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ABSTRACT 

 
THE AMYLOID BETA DIMER/TRIMER: A POTENT STIMULATOR OF 

NEURONAL AMYLOID BETA SECRETION  

AND COFILIN-ACTIN ROD FORMATION 

 

Amyloid beta (Aβ) peptides, a heterogeneous mixture of 39-43 amino acid 

peptides produced from β- and γ-secretase cleavage of the amyloid precursor 

protein (APP), are one of the causative agents of Alzheimer disease (AD). 

Although sensitive enzyme-linked immunosorbent assays (ELISAs) for specific 

rodent Aβ peptides and for total and specific human Aβ peptides have been 

commercially available, no commercial assay for total rodent Aβ was available 

when we began these studies.  Such an assay is desirable to determine the 

effects of the human Aβ peptides on production of Aβ from cultured rodent 

neurons, the major model system used in AD research. Here we report an ELISA 

for total rodent Aβ and show that it can be used without interference from 

physiologically relevant concentrations of human Aβ. We then apply the assay to 

measure the production of Aβ in cultured dissociated rat cortical neurons and rat 

and mouse hippocampal organotypic slices in response to oxidative stress or 

treatment with human Aβ dimer/trimer (Aβd/t) obtained from culture medium of 

Chinese hamster ovary cell line 7PA2 expressing a mutant form of human 
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amyloid precursor protein.  Neither of the treatments leads to accumulation of 

intracellular Aβ peptides.  Peroxide increases Aβ secretion by about 2 fold, 

similar to results from previous reports that used an immunoprecipitation and 

western blot assay.  Of greater significance is that physiologically relevant 

concentrations (250 pM) of human Aβd/t increase rodent Aβ secretion by >3 fold 

over 4 days, providing support for an Aβ-mediated feed-forward model of AD 

progression. The over two fold increase in rodent Aβ secreted in response to 

human Aβd/t was nearly identical between organotypic hippocampal slices of 

TAU knock-out mice and TAU knock-out mice expressing the human tau 

transgene, demonstrating that tau plays no role in the enhanced production of 

Aβ. 

Previous studies showed oligomers of synthetic amyloid beta (Aβ1-42) 

induced cofilin activation and formation of cofilin-actin rods in a neuronal 

subpopulation of rat hippocampus primarily localized within the dentate gyrus.  

Here we demonstrate that Aβd/t at ~250 pM is more potent in rod induction in 

both dissociated hippocampal neuronal cultures and organotypic slices than is 1 

µM synthetic Aβ as typically prepared oligomers, about a 4000 fold difference.  

Treatment of the Aβd/t fraction with an Aβ-neutralizing antibody eliminates its rod 

inducing activity.  Traditionally prepared synthetic Aβ oligomers contain SDS-

stable trimers and tetramers, but are devoid of dimers.  When synthetic human 

Aβ was incubated under conditions that generate a tyrosine oxidized dimer, the 

concentration that was required to induce rods decreased dramatically.  The 

oxidized dimer had a maximum rod-inducing activity at ~2 nM (10 ng/mL), 
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suggesting it is the presence of the SDS-stable tyrosine oxidized Aβ dimer in a 

low-n state that is largely responsible for the potency of the secreted Aβd/t. 

  Aβd/t-induced rods are highly localized to the dentate gyrus and mossy 

fiber pathway and form more rapidly (significant over controls by 2 h compared to 

8 h for those induced by synthetic Aβ-oligomers).  Aβd/t-induced rods are 

reversible, disappearing by 24 h after washout.  Cofilin dephosphorylation in 

response to Aβd/t is greatest within the hippocampal regions of rod formation.  

Overexpression of cofilin phosphatases slingshot and chronophin increase rod 

formation when expressed alone and exacerbate rod formation when coupled 

with Aβd/t treatment both in dissociated neurons and organotypic slice cultures.  

Overexpression of the cofilin kinase, LIM kinase 1, inhibits Aβd/t-induced rod 

formation.  Together these data support a mechanism through which Aβd/t 

produces selective synaptic dysfunction affecting learning and memory at least in 

part via primary effects on cofilin regulation and rod formation in sensitive 

hippocampal regions.  

 

 

 

 

 

 

 

 



 

iv 

 

 

 

TABLE OF CONTENTS 

 
Abstract                                                                               ii 
Table of Contents                           v 
 
Chapter One: β-Amyloid-induced β-amyloid secretion:  
A feed-forward model for Alzheimer disease.                                                        1 
 Preface and Acknowledgement                                                                  1 

Introduction                 2 
 Materials and Methods               5 
 Results                                                                                                      11 
 Discussion                                                                                                 29 
 Reference List                                                                                           33            
 
Chapter Two: Amyloid beta dimers/trimers potently induce  
cofilin-actin rods that are inhibited by maintaining  
cofilin-phosphorylation.                                                                                        38 
 Preface and Acknowledgement                                                                38 

Abstract                                                                                                     39 
Introduction                                                                                               40                                                  

 Materials and Methods                                                                              44 
 Results                                                                                                      52 
 Discussion                                                                                                 71 
 References                                                                                                78 
 

 

 

 

 

 

 



 

1 
 

 

 

CHAPTER ONE 

 

β-AMYLOID-INDUCED β-AMYLOID SECRETION:  

A FEED-FORWARD MODEL FOR ALZHEIMER DISEASE. 
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Abstract 

 Amyloid beta (Aβ) peptides, a heterogeneous mixture of 39-43 amino acid 

peptides produced from β- and γ-secretase cleavage of the amyloid precursor 

protein (APP), are one of the causative agents of Alzheimer disease (AD). 

Although sensitive enzyme-linked immunosorbent assays (ELISAs) for specific 

rodent Aβ peptides and for total and specific human Aβ peptides have been 
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commercially available, no commercial assay for total rodent Aβ was available 

when we began these studies.  Such an assay is desirable to determine the 

effects of the human Aβ peptides on production of Aβ from cultured rodent 

neurons, the major model system used in AD research. Here we report an ELISA 

for total rodent Aβ and show that it can be used without interference from 

physiologically relevant concentrations of human Aβ. We then apply the assay to 

measure the production of Aβ in cultured dissociated rat cortical neurons and rat 

and mouse hippocampal organotypic slices in response to oxidative stress or 

treatment with human Aβ dimer/trimer (Aβd/t).  Neither of the treatments leads to 

accumulation of intracellular Aβ peptides.  Peroxide increases Aβ secretion by 

about 2 fold, similar to results from previous reports that used an 

immunoprecipitation and western blot assay.  Of greater significance is that 

physiologically relevant concentrations (250 pM) of human Aβd/t increase rodent 

Aβ secretion by >3 fold over 4 days, providing support for an Aβ-mediated feed-

forward model of AD progression. The over two fold increase in rodent Aβ 

secreted in response to human Aβd/t was identical between organotypic 

hippocampal slices of TAU knock-out mice and TAU knock-out mice expressing 

the human tau transgene, demonstrating that tau plays no role in the enhanced 

production of Aβ. 

 

Introduction 

Alzheimer disease is the major form of dementia that affects the aged with 

about a 50% probability of occurrence in every person living to age 85 and 
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beyond (Alzheimer’s Association, 2010). The pathological hallmarks of the 

disease are extracellular amyloid plaques, composed primarily of the amyloid 

beta peptide, and hyperphosphorylated tau inclusions in the form of striated 

neuropil threads and neurofibrillary tangles (Bamburg & Bloom, 2009).  Familial 

AD, representing 1% or less of AD cases, arises from mutations in genes 

affecting the production or clearance in the brain of the 38-43 amino acid amyloid 

beta (Aβ) peptides (Tanzi & Bertram, 2005), which are excised from the 

transmembrane amyloid precursor protein (APP) through the actions of β- and γ-

secretases (Glenner & Wong, 1984; Price et al., 1995; Hardy & Selkoe, 2002; 

Mattson, 2004).  However, Aβ peptides also accumulate in the other 99% of AD 

cases, called sporadic AD, although the mechanisms driving its production are 

unclear (Mattson, 2004; Tanzi & Bertram, 2005).   

 Different isoforms and different conformations or aggregation states of the 

Aβ peptides deliver different signals to neurons and have remarkably different 

neuronal and synapto-toxicities. The Aβ1-42 peptides are more amyloidogenic 

than the Aβ1-40 peptides, and are more correlated with AD and its progression 

(Finder & Glockshuber, 2007; Portelius et al., 2010).  Fibrillar forms of the Aβ 

species are less toxic than the soluble oligomeric forms (Krafft & Klein, 2010).  

An oligomeric fraction, called Aβ-derived diffusible ligands (ADDLs), has effects 

on synapses at submicromolar concentrations (Krafft & Klein, 2010). However, 

an even more active form of Aβ with maximal activity at subnanomolar 

concentrations, is secreted from a cultured cell line (7PA2 cells) expressing a 

mutated form of human APP (Walsh et al., 2002).  This material contains SDS-
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stable human Aβ (HAβ) dimers and trimers (HAβd/t), which can be isolated by 

gel filtration; the isolated HAβd/t has a marked effect on synaptic function, both in 

cultured slices and when injected into rodent brain (Cleary et al., 2005; 

Townsend et al., 2006; Shankar et al., 2007; Freir et al., 2010).  An SDS-stable 

HAβ dimer has been extracted from postmortem human AD brain and is also 

active at subnanomolar concentrations (Shankar et al. 2008). The presence of 

the SDS-stable HAβ dimer is strongly correlated with AD type dementia 

(McDonald et al., 2010). Excessive production of HAβ from APP occurs in familial 

AD due to mutations in APP and its processing enzymes or in proteins that 

normally clear the excess HAβ, but the causative factors leading to excess HAβ 

production in sporadic AD are much less understood.  HAβ is known to inhibit 

axonal transport of mitochondria and vesicles containing neurotrophin receptors 

in mouse hippocampal neurons within 60 min of treatment (Vossel et al., 2010). 

The transport inhibition is dependent on the presence of the microtubule-binding 

and stabilizing protein tau. It has been proposed that stalled vesicles containing 

APP might be the sites for enhanced production of HAβ (Maloney et al., 2005), 

since up to 70% of the Aβ secreted from cells arises from β- and γ-secretase 

cleavage of APP within the lipid raft environment of endosomes (Koo & Squazzo, 

1994; Ehehalt et al., 2003; Thomas et al., 2006; Cirrito et al., 2008).  Although 

ELISAs have been available for quantifying individually either Aβ1-40 or Aβ1-42 

from rodents or humans (Fukumoto et al., 1999; Gasparini et al., 2004; Covance 

BetaMark x-40 SIG-38950, x-42 SIG-38952), no single ELISA for total rodent Aβ 

(RAβ) was available when we began these studies.  Here we report the 
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development of an ELISA for total RAβ using the sandwich method requiring two 

primary antibodies. The capture antibody is on the ELISA plate, and is specific 

for RAβ.  The detection antibody binds to both RAβ and HAβ in solution and has 

a detection probe (HRP) attached. We then demonstrate that this assay can be 

used in the presence of physiologically relevant amounts of HAβd/t and apply the 

assay to cultures of rat cortical neurons and rat and mouse organotypic 

hippocampal slices treated with HAβd/t and with peroxide, another neuronal 

stress agent previously shown to increase Aβ secretion.  

 

Materials and Methods 

Reagents 

 Unless otherwise noted, all chemicals are reagent grade and were 

obtained from Sigma-Aldrich Co. (St. Louis, MO), and all tissue culture reagents 

were obtained from Life Technologies (Carlsbad, CA).  Synthetic human amyloid 

beta (HAβ1-42) was obtained from AnaSpec, Inc. (San Jose, CA), and synthetic 

rodent amyloid beta (RAβ1-42 and RAβ1-40) was a gift from Covance (Princeton, 

NJ).  The HAβ monomer (HAβm) and dimer/trimer (HAβd/t) fractions were 

prepared from the conditioned medium from Chinese hamster ovary (CHO) cells, 

clone 7PA2, expressing a mutant human APP (Walsh et al., 2002; a gift from 

Dennis Selkoe, Harvard Medical School), fractionated by size-exclusion 

chromatography as previously described (Townsend et al., 2007). Unless 

otherwise noted, it was used at the equivalent of 1x concentration (250 pM, the 

concentration of HAβd/t found in the conditioned medium).  Medium from wild 
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type CHO cells was fractionated identically by size-exclusion, and fractions at the 

equivalent elution positions of HAβd/t were used as one control. 

 

Dot-blot assay for quantifying Aβ in 7PA2 cell medium 

 HAβ was quantified in 7PA2 cell culture medium using dot blots with 

synthetic human β-amyloid peptide (HAβ1-42) as a standard as previously 

described (Davis et al., submitted). Briefly, samples were applied to nitrocellulose 

(0.1 μm), the membrane was boiled 10 min in PBS, and HAβ was detected with 

6E10 antibody (overnight at 4oC) followed by a goat-anti-mouse antibody 

conjugated to DyLight 680 (1:15,000 for 45 min; Thermo Scientific, Rockford, IL). 

Spots were imaged with a LI-COR Odyssey Infrared Imaging System, and 

intensities quantified using TotalLab software (Nonlinear Dynamics, Newcastle 

upon Tyne, UK).  

 

Sandwich ELISA 

 Synthetic RAβ1-40 and RAβ1-42 were solubilized to 1 mg/mL in 0.1% 

ammonium hydroxide.  Aliquots (10μL) were dried in a speed-vac and pellets 

were stored at -80°C.  Costar 96-well white solid plates coated with 100 μL of 

either 2, 5, or 10 μg/mL of capture antibody, a rabbit polyclonal raised against 

amino acids 1-16 of RAβ, were provided by Covance (SIG-39153).  The 

detection antibody is a horseradish peroxidase-conjugated mouse monoclonal, 

(SIG-39245; Covance) that is reactive to both HAβ and RAβ.  Synthetic RAβ1-40 

and RAβ1-42 pellets were solubilized in 10 μL of DMSO and diluted further with a 
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phosphate buffered saline containing Tween and BSA (PBSTB; Covance).    

