin by describing the types of tasks used in category learning studies, as much of this
terminology will be used throughout the paper. Next, | discuss early theories of categong|eahich
form the basis for modern theories of category learning. Afterwards, | discuss the single- wtiples m
systems debate, presenting evidence from both sides on the nature of how category representations are
formed and used. | will focus largely on behavioral dissociation studies, along with some evidence fr
neuroimaging, that are relevant for understanding the formation of associations betwegn stimul

categories, and motor responses. Finally, | describe two studies conducted to investigate whether



intermediate category representations between stimuli and category labels are formed duniragamf
integration category learning.
Categorization tasks

It is important to begin by introducing some of the terminology used in describing the different
types of category learning tasks. While there are others, the tasks most relevant for sedBtyoly are
rule-based (RB) and information-integration (1) tasks. (Ashby & Maddox, 2011). Rule-lbaksdcte
ones in which the categories can be determined through logical reasoning. Generally, the rule by which
stimuli can be most optimally categorized can be explicitly stated by participants, and it & afien
dimensional rule (e.g. “if blue, category A, if green, category B”), although it does not necessarily have to
be. One example is the Wisconsin Card Sorting Task (WCST), in which participants must learn rules to
sort cards into groups (Maddox, Ashby, & Bohil, 2003). These types of tasks are thought to rely on
declarative memory systems, including both working and episodic memory, along with executiaafuncti
systems.

Information-integration tasks are thought to rely more on implicit, proceduraryngystems.
In information integration tasks, participants must integrate information from two, often
incommensurable dimensions. A commonly used task, and one which is directly relevant to the proposed
study, presents circular, sine-wave gradient stimuli which vary in bar rotation and bariaielt
perceptual space the stimuli are sampled from is divided by a line moving through the space at a 45-
degree angle. In this way, as one dimension moves along the x-axis, the characteristic of the y-axis
increases as well. To succeed, participants cannot rely on a verbal rule (e.g. when is width greater than
rotation?) but instead must learn to associate responses with regions of perceptual space (As&by, Paul
Maddox, 2011refer to figure 4 and 8 in methods for illustration). The procedural system is commonly
associated with skills learned through practice, and there is generally little conscidestrenadf the
associated memories. Learning in this domain also requires consistent feedback, and is slow and
incremental. Accuracy in some information-integration tasks is often maximized whemnatitor from
two or more stimulus dimensions is integrated at some predecisional stage, but in genengj jitearn
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information-integration tasks takes place at an unconscious level. An example of a pldeaduing
taskis the Serial Reaction Time (SRT) task, in which reaction-time performance to rapid butses pses
reduced through repetition of extended patterns of stimulus presentation; this occurs even when
participants are not aware of the repetition (Maddox, Ashby, Ing, & Pickering, 2004).

Early Theories: The Prototype Model

There have been several competing theories put forth over the decades in regards to the
mechanisms through which category representations are learned and used. Each makes assumptions about
how stimuli representations are created, what information is needed to recognize a category,and h
category decision is eventually made (Ashby & Maddox, 1993). One commonality across theories is an
emphasis on how category learning utilizes fundamental memory systems. In the early yearsrgf categ
learning research theories typically assumed that learning relied on a single memoryHBystgoestion
of which memory system that may be, and in what manner the memory system is recruited to facilitate
category learning, was a common subject of debate (Ashby & O’Brien, 2005). An early theory of
category learning suggested that all categories are learned through the acquisiiarabifules, which
are determined through simple, explicit hypothesis testing. This was even suggested to apply to how
animals might learn categories (Bourne, 1970). However, this explanation was argued as being too
artificial (Richler & Palmeri, 2014), and although rule based category learning a&cstipted as one
form of category learning it is not thought to encompass all learning. Instead, it is thoutidrihatay
be several different forms of category learning.

An appreciation of the limitations of rule based theory led to the development of prototype
theory, which argued that a prototypical representation is learned. Effectively, thtygpeaterves as an
internal representation of a category, and it is constructed from features abstmamteddmplars of that
category (Goldman & Homa, 1977). Posner and Keele (1968) proposed that, during learning, the
commonalities within a group are abstracted from individual exemplars and stored in memory. To
demonstrate this, they used a visual categorization task in which, during a training phageamuartici
learned highly distorted versions of different dot-pattern prototypes until they had gadentified two
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sets of stimuli with perfect accuracy. The dot-pattern stimuli presented dufiriggraere generated by
first creating a “prototype” for each group (composed of 9 dots, arbitrarily arranged in a 30 x 30 point

matrix), and varying the deviation of each of the starting points of the dots to diffegrets based on
certain statistical procedures. As the deviation of the dots from their originad@tpoints increased,

they were said to have greater perceptual variability from the prototype. In the test phaseaupsrti

were shown the trained stimuli as well as other related ones: new stimuli with equal perceijatitityyar
stimuli with greater perceptual variability, and the prototype stimuli they were alil lnas They found

that identification of the prototypes was less error prone, and elicited quicker responses, campared
other exemplars, even those which were presented during training. They suggested that during learning,
participants learned the central tendency of the category (the prototype) through being expivselil to st
which varied in their perceptual dimensions. Therefore, when presented with the prototype stimuli the
trained stimuli were based on, they were quickly able to identify the most representativerroéthe
categories they had learned.

Prototype theory accounted well for the results from several category learning sthdigsick
and accurate identification of the prototype in Posner and Keele’s study suggested that participants
learned the prototypical features of each category even without direct observation ofatyp@rot
Another study, which used similar methods but different stimuli, inserted a one-week delayhlibevee
training and testing phase and found that while training stimuli were mostly forgotten, protuigpes
new patterns were easily identified. The forgetting of specific stimuli and their fealggessed that
category learning happens at a more abstract level and that the prototype representatiopastéme
part of the category learning process (Goldman & Homa, 1977).

One criticism leveled towards the prototype theory was that, at the time, almostgdirgat
learning models predicted excellent classification of a prototypical stimulus (Reed, 197@ptage, by
definition, has the greatest number of similarities to its exemplars, and additionallyigitly unlikely
that one prototype would be similar to exemplars from any other category. The next wave of category
learning theories was exemplar driven. They suggested that, instead of learning a prototype through
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abstraction, categories were learned by combining features only from exemplars which had been
previously presented. This process did not require abstraction, but could still account feirettes
prototype theory literature. It also emphasized the importance of a participant’s contextual knowledge (i.e.
presented exemplars) in how categories are learned as well (Richler & Palmeri, 2014).

Early Theories: The Exemplar Model

One specific exemplar based model was called the context theory of classification (Medin &
Schaffer, 1978). It proposed that when a stimulus is presented, its features should activate aneassociat
network created by aggregating features from similar, previously presented stimuli. goniirn
difference is that, rather than the categorization decision depending on a comparison utilizingjyan equa
weighted average of known diagnostic features, as in prototype theory, the context model specified
multiplicative combination rule, wherein high similarity to some features is mgreriemt than average
similarity overall. An example is that, while a mannequin may very closely resemble a human (e.qg.
anatomical similarity, clothing, etc.) the lack of animacy (i.e. one feature) is eefaegdeterminate of
category membership than its average similarity (Medin & Schaffer, 1978). In a series of four
experiments, Medin and Schaffer (1978) utilized stimuli with several different bimagndions (e.qg.
geometric shapes; size: big or small). They found that their statistical models not peljasaied many
other existing theories in accounting for their results, but they were also able to accthmtésults of
studies originally interpreted as supporting other theories as well. They suggested thas tewidence
of their model being more broadly applicable.

An extension to the context model came in the form of the generalized context model (GCM;
Nosofsky, 1986). One advantage of the GCM included accommodating stimuli with multivalued,
continuous features instead of just binary ones. This was important because while the contexaismodel
proposed with the idea that natural stimuli are more arbitrarily constrained, they only usedhmesy
features. The GCM also proposed that the development of categories through exposure to exemplars was
more complicated than initially proposed. It was suggested that as participants focus on cemin sal
features of stimuli, they may inappropriately infer that some continuous measure of@grastimulus
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feature reflects category membership. This would alter the psychological dimensions forycategor
membership between participants, which they interpreted as meaning that each diffggentsuld
potentially maintain a different mental representation of each category. A small study Nosofsky (1986)
conducted concurred with these hypotheses, and he cautioned interpreting results in other studies as
suggesting “a direct reflection of the underlying similarity representation, or of attention and decision
processes that operate on this representation” (p. 54).
Early Theories: The Decision-Bound Mode

Another well-supported theory was known as the decision-bound model. This model had its basis
in general recognition theory (GRT; Ashby & Townsend, 1986). General recognition theory assumes that
participants learn categories by associating specific responses with a corresponading negriceptual
space. Because repeated presentations of a stimulus do not always necessarily generate the same
perceptual event due to perceptual noise, the likelihood of whether a stimulus will be perceived as
belonging to one category or another follows a normal distribution. This causes categarissparated
into groups by more than just their corresponding exemplars, but also “as a probability mixture of the
individual exemplar distributions” (Ashby & Maddox, 1992, p.53). This model proposes that participants
divide the representational stimulus space into response regions each associated with aalsbgorg |
this partition between response regions is referred to as the decision bound. The GRT assumes
participantsattempt to respond optimally, but encounter certain limitations: “perceptual noise, selection of
a sub-optimal decision bound, variability in the memory of this bound, response bias, andtyanabil
the memory of the response criterion” (Ashby & Maddox, 1993, p. 377). This model predicts that,
eventually, categorization should become automatic once a category becomes associated with a particular
region. This is in contrast to exemplar theory, in which it is proposed that a partitipstinake a
comparison between the current exemplar and all other presented exemplars every time (Ashby &
Maddox, 1990).

