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ABSTRACT

A three-dimensional, finite difference model was developed for simulating steady and unsteady, saturated and
unsaturated flow in a stream-aquifer system. The basis of the model 1is the finite difference form of Richard's
equation for unsaturated and saturated subsurface flow. Effects of streamflow on groundwater movement are treated
by applying the appropriate boundary conditions to Richard's equation. Contributions of groundwater to river
flow are quantified by including seepage rates in the computation of river discharge. The three-dimensional model
was developed for use in this study to interact with two-dimensional model segments, which were interfaced with
the three-dimensional model on its upstream and downstream ends.

The model produced results which match observed data for the study area, which consisted of a 40 mile reach
of the Arkansas Valley of Southeastern Colorado. Computed estimates of river discharge at each end of the study
area and water table elevations throughout the region agreed reasonably well with observed data. An analysis of
the sensitivity of results produced by the model to variation in the values of several input parameters was in-
cluded as part of the study.
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CHAPTER 1
INTRODUCTION

The rapid expansion of population, industry, and
agriculture in arid regions of the world has brought
about a substantial increase in usage of groundwater
resources to supplement surface water supplies. Ground-
water and surface water are not separate and indepen-
dent units, as is often assumed, but are closely inter-
related, Withdrawal of groundwater from the alluvial
deposits near a river produces a time-delayed decrease
in river flow. The water table, in turm, responds to
fluctuations in streamflow. The interdependence of
surface water and groundwater is not limited to the
aquifer. Interactions with groundwater are also evi-
dent in the flow phenomena of canals, drainage ditches,
recharge pits, lakes, and reservoirs.

Because of its profound effect on the behavior of
surface water, groundwater development should be under-
taken only after careful planning which includes an
analysis of the probable influence of the development
on the surrounding area. This analysis should be based
on a thorough understanding of groundwater movement,
surface water flow, and the relationships between them.
Carefully planned groundwater development can result
in more efficient and beneficial utilization of avail-
able water resources., Poorly planned groundwater de-
velopment can be detrimental to the enviromnment, to
users of surface water, and to the overall efficiency
of water resource utilization.

The purpose of this study is to develop a tool
for analyzing the movement of groundwater, the flow of
surface water, and the interaction between them, which
can be used by water regulatory agencies to ensure
maximum benefits from proposed and existing ground-
water resource developments. This tool 1is a ground-
water-surface water flow simulation model. Although
this model can be adapted for simulating flows in a
variety of groundwater-surface water systems, this
discussign is concerned primarily withthe use of the
model for describing flow in a natural stream and the
surrounding alluvial aquifer.

The equations describing the movement of water in
a stream-aquifer system are fairly simple. However,
these equations are difficult to solve using known
classical, analytic techniques for most field situa-
tions because of complex boundary conditions. For this
reason numerical techniques, with their capability for
handling most types of boundary conditions, have become
important as tools for analysis of water management
problems. Results obtained using numerical models can
be used to make decisions for settling water rights
disputes, managing water resources in the manner most
beneficial to water users and the environment, and per-
haps most important, to predict the effects of proposed
water resource development projects prior to their
construction.

Because of their conceptual and operational sim-
plicity, two-dimensional, horizontul models are often
used in the analysis of flow problems in stream-aquifer
systems. These models may be either of the finite dif-
ference or the finite element type. The applicability
of these models 1is dependent on the validity of the
following assumptions in any given field situation:

(1) If hydraulically connected to the groundwater
aquifer, the stream extends to the underlying

bedrock, and acts as a boundary of known
head.

(2) If not hydraulically connected to the ground-
water aquifer, the stream does not extend
down to the unconfined aquifer, and acts as
a boundary of known recharge.

(3) Flow is horizontal and uniform everywhere in
a vertical section.

(4) The slope of the water table is mild, so that
the velocity may be assumed proportional to
the tangent of the angle of slope of the wa-
ter table instead of the sine.

Assumptions (3) and (4) are the Dupuit-Forchheimer as-
sumptions.

Unfortunately, field conditions often exist for
which some or all of the above assumptions are not
valid. For such conditions, conventional, two-dimen-
sional models are inappropriate. A type of stream-
aquifer system frequently found in the Western United
States consists of a wide, shallow river traversing
deep alluvial deposits. The river fails to extend to
bedrock in most locations and its depth of penetration
into the unconfined aquifer varies fromplace to place.
At a given cross section of the river, a portion of
the channel may be hydraulically connected with the un-
confined aquifer while the rest is not. Rapid fluctua-
tions of head, either in the river or in the aquifer,
may induce gradients steep enough to invalidate the
Dupuit-Forchheimer assumptions. Steep gradients may
also result from heavy pumping or irregularities in the
aquifer configuration. Seepage from a stream carrying
silt-laden water may result in the formation of a thin
silt layer on the channel bed and banks. The effect
of this silt layer is to partially seal the channel
boundary and limit the rate of seepage which can pass
from the river to the aquifer. Groundwater withdrawal
can produce a situation where the water table elevation
drops below the elevation of the channel bed, and the
hydraulic connection between the stream and the uncon-
fined aquifer may be broken.

For the situation described above, none of the
four assumptions necessary for the use of a simple,
two-dimensional model is valid. It is evident that a
need exists for a numerical model which can correctly
simulate this type of stream-aquifer system. This
model should have the capability of simulating three-
dimensional flow in the unconfined aquifer and account-
ing for the influence of a thin silt layer on the rate
of seepage from the river.

The objectives of this study are twofold: (1) De-
velop a numerical model for simulating three-dimen-
sional, saturated and unsaturated, steady and unsteady
flow in a stream-aquifer system in which the stream is
partially penetrating and may or may not be hydrauli-
cally connected to the aquifer. The stream may act as
a boundary of known head or known discharge, depending
on the influence of a silt layer on the seepage rate
across the river boundary. (2) Verify the model. This
is to be accomplished in two stages:

(a) The model will be applied to several hypotheti-

cal stream-aquifer systems. Results of runs made
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using synthetic data from these systems will be
analyzed qualitatively to determine whether the
model is operating correctly and producing
reasonable.

(b) The model will be applied to an actual stream-
aquifer system located in Southeastern Colo-
rado. Runs will be made using field measure-
ments taken from the study area as input data.
Results of these runswill include a predicted
water table elevation map for the area at the
end of the time period being considered, and
predicted values of streamflow at the upstream
and downstream ends of the area at intervals
throughout the study period. These results
will be compared to field measurements of water
table elevation and river discharge to deter-
mine the accuracy of the model in matching
observed data,

It is desirable that this model have the capabil-
ity of being interfaced withmore simplified models for
the purpose of conserving computer time and storage.
By interfacing this model with a simpler, two-

dimensional model a detailed three-dimensional analysis
of a short reach of a stream-aquifer system can be in-
cluded as part of a less detailed analysis of a much
longer reach of the system, to even the entire river
basin. The finite difference scheme has been chosen
for use in this study. The combined model consists of
a three-dimensional model segment interfaced on either
end with a two-dimensional model segment.

The theory on which this model is based is devel-
oped in Chapter I1. A description of the computer
simulator is presented in Chapter III. The study area
used in the final phase of model verification is des-
cribed in Chapter IV, which also includes a discussion
of the source and availability of data for each para-
meter used in the model, and assumptions made on various
parameters in preparation as input to the model. Re-
sults of model runs and discussion of these results are
contained in Chapter V, which also includes an analy-
sis of the sensitivity of the model to variation of
parameters. Conclusion and recommendations for further
study and recommended uses of the model are presented

in Chapter VI.



CHAPTER 11
THEORETICAL DEVELOPMENT

The equations necessary for the development of
the mathematical model of flow in a stream-aquifer sys-
tem include: (1) equations for discharge and stage in
a natural stream, (2) a groundwater flow equation, and
(3) a set of equations describing flow for various con-
ditions that may occur at the interface between the
stream and aquifer. The Manning formula is widely ac-
cepted as a reliable and convenient means of relating
stage to discharge for uniform flow in a natural
stream. For a large-scale approximation model of the
type used in this study, estimates of river stage ob-
tained by Manning's formula applied to short reaches of
the river in the study area are considered to be suf-
ficiently accurate for evaluating the interaction be-
tween the river and the aquifer. The. form of Manning's
equation used in the computer simulator is written for
a wide channel and solved for stage,d, and is given by

d = [___gan]s;s (2-1)
1.49ws
where
Q = discharge

n = Manning's roughness coefficient
w = channel width

s = energy gradient, approximated by
bed slope

The parameters on the right-hand side of Eq, 2-1 are
input to the model as data,

The remainder of this chapter consists of a de-
tailed development of the groundwater flow equations
used in the computer simulator and the flow equations
for various conditions at the stream-aquifer interface.

Derivation of the Three-Dimensional Groundwater Flow

Equation

In order to correctly simulate the fluctuations
of the water table in a fixed, three-dimensional grid
system, it is necessary that the three-dimensional seg-
ment of the finite difference model developed in this
study have the capability of describing transient flow
in both the saturated and unsaturated zones of an un-
confined aquifer. For this reason it is necessary to
develop an equation for use in this model which des-
cribes the behavior of the two immiscible fluid phases,
water and air, that are present in the unsaturated
zone, as well as the single-phase flow of water in the
saturated zone. The nonlinear, partial differential
equation for transient, saturated-unsaturated, three-
dimensional flow through porous media is obtained by
combining the continuity principle, a force equation
describing fluid motion in porous media, and equations
characterizing saturation and hydraulic conductivity as
functions of pressure.

The force equation describing flow through porous
media is Darcy's law. For flow situations in which
velocities are relatively small, and acceleration of
the flow is negligible, Darcy's law yields an adequate
representation of flow through porous media. These

conditions of low velocities and negligible accelera-
tions are prevalent in the flow situations with which
this study is concerned, and Darcy's law is considered
appropriate for describing them.

A derivation of an equation for multi-phase flow
in porous media from Darcy's law and the continuity
principle has been presented in detail by Reddell and
Sunada (1970). This equation was written in differen-
tial form for a volume element similar to the one shown
in Fig. 2-1.
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Fig, 2-1 Differential Volume Element for Three-Dimen-

sional Flow Equation.

Assuming the principal directions of permeability
coincide with the coordinate directions the flow equa-
tion for the volume element is:

% [-Q-k::i ( % + og%% JayAz Jax +
3% ( EE%EE ( %5 + pg %% JAxAz Jay +
3% [ pkikr ( %% + pg %% YaxAy bz
= 52 (085 Mxaydz) + 0,Q » (2-2)

where the terms on the left hand side of the equation
represent the divergence of mass flux across the faces
of the control volume; the first term on the right hand
side represents the change of mass storage within the
control volume with respect to time; and the second term
on the right hand side is a mass source or sink term.
The symbols used in Eq. 2-2 are defined as follows:

k , k,, k_ are absolute permeabilities of the
X"y medium in the x, y, z directions,
respectively,

kr is the permeability relative to the fluid,
p is the mass density of the fluid,

W is the dynamic viscosity of the fluid,

P is the fluid pressure,

g is the acceleration of gravity,



h is the eclevationof the control volume with re-
spect toanarbitrary datum perpendicular to the
direction of gravity,

¢ 1is the porosity of the medium,
S is the fluid saturation,

p. isthedensityof the fluid passed in the source
or sink,

Q is the volume flow rate of the source or sink
which is positive in the case of a sink and neg-
ative for a source.

To accurately describe many cases of multi-phase
flow, a relationship similar to Eq. 2-2 is required
for each fluid phase. Breitenbach, et al. (1968) have
developed such equations for the three phase system of
oil, gas, and water. However, in the case of the two
phase, air-water systems being considered in this study,
an assumption can be made which greatly simplifies the
mathematical description of the flow phenomenon. This
assumption is that the resistance to air flow through
the porous mediumis negligible, and therefore the pres-
sure of the air throughout the systemisnearly constant
and can be assumed atmospheric. This assumption is
generally valid for flow in unconfined aquifer systems
because velocities are very small, and for this reason
it is considered permissible in this development to ne-
glect the flow of air in the system. As a result, the
only flow equation to be considered in the treatment of
the unsaturated zone is Eq. 2-2 for the water phase.
It will be demonstrated later in this section that Eq.
2-2 is applicable to flow in the saturated zone as well.

Equation 2-2 may be simplified by assuming the den-
sity of the water, p, is constant and uniform throughout
the system, and assuming the porosity, &, isnot a func-
tion of time. The density of water varies with pressure
according to the following relationship:

dp = 8pdP , (2-3)
where ¢ is the reciprocal of the bulk modulus of elas-
ticity of water, and is approximately 3.3X107° in=/lb.
I'he maximum pressure variations within the systems being
considered in this study are not expected to exceed
130 lb/inz. Substitution of these values into Eq. 2-3
results in a maximum expected variation in density of
less than  0.05 percent of p. The assumption of con-
stant density was therefore considered valid.

Porosity is a function of the compressibility of
the aquifer, and is related to the hydraulic pressure
hy the equation

b=, [1+Cp (P-PY] (2-4)

where
b, s the porosity at some arbitrary reference
pressure,

# is the reference pressure,

]

“F 15 the aquifer compressibility.

in aont cases, €. is of the order of magnitude of
1t " yu'/1h, and thus variations in porosity are of the
came arder of magnitude as density variations. There-
the assumption that §  is constant at a given
Powoat tom 1o considered valid,

Frigm,

The assumption of constant density, along with the
consideration of only the water phase, allows the pres-
sures and elevation heads for all points in the system
to be expressed in terms of the total head, H, which is
defined as:

H=Plpg + h (2-5)
Using this relationship, the following substitution may
be made into the partial derivatives of pressure and

elevation with respect to x 1in the left hand side of
Eq. 2-2.

s - Eeady, (2-6)
with similar substitutions in the partial derivatives
of pressure and elevation with respect to y and z.
To implement the use of the three-dimensional ground-
water flow equation in the finite difference model, the
assumption is made that the material inside the control
volume shown in Fig. 2-1 is homogeneous. Using this
assumption, the porosity term may be placed outside the
time derivative in the right-hand side of Eq. 2-2. A
constant density term may also be eliminated from each
side of the equation. The result is:

aH
ax [T (08 Fpbydz]ax +

‘:2*' [—-);-1-'- (pg %—?—]axﬁzlay +
(2-7)

1 [—r'-z- (ng %]nx&y]ﬂ.:

d
= & 5p (Séxaysz) + Q .

The permeability relative to the fluid, k_, and
the saturation, S , are constants for hydraulic pres-
sures greater than or equal to zero gage pressure, and
functions of pressure where pressures are negative.
These relationships may be expressed as:

k= k() , p<o,

(2-8)
kr'_"l.o, p"_'Ov
§=5(p) , pe<o0,

(2-9)
S =:1.0 5 p>0.

For a given, fixed point in space the parameters p, g,
and h , relating totul head to pressure are constants.
Given the elevation of this point, h, the relative per-
meability, k., and the saturation, S, may be expressed
directly as Functions of total head, or as constants,

within the following ranges of H values,
kr = kr[H) 4 H<h
(2-10)
k_= 1.0, H>h
T =
S = S(H) , H<h
(2-11)
Ss1.0, H>h

The hydraulic conductivity, K, is defined by com-
bining terms from the left-hand side of Lq. 2-7, for



flow in each of the three coordinate directions. Hy-
draulic conductivities for flow in the x , y, and z
directions respectively, are:

k _k

3 o
N & (2-12)
k k
e ) &
Ky gt € (2-13)
k?.kl‘
K, v (2-14)

Having expressed k_  as a function of total head for

some fixed point in space, K_, K_, and K, at that
point may also be related to Y
For Kx this relationship is
K, & K. .k - H <h
x xo'r (2-15)
K =K, > H>h,
where K is the hydraulic conductivity in the «x

direction under fully saturated conditions.
relationships exist for hydraulic conductivities in
the y and z directions. Substitution of the hy-
draulic conductivities defined in Eqs. 2-12, 2-13, and
2-14 into Eq. 2-7 result in

Similar

@H

3

W [K.x % Ayhz]ax +
3 aH

a—)_ [Ky -3-_\-’- AxAz] Ay +
3 aH

37 [Kz T sxaylaz

= ¢ -- (SAxAydz) + Q . (2-16)

L

The right-hand side of Eq. 2-16 may be simplified
by assuming that the dimensions of the volume element,
4ix, A&y, and Az do not vary with time. This assumption
is valid for the development of this equation for use
in the finite difference model because volume elements,
or grids are sized arbitrarily and remain constant
throughout time during any single use of the model.
The result is that only the saturation, $§ remains in-
side the time derivative in the first term on the
right-hand side of Eq. 2-16. Applying the chain rule
for partial derivatives, the following substitution
can be made to express S for a fixed point having
known elevation as a function of H instead of t:

(2-17)

The derivative of S with respect to H is shown as
a total derivative rather than a partial derivative
because S can be expressed as a function of H alone.
Substitution of Eq. 2-17 into Eq. 2-16 results in:

3

FTy [Kx I Ayhz]hx +

3 3

B orx M oazta

3 ( y oy z] 8y +

g% (X, %%—axay]az = ¢Axbydz E% Mg, @9

which is the‘;general form of the three-dimensional
flow equation on which the development of the three-
dimensional segment of the finite difference model is

based. Equation 2-18 is nonlinear because S and K_,
K, and K, are nonlinear functions of H. For satur-
ated flow conditions within a given grid dS/dH is

equal to czero, and Ky, Ky, and K; are assigned con-
stant values K o y o) and { g» Tespectively, in which
case Eq. 2-18 is linear. A though the differential
lengths 4x , Ay , and Az are constants which could
have been eliminated from Eq. 2-18, they have been re-
tained for comparison with the finite difference form
of Eq. 2-18 developed for use in the computer model in
Chapter III.