Wells to be used on the assay plate were washed 1x with PBSTB and standards 

or samples (100 μL per well) were applied and plates incubated overnight at 4°C.  

Wells were washed 5x with 300 μL PBSTB.  SuperSignal ELISA Pico 

Chemiluminescent Substrate (Thermo Scientific) was added at 300 μL to each 

well.  Chemiluminescence was quantified by photon counting between 5 and 10 

minutes using a Perkin-Elmer Victor V multi-mode microplate reader operating at 

room temperature with no filter. 

 

Human Aβ interference in rodent Aβ ELISA: 

HAβ1-42 (AnaSpec) was solubilized with 1,1,1,3,3,3-Hexafluoro-2-propanol 

to 1 mg/mL.  Aliquots (10 μL) were allowed to air dry at room temperature and 

pellets were frozen at -80°C.  Pellets were solubilized with 10 μL of DMSO, and 

diluted with Neurobasal containing B27 supplement to their desired 

concentration.  In one set of experiments RAβ1-42 was maintained at 150 pg/mL 

and the amount of HAβ1-42 was varied from 10 pg/mL to 1 μg/mL.  In a second 

set of experiments HAβ1-42 was maintained at 1.9 ng/mL (about the highest 

concentration of HAβd/t used in cell treatments) and RAβ was varied. Tubes 

containing mixed HAβ and RAβ were placed at 37°C for 72 hrs to mimic any co-

oligomerization between human and rodent Aβ that might occur during the three 

days in which rodent cells are exposed to HAβ.  Detection antibody at a final 

concentration of 1 μg/mL was added to the samples and after incubation for 30 
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min, samples were added to sandwich ELISA plates and processed as described 

for Sandwich ELISA. 

 

DNA Assay  

 Calf Thymus DNA was solubilized with 100 mM Tris, 10 mM EDTA, pH 8.0 

(TE buffer) and its final concentration determined spectrophotmetrically using an 

extinction coefficient of .02 μg/mL-1⋅cm-1 at 260nm.  Cells grown in Lab-Tek 8 well 

chamber slides were lysed with 200 μL of DNA lysis buffer (25 mM NaOH, 10 

mM EDTA, pH 12.0), and wells were washed 2x with 300 μL of TE buffer which 

was added to the lysate.  Standards and samples were diluted with TE buffer 

containing 1:10,000 SybrGreen I (Life Technologies, Carlsbad, CA).  Lysates 

from the dissociated neuronal cell cultures were diluted 1:50 in TE buffer 

containing SybrGreen I. Organotypic mouse hippocampal slices were removed 

from the coverslip and lysed in 200 μL of DNA lysis buffer for 30 min at room 

temperature and 600 μL of TE buffer was added to lower the pH.  Slice lysates 

were further diluted 1:200 in TE buffer with SybrGreen I. Samples and standards 

were added at 100 μL per well onto 96-well white solid plates (Costar, Corning 

Inc.).  Fluorescence was quantified for 0.1 s per well on a Perkin-Elmer Victor V 

multi-mode microplate reader equipped with fluorescein filters.  

 To determine if all DNA was released from cells during lysis, slides were 

mounted with ProLong Gold Antifade reagent supplemented with 1:10,000 

SybrGreen I to visualize any remaining dsDNA using a Nikon Diaphot equipped 

with a 20x (.75NA) air objective a fluorescein filter cube and a Photometrics 
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CoolSNAP cf CCD camera.  Fluorescence intensity was measured across entire 

images using MetaMorph v7.03 (MDS Analytical Technologies, Toronto, 

Canada). Wells containing no cells were used as negative controls. 

 

Neuronal cell culture 

Animal studies were performed according to The National Research 

Council’s guide for the care and use of laboratory animals using protocols 

approved by the Institutional Animal Care and Use Committee.  E18 rat cortical 

and hippocampal neurons were obtained from timed-pregnant dams purchased 

from Harlan (Indianapolis, IN) and were prepared as previously described 

(Minamide et al., 2000). After counting, 300,000 cells were plated per well onto 8 

well chamber slides (Lab-Tek, Thermo Scientific, Portsmouth, NH) that had been 

coated with poly-D-lysine.  Neurons were cultured in 400 μL of Neurobasal 

medium supplemented with 1x B27, 2 mM GlutaMAX, and 100 μg/mL 

Penicillin/Streptomycin.   

Mouse N2a neuroblastoma cells were obtained from ATCC and cultured in 

Dubelco’s Modified Eagle Medium (D-MEM) with 4.5 g/L D-glucose, 2 mM L-

glutamine, 110 mg/L sodium pyruvate, and 10% fetal bovine serum.  Cells were 

plated at 5,000 cells per well onto 8 well chamber slides.  One day after plating, 

cells were stressed with varying concentrations of hydrogen peroxide.  After 3 

days the medium was collected and diluted 1:10 with PBSTB and processed 

identically as that from cultures of dissociated neurons.   
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To determine the amount of internal RAβ within cortical neurons we 

cultured neurons identically as if media were to be assayed for RAβ content.  

After cells were stressed for 3 days we removed the media, and washed the cells 

with PBS.  Cells were lysed in PBSTB containing 0.1% NP-40 for 5 min at room 

temperature and the lysate was processed identically to the medium using the 

RAβ ELISA.    

 

Organotypic hippocampal slice cultures 

Hippocampal slices (400 μm thick) were prepared from P6 Sprague 

Dawley rat pups (Stoppini et al., 1991) and cultured on membranes in 6 well 

dishes as previously described (Davis et al., 2009).  Hippocampal slices (300 μm 

thick) on glass coverslips were prepared from P7 mouse pups (TAU-/- (B6.Cg-

Mapttm1(EGFP)Klt, Jackson Labs, Bar Harbor, ME) and TAU-/- mice carrying the 

human tau transgene (B6.Cg- Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J).  Washed 

coverslips (12x22mm) were treated with 2% 3-aminopropyltriethoxysilane in 

acetone (10 sec dip), rinsed, air dried and UV sterilized.  Chick plasma (4 μL) 

was spread into a 5 mm diameter circle near one end of the cover slip, two slices 

were placed side by side on the plasma and the slices were covered with 8 μL of 

fresh plasma/thrombin mixture (20 μL chick plasma (Cocalico Biologicals Inc., 

Reamstown, PA) and 6 μL thrombin (150 NIH units/ml in water; MP Biomedicals, 

Inc.).  After the plasma clotted, the coverslip was inserted into a flat sided tube 

(Nunclon Delta Tubes, Nalge Nunc, Rochester, NY) and 600 μL slice culture 

medium  added.  Tubes were placed at a 5o angle in a roller incubator (10 
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revolutions per hour) at 35oC.  The original slice medium (per 205 mL: 50 mL 

horse serum, 50 mL Hanks BSS, 4 mL 25% glucose, 100 mL minimum essential 

medium containing glutamax (250 μL/100 mL), HEPES (4.76g/ L) and Pen/Strep 

(1 mL)) was replaced on day 2 with Neurobasal A medium containing (per 50 

mL): 48 mL Neurobasal A, 180 μL 25% glucose, 625 μL Glutamax 1, 1 mL B27 

supplements and 250 μL Pen/Strep.  The Neurobasal A medium was replaced 

every 2-3 days. Slices were allowed to recover for at least 1 week after 

dissection before treatment. 

 

Statistics 

All experiments were performed a minimum of two times with at least 

triplicate samples for every point but only a single experiment is shown.  Error 

bars on each plot are standard deviations across at least 3 samples, and p 

values were determined from paired two-tail t tests. 

 

Results 

Development of an ELISA for total rodent Aβ 

 Several ELISAs have been reported that measure a variety of Aβ species 

or conformations including assays for RAβ1-40 or RAβ1-42 (Fukumoto et al., 1999; 

Walsh et al., 2000; Stenh et al., 2005; Xia et al., 2009).  However, no commercial 

ELISA was available for measuring total RAβ.  Such an assay could be used to 

quantify the effects of various stress agents on Aβ secretion from cultured 

neurons with less effort and expense than having to quantify each species 
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independently.   Covance, a company that manufactured ELISA plates for 

assaying either RAβ1-40 or RAβ1-42, agreed to supply us with plates and reagents 

to optimize a total RAβ ELISA.  We developed a sandwich ELISA in which an 

antibody specific to total RAβ is bound to the plate (capture antibody) and a 

horseradish peroxidase (HRP) conjugated detection antibody, directed against 

an epitope well separated from the capture antibody, is preincubated with the 

sample. To determine the optimal concentration of capture antibody that allowed 

for maximal binding of RAβ to the plate, we coated plates with varying 

concentrations (2, 5, 10 μg/mL) of capture antibody.  Synthetic RAβ1-40 and RAβ1-

42 were diluted (0-600 pg/mL), the HRP-conjugated detection antibody (1.6 

μg/mL) was added and after 10 min the samples were placed in wells of the 96 

well plate.  Plates coated with 5 or 10 μg/mL capture antibody gave identical 

curves that were linear between 10-600 pg/mL Aβ and both RAβ1-40 and RAβ1-42 

were recognized with equal affinity (Figure 1.1).  The plate coated with 2 μg/mL 

of capture antibody became saturated above 400 μg/mL using either Aβ species 

(data not shown).  Thus, all reported assays were performed on plates coated 

with 5 or 10 μg/mL capture antibody. 

 

Determining the maximum level of HAβ that does not interfere in RAβ ELISA 

 Rodent and human Aβ peptides differ in sequence in only three residues 

(Arg5, Tyr10, and His13 in HAβ is replaced by Gly5, Phe10, and Arg13 in RAβ) 

that are all within the epitope recognized by the capture antibody. By inference 

this means that the epitope recognized by the detection antibody is subject to  
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Figure 1.1. RAβ ELISA standard curves comparing RAβ1-40 and RAβ1-42. There is 
no significant difference between the two RAβ species in this assay. The assay is 
linear between 10 pg/mL and 600 pg/mL. Points are triplicate samples; error bars 
= standard deviation.  Inset: the assay plateaus at RAβ concentrations above 
600 ng/mL 
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interference by Aβ from non-rodent species.  To be able to utilize the RAβ ELISA 

in the presence of HAβ, the maximum level of HAβ that could be tolerated in the 

assay needed to be determined.  A constant level (150 pg/mL) of RAβ1-42 was 

maintained in the assay while HAβ1-42 was added from 10 pg/mL to 1 μg/mL 

(Figure 1.2A).  HAβ1-42 at 5 ng/mL or less had no effect on the ability of the 

ELISA to correctly quantify the RAβ.  The increased signal obtained at higher 

concentrations of HAβ could arise either from some weak affinity of the capture 

antibody for the HAβ or from co-oligomerization between RAβ and HAβ that 

might occur at higher Aβ concentrations (Fung et al., 2004; Jankowsky et al., 

2007). 

 We also performed the RAβ ELISA using a constant amount of HAβ (1.9 

ng/mL, approximately the maximum concentration in the HAβd/t fraction) with 

increasing concentrations of RAβ (from 10 pg/mL to 1μg/mL).  At concentrations 

of RAβ below 600 pg/mL, the presence of the HAβ had no effect on the standard 

curve, demonstrating the ELISA is specific for RAβ within its linear region (Figure 

1.2B).  

 

Measurement of secreted RAβ from a rodent cell line 

  It was previously reported that peroxide induced secretion of Aβ from 

human neuroblastoma SH-SY5Y cells through JNK-dependent activation of γ-

secretase (Shen et al., 2008).  Therefore, we first utilized a mouse 

neuroblastoma cell line (N2a) to apply the RAβ ELISA.  Mouse N2a cells were 

cultured in 8 well chamber slides and were stressed using varying levels of  
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Figure 1.2. Effects of HAβ on the RAβ ELISA. (A) Effects of variable amounts of 
HAβ1-42 on the ability of the ELISA to detect a fixed amount (150 pg/ml) of RAβ1-

42. Samples were incubated at 37°C to allow possible co-oligomerization to occur 
before the addition of detection antibody.  Points are averages of triplicate 
samples; error bars = standard deviation (less than size of symbol for 
concentrations below 10 ng/mL).  (B)  Effects of a fixed amount of HAβ1-42 (1.9 
ng/ml) on the RAβ ELISA standard curve.   Samples of each concentration were 
incubated at 37°C for 3 days before assay to mimic the incubation conditions for 
secreted RAβ in the presence of the HAβd/t.  Points are averages of triplicate 
samples; error bars = standard deviation. 
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hydrogen peroxide (0.5 mM to 10 mM) for 3 days.  Medium was harvested and 

assayed for RAβ in triplicate wells.  There was a significant increase (p≤0.05) in 

secreted RAβ levels for peroxide concentrations above 0.5 mM when compared 

to untreated controls with a maximum of over 5 fold obtained when treating with 2 

mM peroxide (Figure 1.3).   However, it was obvious from phase microscopy 

observation of the wells that significant cell loss occurred, especially at peroxide 

concentrations above 2 mM.  

To normalize Aβ secretion to cell number we applied an assay to measure 

DNA levels in cultured cells, using the DNA binding dye SybrGreen I, which does 

not react with nucleotides, RNA, single-stranded nucleic acids, and proteins, as 

may occur with other DNA binding dyes (Kricka, 2002).   DNA standard curves 

generated from calf thymus DNA were linear between 1-300 ng/mL (Figure 1.4).  

To normalize the Aβ secreted by the peroxide treated N2a cells to cell number, 

medium was removed from each well and analyzed for total RAβ and the 

remaining cells were lysed, the lysates diluted, and the DNA quantified.  When 

normalized for secreted RAβ on a per cell basis, secretion of RAβ increased with 

increasing peroxide up to a maximum at 2 mM  (Figure 1.3).  

 

Application of the RAβ ELISA to primary neurons 

Primary E18 rat cortical neurons were cultured in 8 well chamber slides for 

3 days, and were left untreated or treated with varying concentrations of 

peroxide. Three days later culture medium was removed and assayed for RAβ. 