It was common for researchers to conduct a category learning study in which they would apply
several different models to the data in an attempt to see which one best could account for the data. The
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“best fitting” model would then be assumed to be correct. Eventually, however, some concerns arose
concerning the efficacy of this approach (Chandrasekaran, Koslov, & Maddox, 2014). Ashby and
Maddox (1993) demonstrated that, at the level of the data, the prototype, exemplar, and decision-bound
models were mathematically equivalent. Additionally, some data emerged which demonstrated behavioral
dissociations between category learning tasks which could not be explained easily by any single-system
model (Ashby, Alfonso-Reese, Turken, & Waldron, 1998). Finally, neuroimaging evidence began to
emerge suggesting that, based on certain category learning task demands, multiple neural regions
associated with different learning and memory functions could be recruited simultansoosyimes in
parallel (both increasing), sometimes competitively (one increasing while the othexsgejre
Commonly examined learning and memory regions included components of the medial temporal lobe
(MTL; hippocampus) responsible for declarative memory, and the basal ganglia, which can be involved i
skills and instrumental learning. This suggested that different learning systems were emgacmaext
driven manner, and that category learning may actually rely on more than one representational system
(Poldrack & Packard, 2003). The single- versus multiple-system debate is complex, and arguments from
both sides will be considered.
Single- versus M ultiple-systems views

Current models of category learning are much more complicated than the early models, and
involve converging evidence from behavior, neurological, and computational modeling domains (Richler
& Palmeri, 2014). Early theories of category learning never specified which memory sysyene in
use during the categorization process. However, as research from the memory literature begastto sugg
there may be multiple memory systems, inquiry into which system(s) may be responsible for which
aspects of category learning began. This interest was supplemented by advances in imaging methods (e.g
functional magnetic resonance imaging; fMRI) which allowed for localization of acitivttye brain. In
the beginning, virtually all category learning theories assumed a single-system motkethé/térm
“single-system” may have at first referred to a single neural system, single-system proponents now take
the view that there is a singlepresentational system which may be used differently depending on the

7



circumstances and is not necessarily confined to a single neural system. Single-system thggets s

that one representation may be shared across different types of tasks and demands, while steltiple-sy
theorists argue that separate and independent systems are recruited based on the task to be performed
(Richler & Palmeri, 2014).

Single- versus Multiple-systems views: Multiple inter pretations

On a broad, conceptual level, the main argument put forth by single-system theorists is one of
parsimony: that the evidence put forth to suggest a multiple-systems model can be explained using
computational models that do not involve multiple systems. The argument, then, is that the singke-system
view is preferable (Poldrack & Foerde, 2008). To explain evidence from neuroscience demonstrating
differential neural activity during certain tasks, single-systems theorists argueetlaativity reflects the
use of different neural systems for different computations, but that it still refectsage of one
representation. Additionally, some systems may be recruited more than others for certaig categor
learning tasks (Richler & Palmeri, 2014). There are even relatively modern category leardéig tinat
reflect this single-systems perspective. The attention learning covering map (ALC@4ehke, 1992)
is an extension of the exemplatsed general context model, and incorporates “perceptual processing,
perceptual memories, selective weighting based on diagnosticity, learned associations betwearsexempl
and categories, and categorization decision mechanisms, all of which can be subject to top-down
executive control” (Richler & Palmeri, 2014, p. 85). This model, however, has had a hard time accounting
for data from recently conducted dissociation studies, which will be discussed later (Maddox et al., 2003)
While some published studies claim that “many researchers now accept the strength of the evidence
supporting multiple systems” (Ashby & Maddox, 2011), there is still some debate regarding the
interpretation of this evidence.

One such example comes from an fMRI study which investigated differences in intentional
(explicit) or incidental (implicit) learning tasks using dot-prototype stinRditler, Gitelman, Parrish, &
Mesulam, 2003). The participants in the intentional condition were told they would see a number of dot
and that the configuration reflected category membership (for only one category); theylaverat to
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should try to learn this relationship. In the incidental condition participants were told nothirdjmggar

the categorical nature of the task or stimuli. Instead, they were told it was a mental istadgrand

they were instructed to imagine pointing at the dot in the center of the screen. Durasjitiiephase,

the categorical nature of the task was revealed, and they were instructed to respond as to whether eac
presented stimulus did or did not belong to the previously presented category. While accuracy between
groups was equal, they found different patterns of brain activity between tasks. The intentigmal gr
showed greater activity in the hippocampus and some cortical regions; areas proposed to be associated
with explicit category learning tasks, while the incidental group showed a reducedatiivale right

middle occipital cortex (primary visual) for novel stimuli from the traingdgary. Repetition

suppression (RS), a phenomena which describes reduced neural activation in response to repeated stimuli
(Grill-Spector, Henson, & Martin, 2006), could have possibly accounted for the latter leff@eter, the
authors suggested that RS models do not suggest this effect can generalize to novel, related stimul
Therefore, based on previous research, the authors interpreted these data as represantatgdlory
processing. Taking these results in combination, the researchers argued that their resudtsateth

separate category representations, in support of the multiple-systems view (Reber et al., 2003).

A criticism leveled at this study had to do with the way the task was explained to participants; the
separate “representations” could have been due to differences in stimulus-encoding processes. A study by
Gureckis, James, and Nosofsky (2011) replicated and extended the Reber and colleagues (2003) paper to
decouple factors which they claimed could have produced data in favor of multiple-systems. In addition
to directly replicating the conditions used in the Reber et al. (2003) paper, they also added two additional
conditions. In an additional intentional condition, participants were still told they would be learning
categories, but that the most important diagnostic feature was the center dot and that they apimgld im
pointing to it. The additional incidental condition was a similar reversal in that, whilevereystill not
told about the categorical nature of the task, they were asked to focus on the configuration of the dots.
They found that their encoding instructions (attention to the center dot versus overall cbafijura
strongly influenced the observed patterns of activation, regardless of the empiaiitinature of the
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task, and they suggested that the observed activity was better explained by how patrticipants visually
processed the stimuli rather than evidence for multiple-systems (Gureckis et al., 2011).

This example demonstrates the complexity of this debate, and how easily critics from both sides
can interpret the evidence as favoring their views. Typically, criticisms originating fnghe-siystem
views are often methodological in nature, focusing on critique of a single experiment supportipig mult
systems. While evidence in favor of the multiple-systems view is large and still graveimigy( &

Maddox, 2005; Ashby & Maddox, 2011), critics suggest, in light of studies such as the aforementioned
fMRI study, the current amount of evidence may not be enough to completely reject the single-system
view. While they do not suggest that the multiple-systems view is entirely incorrect either aiteeg pl

high burden of proof on these complex, multiple-system models (Zaki & Kleinschmidt, 2014). \&hile th
single-system view has some valid criticisms, it cannot entirely account for evidence to theycont
either. Additionally, proponents of this theory are at a loss to describe the broader setsofroesul
neuroscience and animal data (Poldrack & Foerde, 2008).

Competition between verbal and implicit systems (COVIS); a multiple-systems model

The COVIS model is a well-supported multiple-systems model which the proposed study is based
on. COVIS attempted to incorporate modern behavioral, neurological, and computational modeling data
into one coherent format. As suggested by its name, this model proposed that category learning was a
COmpetition between Verbal and Implicit Systems (COVIS; Ashby et al., 1998; Ashby et al., 2011). For
the studies proposed here, the implicit system within the COVIS model will be the primary focus.

COVIS has been experimentally tested primarily through the use of rule-based and infermation
integration tasks, which were described earlier. Ashby and colleagues argued that each of these tasks
recruited primarily one of the COVIS mechanisms, with rule-based involving the verbal system, and
information integration the implicit system. They proposed that performance on rule-based tasks was
governed by a verbal, explicit system that relied on semantic knowledge and was under conscious control.
Information-integration performance, they suggested, was conversely governed by a non-verbial, implic
knowledge system which utilizes procedural learning (Ashby et al., 1998), although the latter aspect has
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endured some criticisms (Smith, 2008), and the nature of their explanation for the implicit sgstaot w
entirely refined at that point. The authors suggested that during category learningygectoshould

initially be dominated by the verbal system. However, the implicit system should eventually take over and
begin to “automate” performance. In general, which system ends up being the most dominant should

depend on the dimensions of the stimuli to be categorized: a stimulus with separable dimendiains in w
only one dimension is relevant should be easy to categorize using a unidimensional rule, hence, the
explicit system should dominate. However, if the dimensions are inseparable and more than one
dimension is relevant, it should be difficult, if not impossible, to develop a rule, leavingpheiti

system to dominate (Ashby et al., 1998).

Ashby and colleagues furthermore proposed neural loci for the explicit and implicit systems, and
presented behavioral data on category learning tasks from special populations, such as those with
Parkinson’s and Huntington’s disease, as evidence of dissociations in performance; possibly related to
specific insults to the verbal or implicit category learning system. They suggestdwthathial system
relies on a network connecting the prefrontal cortex, head of the caudate, and the anteriog,cingulat
which allows for switching from ineffective rules and selecting the appropriate rule treslyed he
implicit system, they suggested, functioned via an associative learning mechanism in which thieetail of t
caudate receives projections from visual areas and projects to premotor codpirgyasticity within
the tail of the caudate then can result in a learned association between each stimulustiantha pa
response. This would, in essence, form a direct stimulus-response relationship (Ashby et al., 1998)
Dissociation studies: Feedback differences

Although COVIS has been supported by a wide variety of evidence from behavioral,
neurological, and computational studies, the focus here will be on the studies that not only lsepport t
existence of multiple mechanisms, but that further characterize the nature of the anpliexplicit
systems.