Development of the Two-Dimensional Groundwater Flow

Equation

The development of the two-dimensional segment of
the finite difference model is based on a groundwater
flow equation which has been simplified by neglecting
flow in the vertical direction and assuming (1) flow
velocity is proportional to the slope of the water
table, and (2) flow is horizontal and uniform every-
where in a vertical section. These assumptions are the
Dupuit-Forchheimer assumptions as stated by Corey
(1969). It is evident that these assumptions are con-
tradictory in physical reality because any slope of
the water table in the unconfined aquifer indicates a
vertical component of velocity. However, in cases
where the water table slope is mild and water table
fluctuations are small compared to the saturated
thickness of the aquifer, errors introduced by using
the Dupuit-Forchheimer assumptions are generally neg-
ligible.

The use of the two-dimensional flow equation re-
quires that streams traversing the area be either hy-
draulically connected with the underlying aquifer at
all points on the boundary of a given cross section,
or not hydraulically connected with the aquifer at any
point on the cross section. Streams considered to be
hydraulically connected with the aquifer are generally
treated as boundaries of known or constant head. Flow
into the aquifer from a reach of stream considered not
to be hydraulically connected with the aquifer is
treated as a source term, and the river itself is not
considered as part of the aquifer for purposes of
writing the groundwater flow equation. The river tra-
versing the area being treated by the two-dimensional
flow equation in this study is considered to act as a
known-head boundary.

The development of the two-dimensional flow equa-
tion is based on the continuity principle and Darcy's
law, as is the three-dimensional flow equation. The
important difference between the development of these
two equations lies in the manner in which vertical
movements of the water table and volume fluxes in the
vertical direction are treated mathematically.

The location and dimensions of the volume ele-
ments for which the three-dimensional flow equation is
written are arbitrarily set, as shown in Fig. 2-1, and
are independent of the location of the water table or
the bedrock surface. Volume flux in the vertical di-
rection is described by the third termin the left-hand
side of Eq. 2-18. It is necessary to consider changes
in saturation which may occur in each three-dimensional
grid because the location of the water table can change
with respect to the fixed elevation of these grids.

By contrast, only the horizontal dimensions of
the volume elements treated by the two-dimensional
flow equation can be set arbitrarily. The upper and




lower boundary elevations of these grids are deter-
mined by the location of the water table and the hed-
rock surface, respectively, as illustrated in Fig. 2-2.
Because the upper grid boundary is located at the water
table at all times, saturated flow conditions always
exist within the grid. Volume flux in the vertical
direction is accounted for by a source or sink term.
The effects of saturation and movement of the water
table on the volume of storage in the grid are ac-
counted for by the specific yield, Sy, which is defined
as the volume of water released from or taken into
storage by an aquifer per unit surface area due to a
unit change in water table elevation. Specific yield
is considered to be constant at any given location.

ater Table

Bedrock
i Surface

. —

—_— —— — — ]
Ax

Fig. 2-2. Element  for Two-

Differential Volume
Dimensional Flow Equation.

The nonlinear, partial differential equation de-
scribing saturated, two-dimensional, transient flow
through porous media may be expressed in differential
form as:

] oH 3 aH
s [Kx x may) Ax + 3y EKY E; max)yay
aH

=8y Bxby g ¢ Ws (2-19)
in which m 1is the saturated thickness, defined by
the relationship:

m=H - hh 5 (2-20)
where hy, 1is the elevation of the bedrock surface.

Other symbols used in Eq. 2-19 have been defined pre-
viously. Because flow is assumed saturated, Kx and Ky
take on the constant values for saturated hydraulic
conductivity , K‘O and KYD'

The development of a finite difference form of
the two-dimensional flow equation is based on Eq. 2-19.
Differentials Ax and Ay have been retained in the
vyquation for comparison with the finite difference
cquation developed in Chapter III for use in the simu-
lation model.

quations Describing Flow Across the River Boundary

The primary purpose of this study is to develop a
‘model capable of duplicating an actual, physical pro-
cvess with reasonable accuracy. For this reason, an
understanding of the various conditions under which
flow may occur across the boundary between a natural
stream and the adjacent aquifer is of paramount impor-
tance. This study is limited to the treatment of three
conditions believed tobemost prevalent in the stream-
arquifer system under consideration in this study.
Iese are discussed in this section. These conditions
are: (1) scepage from the aquifer into the stream and

(2) seepage from the stream into the aquifer, both
taking place with the stream and aquifer hydraulically
connected and with the seepage rate controlled by the
pressure gradient across the boundary between the
stream and aquifer, and (3) seepage from the stream
into the aquifer in which hydraulic connection between
the two has been broken. Seepage rate in this case is
determined by the depth of water in the stream alone,
and is not dependent on the water table elevation in
the aquifer so long as the hydraulic connection re-
mains broken.

Equations for unsteady flow for each of these
conditions should provide accurate representation of
actual flow conditions. However, unsteady flow across
the river boundary is caused primarily by fluctuations
in the depth of water in the river, and these fluctua-
tions ordinarily occur over durations of time that are
very short compared to the time increments used in the
finite difference model. Because of the usual short
duration of these fluctuations, and the tendency over
an increment of model time for the effects of many
positive and negative fluctuations to cancel, it is
assumed that seepage rate at a given location on the
boundary between the stream and aquifer can be repre-
sented by an average value during each model time in-
crement without introducing appreciable error. For
this reason seepage rates across the stream-aquifer
boundary are computed at each time increment using
steady state flow equations and an estimated mean river
depth.

The condition of seepage from the aquifer into
the stream is illustrated in Fig. 2-3. Flow is con-
sidered from point A, some distance parallel to the
direction of flow from the rtiver boundary, to the
river. The relationship for seepage velocity into the
river from point A can be expressed by Darcy's law as:

AH

W Ba Al

(2-21)

where

KLo is the hydraulic conductivity for saturated
conditions in the direction of flow between
point A and the river

AH is the difference in total head between point
A and the river.

AL is the distance from point A to the river
boundary in the direction of flow.

Forms of Iq. 2-21 written for flow in the x, y, and z
directions are used to describe the boundary condition
of scepage into the rviver from the aquifer in the
three-dimensional portion of the finite  difference
model .,

Fig. 2-3.

Seepage from Aquifer into River.



The conditions of flow from stream to aquifer,
with or without hydraulic connection, are both affect-
ed by the presence of a silt layer on the banks and
bed of the river. This silt layer is formed by the
deposition of particles of fine sediment on the stream
banks and bed. The silt layer generally has a much
lower hydraulic conductivity than the  surrounding
aquifer material, and can dramatically restrict the
rate of seepage from the river.

A detailed discussion of the behavior of silt
layers in natural channels has been presented by Mat-
lock (1965), who conducted both field observations of
natural streams and experiments in a laboratory flume

to determine the effects of silt on infiltration rates.

Following are some of Matlock's observations which
have been considered in the development of the equa-
tions describing seepage from a stream to the adjacent
shallow aquifer through a silt layer:

(1) Laboratory experiments showed that the silt layer
forms and remains stable under a broad range of
conditions commonly found in natural streams.

(2) Bedform movement does not generally disturb the
silt layer because it is formed below the level
of the bedforms.

(3) A break in the silt layer caused by some local
disturbance results in an increased seepage rate,
but only for a very short period of time in most
instances. The high local seepage rate brings
about the rapid accumulation of fine sediment in
the break, and the silt layer re-forms almost im-
mediately-

(4) A silt layer only one or two millimeters thick
may reduce the seepage rate to as little as one
one-hundredth of the seepage rate prior to the
formation of the silt layer.

The inference of these observations is that, in
general, seepage from a stream carrying silt-laden
water is 7Testricted by a silt layer on the bed and
banks of the channel. This inference was substantiated
by its use in a finite element model of a stream-
aquifer system by Hurr (1972). In an area where seep-
age from the river was taking place both with and
without a hydraulic connection between the river and
aquifer, the response of the water table was simulated
with good accuracy using Hurr's model.

The condition of seepage from the river with the
stream and aquifer hydraulically connected 1is illus-
trated in Fig. 2-4. Flow is considered from the river
through the silt layer to point B in the aquifer. The
cross-sectional area of flow between the river and
point B~is assumed to be constant. This assumption
holds true in the application of the finite difference
model, and its use here simplifies the development of
the equation for seepage velocity. Because steady
state conditions are assumed to exist, seepage veloci-
ty may be expressed by Darcy's law in terms of the hy-
draulic gradient and conductivity, either in the silt
layer or in the aquifer, as

(2-22)

where

aHs is the head loss through the silt layer,

Fiod

6Hy is the head loss between the silt layer and

point B,

KS is the hydraulic condﬁctivity of the silt
layer,

KB is the hydraulic conductivity of the aquifer
material between the river and point B,

ts is the thickness of the silt layer,

AL is the distance parallel to the direction of
flow from the river to point B.

For use in the finite difference model, an equation
for v in terms of the total head loss between the
river and point B is necessary. For this purpose, Eq.
2-22 is rearranged and written as

Vts
&Hs = (2-23)
s
MM, = YAE (2-24)
B K
B
By summing Eqs. 2-23 and 2-24, an expression is ob-

tained which defines total head loss, ﬂHT and relates
it to seepage velocity, v .

MM, = AH_ + AH =v(t—5+ﬁ) (2-25)
HT s B KS K

B

Rearranging Eq. 2-25 and solving for v results in

KBKS

v = [W] MLP f (2-26)

Equation 2-26, written for flow in the x , y, and 1z
directions, 1is used in the finite difference model to
describe the boundary condition of seepage from the
river when hydraulically connected with the adjacent
aquifer.

Silt Loyer
Fig. 2-4. Seepage from River to Aquifer with Hydraulic
Connection.

The condition of seepage from the river, with no
hydraulic connection to the adjacent aquifer is illus-
trated in Fig. 2-5.

Pumped __ | /7 = Silt Layer
way 277777773
' RS
ri !
Water Table

Fig. 2-5. Seepage from River to Aquifer without Hy-
draulic Connection.




This condition exists where a silt layer is pres-
ent in the river bed and banks to retard the seepage
rate from the stream. The maximum possible steady
state seepage velocity which can pass through the silt
layer is determined by the hydraulic conductivity of
the silt layer, the positive pressure head at the
upper surface of the silt layer, and an additional
amount of negative pressure head which can be sus-
tained at the lower surface of the silt layer with
saturated flow conditions still prevailing. This neg-
ative pressure head is the bubbling, or air entry
pressure head of the material composing the silt layer.
This bubbling pressure head defines the lowest value
of pressure head that can exist in the system for
steady, saturated flow. Reducing the pressure head at
the lower surface of the silt layer below this value
would not increase the flow rate of water through the
silt layer, but instead would initiate air flow. The
expression for the maximum Seepage velocity from the
stream downward through the silt layer is obtained by
writing Darcy's law for flow under steady state condi-
tions through the silt layer. This expression is

d+t -h
. 5 b

Voax = Ks ) (2-27)

where
d is the depth of flow in the river,
t is the silt layer thickness,

is the bubbling pressure head of the silt
layer,

K is the hydraulic conductivity of the silt
layer.

According to the sign convention used in this develop-
ment, the value of hpb is negative.

When the water table near the river recedes to
such an extent that the difference 1in total head be-
tween the river and the underlying aquifer exceeds the
maximum possible head loss as defined by Eq. 2-27, the
hydraulic connection between the river and the aquifer
ceases to exist.  Further drawdown of the water table
does not affect the seepage velocity from the stream,
which remains constant at v as long as the depth
ot streamflow does not change.

Flow downward through the pervious material below
the silt  layer takes place under unsaturated condi-
1ions. Pressure and saturation at any point in this
unsaturated zone depend on the physical properties of
the ayuifer material at that point. Pressure returns
to atmospheric and saturation approaches 1.0 as flow
reaches the water table. The pressure distribution for
Tow trom the river to the water table in the underly-
sy ayuiter through a silt layer is shown in Fig., 2-6
Por steady  flow  and  homogeneous aquifer material,
guat ton 2-27  is used in the simulation model to de-

c b weepage through the streambed to the underlying

v ter when the stream  and aquifer are not hydrauli-
vilby connected,

n equation similar to Eq. 2-27, but with no gra-

Yient of olevation head, describes lateral seepage out

”‘h%———-hqu"tr

Fig. 2-6. Pressure Head Distribution for Seepage from

River to Underlying Water Table.

through the stream banks. In order to determine an
average seepage velocity through the bank, a hydro-
static pressure head distribution is assumed to exist
in the river, as shown in Fig. 2-7. The pressure head
in the adjacent section of the aquifer is assumed to
be uniform, as it is in the finite difference repre-
sentation of this flow situation used in the simula-
tion model. The maximum discharge through a unit width
of this stream bank for a given depth of streamflow is

K, d Kgd(d/2-h )
B g = [ (h-hpb} dh = < . (2-28)
s 0 3

The average seepage velocity for this maximum dis-
charge is

. Kd(d/2-h ;)

' t
ave 5

. (2-29)

In the finite difference representaiton of this flow
situation, seepage rate out through the stream bank is
assumed to be uniform and equal to v,,, at all points
between the water surface in the river and the stream-
bed., The seepage velocity above the water surface is
zero, Equation 2-29 is used in the simulation model
to describe seepage outward through the bank at a
given cross section of the river when no hydraulic
connection exists between the stream and aquifer at
that point.

/-Silt Layer

———
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Fig. 2-7. Pressure Head Distribution for Unsaturated
Seepage through the River Bank.



CHAPTER 111
DEVELOPMENT OF THE SIMULATION MODEL

The basis of the model for simulating flow in a
stream-aquifer system is the finite difference form of
the groundwater flow equation, presented in Chapter II
for both two-dimensional and three-dimensional flow.
The application of the model consists of representing
the study area by a grid system and writing the flow
equation for each grid. The interactions between the
river and aquifer are accomodated by imposing various
boundary conditions on the grids through which the
river flows. The nature of these boundary conditions
was discussed in Chapter II. Inflows and outflows
through the upper surface of the model include precip-
itation, evapotranspiration, irrigation, and pumping.
Values of net surface flux for all two-dimensional
grids and those three-dimensional grids adjacent to
the upper surface are obtained by summing values of
the various surface inflows and outflows in each grid.
The values thus obtained are input to the model as
production terms in the flow equation for each grid.
The perimeter grids of the model may be treated as
boundaries of known or constant head, known, constant,
or zero discharge, or known or constant hydraulic
gradient. Because data were readily available for
values of head throughout the region considered in
this study, the perimeter grids were treated as bound-
aries of known or constant head. Computations of dis-
charge and stage in the river are external to the por-
tion of the model dealing with the groundwater flow
equations. Discharge is computed for each river grid
by applying the continuity principle, including con-
sideration of the contributions of seepage and canal
diversions. The stage in each grid is then computed
using the Manning formula. The remainder of this
chapter consists of a description of each of the major
components of the computer model developed in this
study and an account of the operation of the computer
program through one time cycle. Brief descriptions of
each of the model subroutines and a listing of the
computer program appear in Appendix A.

Development of Finite Difference Model for Groundwater

Movement

Finite difference techniques are based on the
substitution of ratios of discrete changes in the
values of appropriate variables over small space and
time intervals in place of derivatives. To facilitate
the use of a finite difference technique, the study
area is divided into a system of grids. The sizing and
placement of the grids depends on the physiography of
the region and the detail desired. Large grids are
used where the physiography is fairly uniform and de-
tail is not too important. Smaller grids are required
to obtain more detailed information, or to accurately
describe flow in regions having irregular bedrock con-
tours, steep water table gradients, discontinuities in
the subsurface geology, or other irregularities in the
physiography that might influence the local flow pat-
tern. Each grid in the three-dimensional model segment
is assigned a value of hydraulic conductivity, a grid
center elevation, and an initial head. Similarly, each
grid in both two-dimensional model segments is5 as-
signed a value of hydraulic conductivity, a bedrock
elevation, and an initial water table elevation. These
parameter values are obtained by averaging data values
for each individual parameter over the space within
every grid. The flow equation for each grid is written
in terms of the parameter values of that grid and of
the adjacent grids, the distance intervals between the

adjacent grid centers, and an arbitrary time interval.
An implicit centered-in-space, finite difference scheme
is used in this model to approximate the time and
space derivatives in the groundwater flow equations,

An important limitation of the finite difference
technique used in this model is its restricted applic-
ability to linear equations only. Groundwater flow
Eqs. 2-18 and 2-19 are both nonlinear. The hy-
draulic conductivity, K, which appears in vector nota-
tion in the terms on the left-hand side of Eq. 2-18 is
a function of head, H, as is the saturation, S, which
appears in a derivative with respect to H on the
right-hand side of Eq. 2-18. The saturated thickness,
m, which is included as a coefficient in the left-hand
side terms of Eq. 2-18, is also a function of H. It
appears that the finite difference scheme presented
for use in this study is not appropriate for describing
the flow situations described in Eqs. 2-18 and 2-19.
However, these equations can be linearized by holding
the values of the functions of H constant during
each time increment, so that H 1is the only unknown
in each equation. At the beginning of each time in-
crement new values of K and dS/dH are computed for
each three-dimensional grid as functions of head at
the present time level. Similarly, new m values are
computed as functions of head at the present time
level in each two-dimensional grid. Errors resulting
from the use of these approximations are negligible if
care is taken to select a sufficiently small time in-
crement so that the variation of H values throughout
the model is small from one time level to the next. A
suitable size of time increment for use in simulating
flow in a given stream-aquifer system is determined by
making trial runs of the model on data from that sys-
tem with several different time increments. The
largest time increment for which stable results are
obtained, and for which changes in head from one time
step to the next are below some arbitrary tolerance
limit, is selected for use in making production runs.
The tolerance 1limit used in this study was one foot.
Analysis of trial runs of the model on field data used
in this study resulted in the selection of a time in-
crement of 30 days.

