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ABSTRACT 

 

INTEGRATION OF VARIABLE PHOTOSYNTHETIC CAPACITY  

INTO A BIOGEOCHEMICAL MODEL  

 

We integrated a photosynthetic sub-model into the daily Century model, DayCent, 

to improve the estimations of carbon fluxes at the Niwot Ridge LTER site; the new 

version is called DayCent-Photosyn. The photosynthetic sub-model, adapted from the 

SIPNET/PnET family of models, includes solar radiation and vapor pressure deficit 

controls on production, as well as temperature and water stress terms.  A key feature we 

added to the base photosynthetic equations is the addition of a variable maximum net 

photosynthetic rate (Amax). We optimized the parameters controlling photosynthesis 

using a variation of the Metropolis-Hastings algorithm along with data-assimilation 

techniques. The model was optimized and validated against level 4 data available from 

the Ameriflux website using observed net ecosystem exchange (NEE) and estimated 

gross primary production (GPP) and ecosystem respiration (Re) values. The inclusion of a 

variable Amax rate greatly improved model performance (NEE RMSE = 0.63 gC m-2, 

AIC= 2099) versus a version with a single Amax parameter (NEE RMSE = 0.74 gC m-2, 

AIC= 3724). DayCent-Photosyn is able to capture the inter-annual and seasonal flux 

patterns, including the critical early season assimilation, but tends to overestimate yearly 
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NEE uptake. The simulated influence of a variable Amax rate suggest a need for further 

studies on the process controls affecting the seasonal photosynthetic rates.  
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INTRODUCTION 

 
Background Information 

Terrestrial ecosystems serve as a biological pump for CO2, exchanging over 90 Gt 

of C per year in CO2 through photosynthesis and respiration processes (Schimel 1995). 

During the past several decades, the terrestrial ecosystem has served as a sink of carbon 

due to an excess in carbon storage over respiration and other processes, such as fires, 

decomposition, and soil turnover, which release carbon back to the atmosphere (Tans et 

al. 1990; Gurney et al. 2002; Stephens et al. 2007). The net uptake of carbon by terrestrial 

ecosystems plays an important role in reducing the increase of atmospheric CO2 

concentrations. The factors controlling the net exchange of carbon by the terrestrial 

ecosystems is the focus of a number of ecosystem and atmospheric studies. The Fluxnet 

studies provide a network of sites  to observe and to understand the factors affecting net 

carbon exchange in different biomes across the globe. This study utilizes the long term 

forest ecosystem observations of the Niwot Ridge Ameriflux site to explore the role of 

variable photosynthetic rates on seasonal carbon exchange in this ecosystem. 

Movement of atmospheric and sub-surface nutrients into plants is critical for 

modeling any ecosystem. Atmospheric models tend to have relatively simple land surface 

sub-models that underestimate the importance of nutrient fluxes moving through the soil 

and ground water.  Land surface models can oversimplify impacts of solar radiation and 

evapotranspiration, especially in areas that have a complex and variable climate. By 
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combining the soil subsurface model of DayCent (the daily version of the CENTURY 

model) and the photosynthetic sub-model of the SIPNET (Simple Photosynthesis and 

Evapotranspiration) model, we hope to achieve a robust model capable of representing 

the structure and processes of nutrient fluxes at a mid-elevation (3050 m asl)  evergreen 

forest ecosystem.  The new version of the model is called DayCent-Photosyn to 

differentiate it from other versions in the CENTURY family of models. 

Net ecosystem exchange (NEE) is the difference in carbon flux between gross 

primary production (GPP or total carbon uptake) and ecosystem respiration (Re), 

including both autotrophic (Ra) and heterotrophic respiration (Rh).  To improve the GPP 

flux estimates, a photosynthetic sub-model was incorporated into the existing version of 

the DayCent model. The photosynthetic sub-model represents the total carbon uptake due 

to photosynthetic activity.  

A key consideration, in this analysis, is the role of seasonal changes in the daily 

maximum photosynthetic rate (Amax) on GPP and ultimately the NEE flux estimates 

derived from GPP values. To account for variations in seasonal photosynthetic rates, 

modifications were made to the photosynthetic sub-model to incorporate a variable Amax 

term in the calculation of GPP. Variations in photosynthetic capacity are a well-

documented phenomenon in forest ecology research (Bourdeau 1959; Helms 1965; 

Mohren and Vandeveen 1995; Marshall et al. 2001; Huxman et al. 2003; Wang and 

Barrett 2003; McGarvey et al. 2004; Weiskittel et al. 2006) and occurs on a diurnal and 

seasonal time frames.  

The application of variable photosynthetic rates to an ecosystem model will not 

only improve in carbon flux estimates at the seasonal and annual level but will also 
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contribute to our understanding of ecosystem responses to different climatic and 

environmental conditions, such as drought and other environmental stresses through 

changes in photosynthetic uptake patterns. 