Neurons were washed once with PBS, lysed, and the lysates were used to  
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Figure 1.3.  N2a cells were treated with different concentrations of hydrogen 
peroxide and the total RAβ secreted was determined after 3 days and normalized 
to levels secreted from untreated cells. An apparent decline in secreted Aβ 
occurred at peroxide concentrations above 2 mM.  However, after correcting for 
cell loss by normalizing secreted Aβ to DNA in each well, the production of Aβ 
reached a plateau at or above 2 mM peroxide. * values of p ≤ 0.05 compared to 
untreated samples.   
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Figure 1.4. Standard curves for DNA using calf thymus DNA dissolved in TE as 
the standard.  Standards and cell lysates are diluted with TE and SybrGreen I 
and then assayed using a microtiterplate reader operating in the fluorescence 
mode.    The assay is linear between 1 ng to 300 ng/mL of DNA, but linearity can 
be expanded by adjusting the intensity of fluorescence or exposure time.  Points 
are triplicate samples; error bars = standard deviation. 
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quantify either DNA (using the DNA Lysis Buffer) or the internal pool of RAβ  

using PBSTB w/ 0.1% NP-40).  

Untreated neurons secreted 63 ± 5 pg (n=3) of Aβ per well equating to 

157.0 pg/mL over the course of three days.  By normalizing the concentration of 

Aβ to the DNA content of the well (1.72 ± .09 μg), we calculate that there are  

0.036 pg Aβ/ng of DNA (Figure 1.5A). To determine the number of molecules 

secreted by each cell one can assume that there is 6.5 pg of DNA/cell (Ausubel 

et al., 1994); therefore, over a three day period, each cell secretes 220 ag of RAβ 

(or ~29,000 molecules), which equals about 6-7 RAβ peptides per minute/neuron 

under non-stress growth conditions. 

Cortical neurons were stressed for 3 days with various concentrations (1 

μM – 10 mM) of hydrogen peroxide, media were collected and RAβ contents 

were measured and normalized to DNA (Figure 1.5A).  Concentrations of 

peroxide over 2 mM resulted in increasing cell death, observed by a decline in 

overall DNA content (data not shown). When compared to untreated neurons 

there was a significant (p≤0.05) increase in RAβ secreted only at or above 

peroxide concentrations of 100 μM, with a maximal secretion observed at 2 mM 

peroxide, resulting in a 2.4 ± 0.2 fold increase over untreated neurons (Figure 

1.5A).  This fold increase is similar to the increase (2.4 ± 0.6 fold over controls) 

observed in chick tectal neurons exposed to 10-20 μM peroxide for 20 h 

(Goldsbury et al., 2008).  It is important to note that we elected to keep the B27 

supplements in the neuronal culture medium because the supplements contain 

factors in addition to anti-oxidants (including catalase) that help keep the cells  
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Figure 1.5.  Effects of peroxide on secretion of RAβ from primary cortical 
neurons.   (A) Normalized dose-response of RAβ secretion to hydrogen peroxide 
in rat E18 cortical neurons cultured in 8 well chamber slides. After 3 days of 
exposure, medium was removed from each well and cells were lysed with DNA 
lysis buffer.  Medium was analyzed to determine the concentration of secreted 
RAβ and the cell lysate was analyzed to determine the DNA content. Values 
were normalized to untreated wells. Points are averages of triplicate samples; 
error bars = standard deviation, * values with p ≤0.05 compared to untreated.  
RAβ secretion peaks with the addition of 2 mM peroxide.  (B) Time course of 
RAβ secreted from rat E18 cortical neurons in response to 2 mM peroxide 
treatment.  Medium was removed for RAβ assay and cells were lysed for DNA 
measurement at the times indicated.  Points are averages of triplicate samples, 
error bars = standard deviation, * values with p ≤0.05 compared to 0 time. 
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viable over the three day culture period.  Thus, much higher concentrations of 

peroxide were required in these experiments than were needed to induce 

secretion in chick tectal neurons.   

An increase in the internal pool of RAβ has been reported in neurons 

responding to certain types of stress (Hasegawa et al., 2005) and has been 

associated with synaptic dysfunction in mouse models of AD (Oddo et al., 2003; 

Casas et al., 2004). Thus, we quantified the internal pool of RAβ in lysed neurons 

untreated or treated with peroxide.  The internal RAβ was not significantly 

different between untreated and peroxide-treated neurons.  Untreated neurons 

had 4.3 ± 0.6 pg of RAβ per ng DNA and 2 mM peroxide-treated neurons 

contained 4.9 ± 0.8 pg of RAβ per ng DNA. 

We next determined the time course of RAβ production in cortical neurons 

stressed with 2 mM peroxide.  Neurons were plated identically as above and 

stressed with peroxide, with medium being collected after peroxide treatment at 

24 h intervals up to 4 days.  Although increased secretion was observed as early 

as 12 h after treatment, the increase was not statistically significant (p ≤ 0.05) 

until 50 hrs, with maximal secretion obtained at 72 hrs (Figure 1.5B).      

Because dissociated neurons might behave differently from neurons that 

maintain their connections with glia and other neurons, we also determined how 

peroxide affected the secretion of RAβ from rat hippocampal organotypic slices. 

Slices that had been grown on membranes for > 1 week (to allow recovery from 

the stress of preparation) were treated with 2 mM peroxide and after three days 

the culture medium was harvested and assayed for RAβ.  The slices were lysed 
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for DNA quantification.  When RAβ levels are compared to untreated slices on a 

per slice basis there is a 2.1 ± 0.3 fold increase; however when normalized to 

DNA, the fold increase is 1.5 ± 0.3, which is still significant but less than from the 

2.4 fold increase observed for dissociated cortical neurons (Figure 1.6).  Each 

untreated slice secretes 85 ± 8 pg (n=3) of RAβ over the course of 3 days. 

 

HAβ dimer/trimer induces secretion of RAβ 

 Although synthetic HAβ peptides are usually used at concentrations well 

above 10 nM (45 ng/mL) to obtain any physiological or morphological changes in 

neurons, the secreted form of HAβ containing SDS-stable dimers and trimers 

(HAβd/t) (Walsh et al., 2002) and HAβ dimers extracted from postmortem AD 

brain (Shankar et al., 2008) are active at concentrations in the pM range (Freir et 

al., 2010), well below the levels of HAβ that interfere in our rodent ELISA.  Thus 

we can for the first time directly assay the effects of physiologically relevant 

amounts of HAβ on RAβ secretion.  

The conditioned medium from 7PA2 and wild type CHO cells was 

fractionated as previously described (Townsend et al., 2007).  Fractions that 

contained primarily monomer (Aβm) and Aβd/t were obtained (Figure 1.7).  The 

amount of HAβ in each fraction was quantified using a dot blot assay, because 

after adherence of the HAβ species the membrane could be boiled to expose the 

epitopes for detection.  This step is essential for quantification of HAβ because 

oligomers are inefficiently measured by ELISA (Stenh et al., 2005), but it is not 

required for the RAβ assays, including the ELISA, because RAβ does not 
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Figure 1.6. Comparison of effects of hydrogen peroxide (2 mM), HAβm, and 
HAβd/t on RAβ secretion from dissociated cortical neurons and organotypic 
hippocampal slices.  Media from both neuronal and slice cultures were harvested 
3 days after peroxide addition, RAβ levels were analyzed by ELISA,  normalized 
to DNA, and expressed relative to untreated wells.  Bars are average values from 
triplicate samples; error bars = standard deviation; * values with p ≤ 0.05 
compared to their untreated control. 
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Figure 1.7. Western blot showing fractions of the HAβm and HABd/t from 10x 
concentrated culture medium of 7PA2 cells.  The elution positions of monomer, 
dimer and trimer are shown. A total of 800 µl was removed from each fraction 
and stored at –80°C. The remaining 200 µl was lyophilized, resuspended 
in 2x sample buffer, and electrophoresed on a 10–20% Tris-Tricine gel. Proteins 
were transferred onto 0.1 µm nitrocellulose and detected, after boiling the blot for 
10 min, by Western blotting for Aβ with 6E10 mouse monoclonal antibody and 
DyLight secondary antibodies detected with a Li-Cor Odyssey Infrared Imaging 
System. Fractions enriched in monomer (fractions 14-16) or dimer/trimer 
(fractions 12 and 13) were pooled separately, lyophilized, and stored at –80°C. 
They were used at the equivalent of 1x to treat cells. The amounts of HAβ in 
each fraction were determined by a dot blot assay described elsewhere (Chapter 
2).  
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oligomerize at its secreted concentrations.  The HAβm and HAβd/t fractions, as 

well as their respective controls (equivalent fractions from gel filtration of wt CHO 

cell medium), were added to 3 day old cultures of rat cortical neurons.  Secreted 

rodent Aβ was quantified at 0, 24, 48, 72 and 96 h and normalized to the amount 

of DNA in each sample (Figure 1.8).  The presence of HAβ did not interfere in the 

RAβ ELISA, as previously shown in Figure 1B, and confirmed here by the lack of 

change between untreated and HAβ-treated groups at time zero (Figure 1.8).   

Neurons treated with the HAβd/t, but not monomer or fractions from control CHO 

cell medium, induced secretion of RAβ to more than a 3-fold increase over 

controls by 4 days.    Because of the possible co-oligomerization between the 

HAβd/t and the RAβ that could alter the assay results, we boiled some of the 

samples to enhance epitope exposure before performing the RAβ ELISA, but no 

differences between the boiled and unboiled samples were detected (data not 

shown).   By 96 h the amount of RAβ was nearly identical to the amount of 

human Aβd/t added, so if co-oligomerization had occurred we should have 

observed an enhanced signal after boiling.   

The effects of HAβm and HAβd/t on the secretion of RAβ from rat 

hippocampal organotypic slices was also determined.  Slices were grown 

essentially as described in the peroxide experiments, and were treated with 

HAβm or HAβd/t and harvested 3 days after insult (Figure 1.6).  When RAβ 

levels are compared to untreated slices on a per slice basis, there is no change 

in RAβ with HAβm treatment (0.9 ± 0.2 fold change), however HAβd/t treatment 

caused a significant (p≤0.05) 1.8 ± 0.2 fold increase in secreted RAβ.  When 
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Figure 1.8. Time course of RAβ production from rat cortical neurons, untreated 
or treated with HAβm or HAβd/t fractionated from 7PA2 culture medium.  Rat 
cortical neurons grown 3 days were left untreated or were treated with gel filtered 
fractions containing HAβm (3.6 ng/mL), HAβd/t (1.1 ng/mL) or equivalent 
volumes of the same fractions from wild type CHO cell culture medium (controls).  
Medium was removed at 0, 24, 48, 72, and 96 hrs after HAβ addition, and 
analyzed for RAβ.  Cells were lysed and DNA measured for normalization.  
Values were then expressed relative to the untreated samples at time=0. All 
controls using fractionated medium from wild type CHO cells were not 
significantly different from the untreated controls of the same time point.  Bars 
are average values from triplicate samples; error bars = standard deviation; * 
values with p ≤ 0.05, or ** p ≤ 0.05, compared to their untreated control. 
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organotypic hippocampal slices are compared to cortical neurons treated with 

HAβd/t there is a similar fold increase in RAβ secretion with both types of 

neurons. 

There was no significant change in the amount of RAβ in the intracellular 

pool measured in lysates of cells treated with HAβd/t.  Normalized per ng of 

DNA, untreated neurons had 5.1 ± 0.4 pg of RAβ, cells treated with HAβm had 

4.8 ± 0.3 pg, and cells treated with HAβd/t had 5.4 ± 0.5 pg of rodent Aβ. These 

values were similar to the intracellular RAβ amounts reported above for the 

control and peroxide treated neurons (4.3 to 4.9 ± 0.8 pg). 

 To determine if the effects of HAβd/t on RAβ secretion are dependent on 

the microtubule protein tau, organotypic hippocampal slices from transgenic mice 

with either tau null (TAU-/-) or TAU-/- carrying a human tau transgene were used. 

These slices were cultured in pairs on glass coverslips in 0.6 mL of medium, 

which minimized the amount of HAβd/t required.  Slices were stressed with 2 mM 

peroxide, HAβm (at 3.6 ng/ml), or HAβd/t (1.1 ng/ml) after slices had stabilized.  

After 3 days of treatment RAβ levels were quantified and normalized to DNA 

content (Figure 1.9).  Both tau null slices and slices expressing the transgenic 

human tau showed a nearly identical increase in levels of RAβ when stressed 

with peroxide (1.6 ± 0.2 and 1.5 ± 0.2, respectively).  Slices treated with HAβm 

showed no change in RAβ levels when compared with untreated slices.  RAβ 

secreted from slices treated with HAβd/t increased 2.1 ± 0.3 fold (tau null) and a 

2.3 ± 0.3 fold (transgenic human tau).  Taken together, these results suggest that 

Aβ secretion is not dependent on tau. 
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Figure 1.9. The presence or absence of tau has no effect on RAβ secretion 
induced by either peroxide or HAβd/t. Triplicate roller tubes containing two 
organotypic hippocampal slices from mice of genotype mouse TAU-/- or mouse 
TAU-/- with a human tau transgene were cultured for 10 or more days and then 
treated with 2 mM peroxide, HAβm (3.6 ng/mL) or HAβd/t (1.1 ng/mL). After 3 
days, medium was harvested for measurement of secreted RAβ and tissue was 
lysed to measure DNA for normalization. Bars are averages of triplicate samples, 
error bars = standard deviations; * values with p≤0.05 compared with mouse 
TAU-/- control. 
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Discussion 

 Transgenic mice expressing human mutant APP are commonly used for 

AD research, but these animals also express endogenous mouse APP, which 

limits their usefulness when trying to measure effects on APP processing and Aβ 

release since quantifying mixed species of Aβ is more complex.  In addition, HAβ 

peptides oligomerize and oligomers are not efficiently measured by a typical 

ELISA (Stenh et al., 2005), unless samples are denatured by boiling or treated 

with denaturants, both of which may decrease the accuracy of their 

determination.  Furthermore, a goal of our work is to apply an ELISA for 

measuring RAβ secreted in response to treatment of cells with HAβ oligomers, 

something that is not feasible to do in cells secreting HAβ.  Thus we developed 

an assay for total RAβ which can be used in the presence of physiologically 

relevant concentrations of HAβ oligomers.  The advantage of the use of rodent 

neurons from non-transgenic animals is several fold: (1) they are easier to obtain 

and maintain than transgenic animals (Castrop, 2010); (2) rodent neurons 

(hippocampal and cortical) are the standard model system for studying the 

behavioral effects of HAβ treatment, both electrophysiologically and 

morphologically (Wang et al., 2004; Cleary et al., 2004; Shankar et al., 2007; 

Shankar et al., 2008; Freir et al., 2010); (3) the RAβ they produce does not 

oligomerize eliminating any need for boiling or denaturing higher order 

complexes before analysis (Atwood et al., 2004; Marksteiner & Humpel, 2008); 

(4) both rat and mouse Aβ peptides have the identical sequences and either 

species can be used for these assays (Johnstone et al., 1991).   
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Chick neurons produce Aβ with sequence, isoform patterns, and 

oligomerization patterns identical to HAβ (Esselmann et al., 2004; Carrodeguas 

et al., 2005), making them a useful system for some studies, but not for 

experiments in which treatment with HAβ is desired.  Previously it was shown 

that 10-20 μM peroxide treatment causes a 2.4 fold increase in secreted Aβ after 

20 hours in chick tectal neurons using an immunoprecipitation and Western 

blotting assay (Goldsbury et al., 2008). Only monomeric Aβ was quantified 

because it was the only species to show up on the western blots, perhaps 

because SDS-stable oligomers would not be visualized without boiling the 

membrane.  In our assays, which were performed in the presence of the B27 

supplement, we obtained no effect on RAβ production until we exceeded 100 μM 

hydrogen peroxide, demonstrating the protective effect of the B27 antioxidants 

and explaining why we required using much higher levels of peroxide than in 

previous studies in which neurons were maintained for shorter time periods (less 

than 24 h) (Goldsbury et al., 2008).   