Three-Dimensional Flow Model

Development of the Finite Difference Equation. A
typical grid used in the three-dimensional portion of
the groundwater model is shown in Fig. 3-1, with the
locations of the centers of the six adjacent grids in-

dicated. The terms on the left hand side of Eq. 2-18
o ) k*1
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Fig. 3-1 Typical Finite Difference Grid for Three-

Dimensional Flow



represent flow across the six grid faces. The flow
across a given face can be expressed in terms of the
dimensions of the two adjoining grids and the flow
parameters at the grid centers. Two adjacent grids are
shown in Fig. 3-2, with flow in the x direction
across the connecting face being considered. According
to Darcy's law, discharge from grid i into grid i+l
may be expressed as

H. = H

i i+l
Q = K A ————— (3-1)
0 X0 0 U.S(axi+ﬂxi+j}
where
kxo is the hydraulic conductivity at the grid

interface for flow in the x direction,

A is the cross-sectional area perpendicular
to the direction of flow,

Hi is the head at the center of grid i,

H is the head at the center of grid i+l,

i+l
0.5(ax1+axi+1} is the distance between the
grid centers.
Hj
?\““-F~
i T Hi4
1
i :
]
L i
1=+ i 0 i+t
%+ i——— Ax '—+—A‘i+l —i
Fig. 3-2 Flow between Adjacent Grids of the Three-

Dimensional Model

The finite difference approximation of steady
flow during each time increment between adjacent prid
centers is used to obtain an expression for (, in
terms of adjacent grid dimensions and grid centor pi-
rameters. Discharge between the center of grid i and
the interface, and between the interface and the c¢en-
ter of grid i+l are both equal to Qgp, and may bhe
expressed according to Darcy's law in terms of the re-
spective grid parameters and dimension as:

Ho - B
Qoo *'% = Bk 77 t5-24
Ho-H
Qu_qep = U = Ky\A (33

s - —""T' -
i+l i+l “‘i+1/“

The cross-sectional areas at all points between 0 and
i+1 are uniform and may be expressed in terms of srid
dimensions as

A=A = A,

1 1+ 1

3

o Ay-Az

where 4y and Az are the grid dimensions perpendic
ular to the direction of flow. Substituting bq, §
into LEqs. 3-2 and 3-3 and rearranging results in

]

Qo ﬂxi
i o " e X (3-5)
Q Ax.
= o i+l -
B e T X (3-6)
i+l

Equations 3-5 and 3-6 are added tobether to eliminate
Ho. The resulting expression, after combining terms,
is

B 8 ) Q, AxK o+ ﬁxi+1Ki‘ _—

i i+l ZayAz K. K. A
i+l

Solving Eq. 3-7 for Q, yields the following expres-

sion for flow across the grid interface shown in Fig.
5-2,
2K, K Ayhz
N A | B ¥
R T ST L T (3-8)
1-3%1 i+l i

Comparison of Eqs. 3-1 and 3-8 indicates the following
substitution has been made:

Kxo I(:iKi_+1
= § (3-9)
6xi‘axi*l ﬂxiKi+1*axi¢lKi
which shows that Ky,, the x component of the hy-
draulic conductivity at the interface, has been re-

placed by a combination of Kj
jacent grid centers.

and Kj4+1 at the ad-
In the finite difference form of

Eq. 2-18, Ky, Ky, and Kz are represented as combin-
tions of the discrete, grid center K values in the
appropriate directions. Expressions similar to Eq.

3-8, written for each of the six faces of every inter-
ior grid, constitute the finite difference form of the
left-hand side of Eq. 2-18 used in the computer model.
l'or grids located on the bottom layer of the grid net-
work, flow across the lower surface is assumed to be
equal  to zero. Flow across the upper face of each
surface prid of the network is assumed to be equal to
the surface  tlux, which is computed separately from
the matrix of groundwater flow equations.

The right-hand side of Eq. 2-18 contains a time
derivative of 1, which is approximated by the finite
differvnce torm:

TR T
+C At

(3-10)
where

wiperseripts t and t+At indicate time levels
hefore and after an incremental time change,
respectively,

*t is the time increment,
Il is the head in a given grid.

A\t each time level the derivative of saturation
with respect to head and the hydraulic conductivity
waed i T, 2-18 for every grid in the three-dimensional
monde L sepment are assigned values that remain constant
Jduring the operation of the model through one time in-
crement,  These values are computed at the beginning
viavh time increment as functions of head in every
three dimensional grid. The approximations used in the



model for obtaining values of K and dS/DH in a

given grid are:

K Ksatkr R (3-11)
St (5-12)
where
Ksat is the hydraulic can@uFtivity in the grid
under saturated conditions,
E} is the average relative permeability in

the grid,

45  is the average change in saturation over
some small increment of head inthe grid,

AH  is the increment of head.

For grids entirely below the water table, Kk, is
equal to one and _AS 1is equal to zero. In order to
obtain values of k. and 35 for grids located par-
tially or entirely above the water table, relation-
ships for k, and S as functions of pressure head,
hp, are needed. The plots of ky and 5 versus h
obtained for use in this study are described in Chap-
ter IV. To compute K. and &S for a givengrid, the
vertical dimension of the grid is first divided into
small, equal increments. An approximate value of the
pressure head in each increment is then obtained by
subtracting the elevation at that point from the head
in the grid. If the pressure head thus obtained is
nonnegative, the values Kky=1.0 and 4S=0 are as-
signed to the increment directly. If the pressure head
is negative, values of Kk, and AS corresponding to
the pressure head in the increment are obtained from
the plots of k. and § versus hy. Values of ky
and AS are thus obtained for every vertical increment
of the grid. The average of all k. values in the
grid is the value of k; wused in Eq. 3-10 to obtain a
value of K at the grid center. The average of the
incremental AS values in the grid is the value of
BS used in Eq. 3-11 to obtain an approximate value of

dS/dH at the grid center.
The finite difference equation for three-dimen-
sional flow is obtained by substituting Eq. 5-10 into

the right-hand side of Eq. 2-18, writing expressions in
the form of Eq. 5-8 for the left-hand side of Eq. 2-18,
and assigning K and dS/dH constant values obtained
by the procedure described in preceding paragraphs.
The equation thus obtained 1is rearranged so that all
unknown values of head, H, at time level t+At, appear
on the left-hand side of the equation, with the known
value of H, at time level t, on the right-hand side.
The result, written for a typical grid as shown in

Fig. 3-1 is
teht t+it tedt tebt
i-1,5,k * Bt MG DA Gak
v EHOOE + FHEOE - (A+B+C+D+E+F+G)HE ™S
i,j.k-1 i,j,k+1 .J,k
= Q- GH! 5-13)
i,j.k - (3-13
where

- ZKi I j.kh',j kn jn:k

] (3-14)
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S | Ax. K. , (3-15)
5 3 G WG K% N B o
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b = e +hy K ’ (3-18)
Y5-10,3,k 75 1,j-1,k
_ ZK ,J+1 k 1.J,kﬂxibzk e
b o= e i " (3-17)
j+l i ik i,j+1,k
2
E & P K sJ k- 1 13] %Ef ﬁyl_ , (5-18)
R N e R
B
K ,J k+1 i3, kAx ﬁy "
P = ~ T 2 ; (3-19)
k+1 1.3k k1,0, k1
dAX, ay &: (ds/dH) .,
= J -j—k 3=
G At T 3 (3-20)
Coefficients A, B, C, D, E, F, and G are held con-

stant at values computed at the beginning of each time
increment. The average value of the source or sink
term, Q, over the time increment, is the value at which
Q is held constant during the operation of the model
through the time step.

Application of the Three-Dimensional Model. The
three-dimensional grid system is placed so as to em-
compass all points in the stream-aquifer system where
flow of water 1is likely to occur. For the study area
used in the verification of this model, the grid sys-
tem encloses the river and both the saturated and un-
saturated subsurface flow zones. Because the climate
of the study area is semiarid and most precipitation
either percolates directly into the ground or evapo-
rates where it falls, overland flow due to rainfall
excess is assumed negligible and is not considered in
the model. Flow in canals is not considered to enter
the system until it is applied as irrigation water, a
portion of which is assumed to leave the system as
evapotranspiration, while the remainder percolates
into the subsurface flow system.

A typical cross section of the river valley in
the study area is shown in Fig. 3-3, with the three-
dimensional grid system superimposed. The grid system
has been distorted slightly for the purpose of locat-
ing the river in the uppermost grid of one column in
each cross section, while keeping the water table be-
low the surface of the model. Except at the side
boundaries where the ground surface rises a consider-
able distance above the water table, the upper surface
of the model is at or near the ground surface. The
maximum angle of tilt produced by distorting the
model for this purpose is less than one degree, and
errors due to this small grid distortion are considered
negligible.

The river is treated in the three-dimensional
model by assigning it a grid in each cross section
through which it passes. The grid is sized and located
so as to approximate the true channel geometry of the
river, as illustrated in Fig. 3-4. Width of the grid
is set approximately equal to the average river width.
The lower boundary elevation of the river grid is
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approximately equal to the bed elevation. Because the
channel of the river in the study area is generally
wide and shallow, the rectangular approximation of the

river c¢ross section in the model is considered to bhe
reasonable.
Grids 1lying below the bedrock surface in the

three-dimensional model are assigned hydraulic conduc-

tivity values of zero, and are inactive in the compu-
tation of heads at each time step. Grids lying cn-
tirely above the bedrock surface are assigned conduc-
tivity values obtained from data. The conductivity
values assigned to grids lying partially below und

partially above the bedrock surface are reduced to
compensate for the impermeable portion of the grid he-
low bedrock, and the entire grid is then treated as
part of the permeable alluvium above the level of hed-
rock.

Two-Dimensional Flow Model

Development of the Finite Difference Equation.
The development of the finite difference cquation tor
two-dimensional flow of groundwater is very similar to
the development of the equation for three-dimensional
flow, presented in a previous section of this chapter.
A typical grid used in the two-dimensional portion of
the groundwater model is shown with its four adjacent
grids in Fig. 3-5. The terms on the left=hand side of

Three-Dimensional Grid System Superimposed on a Cross Section of River Valley

Eq. 2-19 represent
faces, and
the
respective grid center parameters.

flow across the four lateral grid
can be expressed in terms of dimensions of
center grid and the four adjacent grids, and the
Two adjacent grids
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Fig. 4-5 lypieal Finite Difference Grid for Two-

Mmensional Flow
af  the two-dimensional model are shown in Fig. 3-6.
flow n the X direction across the adjoining inter-
fave 15 considered. Discharge across the interface
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from grid i to grid i+l may be expressedby Darcy's
law in the form of Eq. 3-1, as was discharge between
adjacent grids of the three-dimensional model. Assum-
ing steady flow during each time increment, Eqs., 3-2

and 3-3 are used to represent flow in grids i and
i+l of Fig. 3-6, respectively. The cross-sectional
areas of grids i and i+l are not equal, as was the

case in the three-dimensional model grids, but are var-
iables whose value at a given location for a particular
time are defined by

A = mdy , (3-21)
where

m is the average saturated thickness of the
grid, and is a variable,

Ay is the fixed lateral grid dimension per-
pendicular to the direction of flow.

Equation 3-21 is substituted into Eqs. 3-2 and 3-3 to

obtain the expression for flow in each grid. The re-
sult is:
Hi - Ho
Yo = % = MMV TTT (2%
H - H,
0 i+l -
Q11 = & = Kama oz OB

Equations 3-22 and 3-23 are rearranged and added to-
gether for the purpose of eliminating H,, resulting in

2. - ) ﬂSE Kimiax + Ki+1mi+1bxi]‘ ks
i i+l 28y KiKi+1mimi+1

Solving Eq. 3-24 for Qg yields the following expres-
sion for flow across a grid interface of the two-
dimensional model:

2K1K1+1m1m1*1ay

=
° K Y NaMia

Q

By = Bygpd v (9625)

A comparison of Eq. 3-25to 3-1 indicates the following
substitution has been made of scalar quantities for

hydraulic conductivity in the x-direction at the
interface:

KXOAD KiKi+1mimi*1ay (3-26)

’ L]
8x;*8Xy.y KX * K ®ia ™

The saturated thickness, m, is a function of head, H,
defined as:

m=H - hb i (3-27)

where hp is the bedrock elevation in the grid. How-

ever, in order to linearize Eq. 3-24 so that it can be
solved using finite difference techniques, m is held
constant during each time increment. A value of m
is obtained at the beginningof each time step for
every grid in the two-dimensional model, as explained
in a previous section of this chapter. Saturated
thickness is therefore considered a constunt, and the
only unknown quantities in Eq. 3-24 are H; and Hj+].

The time derivative of H
right-hand side of Eq. 2-19

which appears on the
is approximated by the
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finite difference form given in Eq. 3-10, whigh is
also used in the finite difference form of the three-
dimensional flow equation.

The finite difference equation for two-dimensional
groundwater movement is obtained by substituting ex-
pressions in the form of Eq. 3-25 for each of the four
lateral grid faces into the left-hand side of Eq. 2-19,
and by substituting Eq. 3-10 into the right-hand side
of Eq. 2-19. The resulting equation is then rearranged
so that all unknown values of H, at time level t+At,
appear on the left-hand side of the equation, with the
known H value, at time level t, on the right hand
side. The result, written for the central grid shown
in Fig. 3-5 is

t+At t+At T+AtL t+At
My T Py * Ba M
-~ (A+B+C+D+G)H ™At = @ - GHE | (3-28)
1-.] 1’]
where
A, . K, My . W By
A = i-1,j71,j l-ll_J 1,) Yl , (3-29)
Kio1,i™i1,50% * Ky 4™ 8%
2. . K. .m... .m .Ay.
B - 00 W e 0 PO 00 . T8
Ki*l,jmi+1,jaxi + Ki’jmi’jﬂxi+l
2K, K, ,m. m, .Ax.
c = i,j-1 i;i_lljil i,j ; (3-31)
+ L &
%M ML
2K, . K, .m, ,. .m ,Ax
D = 8 K e O (3-32)
Ky,5+1m,5+1%5 * Ki,5m,5% 54
S AxAy
¢ = Lm0 ., (3-33)
Coefficients A, B, C, D, and G are held constant at

values computed at the beginning of each time incre-
ment. Q is held constant at its average value during
the operation of the model through the time increment.

Application of the Two-Dimensional Model.
two-dimensional model is designed
those flows in the stream-aquifer system that take
place under saturated conditions. Grid placement in
the two-dimensional model presents no problem because
the upper and lower grid boundaries are defined by
water table and bedrock elevations, respectively. The
two-dimensional model utilizes the Dupuit-Forchheimer
assumptions, of uniform conditions everywhere in a
vertical section and horizontal flows throughout the
model. The river does not occupy an entire grid, but
is incorporated in a grid which includes the surround-
ing and underlying aquifer. In the model developed in
this study the head in the river is assigned to the

The
to consider only

_entire grid on the basis that (1) the stream and aqui-

fer are always hydraulically connected; and (2) re-
sponse to fluctuations of either the river or aquifer
in the other component is fairly rapid, sothat the
head in the surrounding aquifer is always approximately
equal to the head in the river, for a given grid. A
typical cross section of the study area used in the
verification of the computer model is shown in Fig.
5-7 with the two-dimensional, finite difference grid
system superimposed.
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Mathematical Treatment of the Interfaces between
Two-Dimensional and Three-Dimensional Model Seg-
ment

The three-dimensional segment of the groundwater
model developed in this study may be used alone or in
conjunction with two-dimensional model segments posi-
tioned along any number of its sides. In this study,
the three-dimensional model segments. The positioning
the model on the study area is discussed further and
illustrated in Chapter IV.

A cross section of the interface between a two-
dimensional grid and a column of three-dimensional
grids is shown in Fig. 3-8. The flow equation for

i+l ]40 L — Water
== = #<|  Table
i+l,j,3-
ihije K
i |_— Bedroc
i*h0,2e Surface
74+ TIFTFFFTIFFTFTFFFrFrr, > > > 4> 1
it le
X+
Fig. 3-8 Cross Section of an Interface hetween Two-

Dimensional and Three-Dimensional Model tirids

grid i,j 1is obtained by writing Eq. 3-28, with
modification of the term describing flow ucross the
face adjacent to the three-dimensional grid column. In

this particular case, the term BHE*QE is replaced
with a set of terms describing flow iﬂto cach individ-
ual grid of column 1i+l,j. This set of terms is ob
tained by writing the coefficient B as usual, ¢
cording to Eq. 3-30, as if an ordinary two-dimensional

3-7 Two-Dimensional Grid System Superimposed on a Cross Section of River Valley

grid existed in place of the column of three-dimensional

grids. The wvalue of B 1is then divided among the
grids in column 1i,j+1 according to the fraction in
each grid of the total saturated thickness in column
i,j+1. The expression for the flow coefficient in the
kth grid of column i,j+l is
fmy

Bk =2 T B ¥ {3-34]
where

Am is the saturated thickness in grid k

of column 1i,j+1

m is the total saturated thickness in col-
umn - i+l,j.