DayCent, a daily version of the CENTURY ecosystem model, was developed to 

model soil trace gas fluxes such as N2O, NOx, CH4, and CO2 (Parton et al. 1998; Del 

Grosso et al. 2000; Parton et al. 2001). Plant physiology is simulated by assimilation, 

allocation, and exchange of water, carbon and other nutrients through various 

compartments of the system, with each compartment representing a different plant 

function (roots, branches, large wood, leaves). The current version of the DayCent model 

estimates GPP as a scalar value approximately twice that of the calculated net primary 

production (NPP). Where potential net primary production is a function of maximum 

potential production (Pmx), soil temperature (Tp), available water (Mp), and a self-shading 

factor (Sp) (Parton et al. 1993) as: 

NPPp = ( Pmx,  Tp,  Mp,  Sp). 

Potential production is then downwardly regulated by available nutrients to estimate 

actual NPP.  

Analysis from the current DayCent model, at the Niwot Ridge Ameriflux LTER 

site, has shown reasonable correlation with total system carbon exchange at the yearly 

level, but model output has shown a two- to five-week lag in the critical spring time NEE 

uptake period when compared with observed eddy covariance data. Model results have 

also shown an over simplification of the complex inter-annual pattern and tend to 

overestimate carbon assimilation (uptake of carbon into the plant) throughout the 

growing season and under estimate carbon assimilation during the early growing season. 
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Research by Monson et al. (2005) has shown that CO2 assimilation during the early snow 

melt period represents a significant component of NEE that contributes a large portion of 

net plant uptake for the year.  Modifications to the model will help move the over 

assimilation bias of the entire growing season to the spring period providing a better 

representation of inter-annual pattern dynamics. 

The development of a new process representation of a simplified photosynthesis 

model and associated plant and ecosystem respiration were incorporated into the 

DayCent-Photosyn model in order to test the hypothesis regarding the role of a variable 

Amax has on NEE estimates from the Niwot Ridge LTER high altitude forest site. The 

photosynthesis sub-model was adapted from the SIPNET model (Braswell et al. 2005; 

Sacks et al. 2006) used at the site.  

In addition, model-data synthesis techniques used with the SIPNET model was 

also applied to estimate model parameters by use of an optimization algorithm. The 

algorithm is a variation of Markov Chain Monte Carlo (MCMC) which samples a 

posterior distribution of model errors and ties parameter estimates to the observed eddy 

covariance carbon fluxes. Research conducted at Niwot Ridge (Braswell et al. 2005; 

Sacks et al. 2006; Sacks et al. 2007; Moore et al. 2008; Zobitz et al. 2008) has shown that 

the use of an extended series of flux measurements combined with the model-data fusion 

technique can provide reasonably well constrained estimates of system carbon fluxes and 

underlying system parameters. The MCMC approach to parameter optimization allows 

simultaneous estimations of multiple parameters that are either difficult to measure, 

highly correlated to one other, or both. Model evaluation, for the optimization process 

and validation runs, will be done against a combined likelihood of NEE and GPP, 
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because optimization against NEE flux measurements only leads to poor fitting of GPP 

and Re fluxes. Data for optimization will be from years 1999 to 2005, and model 

validation will be against the data that were withheld from the optimization process from 

2006 to 2008.  

The three sources of error for our model study are: 1) data, 2) parameter and 3) 

those in the model structure. Data errors and errors in parameter values should be the 

same for the original DayCent model and the new photosynthetic versions thus analysis 

will focus on the errors associated with the model structure that are addressed by the 

addition of the new photosynthetic sub-model.  We will evaluate the original DayCent 

model (Base) and against a version which has the photosynthetic sub-model and a single 

Amax value (Single-Amax) and the new model (DayCent-Photosyn) which has the 

photosynthetic sub-model and a variable Amax rate.  Other than parameters used in the 

photosynthetic submodel, all other parameters values were kept the same (where 

possible) and the differences between the three versions of the model will be the result of 

the effect of the photosynthetic sub-model and the variable Amax modification.   

Limitations in computational power limit the ability to run the complete 

parameter optimization scheme as described in the SIPNET papers by (Braswell et al. 

2005; Sacks et al. 2006; Sacks et al. 2007; Moore et al. 2008). However, a near optimal 

parameter set, suitable for doing a model comparison, was retrieved with the 

methodology set forth in this paper. By improving the representation of GPP, we hope to 

improve our estimates of the carbon flux budget for the Niwot Ridge area, and other 

ecosystems, have a better depiction of the physiological process that will make any 

climate, seasonal, or atmospheric patterns easier to detect.   
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Site Description 

Data used in this study were from the Niwot Ridge (C1) Ameriflux site, a mid-

elevation (3050 m), subalpine forest on the western side of the Continental Divide. The 

site is part of the Roosevelt National Forest, approximately 50 miles west of Boulder, 

Colorado (40.0329N Latitude; -105.5464W Longitude) in the Rocky Mountain Range. 