Conventional approaches to studying Aβ secretion in cultured neurons 

focus on overexpressing human APP, and measuring HAβ secreted into the 

extracellular environment (Busciglio et al., 1993; Suzuki et al., 1994).  Here we 

show that this method might cause artificially high levels of secreted HAβ, simply 

due to the fact that there is a positive feedback loop where HAβd/t secreted can 

cause a further increase in HAβ secretion.  Furthermore when using an ELISA to 

quantify the amount of HAβ secreted, low values are often observed because 

antibodies recognize different oligomers with varying affinities (Stenh et al., 
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2005); however RAβ does not oligomerize making it easier to get accurate values 

on its secreted level.  When using the ELISA to look at HAβ-induced RAβ 

secretion it is necessary to use the highly active naturally secreted Aβ dimer 

containing fractions (either from AD brain or 7PA2 conditioned medium) since 

synthetic HAβ is required at concentrations well above those that interfere with 

the RAβ ELISA. 

HAβm does not show any synaptic detrimental effects and it has a role in 

neuroprotection, perhaps acting as a scavenger for metal induced oxidative 

stress (Zou et al., 2002).   Here we show that HAβm does not cause an increase 

in RAβ secretion providing additional support that HAβm is not a pathogenic 

species responsible for AD (Giuffrida et al., 2009).  Recently other small Aβ 

oligomers, specifically the dimer and the trimer, have been  proposed as the 

species responsible for AD, and the synaptic deficits associated with the disease 

(Walsh et al., 2002; Cleary et al., 2004; Shankar et al., 2008; Freir et al., 2010).  

The dimer is found in AD brain but not in brains of stroke patients or patients 

diagnosed with diseases unrelated to HAβ overproduction (Shankar et al., 2008), 

and the dimer is correlated with severity of AD dementia (McDonald et al., 2010).  

Furthermore, synthetic HAβ does not form dimers when the oligomers are 

prepared under traditional incubations conditions (Dahlgren et al., 2002; Stine et 

al., 2003) and these oligomers are at least 100-200 fold less potent than naturally 

secreted HAβ at decreasing long-term potentiation (Wang et al., 2004).   

HAβ rapidly inhibits fast axonal transport, however in tau null neurons 

transport is not inhibited following HAβ treatment (Vossel et al., 2010) suggesting 
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that HAβ requires tau for its effects on vesicle transport.  Between 40 and 70% of 

the Aβ secreted by neurons is produced following endocytosis of APP (Cirrito et 

al., 2008).  Following endocytosis much of the APP and vesicular Aβ is trafficked 

to lysosomes and digested after endosome-lysosome fusion (Lorenzen et al., 

2010). It has been previously suggested that inhibition of vesicle transport may 

be one means to generate enhanced Aβ production (Maloney et al., 2005). Thus, 

we determined if tau-dependent blockage is required to get enhanced RAβ 

secretion by comparing the levels of secreted RAβ from HAβd/t-treated 

organotypic hippocampal slices obtained from TAU-/- mice and TAU-/- mice 

expressing a human tau transgene.  We found no significant differences in RAβ 

secreted in response to HAβd/t from organotypic slices from either mouse, 

suggesting that tau-dependent transport inhibition per se plays no significant role 

in HAβd/t-induced RAβ secretion.  

 

 

 

 

 

 

 

 

 

 



 

33 
 

Reference List 

Alzheimer’s Association (2010) Alzheimer’s Disease Facts and Figures, 
 Alzhemiers Dement  6:158-94 

Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling K-Q, Huang X, Moir RD, 
 Wang  D, Sayre LM, Smith M, Chen SG, Bush AI (2004) Copper 
 mediates dityrosine  cross-linking of Alzheimer’s amyloid-beta. 
 Biochemistry 43:560-8. 

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K 
 (1994) Current Protocols in Molecular Biology, Vol 3, Appendix A.1- B.1, 
 John Wiley & Sons, New York. 

Bamburg JR, Bloom GS (2009) Cytoskeletal pathologies of Alzheimer disease. 
 Cell Motil Cytoskeleton 66:635-49.  

Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA (1993) Generation of beta-
 amyloid in the secretory pathway in neuronal and nonneuronal cells. 
 Proc Natl Acad Sci USA 90:2092-6.  

Carrodeguas JA, Rodolosse A, Garza MV, Sanz-Clemente A, Pérez-Pé R, 
 Lacosta AM,  Domínguez L, Monleón I, Sánchez-Díaz R, Sorribas V, 
 Sarasa M (2005) The chick embryo appears as a natural model for 
 research in beta-amyloid precursor protein processing. Neuroscience 
 134:1285-300.  

Castrop H (2010) Genetically modified mice-successes and failures of a widely 
 used technology. Pflugers Arch 459:557-67  

Cirrito JR, Kang J-E, Lee J, Stewart FR, Verges DK, Silverio LM, Bu G, 
 Mennerick S, Holtzman DM (2008) Endocytosis is required for synaptic 
 activity-dependent release of amyloid-beta in vivo. Neuron 58:42-51. 

Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, 
 Ashe  KH (2004) Natural oligomers of the amyloid-beta protein specifically 
 disrupt cognitive function. Nat Neurosci 8:79-84. 

Dahlgren KN, Manelli AM, Stine WB, Baker LK, Krafft G, LaDu MJ (2002) 
 Oligomeric and fibrillar species of amyloid-beta peptides differentially 
 affect neuronal viability. J Biol Chem 277:32046-53. 

Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic 
 processing of the Alzheimer beta-amyloid precursor protein depends on 
 lipid rafts. J Cell Bio 160:113-23.  



 

34 
 

Esselmann H, Maler JM, Kunz N, Otto M, Paul S, Lewczuk P, Rüther E, 
 Kornhuber J, Wiltfang J (2004) Lithium decreases secretion of Aβ1- 42 
 and C-truncated species Aβ1-37/38/39/40 in chicken telencephalic 
 cultures but specifically increases intracellular Aβ1-38. Neurodegener Dis 
 1:236-41. 

Finder VH, Glockshuber R (2007) Amyloid-beta aggregation. Neurodegener Dis 
 4:13-27. 

Freir DB, Fedriani R, Scully D, Smith IM, Selkoe DJ, Walsh DM, Regan CM 
 (2010) Aβ oligomers inhibit synapse remodelling necessary for memory 
 consolidation. Neurobiol Aging. 

Fukumoto H, Tomita T, Matsunaga H, Ishibashi Y, Saido TC, Iwatsubo T (1999) 
 Primary cultures of neuronal and non-neuronal rat brain cells secrete 
 similar proportions of amyloid beta peptides ending at Aβ40 and Aβ42. 
 Neuroreport 10:2965-9. 

Fung J, Frost D, Chakrabartty A, McLaurin J (2004) Interaction of human and 
 mouse Aβ peptides. J Neurochem 91:1398-403. 

Gasparini L, Rusconi L, Xu H, Soldato P del, Ongini E (2004) Modulation of beta-
 amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal 
 cell cultures. J Neurochem 88:337-48. 

Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, 
 Pappalardo G, Messina A, Palmigiano A, Garozzo D, Nicoletti F, Rizzarelli 
 E, Copani A (2009) Beta-amyloid monomers are neuroprotective. J 
 Neurosci 29:10582-7. 

Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the 
 purification and characterization of a novel cerebrovascular amyloid 
 protein. Biochem Biophys Res Commun 120:885-90.  

Goldsbury C, Whiteman IT, Jeong EV, Lim YA (2008) Oxidative stress increases 
 levels  of endogenous amyloid-beta peptides secreted from primary chick 
 brain neurons. Aging Cell 7:771-5. 

Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: 
 progress and problems on the road to therapeutics. Science 297:353-6. 



 

35 
 

Hasegawa T, Ukai W, Jo D, Xu X, Mattson M, Nakagawa M, Araki W, Saito 
 T, Yamada T (2005) Homocysteic acid induces intraneuronal 
 accumulation of neurotoxic Aβ42: Implications for the pathogenesis of 
 Alzheimer's disease. J Neurosci Res 80:869–76.  

Jankowsky JL, Younkin LH, Gonzales V, Fadale DJ, Slunt HH, Lester HA, 
 Younkin SG,  Borchelt DR (2007) Rodent Aβ modulates the solubility and 
 distribution of amyloid deposits in transgenic mice. J Biol Chem 
 282:22707-20. 

Johnstone E, Chaney M, Norris F, Pascual R, Little S (1991) Conservation of the 
 sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear 
 and five other mammals by cross-species polymerase chain reaction 
 analysis. Brain Res  Mol Brain Res 10:299-305. 

Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid 
 beta-protein involves the endocytic pathway. J Biol Chem 269:17386-9. 

Krafft G, Klein WL (2010) ADDLs and the signaling web that leads to 
 Alzheimer’s  disease. Neuropharmacology 59:230-42. 

Kricka LJ (2002) Stains, labels and detection strategies for nucleic acids assays. 
 Ann Clin Biochem 39:114-129. 

Lorenzen A, Samosh J, Vandewark K, Anborgh PH, Seah C, Magalhaes AC, 
 Cregan SP, Ferguson SSG, Pasternak SH (2010) Rapid and direct 
 transport of cell surface APP to the lysosome defines a novel selective 
 pathway. Mol Brain  3:11. 

Marksteiner J, Humpel C (2008) Beta-amyloid expression, release and 
 extracellular  deposition in aged rat brain slices. Mol Psychiatry 13:939-52. 

Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. 
 Nature 430:631-9. 

McDonald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM, 
 Selkoe DJ, Ince PG, Walsh DM (2010) The presence of sodium dodecyl 
 sulphate-stable Aβ dimers is strongly associated with Alzheimer-type 
 dementia. Brain 133:1328-41. 

Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR (2000) 
 Neurodegenerative  stimuli induce persistent ADF/cofilin-actin rods that 
 disrupt distal neurite function. Nat Cell Biol 2:628-36.  

Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G, 
 Zetterberg H, Winblad B, Blennow K (2010) Mass spectrometric 



 

36 
 

 characterization of brain amyloid beta isoform signatures in familial and 
 sporadic Alzheimer’s disease. Acta Neuropathol 120:185-93. 

Price DL, Sisodia SS, Gandy SE (1995) Amyloid beta amyloidosis in Alzheimer’s 
 disease. Curr Opin Neurol 8:268-74. 

Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL 
 (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce 
 reversible synapse loss by modulating an NMDA-type glutamate receptor-
 dependent signaling pathway. J Neurosci 27:2866-75. 

Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett 
 FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini 
 BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from 
 Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 
 14:837-42. 

Shen C, Chen Y, Liu H, Zhang K, Zhang T, Lin A, Jing N (2008) Hydrogen 
 peroxide promotes Abeta production through JNK-dependent activation of 
 gamma-secretase. J Biol Chem 283:17721-30. 

Stenh C, Englund H, Lord A, Johansson A-S, Almeida CG, Gellerfors P, 
 Greengard P, Gouras GK, Lannfelt L, Nilsson LNG (2005) Amyloid-beta 
 oligomers are inefficiently measured by enzyme-linked immunosorbent 
 assay. Ann Neurol 58:147-50. 

Stine WB, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of 
 conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J 
 Biol Chem 278:11612-22. 

Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures 
 of nervous tissue. J Neurosci Methods 37:173-82. 

Suzuki N, Cheung T, Cai X, Odaka A, Otvos L, Eckman C, Golde T, Younkin S 
 (1994) An increased percentage of long amyloid beta protein secreted by 
 familial amyloid beta protein precursor (beta APP717) mutants. Science 
 264:1336-1340. 

Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid 
 hypothesis: a genetic perspective. Cell 120:545-55. 

Thomas RS, Liddell JE, Murphy LS, Pache DM, Kidd EJ (2006) An antibody to 
 the beta-secretase cleavage site on amyloid-beta-protein precursor 
 inhibits amyloid-beta production. J Alzheimers Dis 10:379-90. 



 

37 
 

Townsend M, Mehta T, Selkoe DJ (2007) Soluble Aβ inhibits specific signal 
 transduction cascades common to the insulin receptor pathway. J Biol 
 Chem  282:33305-12. 

Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of 
 secreted oligomers of amyloid beta-protein on hippocampal synaptic 
 plasticity: a potent role for trimers. J Physiol 572:477-92. 

Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, 
 Mucke L (2010) Tau reduction prevents Aβ-induced defects in axonal 
 transport. Science 330:98. 

Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, 
 Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein 
 potently inhibit hippocampal long-term potentiation in vivo. Nature 
 416:535-9. 

Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The 
 oligomerization of Aβ-protein begins intracellularly in cells derived from 
 human brain. Biochemistry 39:10831-10839. 

Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R (2004) Block of long-term 
 potentiation by naturally secreted and synthetic amyloid β-peptide in 
 hippocampal slices is mediated via activation of the kinases c-Jun N-
 terminal activated protein kinase as well as metabotropic glutamate 
 receptor type 5. J Neurosci 24:3370 -3378.  

Xia W, Yang T, Shankar G, Smith IM, Shen Y, Walsh DM, Selkoe DJ (2009) A 
 specific enzyme-linked immunosorbent assay for measuring beta-amyloid 
 protein oligomers in human plasma and brain tissue of patients with 
 Alzheimer disease.  Arch Neurol 66:190-9. 

 

 

 

 

 

 

 

 



 

38 
 

 

 

 

CHAPTER TWO 

 

AMYLOID BETA DIMERS/TRIMERS POTENTLY INDUCE COFILIN-ACTIN 

RODS THAT ARE INHIBITED BY MAINTAINING COFILIN 

PHOSPHORYLATION 
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Abstract 

 Previously we showed oligomers of synthetic amyloid beta (Aβ1-42) 

induced cofilin activation and formation of cofilin-actin rods in a neuronal 

subpopulation of rat hippocampus primarily localized within the dentate gyrus.  

Here we demonstrate that CHO cell (7PA2) secreted Aβ dimer/trimer (Aβd/t) at 

~250 pM is more potent in rod induction in both dissociated hippocampal 

neuronal cultures and organotypic slices than 1 µM synthetic Aβ as typically 

prepared oligomers, about a 4000 fold difference.  Treatment of the Aβd/t fraction 

with an Aβ-neutralizing antibody eliminates its rod inducing activity.  Traditionally 

prepared synthetic Aβ oligomers contain SDS-stable trimers and tetramers, but 

are devoid of dimers.  When synthetic human Aβ was incubated under conditions 

that generate a tyrosine oxidized dimer, the concentration that was required to 

induce rods decreased dramatically.  The oxidized dimer had a maximum rod-

inducing activity at ~2 nM (10 ng/mL), suggesting it is the presence of the SDS-

stable tyrosine oxidized Aβ dimer in a low-n state that is largely responsible for 

the potency of the secreted Aβd/t.  Aβd/t-induced rods are highly localized to the 

dentate gyrus and mossy fiber pathway and form more rapidly (significant over 

controls by 2 h compared to 8 h for those induced by synthetic Aβ-oligomers).  

Aβd/t-induced rods are reversible, disappearing by 24 h after washout.  Cofilin 

dephosphorylation in response to Aβd/t is greatest within the hippocampal 

regions of rod formation.  Overexpression of cofilin phosphatases slingshot and 

chronophin increase rod formation when expressed alone and exacerbate rod 

formation when coupled with Aβd/t treatment both in dissociated neurons and 
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organotypic slice cultures.  Overexpression of the cofilin kinase, LIM kinase 1, 

inhibits Aβd/t-induced rod formation.  Together these data support a mechanism 

through which Aβd/t produces selective synaptic dysfunction affecting learning 

and memory at least in part via primary effects on cofilin regulation and rod 

formation in sensitive hippocampal regions.  

 

Introduction 

Proteolytic cleavage of amyloid precursor protein (APP) by β- and γ-

secretases gives rise to Aβ peptides ranging in length from 39-43 amino acids 

(Glenner & Wong, 1984; Hardy, & Selkoe, 2002; Mattson, 2004; Price, et al., 

1995; Sisodia & Price, 1995; Tanzi, & Bertram, 2005).  Early onset familial AD is 

linked with high penetrance to mutations that lead to increased production of the 

most amyloidogenic species, Aβ1-42 (Chartier-Harlin et al., 1991; Goate et al., 

1991; Murrell et al., 1991; Price et al., 1995).  The “amyloid hypothesis” proposes 

that increasing cerebral accumulation of Aβ over years to decades exacerbates 

cognitive decline, neurodegeneration, and senile plaque deposition associated 

with AD. Elevated Aβ can result from mutations or allele expression patterns (or 

both) that enhance its production/aggregation or decrease its clearance/ 

degradation (Hardy & Selkoe, 2002).  

The concept that different isoforms and/or conformations of Aβ deliver 

independent signals to neurons is widely supported.  Although the term Aβ is 

used to describe a spectrum of peptide species, the effects of different Aβ 

peptide species on neuronal function or morphology are not the same (Maloney 
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& Bamburg, 2007; Heredia et al., 2006).  Emphasis has been placed recently on 

the characterization of small soluble oligomeric forms of Αβ, sometimes referred 

to as Aβ-derived diffusible ligands (ADDLs) (Kraaft and Klein, 2010).  ADDLs are 

toxic to cultured neurons at nanomolar concentrations (Lambert et al., 1998) and 

at 500 nM they prevent high frequency stimulation-induced long-term potentiation 

(LTP) measured from the dentate gyrus in acute hippocampal slices (Wang et al., 

2002). Furthermore, ADDLs have been linked to hippocampus-dependent 

temporal memory deficits in mice. Deletion of the BACE1 gene in Tg6799 mice, 

expressing mutant forms of human APP and presenilin-1, lowered the 

concentration of ADDLs to wild type levels and rescued temporal memory 

deficits, implying a direct role of Aβ formation in memory loss (Ohno et al., 2006; 

Kimura et al., 2010).  ADDLs bind to synaptic sites on cultured hippocampal 

neurons (Gong et al., 2003; Lacor et al., 2004) where they impair insulin receptor 

signaling (Zhao et al., 2008) and where stimulation by insulin prevents the 

pathogenic binding of ADDLs (De Felice et al., 2009). 

An even more potent synaptic-inhibitory preparation of Aβ containing 

SDS-stable dimers and trimers (Aβd/t) has been obtained from culture medium of 

a CHO cell line (7PA2) expressing a mutant human APP (Walsh et al., 2002).  

When used at their physiologically relevant (subnanomolar) concentrations to 

treat hippocampal slices, the Aβd/t fraction and a fraction of Aβ dimer obtained 

from postmortem human AD brain markedly inhibited the development of long-

term potentiation and enhanced long-term depression (LTD), electrophysiological 

correlates of learning and memory defects in intact animals (Cleary et al., 2005; 
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Shankar et al., 2008). Single intracerebral ventricular (i.c.v.) infusions into adult 

rat brain of either gel filtered Aβd/t from 7PA2 cells or Aβ dimer from human AD 

brain caused transient memory and learning deficits (Walsh et al., 2002; Cleary 

et al., 2005; Townsend et al., 2006; Shankar et al., 2008; Freir et al., 2010).  

Infusion (i.c.v.) of Aβd/t into adult rat brain several hours after training inhibits 

synaptic remodeling that accompanies learning and memory consolidation by 

preventing a transient increase in the number of synapses in the dentate gyrus 

(Freir et al., 2010).  Although their mechanism is unknown, the SDS-stable Aβd/t 

or dimer fractions cause synaptic dysfunction at sub-nanomolar concentrations, 

which are 103- 104 fold lower than commonly used traditionally prepared 

oligomeric forms of synthetic Aβ, and 102-103 fold lower than concentrations of 

ADDLs.  In this regard it is significant that the presence of the SDS-stable Aβ 

dimer is strongly associated with Alzheimer-type dementia (McDonald et al., 

2010).    

In addition to the classical hallmarks of AD pathology, amyloid plaques 

and phospho-tau-containing neuropil threads and neurofibrillary tangles, 

histopathological structures involving actin and the actin-binding protein, cofilin, 

have been identified in AD brain (reviewed in Bamburg & Bloom, 2009).  Rod-

shaped arrays of cofilin-saturated actin bundles (cofilin-actin rods) are induced in 

cultured hippocampal neurons and organotypic hippocampal slice cultures in 

response to mitochondrial dysregulation (ATP-depletion) (Minamide et al., 2000; 

Huang et al., 2008; Davis et al., 2009; Bamburg et al., 2010), oxidative stress 

(Minamide et al., 2000; Kim et al., 2009), excitotoxic glutamate (Minamide et al., 
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2000), extracellular ATP (Homma et al., 2008), overexpression of cofilin 

(Bernstein et al., 2006), and exposure to Aβ oligomers (Maloney et al., 2005; 

Davis et al., 2009), each of which is a potential mediator of synaptic loss 

observed in both familial and sporadic AD (reviewed in Ohm et al., 2007).  Rods 

contain actin and cofilin in a 1:1 complex (Minamide et al., 2010), they form in 

tandem arrays (striations) within neurites, and they serve as sites for 

accumulation of phosphorylated tau (Whiteman et al., 2009), suggesting that they 

may play a role in formation of striated neuropil threads, the major tau pathology 

in human AD brain (Velasco et al., 1998).  Cofilin-actin rods can grow to 

completely occlude the neurites in which they form (Minamide et al., 2000) and 

thus inhibit vesicular transport (Maloney et al., 2005; Jang et al., 2005) and 

cause microtubule loss (Minamide et al., 2000). Because an early indication of 

AD is blockage in axonal transport that leads to axonal swellings (reviewed in 

Stokin and Goldstein, 2006; Velasco et al., 1998) and synaptic loss (Davies et 

al., 1987), we investigated the ability of the physiologically relevant amounts of 

Aβd/t to induce cofilin activation (dephosphorylation) and rod formation in rat 

hippocampal neurons and organotypic slices.  The Aβd/t dose, time course, 

reversibility of Aβd/t rod formation, and the location of rods in the hippocampus, 

all suggest that cofilin-actin rods are likely mediators of Aβd/t in synaptic 

dysfunction and memory and learning deficits. 
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Materials and Methods 

Reagents 

All chemicals are reagent grade and were obtained from Sigma-Aldrich 

Co. and all tissue culture reagents were from Life Technologies (Invitrogen, 

Carlsbad, CA). Synthetic Aβ peptide (Aβ1-42) and a scrambled peptide with the 

Aβ1-42 amino acid composition were purchased from AnaSpec, Inc. (San Jose, 

CA).  Amyloid beta monomer and dimer/trimer fractions were prepared from the 

culture medium of CHO 7PA2 cells (Walsh et al., 2002) as previously described 

(Cleary et al., 2005; Shankar et al., 2007), and unless noted otherwise were used 

at 1x concentration (equivalent to their secreted concentration in the medium).  

Similar fractions obtained from culture medium of wild type CHO cells were used 

as controls.   

 

Culture treatments of dissociated neurons and slices 

Synthetic Aβ oligomer was made by solubilizing the peptide in 

hexafluoroisopropanol and drying in 10 μg aliquots.  Each 10 μg of synthetic Aβ1-

42 was solubilized in 10 μL of DMSO, diluted with 78.6 μL of sterile Ham’s F-12 

(to yield a 25 μM stock) and incubated 24 h at 4ºC (Dahlgren et al., 2002; Stine 

et al., 2003; Maloney et al., 2005).  Scrambled peptide was prepared identically 

and both scrambled peptide and synthetic Aβ1-42 oligomer were added to a final 

concentration of 1 μM.  The secreted Aβ fractions (monomer or d/t) or the 

corresponding fractions from control medium, were prepared as described 

(Cleary et al., 2005), and after gel filtration were freeze-dried to remove the 
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ammonium acetate buffer. These were reconstituted to 5X or 10X in culture 

medium and diluted with culture medium to achieve the desired final 

concentrations.  Di-tyrosine oxidized Aβ1-42 dimer was prepared from synthetic 

human Aβ1-42 by incubation in the presence of Cu2+ and hydrogen peroxide as 

previously described (Atwood et al., 2004; Barnham et al., 2004; Smith et al., 

2007). The oxidized tyrosine dimer Aβ was assayed for rod inducing ability in 

dissociated neuronal cultures. Treated cultures were placed the incubator for 24-

48 h before further treatment or experimentation.  

 

Animals 

Timed pregnant Sprague Dawley rats were obtained from Harlan 

(Indianapolis, IN).  E18 fetal rat hippocampal neurons were obtained from timed-

pregnant dams and were frozen for future culture work as per published methods 

(Mattson and Kater, 1988).  Pups were sacrificed on postnatal days 6-10 for slice 

preparation.  Animal studies were performed according to the National Research 

Council’s guide for care and use of laboratory animals using protocols approved 

by the Institutional Animal Care and Use Committee. 

 

Dissociated hippocampal neurons and organotypic slice cultures 

Primary hippocampal neurons from E18 rat embryos were prepared and 

cultured essentially as described (Minamide et al., 2000).  Hippocampal slice 

cultures were prepared from P6-P10 Sprague Dawley rat pups also essentially 

as described (Stoppini et al., 1991).  Briefly, hippocampi were quickly dissected 
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into filter sterilized ice-cold (4ºC) Gey’s Balanced Salt Solution plus 4% glucose, 

then sliced to a thickness of 400 μm on a McIlwain tissue chopper.  Although for 

some slices we maintained some entorhinal cortex along with the hippocampus 

to minimize the degeneration of the perforant pathway (Davis et al., 2009), and it 

made no difference in the results.  For most slice treatments, 3-6 slices were 

arranged onto 0.4 μm Transwell® Polyester membranes inserted into 6 well 

culture plates (Corning Costar® 3450, Lowell, MA). Beneath the membrane was 

added 1.7 mL of filter sterilized slice culture medium (50 mL horse serum, 50 mL 

Hank’s Balanced Salt Solution (HBSS), 100 mL Minimal Essential Medium 

(MEM), 500 μL 1.25 mM L-glutamine, 4 mL 25% glucose, 1 mL 10,000 U/mL 

Penicillin-Streptomycin).  MEM is 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic 

acid (HEPES) and bicarbonate buffered.  Slice culture medium was aspirated 

and replaced with 1.5 mL of fresh medium on day 3 and every 2-3 days 

thereafter or with treatment medium as required.  For all experiments slices were 

cultured for about 10 days in a 95% air/5%CO2 incubator at 35oC.   