The value of
is obtoined by

in the three-dimensional grid column
subtracting the top elevation of the

uppermost  impermeable  grid  from the head in the top
prid. The flow equation for grid 1i,j 1s obtained by
substituting by, 3-34 for each grid in column i+l,j
mto Feg. 3-28, resulting in
n
LAt J t+at t+at t+At
My £ ’kzlgk”i,ju,k by o Ry
v t+dt t
Av ) B +C+D+E)HI - = Q - EH. . , -
(A k?fl 5k+L+D+E)Hl’J Q EHl,j (3-35)
where n is the number of grids in column i+1,j. For

the particular case illustrated in Fig. 3-8, coeffi-

crents By for grids i+1,j,1 and i+l,j,4 are zero,
prid iel,j,1 because it lies below the bedrock sur-
face and is considered impermeable, and grid i+l,j,4
because it lies entirely above the water table and

therefore
ness

contains no portion of the saturated thick-
im column  i+1,j.



The flow equation in a given grid of the three-
dimensional model segment adjacent toa two-dimensional
grid is obtained by writing Eq. 3-13 just as if an-
other column of three-dimensional grids existed in
place of the two-dimensional grid. In order todo this,
the two-dimensional grid must be divided into a set of
subgrids whose vertical dimensions match those of the
adjacent three-dimensional column. The boundaries of
this set of subgrids may, and usually do, extend above
and below the boundaries of the two-dimensional grid
itself. For subgrids lying below the two-dimensional
grid boundary, which is the bedrock surface, the hy-
draulic conductivity is assigned a value of zero. For
subgrids located partially above and partially below
the bedrock level, the conductivity value assigned is
that of the two-dimensional grid reduced in proportion
to the amount of subgrid space occupied by impermeable
material. To obtain hydraulic conductivity values for
subgrids lying partially or totally above the two-
dimensional grid boundary, the relative permeability
of the subgrid is obtained, as it is for grids in the
three-dimensional model segment. The pressure head
datum for this calculation is the water table in the
two-dimensional grid. The hydraulic conductivity is
then obtained using Eq. 3-11, with the relative perme-
ability of the subgrid and the conductivity of the two-
dimensional grid. No change of parameters is neces-
sary for subgrids lying entirely inside the boundaries

of the two-dimensional grid. Using the subgrids of
grid i in Fig.-3-8, Eq. 3-13 is written for each of
the grids in column i+l,j with no changes in the

form of the equation.

Method of Solution for the Groundwater Model

At the end of each model time increment, the flow
equation is written in its appropriate form for every
model grid for which the head at the next time step is

unknown. Boundary conditions are required in all ex-
terior grids of the model in order to obtain a solu-
tion. The boundary conditions used in this model are!

(1) known heads in all perimeter grids, (2) known flow
into the top of all surface grids of the three-
dimensional model segment. At a few locations along
the perimeter of the model, where data indicates a
steady increase in the water table elevation over the
study period, values of head in the perimeter grids
are periodically increased by a small amount. The re-
mainder of the heads in perimeter grids remain con-
stant. Boundary conditions at the river are not es-
sential to the solution of the flow equations, but are
necessary for the correct representation of the actual
flow situation. In the two-dimensional segments of
this model the river is treated as a boundary of known
head, while the portion of the river in the three-
dimensional segment may act either as a boundary of
known head or of known discharge. The flow equations
are entered inte a matrix and solved simultaneously
for new values of head in each grid. Subroutine BSOLVE
employs the Gauss Elimination technique of matrix so-
lution. BSOLVE was adapted for use in digital ground-
water models at CSU from the BANDSOLVE algorithm de-
veloped by Thurnau (1963).

Development of Equations for River Discharge and Stage

A value of the head in each river grid of the
model is needed at every time increment to compute
boundary conditions wused in the solution of the
groundwater flow equations. The head values are ob-
tained by adding the river stage to the river bed ele-
vation in each grid. The river stage is computed by
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the Manning formula, for which a value of discharge in
each grid is needed. Calculation of the discharge in
each grid is based on the continuity principle and the
assumption that spatial variation in river flow at a
given time is due to seepage to and from the adjacent
aquifer, canal diversions and tributary inflows.

Continuity Equation for River Discharge

Discharge calculations are begun at a grid super-
imposed over a reach of river where a gaging station
is located, and the flow at each time increment is
known. Three river gaging stations are located in the
study area used in the verification of this model, two
of which are located at opposite ends of the region,
with the third located near the center of the study
area. Calculations of discharge are initiated at the
center gaging station and moved upstream and down-
stream from that grid. The reasons for starting at the
center and moving both directions, rather than begin-
ning at one end and progressing through the entire
length of the model is to assure that values of dis-
charge in the three-dimensional model segment are
reasonably close to the correct values, and to shorten
the distance over which a given error can be propa-
gated. Discharge in a given grid is computed as a
function of the known discharge in the adjacent grid,
and the seepage rates and canal diversions between the
centers of the two grids. River grids are numbered
consecutively from upstream to downstream. Moving up-
stream from the center gaging station, and assuming
known discharge in the L+1th grid, thedischarge in
the Lth grid is computed as

+ 0.5(R + (3-36)

Q™ B * Doy Rier?) o

where
Q 1is river discharge in cubic feet per second

D is the sum of the discharges diverted
to canals in cubic feet per second,

R is the net seepage from the river in each
grid in cubic feet per second.

Moving downstream from the gaging station and assuming
known discharge in the L-1th grid, the discharge in
the Lth grid is computed as

Q =Q_q =D ~ 0.5 , +R) . (3-37)
Canal diversions between two adjacent grid centers are
assigned to the downstream grid for convenience. The
seepage in each three-dimensional river grid is ob-
tained by summing the components of seepage through
each bank and the bed of the river. These components
are obtained by multiplying the seepage velocity
through each face of the river grid by the area of
that face. Scepage in the two-dimensional river grids
includes only the components of flow through the river
banks. These seepage components are computed during
the previous model time increment for all faces of
each river grid which are adjacent to the aquifer grids.
Calculations of Q by Eqs. 3-36 or 3-37 are repeated
until a value of Q is obtained in every river grid
of the model. Computed values of discharge in the end
grids of the model are then compared to values mea-
sured at the two gaging stations located at the upper
and lower ends of the study area, as a test of the ac-
curacy of results obtained using the model,



Computation of River Stage by the Manning Formula

The computation of depth of flow in each river
grid of the model is based on the assumptions (1) that
flow in each grid is steady and uniform and (2) that
the channel is generally wide, shallow and has an ap-
proximately rectangular section throughout the study
area. Flow is assumed uniform in each section because
channel geometry throughout the area does not vary
significantly from place to place, and, except at the
diversion points of canals the changes in discharge
with respect to distance along the channel are small.
In addition, sufficient information is not available
for calculating depths of nonuniform flow. Flow is

considered steady because the model time increment is
much larger than the duration of most river fluctua-
tions and the passage of these fluctuations through

the study area. The effects of numerous positive and
negative fluctuations in river discharge over a model
time increment tend to cancel, thus minimizing the
crrors incurred by assuming steady flow.

The Manning formula, written
and solved for stage, d, is given by Eq. 2-1. Values
of channel width, w, bed slope, s, and Manning's n
are input to the model as data for each river grid.
The walue of discharge, Q, 1is obtained by Eqs. 3-36 or
3-37. A value of d is obtained for each river grid
it each time increment, using Eq. 2-1. This value is
then added to the average river hed elevation of the
pgrid, which has been read in as data, resulting in a
vitlue of head which is used to compute the appropriate
houndary condition for use in the solution of the
groundwater flow equations.

for a wide channel

loundary Conditions at the Stream-Aquifer Interface

Equations for the seepage velocity across the
stream-aquifer interface were discussed in Chapter II
for the three prevailing flow configurations. The
finite difference forms of these equations are used in
the three-dimensional model segment to obtain boundary
conditions for groundwater flow equations. A typical
three-dimensional model grid is illustrated in Fig.
3-9, with a river grid located adjacent to its upper
fuce. The finite difference equation for seepage from
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as a known head boundary condition. The equation for
scepage into the river from a laterally adjacent aqui-
fer grid is identical in form to Eq. 3-38, with grid
dimensions and subscripts changed accordingly. The
coefficient of this equation is used in Eq. 3-13 as
the coefficient A, B, C, or D, depending on the loca-
tion of the aquifer grid with respect to the river.

The equation for seepage from the river into the
aquifer with the stream and aquifer hydraulically con-
nected is obtained for grid i,j,k by multiplying the
area of the interface by the expression for seepage
velocity given in Eq. 2-26. Assuming seepage takes
place from the river boundary, through the silt layer
to the center of grid 1i,j,k, the result is
Ki.j,kxséxiﬁyj

Q= =
tK 5 Bh /2K,

M 5 pan 500 - (3-39)

The coefficient in the right hand side of Eq. 3-39 is
used as the coefficient F inEq. 3-13, withHj § k+1 »
as a known head boundary condition. The equation for
seepage into the aquifer from a laterally adjacent
river grid with the stream and aquifer hydraulically
connected is identical in form to Eq. 3-39, with grid
dimensions and subscripts changed accordingly.

The equation for seepage from the river to the
aquifer with no hydraulic connection between the river
and aquifer is obtained by multiplying the area of the
interface between grids i,j,k and i,j,k+1 by the
expression for the scepage velocity given in Eq. 2-27.

Assuming seepage takes place from the river boundary,
through ‘the silt layer to the center of grid 1i,j,k,
the result is
axiay.
Q = K, —---—-T-t @ - hpb FT ) (3-40)

Because all the values on the right-hand side of Eq.
3-40 are known prior to the solution of the ground-
water flow equations, the value of Q can be obtained
directly and input as the production term on the right-
hand side of Eq. 3-13. Because Hj j x does not ap-
pear in Eq. 53-40, the coefficient F in Eq. 3-13 is
set equal to zero. This constitutes a known discharge
boundary condition. The equation for seepage from the
river to a laterally adjacent aquifer grid with no hy-
draulic connection between the river and aquifer is
obtained by multiplying the interface area between the
grids by the expression for the seepage velocity given
in Eq. 2-29. For adjacent grids in the x-direction the
result is

Ay.ﬁzk
Q= K, —Jt—(dfz - h (3-41)

Ve
s po
At every time increment, for each grid interface
between the river and the aquifer, a decision must be
made as to which among Eqs. 3-38, 3-39, and 3-40 is
appropriate for describing the type of seepage taking
place. This decision is based on the difference be-
tween the head in the river and the head in the aqui-
fer. The decision process executed in the model to
determine the appropriate equation for flow across the
stream-aquifer interface 1is diagrammed in Fig. 3-10
for the grid shown in Fig. 3-9,



Boundary Condition

Compute Q by Compute Q by
Equotion 3-40 Equation 3~-39
Known Discharge Known Head
Boundary Condition Boundary Condition

Fig. 3-10 Diagram of Decision Process for Selecting
the Appropriate Boundary Condition at the
Stream-Aquifer Interface

Boundary Conditions at the Model Surface

At the beginning of each time increment a value
of the net inflow through the top of each grid adja-
cent to the ground surface is computed and input as a
known discharge boundary condition to the groundwater
flow equation for that grid. Contributions to the net
surface inflow to each grid include precipitation,
evapotranspiration, irrigation, and pumping. The
method of calculating a value for each of these con-
tributions is discussed in this section.

Monthly precipitation data are
available for one centrally Ilocated station is the
study area. The assumption is made that the amount of
precipitation over the entire region is uniformly dis-
tributed, and is equal to the value measured at the
gaging station. The input to a given grid, in cubic
feet per day is

Precipitation.

T60 Axdy ,

Q = (3-42)

where

P is the measured precipitation in inches
month, assumed in this study to be 30
days,

Ax and Ay are the dimensions of the grid

surface,

360 is the factor for converting units from

inches per month to feet per day.

Evapotranspiration. The Modified Blaney-Criddle
Method 1is used to obtain estimated values of monthly
evapotranspiration, which are applied uniformly over
the entire study area. Because these computations are
made external to the model and input as data, they are
discussed in detail in Chapter IV rather than in this
section. The outflow in cubic feet per day from the
surface of a given grid due to evapotranspiration is

m

t

QE = Eﬁ-ﬁxﬂy (3-43)

where

Et is the monthly evapotranspiration in feet,

30 is the factor for converting units from

feet per month to feet per day.
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Irrigation. The computation of an estimated value

of the inflow to each grid due to irrigation is based
on the assumption of uniform distribution of water
within the region served by each canal in the study

area. A detailed description of the delineation of the
distribution regions of the canals is presented in
Chapter IV. Each surface grid of the model is located
in no more than one canal distribution region. Grids
not included in any canal distribution region are as-
sumed to receive no surface inflow from irrigation.
The inflow due to irrigation in cubic feet per day for
a grid lying inside a canal distribution region is ob-
tained by the equation.

& Axdy :

Qp = 1452 ===~P D , (3-44)

n
where

AxAy is the grid surface area,

Pn is the percentage of the canal distri-
bution region inside the study area,

D“ is the monthly canal diversion in acre
feet.

1452 is the factor for converting units
from acre feet per month to cubic feet
per day.

Pumping. A large percentage of the groundwater

withdrawn from the alluvial aquifer in the study area
is eventually returned to the ground in the same vi-
cinity where it was pumped. With the time lag between
pumping and the return of the pumped water to the
aquifer assumed to be less than the thirty day model
time increment, and with evapotranspiration losses
considered separately, the contribution of pumping to
surface inflow and outflow in any grid is expressed as

Qp =, » @, = 0y (3-45)
where

Q, is the amount of water withdrawn from a

particular grid in cubic feet per day,
Q_ is the amount of pumped water returned to
T the aquifer in that grid in cubic feet

per day, assumed to be equal to Q.

At one location in the study area, large quanti-

ties of water are pumped for use as cooling water in a
power plant. The power plant wells are distributed
over the area of two grid columns in the three-
dimensional model segment. Power plant waste water is
discharged into a canal and is carried out of the area
and distributed for irrigation along with the water
diverted from the river. Very little of the water
pumped in this location is returned to the aquifer in
the same vicinity, and the surface flux due to pumping,

, is not zero, as computed in Eq. 3-44, but instead
is considered equal to Q, the withdrawal. The water
returned to the ground, Qp, is treated in the model by
adding it to the amount of water diverted from the
river into the canal, and applying the total amount to
the canal distribution region, as described in the
previous section of this chapter. The water withdrawn
from the power plant wells is not taken just from the
surface grids of the two columns affected, but is
withdrawn from all the grids in the columns, according
to the amount of saturated thickness in each grid.



Equation for Surface Flux. The equation 1ur the
surface flux into a given grid of the model, for both
the two-dimensional and three-dimensional segments, is
obtained by summing the contributions of precipitation,
evapotranspiration, irrigation and pumping. For all
grids except those containing the power plant wells,
the equation for surface inflow to a grid is

Qg = Q- Q% * Q - (3-46)

Because the pumping contribution, Qp, is equal to zero
for these grids, it is not included in Eq. 3-46. For
the surface grids of the two grid columns containing
the power plant wells the surface inflow is

QS = QR - QE 4 QI - QP » {3-47]
where

Q, is computed in a separate part of the
program according to the saturated thick-
ness in the grid at each time step.

For the lower grids of these two columns, a value of
Qp is similarly obtained. The values of Qg for each
surface grid and Qp for each grid affected by the
power plant wells are input to the appropriate flow
equation for each grid as production terms.

Operation of the Computer Model

The operation of the computer program for simu-
lating flow in a stream-aquifer system consists of
setting up initial conditions at some specified time
then running the model through a predetermined number
of time increments until a solution is reached at the
desired later time. The solution consists of a map of
water table elevations for the two-dimensional model
segments, a map of heads in the three-dimensional seg-
ment, and a tabulation of the discharge in each river
grid. Intermediate solutions may be printed out at the
end of every time increment if desired. The program
operation through a single time increment consists of
reading or computing the appropriate boundary condi-
tions, setting up the matrix of groundwater flow equa-
tions, then solving these equations for new values of
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head in each grid. A simplified flowchart of the pro-
gram is shown in Fig. 3-11,

Read in Initial Data; Indices, Constants, Grid
Parameters, Dimensions, and Locations,

Reod Boundory Condition Data: Surfoce
Contributions ,Canal Diversions, River Discharges.

|

Adjust Yalues of Hydraulic Conductivity and
Saturation Derivative in Three-dimensional Model
Sagment According to Head Values,

Set up Coefficient Matrix and Right Haond Side
Column Vector for Solution of Groundwater

Flow Equation.
i

Solve Mairix for New Head Volues in Each Model Grid. I

Determine Boundary Conditions a! Stream -aquifer
Interfoce and Compute Seepage Rates for Next
Time Increment.

o

Fig. 3-11 Flowchart of Computer Program



CHAPTER IV .
DATA USED FOR VERIFICATION OF MODEL

The study area selected for simulation by the com-
puter model is located in the Arkansas Valley of South-
eastern Colorado and Western Kansas. The boundaries of
the model encompass a four mile wide strip of land ex-
tending from John Martin Dam in Bent County, across the
width of Prowers County, to Coolidge, Kansas as shown
in Fig. 4-1. Most of the area is occupied by irriga-
ted farmland where sugar beets, alfalfa, cornand sor-
ghums are the principle crops grown. The only industry
in the area using a significant amount of water is the
thermal power plant owned and operated by the city of
Lamar, which has a population of about 7500. The en-
tire area lies within the Great Plains physiographic
province and the climate is semiarid. The mean annual
precipitation 1is about 14 inches. Most -of the water
used in this region 1is presently derived from surface
flows in the Arkansas River and groundwater from the
unconfined alluvial aquifer which underlies the river
valley through the length of the study area.