The first area that will be covered is the relationship between feedback and task perfofimance.
COVIS model predicted that, due to the conscious nature of the explicit system, in rule based tasks the
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form of feedback and how it is processed should not constrain task performance. In contrast the implicit
system was predicted to rely, in part, on neurally constrained reinforcement learning; irtfyiting
nature of feedback presentation in information integration tasks should be much more crigeahfog.
An early study found that rule-based learning was not impeded by the lack of feedback, compared to a
severe decrement in performance due to lack of feedback in an information-integration task. Ashby,
Queller, and Berretty (1999) investigated the ability of participants to perforphesfrale-based) or
complex (information-integration) tasks with or without feedback. Without feedback, partidipéms
rule-based task were still able to perform with almost perfect accuracy, whilernththsdnformation-
integration performed sub-optimally. Ashby, Maddox, and Bohil (2002) trained participants useng eith
observational training, in which a stimulus and its label are presented simultaneously and no i®sponse
collected, or feedback training, in which participants must respond with their best guesgafycat
membership and are given feedback afterwards. On the basis of predictions made by COVIS, they
proposed that these two conditions would have differing effects on rule-based and informtetjaation
systems. Rule-based systems, are based on working memory and executive attention, thus the timing and
nature of the category membership information in both conditions should not matter. Howplieit, im
systems involved in information-integration learning rely on dopaminergic reward signaling after
stimulus and response; if the label is presented alongside the stimulus as in the observatiditad,
without a response, these systems will not be recruited. Therefore, they hypothesizedia deficit
performance in the observational training condition for the information-integratigrbt&sot in the
rule-based task. They found that participants performing the information-inbegiadk in the
observational training condition performed less accurately than all other groups, and were also more
likely to use sub-optimal rule-based strategies compared to their counterparts in thekfeaiiag
condition, suggesting the implicit system was not utilized (Ashby et al., 2002).

The finding that that feedback in information-integration tasks is more effective wésanfed
after the response raises the question of what amount of delay between response and feedback is most
optimal for learning. As COVIS suggests that the implicit learning system is dopamine mebereed, t
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should be an optimal period of time after dopamine is released but before it disappears during which
learning is most effective. A study by Maddox and colleagues (2003) varied the time between response
and feedback in rule based and information integration category learning tasks (conditinediate,
2.5s,5s, 10 s). For the rule-based task there was no difference in performance related to the timing of the
feedback. For the information-integration task, they found that performance was best in th@ienmedi
feedback condition compared with the 2.5 s, 5 s, and 10 s delays. The authors suggested that since 2.5 s
was enough time to see a decrease in synaptic efficacy and a weakening of the reward response, the
optimal amount of time might lie between a 0 and 2.5 second delay (Maddox et al., 2003). A later study
(Worthy, Markman, & Maddox, 2013), hypothesized, based on neuroscience studies (Lindskog, Kim,
Wikstrom, Blackwell, & Kotaleski, 2006) published after the Maddox et al. (2003) paper, that “learning is
best when calcium (mediated by glutamate) and dopamine levels peak simultaneously, and that this is
likely to occur when feedback ggven 500 ms after a response has been made” (p. 292). Worthy and
colleagues (2013) found that, in the rule-based task, there was no effect for feedbackrtithang.
information-integration task, they found that the optimal feedback delay was 500 millisecond

These studies on feedback timing seem to support the predictions made by COVIS in regards to
the different mechanisms between explicit and implicit category learning systems; gdittiesystem
is conscious, feedback can be processed at will, whereas implicit systems learn more autoamaticall
rely on more biological constraints.
Dissociation studies. Dual-task performance

Another area of research examining dissociations between rule-based and informationeintegrati
tasks is in the domain of dual-task performance. Another prediction by COVIS had to do with the nature
of how each system relies on cognitive resources such as executive functions. The implicit meschanism i
COVIS is independent of these resources, whereas the explicit mechanism relies on teamihgy. In
a dual-task study, participants must keep track of and respond to two different tasks with different
performance goals. If tasks loading onto the explicit or implicit system were given the sameldual-tas
one which required the use of an executive function system, it was predicted that the explicit task would
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suffer greater performance deficits. This is because the explicit system was propolyechtanreas
responsible for executive function, whereas the implicit system was proposed to rely more on procedural
learning systems. Therefore, a simultaneous executive function task should affect thetasiplioidre

so than the implicit task due to the competition for the same system’s resources.

Waldron and Ashby (2001) taugbarticipants to categorize geometric shapes varying in a binary
fashion across shape, background color, shape color, and humerosity, using either a unidimensional rule
(rule-based) or a complex, three-dimensional rule (information-integration). Cusagond session,
participants had to learn new, additional rules, and also were required to perform a numeagaifanal
the Stroop task as a dual task. In this concurrent Stroop task, a number was presented on eittiex side of
screen during presentation of the stimuli to be categorized. The numbers varied in physical sizesas wel
numerical value, and after the participant responded to the categorization aspect of the taske they wer
asked “value” or “size,” and had to indicate which was larger for whichever option was presented. They
were also instructed to prioritize performance on the Stroop task, and to think about thezaditegori
task as a secondary priority. The researchers suggested that, as they had to hold thesesizdue and
aspects of the numbers in working memory while categorizing, it should add to the diffictléytask.

What they found was that the concurrent Stroop task produced severe decrements in performance on the
arguably easier explicit categorization task, while performance on the more complicated iagkliciais

largely spared. These results are contrary to a single-system model, which would predict performance
becoming worse with a concurrent task the more complex the category structure becomes (Waldron &
Ashby, 2001).

A study attempting to determine the generalizability of Waldron and Ashby’s work was
conducted using almost identical procedures (including the concurrent numerical Stroop task), except
instead of stimuli varying along binary dimensions, they used stimuli which varied on contimesu$no
the experiment, which similarly compared performance on a rule-based versus information-integration
task, they found results which were identical: poorer performance in the rule-based compared to the
information-integration task during concurrent administration of the numerical SaslopAeithamova
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& Maddox, 2006). These dissociation studies of dual-task loading seem to support COVIS as well:
specifically, the idea that explicit and implicit systems function using separate sysitgahs. Executive
function tasks interfered with the explicit, declarative system proposed to be in use durbesade
tasks, while the implicit, procedural system seemed not to suffer serious performance decrements.
Additionally, that these systems can function independently during the same task is aatiietoprof
COVIS (Ashby et al., 1998).
Dissociation studies: Motor responses

Another area of dissociation research, and a very important one in the context of the proposed
study, involves the differential effects of motor response manipulations. COVIS postulates that the
implicit system involves the procedural memory system (Ashby et al., 1998), suggesting a much closer
link between information integration categories learned via procedural systems and a spotwsae

One of the first studies that attempted to investigate this procedural memory aspedisf C
was conducted by Ashby, Ell, and Waldron (2003). There were three different response conditions that
participants completed while they performed either a rule-based or informatioratitegask. The
study was broken up into a training phase and a transfer phase, and there were three diffiotent poss
conditions which were identical across both types of tasks. In the control condition, participanteinsed t
left and right hands, positioned on the left- and right-hand side of a keyboard, to respond as to whether a
stimulus belonged to categories A or B respectively; the transfer phase was identical. In the hand-switch
condition, participants used their right hand on the left-hand side of the keyboard and thianéybh
the left-side of the keyboard during training, and they uncrossed them during transfer (sitmdar to
control condition). The button-switch condition had participants begin the training phasesitietdithe
control condition, but in the transfer phase, instead of changing hand positions, the categomgtlabel th
each button referred to was reversed. In this way, during the hand-switch condition, only the motor
responses were reversed, whereas in the button-switch condition, the response locations as well as the

motor responses reversed.
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In the rule-based task, there was no interference across all experimental manipulations. The
experimenters suggested this was due to the fact that participants learned abstract catégory lab
mediated by an explicit, rule-based system, and as the explicit system does not involve a motor
component they were able to easily adjust their responses. The results for the infemtediation task,
however, were quite different. The hand-switch condition exhibited a slight decrease in accuchcy whi
was eventually recovered from, but the button-switch condition produced significant interferétce wh
did not decrease with practice. The authors suggested this was due to the fact that in the hand-switch
condition, while the motor response was changed, the actual response keys remained the same. However,
in the button-switch condition, they suggested that the performance deficit likely occurred duado the f
that in information-integration tasks, participants learn to execute a spegifimseslocation (category
A, left-hand side of keyboard) more so than a specific motor response (category A, left hand) (Ashby et
al., 2003).

A follow-up to this study was conducted by Maddox, Bohil, and Ing (2004). In their study, they
attempted to provide further evidence of the procedural aspect of the implitibgeaystem.

Participants were assigned to one of two conditions in a rule-based or informationiioegist In

what they referred to as the “A-B” condition, stimuli identical to those presented in the Ashby et al.

(2003) study were presented along with the query “Is this an A or B?” Participants pressed one key for

category Aand another key for category B. The other condition was referred to as the “yes-no”

condition. In this case, participants were either asked “Is this an A?” or “Is this a B?” and were then

supposed to respond with one key for “yes” or another key for “no” with the idea being that in the yes-no
condition, the response locations were constantly changing. They hypothesized that if there is a
procedural element to information-integration tasks, then an inconsistent set of response mamihgs s
prevent stimulus-response associations from being formed as effectively compared to having response
locations consistently mapped. They found a decrease in performance for the yes-no condition relative to
the A-B condition for the information-integration task that was not present in the rei@-faa&s. They
suggested this was further evidence that the explicit system does not require a corspstese re
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mapping; the only thing that participants need to learn is an abstract representation of taietypory
This is in stark contrast to the results from the information-integration taskdimmp¥urther evidence
that these may be multiple-representational systems (Maddox et al., 2004).