The dominant tree species in this area consist of subalpine fir (Abies lasiocarpa), 

Engelmann spruce (Picea engelmannii), and lodgepole pine (Pinus contorta). Tree stand 

age is approximately 100 years old and is a natural secondary growth, established 

following clear-cut logging from 1900 to 1910. The understory is sparse, with 25% 

average cover, and is composed of seedlings, Whortleberry (Vaccinium myrtillus L.), 

moss, and lichens. Soil is sandy due to rocky granite composition with a surface layer of 

~6 cm of organic material. Mean annual temperature is 4° C (Monson et al. 2002) and 

approximately 65% of the 800 mm of annual precipitation accumulates as falling snow. 

High-elevation forests are of particular interest for carbon flux research because they 

account for a large portion of plant CO2 uptake in the western United States (Schimel et 

al. 2002). Estimates for above ground biomass of carbon range from 11,500 to 24,000 g 

C m-2 (Monson 2010a), and the site is fixating carbon with a cumulative annual rate of 

NEE, ranging from 60-80 g C m-2 (Monson et al. 2002). 

 

Data Description 

For this study Level 4 flux were retrieved from the Ameriflux website 

(cdiac.ornl.gov) (Monson 2010a). Fluxes were calculated by the eddy covariance method 
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(Baldocchi et al. 1988; Baldocchi 2003). A detailed description of data collection is 

available in several papers (Monson et al. 2002; Turnipseed et al. 2002; Turnipseed et al. 

2003; Turnipseed et al. 2004). For a comparison of model results, half hour fluxes for 

NEE, GPP, evapotranspiration (ET), and ecosystem respiration (Re) were aggregated into 

daily values since our model runs at a daily time step. Estimates for Re were calculated by 

the short-term temperature response of nighttime NEE fluxes (Reichstein et al. 2005), and 

GPP estimates were calculated as GPP = Re - NEE. Because the estimates of GPP and Re 

are based on NEE observation, some degree of self-correlation exists between GPP and 

Re values so we will only optimize on GPP and NEE and not all three flux values. The 

retrieved Ameriflux values of NEE and GPP are consistent with the observed values 

(Arain and Restrepo-Coupe 2005; Monson et al. 2005; Monson 2010a) for this site. 

Additionally, the use of the two fluxes (i.e., GPP and NEE) for optimization greatly 

improves the model results for all flux estimates and keeps the parameters controlling 

photosynthesis from over-fitting the data and exceeding the literature-defined parameter 

boundaries. The GPP values from the Ameriflux data set are a calculated product and not 

directly measured; therefore, all references to Ameriflux GPP values will clearly be 

labeled as estimates and not as observations.   

Four climate variables: 1) air temperature (Ta_f), 2) precipitation (Precip), 3) 

global filled radiation (Rg_f), and 4) vapor pressure deficit (VPD_f) are used to drive the 

photosynthetic sub-model. These climatic variables are used in the DayCent weather file. 

The weather file consists of daily minimum and maximum air temperatures, daily total 

precipitation, and average daytime VPD and solar radiation measurements. The two flux 

variables used for model evaluation and the optimization process are: 1) net ecosystem 
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exchange (NEE_or_fMDS), and 2) gross primary production (GPP_or_MDS).  Flux data 

is gap-filled using the Marginal Distribution Sampling (MDS) method (Papale and 

Valentini 2003; Reichstein et al. 2005) and u-star filtered, to account for periods of low 

turbulence in the air mass that affect flux calibrations.  The MDS method derives missing 

values by averaging values for data collected under similar meteorological conditions. 

Flux data from the Ameriflux web site is also available using Artificial Neural Network 

method (ANN) for gap-filling. Although ANN method has been shown to be marginally 

better than MDS (Moffat et al. 2007) for gap filling flux data on a cross site study, our 

study had better results using the MDS method (NEE & GPP log-likelihood of -1029.5) 

than with the ANN methodology (NEE & GPP log-likelihood of -1210.8) so we chose to 

use the MDS data gap-filling method.   

 

 
MODEL AND METHODS 

 
 
Parameter Optimization 

The photosynthesis sub-model used to calculate GPP is from the SIPNET model 

(Monson et al. 2003; Braswell et al. 2005; Sacks et al. 2006; Sacks et al. 2007). The 

SIPNET model is based on the PnET model (Aber and Federer 1992) and was designed 

to be used with data from eddy flux towers in a model-data fusion approach for 

estimating parameter values. A key feature of the SIPNET model is its ability to run the 

model in two modes: 1) parameter optimization, and 2) forward, where the optimized 

parameter set is used to run the model.  The DayCent-Photosyn model incorporates both 

the GPP sub-model from SIPNET and in addition uses the parameter optimization 

techniques to estimate the carbon fluxes at the Niwot Ridge site.   
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Parameter ranges and initial starting values that are directly equivalent to the 

parameters of the SIPNET model are used from the previous work of Moore and others 

(2008), see Table 1.  