The Arkansas River traverses the study area
lengthwise and is the principal source of water supply
for the region. Flows into the upstream end of the
area are controlled by releases from John Martin Dam.
The average quantity of water released annually is
about 235,000 acre-feet. The average annual discharge
in the river at Coolidge is roughly 150,000 acre-feet.
The diversion points of nine major irrigation canals
lie within the study area. The total of the averape
yearly diversions of each of these canals is about
160,000 acre-feet. Of several tributaries flowing into
the Arkansas River within the boundaries of the study
area, only Big Sandy Creek consistently contributes
significant quantities of flow to the river. An esti-
mated 14,500 acre-feet enters the Arkansas River annu-
ally at the mouth of Big Sandy Creek, located about
seven miles east of Lamar. Additional gains and losses
in river flow due to seepage between the river and the
underlying alluvial aquifer may be substantial. Re-
sults of an investigation by Voegeli and Hershey (1965)

Three - Dimensionol
Model Segment

I AN

indicate that losses in river flow due to seepage gen-
erally exceed gains in this region.

The valley-fill aquifer underlying the study area
rest in a U-shaped trough cut inrelatively impermeable
limestone and shale. The estimated storage capacity of
the aquifer is over 1,000,000 acre-feet. This aquifer
is recharged by underflow from adjacent areas, seepage
from canals, the river, and other streams, precipita-
tion, and spreading of irrigation water. Contributions
to discharge from the aquifer include underflow to ad-
jacent areas, evapotranspiration, seepage into canals,
streams, and the river, and pumping. Of the 160,000
acre-feet of water per year diverted from the river for
irrigation, an estimated 100,000 acre-feet are distri-
buted to land lying within the study area boundaries.
The average annual evapotranspiration loss in the study
area 1is estimated to be about 2.5 feet. It is esti-
mated that 50,000 to 55,000 acre-feet of water enters
the area each year as groundwater underflow. Total
groundwater withdrawal in the area is roughly 35,000 to
45,000 acre-feet per year, of which approximately 75
percent is used for irrigation. Combined uses of
groundwater for public supply and domestic and live-
stock consumption account for about 5,000 acre-feet per
year, and withdrawals for cooling water at the Lamar
power plant constitute an additional 7,500 acre-feet
annually. During the eight year period considered in
this study, the annual increase in aquifer storage was
estimated to be between 5,000 and 10,000 acre-feet, as
indicated by the mass balance diagram for the study
area shown in Fig. 4-2. Values of hydraulic conduc-
tivity throughout the aquifer tend to be rather high,
causing the aquifer to respond rapidly to the effects
of these various inflows and outflows.

Investigation by Voegeli and Hershey (1965) and
by Hurr and Moore (1972) indicate that the Arkansas
River does not extend down to bedrock at most locations
along 1its course through the study area. A typical
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EVAPOTRANSPIRATION

75,000 acre- feet
per year
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Fig. 4-2 Mass Balance Diagram for Arkansas Valley Study Area

geologic section of the Arkansas Valley, shown in Fig.
4-3 illustrates this type of configuration. This sec-
tion is one of several mapped by Voegeli and Hershey
(1965) and is located about two miles west of Lamar.
Throughout much of the study area, water table eleva-
tions indicated that the river and aquifer remain hy-
draulically connected most of the time. The notable
cxception exists at Lamar, where the withdrawal of
large quantities of cooling water for the Lamar munic-
ipal power plant has produced a large drawdown cone
which extends beneath the riverbed nearby. The loca-
tion of the Lamar power plant wells is indicated in
Fig. 4-4. A detailed study of the interaction between
the river and the alluvial aquifer in the Lamar area

was conducted by Moore and Jenkins (1966). Their mea-
surements indicated that continuous pumping at an
average rate of about ten cubic feet per second has

maintained water table elevations near the river at lev-
cls ranging from two to eleven feet below the level of
the streambed over a two mile reach in the vicinity of

the Lamar power plant wells. Further observations re-
vealed that, although the river was losing water in this
two mile reach, the rate of leakage was much less than
the flow rate toward the wells indicated by steep water
table gradients near the river. Furthermore, fluctua-
tions in the water table appeared to have no measur-
able effect on the leakage rate. Moore and Jenkins
suggested that these observations indicated a silt
layer was present in the streambed which controlled the
leakage rate, and that no hydraulic connection existed
between the river and aquifer in the two mile reach af-
fected by the Lamar power plant wells.

The boundaries of the model have been located so
as to roughly coincide with physical boundaries of the
study area for the purpose of eliminating, as much as
possible, the problem of dealing with unknown boundary
conditions in the operation of the model. The side

boundaries encompass most of the alluvial aquifer adja-
cent to the

river. The end boundaries of the model
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have been located at river gaging stations near John
Martin Dam and Coolidge which are operated by the U.S.
Geological Survey. A third U.5.G.S. gaging station is
located at Lamar, a short distance from the power plant
well field, The locationof this gaging station proved
extremely advantageous for the purposes of this study.
The three-dimensional portion of the model was applied
to the Lamar area in order to simulate the unusual be-

havior of the system under the influence of the high
pumping rates at the power plant wells. River flow
data at this location provided known boundary condi-

tions that were essential
of the model.

in calibrating this portion

The remainder of this chapter is devoted to a dis-
cussion of the data taken from the Arkansas Valley
study area and adapted for use with the computer model
The availability and sources of data, adaptations made
for use with this model, and estimated data are dis-
cussed for each input parameter.

Groundwater Flow Parameters

Water Table Elevations. Maps of water table con-
tours constructed by Voegeli and Hershey (1965) from
measurements taken in Prowers County, Colorado in 1957-
58 were used as initial conditions in the computer
model. Water table elevation data for the portion of
the study area lying in Bent County was not available
for that time. However, a comparison of water table
contours in Prowers County near the Bent County line in
1957-58 with contours in 1971 indicated little change,
suggesting that water table elevations upstreamof this
location in Bent County could be assumed not to have
changed significantly between 1957 and 1971. This as-

and out of the aquifer is minimal except at the river.
The water table at the upstream end of the region is
controlled by seepage from John Martin Dam, and is con-
sidered to be fairly stable from year to year. Based
on the assumption that water table elevations in the
Bent County portion of the study area do not change ap-
preciably on an annual basis, it was considered permis-
sible to use measurements taken in 1971 as initial data
for model runs beginning in 1958, Measurements of wa-
ter table elevations in Bent County in 1971 were ob-
tained and mapped by Hurr and Moore (1972). Water
table contour maps for Prowers County in 1966 and 1971
were constructed by Hurr and Moore (1974). The 1966
map is used for comparison with water table contours
produced by the computer model after runs of several
years of model time. Maps of water table contours in
the vicinity of Lamar were constructed by Moore and
Jenkins (1966) for October 1964, and by Hurr (1971) for
March 1966. These maps were valuable in the verifica-
tion of the three-dimensional portion of the model. To
obtain the initial water table elevation for each grid,
a transparent diagram of the grid system was superim-
posed on the water table contour map. An average value
over the area of each grid was then obtained by visual
inspection. Because three-dimensional pressure distri-
butions in the saturated :zone were not available as
data, pressure heads in the three-dimensional zone were
assumed to be equal to the average water table eleva-
tion over the projected area of each vertical column of
grids. The initial water table elevation maps for the
three-dimensional segment, the upstream two-dimensional
segment, and the downstream two-dimensional segment of
the model are shown in Figs. 4-4, 4-5, and 4-6, respec-
tively, with the appropriate grid systems superimposed.
The values of water table elevation for each grid used

sumption 1is further supported by the physiography of as initial conditions for the model are tabulated in
the region. The alluvial aquifer in Bent County is Appendix B.
less than a mile wide at most locations and flux into
pi] 1 A~ -___Bomd;:ry of  S~_
ST R M Valley-Fill i 720
1,,9559 ""'""\ ‘ /"‘I Aquitier
i r”i . £
- L
1 / %,
. i \ b /

I
>~~~ /

..'...-

Scale in miles

| ez 0

| 2

I ]

Fig. 4-4

21

Initial Water Table Elevations in Dimensional Model Segment



|— Boundary of
Valley - Fill
| Aquifer

Bent Co
Prowers Co.

Scale in miles
(& I 2 o0 | 2 3 4

Fig. 4-5 Initial Water Table Elevations in Upstream, Two-Dimensional Model Segment

Boundary of
Valley ~-Fill

COLORADO

Aquifer

Scale in miles
1 o | 2 3 4 s

Pig. boo fastial warer Table Elevations in Downstream, Two-Dimensional Model Segment

22



Bedrock Elevations. Elevations on the bedrock
surface in the study area were measured and mapped by
Voegeli and Hershey (1965) and by Hurr and Moore (1974)
for Prowers County, and by Hurr and Moore (1972) for
Bent County. Single values of bedrock elevation for
each grid were obtained in the same manner as single
grid values of water table elevation, by superimposing
the grid system over a bedrock elevation map and ob-
taining an average value for each grid by visual in-
spection. Bedrock elevations were not used directly in
the three-dimensional segment of the model, but were
plotted on cross sections at the center of each row of
grid center elevations, as was explained in Chapter
III. The values of bedrock elevation assigned to each
grid in the two-dimensional model segments as initial
data are tabulated in Appendix B, aleng with the grid
center elevations used in the three-dimensional model
segment.

Hydraulic Conductivity. Hydraulic conductivities
throughout the study area were not measured directly,
but were computed using values of transmissibility and
saturated thickness of the alluvial aquifer which were
measured and mapped for Prowers County by Hurr and
Moore (1974) and for Bent County by Hurr and Moore
(1972). Single values of transmissiblity, T, and satu-
rated thickness, m, were obtained for each grid by
superimposing the grid system over the T and m maps
and visually estimating average values. The hydraulic
conductivity, K, for each grid was then obtained using
the equation

EREE]

(4-1)

In the three-dimensional segment of the model these
conductivities were assigned only to the grids located
above the bedrock surface. OGrids below the bedrock
surface were assigned hydraulic conductivities of zero.
The single values of hydraulic conductivity assigned to
each model gridas initial data are tabulated in Appen-
dix B.

Parameters for Partially Saturated Flow. The two
parameters, relative permeability, ky, and saturation,
§, are important in the analysis of partially saturated
subsurface flow. No information concerning the nature
of either of these parameters in the Arkansas Valley
study area was available. Plots of k. and § versus
pressure head, h,, were therefore estimated on the ba-
sis of the general description of the material in the
alluvial aquifer given by Voegeli and Hershey (1965).
For a well-graded sand and gravel mixture of the type
found in the Arkansas Valley alluvium, the finer par-
ticles generally determine the range of pressure head
values over which ky and S wvary. Shapes of the k¢
and S versus h, curves are determined by the par-
ticle size distribution. It was decided that plots of
kr and S wversus hp for a well-graded medium sand
would be suitable substitutes for actual measured val-
ues of these parameters, although the measured values
would have been preferable. Brooks and Corey (1964)
conducted laboratory experiments to obtain plots of sat-
uration and relative permeability as functions of capil-
lary pressure head for five materials, including vol-
canic sand, fine sand, and a fragmented mixture,
McWhorter (1971) obtained similar plots for Poudre
Sand, and unconsolidated river sediment having a wide
distribution of pore sizes. These experiments were
conducted using Soltrol '"C" core test fluid, a hydro-
carbon manufactured by the Phillips Petroleum Company.
According to Brooks and Corey (1964) the capillary
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pressure head of water is approximately twice that of
Soltrol. For wuse in this study, plots of ky and S
were redrawn as functions of capillary pressure head of
water using a scale factor of 2. Capillary pressure
head may be converted to gage pressure head by simply
changing the sign. This was done to make the plots of
kr and S compatible with the gage pressure heads
computed at each grid center in the three-dimensional
segment of the model. It is convenient for the purposes
of this study to plot h, as the abscissa, with kg
and S as ordinates. The resulting plots of relative
permeability and saturation as functions of negative
gage pressure head are shown in Figs. 4-7 and 4-8, re-
spectively. For use with the computer simulator, plots

of ky versus hy were discretized into step func-
tions, and S versus hp curves were approximated by
series of straight line segments. The use of the
adapted forms of these plots was discussed in Chapter
II1.
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Specific Yield. Voegeli and Hershey (1965) calcu-
lated values of the specific yield for several wells
located throughout the alluvial aquifer in the Arkansas
Valley of Prowers County. They obtained values rang-
ing from 10 to 20 percent. These values were obtained
over fairly short durations of continuous pumping, and
it was observed that longer durations of pumping re-
sulted in higher values of specific yield up to about
10 days, at which point the specific yield values for



many of the wells were close to 20 percent. The time
increment used in the computer model is 30 days, so
that any increase or decrease in water table elevation
is treated by the model as continuing for that length
of time. For this reason it was considered appropriate
to use the value of 20 percent in perference to lower
values associated with smaller time increments. Be-
cause information concerning the location and results
of specific well tests was insufficient for developing
any sort of distribution of specific yield values over
the area, the value of 20 percent was assigned to all
grids in the two-dimensional Jportions of the model.

Porosity. The aquifer material in the study area
was described by Voegeli and Hershey (1965) as well
sorted, uniform textured sand and gravel. According to
Walton (1970) the range of porosities for suchmaterials
is between 20 and 35 percent. The value of porosity,
¢, used in this study was obtained using the relation-
ship

Sy = ¢8 (4-2)
where

Sy is the specific yield

Se is the effective saturation

The effective saturation may be defined as the fraction
of water contained in a given porous medium under fully
saturated conditions that can be drained from the ma-
terial by gravity. From the plots of saturation versus
negative pressure head in Fig. 4-8 an average value for
Se of 0.80 was estimated. Using this value, and the
specific yield of 20 percent, Eq. 4-2 was solved for
¢, resulting in a value of 25 percent for the porosity
in the study area.

River Parameters

Discharge. The average monthly flows in cubic
feet per second were obtained for the four gaging sta-
tions in the study area, one of which is located on Big
Sandy Creek, and the other three on the Arkansas River.
The data for these gaging stations was collected and
published by the U.S. Geological Survey in water supply
papers (1958-1960), surface water supply data releases
{1961-1964), and water resource data releases (1965-
1966). Records for gaging stations located below John
Martin Dam, Colorado, and at Coolidge, Kansas were
continuous throughout the study period, which extended
from January 1958 through December 1965. Records for
the gaging station at Lamar, Colorado were continuous
from April 1959 throughout the remainder of the study
period, with no records for the period of January 1958
through March 1959. For the purpose of estimating
these missing values, plots were drawn of measured
flows at Lamar during the period from April 1959 to
December 1965 versus flows past the John Martin Dam
paging station, flows at John Martin Dam minus canal
diversion above Lamar, flows past the Coolidge gaging
“tation, and canal diversions between John Martin Dam
and Lamar. The plot of flows at Lamar versus flows at
Juhn Martin Dam appeared to have the best correlation.
herefore, discharge values at Lamar for the period
from January 1958 through March 1959 were estimated by
the following relationships derived from this plot.

9,

Q. (15 = 3.6t) January - March,

AMTOMD

(4-3)

{ . W P 3.
}LAM 0,10 A April - December.
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where

QLAM is estimated flow at Lamar for a given
month,

QJMD is measured flow at John Martin Dam for
the same month,

t is time in months.

Flows into the Arkansas River from Big Sandy Creek
have been measured only since February 1968, when a
U.S. Geological Survey gaging station was established
at the mouth of the creek. Because no data are avail-
able for any time during the study period, all monthly
discharge values for Big Sandy Creek had to be esti-
mated. For the years for which records on Big Sandy
Creek exist, discharge values were plotted against var-
ious other flows, as was done for Lamar flows. There
appeared to be good correlation between annual dis-
charges at John Martin Dam and annual discharges from
Big Sandy Creek. This correlation is reasonable be-
cause quantities of water diverted for irrigation are
dependent on releases from John Martin Dam, and return
flow from irrigation is the main contribution to flow
in Big Sandy Creek. Good correlation also appeared to
exist between flows at Big Sandy Creek for the same
months of different years. Therefore, the following
relationship was used to obtain estimates of monthly
discharge values from Big Sandy Creek.

Qyp)
o JMD
Qpscy = Qpscn I =4
JMD” v
where
(QBSC} is the estimated value of monthly dis-
" charge from Big Sandy Creek,
(ahSC]m is the average monthly discharge at
Big Sandy Creek during the period of
record,
(QJMD) is the annual discharge at John Mar-
Y tin Dam for the year in which (Qpsclm
is being estimated,
(a&MD] is the average annual discharge at
Y John Martin Dam for the period of
record or flows at Big Sandy Creek.
Average monthly discharges in cubic feet per

second are tabulated in Appendix B for the three gag-
ing stations on the Arkansas River for each month
throughout the study period. The values tabulated in-
clude those estimated as a substitute for missing data
at Lamar as well as the measured values at all three
gaging stations. Estimated values of monthly discharge
from Big Sandy Creek are tabulated in Appendix B along
with canal diversion data, and are given in units of
acre-feet.

Canal Diversions. Monthly diversions in acre-feet
were obtained for the nine major canals whose diversion
points are located within the study area. Records for
the period from January 1958 through October 1964 were
published in a water utilization study of the Arkansas
Valley Region in Colorado by Skinner (1965). Data for
the period from November 1964 through December 1965
were obtained from irrigation company records filed in
the office of the State Engineer in Denver. Monthly
diversions of the nine canals in the study area are




tabulated in Appendix B for each month throughout the
study period.