While the previously mentioned evidence seems to suggest that a consistent response location is
crucial for effective category learning, one study provides evidence which appears to cahizdieq.
Ashby and colleagues (2003) provided evidence that changing response |@fsidearning severely
disrupted performance, and while Maddox and colleagues (2004) seemed to present evidence that
inconsistent response locations during training can be problematic, the nature of the yes-no component of
the task led to some criticisms as to what systems exactly were being recruited. Therefang, Bpuler
Ashby (2008) wanted to further investigate the effect of inconsistent response locatiogs du
performance of an information-integration task. In their first experiment, participantsatechph
information-integration in which the category labels were represented by either two afidiésrent
colors or the letters A and B. In one condition, the circles remained in the same location, whbeeas in t
other two, the location of the circles and letters varied randomly. They found that whidedoen
locations started with worse performance and took longer to learn, the asymptotic difference thetween
consistent and inconsistent group performance was non-significant. They suggested that, in régards to t
Ashby et al. (2003) paper, it was the blocked nature of the task which caused the interference when
participants suddenly switched to inconsistent mappings. This was because they had been able to rely on
both a spatial and feature association, and they suggested that the spatial association may be the more
effective of the two. The participants in the Spiering and Ashby (2008) study never had a spatial
association to rely on, so they were forced to learn the weaker, feature associa#mh ins

In the second experiment reported by Spiering and Ashby (2008), they wished to examine the
yes-no aspect of the Maddox and colleagues (2004) paper. They performed a similar versiotudf/that s
using an informatioriategration task, however instead of the prompt being “Is this an A?” or “Is this a
B?” each side of the screen just had the words yes or no, which remained stationary, and instead at the
bottom of the screen one of the two colored circles would be presented randomly with a question mark.
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They reasoned that it could be either the extra logical decision or the inconsistent respdogss focat
the yes-no keys in the Maddox et al. (2004) paper which caused such poor performance. In their study,
then, they wanted to test the logical decision aspect only. What they found was that performance in th
yes-no experiment was worse than the random location condition from their first experiment. They
suggested that the logical decision of the yes-no task must have been the reason for the performance
deficit in the study by Maddox and colleagues, not the varying response locations. They further reasoned
that the yes-no task might recruit executive processes in neural regions which are poortgeddanec
where the implicit learning takes place; this communication problem would cause the observed
performance deficit. Recall, also, that previously reported studies found that dual-taskgeséorm
affected rule-based tasks more than information-integration tasks. While this seems todbg tootiteir
results, they argued that the difference between their task and others is that the yes-no tatkadaks
as heavily onto working memory as the other dual-tasks which reported opposite behaveora. patt
other words, the amount of working memory required for the yes-no condition is relatie]yhich
does not challenge the capacity required for the basic, rule-based category decisions (Spiering & Ashby
2008).

Data from the serial reaction time (SRT) task literature provide some supporting evitlenc
favor of effector flexibility. In these tasks, sequences of stimuli are presented, and pastitipain
respond to each stimulus with a specified motor effector (e.g. stimuli at four locations okorethreare
mapped to four different response buttons, each of which is pressed, with a separate finger). Reaction
time in these tasks decreases for repeated sequences in comparison with random sequences, but without
conscious awareness of the sequence by participants. SRT tasks are thought to utilize the implicit,
procedural system, (espéeltiathe basal ganglia; Curran 1995; Wichter et al., 2009) similarly to
information-integration tasks, and there has been some research looking at effectortgpedfisi
domain. One study found that participants trained to responded using 3 separate fingers on the same hand
were able to transfer their sequence knowledge when using one finger to press all three buttons which
required them to use the arm as the effector rather than individual fingers (Cohen, Ke®le% 1990,
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Experiment 2). Two addiihal SRT tasks found that effector programs could be “mirrored” and maintain

the response time (RT) reduction for trained patterns versus random ones (Verwey &EQbagoment

1; Verwey & Wright, 2004), which the authors of both studies suggested as evidence of imgibcit
programs which can exist independently of or dependent on a specific effector (but still be separate
representations). It is possible in information-integration tasks that the procedural systeroquire
motor programs which are both effector dependent (e.g. the index finger from either hand), and effector
independent (e.g. respond “A” to category “A” stimuli regardless of which effector is required). Another
study using monkeys found that effector specificity transfer was a function of the amour thfaim
effector was used to perform a specific pattern, with less time spent in practicegaaudtsier transfer
(Rand et al., 2000). Given that the length of time it took to interfere with effector trarssfeseveral

days of practice, it is not improbable that the procedural system can be malleable with ceghids t
effector it requires to perform procedural tasks well.

All together, these papers provide strong evidence that the implicit system, specifitadly i
context of information-integration tasks, has a procedural memory component (Ashby et al., 2003,
Spiering & Ashby, 2008). At the time COVIS was proposed, and later while these papers were being
published, the involvement of the procedural memory system in implicit category learning was not
entirely known, however, it is currently much more widely accepted (Cantwell, Crossley, & Ashby,
2015). However, recently it has been suggested that the initially hypothesized direct mapping of a
stimulus to its associated response could be more complicated. Instead, it has been proposed that there is
an additional component that mediates this linkage in the form of a category label associdtits that
stimulus to a response.

A two-stage representational model

The classic COVIS framework postulates that the explicit and implicit systems form different
direct relationships between stimuli and other representations. In the explicit syster b&ttmme
associated with abstract labels via rules. In the implicit system, small regions of perspateal
surrounding each stimulus become associated with a motor response. Many other models, including
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exemplar-based models such as ALCOVE (Kruschke, 1992), theorize a similar stimulus-response
relationship. Recently, evidence has emerged that suggests that implicit category isanoireg

complicated than just the stimulus-response association postulated by the COVIS framework. This
evidence suggests that, in-between the stimulus and response representations, there couldtheya media

category label representation (Kruschke, 1996; see Figure 1 for a visualization of the one-siadéwo

Stimulus —- Response
Stimul Category Motor
im —_— —_—
Uius Label Response

Figure 1: A diagram of the one-association, stimulus — motor response model,
and the two-association, stimulus — category label — motor response model

association models). This means that instead of a direct stimulus-response relationsBipgiatica is
formed between a stimulus and a category label, and it is this category label that then becormatsdassoc
with the appropriate response.

An early theory including an intermediate category label was the AMBRY model (Kruschke,
1996), a variant of the ALCOVE model (Kruschke, 1992; AMBRY is not an acronym as ALCOVE is,
instead, it is a play on words as an ambry is a special type of alcove). The AMBRY model postulated tha
exemplars in a category, rather than being individually mapped to a specific response, werfrgistead
linked to a common category membership (Kruschke, 1996).

The possibility that a category label representation is formed when learningatiferm
integration sks was investigated by Maddox, Glass, O’Brien, Filoteo, and Ashby (2010). They used a
four-category task with three different conditions: a control condition, a categoryrswitdition, and a
response-switch condition. Once participants had trained to a specific accuracy criteriothesither
category labels changed or the responses used to indicate category membership changed, dependent on

the assigned condition. Participants were told that the categories had changed, and were instrticted to
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learn the task using the tribi+trial feedback. Maddox and colleagues hypothesized that if direct
stimulus-response associations form the basis of information integration learnintesetwo

conditions should result in identical performance because the stimrdgponse associations formed
during training are broken in both conditions. They further hypothesized that if learning inwohmasgf

two associations, there might be differential effects on performance between the categandliabel
response location conditions. They found that the category label group suffered a greater performance
cost, but also experienced a faster recovery, than the response location group. These findings were
consistent with the two-association hypothesis, but not with the classic COVIS model lovtsihtyle
stimulus-response association. Maddox and colleagues suggested that COVIS might be extended to
account for these results, but that more neurological and behavioral evidence would be neédiex (Ma
et al., 2010).

Since this study, the two-stage associative model has become more accepted, and a formal model
of COVIS incorporating these stages has been proposed. In this model, input from cortical visual
association areas projects to the body and tail of the caudate nucleus, and then on to the pre-
supplementary motor area (preSMA). Projections from the preSMA extend to the posterior putamen,
which in turn projects to the supplementary motor area (SMA). Learning to associate asshittuthe
appropriate category label occurs on the path from cortical visual areas to the preSMAt&iiathbe
caudate), and learning to associate a category label with the desired motor response takesplace on t
path from the preSMA to the SMA (via the putamen) (Cantwell et al., 2015). Learning occurs via synaptic
plasticity driven by a dopamine mediated reinforcement signal at cortical-striatal symajsebady and
tail of the caudate (for the first stage), and in the posterior putamen (for the secon(Cstzgggy,

Ashby, & Maddox, 2014).
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Three stage models

The two-stage model allows for stimuli to be assigned to a category with a common label, but
does not account for the possible learning of a particular category structure, e.g., a prototyparlgome e
research studies posited that another mediating representational layer may exist betstizeul tiseand

the category label (Kendler & Kendler, 1962; Sanders, 1971; see FigiiteésZ)category

) Category Categor Motor
Stimulus | —— : —_— il —_—
Representation Label Response
N fﬁ Isit AorB Left or Right

hand

P
P

Figure 2: A diagram of the three-association model propose:
by Wills

representation” could exist as an abstract conceptualization of the category structure as a whole; it would
maintain the features that relate individual stimuli within categories.

A method was developed by Wills, Noury, Moberly, and Newport (2006) to test whether such a
mediating category representation exists through a manipulation involving the categorynteibet
response association. They hypothesized that if a unique category representatinedgdoeach
encountered categorization problem, and learning is manipulated for a subset of categorg nsectber
as reversing the category labels, then participants should later extend the learnedtiamipuhe
remaining category members as well. This is because, in the context of this reversal exaenpée afev
the category labels will cause an alteration to the association between the category represehitstion an
category label. However, the association between the stimuli and the category representtign rem
unchanged. When the stimuli which were not subjected to response reversal are presentey ktitr, th
will activate the same category representation, but now this representation haskssktola new
category label, and subsequently, to a different motor response.

Wills and colleagues (2006, experiment 2) tested this hypothesis by training participants in thei

study on two separate “family resemblance” categorization problems using a single set of category labels.
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All the stimuli and features were unique to an individual category problem, but across theli@mpro
the same labels for the alternative categories were used (A and B). Once they reached a certain accuracy
criterion, one of the categorization problems was selected, and participants were trained to reverse the
category labels for only a subset of stimuli from both categories. In a final testing phasaulfrstim
both categorization problems were presented. They found that the reversal of the label-response
relationship for a subset of stimuli affected the label-response relationsttie femtire categorization
problem; participants applied the reversal to all of the stimuli from the categorizaildamr even those
stimuli they had not been trained to reverse. They interpreted this result as indicating thktionship
of the category representation to the category label had been altered in the reversal phase. When the
remaining stimuli which had not been presented during the reversal phase appeared, they still activated
the same category representation, however, now the representation was associated with the opposite
category label, which caused a reversed response.
Overview of studies

The Wills et al. (2006) study provides evidence for an additional category representagienal
between stimuli and category labels. However, they used a family resemblance category le&rning tas
and it is unclear whether a similar mediating representational layer is formed wimémgléafiormation
integration tasks (Maddox et al., 2004). Although there is an array of supporting evidencedatagisv
association model for implicit information integration learning, it is umchdaether this two-stage model
can fully account for learning, and whether an abstract category representation might be leaetled as w
used the method developed by Wills et al. (2006) to test whether an abstract category repneisentat
formed during information-integration category learning. In Study 1, participants learnedansairdn
integration category structure with two sets of labels for the individual categ@me set of labels was
then trained in reverse, and a final testing phase investigated if they learned one categoryatspresent
for both sets of labels by examining reversal behavior for the label set that wasneot itnaieverse.