 Hippocampal slices were also cultured on coverslips.  Slices (1 or 2) were 

placed onto 12 x 22 mm coverslips, and embedded in 20 μL of chicken plasma 

(Cocalico Biologicals, Inc., Reamstown, PA) containing 6 μL of freshly added 

thrombin (150 NIH units/mL in water; MP Biomedicals, Inc.).  Slides were placed 

hippocampal side up on flat bottom test tubes (Nunclon Delta Tubes, Nalge 

Nunc, Rochester, NY) and 700 μL slice culture medium was added.  Tubes were 

placed at a 5o angle in a roller incubator (10 revolutions per hour) at 35oC and 

medium was replaced every 2-3 days.  
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Immunoblotting 

Lyophilized gel filtration fractions of 7PA2 and control culture medium, and 

synthetic Aβ oligomer preparations were resuspended in 10 µL of 2x sample 

buffer.  For Western blots, samples were electrophoresed on 10–20% acrylamide 

gradient Tris-Tricine Ready Gels (Bio-Rad, Hercules, CA).  Proteins were 

transferred onto nitrocellulose (0.1 µm; Whatman, Dassel, Germany), the 

membrane heated to boiling for 10 min in PBS and blocked at room temperature 

in 1% BSA, 2% goat serum in 20 mM Tris-HCl, pH 7.4, containing 150 mM NaCl 

(TBS) for 30 min.  The primary antibody used was the Aβ  monoclonal antibody 

6E10 (Covance, Dedham, MA; 1:1000 in TBS plus 0.05% Tween-20 (TBST)), 

incubated overnight at 4o C.   

Approximately 25-33% of a slice containing the dentate gyrus and mossy 

fiber tract region was microdissected and prepared separately from the 

remainder of the slice from untreated, Aβd/t-treated or synthetic Aβ-treated 

cultured hippocampal slices.  These were placed in 10 μL of 2X sample 

preparation buffer (200 mM Tris-HCl pH 6.8, 2% SDS, 40% glycerol, 2% 2-

mercaptoethanol, 0.04% Bromophenol Blue), heated to boiling for 3 min, and 

cooled on ice.  Adequate cofilin and phospho-cofilin immunostaining for 

quantification could be detected on western blots with about 25% of an 

organotypic slice. Thus, we combined 2-3 dentate gyrus/mossy fiber tract pieces 

and loaded about 30% of the sample and combined two of the remaining regions 

and loaded about 20-40% of these samples into wells of a 15% isocratic 
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Tris/Glycine SDS-gel (Laemmli et al., 1970).  Proteins were transferred to PVDF 

membrane, blocked with 5% milk in TBS and cofilin and phospho-ADF/cofilin 

were detected using a cofilin monoclonal antibody MAb22 (Abe et al., 1989; 1-2 

ng/μL in TBST) and affinity purified rabbit antibody 4321 to phospho-ADF/cofilin 

(Meberg et al., 1998; 0.1 ng/μL).  Primary antibodies were incubated overnight at 

4o C.  

Secondary antibodies (goat anti-mouse or goat anti-rabbit) conjugated to 

DyLight 680 or DyLight 800 (1:15,000; Thermo Scientific, Rockford, IL) were 

added and incubated for 45 min at room temperature.  Blots were washed with 

TBST and bound antibody was visualized with a LI-COR Odyssey Infrared 

Imaging System.  Band intensities were quantified using TotalLab software 

(Nonlinear Dynamics, Newcastle upon Tyne, UK).  For quantitative ratio imaging 

of total cofilin/ phospho-cofilin, readings were obtained from the same sample on 

the same blot at the two wavelengths for detection and thus did not require 

normalization for gel loading. For several samples we also loaded half the 

amount used for quantification to determine that we were within the linear range 

of detection (signal intensity decreased by 50% when identical imaging 

parameters were used).   

 Aβ was quantified in 7PA2 cell culture medium, combined gel filtration 

fractions of the 7PA2 medium, synthetic Aβ oligomer preparations, and tyrosine 

dimers using a dot blot assay with synthetic human β-amyloid peptide (Aβ1-42) as 

a standard. Blots were on nitrocellulose (0.1 μm). Once samples were applied, 

the membrane was boiled 10 min in PBS to expose epitopes in oligomers and 
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then Aβ was detected with 6E10 antibody and spots quantified as described 

above for Western blots.   

 

Adenoviral-mediated gene expression 

Adenoviruses for expressing slingshot phosphatase 1L (SSH1L), 

constitutively active LIM kinase (LIMKT508EE), a dominant negative LIM kinase 

(D470A) and human cofilin-EGFP have all been described previously (Dawe et 

al., 2003; Soosairajah et al., 2005; Garvalov et al., 2007).  These were used at a 

multiplicity of infection (m.o.i.) of 100-300 for infecting dissociated neurons.  For 

infection of organotypic slices, about 107 adenoviral particles were added directly 

to the slice culture medium on day 7 and the cultures were returned to the 

incubator until treated with Aβd/t or control material on day 8 and fixed for 

analysis on day 10.  Slices cultured on membranes were infected with 

adenovirus by placing a drop of the adenovirus directly on the slice and adding 

any excess virus to the culture medium below the slice.  One to two hours later 

the liquid on top of the slice was removed and mixed with the culture medium 

below the slice. This method gave a higher efficiency of infection than if the virus 

was only added to the medium below the slice 

 

Fixation and immunostaining 

Dissociated neurons and slices were fixed for 4 h at room temperature in 

4% paraformaldehyde in either cytoskeletal buffer (CBS; 10 mM MES pH 6.1, 

138 mM KCl, 3 mM MgCl2, 2 mM EGTA pH 7.0, 4% PEG, 0.32 M sucrose) or 



 

50 
 

PBS adjusted to pH 7.0, with no apparent differences between buffers.  Slices 

were methanol (-20oC) permeabilized for 10 min and blocked in 2% goat 

serum/1% bovine serum albumin in Tris-buffered saline before immunostaining.  

Primary antibodies include: affinity purified rabbit 1439 IgG to chick ADF (2 

ng/μL), which cross-reacts with mammalian ADF and cofilin (Shaw et al., 2004), 

protein A purified monoclonal mouse anti-cofilin (MAb22; 10 ng/μL IgG) (Abe et 

al., 1989), affinity purified rabbit IgG to the phosphorylated peptide of chick ADF 

(rabbit 4321; 1 ng/μL) (Meberg et al., 1998), and mouse monoclonal antibody to 

actin (clone C4; ICN Biomedicals, Inc., Costa Mesa, CA).  Secondary antibodies, 

all used at 1:450, include fluorescein goat anti-rabbit and goat anti-mouse and 

Texas-Red goat anti-rabbit and goat anti-mouse (Molecular Probes, Eugene, 

OR).  DAPI (4’-6-Diamidino-2-phenylindole) or Hoechst 33342 were used to stain 

DNA.  After blocking and staining, slices on membrane were cut out and 

mounted on 22 x 22 mm cover glasses with ProLong Gold Antifade (Molecular 

Probes). 

 

Microscopy and Image analysis 

An Olympus IX81 microscope equipped with an ASI piezo stage (Applied 

Scientific Instrumentation, Eugene, OR), CSU22 spinning disk confocal head 

(Yokogawa Instruments, Japan), 440 nm, 473 nm and 561 nm diode lasers, and 

a 1Kx1K Cascade II EMCCD Camera (Roper Scientific, Tucson, AZ), all 

integrated and operated by SlideBook software (Intelligent Imaging Innovations, 

Denver, CO), was used to obtain confocal sections through organotypic slices.  
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The objectives used include 4x Fluorite (0.13 NA), UAPO40X/340W-DIC (1.35 

NA), or PlanAPO 60x (1.42 NA). 

 Phase-contrast and non-confocal fluorescence micrographs were obtained 

on a Nikon Diaphot using 4x (0.13 NA), 10x (0.25 NA), 20x (0.75 NA) air 

objectives or 40x (1.3 NA), 60x (1.4 NA), 100x (1.4 NA) oil.  For experiments in 

which we localized active cofilin across an entire slice, fixed slices were 

immunostained for phospho-ADF/cofilin (rabbit antibody 4321) and total cofilin 

(mouse MAb22), stained with different fluorescently tagged secondary 

antibodies, and imaged using the 4x objective, which allowed capture of most of 

the hippocampal area in one field.  The two images were overlaid (total 

cofilin/phospho-cofilin) and a hot scale applied to the ratio image such that the 

hottest colors correspond to the regions of most active (dephosphorylated) 

cofilin. 

 MetaMorph v7.03 software (MDS Analytical Technologies, Toronto, 

Canada) was used for all digital processing.  Following time-lapse imaging the 

slice was scanned for rod formation.  All experiments were repeated a minimum 

of three times.  To ascertain the regional distribution of rods, the total number of 

rods per field was counted using a 60x oil objective and data from multiple slices 

were combined onto a schematic of the hippocampus as described previously 

(Davis et al., 2009). 
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Statistics 

Statistical analyses were done with either MATLAB or SPSS v13.  All 

significance values are at p<0.05 and all error bars are standard deviations 

unless otherwise stated.  Any post hoc tests are reported. 

 

Results 

Amyloid beta dimer/trimer is a potent inducer of cofilin-actin rods 

SDS-PAGE and Western blot analysis of the amyloid beta (Aβ) 

immunoreactive components in fractions of 7PA2 culture medium demonstrated 

separation of monomer from a fraction enriched in dimer/trimer (Aβd/t) (fraction 

12-13, Figure 2.1A).  Treatment of cultured dissociated hippocampal neurons 

with the Aβd/t fraction at 1X concentration (1X = the equivalent concentration 

produced in the CHO 7PA2 cell culture medium) induced cofilin-actin rods in 

many neurons, similar to treatment with 1μM of synthetic Aβ oligomers (Figure 

2.2).  Significant rod induction did not occur in neurons treated with either the Aβ 

monomer fraction (e.g. fraction 15, Figure 2.1A) or fraction 12-13 prepared from 

medium of wild type CHO cells (non-conditioned (NC) medium).  Incubation of 

Aβd/t or synthetic Aβ oligomer with an anti-Aβ monoclonal antibody (6E10) for 15 

min prior to neuronal treatment reduced rod formation to control levels, strongly 

suggesting it is Aβ and not some other component of the 7PA2 culture medium  
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Figure 2.1: Preparation and quantification of Aβd/t. (A) Aβ Western 
blot (6E10 antibody) of gel filtration fractions from a single Superdex75 (10/30 
HR) column run at a flow rate of 0.5 mL/min and loaded with 1 mL of a 10X 
concentrate of 7PA2 cell conditioned (16 h) DMEM medium (Cleary et al., 2005; 
Shankar et al., 2007). (B, C) Dot blot standard curve for quantification of Aβ 
monomer equivalents in the 7PA2 culture medium and final Aβd/t fraction. 
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Figure 2.2: Aβd/t fraction from 7PA2 cells, but not monomer, induces rods 
in dissociated hippocampal neurons. Analysis by fluorescence microscopy of 
dissociated neurons treated with vehicle (control), scrambled Aβ peptide (1 μM), 
or nonconditioned (NC media, d/t equivalent fraction), as well as with the 
monomer and d/t fractions from 7PA2 cell culture medium and synthetic Aβ 
oligomers (Aβsyn). (A) Cofilin immunostained fluorescence images of 
hippocampal neurons showing representative responses with cofilin-actin rods 
formed 24 h after treatment with Aβd/t- and Aβsyn treated neurons. Pretreatment 
of the Aβ-fractions with an antibody (6E10) to Aβ eliminates their rod-inducing 
effects. Bars = 10 μm. (B) Quantification of the rod forming response showing the 
neutralizing effects of the 6E10 antibody and the non-significant changes in rod 
formation by Aβ monomer. (* = p < 0.05 compared to control; # not significantly 
different from control). 
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that is responsible for inducing rods.  The percentage of neurons with rods was 

quantified from each of the cultures treated with fractionated NC medium, 

monomeric Aβ, the Aβd/t fraction, and synthetic Aβ oligomer (Figure 2.2B).  Only 

the Aβd/t fraction and synthetic Aβ oligomers induced a significant (p<0.01) 

increase in the percentage of neurons with rods above untreated (or synthetic 

scrambled peptide-treated) controls.  Pretreatment with 6E10 antibody eliminated 

this increase.   Furthermore, the percentage of Aβd/t-treated neurons forming 

rods (about 30%) represents a significant (p<0.05) increase versus treatment 

with the 1 μM synthetic Aβ oligomers (18%).  

 The total concentration of Aβ species in 7PA2 conditioned medium was 

previously reported to be 6.4 ng/mL (1.4 nM) based on ELISA (Cleary et al., 

2005).  However, oligomers of human Aβ are inefficiently measured by ELISA 

(Stenh et al., 2005).  Therefore we measured the total Aβ concentration in 

several batches of 7PA2 medium using a dot blot assay and obtained the value 

of 8.3 ± 0.8 ng/mL (s.d.) (Figure 2.1).  The amount of Aβd/t and Aβm in 1X 

fractions were also determined directly from dot blot assays to be approximately 

1.1 ng/mL and 3.6 ng/mL, respectively, equal to about 250 pM and 800 pM 

based on monomer content (there was some variability from preparation to 

preparation depending on the fractions pooled).  Our Aβd/t concentration values 

are very close to those estimated from the Aβd/t immunostaining on Western 

blots after epitope exposure by boiling the membrane (Cleary et al., 2005), and 

are also quite similar to the amounts of Aβd/t estimated by Freir et al. (2010).  
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 We next compared the Aβd/t fraction to the synthetic Aβ oligomer for their 

dose-response in rod-induction.  The gel filtration fractions elute in 50 mM 

ammonium acetate, pH 8.5 and are freeze dried to remove most of the volatile 

buffer. However, when reconstituted they cannot be used above a 2.5X 

concentration because of increased cell death (release of LDH, data not shown).  