Channel Geometry. Estimated values of the channel
width, bed elevation, and energy slope in each grid of
the model through which the river passes were computed
from measurements taken fromU.S. Geological Survey 7.5
minute topographic maps. The value of river width for
a given grid was taken as the mean of several measure-
ments of width in the reach of river contained within
that grid. To estimate the bed elevation for a given
grid, the center of the reach of river contained within
that grid was found by measuring river distance between
the grid boundaries, then determining the midpoint of
that distance. The approximate elevation of that point
was then obtained by linear interpolation between con-
tour lines. The value thus obtained was assigned as
the river bed elevation for that grid. Energy slope
was approximated by channel bed slope. The justifica-
tion of the use of this approximation was presented in
Chapter [II. The channel bed slope was obtained by
dividing the elevation difference between the ends of
the reach contained in the grid by its length. Values
of channel width, bed elevation and bed slope for each
of the 42 river grids in the model are tabulated in
Appendix B.

Manning's Roughness Coefficient.
of the Manning roughness coefficient, n, was used in
the calculation of river stage values in all river
grids of the model, although it is known that n varies
with location along the river and with depth of flow.
The reason for this simplification is that information
from which valuesof n may be deduced is insufficient
to warrant assigning a value or an array of stage-re-
lated values of n to each individual river grid.
Such detail would require much more comprehensive chan-
nel geometry data than is available. The estimate of
the single value of Manning's n was based on the
three stage-discharge relationships at the three river

A single value

gaging stations located on the Arkansas River within
the study area. Values of river stage and associated
discharge were obtained from surface water supply

papers published by the U.S. Geological Survey (1962).
For every pair of stage and discharge values at each of
the three stations, avalue of n was calculated using
the Manning formula, so that an array of n values was
obtained for each station. The n value associated
with the mean discharge at each station was then ob-
tained, and the average of these three values was com-
puted. The single n value resulting from these cal-
culations was 0.04, which was considered reasonable for
this reach of the Arkansas River as a result of compar-
ison with similar rivers having approximately the same
n values. Channel width in the vicinity of each sec-
tion was then adjusted so that the mean discharge would
correspond to an n value of 0.04. By using a value
of n corresponding to the mean discharge at each of
the three gaging stations, the errors resulting from
using a constant n value are expected to be somewhat
diminished.

Silt Layer Characteristics. Information regard-
ing the thickness, hydraulic conductivity, and bubbling
pressure head of the silt layer which forms on the bed
and banks of the river channel under the condition of
seepage from the river were not available. A value of
silt layer bubbling pressure head had to be estimated.
A range of probable values for hpp was estimated on
the basis of known characteristics of the material.
After trial runs of the model with several values in
this range, avalue for p of -2.4 feet was selected
because it produced what appeared to be the most rea-
sonable values of river discharge.
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Measurements of the seepage rate from the Arkansas
River were taken by Moore and Jenkins (1965) at several
locations in the vicinity of Lamar where the river and
aquifer were not hydraulically connected. These mea-
surements were helpful in estimating valuesof silt
layer thickness and conductivity. The average seepage
rate reported by Moore and Jenkins (1965) was about 16
gallons per day per square foot. Similar results were
obtained in an independent study reported by Hurr
(1970). This seepage rate was assumed to correspond
roughly to mean discharge. It was necessary to obtain
values of tg and Kg for use in Eqs. 3-39, 3-40,
and 3-41, so that seepage rate could be computed as a
function of river stage, d. For this purpose, a value
for K¢ of 0.08 feet per day was assumed. Using this
value, the measured seepage velocity of 16 gallons per
day per square foot, the value of river stage corres-
ponding to mean discharge at Lamar, a bubbling pressure
head value of -2.4 feet, and a unit area of riverbed
a value of silt layer thickness of 0.2 feet was ob-
tained by solving Eq. 3-40 for tg. It is important to
note that none of the values of Ks, tg or hpp 1is
necessarily representative of true values of these
parameters found in the field. For their use in this
model, however, this restriction is not serious, as
long as the combination of the estimated values used
in the mathematical expression for seepage velocity
produces approximately correct results.

Surface Flux Parameters

Precipitation. Precipitation data for the study
area were obtained from annual records published by the
U.S. Department of Commerce Weather Bureau (1958-65).
Monthly values measured at Lamar were considered to be
fairly representative of the entire area, because of
Lamar's approximately central location in the region,
and were applied uniformly over the entire study area.
Values of monthly precipitation at Lamar for each month
throughout the study period are tabulated in Appendix
B.

Evapotranspiration. The Modified Blaney-Criddle
Method was used to estimate monthly values of evapo-
transpiration in the study area. This method is des-
cribed in a technical release published by the United
States Department of Agriculture Soil Conservation Ser-
vice (1967). This method was selected in preference
to others because (1) it was developed in Eastern
Colorado for an area having climatic and physiographic
characteristics that are very similar to the Arkansas
Valley study area, and (2) the procedure is simple,
yields results which are sufficiently accurate for the
purposes of this study, and requires a minimal amount
of data. The information necessary for carrying out
the calculation of estimated monthly evapotranspiration
includes mean monthly temperature and percent of day-
light hours, and total acreages of the various crops
grown in the areca. Values of mean monthly temperature
at Lamar were assumed to be fairly representative of
the area. These values were obtained from U.S. Depart-
ment of Commerce Weather Bureau records (1958-65), and
were applied to the entire study area. Percentage of
daylight hours in a given month is a function of lati-
tude, which for Lamar is North 38°04'. The function
was found tabulated in the Soil Conservation Service
technical release (1967), from which daylight percent-
age values were obtained directly. Acreages of prin-
cipal crops grown in Prowers County were given by
Voegeli and Hershey (1965). Bittinger and Stringham
(1963) conducted a study of phreatophyte growth in the
Arkansas Valley from which the total acreage of phre-
atophytes between John Martin Dam and the Kansas state
line, and the associated evapotranspiration rates were




obtained. For each cultivated crop, plots of crop
growth stage coefficients throughout the growing season
were obtained from the Soil Conservation Service tech-
nical release (1967). Monthly values for each crop
were extracted from these plots. A single value of
crop growth stage coefficient for each month for the
entire area was then computed as the average of the
coefficients for each crop, weighted according to the
total acreage of the crop in the study area. Phreato-
phytes were included in this calculation, as well as
estimated areas of water and non-evaporating surfaces,
such as paved roads. An additional value needed for
estimating evapotranspiration by the Modified Blaney-
Criddle Formula is the climatic coefficient, which was
obtained from the Soil Conservation Service technical
release (1967), where values of this coefficient are
tabulated as functions of mean monthly temperature.
Using the climatic coefficient, the composite crop
growth stage coefficient, and mean monthly temperature
and percentage of daylight hours, an estimate of

monthly evapotranspiration in inches was obtained for
the study area using the formula
= —tL -
u 100 ktkc 3 (4-5)
where
u is consumptive use or evapotranspiration,

t is the mean monthly temperature,
p is the monthly percentage of daylight hours,
is the climatic coefficient,

¢ is the crop growth stage coefficient.

This calculation was carried out for each month during
the growing season throughout the study period. The
growing season for the Arkansas Valley region in Colo-
rado is considered to begin April 1 each year and end
September 30. Evapotranspiration values for the months
from October through March were considered negligible,
due to frozen ground, little or no plant growth, cool
temperatures, and low percentages of daylight hours.
Monthly evapotranspiration values for the study arca
are tabulated for eachmonth throughout the duration of
the study period in Appendix B.

Groundwater Withdrawal. For reasons discussed in
Chapter 111, information concerning well locations and
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groundwater withdrawal rates were not needed as input
data for the computer model for all wells in the study
area except those operated by the Lamar municipal power
plant. The effects of these wells had to be considered
because water withdrawn from them is not returned to
the ground in the same vicinity from which it is ex-
tracted, which results in the formation of a consider-
able drawdown cone in the water table surrounding the
wells, and a contribution of this water to other areas.
Moore and Jenkins (1966) reported that groundwater is
withdrawn for cooling purposes by the power plant wells
at the rate of about ten cubic feet per second. After
its use, this cooling water is discharged into the
Lamar Canal and distributed for irrigation along with
water diverted from the Arkansas River. Moore and
Jenkins (1965) observed that because the Lamar Canal is
fairly well sealed with deposits of fine sediments, the
leakage rates fromthe canal are small, and as a result
very little of the water withdrawn by the power plant
wells is returned to the aquifer until it is applied
for irrigation in the farmland east of Lamar. The
mathematical treatment of the Lamar power plant wells
in the computer model was explained in Chapter III.

Irrigation. Because available data were found to
be insufficient for directly evaluating the input to
each model grid from irrigation at every time incre-
ment, values of irrigation input to each grid had to be
estimated. These estimates were based on the assump-
tion that water diverted into each canal at every time
increment is applied uniformly over the entire distri-
bution region of the canal. Data sources for monthly
diversions of the nine major irrigation canals in the
study area were discussed in a previous section of this
chapter. The distribution region of each canal was de-
lineated approximately on a topographic map. The per-
centage of each canal distribution region lying inside
the study area was then determined by superimposing the
model grid network over the topographic map and visu-
ally estimating the percentage of the region inside the
grid network. The boundaries of the portion of each
distribution region inside the study area were adjusted
to coincide with individual grid boundaries, so that
this portion of the region consisted of a set of whole
grids. The area of the portion of each distribution
region inside the study area was then computed by sum-
ming the areas of the constituent grids. The percent-
age of distribution region inside the study area, and
the area of this percentage are tabulated in Appendix
B for each of the nine major canals in the study area.
The use of these values in the computer model was dis-
cussed in Chapter III.



CHAPTER V
RESULTS AND DISCUSSION

The verification of the finite difference model
developed in this study was carried out in two stages:
In the first stage the model was used to simulate flow
in several hypothetical stream-aquifer systems. Runs
were made using the synthesized data describing these
systems to determine whether the model was operating
‘correctly. In the second stage the model was used to
simulate flow in an actual stream-aquifer system loca-
ted in the Arkansas Valley of Southeastern Colorado.
Runs were made using field measurements as input data.
Results of these runs include a water table elevation
map of the study area at the end of the time period
being considered, and average monthly wvalues of river
discharge at the upstream and downstream ends of the
area throughout the study period. These results were
compared to field measurements to determine the ability
of the model to accurately match observed data.

An analysis of the sensitivity of results obtained
using this model to changes in the values of various
input parameters was conducted as part of the study.
The purpose of this sensitivity analysis was to deter-
mine the importance of the accuracy of each input pa-
rameter to the quality of results. This information is
helpful in deciding how much time and effort should be
devoted to obtaining accurate data values for each pa-
rameter. The sensitivity analysis was conducted using
data from the Arkansas Valley study area.

The remainder of this chapter includes the pre-
sentation and discussion of results obtained using the
model in the two stages of verification. The sensitiv-
ity of results to changes in the values of several pa-
rameters is also discussed.

(Qualitative

Analysis of Results Obtained Using Syn-

thetic Data

The initial phase of model verification was car-

ried out by simulating flows in several simplified,
hypothetical stream-aquifer systems. The purpose of
using simplified systems was to detect errors in the

operation of the model that might have remained undis-
covered amid the complexities of a real system. 'This
stage of verification was intended for checking the
operation of those subroutines concerned with comput-
ing seepage rates to and from the river and setting up
and solving the groundwater flow equations.

The model was used to simulate flow in hypotheti-
cal stream-aquifer systems with the following configu-
rations: (1) horizontal initial water table and uni-
form saturated thickness; (2) initial water table of
uniform gradient in the direction parallel to the
river, and aquifer of uniform saturated thickness;
(3) initial water table of uniform gradient parallel to
the river, nonuniform slope perpendicular to the river,
and aquifer of nonuniform saturated thickness. The
water table in the third configuration sloped toward
the river from both sides in a U-shape, and the satu-
rated thickness increased toward the river, with the
maximum thickness occurring directly beneath the river.

The aquifer material in all three contigurations
was assumed to be everywhere homogencous and isotropic.
The river traversed each system from end to end in a
straight path through the center of the model. Each
river grid was assigned a value of head at the begin-
ning of every run which remained constant throughout
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the run. A well was located about 0.5 miles from the
river in the three-dimensional model segment of each
configuration. The grid representation of the system

having a horizontal water table is illustrated in Fig.
5-1.

Three runs were made with each hypothetical sys-
tem: (1) with no pumping of the well; (2) with steady
pumping of the well throughout the run; (3) with steady
pumping of the well for the first half of the run and
no pumping for the remainder of the run. Runs 1l and 2

were made over a period of 100 days, with 10 day time
increments. Run 3 spanned 200 days, also with 10 day
increments.

Results of run 1, with no
were similar for each of the three
aquifer systems. A comparison of
figuration at the end of the run
table map for each case indicated
which was the expected result.
the river and the aquifer were
ing a horizontal water table
uniformly sloping water table in the direction of the
river and no slope perpendicular to the river. Sub-
stantial seepage rates from the aquifer into the river
were computed for the system having a water table with
nonuniform slope toward the river from both sides.
Seepage rates into the river were higher in the region
of the three-dimensional model segment than elsewhere.
The reason for this is that contributions to seepage in
the three-dimensional segment include flow up through
the riverbed from the underlying grids, whereas only
lateral inflows are included in seepage calculations in
the two-dimensional model segments. This result im-
plies that seepage calculations in the three-dimensional
model segment are sensitive to errors in initial heads
or surface fluxes, which might cause positive errors
in head values in the grids located beneath the river.
However, the seepage rates computed in the three-dimen-
sional segment appeared to be reasonable and agreed
well with hand-calculated estimates of seepage rate for
this system. Favorable results obtained from run 1 for
each system indicated that the portions of the model
for computing groundwater movement and seepage between
the stream and aquifer were operating correctly.

pumping of the well,
hypothetical stream-
the water table con-
to the initial water
little or no change,
Seepage rates between
zero for the system hav-
and the system having a

Results of run 2, with steady pumping of the well
throughout, indicated the formation of a drawdown cone
in each hypothetical system. The shape of this draw-
down cone varied with the configuration of each system.
This drawdown resulted in seepage from the river in
the system with the horizental initial water table and
in the system with an initial water table having uni-
form slope parallel to the river and no slope perpen-
dicular to the river. The result of the drawdown due
to pumping in the system having an initial water table
sloping toward the river from both sides was a reduc-
tion in the rate of seepage into the river from the
aquifer. Near the end of the run the seepage rate in
the river grid nearest the well approached zero, then
changed sign, indicating that the river was losing flow
in the vicinity of the well. Results of run 2 for each
system indicated that the portions of the model for
simulating groundwater movement and computing seepage
to and from the river were apparently operating
correctly.
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Fig. 5-1 Model Representation of Hypothetical Stream-Aquifer System with Horizontal Water Table

Results for the first half of run 3 were identical
to results obtained in run 2 for each system. After
pumping ceased, the water table in each system began
to recover from the effects of drawdown. At the end of
the run, water table elevations in each grid appeared
to be approaching their initial values. The recovery
of the water table was accompanied in each case by a
reduction in the rate of seepage from the river. For
the system in which the initial water table configura-
tion sloped toward the river, seepage from the river
ceased within a few time steps after pumping was dis-
continued, and flow from the aquifer into the river was
reestablished at all locations along the river. Re-
sults of run 3 for each hypothetical stream-aquifer
system indicated that the handling of partially satu-
rated grids in the three-dimensional model segment per-
mits the resaturation of these grids, so that the model
is capable of simulating positive and negative water
table fluctuations.

Analysis of Results Obtained Using Field Data

The ability of the computer model to correctly
simulate flow in an actual stream-aquifer system was
tested using data from a region of the Arkansas Valley
in Southeastern Colorado. A detailed description of
the Arkansas Valley study area was presented in Chapter
IV, along with a discussion of the sources and prepar-
ation  of data from the area for use with the model.
Ihe treatment of boundary conditions in the use of the
model with field data was discussed in Chapter IIL.

A run  was made with the model over a time period
of 8 years, beginning in January 1958 and ending in
tecember 1965, using a time increment of 30 days. Com-
puted results  included mean monthly discharge values
Lelow John Martin  Dam and near Coolidge, Kansas, and
mips  of water table elevations in the two-dimensional
mnlel sepment and heads in the three-dimensional model
epment at three-month intervals throughout the run.