Study 2 trained participants on one information integration category structure witht ohéabels. A
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spatially defined subset of each category was then trained in reverse, and a fivgppteste examined

reversal behavior for all stimuli, including thasat were not trained in reverse.

24



CHAPTER 2: STUDY 1

Introduction

The goal of this study was to investigate whether oanattermediate category representation
between stimuli and category labels is learned in information-integration tasks. Threvdgsigased on
the one useih the Wills et al. (2006) paper in which participants learned two category learning tasks,
learned to reverse a subset of stimuli from one category, and then completed a final task enteecibs
feedback testing to examine whether or not they extended the reversal to untrained stimybamtartici
were told they would learn via trial-by-trial feedback to categorize stimutwimdifferent categorization
problems using two sets of category labels. In reality, the two categorization problems shaagdeth
stimuli, and there were merely two sets of labels assigned to the same stimulus distridfidon
reaching the accuracy criterion on label set 1 and on label set 2, the entire set obstongling to label
set 1 vasreversed, and participants again trained to the same accuracy criterion. In the final phalse, stim
with either set of labels were presented intermixed with each other, and feedback was no longer given.
My hypothesis was that, if mediating category representations are acquired in informatioriantegrat
learning, that participants would learn a single representation of the category and would lesign to as
both label sets to this category representation. Reversing one label set should therdfore lead
participants reversing the other label set, because the category represengory-tabel was changed.
Alternatively, if participants did not show reversal of the second label set, that woglssagveral
alternative possibilities: that completely independent category representationdaiyel/associations
were formed for each label set such that reversal of one set did not affect the other, or tegong ca
representation was formed.
Methods
Participants

Participants were recruited from the PSY100 and PSY250 research pool. Each student in those
courses is required to participate in research studies for class credit. In total, 98 stutieiptsteed,
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however, only 58 students completed the task. Initially, the task was scheduled for one hourgbut a la
proportion could not complete the task in that amount of time; extending the time to two hours reduced
attrition to reasonable levels.
Simuli

The task was presented to participants using Psychtoolbox (Brainard, 1997; Pelli, 1997; Kleiner
et al, 2007). This set of programming tools functions as a Matlab extension. Stimuli wergp&abes:
circular sine-wave gradients which vary in terms of the bar rotation (orientation) anditafspiatial
frequency). These were generated by first defining a point in perceptual space to serve agahe base
generating other stimuli (black dots on Figurd@th clusters: meavi= 225, SDY = 20, SDX = 14
Category A: mealX = 260; Category B: meax = 440 within an arbitrary 0:700 space (wherein the
initial arbitrary values of thg andy axis had been transformed into orientation and frequency values
respectively) which had been rotated 45°. A y-range of approximatefjudi2§’, split evenly around
both sides of the black dot, was used to generate each set of category stimuli. Approximately L00 stim
were generated by sampling randomly from a bivariate normal distribution, which was constrained by the
mean and y-range specified. The resulting stimulus distributions for each category arendhiguwrei3.
On each trial, a randomly sampled stimulus was presented on the computer screen. Each stimulus was
approximately 4 cm in diameter, and subtended a visual angle of 30° on average. We did not control
visual angle for each participant by fixing head position, so this value likely differed betweeipatgi
and changed across the experiment due to factors such as shifting posture and chair distance from the
screen.
Procedure

Participants were told by the experimenter that they would be patrticipating in a visual

categorization task, and that the goal was to learn to categorize stimuli as acesrptsgible. They
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Figure 3: The perceptual space from which the stimuli were sample
Black dots denote the center point from which stimuli were generated,
black line renresents decision bound.

were also told they would have to learn the task via trial and error, but that they would feedhack
on their responses. Participants were instructed to categorize stimuli into tgariestecach category
would have a category label (e.g., R and I). They were further told that at first the lalddisways be
on the same location on the screen and that they should select the desired category by pressorg the butt
on the corresponding side of the screen with their left or right hand. After reaching a cerieagyac
criterion for a number of blocks, the labels on the bottom of the screen indicating categdsrsindm
would begin alternating locations; for example, for the category labels R and I, sometimes the R label
would be in the lower left hand corner, and sometimes in the lower right hand corner. They would then
have to continue to respond by pressing the button (right or left hand) corresponding witk tifelss
screen that the category label appeared on.

The task began with an instruction screen reiterating the verbal instructions, and then the training
portion of the task began. Participants trained first with one set of category labelsrawithtibe
second set. The two category label sets weraml EO and were assigned to the first or second

learning task in a counter-balanced fashion. Training continued on each label set until thexy 8686
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accuracy for five 30-trial blocks. Each stimuluaspresented for two seconds or until the participant

responded; this was followed by a half-second of a blank screen, then feedback was presented for another

————
’
’
——————

——

Figure4: An example of alternating category label positions

half-second. The feedback indicated whether they were correct, incorrect, or had been too slow to
respond. After reaching the accuracy criterion two times, the labels began alternating bmtwee daftl
and lower right corners in a pseudorandom sequence and continued to do so until they completed the
training block for that set of labels (SEigure 4). Afterwards, the other set of labels was presented, and
the task progressed identically until they reached the accuracy criterion five more times

Afterwards, the reversal phase began in which the first set of labels they had been presented with
during training vasnow selected to be trained in reverse; the correct responses for each category were
switched. First, an instruction screen was displayed which told them that they were entering a new portion
of the task and that they should continue to categorize stimuli as accurately as possibleire fud et
change and the presence of the reversal was not disclosed. The reversal phase proceeeldujust lik
training phase; participants had to complete five 30-trial blocks with 80% accuracy.

After completing the reversal phase, the final test portion of the task began. The promedure f
this section was different from the training tasks. Instead of 30-trial blocks, 300viei@presented
backio-back without feedback and without breaks. Both sets of category labels were used and trials with
the different label sets were intermixed randomly. Labels from different sets were not mixeawith
single trial; the options were still eitherlRr E-O. At the end of this block, the task was completed, and

instructions displayed telling participants they had finished.
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Results

It took participants 36 blocks on average to complete the initial training (range: 16-83), and 10
blocks to complete the reversal training (range: 5-24), collapsed across both sets of label&réhap
significant differences in performance as a function of which category label set wesede\For the
transfer phase, the dependent variable was the percentage of stimuli categorized as belonging/to categor
R or E (equivalent labels) within each of the originally trained categories R/E and I/O.8dsammwas
chosen to avoid the ambiguity inherent in judging which categorization choice is ciortqrdance
with original training, or the reversal training). For each subject, proportiofEafedRponses was
calculated separately for stimuli from originally trained categories R/E and I/©r(fgccategory), and
for stimuli from labels in phase 2 that subjects trained to reverse [trained standlilabels that were not
trained to be reversed [transfer stimuli]; (factor 2; training). A 2x2x2 ANOVAaseasiucted on factors 1
and 2, with the Rl and EO reversal conditions as a third, between-subjects factor (see Figures 5 and 6
respectively). There was an interaction effect for all fadt§isg8) = 7.58p < .01), with trained stimuli
receiving a significantly higher proportion of reversed responses than transfer stimtiti ialkad

reversal conditions. Post-hoc tests (see Table 1), indicated that trained

-IEZitl)rl-ewilse comparison, by condition, for category labelstrained in reverse

Label Reversal Mean Difference SE p-value 95% CI

RI -24.71 8.38 0.005* -41.56 | -7.87
EO -50.27 8.38 0.0001* -67.11 | -33.42

Pair-wise comparison, by condition, for transfer stimuli

Label Reversal Mean Difference SE p-value 95% CI
RI 28.85 6.68 0.0001* 15.41 | 42.82
EO 48.15 6.68 0.0001* 34.72 | 61.58

Note: mean difference is calculated by subtracting tae@nt endorsement for categories R/E when
presented with category R/E stimuli from the petandorsement of category R/E for category /O wsitim
Negative values indicate reversal, positive valnd&ate maintenance of original category

* Significant at 0.05 level
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stimuli continued to receive reversed responses, while transfer stimuli received respdnsesith-|
how they were originally trained. These data showed a non-significant amount of reversal transfer,
consistent across both label reversal conditions.

Individual participant performance was examined, to ensure there was no masking of
reversal behavior through group analysis. Only 2 participants were identified who appeared to extend the
reversal to the transfer stimuli (one from each label reversal condition).
Discussion

My hypothesis that reversal training for one set of labels would transfer to the non-reversed label
sets was not supported. Instead, participants continued to respond to each set of labels cotisistent wi
how they had most recently been trained; the label set trained with reversed responses continued to
receive reversed responses, and the label set that was not subjected to reversal trainingdrthimt
responses consistent with initial training. These results indicated thatgaarticimay not have formed a
single category representation. Additionally, accuracy for the transfer phase dropped betaerite c
they had been trained to, although why this occurred is unknown. It is possible that the removal of
feedback led to an overall decrease in accuracy due to a lack of any sort of response monitoring system
for performance. Furthermore, if they treated each set of category labels as separ@ieatairg
problems, some sort of extra-logical steps may have also been implemented. These steps could be in
response to having to transition between label sets, in combination with having to accoaittdgittial
alternations of response locations. There could be several possible reasons for thee\erkalfaf the
second label set. One possibility is that, even though the stimuli for both sets of labels wed,identic
participants could have learned two separate category representations, and therefore saticdatbe|
have a separate category representaticategory label association. In that case, when one set of labels
were reversed, it did not change the association for the other set because they had separate associat
links. Another explanation could be that participants did learn a single, shared representation, but they
may have learned multiple separate category label associations for the category etjores€héerefore,
reversing one set only altered that particular category representatdegory label association. A third
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explanation is that there could have been a shared representation learned during initiglticdittiag
reversal may have led the to the acquisition of a new category representation for the labels presented
during the reversal training due to participants partitioning each portion of the tasktalgp&inally,

there may not be a category representation formed in information-integration tasks. Without an
intermediate category representation, reversing one set of labels had no effect on the othethkecause
stimulus— category label associations for each set of labels are entirely separate.