Table 1.   Photosynthetic parameters, starting values and ranges. Parameters marked with an (*) are taken 
from Moore et al. (2008). Values marked with a (#) are from Sarah Davis, personal communication.  
Estimates for PS2Mrsp are taken from literature values for maintenance respiration (Ryan and Waring 
1992).. Fixed parameters do not change during the optimization process. Parameters are considered to have 
no units unless labeled otherwise. 
Parameter Description Range Starting Value 
+PS2Mrsp Fraction of GPP applied to maintenance 

respiration 
0.3 to 0.65 0.46  

*Amax Maximum net CO2 assimilation rate   0 to 34 4.9 (g C m-2) 
*AmaxFrac Ave. daily max photosynthesis as a fraction 

of Amax 
fixed 0.76 

AmaxScalar1 Scalar value of Amax at GrowthDays1 fixed 0 
AmaxScalar2 Scalar value of Amax at GrowthDays2 0.8 to 1.6 1.22 
AmaxScalar3 Scalar value of Amax at GrowthDays3 0.7 to 1.5 1.03  
AmaxScalar4 Scalar value of Amax at GrowthDays4 0.3 to 0.8 0.6  
*Attenuation Canopy Par extinction coefficient fixed 0.5 
*BaseFolRespFrac Foliar respiration as a fraction of Amax 0.05 to 0.3 0.06  
*CFracLeaf Fraction of carbon applied to leaf growth 0.2 to 1 0.52  
#DVPDExp Exponent of VPD-photosynthesis relationship fixed -0.35  
#DVPDSlope Slope of VPD-photosynthesis relationship fixed 1.55 (kPa-1) 
GrowthDays1 First day of growth to apply AmaxScalar1 

scalar 
fixed 1 (day) 

GrowthDays2 Number of days after the start of growth to 
apply AmaxScalar2 scalar 

20 to 120 42 (days) 

GrowthDays3 Number of days after the start of growth to 
apply AmaxScalar3 scalar 

121 to 180 136 (days) 

GrowthDays4 Number of days after the start of growth to 
apply AmaxScalar4 scalar 

181 to 220 209 (days) 

*HalfSatPAR Half saturation point of PPFD-photosynthesis 
relationship 

4 to 12 8.3 (mol m-2 day -1) 

*LeafCSPWT Carbon content of needles on a per-area basis fixed 270   
*PsntMin Minimum temperature for photosynthesis -8 to 8 -3.5 (°C) 
*PsntOpt Optimum temperature for photosynthesis 5 to 30 18.9 (°C) 

 

The parameter optimization scheme used is a variation of the Metropolis-Hastings 

algorithm, with a simulated annealing algorithm (Hurtt and Armstrong 1996) to help 

prevent parameter values from settling into local optima. The algorithm  performs a 

quasi-random walk through the parameter space, via the Metropolis-Hastings algorithm, 
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to find a parameter set that minimizes model error and maximizes the likelihood function 

(L) (Braswell et al. 2005; Sacks et al. 2006; Sacks et al. 2007; Moore et al. 2008). The 

maximum likelihood estimation (MLE) is the parameter vector that most strongly 

supports the data (Fisher 1932). Maximum likelihood principal allows for several 

candidate models (or model parameterizations in this case) to be evaluated and ranked 

based on the support (how well they fit the data) (Johnson and Omland 2004).   

Model optimization using likelihood provides a quantitative way to compare 

model hypothesizes and allow us to calculate confidence bounds of parameters, which we 

cannot do with sum of squares (Hilborn and Mangel 1997).  The likelihood equation 

22
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 This form of the log-likelihood equation is easy to work with because the number of 

observations n and the sum of squares of the residuals is readily available, and the 

standard deviation can be estimated from the sum of squares. Constants that do not affect 

the likelihood comparison were removed from the equation.  An estimate, σe, for the 

standard deviation, σ, is used because the actual error for NEE and GPP data is unknown. 

Using synthetic data sets, Braswell et al. (2005) found σe to be a suitable estimate for σ, 

calculated as: 

  . 
1

1

2
iie 




n

i

x
n

  

For each run (a 2,000 year simulation) in the optimization process a parameter is 

randomly selected and then changed by a random amount and is compared against 

observed NEE and estimated GPP data. If the new candidate parameter set increases log-

likelihood, that set is then accepted. If the new candidate set does not have an improved 

likelihood, it may still be accepted with a probability equal to the difference of the log-

likelihoods from the old to the new parameter sets to ensure that the global optimum is 

found. The likelihood calculation is an iterative Bayesian calculation sampled from a 

posterior distribution of the model error that is assumed to have a Gaussian probability 

distribution. After an adequate number of runs, the sampled space should represent the 

posterior probability distribution of parameters, and the Metropolis-Hastings algorithm 

guarantees convergence to a stationary point in the parameter space.     