However, neurons could be treated with these fractions from 0.1X to 2X without 

any significant cell loss over 48 h.  One control for Aβd/t is an identically treated 

volume of culture medium from wild type CHO cells.  As shown in Fig. 2.3A, the 

half maximal response in terms of numbers of neurons forming rods is achieved 

with about 0.4X Aβd/t (∼100 pM) and  ∼0.7 μM synthetic Aβ oligomers, about a 

7000 fold difference between the half-maximal responses.  This value compares 

favorably with a more conservative 4000 fold difference obtained with the single 

point comparison at 1X concentration (250 pM Aβd/t versus 1 μM synthetic 

oligomer), which gives near maximal rod response for each preparation.  

Furthermore, the maximum percentage of cells with rods is about 10% greater 

with the Aβd/t than with the synthetic Aβ oligomers at all but the lowest 

concentrations used.   

 When synthetic human Aβ was incubated under conditions that generate a 

tyrosine oxidized dimer, the concentration that was required to induce rods 

decreased dramatically.  The oxidized dimer had a maximum rod-inducing 

activity at ~2 nM (10 ng/mL), suggesting it is the presence of the SDS-stable 

tyrosine oxidized Aβ dimer in a low-n state that is largely responsible for the 

potency of the secreted Aβd/t. 
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Figure 2.3: Percent of neurons in dissociated hippocampal cultures 
containing rods as a function of Aβ form, concentration and time of 
treatment. (A) Dose-response curves for Aβsyn and Aβd/t versus control. The 
concentrations are expressed in terms of the 7PA2 CHO cell secreted 
concentration of Aβd/t (1X), which was used at 0.1, 0.5 and 2X this value. For the 
synthetic Aβ oligomers, the 1X value equals 1.0 μM. (B) Following treatment with 
1X amounts of Aβd/t or Aβ synthetic oligomer, neurons were fixed at the times 
shown and the percent of neurons with rods was quantified. By 2 h the percent of 
neurons forming rods in response to Aβd/t was significant (*) over controls 
(p<0.05). The Aβsyn-treated neurons required 6 h to reach significance over 
controls. Significance (# = p<0.05) in the differences between the two Aβ species 
occurred at 8 h. 
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Time course of rod formation 

We previously observed that the percentage of neurons forming rods in 

response to 1 μM synthetic Aβ oligomers did not increase significantly over 

untreated samples until 6 h after addition (Maloney et al., 2005).  Because the 

Aβd/t fraction is more active in rod induction than synthetic Aβ, we directly 

compared the time course between these two treatments.  The 1X Aβd/t fraction 

induces a measurable but not significant increase in rods over untreated controls 

by 1 h becoming significant (p<0.05) by 2 h, at which time about 25% of the 

maximum response is obtained (Figure 2.3B).  Although 1 μM synthetic Aβ 

oligomer increased rod induction over the untreated controls by 4 h, the increase 

did not become significant until 6 h as previously observed (Maloney et al., 

2005).  By 8 h significantly (p<0.05) more Aβd/t-treated neurons have rods than 

neurons treated with synthetic Aβ oligomer and this difference is maintained 

through 24 h.  

 

Stability of the added Aβd/t fraction 

To determine if the Aβd/t fraction added to the cultured organotypic slices 

underwent a change in concentration or altered its SDS-stable dimer/trimer form 

during the incubation, we removed culture medium at the end of experiments (48 

h) and human Aβ was immunoprecipitated and reanalyzed by SDS-PAGE 

(Figure 2.4).   
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Figure 2.4: The Aβd/t fraction remains stable for 48 h when incubated with 
neurons. Immunoprecipitates from 7PA2 medium (IP positive controls 
on left) and from neuronal culture medium 48 h after treatment with Aβd/t, the 
equivalent fraction from NC medium, or the monomer fraction. The load volume 
on the right is equivalent to 0.4 mL of starting 7PA2 medium and the dimer/trimer 
bands are slightly less than what is contained in the 0.5 mL of starting medium 
showing that the d/t fraction is stable over the 48 h of culture. 
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Regional analysis of rod formation in slices 

The numbers of rods in fields taken from multiple organotypic 

hippocampal slices treated 48 h with 1X Aβd/t fraction or with control treatments 

used above were mapped onto a matrix grid of the hippocampus using fiduciary 

points to stretch and fit multiple slice data onto a single summary map as 

previous described (Davis et al., 2009).  Similar to the localization of rods in 

response to synthetic Aβ (Davis et al., 2009), a treatment also repeated here 

(data not shown), the Aβd/t-induced rods were mainly localized to the 

polymorphic hilar region of the dentate gyrus and along the mossy fiber tract into 

the CA3 region (Figure 2.5).  Furthermore, the numbers of rods per grid square is 

on average 2-3 fold higher than for the comparable region of the slices treated 

with synthetic Aβ oligomer (not shown, but compare numbers on hot scale in 

Figure 2.5A with the top scale of 15 rods per square previously published for 

synthetic Aβ-treated slices (Davis et al., 2009)).  Rod numbers in slices treated 

with the gel filtration fraction of NC CHO cell medium were not significantly 

different from untreated controls and thus data from these slices were combined 

to make the control panel (Figure 2.5A).  Similar to what was observed in 

dissociated neurons (Figure 2.2B), pretreatment of Aβd/t with 6E10 antibody 

reduced the rod numbers in slices to control levels (data not shown). 
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Figure 2.5. Numbers of rods induced by Aβd/t are highest in neurons within 
the dentate gyrus and mossy fiber tract in organotypic hippocampal slices. 
(A) Organotypic hippocampal slices were cultured for at least 8-10 days and 
were left untreated or treated with 1X Aβd/t, the same amount of the equivalent 
NC medium fraction, or scrambled Aβ peptide. After 48 h, slices were fixed and 
immunostained for cofilin and DNA (DAPI), and rods were quantified by counting 
with a 60x objective. Rod mapping from multiple slices onto a matrix grid of the 
hippocampus was performed as previously described using fiduciary markers 
from the stained nuclei layers to align hippocampal regions (Davis et al., 2009). 
There were no differences detected in rod numbers or distribution between the 
untreated slices and those treated with NC medium or scrambled peptide and 
these were all combined to give the control panel. Rods induced by the Aβd/t 
were heavily concentrated over the dentate gyrus and mossy fiber tract. (n = 18 
for control slices and n = 12 for Aβd/t treated). (B) Rod quantification averaged 
per field over different regions of the slices. Each field acquired with the 60x 
objective has about 6-7 matrix grid squares. The only regions of significance (# = 
p<0.05) for the rod numbers are in the dentate gyrus and mossy fiber tract. 
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Dose response curves for rod induction in organotypic slices 

We compared the dose-response curves for rod formation in response to 

Aβd/t and synthetic Aβ oligomers in organotypic slice cultures by quantifying rods 

per field (Figure 2.6A).  It should be noted that one field encompasses the 

equivalent of about 6-7 matrix grid squares and that rod counts were averaged 

over the entire slice.  Surprisingly, slices treated with the Aβd/t fraction at 0.1X 

(estimated to be 25 pM) have a significant (p<0.05) increase in rods per field over 

controls, equivalent to the numbers of rods per field induced by 500 nM synthetic 

Aβ oligomer.  The curves are very similar to the dose-response measured in 

dissociated neuronal cultures and quantified as percent of neurons with rods 

(Figure 2.3).   

 

Rods induced by Aβd/t are reversible 

To test if rods induced in organotypic slices by Aβd/t are reversible, the 

Aβd/t was washed out 24 h after treatment and slices were allowed to recover for 

24 h in control medium.  As previously demonstrated for rods induced by 

synthetic Aβ (Davis et al., 2009), the majority of rods induced by 1X Aβd/t 

disappear 24 h after washout (Figure 2.6B). 

 

Cofilin dephosphorylation is induced by Aβd/t 

We evaluated the changes in cofilin phosphorylation levels in response to 

Aβd/t-treatment of organotypic slices using both Western blotting and 

fluorescence ratio imaging for total cofilin/phospho-cofilin in slices (Figure 2.7).   
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Figure 2.6. Dose-response curve for rod formation in organotypic 
hippocampal slices and reversibility of Aβd/t-induced rods. (A) The same 
concentrations of Aβd/t and synthetic oligomer used in Figure 2.3A were applied 
to organotypic hippocampal slices. After 48 h, slices were fixed and rods 
immunostained and quantified per field averaged across the entire slice. The 
curves obtained are very similar to those in dissociated neurons but the 
measured parameters are different (average rods per field measured here vs. 
percent neurons with rods in Figure 2.3A). (B) Rods formed in response to Aβd/t 
in hippocampal slices reached their maximum value by 24 h (see Figure 2.3B). 
To determine rod reversibility, some of the slices were washed free of the Aβd/t 
and allowed to incubate another 24 h, whereas others had the Aβd/t present 
continuously. Controls were treated with the NC medium for 48 h or were left 
untreated (no difference). As previously shown for the rods induced by synthetic 
Aβ oligomers (Davis et al., 2009), the Aβd/t-induced rods are also reversible. 
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Figure 2.7. Aβd/t induces cofilin dephosphorylation (activation) within the 
hippocampal region where rods are most abundant. (A, B) Western blots of 
extracts from whole slices (A) and microdissected slice regions (B) from either 
untreated (controls) or slices treated with Aβsyn or Aβd/t. Blots were stained for 
GAPDH (loading control), total cofilin (MAb22 antibody) and phospho-ADF/cofilin 
(rabbit antibody). The ratio of the immunostaining for total cofilin/phospho-cofilin 
showed that in whole slices (A) there was a slight (1.08 fold) increase in cofilin 
dephosphorylation following Aβsyn treatment and a larger (1.35 fold) increase in 
slices treated with the Aβd/t (n = 3 slices). (B) In the microdissected regions 
containing the dentate gyrus and mossy fiber tract the Aβsyn treatment increased 
cofilin dephosphorylation by 1.28 fold and the Aβd/t increased it by 2.04 fold. The 
remainder of the slice regions (other) showed no significant change in phospho-
cofilin levels. (C) Ratio imaging of the total cofilin/phospho-ADF/cofilin 
immunostained slices also show a time dependent enhanced cofilin 
dephosphorylation that is localized over the dentate gyrus and mossy fiber tract 
(shown in the images here) but not elsewhere in the slices. Maximum ratio 
(white in hot scale) is set at 2. At this low magnification, only the largest of the 
rods are visible. Phospho-cofilin is excluded from rods. Bar = 50 μm. 
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The phospho-cofilin antibody also detects phospho-ADF equally well but ADF is 

expressed at only about 20% of the level of cofilin in the rat brain and phospho-

ADF declines similarly to phospho-cofilin (Figure 2.7B).  Immunoblots of whole 

slices show a slight decline in phospho-ADF/cofilin when treated with 1 μM 

synthetic Aβ oligomer and a greater decline when treated with 1X Aβd/t (Figure 

2.7A) as indicated by the increased total cofilin/phospho-cofilin ratio.  However, 

when regions of the hippocampus were micro-dissected for immunoblotting, 

larger changes in the ratio are observed in extracts from the dentate gyrus than 

from the remainder of slice (Figure 2.7B) and Aβd/t-treatment gave the greater 

rod-inducing response in this region.  Similar conclusions are reached by 

observing the fluorescence ratio images of total cofilin/phospho-ADF/cofilin 

staining of slices at 1, 8 and 24 h after treatment (Figure 2.7C).  The greatest 

changes were observed in the dentate gyrus shown in Figure 2.5C, where there 

was no quantifiable difference between the 0 (not shown) and 1 h time point, but 

a significant increase in the ratio (about 50% of maximum change) was observed 

by 8 h, similar to the time course for rod formation observed in Figure 2.3B.   

 Rods are not very apparent in the low magnification images used for slice 

ratio imaging (Figure 5C), but become apparent when viewed with a 60x 

objective, even in single confocal sections (Figure 2.8A).  However, the rod 

distribution and abundance within the dentate gyrus are more impressive when 

the confocal image stack is deconvolved and the lowest 20% intensity of 

immunstaining is removed by resetting the low threshold on an image histogram 

(Figure 2.8B).  Only a few densely stained cofilin aggregates are observed in 
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Figure 2.8. Three-dimensional reconstruction of cofilin-stained rods 
in deconvolved confocal image stacks from organotypic slices. Treatment 
of organotypic slices with Aβd/t results in a profound increase in cofilin 
immunostained rods in the dentate gyrus/mossy fiber tract (DG/MFT) and a 
global change in cofilin distribution in cells in this region. (A) Single focal plane of 
non-rod-forming region near the CA3 compared to a rod hot spot in the dentate 
gyrus. Rods are evident in this single plane. (B) Three dimensional stack of 
planes from a cofilin stained control and Aβd/t-treated slice. Deconvolution of the 
confocal image stacks and thresholding the image by removing the lowest 20% 
of signal (lower panels) provides striking evidence of rod formation in this region. 
Hundreds of rods can be observed, which contain virtually all of the remaining 
immunostained cofilin. 
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the 3D reconstruction of the image stack from control slices whereas rods are 

abundant throughout the Aβd/t-treated slice.  