Another possibility is that subjects may not have completed enough training to solidify aycategor
representation. Kruschke (1996), in their paper describing the AMBRY model, suggested that training
strengthens a category representation. It is possible that the 5 blocks necessary to praggbssaith
segment of the task were insufficient. In the Wills et al. (2006; Experiment 2) study, particho&rds t
average of 27 blocks to reach criterion in the initial training phase, and an average of 3 blocks in the
partial reversal phase. However, the average number of blocks for training and reversal in Study 1 was 36
and 10 blocks respectively.

Alternatively, participants may not have had enough reversal practice to significamtthalte
category representation, if there was one shared between both sets of labels, and may have instead
responded in the transfer phase based on however they had most recently been trained for a given label
set. It could therefore have been a combination of difficulty and length of practice that precluded the
formation of a strong enough category representation during the reversal phase. Finallgsible fat
the difference in results is due to differences in the category learning task itHedf Veils et al. (2006)
study used a family resemblance task.

The difference in results between Study 1 and the study by Wills and colleagues (2006) could
also be due, in part, to the difference in methods. Their study used two unique sets of stimuthevith
category, and only trained participants on a partial reversal for one set of stimuli, whisreagly used
two sets of labels, applied to a common set of stimuli, and participants were trained usingvarissll r
for all stimuli with one set of category labels. With that in mind, Study 2 mirrored much mectydi
the Wills et al. (2006) study by examining a partial reversal of a subset of the stirhiritivé category.
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CHAPTER 3: STUDY 2

In Experiment 1, | tested whether a category representation stage might be formed when learning
information integration tasks and be shared between two sets of category labels. In this study, | used a
method which was simpler, in that it used a single set of category labels, which is more siimdar to t
methods used by the Wills et al. (2006) study. This study examined if reversing the categorgiabels f
subset of stimuli would transfer to the remaining category members. If participantertechie
reversal to untrained stimuli, it would suggest that a single category representation Hadrbeenand
that the category label association with the category representation had been alterquhr®aitiere
trained on one information integration categorization problem with a single set of catégisy Adter
they reached a predetermined accuracy criterion, one half of the stimuli within each catiegteyed
together in perceptual space, see Figure 8) received reversal training. In the final phaseliallese
presented again without feedback, resulting in two types of stimuli: those that had reeedvedlr
training, and those that had not.

In addition to manipulating stimulus-label reversal, | also manipulated the consistency of the
label-response mappings. In the Consistent condition, the category labels on the bottom of the screen
indicating the appropriate button press response remained on the same side on every trial, creating a
consistent category label- motor response relationship. In the Inconsistent condition, thétdabated
sides in a pseudorandom sequence as in Study 1. | hypothesized that this manipulation might affect the
degree to which subjects learned category labels and formed an accompanying abstract category
representation. In the Inconsistent mapping condition, subjects cannot perform the task withagt learni
the category labels; this condition at the least forces learning of a categomgpabséntation, and may
provide the best condition within which to identify category representation formation. However, unde
Consistent mapping conditions, participants may ignore the labels and instead learn direct stimulus-
response relationship, effectively bypassing learning category labels and not formiagt alastgory
representation.
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The primary hypothesis was that abstract category representations are developed during
information integration tasks. The primary prediction was that reversal of a subattguiry label
category mappings for a subset of category members would be extended to the remaining members.

The secondary hypothesis was that the consistency of category talspbnse mapping might
modulate learning of the category representation and category-leéglgory mappings. The COVIS
theory (Ashby et al., 1998), based on data from experiments using consistent response mappings, found
that learning of information integration categories is based on direct stimulus-resgatisaships
which would preclude developing both a mediating category representation and a category label
association. If participants in the consistent group only learn direct stimulus-respatisasiips, there
should be no reversal during the testing phase for transfer stimuli. If reversal is found in the tonsisten
mapping condition, that would imply that subjects did learn category labels and an abstracf categor
representation, in opposition to the COVIS model of category learning. Unlike consistent response
mappings, training with inconsistent response mappings forces subjects to learn the tattetporyf
learning category labels increased abstract category representation learning it shauidge=aier
transfer of reversal in inconsistent mapping condititmsontrast, if there is a similar amount of transfer
of reversal for untrained stimuli in both mapping conditions, it would suggest that each groag kdar
associative stages equally.

An exploratory hypothesis was that participants might utilize different categonjniganodels,
which would predict that the reversal manipulation migivehdifferent effects (see Figure 7 for the three
models of interest). For instance, if participants only learn direct stimuksponse relationships, the
reversal phase would require relearning of every stimuhesponse association. During the transfer
phase, reversal should only occur for stimuli trained in reverse, since the stimesg®nse association
for the transfer stimuli has not been altered. Furthermore, both training phases shoolagekét

participants in the Inconsistent mapping group, due to the inability of participants to assoaiaéua st
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Figure 7: Diagrams of each separate category learning model. From top to bottom: 1-st

with a consistent response (see Ashby et al., 2003 and Maddox et al. 2004 for examples of this effect).
For the two-stage model, during reversal training, only the stimutasegory label association would be
changed, leaving the category labehotor response association intact. Since the stimuliaisel
association is separate from the labetsponse association, only the stimuli which have had their
stimulus— label association reversed should continue that response pattern in the transfer phase. There
should be a similar decrement in performance for the Inconsistent group, again, due to the mability t
associate a category label with a motor response. Finally, the predictions for trsabeemodel are as
mentioned above: that the reversal training should extend to the transfer stimuli, and thacthis eff
should be greatest for participants in the Inconsistent mapping group.
Methods
Participants

Participants were recruited from the PSY100 and PSY250 research pool. Each student in these
courses is required to participate in research studies for class credit. An agwergpalysis using
G*Power 3.1.9.2 (Faul, Erdfelder, Lang, & Buchner, 2007), allowing for a moderate effe¢tsfe (
based on data from Cantwell et al., 2015) with 0.95 power, suggested 36 participants per mapping

condition.
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Simuli

The stimuli were identical to those from study 1, except for a few changes to the stimulus space
parameters: the distance from the bound was reduced (Category AXmextD, Category B: meak=
430), the range of perceptual space sampled was increased from 425 to 624, and the number of stimuli
generated was doubled (from 1000 to 2000; see Figure 8). During the partial reversal, one half of each

cluster (top or bottom, counterbalanced) was selected for retraining (see boxes @B Figuaxample)
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Figure 8: Proposed sampling space of stimuli. Black boxes represe:
areas of perceptual space to be trained in reverse during reversal phase

Procedure

Participants were told that they were participating in a visual categorizasionand that their
goal was to perform as accurately as possible. They were also told that they evith hearn through
trial and error, but that it is possible to perform the task with a high degree of accletmls Were

given on the response keys they should use, and for the inconsistent group, the alternating-response nature

36



of the task was elaborated. Participants were assigned to either use consistent orincesisnse
mappings throughout the task; these mappings did not change.

After an initial instruction screen, which reiterated the verbal instructions, partisibegan the
training portion of the task. Each trial procedtlke this: a stimulus was presented in the center of the
screen, with the two category labels presented beneath it and nearer to the edge of the sicipantdart
had two seconds to respond, and after a half-second delay, feedback was presented for a half-second
indicating whether they were: “correct,” “incorrect,” or “too slow.” This section was divided into thirty-
trial blocks, and at the end of each block, the participants were told whether or not they &@86t
accuracy criterion. During this time, they were also able to take a break, as theydskganl again once
they hit a response key. Once they reached this criterion ten times, the training phase ended.

In the reversal phase, a ss#b-of stimuli from each category (refer to black boxes in Figiire 8
was presented again, however, the category labels for the stimuli were reversed. Whether the top
bottom half of the stimuli space was sampled was counter-balanced across participants, resulting in two
separate groups for each mapping condition. As in the training phase, stimuli were presenteéalin 30 t
blocks, and at the end of each block, accuracy was assessed. Once subjectthe&806 accuracy
criterion on ten blocks, they moved on to the final phase. In this final, transfer phagé,vgtire drawn
from the full distribution, including both regions that underwent reversal, and regions that tvere no
reversed. As in Study 1, feedback was longer given, and stimuli were also not presented in blocks.
Participants completed 300 trials in this manner.

Results

Overall, 239 subjects were recruited, of which 87 had complete data which could be analyzed.
128 subijects failed to complete the task within the two hours allotted, and data from an additional 24
subjects were lost due to technical problems. 40 subjects were in the consistent mapping group (22 with
top quadrant reversed, ConTop, 18 with bottom quadrant reversed, ConBot), and 47 were in the

inconsistent mapping group (24 with top quadrant reversed, IncTop, and 23 with bottom quadrant
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reversed, IncBot). The average number of blocks to complete each training phase for each condition is

listed in Table 2. As can be seen, the range of blocks necessary to meet criterion in é&agiplrase

Table 2

Number of blocks to reach accuracy criterion in each training phase
Training

Group Average blocks SD Range
ConTop 47 18.7 17-84
ConBot 52.2 15.8 21-8]
IncTop 45.6 13.2 22-7¢
IncBot 53.6 16.3 28-8¢
Reversal Training

Group Average blocks SD Range
ConTop 17 8 11-46
ConBot 17.5 9.3 11-47
IncTop 15.3 8.2 10-51
IncBot 15 3.6 10-24

varied greatly between participants. There were, however, no significant grouprdiffebetween
blocks to criterion for either training phase.