Seven independent model trials were run with same starting parameters (Table 2).   

The Heidelberger-Welch convergence diagnostic (Heidelberger and Welch 1981; 

Heidelberger and Welch 1983) was run from the R CODA package (heidel.diag) to test 

each trial for convergence (ϵ= 0.1 pvalue= 0.05).  The diagnostic consists of two parts: a 
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While Heidelberger-Welch convergence diagnostic is not a guarantee that the 

global optima has been reached, it is a good indication that we have reached a stationary 

process and that further iterations are not needed for an acceptable, if not the best, 

parameter set.  A further sensitivity analysis was run on the best retrieved 

parameterization set from each of the seven trials (DayCent-Photosyn Ltotal ranging 

from -1029.5 to -1031.1 and Single-Amax ranging from -1850.0 to -1852.1) and no 

statistically better parameterization (α = 99%) was found.   

Extra parameters, associated with more complex models, increases the degrees of 

freedom for the model and my lead to better log-likelihood values by overfitting the data 

and not improving model performance. Akaike’s Information Criterion (AIC) (Akaike 

1974) is a tool for model selection and provides a measure of goodness of fit.  The AIC 

index quantifies the differences between observed data and modeled output by 

maximizing the likelihood-ratio [ln(L)] and assesses a penalty for each additional 

parameter a model has over competing models using the same data set. The penalty is a 

way to control overfitting data by discouraging inclusion of additional parameters for 

relatively small gains in model fit.   

AIC = 2 k – 2 ln(L) 

where k is the number of parameters and ln(L) is equal to the log-likelihood for each 

model. AIC values will be computed, along with log-likelihood, to account differences in 

the number of parameters for each model.  
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(Dvpd), 3) solar radiation (Dlight), and  4) a water stress term (Dwater) shown as:  
 

GPP =  GPPmax * Dtemp * Dvpd * Dlight * Dwater 

A detailed description and equation for these scaling terms can be found in previous work 

by Braswell and others.  

The calculation for Dvpd was modified to improve the effect of stomatal 

conductance due to lack of air moisture (VPD), expressed as an exponential decline in 

efficiency (Drake et al. 2010): 

Dvpd = DVPDSlope   e (DVPDExp* VPD) 

Photosynthesis is downwardly regulated during the growing season when the 

minimum air temperature approaches 0° C based on a relationship between stomatal 

conductance, temperature, and photosynthesis (Kaufmann 1982; Moore et al. 2008).  

Where T is the daily average temperature: 

GPPscalar = .4 + .075 (6 + T) 

Seasonal Amax dynamics were developed to capture the higher peak uptake 

during the spring and the lower photosynthetic rates observed in the fall.  Four factors 

that contribute to a variable maximum assimilation rate are: 1) an initial lower starting 

value due to slow recovery of stomatal conductance (Monson 2005); 2) a negative 

response in carbon uptake due to increased temperature (Huxman et al. 2003); 3) 

differences in assimilation rates of young versus old needles as a result of biological 

function (Mohren and Vandeveen 1995; Marshall et al. 2001; McGarvey et al. 2004; 

Weiskittel et al. 2006); and 4) leaf area index (Wang and Barrett 2003) resulting from 

needle growth during the growing season. The seasonal variation in maximum net 

photosynthetic rates was implemented as a linear Amax response function. A similar type 

of response was seen in a study done by Marshall (2001) on Douglas-fir, Ponderosa pine, 
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and Western white pine in northern Idaho. The function scales the value of Amax from 

the start of one growth period to the start of the next, as defined by the GrowthDays 

parameters (the number of days since the start of the growing season) and scaled by the 

AmaxScaler parameters, 

	ݎ݈݁ܽܿܵݔܽ݉ܣ ൌ ሺݏݕܽܦܩ െ 	1ሻݏݕܽܦ݄ݐݓ݋ݎܩ
	2ݎ݈݁ܽܿܵݔܽ݉ܣ െ 1ݎ݈ܽܽܿܵݔܽ݉ܣ	
2ݏݕܽܦ݄ݐݓ݋ݎܩ െ 1ݏݕܽܦ݄ݐݓ݋ݎܩ	

൅  1ݎ݈݁ܽܿܵݔܽ݉ܣ

The function as it appears from the start of growth, GrowthDays1, until GrowthDays2, 

where GDays is the number of days since the start of growth. The function allows the 

primary Amax value to be scaled three times during the growing season, from late April 

to early November.  The AmaxScalar function is original the range and starting values for 

the AmaxScalar and GrowthDays parameters were unknown.  In order to set reasonable 

range and starting values for these parameters we used a long iteration (10,000) 

optimization run with the parameters boundaries set at their maximum expected values 

(AmaxScalar 0 to 3 and GrowthDays 0- 230).  After analysis of the results we set the 

range for each parameter to be a least three times the standard deviation, except in cases 

where the parameter would be going over parameter boundaries, and the initial starting 

values were set to be mean values from the optimization process.    