 

Modulating cofilin phosphorylation alters rod formation and response to Aβ 

oligomers 

Since rod formation correlates well with cofilin dephosphorylation, we 

examined the effects of enhancing or inhibiting cofilin dephosphorylation on rod 

formation in untreated dissociated neuronal cultures or those treated with 

synthetic Aβ oligomer.  Adenoviral-mediated expression of the cofilin 

phosphatases, either slingshot (SSH1L) or chronophin (CIN), but not their 

inactive forms, increases rod formation in the absence of any other rod-inducing 

treatment whereas the inactive form of slingshot (C393S) appears to act in a 

dominant negative manner by reducing rod formation in Aβd/t-treated cells 

(Figure 2.9A).  Fluorescent protein co-expression allowed us to identify the 

infected cells and score these independently from the uninfected cells in the 

same culture.  Greater than 15% of neurons overexpressing SSH1L formed rods, 

the most dramatic effect observed, whereas about 8% of neurons expressing 

CIN formed rods.  Treating neurons expressing these cofilin phosphatases with 

Aβ significantly (p<0.05) enhanced rod formation above the levels induced by the 

Aβ-treatment alone to a maximum of 38% for the SSH-1L expressing neurons; 

expressing the dominant negative form of SSH1L kept the number of neurons 

forming rods in response to Aβd/t to less than 10%.  
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Figure 2.9. Upstream regulators of cofilin phosphorylation impact the 
ability of Aβd/t to induce rods. Rod formation was quantified in (A) dissociated 
hippocampal neuronal cultures or (B) organotypic hippocampal slices that were 
uninfected (Con), infected with control adenovirus expressing GFP (GFP) or with 
adenoviruses expressing various upstream regulators of cofilin phosphorylation. 
All viruses coexpressed a fluorescent protein marker and only neurons 
expressing the marker were scored in the dissociated cultures. In slices, infection 
rates were approximately 70% (see Figure 2.10) and rods per field were 
quantified (it was not possible in slices to count rods only within infected 
neurons). Neurons or slices were infected 24 h prior to treatment with Aβd/t and 
were fixed and analyzed for rod formation 48 h after Aβd/t addition. Treatments 
that enhanced cofilin dephosphorylation (the active phosphatases SSH-1L WT 
and CIN WT) in the dissociated cultures enhanced rod formation with or without 
Aβd/t treatment (* = significant difference from untreated or GFP controls at 
p<0.05; # significantly different from Aβd/t treated controls, p<0.05). Treatments 
that inhibited cofilin dephosphorylation (LIMK1 WT and the active 
LIMK1T508EE), inhibited rod formation in response to Aβd/t in both dissociated 
neuronal cultures and in slices (n = 3 to 9). 
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Expression of a dominant negative LIM kinase, the major cofilin kinase, 

did not alter rod formation when expressed on its own, however its presence 

enhanced the percent of neurons forming rods in response to Aβd/t, although the 

difference (from 19-20% to 26%) is not significant at p<0.05.  The opposite effect 

was observed upon expression of the wild type or constitutively active form of 

LIMK1 (LIMKEE508).  LIMK1 expression reduced the percent of neurons forming 

Aβ-induced rods by about 50% for wild type and over 75% for the constitutively 

active LIMKEE508 and these values are significant at p<0.05 (Figure 2.9A).   

 A similar series of experiments were done using organotypic slices (Figure 

2.9B).  To first estimate the efficiency of transgene expression in the cells of 

organotypic slices by adenoviral infection, we examined slices at high 

magnification after adenoviral-mediated expression of a fluorescent protein and 

staining of nuclei with DAPI.  We quantified the number of nuclei with 

surrounding fluorescent protein expression (Figure 2.10) and determined a >70% 

infection efficiency when we used 107 infectious particles/slice (based upon a 

titer of infectious particles per mL obtained by expression of the viral E2b gene in 

infected cells; Minamide et al., 2003).  In organotypic slices, expression of 

SSH1L or CIN alone did not significantly increase rod formation (quantified as 

rods per field using the 60x objective) over controls.  In addition, we did not 

observe a rod response to Aβd/t in infected slices that was greater than for Aβd/t-

treated controls with any viral-mediated protein expression.  However, in slices 

infected with virus for expressing LIMK wt and LIMK508EE, the average rod 

number per field in response to Aβd/t was reduced (Figure 2.9B), similar to what  
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Figure 2.10. (A) Low power images of a hippocampal organotypic slice 
stained with DAPI, immunostained for cofilin, and imaged for GFP-expression 
after infection with adenovirus expressing GFP behind a CMV promoter. (B) 
Comparison of infected cells in organotypic slices, measured by the numbers of 
cells showing GFP fluorescence around a DAPI stained nucleus (from either 
GFP control virus or DNLIMK1 AdTrack virus). Between 70-75% of the cells so 
examined were positive for GFP. (C) This panel was assembled to illustrate how 
we determined the percentage of infected cells. One region from a confocal 
plane of an image stack is shown. Staining for cofilin and actin are not important 
to the quantification of infectivity. The areas surrounding nuclei within this plane 
were examined for expression of GFP, which had to be above a threshold level 
for counting as positive. The nuclei were often above or below the optical section 
of the cell that contained the GFP and we had to move up and down single 
planes in Z series to obtain the most accurate counts. Many hundreds of nuclei 
across different areas of the slice were examined to obtain the infection 
efficiency. 
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we observed in dissociated cells (Figure 2.9A).  Taken together, these results 

suggest that cofilin dephosphorylation is both necessary and sufficient to induce 

rod formation in many neurons but that the total rod response is enhanced by 

Aβd/t-induced stress.  

 

Discussion 

Here we demonstrate that the dimer/trimer fraction of a naturally secreted 

form of Aβ is several thousand fold more active at inducing cofilin-actin rods than 

traditionally oligomerized samples of synthetic Aβ.  This level of activity for Aβd/t 

(250 pM) is within its estimated physiological concentrations based upon the 

amounts extracted from human AD brain (Shankar et al., 2008). Because the 

rod-inducing activity of the Aβd/t fraction is neutralized with an Aβ antibody, it is 

clearly Aβ that is the active rod-inducing component.  Furthermore, the Aβ 

monomer fraction does not induce rods (not significant above control), 

suggesting the dimer is the minimal active unit in promoting cofilin-actin rod 

formation.  At optimal concentrations of each, Aβd/t induces formation of rods in 

more hippocampal neurons than synthetic Aβ oligomers.  The Aβd/t also induces 

more rods per neuron based upon the rod counts per field taken across 

organotypic slices and mapped from multiple slices onto a hippocampal matrix 

using the methods we previously described (Davis et al., 2009). Because 

naturally secreted Aβ is cut from the APP by γ-secretase and has more variability 

in the peptide lengths that will comprise its mixture, it is certainly possible that 

there are some specific mixtures of peptide lengths that generate different rod-



 

72 
 

inducing ability. However, the fact that the monomer fraction from secreted Aβ is 

not rod inducing, suggests that it is the process of oligomerization per se that 

differs for naturally produced and synthetic Aβ.  

  At the μM concentrations typically used to make oligomers, synthetic Aβ 

assembles rapidly (Hung et al., 2008) and virtually no SDS-stable dimer remains, 

although SDS-stable trimers and tetramers are present (e.g. Puzzo et al., 2008), 

suggesting that the dimer may be the major rod-inducing form.  .  Picomolar 

levels of the dimer-deficient synthetic Aβ oligomers enhance LTP, opposite to the 

effects of the dimer enriched fractions, but a finding that perhaps helps explain 

the normal physiological function of Aβ. It is not known what specific types of 

SDS-stable cross-linking occurs in the naturally secreted Aβ dimer, but it has 

been previously shown that tyrosine10 in the human Aβ sequence can undergo 

oxidation to form a di-tyrosine cross-link. Because this tyrosine residue is missing 

in rodent Aβ (phe in place of tyr), and rodent Aβ is deficient in oligomerization 

(Atwood et al., 2004; Marksteiner and Humpel, 2008), we investigated the 

biological activity of copper-peroxide oxidized Aβ that is di-tyrosine cross linked 

(Atwood et al., 2004; Barnham et al., 2004).  When synthetic human Aβ was 

incubated under conditions that generate a tyrosine oxidized dimer, the 

concentration that was required to induce rods decreased dramatically.  The 

oxidized dimer had a maximum rod-inducing activity at ~2 nM (10 ng/mL), 

suggesting it is the presence of the SDS-stable tyrosine oxidized Aβ dimer in a 

low-n state that is largely responsible for the rod-inducing potency of the secreted 

Aβd/t.   
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We found that the amount of the Aβd/t remained fairly constant in the 

medium over 3 d.  This is due in part to the fact that rodent Aβ does not 

oligomerize and hence the continued secretion of Aβ by the cultured neurons, 

which is even stimulated by the presence of the human Aβd/t (Chapter 1), does 

not contribute to the Aβd/t pool.  It also suggests that uptake of the Aβd/t either 

does not occur, or if it does occur it must be released again into the medium and 

not degraded by the cell. 

Enhancing cofilin activity by overexpressing either of the cofilin 

phosphatases slingshot or chronophin, enhanced rod formation in dissociated 

neurons in the absence of Aβ-treatment and expression of LIMK1 inhibited 

formation of rods even after Aβ-treatment.  This result was not unexpected since 

simple overexpression of cofilin, especially the non-phosphorylatable cofilin S3A 

mutant, enhances rod formation (Bernstein et al., 2006).  Expression of LIMK1 in 

organotypic slices reduced rod formation similar to its effect in dissociated 

neurons, but we did not see a significant increase in rods due to expression of 

either cofilin phosphatase.  Although we find about a 70% adenoviral infectivity 

rate of cells in the slices, it is quite likely that the non-neuronal cells infect better 

than the neurons and thus for some viruses the neuronal infectivity may be low 

enough that we would have difficulty in obtaining enough infected neurons to 

observe significant changes in rod formation.  

Single infusions into the adult rat brain of either Aβ dimer extracted from 

human AD brain or Aβd/t at the identical concentration used in our studies 

caused transient memory and learning deficits when measured starting 2 h after 
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infusion, and completed within a 2 h maximum time frame (Cleary et al., 2005; 

Shankar et al., 2008).  Memory and learning deficits disappeared 24 h after the 

single infusions.  It is worthy to note in this regard that the Aβd/t fraction induces 

rods in a statistically significant number of neurons by 2 h after treatment (about 

25% of the maximal response) and that the Aβd/t rods are reversible, 

disappearing by 24 h after washout.  Thus, formation and disappearance of rods 

in cultured neurons and organotypic slices correlate well with the changes 

observed in memory and learning in whole animals exposed to a single infusion 

of Aβd/t.  

Nevertheless, there are some discrepancies in time of rod formation in 

response to Aβd/t treatment that do not correlate well with acute Aβd/t effects on 

slice electrophysiology.  Decreased long-term potentiation (LTP) and enhanced 

long-term depression (LTD) occur within 20 min of treating hippocampal slices in 

culture either with fractions containing Aβd/t (Townsend et al., 2006) or with Aβ 

dimer extracted from human AD brain (Shankar et al., 2008).  This response is 

more rapid than the 2 hours it takes to obtain a significant increase in rods in 

organotypic slices exposed to the Aβd/t fraction.  Rod formation has been 

observed to occur within 10 min in organotypic slice cultures responding to 

anoxia or ATP-depletion (Minamide et al., 2000; Davis et al., 2009).  However, 

the rate of Aβd/t induced rod formation in organotypic slices maintained in 

neurobasal/B27 medium may be significantly slower than in acute slices 

prepared for electrophysiology and maintained in artificial cerebrospinal fluid 

(aCSF) owing to 0.6 μM insulin in the neurobasal/B27 medium not present in 
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aCSF.  Insulin helps neurons resist the pathogenic changes in cytoskeletal 

organization induced by Aβ (De Felice et al., 2009).  Alternatively or in addition, 

we suspect that cofilin dephosphorylation and altered actin dynamics in response 

to Aβd/t is rapid and precedes rod formation in some compartments, such as 

dendritic spines.  Synaptic activity depends directly on cofilin function in 

regulating actin dynamics and may reflect early changes in plasticity (Shankar et 

al., 2007; Carlisle et al., 2008; Yuen & Yan, 2009; Gu et al., 2010).  Thus, the 

LTP/LTD response to Aβd/t could be independent of rod formation yet the result 

of a localized change in cofilin activity.  Significantly, wash out of Aβ after the 

electrophysiological changes have occurred did not result in any reversal in the 

altered LTP/LTD over 2 h.  This persistent effect could arise within the 

organotypic slice from relatively tight binding of the Aβd/t to specific sites for 

which some evidence does exist (Townsend et al., 2006; De Felice et al., 2009).  

Alternatively, rod formation may have occurred by the time washout was initiated 

and rods could be responsible for the lack of rapid recovery.  Rods sequester 

most of the cofilin (Minamide et al., 2000; Bernstein et al., 2006) needed to 

reestablish the balance in spine actin dynamics (Gu et al., 2010) and their 

formation would resist rapid recoveries of the spine cofilin pool.  

The most sensitive pool of neurons forming rods in response to both 

synthetic Aβ oligomers and Aβd/t are those within the polymorphic/hilar region of 

the dentate gyrus along the mossy fiber tract into the CA3.  The dentate gyrus is 

considered to play a central role in associative memory (Morris, 2006).  Its major 

input comes via the perforant pathway with axons representing approximately 
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one million excitatory entorhinal neurons from layer II.  These axons end 

preferentially within the outer two thirds of the superficial molecular layer, mainly 

on the apical dendrites of the granule cells, but also on dendrites of interneurons 

(Ohm, 2007).  Cholinergic neurons from the basal forebrain provide another 

important afferent input, and also synapse with neurons of the dentate gyrus 

inner molecular layer.  The CA3 pyramidal cells receive the granule cell output 

via the mossy fibers (granule cell axons) and aid in pattern completion 

(Nakazawa et al., 2002).  Because of its central role in associative memory, the 

dentate gyrus has been extensively studied in AD brain (Ohm, 2007).  There is 

an early loss of synapses (48% decrease in synapse to neuron ratio) before 

significant loss of neurons (Davies et al., 1987; Bertoni-Freddari et al., 1996; 

Scheff and Price, 2003).  Based upon the degree of immunofluorescence 

labeling for the synaptic marker synaptophysin, there is a direct correlation of 

synaptic loss during AD progression.  Early, mild and severe AD cases are 

accompanied by a decline in synaptophysin staining of about 25, 45 and 65%, 

respectively, in the outer and middle third of the molecular layer, with little to no 

loss in the inner third (Masliah et al., 1994).  Injection of single doses of Aβd/t-

containing medium into brains of adult rats also leads to defects in associative 

memory and to memory consolidation with a striking inhibition of the synaptic 

increases that occur during memory consolidation in the dentate gyrus (Freir et 

al., 2010).  Because cofilin-actin rod formation in response to Aβd/t is so 

prominent within the DG and mossy fiber tract, and the rods block transport and 

cause distal atrophy in the neurites in which they form without death of the 
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neuron (Minamide et al., 2000; Jang et al., 2005), they represent a likely 

mechanism to explain the synaptic loss associated with early stages of AD and 

thus represent a novel target for therapeutic intervention. 
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