For the analysis of the transfer phase (phase 3), the dependent variable was the percentage of
stimuli categorized as belonging to category A within each of the originally trainedicaseg and B.
This measure was chosen to avoid the ambiguity inherent in judging which categorization choice is
correct (in accordance with original training, or the reversal training). For each sutgpottipn of A
responses was calculated separately for stimuli from originally trained categories A andBL{fsend
for stimuli from regions in phase 2 that subjects trained to reverse [trained stimuliggamusrthat were
not trained to be reversed [transfer stimuli]; (factor 2). Data were collapsed awasal region (e.g.
top quadrant vs bottom quadrant) since initial examination of the data indicated that the resatts fo
reversal condition did not differ. Separate 2x2 ANOVAs were conducted on factors 1 and 2 (within-
subjects) for the Consistent and Inconsistent response mapping condition (between-subjectsese® Fig

and 10 respectively For both mapping conditions, there was a significant interaction effect
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(ConsistentF(1,39) = 21.78p<.001; Inconsistent(1,46) = 26.38p<.001), with a higher proportion of
stimuli from category B being categorized as members of category A for trained stimddrttransfer
stimuli.

There was a main effect for training only in the Consistent mapping condi{ib39) = 4.68,
p<.05. The main effects for category were significant in both response mapping conditions (Consistent,
F(1,39) = 4.56p<.05; Inconsistent-(1,46) = 10.92p<.01), with both groups responding to category B
with an A response significantly more often than responding to category A with an A respotikecPos

tests (see Table 3), indicated that the only pairwise significant differences whrethé trained

Table 3

Pair-wise conmparison by category, for stimuli trained in reverse

Mapping Group Mean Differenc SE p-value 95% CI
Consistent -11.14 2.9 0.001* -17|-5.28
Inconsistent -14.24 3.26 0.0001* -20.79|-7.69

Pair-wise comparison by category, for transfer stimuli

Mapping Group Mean Differenc SE p-value 95% CI
Consistent 0.44 2.56 0.865 -4.75 | 5.63
Inconsistent -4.88 279 0.087 -10.51|.743

Note: mean difference is calculated by subtracting ttie@nt endorsement for category A when
presented with category A stimuli from the percemtiorsement of category A for category B stim
Negative values indicate reversal, positive valndi&ate maintenance of original category

* Significant at 0.05 level

conditions. This suggests that, on average, both Consistent and Inconsistent groups maintained the
reversal training they experienced prior to the final transfer phase, but that exteriemnevkrsal to the
transfer region was not reliable within each group. Across all three phases of theetaskas a

significant difference in response time between the Consistent and Inconsistent megppsgghase 1:
F(1,83) = 50.32p < .001; phase Z£(1,83) = 40.68p < .001; phase F(1,83) = 49.2p < .001), with

those in the Consistent group responding about 180 ms faster on average (this was relatively constant
across all 3 phases). This is not surprising, given that those with Inconsistent mappingaked twrief

amount of time each trial to ascertain which side of the screen each category label veaedaosit
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The large amount of variability in the group analyses suggested that there may be significant
individual differences in strategy. | examined each individysrformance and identified four

gualitatively different patterns of reversal responses (see Table 4). One group, Revesfat, Tra

Table 4
Reversal strategies

Consistent M apping I nconsistent M apping

Strateqy n n
Reversal transfer 14 27
Reversal training only 12 7
Response reversion 5 8
Indeterminate strategies 9 5

Note: reversal transfer represents a strong transf@vefrsed responses to

the untrained category, partial reversal represamederate transfer, reversal
training is for participants who continued to resethe stimulithey had just been
trained to reverse, but did not effectively tramséethe untrained stimuli, response
reversion is participants who seemingly ignoredrthersal training they had just
completed, and those with indeterminate strategee either guessing or

using some unknown strategy

continued to consistently respond with the reversed labels on the trained stimuli and completely
transferred the reversal training to the transfer stimuli; subjects in this groupcritetian of at least a

60% reversal responses in both trained and transfer regions. These reversal patterme avihrthie
hypothesis that if subjects learn a category representation, any change in the relationship between the
representation and category labels should alter the relationship for other stimusildimef to the same
category representation.

The second group of participants, Reversal Training Only, continued to reverse the trained
stimuli, but did not reverse transfer stimuli, as evidenced by a skewed reversal percentahtfaor
trained stimuli (ateast a 20% difference in reversal rate between trained and transfer). This group’s
responses are not consistent with the hypothesis, which stated that if a single category régnmesastat
learned, reversal of part of the stimuli the should be extended to all. A third group oppatsci

Response Reversion, reverted to their original training, seemingly ignoring the rewensa they had
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just completed, as judged by a less than 35% reversal response rate on both the trained and transfer
stimuli. Finally, the fourth group of participants appeared to either be using no strategy, oraneagi
not obvious. They had a reversal rate between 35% and 60%, suggesting that they may have been
guessing, or not attempting to respond accurately.

While the number of participants who reverted to responding based on their original ti@sning
well as those with indeterminate strategies, was similar across mapping conditions,rthraitgies
had a greater variety of endorsement. There were almost twice as many participants whadlfell into
“Reversal transfer” group in the Inconsistent relative to the Consistent mapping group, suggesting that
something about how they learned the task was more conducive to extending the learned category
representation category label reversal. Furthermore, fewer participants in the Inconsistent group
maintained only the reversal trainititReversal training only”) relative to the Consistent group. Taken
together, these data seem to suggest that something about how the Inconsistent mapping group had to
learn the task allowed for easier transfer of the reversed associations relative to the Cgnsigtent
Discussion

Overall, the results indicate that for trained stimuli, both Consistent and Inconsistemgnappi
groups maintained the reversal training they had just experienced, as evidenced by a greatenmopo
responses endorsing category A when presented with category B stimuli, relative to category A, for
trained stimuli. However, the group results for the transfer phase showed no oveifatbsigreversal or
maintenance of original category membership. This pattern may be due to subsets of subjects using
different strategies during the transfer phase. The most relevant strategy relates tialthggothesis:
that the reversal of a sub-set of each category would alter the category representitigory label
association for the untrained, transfer stimuli (ireversal transférstrategy), with this transference
manifesting behaviorally as a reversal of category membership. Within the consistesisitect
mapping groups, this was the most common strategy (40% and 66% of all participants for each mapping
group respectively). These participants responded to the transfer stimuli at ersiteites the trained
stimuli (and at a rate mostly approaching the 80% training criterion; approximatelyev@9sals for
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both categories on average, for each mapping condition), suggesting that the reversal trailarglitd a
category label category associations for all stimuli, trained and untrained both. That this strategy was
the most common (54% of all participants, across conditions) directly supports the hypothesis that
reversing a sub-set responses for each category would alter the category represaratdgory label
association for the remaining stimuli.

Furthermore, the much higher rate of the Reversal Transfer strategy within the Inconsistent
mapping condition provides evidence in favor of the secondary, exploratory hypothesis that consistency
of response mapping might modulate degree of transfer. Specifically, the lower rate of tretesf
Consistent mapping condition may be due to subjects learning direct stinrelsgonse associations
rather than learning the category labels or creating a separate category refmeseXtatnatively, the
consistent mapping condition could also be accounted for by the creation of a separate “category
representation” for the reversed sub-set during reversal training, which did not extend to the entire set of
stimuli. Subjects in the Inconsistent group, consistent with the secondary hypothesis, wezd tequir
learn the category labels as they could not rely on a stimukesponse relationship only. Focus on the
category labels may have facilitated learning an abstract category representation linked t@gagh cat
label.

Further supporting the hypothesis that Inconsistent mapping would facilitate learning of & abstrac
category representation, the inconsistent mapping group also had a lower proportion of partibipants w
reversed only the trained stimuli, relative to the consistent mapping group (15% versus 38%ayt hi
indicate that those in the inconsistent mapping condition formed a stronger abstract category
representation than in the consistent mapping condition.

The “response reversion” strategy is especially interesting. Each participant had to complete at
least 10 blocks of 30 trials at 80% accuracy to proceed through each successive phaseaiottigisas
strategy cannot be attributed to subjects merely failing to learn the reversal. Why theseapticip
reverted to responding based on their original training can only be speculated. In a strict stimulus
response model, the reversal training should have completely reset the learned responsenassociat
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making reversion to phase 1 category endorsement impossible, so the existence of this strategy is al
inconsistent with simple stimulus-response category theories. It is possible that there was some
“participant bias” from these subjects, who may have thought that the reversal was some sort of “trick”
manipulation to affect their responding on the last block. To these participants, the mevstdahve
been quite obvious (and to anybody who spent much time in the first training phase, it should have been),
so they may have purposefully reverted to their initial training. If so, this indicatestbgorization is
subject to executive control by subjects. Alternatively, subjects may have treated the reneirsgl tr
phase as a novel categorization learning task, and partitioned their learning in this phasevihighvay
resulted in formation of a new category representation that did not interfere withetberga
representation formed during in the first phase, allowing this representation to reencngedl
responding in the final phase. Regardless, it is unclear why this occurred to the degre@lthat it d

Those with ‘indeterminate strategies’ may have been merely guessing. The maximum time
allowed for completion of the task was 2 hours, and many participants took almost that entire time. Many
of them became audibly frustrated (e.g. sighing, asking how long the task was), and undergraduate
students at this university in general are not necessarily always the most motivated, a&sdhlgyy ar
incentivized with class credit. Furthermore, as evidenced by the high rate of participants who did not
complete the task, this was a difficult task. Making the task difficult was necésgasyent participants
from being able to use a rule-based strategy, and force an information integration strategy.