 

Model Comparison Experiment 

 The focus of this paper is to evaluate the effect of variable photosynthetic rates on 

system carbon uptake by analyzing model results of the DayCent model with a 

photosynthetic submodel and variable Amax parameterization.  The simulations results 

and observation data provide the information necessary to evaluate the relationship 

between variable photosynthetic capacity and NEE compared to a linear Amax 
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approximation. The modeling study and analysis of observational data provides 

information to evaluate the biological pattern associated with variable photosynthetic 

rates in this ecosystem across multiple seasons.    

 The DayCent Base version will be included in the comparison of NEE values 

because it will help us illustrate the redistribution of plant carbon uptake in the early 

season using the photosynthetic versions and provides a baseline for annual NEE values. 

We will not include GPP results for the Base model because they are only an 

approximation of GPP and will provide no real data about model improvements in GPP 

estimates.  The Base version also does not include many other small changes in the model 

so any comparison with the photosynthetic versions of the DayCent model would not 

provide us with additional information about variable photosynthetic capacity. 

 The Single-Amax version will incorporate the photosynthetic submodel and the 

parameter optimization routine will treat Amax as a single value for the entire growing 

season.  This will become our baseline of comparison for the effect of variable 

photosynthetic capacity on GPP and NEE. 

 The DayCent-Photosyn version incorporates the photosynthetic submodel and the 

parameter optimization routine will allow the Amax rate to vary four times during the 

growing season. The initial starting value for variable Amax parameters will be 0% 

percent and will linearly increase until the Amax parameter reaches its max on day 44 of 

the growing season at 1.27% of the Amax parameter. The Amax scalar will gradually 

decrease to 1.17% by day 135 and then rapidly decrease to .38% toward the end of the 

growing season on day 211.  
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 Model comparison will be done on the best parameterization set found for each of 

the photosynthetic versions of the model.  The version that yields the highest log-

likelihood (the smallest negative number) indicates the model has a better fit with the 

data. In addition to looking modeling metrics we will also look that season flux patterns 

to justify model changes and effects of variable photosynthetic capacity. Model 

validation, using withheld data, will be limited to the DayCent-Photosyn model version 

because of the photosynthetic sub-model will be identical for each model and parameter 

optimization results for each version are statically similar.   

 

RESULTS 

 
Optimization Results 

 The best retrieved parameter values (Table 2), were significantly different from 

the original starting parameter used from Moore et al. (2008). We expected to see 

differences in the parameterizations because the DayCent-Photosyn model optimized on 

two carbon flux values, (NEE and GPP), and the SIPNET model used NEE and ET.  

We chose not to use ET as an optimization parameter because changes in 

photosynthetic parameters do not affect the value of ET in our version of the 

photosynthetic sub-model.   

 Values of the best parameterizations fell well within the allowable range for each 

parameter for both models. However, values for BaseFolRespFrac and HalfSatPAR were 

“edge-hitting,” i.e. retrieving values that were close to their range limits. The mean and 

standard deviation of parameter sets (Table 2) that are statistically similar (P = 0.05) to 

the best model parameterization for DayCent-Photosyn and Single-Amax model were 



19 
 

calculated.  The means of almost all parameters were within one standard deviation of the 

best parameter set’s values. The one exception was BaseFolRespFrac parameter for the 

DayCent-Photosyn model which had a different mean but was within two standard 

deviations. The BaseFolRespFrac parameter contributes less than 8% to the base value of 

potential GPP and even at two standard deviations the parameter uncertainty does not 

have a significant effect on model results  >5%. 