Computed River Discharges at John Martin Dam and
Coolidge

Thé values of river discharge at John Martin Dam
and at Coolidge computed for the year 1960 are consid-
ered typical of the results obtained at each location
for the entire eight years. Computed values of mean
monthly discharge below John Martin Dam are plotted
along with observed values at the John Martin Dam gag-
ing station in Fig. 5-2 for 1960. Computed and ob-
served values of river discharge at Coolidge for 1960
are plotted in Fig. 5-3.
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Fig. 5-2 Computed and Observed Mean Monthly Discharge
below John Martin Dam, 1960
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Fig. 5-3 Computed and Observed Mean Monthly Discharge
at Coolidge, 1960

Computed values of monthly discharge below John
Martin Dam agreed well with observed values. The ob-
served mean discharge for 1960 at this location was 158
cubic feet per second, while the computed mean dis-
charge was 139 cubic feet per second, resulting in a
discrepancy of 12 percent of the observed value. The
primary reason for this discrepancy is believed to be
inaccuracy of estimated values of seepage between the
river and aquifer in the reach of river between Lamar,

where calculations of river flow are begun, and John
Martin Dam. Seepage rates are dependent, either di-
rectly or indirectly, on nearly every parameter used

in the computer model, so that inaccurate seepage rates
may result froma large number of possible combinations
of data errors. The sensitivity of computed discharge
values to errors in the value of several parameters is
discussed later in this chapter. Incorrect seepage
rates may also result from inaccuracies in some of the
assumptions made to facilitate the use of this model,
particularly the assumption of idealized channel geome-
try and ithe set of assumptions made to simplify the
calculation of surface flux values. The use of an av-
erage gradient between the river boundary and an adja-
cent aquifer grid for computing seepage rates instead

of the gradient at the river boundary may be responsi-
ble for incorrect values of computed seepage rate. The
average discrepancy between computed and observed val-
ues of mean annual discharge below John Martin Dam for
the eight-year study period was 12 percent of the ob-
served value,

Computed values of discharge at Coolidge appeared
to follow the pattern of observed discharges fairly
well. However, discrepancies between individual pairs
of computed and observed values were often quite large,
as was the case for June 1960, shown in Fig. 5-3. In
spite of such large individual discrepancies, however,
the observed mean annual discharge for 1960 at Coolidge
was 145 cubic feet per second, the computed mean annual
discharge was 128 cubic feet per second, and the dif-
ference between these values was only 12 percent of the
observed value. The average discrepancy between ob-
served and computed mean annual discharge values for
the eight-year study period was 23 percent. A probable
zause of these discrepancies is inaccurate computed
estimates of seepage rates between the river and aqui-
fer. Greater difficulty is expected in obtaining accu-
rate discharge values at Coolidge than at John Martin
Dam because the distance between Lamar and Coolidge is
approximately twice the distance between Lamar and John
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Martin Dam. The difficulty in obtaining accurate com-
puted estimates of discharge at Coolidge is compounded
by several factors: (1) Inflows to the Arkansas River
from Big Sandy Creek contributea significant amount to
the flows at Coolidge. These inflow values have been
estimated for the study period according to the proce-
dure described in Chapter IV, because discharge data
were not available, and these estimates may be inaccu-
rate. (2) Water diverted from the Arkansas River is
used extensively in the region between Lamar and Cool-
idge for dirrigation. The areal distribution of this
diverted water over the study area by the computer
model was carried out on the basis of several assump-
tions, which were discussed in Chapter III. If any or
all of these assumptions are invalid at a given loca-
tion in the study area, large errors in computed values
of surface flux, hence errors in head values can occur.
The effect of such errors can be transmitted to the
value of river discharge at Coolidge through the com-
puted rate of seepage across the stream-aquifer bound-
ary. (3) Whereas the boundaries of the alluvial aqui-
fer between Lamar and John Martin Dam are almost en-
tirely contained within the boundaries of the study
area, the aquifer widens between Lamar and Coolidge,
and a significant portion of it extends beyond the
study area boundaries. For this reason the assumption
of known or constant head boundaries at the perimeter
of the model may not be entirely valid in the Lamar-to-
Coolidge reach, which may result in errors in head val-
ues. These errors affect the seepage rates, which in
turn affect the computed discharge values at Coolidge.

The least accurate estimates of river discharge
at both John Martin Dam and Coolidge were produced by
the model for the year 1965. Plots of observed and
computed monthly discharge values for this year are
presented in Fig. 5-4 for John Martin Dam, and in Fig.
5-5 for Coolidge. The discrepancy between observed and
computed values of mean annual discharge at John Martin
Dam was 32 percent in 1965. For mean annual discharge
at Coolidge, the discrepancy between the observed and
computed values was 58 percent. A comparison of the

plots of observed and computed discharge values pre-
sented in Figs. 5-4 and 5-5 indicates that both these
discrepancies were caused primarily by an anomaly in

the pattern of computed discharge values for the month
of June. At John Martin Dam, the computed discharge
was about 500 percent higher than the observed value
for June; at Coolidge it was roughly 80 percent lower.
Computed discharges at both stations for the remaining

months of 1965 followed the pattern of observed flows
fairly well. The cause of this anomaly is believed to
be the failure of the model to account for inflow to

the river from surface runoff or from tributaries other
than Big Sandy Creek, and its lack of a dynamic equa-
tion for correctly describing the movement of a flood
wave down the river. These contributions to river flow
apparently became significant during the period from
June 16 to June 20, 1965, when a flood passed through
the study area. Large quantities of precipitation oc-
curred in the area over a short period of time, which
apparently resulted in considerable runoff. This run-
off reached the river both directly, as overland flow,
and indirectly, through several small tributaries in
the area. The flows in these tributaries are generally
insignificant, but at this time were apparently consid-
erable and contributed significant amounts to river
flow. The effects of surface runoff and tributary in-
flows on the volume of river flow is evidenced by the
observed discharge at each of the three river gaging
stations in the area on June 18. Discharge below John
Martin Dam was 17 cubic feet per second, at Lamar the
flow was 25,000 cubic feet per second, and at Coolidge
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Fig. 5-4 Computed and Observed Mean Monthly Discharge
below John Martin Dam, 1965
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the discharge had increased to 101,000 cubic feet per
second. Because discharge calculations are initiated
at Lamar for each month, the underestimation of inflows
to the river throughout the study area for June 1965
caused an overestimation of the discharge below John
Martin Dam, and an underestimation of the discharge at
Coolidge, as is apparent from the plots of observed and
computed monthly discharge values shown in Figs. 5-4
and 5-5.

Computed Water Table Elevations and Heads

Computed values of water table elevation in each
grid of the two-dimensional model segments, and head in
each grid of the three-dimensional segment, were ob-
tained at the end of every three months throughout the
eight-year run of the model with field data. Data were
not available for heads at each level of the area mod-
eled by the three-dimensional segment. Therefore, in
order to facilitate the comparison of model results
with field data, values for water table elevation had
to be obtained in each column of three-dimensional
grids. This was done by assigning each grid column a
water table elevation equal to the head in the upper-
most grid of the column containing a portion of the
saturated zone. These values were then used, along
with water table elevation values from the two-dimen-
sional segments, to construct a contour map. The con-
tour map was then compared with a |similar map con-
structed from measured water table elevations through-

out the area. A map of water table contours con-
structed from values computed for December 1965 has
been plotted along with a set of contours constructed

from observed values which were obtained from measure-
ments taken early in 1966. The portion of this map ob-
tained by the upstream two-dimensional model segment is
shown in Fig. 5-6. The center section of the map, ob-
tained by the three-dimensional model segment is shown
in Fig. 5-7, and the downstream portion of the map is
shown in Fig. 5-8.

Comparison of computed with observed values of wa-
ter table elevations mapped in Fig. 5-6 indicates good
agreement at most locations. Where discrepancies do
occur they are generally small and localized. Such
discrepancies may result from a number of factors in-
cluding (1) inaccurate surface flux values, (2) incor-
rect perimeter boundary heads, (3) response of the
aquifer to inaccurate computed seepage rates, (4) ef-
fects of discretizing parameters and linearizing gra-
dients to facilitate the use of the finite difference
technique.

Comparison of computed with observed water table
elevations mapped in Fig, 5-7 indicated reasonable
agreement over a majority of the area. However the
computed contours are generally shifted slightly to the

right of the contours constructed from observed data,
indicating a higher water table. This shift is also
noticeable in the water table downstream of Lamar, as

shown by the location of computed contours in Fig. 5-8.
The primary cause of this shift was believed to be the
incorrect representation by the model of the June 1965
flood. The effects on computed river discharge values
of the model's inability to simulate surface runoff was
discussed previsouly, and the effect on the water table
was to raise it, Dbecause large quantities of water
which should have heen treated as surface runoff were
instead added to the groundwater reservoir.

An additional factor which may have been partially
responsible for the shift in the water table contours
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Fig., 5-6 Computed and Observed Water Table Elevation Contours in Upstream, Two-Dimensional
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Fig. 5-7 Computed and Observed Water Table Elevation Contours
in Three-Dimensional Model Segment, December 1965
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Fig. 5-8 Computed and Observed Water Table Elevation Contours in Downstream, Two-Dimensional

Model Segment, December 1965

is the simplified treatment by the model of the appli-
cation of irrigation water, and the limited capability
of the model to treat the time lag from application at
the surface to arrival at the water table. This sim-
plified model representation of flow above the water
table has the effect of overestimating water table
fluctuations. The unsaturated zone in the actual case
may be thought of as a damping member of the system,
which reduces water table fluctuations by absorbing or
releasing water in response to surface application and
water table fluctuations, but with the response taking
place after a time delay. The treatment of flow in the
unsaturated zone by the model includes linarizing gra-
dients and using average values of the unsaturated flow
parameters of dS/dH and over large model grids
representing the unsaturated zone. While this simpli-
fication does not entirely negate the damping property
of the unsaturated zone, it does significantly reduce
its effectiveness. This shortcoming of the model could
be reduced by wusing a larger number of grids in the
three-dimensional segment having smaller thicknesses,
on the order of one foot or less. This improvement was
net undertaken as part of this study because such a
large number of grids would exceed available computer
storage.

The computed drawdown cone in the vicinity of the
Lamar power plant wells, which is indicated by the con-
tour lines in Fig. 5-7, is somewhat larger in areal

extent than the observed drawdown cone. This may be
due to several factors including (1) underestimated
values of hydraulic conductivity in the well field,

(2) underestimated value of porosity in the area,
(3) overestimated water table fluctuations, (4) incor-
rect estimation of surface input in the vicinity of the
well field, (5) and use of the finite difference ap-
proximation. The effect of this discrepancy is not ap-
parent in the configuration of the computed water table
more than about one mile from the well field, and for
this reason is not considered to cause significant er-
rors in results, either in the water table elevations
in the remainder of the study area, or in the computed
river discharges at John Martin Dam and Coolidge.

Computed head values in the three-dimensional
model segment indicated that no hydraulic connection
exists between the river and the aquifer over a reach
approximately 2.5 miles in length in the vicinity of
the Lamar power plant wells. This indication is based
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on the fact that computed water table elevations in
this reach ranged from 2 to 12 feet lower than the
elevations of the riverbed directly overhead. These
results agreed well with water table elevations which
were measured by Moore and Jenkins (1965). The most
important aspect of this result is that it shows the
model's capability to simulate a complex flow situa-
tion, in which the combined effects of high-volume
pumping near a river, and a silt layer on the bed and
banks of the channel have caused the hydraulic connec-
tion between the river and aquifer to be broken.
Boundary condition indices printed out as intermediate
results by the model indicated that seepage from the
river inthis 2.5 mile reach was being correctly repre-
sented as partially saturated flow, with seepage veloc-
ity determined entirely by silt layer characteristics
and river stage.

Comparison of computed with observed values of
water table elevations mapped in Fig. 5-8 indicates
fairly good agreement throughout the area. Small, lo-
calized differences between computed and observed water
table elevations may have been caused by several fac-
tors discussed in previous paragraphs of this section.
In this region the accuracy of surface flux values and
perimeter heads is more important for obtaining accu-
rate water table elevations than it is in the areas
treated by the other two segments of the model. The
reasons for this are (1) extensive use of water di-
verted from the Arkansas River for irrigation, (2) the

areal extent of the aquifer beyond the boundaries of
the study area. The effects of these factors on the
water table elevations were discussed in a previous

section of this chapter along with a description of
their influence on the accuracy of computed discharge
values at Coolidge.

Analysis of Sensitivity of Results to Variation of
Parameters

As part of this study, an analysis was conducted
of the sensitivity of results obtained with the model

to variations in the values of several parameters.
Field data from the Arkansas Valley study area were
used in this analysis, which was limited primarily to
the consideration of those parameters for which compre-
hensive data were not available, and for which values
used as input to the computer model had to be estimated

or assumed.



The parameters considered in this analysis were
(1) bubbling pressure head of the silt layer, hpp,
(2) silt layer hydraulic conductivity, Ks, (3) the
array of relative permeability values, ky, (4) the
array of values of the derivative of saturation with
respect to head, dS/dH, (5) the porosity, ¢, (6) the
array of values of surface flux, Qg, (7) the array of
initial values of head, H, and (8) the first three
values of monthly discharge at Lamar, Q. The analysis
of the sensitivity of results to each of the first six
of these parameters was carried out by first making a
short run of the model with the parameter set equal to
the value or array of values used in the eight—year
run. The short run was then repeated with nothing
changed except the value of the parameter under consid-
eration. Mean monthly discharges at John Martin Dam
and Coolidge were obtained for each of the two param-
eter values and were plotted together and compared with
each other, and also with observed discharge values, to
determine the effect of varying the parameter value.
As an example, values of monthly discharge below John
Martin Dam, which were obtained using two different
bubbling pressure head values, are plotted in Fig. 5-9,
along with observed values. Water table elevation con-

and plots were not included in this discussion. In-
stead, the results of the sensitivity analysis for var-
iations of hph, K5, kg, dSKde, ¢, and Qg are sum-
marized in Table 5-1. The original value or array of
values of each parameter, the value or array to which
it was changed and the resulting influence of this
change on discharge below John Martin Dam, discharge
at Coolidge, and water table throughout the study area
are indicated in Table 5-1. Following is a brief dis-
cussion of these results for each of the six parameters
included in Table 5-1, and also of the results of anal-
yses of the sensitivity of model results to variations
in initial heads and initial discharges at Lamar.

Silt Layer Bubbling Pressure Head. Increasing the
value of hpp from -2.40 feet to -0.25 feet produced
the effect of decreasing the maximum possible rate of
seepage from the river in the three-dimensional model
segment. As a result, seepage from the river was un-
derestimated both upstream and downstream of the Lamar
gaging station. This produced underestimates of dis-
charge values at John Martin Dam and initial overesti-
mates of discharge at Coolidge, as indicated in Table
5-1. Reducing the rate of stream depletion, thereby

tour maps obtained using the two parameter values were reducing the rate of recharge to the aquifer, caused
also compared for the purpose of determining the ef- the water table to drop in the three-dimensional model
fects of the parameter variation. Sensitivity runs for segment. Eventually, this drop caused a lowering of
these six parameters spanned 180 days each, with 50 day the water table all the way to Coolidge. The result of
time increments. Because the number of water table the lower water table was lower rates of seepage into,
elevation maps and plots of monthly discharge values or higher rates of seepage from the river. This effect
generated in this analysis was quite large, these maps caused an underestimation of seepage rates at Coolidge
0
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Fig. 5-9 Comparison of Computed and Observed Discharge Values below John Martin Dam for
Sensitivity of Results to Bubbling Pressure Head Variation
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Table 5-1

Six Parameters

Summary of Sensitivity Analysis Results for

Effect of Changing Parametor Value on:
Mean Monthly W, , ’ Water Table
Initial Final Discharge at 'nffzh'n:::hii Elevations
Parameter Value Value John Martin Nam Coolidue
Silt Laver =240 -0.25 Underestimated Initially over- |As much as 3 feet
Bubbling feet feet by 15 to I0 estimated by lower near Lamar
Pressure percent less than 5 per- wells. Up to !
Head, h cent. Thereafter | foor lower down-
pb underestimated gradient from
by 10 to 30 percent|wells to Coolidge
5ilt Layer .08 0. 16 Overestimates Irregular esti- Approximately 1
Hydraulic fr/day fi/day | low flows by less | mates. Oscillates | foot higher from
Conductivity, than 5 percent. from 200 percent Lamar to
K Underestimates overestimate Coolidge
L high flows by to 100 percent
10 te 20 percent. underestimate
Relative Array Array Mvere=timated Oscillates from 1 to 3 feot
Permeability, A ] by 10 to 30 50 percent overs higher in imme-
k Table Table percent estimate to 50 diate vicinity
¥ 5-2 5-2 percent under- of Lamar wells,
{array) estimate
Saturation Array Array Overestimated Usciliates from 1 to 5 feet
Derivative, [ ] hy 5 to 15 I0 percent over- lower near Lamar
dS/dH Table Table percent estimate to 10 Up to 1 foot
5-2 §-2 percent under- higher elsewhere
{array) estimate
Porostty, @ 0.28 n.in Less than <5 Errors in esti- Up to 1 foot
percent error in | mates ranged from higher near
estimates +5 to +10 percent Lamar wells,
0.20 Less than <5 Errors in esti- Up to 1 foot
percent error in | mates ranged from lower near
estimates *5 1o =10 percent Lamar wells.
Surface fead in 0.0 Overestimates Underestimates As much as 2
Flux, Q at each every- high flows by high flows by 10 feet higher or
L time where | 10 to 15 percent. to 30 percent. lower, depending
{arTay) inerement Estimates of low | Estimates of low on time and
flows satis- flows satisfactory location
factory.

after the first few time increments, as indicated in

table between Lamar and Coolidge, which results from

Table 5-1.

Silt Layer Hydraulic Conductivity. Changing the
value of Kg influences the rate of stream depletion
in the three-dimensional model segment, as does chang-
ing the value of hph. It would therefore be expected
that increasing the value of Kg from 0.08 feet per
day to 0,16 feet per day would produce the opposite ef-
fects from those described in the previous paragraph.
This is the case for low flows at John Martin Dam and
for the elevation of the water table. Excessive seep-
age from the river in the three-dimensional segment of
the model results from the high Kg value. During the
winter, when the water table is low, excessive stream
depletion values between Lamar and John Martin Dam re-
sult in computed discharge values at John Martin Dam
which are higher than the observed discharges. How-
ever, this excessive stream depletion also provides
excessive recharge to the aquifer, hence a higher water
table. Later in the year, when surface irrigation and
high river flows begin to provide even more recharge to
the aquifer, the water table rises still higher. By
late spring the water table generally rises above the
level of the river in most places and the aquifer be-
gins recharging the river. With the water table ex-
ceptionally high, the rate of seepage into the river is
overestimated, resulting in an underestimation of the
discharge at John Martin Dam. This result is recorded
in Table 5-1.