Overall, this study provide evidence in favor of the primary hypothesis: that at least sgntssub
learn a medidng “category representation” association in implicit, information integration tasks, and that
altering the relationship between this category representation and the associated categoay lalbet

the same relationship for all other stimuli which belong to the altered category representat

44



CHAPTER 4: GENERAL DISCUSSION

For Study 1, | hypothesized that reversing one of two sets of category labels, which were shared
by one set of stimuli, would cause participants to reverse the other. For Study 2, | hypothesized that
reversing a subset of a category would cause participants to extend the reversal to the rstinaitiing
For Study 1, the hypothesis that a shared, mediating category representation would form for both sets of
labels, and that reversing one set of labels would reverse the other, was not supported. While participants
continued to reverse the trained set, this reversal did not transfer to the untrained set,antuoinitidhe
results found by Wills and colleagues (2006). One interpretation is that subjects failedit® actared
category representation. However, other interpretations are also possible. Participamesimetex 1
may have partitioned each set of labels and the associated stimuli into separate eyieggEgtations,
even though the stimuli from both sets of labels were identical, rather than acquiring a shareg categor
representation. It is also possible that no abstract category representation wasd ,aoopsistent with
early S-R theories of information integration learning such as COVIS. These restit&lgubriment 2,
in which more closely followed the method used by Wills et al. (2006; Experiment 2). The results from
this experiment supported the hypothesis that subjects can acquire a mediating category representation,
and that altering its association with a category label could alter the associatiostiondilbelonging
to that category. Previous studies of information integration task have not examined whethengnediati
category representations might be learned. In fact, one study which was examining behavioral
dissociations for the two-stage model (i.e. stimwlastegory label motor response) mentioned that
they explicitly attempted to design their study to control for the possibility of a categoryerptiam
association (Maddox et al., 2010).

Although there was no significant reversal transfer effect in Study 1, a small number of
participants did appear to either transfer the reversal (n=2), or ignore the reverdglamirevert to
their original training (n=5). One participant even reversed the reversal (reverta@speinses for the
reversed label set, and reversed their responses for the transfer stimuli). In Study 2, althouggnmore t
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half of the participants transferred the reversal, there was also a wide variety of other s{sdediable

3). The reason for the variety of strategies is difficult to explain. Failure to transfewv#real, as shown

by the majority of participants in Study 1 and the subset of participants in Study 2 who fell into the
“reversal training only” category, can be accounted for by the original COVIS model (Ashby et al., 1998),
the other strategies do not fit any established theories so neatly.

Previous theories on category representations suggest that, during a full reversal, a new
association is formed between the implicit cue and appropriate motor response (Kendler & Kendler,
1962), and that furthermore, it is the presence of this cue which triggers the reverseddlaieapionse.

In information-integration tasks, the stimukrg the labels may be a part of the implicit cue. Therefore,

in Experiment 1, the presence of the labels may have been as important as the presence ofithe stimul
itself, and it is thigntire cue “package” which had its association changed. Thus, when one set of labels

was reversed, the other set may not have been affected, which would not prompt the reversed response. It
could also be the case that only the labeisponse association was altered, and only then for the one set
trained in reverse. This might suggest a shared category representation, but separatdatskegory
associations.

In the Wills et al. (2006; Experiment 2) study, participants were presented with two separate
categorization problems with an identical set of labels (i.e. A and B). They reasoned tzagaay
representation did not exist, reversing the lab@sponse association for a subset of one categorization
problem might alter it for the other categorization problem, due to the shared casbgdsy However,
they found that it only altered responses for the categorization problem that had the @inlesetaind
that furthermore, the reversal extended to the untrained stimuli. They reasoned that eatéh sepa
categorization problem developed its own category representation, and that even though the labels were
identical, the reversal did not extend to the other categorization problem due to the fundamental
difference in the associative properties of each set of categories (i.e. separate probleas, sepa

representations; Wills et al., 2006). In Experiment 1, | attempted to see if a category repoasemikt
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be shared somehow with separate labels; a design opposite of that done by Wills and colleagues. Perhaps
it is simply not possible to share a category representation between separate sets of label

The secondary hypothesis in Study 2 that there would be a difference in likelihood that the
reversal would extend to transfer stimuli for each mapping condition was also supported.Aimopig
S-R based category learning theories such as COVIS imply that information-integratiamglsamild
be impossible under conditions of inconsistent response mappings, there is some empirical support for
learning under these conditions. Spiering and Ashby (2008) suggested that much of the previous literature
which suggested information-integration learning requires consistent mapping only edtéonptroduce
inconsistent mapping after a period of training (often several hundred éxelisgively with consistent
mapping. In their study, they had participaioegin the task with inconsistent mappings (or a consistent
control), and although they found block 1 differences in accuracy, with the control group scoring higher,
asymptotic accuracy did not significantly vary across conditions. The authors suggested thatentonsi
feature identity (category label; they used letters or colored circles) was sufficieefoing to take
place, although a consistespitial identity (response location) and a consistent feature identity promoted
slightly quicker learning. The authors further suggested that previous studies demonstratingapegor
issues when there was a switch from consistent to inconsistent mapping may have had to do with forcing
participants to suddenly switch their reliance from primarily spatial cues to feature cuéSmeaiing &
Ashby, 2008). Additionally, this theory could possibly explain the results of Study 1 as welippatsc
had no consistent spatial feature identity to rely on (different labels, alternating locations), therefore,
shared representation may have been impossible to develop for that reason alone.

One additional explanation from the SRT literature concerns awareness of the procechaat el
of the task (i.e. the pattern of stimulus presentation). It has been suggested that sequergedeaelyy
on different internal representations depending on whether or not there is conscious awareaess of t
pattern (Willingham, Wells, Farrell, & Stemwedel, 2000). Given that SRT tasks and information-

integration tasks rely on the procedural system and the basal ganglia to primarily guidg,|&ami
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possible that strategy differences in Study 2 could have had to do with varying levels of conscious
awareness participants may have had in regards to the “rule” that guided proper categorization.
Implicationsfor theories of category learning

The original COVIS model (Ashby et al., 1998) predicted information integration learoimng w
be based on direct stimulugesponse relationships; this theory predicts that complete reversion, or a full
reversal, should not be possible. While there is still debate over single- versus multiple-system
explanations for category learning (Ashby et al., 2011; Zaki & Kleinschmidt, 2014), sevienardif
updates have been proposed to the COVIS model, most notably, the addition of a mediating category
label association, and the inclusion of a multiple-systems view for explicit and impéigtsy (Ashby et
al., 2003; Maddox et al., 2004; Maddox et al., 2010). The data from Study 2 compliment this, and add
further evidence to the multiple-systems theory of category learning.

However, it is unclear how to incorporate learning with inconsistent mappings into these recent
extensions of the COVIS model. Although Spiering and Ashby (2008) published results demonstrating
that information-integration category learning is as equally possible with inconsistetth consistent
response mappings, these data have received practically no acknowledgement. Relatively recent reviews
of COVIS have not discussed the role of inconsistent mapping in implicit category learningnghoosi
instead to focus on the role of consistent mapping in the two-stage associational model (Akhby et
2011; Ashby & Maddox, 2011). Outside of Spiering and Ashby’s (2008) study which demonstrated
information-integration learning is possible under inconsistent response mapping condititoscthas
been largely avoided. Even within their paper, however, they only sought to demonstrate that previous
dissociation studies that suggested information-integration learning was only possildensistent
mapping may have overlooked some methodological issues in their tasks which incidentallyhbiased t
results. This makes interpreting the results of Study 1, but especially Study 2, diffieattyChcross
Study 1 and Study 2, participants were able to learn the task to a high-degree of accuracy despite
inconsistent response mappings. The current results highlight the need to extend COVIS to be able to
account for learning under inconsistent response mapping conditions.
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Limitations and future directions

One of the biggest limitations of these Experiments, especially Experiment 2, is participant
motivation. This limitation is present in almost any research conducted with unpaid, undesgraduat
volunteers, but it seems especially relevant in this case. To ensure that pastmjpdehinot rely on a
rule-based strategy, the task was made exceptionally difficult, with the sampling spaeestonuli
being extended parallel to and close enough to the decision bound that a unidimensional rule was not
possible to achieve the accuracy criterion. It was necessary to prevent rule-based disst@gsesin
rule-based tasks response location or category label manipulations have littlereffedoomance, due
to the explicit nature of the rule-based system (Ashby et al., 2003; Ashby & Maddox, 2005; Maddox et
al., 2004). However, as a result, the perceptual differences between category A and category B were very
small, and within category variability was relatively large, making the task vergutliffiMore
participants failed to complete the task than did finish. Even those who did finish often becsiraget
or despondent near completion of the task (which often took participants the full 2 hours for Study 2).

Furthermore, it is difficult to assess whether individual differences played a role in the jiyobabil

that a participant would complete the task. While working memory differences affecthpsrte on
rule-based tasks (working memory is important for developing and maintaining complexthaes)s
no such effect for informatioimtegration tasks (Ashby & O’Brien, 2005). Since the procedural system is
heavily implicated in information-integration tasks, any possible differences may tes telahe basal
ganglia; specifically, individual differences in the strength of dopamine mediated leainingver, little
to no research has studied differences in the basal ganglia system with regards to infantegtiaton
tasks.

In future studies, it would be informative to collect a variety of individual diffeeneasures
(e.g., working memory capacity, cognitive flexibility, or depressive symptoms, whicghalelels, have
been shown to enhance reflexive-optimal category learning tasks [Maddox, Gorlick, Worthy, &Beever
2012]) during a task similar to Study 2. Since there has not been much research on individual differences
in information-integration tasks, and due to the wide variety of strategies present in Stedyif¥ing
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the individual difference factors correlating with strategy could potentially helpdatedihe reported

results. It is unclear, currently, why some participants followed one strategy over anothiefirigebr
guestionnaires could be used in future studies as well which could ask participants about theif@trategy
the task, and their thoughts on the various phases (e.g. “did you purposefully choose to revert to your

original training”). It might also be informative to see if a particular task manipulation could induce

certain strategies in participants.

In general, there is little to no research on the existence of abstract category refesemtat
information-integration tasks. While research has been conducted using other tasks whichiaiggest t
abstract representations underlie performance (Kendler & Kendler, 1962; Sanders, 1971; Wills et al
2006), the only information-integration task that acknowledged that abstract repreasntagjht play a
role at all treated them merely as a possibly confound that they needed to control for (Maddox et al
2010). The data from Study 2 provide the only evidence specifically addressing abstract category
representations and behavioral response mapping dissociations. | believe this perspective is waluable, a
that follow-up research studies may further elucidate the exact nature of how thesditr&stalt

currently established theories of category learning.
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