 

Table 2.   Parameters marked with (#) are fixed and do not vary during optimization. The values from the 
best parameter set are in bold. The numbers beside the best parameter set are parameterizations from the 
runs that that were statistically similar (P = 0.05) in terms of likelihood. With the first number being the 
mean and the number after (±) being the standard deviation of the mean.  
Parameter Single-Amax Values  DayCent-Photosyn Values  
PS2Mrsp 0.50 (0.48 ± .03) 0.44 (0.45 ± .02)  
Amax 3.63 (3.83 ± .34) 3.76 (3.79 ± .22)  
#AmaxFrac 0.76   0.76    

#AmaxScalar1 1.0 0.0  

AmaxScalar2 1.0 1.27 (1.27 ± .04)  

AmaxScalar3 1.0 1.17 (1.16 ± .04)  

AmaxScalar4 1.0 0.38 (0.4 ± .02)  

#Attenuation 0.5   0.5    

BaseFolRespFrac 0.100 (0.112 ± 0.021) 0.055 (0.095 ± 0.027)  

CFracLeaf 0.56 (0.58 ± 0.04) 0.59 (0.62 ± 0.03)  
#DVPDExp  -.35 -.35  
#DVPDSlope 1.55 1.55  
#GrowthDays1 1 1  
GrowthDays2 1 44 (44 ± 0.48)  
GrowthDays3 1 135 (135 ± 1.22)  
GrowthDays4 1 211 (210 ± 2.00)  
HalfSatPAR 4.02 (4.21 ± 0.19) 4.25 (4.25 ± 0.14)  
#LeafCSPWT 270.0 270.0  
PsntMin -1.51 (-1.69 ± 0.54) -6.67 (-6.23 ± 0.60)  
PsntOpt 15.68 (15.85 ± 0.28) 11.67 (11.68 ± 0.14)  
 

 However one should be aware that while the contribution of foliar respiration to 

total GPP is small for coniferous ecosystem, it may contribute more to other ecosystems, 

such as a deciduous forest, where foliar respiration constitutes a greater portion of GPP. 

Photosynthetic capacity and foliar respiration are positively correlated (Ceulemans and 
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Saugier 1991) and coniferous trees generally have lower photosynthetic capacity then 

deciduous trees (Sprugel et al. 1995). 

 

Model Comparison Results 

In a comparison between observed and modeled NEE the Single-Amax (RMSE of 

0.74 g C m-2 ) and DayCent-Photosyn (RMSE of 0.63 g C m-2 ) models both show 

improvement over the Base model with the DayCent-Photosyn version having the best 

results (Table 3).  These models improved accuracy of NEE estimates over the Base 

model by 12% and 25% respectively.  GPP model error for the DayCent-Photosyn 

version (RMSE of 0.88 g C m-2) was also about 14% better than the Single-Amax version 

(RMSE of 1.02 g C m-2 ).  

Table 3.   Model comparison for DayCent model. Note that no GPP data are available for the Base model 
(*). Single-Amax is the photosynthetic version of DayCent with a single Amax value. DayCent-Photosyn is 
the photosynthetic model with seasonal variation of Amax. Root Mean Square Error (RMSE) is a measure 
of the amount of variance not explained by the model, lower is better. Akaike Information Criterion (AIC) 
equation is 2K – 2ln(L), where ln(L) = Ltotal. A lower AIC indicates the model that has better support from 
the data.  
DayCent Model  Base* Single-Amax DayCent-Photosyn 
Log-likelihood (Ltotal) Na -1850.0 -1029.5 
NEE RMSE  (gC m-2) 0.84 0.74 0.63 
NEE R2 0.57 0.57 0.69 
GPP RMSE (gC m-2) Na 1.02 0.88 
GPP R2 Na 0.78 0.84 
Number of Parameters (K) 0 12 20 
AIC Na 3723.9 2099.0 

 
The DayCent-Photosyn model out performed both other models in calculating 

NEE and GPP values (Table 3) in all the relevant statistics with a greater percentage of 

the model variation better explained by the model  (NEE R2 = 0.69, GPP R2= 0.84) and 

an increased log-likelihood (-1029.5).  The increase in model performance by the 

DayCent-Photosyn model over the Base and Single-Amax models are the result of 

including the photosynthetic sub-model and use of a variable Amax. AIC values are 
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This is followed by a reduction of uptake in mid-summer, as heterotrophic respiration 

increase, followed by another smaller increase in the latter summer period that coincides 

with summer monsoonal moisture common in this study area. In comparison the Base 

weakly follows this uptake pattern but is rather flat and over estimates carbon uptake 

model during the peak growing season, weeks 25-37.  The Single-Amax and DayCent-

Photosyn version are both able to pick-up the carbon assimilation patterns much better, 

but the Single-Amax version over estimates early season and under estimates peak NEE 

uptake.    

Examination of NEE residuals between weeks 13-25 show over twice the 

cumulative error for the Single-Amax model (7.6 g C m-2) when compared with the 

DayCent-Photosyn version (3.4 g C m-2).  Residual errors for the remainder of the 

growing season on are about the same at 2.5 and 2.9 g C m-2 respectively.  Heterotrophic 

respiration, which is proportional to the amount of carbon in the system, is about the 

same because both models having a similar total system carbon between 1530 and 1540 

g.  This leaves error in predicting the GPP term as the major source of difference between 

the two photosynthetic models.   

The optimization process produced similar parameter values for both versions of 

the photosynthetic model except for BaseFolRespFrac, PsntMin and PsntOpt.  The 

BaseFolRespFrac parameter only controls a small portion of the amplitude of signal 

(moving the NEE output up or down) leaving PsntMin and PsntOpt and the variable 

Amax parameters the main difference in model output.  The parameters PsntMin, 

PsntOpt control the Dtemp term which scales GPP max term in following the equation. 

Dtemp	ൌ Max	 ቀ
ሺ்௠௔௫	ି	்௔௜௥ሻ	ି	ሺ்௔௜௥ି்௠௜௡ሻ

ሺ்௢௣௧ି்௠௜௡ሻ2
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The large inter-seasonal variation in the NEE and GPP fluxes for the Niwot Ridge 

site, combined with the additional parameters for the DayCent-Photosyn model, could 

lead to over-fitting the model to the data. A statistically different result in the validation 

period could be used to assess that concern. The similar NEE and GPP results obtained 

(Fig. 5) for the optimization and validation period strongly support the addition of not 

only the photosynthetic sub-model, but also the inclusion of the seasonally adjusted Amax 

parameters. When the 2004 GPP data are excluded from the results, the model is able to 

explain over 90% of the observed variation for the optimization and validation period and 

the NEE flux estimates were able to account for about 70% of model variation.   

 
 
Discussion 

Our results demonstrate the benefit of incorporating a photosynthetic sub-model 

into the DayCent model. Estimates for NEE, GPP, and respiration were much improved 

over results shown in the Base and even the Single-Amax models. However, carbon 

fluxes represent only a small portion of the total ecosystem processes that are simulated 

by the DayCent model. This study is only a start for validating the other accompanying 

sub-models and the ecosystems used with this model. Because of the complexity and 

large number of parameters available in the DayCent model, we limited our adjustments 

to only the new parameters added via the new sub-model. Certain issues in model 

performance could be addressed by adjusting other model parameters, such as autotrophic 

and heterotrophic respiration rates. The sub-model is also only loosely tied into the core 

DayCent processes through the carbohydrate storage pool. This was done purposefully as 

to not disrupt the current structure that has been tested and validated on a number of 

ecosystems.  As the DayCent-Photosyn model is validated against more sites there will be 
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an opportunity to integrate the carbon cycle of the photosynthetic sub-model to other core 

system fluxes.   

The parameter estimates retrieved from the optimization process worked far better 

than our initial estimates, and we were able to achieve converge in a relatively short time 

scale. Even though our final parameters differed from the initial starting parameters, the 

process benefited from using the starting values that were pre-optimized. Certain 

parameters are highly correlated, and their levels were balanced and set by the previous 

optimization runs done by Moore (2008). Using the pre-optimized parameters also 

reduced the range which the optimization process had to investigate since our starting 

values were closer to their final optimized values. Future optimization runs at sites 

without the extensive initial parameter information will likely result in much longer 

model runs required for model convergence.  

The incorporation of seasonally adjusted Amax parameters lead to the largest 

improvement in our flux estimates of GPP, NEE and Re.  Because the high predictive 

capability of GPP future versions of the model should look at autotrophic respiration for 

further improvements in flux estimates. The biology behind the Amax function is 

certainly more complex than the linear function that we used and this should definitely be 

an area of further exploration.   

 

Conclusion 

For this study we modified the existing photosynthetic sub-model for the DayCent 

model.  A comparison with the existing model shows strong support for inclusion of a 

photosynthetic sub-model with variable photosynthetic assimilation rates at biological 
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level, as a photosynthetic response to temperature.  The real biological process behind the 

response involves the complex biology of stomatal conductance, enzymes and respiration 

that were not part of this study.  And as a scientific hypothesis our aim is steer people 

into further research rather than guide them into the process of including of any addition 

functions. 

 Our research also included a model-data optimization process that links 

parameter values to observed data.  The optimization process should not be 

underestimated in the effect that it had on model results. Our model results are for one 

site only, but with the multitude of eddy-covariance towers collecting long term flux 

records there is a great opportunity to not only refine the photosynthetic sub-model but 

also the optimization techniques used with large models.    

Studies of carbon sequestration tend to focus on only one value, NEE, but because 

of the complex input and output the DayCent model provides we can look at carbon 

sequestration in terms of smaller units such as roots and branches which maybe more 

important from an ecosystem perspective.  This can help answer the why and how rather 

than just the how much questions that exist with carbon sequestration. By modeling the 

seasonal variation in the NEE flux pattern we were able to extracting information about 

the necessary model structure needed to simulate the biological function of 

photosynthesis.  Extrapolating model structure to a biological process equation will be 

the next significant step in understanding the effect of Amax for different ecosystems. 

Once this is in place we can gain a further understanding the on the role variable Amax 

plays on ecosystems under various levels of stress. 
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