An interesting effect resulting from raising the
value of Kg isobserved in the behavior of this model
in predicting discharges at Coolidge. The high water
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high seepage rates in the three-dimensional model seg-
ment, initially causes overestimated seepage rates into
the river between Lamar and Coolidge, which result in
an overestimated discharge value at Coolidge. Near the
lower end of the reach, the computed discharge, hence
the head in the river, becomes so high that it may ex-
ceed the head in the surrounding aquifer. As a result,
seepage rates into the river calculated for use in the
next time step are drastically underestimated and may
be negative, indicating seepage away from the river.
The use of these seepage rates in the next time incre-
ment results in substantial underestimates of discharge
at Coolidge and in the reach of river upstream of Cool-
idge for several miles, These underestimated dis-
charges, accompanied by low heads in the river, result
in overestimated seepage rates, as were observed in the
same arca two time steps before., The result of these
events is the prediction of monthly discharge values at
Coolidge which are alternately too high and too low.
This result 1s recorded in Table 5-1. The reason for
this fluctuation is the use at the present time level
of seepage rates computed at the previous time level.
The problem could he alleviated by using an iterative
scheme to solve for scepage rates at the present time
level wusing present head values, or by using smaller
model time increments. Because of the excessive amount
of computer time and storage such an iterative scheme
would consume, this was not done as part of this study.
However, as was reported in the previous section of
this chapter, reasonably accurate estimates of dis-
charge at Coolidge were obtained using a 30 day time
increment and the existing procedure for computing
seepage rates, when reasonably accurate parameter
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values were used. For this reason, the procedure for
estimating seepage rates and the 30 day time increment
were left unchanged for further use of the model in
this study.

Relative Permeabilities. The array of ky values
used in the eight-year run is given in Table 5-2 as
Array A. The array of values used to analyze the sen-
sitivity of results to variations in k, values ap-
pears as Array B. Array B is a more realistic repre-
sentation of the relative permeability of a naturally
occurring sandy material than Array A. The values of
Array B were obtained from the plot of relative perme-
ability as a function of pressure head for fine sand
given in Fig. 4-7. However, trial runs of the model
using Array B resulted in the erroneous results sum-
marized in Table 5-1, and Array A was used instead to
obtain the more accurate results of the eight-year run.
The apparent reason for the inaccurate results obtained
using Array B is the overestimation by the model of
lateral flow between partially unsaturated grids in the
three-dimensional model segment., The overestimation of
lateral flow contributes to an overestimation of flow

in from the side boundaries of the model.

Seepage to

or from the river, depending on the direction of the
gradient- may also be overestimated. These factors
cause the elevated water table, overestimated discharge
at John Martin Dam, and oscillating predictions ofdis-
charge at Coolidge, as indicated in Table 5-1. The
cause of the overestimation of lateral flows in the
partially saturated grids is the overprediction of lat-
eral flow above the water table in these grids. Two
possible reasons for this are: (1) The relative per-
meability function given by Array B may not be repre-
sentative of the aquifer material in the Lamar area.
If the actual material is coarser than that represented
by Array B, a function whose values decrease more
sharply with increasing capillary pressure head would
be more appropriate. Array A is such a function.
(2) If vertical flow exists above the water table, the
average gradient between the saturated zones of two
adjacent grids may not be equal to the gradient in the
unsaturated zones of the grids. This problem could be
alleviated greatly by using a larger number of much
thinner grids to represent the portion of the aquifer
in which unsaturated flow is likely to occur. This was
not done in this study because the treatment of such a
large number of grids would exceed available computer
storage.

Table 5-2 Arrays of Relative Permeabilities and Saturation
Derivatives Used in Sensitivity Analysis

Capillary Relative Permeability, Saturation Derivative,

Pressure ke dS/dH

”e;SétH d Array A Array B Array C Array D
0.5 1.000 1.000 0.000 0.000
1.0 1.000 1.000 0.000 0.000
1.5 1.000 0.980 0.020 G.Oin
2.0 1.000 0.900 0.060 0.030
2.5 0.000 0.650 0.160 0.080
3.0 0.000 0.200 0.300 0,150
3.5 0.000 0.100 0.480 0.240
4.0 0.000 0.070 0.260 0.150
4.5 0.000 0.045 0.140 0.070
5.0 0.000 0.030 0.080 0.040
5.5 0.000 0.020 0.060 0.030
6.0 0.000 0.015 0.040 0.020
6.5 0.000 0.010 0.020 0.010
7.0 0.000 0.010 0.020 0.010
- 0.000 0.010 0.010 0.005
8.0 0.000 0.010 0.010 0.005
8.5 0.000 0.010 0.008 0.004
9.0 0.000 0.010 0.004 0.002
9.5 0.000 0.010 0.002 0.001
10.0 0.000 0.010 0.000 0.000
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Saturation Derivatives. The array of wvalues of
dS/dH used in the expression for flow in the three-di-
mensional model segment for the eight-year runis given
in Table 5-2 as Array C. The values of Array C were ob-
tained from the plot of saturation as a function of
pressure head for fine sand given in Fig. 4-8., The
array of values used to analyze the sensitivity of re-
sults to variations in the values of dS/dH appears as
Array D in Table 5-2. The values of this array were
obtained by dividing each value of Array C by two. Al-
though the resulting function is purely artificial and
not representative of any particular material, its
shape is similar to functions of dS/dH typical of
silty soil. Using Array D in place of Array C as the
function of dS/dH resulted in an effect similar to
what would be expected as a result of decreasing the
specific yield in the two-dimensional model segments.
Greater changes in head resulted from increasing or de-
creasing the storage of grids located partially or
totally within the unsaturated zone. Inflow to the
grids of the three-dimensional model segment from sur-
face flux, seepage from the river, and flow to the in-
terior grids from the perimeter, resulted in head val-
ues which were generally overestimated, except in the
immediate vicinity of the Lamar Power Plant wells. The
effect of overestimated heads in the three-dimensional
model segment on estimated discharges at John Martin
Dam and Coolidge are summarized in Table 5-1, and were
discussed previously.

Porosity. Increasing the value of ¢ from 0.25
to 0.30 produced the effect of increasing the available
storage in the three-dimensional model segment, and de-
creasing the response of head values to changes in
storage. As a result, heads near the river were more
insensitive to inflows and ocutflows than before. Small
errors in computed seepage rates occurred, which in
turn produced minor errors in the estimates of mean
monthly discharge at John Martin Dam and at Coolidge.
The only differences produced in the water table by us-

ing a wvalue for ¢ of .30 were slightly higher head
values in the immediate vicinity of the well, which
occurred as a result of the increased storage in the
aquifer.

Because of effects produced by changing the value

of ¢ from 0.25 to 0.30 were inconclusive a second
sensitivity run was made with a ¢ value of 0.20, to
determine whether the results were insensitive to
changes in ¢ within a probable range of values, or
whether the use of the value of ¢ of 0.30 coinci-
cidently produced reasonable results. The results
sensitivity runs wusing ¢ values of 0.30 and 0.20,

which are summarized in Table 5-1, indicate that using
a value of 0.20 for ¢ produces errors opposite in
sign and approximately equal in magnitude to errors
produced using a ¢ value of 0.50. It is therefore

concluded that variations in the value of porosity
within a probable range does not produce significant
errors in the results obtained using the model devel-

oped in this study.

Surface Flux. The procedure for estimating a
value of surface flux at each time increment for every
surface grid of the model was discussed in Chapter III.
Although seasonal variations in the magnitude and di-
rection of flux, and the variations with location in
the study area are considerable, the net annual flux
for the entire study area is on the order of 0.2 feet.
The sensitivity of results to variations with time and
location of surface flux was tested to determine
whether surface flux could have been neglected alto-
gether in the analysis of flow in this particular
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stream-aquifer system, without decreasing the accuracy
of results. This was accomplished by using surface
flux values of zero for all surface grids of the model,
in place of those calculated from data at the beginning
of each time increment. Results are summarized in
Table 5-1. While 1low flows, both at Coolidge and at
John Martin Dam were estimated with reasonable accu-
racy, high flows were overestimated at John Martin Dam
and underestimated at Coolidge. The errors in esti-
mates of high discharge values are believed to result
from the failure of the water table predicted by the
model to rise, as it normally would in response to
large inflows at the surface due to irrigation in the
late spring and early summer months. The failure of
the water table torise at this time results in low es-
timates of seepage into the river, hence the errors in
estimated mean monthly discharge values below John Mar-
tin Dam and at Coolidge. The water table exhibits a
high degree of sensitivity to surface flux throughout
the study area, as was determined by comparing water
tables obtained with and without surface flux at vari-
ous times.

Because seasonal and spatial variations in sur-
face flux have a significant influence on the quality
of results, it was concluded that consideration of sur-
face flux should not be excluded in the analysis of
flow _in the stream-aquifer system considered in this
study.

Initial Heads. Runs one year in length with 30
time increments were made to determine the effect
results of variations in the array of values of
initial head, H. This was accomplished by making two
runs of' the model with boundary condition data from
1960, run 1 with the correct initial head array from
1960, and run 2 with an array of initial head values
from 1959, Resulting monthly discharge values were
plotted along with observed values for both John Martin
Dam and Coolidge.

day
on

The plot of computed and observed mean monthly
discharges at Coolidge is shown in Fig. 5-10. Initially,
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Fig. 5-10 Comparison of Computed and Observed Dis-
charge Values at Coolidge for Sensitivity of
Results to Variation of Initial Heads



the pattern of computed discharge values obtained in
run l, using 1959 initial heads, exhibits no similarity
to the pattern of discharges computed in run 2, using
1960 heads, or to the pattern of observed discharge
values. Beginning in July, however, the computed dis-
charge values from the two runs appear to begin con-
verging, with only October showing a significant dis-
crepancy. The computed values of discharge for Decem-
ber are nearly equal. Results at John Martin Dam were
similar, showing an even more definite pattern of con-
vergence for the two sets of computed discharge values.
Comparison of the water table elevation map obtained at
the end of run 1 with the map obtained in run 2 indi-
cated differences of less than 0.5 feet at most loca-
tions, whereas differences of as much as 4 feet existed
between the initial water table maps used in the two
Tuns.

The conclusion drawn from these observations is
that the effect of initial head values on results for
heads obtained by the model diminishes with time. This
implies that small errors in the array of initial head
values probably have little or no effect on results
obtained after several years. A more detailed analysis
would be required to determine the number of time steps
needed for the effects of an error of given magnitude
and at some given location in this model to become
negligible.

Initial Discharges at Lamar. Runs two years in
length with 30 day time increments were made to deter-
mine the effect on results of variations in the values
of monthly discharge at Lamar for the first three
months of the run. Values of monthly discharge at
Lamar for January, February, and March of 1959 had to
be estimated because data were not available. The pro-
cedure for estimating these values, which were used as
input to the model for the eight-year run, was des-
cribed in Chapter IV, Two runs were made using initial
data from 1959 and boundary conditions from 1959 and
1960. Run 1 was made using the estimated mean monthly
discharge values as Lamar for the first three months of
1959. These values were 120 cubic feet per second for
January, 82 cubic feet per second for February, and 46
cubic feet per second for March. Run 2 was made using
a value of 200 cubic feet per second as the mean
monthly discharge for January, February, and March
1959. Resulting values of mean monthly discharge were
plotted along with observed values for both John Martin
Dam and Coolidge.
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The plot of computed and observed mean monthly
discharge wvalues at John Martin Dam is shown in Fig.
5-11. After the first three months of the run, values
of computed discharge at John Martin Dam appear to con-
verge almost immediately. After October 1959 values
computed by runlare indistinguishable from those com-
puted by run 2. Results at Coolidge showed a slower
convergence of computed discharge values. Discharge
values computed by run 1 agreed closely with values
computed by run 2 after June 18960. The greater suscep-
tibility of computed values of discharge at Coolidge to
inaccurate seepage rates computed in the Lamar area is
believed to account for the slower convergence of com-
puted discharge values. In run 2, the initially high
values of discharge at Lamar apparently resulted in the
overestimation of seepage rates from the river into the
aquifer, which in turn raised the water table in the
Lamar area. Downstream propagation of this slightly
elevated water table was accompanied by higher than
actual seepage rates into the river, or lower than
actual seepage rates from the river. This resulted in
overestimated discharge values at Coolidge for several

months after the intentional overestimation of dis-
charge at Lamar ceased. A comparison of the water
table map obtained in run 2 with the map obtained in

run 1 indicated that water table elevations from Lamar
to Coolidge were as much as one foot higher than those
obtained in run 1. This result serves as another indi-
cation of the overestimated seepage rates caused by the
high values of initial discharge at Lamar.

It is concluded from the foregoing results that
variations in values of monthly discharge at Lamar have
virtually no residual effects on computed discharge
values upstream at John Martin Dam. However, signifi-
cant differences between computed discharge values at
Coolidge from run 1 and from run 2 persisted for sev-
eral months after March 1959. Similar residual effects
were observed in the water table downgradient from
Lamar. However, the tendency of discharges at Cool-
idge computed in run 2 to approach the values of dis-
charge computed in run 1 after June 1960 indicates that
the residual effects of wvariations in discharge at
Lamar diminish with time. The implication of this con-
clusion is that erroneous values of the estimated dis-
charge at Lamar would not adversely affect results ob-
tained by the model after several years. A more de-
tailed analysis would be required to determine the time
lapse required before the effects of an error of given
magnitude in the mean monthly discharge at Lamar would
become negligible.
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g CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

A finite difference model for simulating three-
dimensional, saturated, and unsaturated, steady and un-
steady flow in a stream-aquifer system was developed.
This model was designed for use in this study to inter-
act with a finite difference algorithm for simulating
two-dimensional flow of groundwater under fully satu-
rated conditions. The resulting combined model was
then used to simulate flow in hypothetical and actual
stream-aquifer systems, and its ability to preduce ac-
curate results was analyzed. As a result of this study
the following conclusions were drawn.

1. The model was successful in simulating flow
in several simplified, hypothetical systems,
as was determined by aqualitative analysis of
results produced by the model. The hypothet-
ical stream-aquifer systems which were modeled
had the following configurations: (1) hori-
zontal initial water table and uniform satu-
rated thickness; (2) initial water table of
uniform gradient in the direction parallel to
the river, and aquifer of uniform saturated
thickness; (3) initial water table of uniform
gradient parallel to the river, nonuniform
slope perpendicular to the river, and aquifer
of nenuniform saturated thickness. The water
table in the third configuration sloped toward
the river from both sides and the saturated
thickness increased toward the river from
either side. Results of runs made with and
without the pumping of a well in each of the
three systems indicated that the model was
capable of producing a physically reasonable
simulation of flow for each case.

2. The abilityof the model to correctly simulate
flow in an actual stream-aquifer system was
demonstrated. This conclusion was based on
the success of the model in reproducing, with
reasonable accuracy, observed values of monthly
discharge at two stream gaging stations in the
Arkansas Valley study area, and matching ob-
served water table elevations in the area
within reasonable limits of error. The simu-
lation included the consideration of the com-
bined effects of a flow-retarding silt layer
on the bed and hanks of the river channel,
and high volume pumping near the river in the
vicinity of Lamar. The model correctly simu-
lated the resulting break in the hydraulic
connection between the river and the aquifer
over a two mile reach influenced by the draw-
down in the well field.

i

Water table elevations and river discharge
values obtained by this model were shown to
have varying degrees of sensitivity to changes
in the values of several parameters. Signifi-
cant effects on these results were cobtained by
changing wvalues of the silt layer bubbling
pressure head, hpb’ the silt layer hydruulic
conductivity, Kg, the array of values of rcla-
tive permeability, k., the array of valucs of
saturation derivative, dS/dH, and the array of
values of surface flux, Qg. The effect on re-
sults obtained by changing the value of poros-
ity, ¢, was not considered significant.
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Varying the initial values of head, H, through-
out the model and mean monthly discharge, Q,
at Lamar produced significant effects on the
character of results obtained. These effects,
however diminished with time.

Recommendations for Further Study

The following recommendations are made for further
investigation in connection with the finite difference
model developed in this study.

L. The possiblity of more sophisticated and more
detailed representation of flow above the wa-
ter table should be explored. The use of a
larger number of thinner model grids was pre-
viously suggested as a means of accomplishing
part of this objective. Because of the large
amount of computer time and storage this would
require, however, it is suggested that alter-
nate methods should be considered.

L]

A subroutine for representing overland flow
due to rainfall excess, flow in minor tribu-
taries, and unsteady, nonuniform river flow
should be added to the model if the intended
application includes simulation of flood flows.
This need is demeonstrated by the failure of
the model to correctly simulate the June 1965
flows in the Arkansas Valley study area.

Efforts should be made to obtain more compre-
hensive data for future applications of this
model, =0 that the use of a number of zssump-
tions and estimates which were made to obtain
values for input parameters in this study
could be eliminated. Because of the consid-
erable effects of surface flux values on model
results, special attention should be directed
to obtaining information concerning type and
areal distribution of crops grown in the area
of interest, and distribution in time and
space of water diverted from the river for
irrigation.

Recommended Uses of the Model

The three-dimensional, finite difference model de-
veloped in this study for simulating complex flows in
a stream-aquifer system may be used singly or in com-
bination with two-dimensional finite difference models.
The model interfaced on both ends with the two-dimen-
sional model segments for its use in this study.

Used singly, the model provides an effective means
of analyzing complex flows in small basins, on the or-
der of 100 square miles or less. The following uses
are proposed for this form of the model: (1) use by

water regulatory agencies as an aid in settling water
rights disputes among users of groundwater and surface
water in 4 given basin, (2) use as an aid in making
water resource management decisions which are most

beneficial to the maximum number of users and to the
environment, (3) use as an aid in determining the feas-
ibility and probable benefits of proposed water re-
source development projects, by mathematically simulat-
ing the results of such projects prior to implementa
tion.



Used in combination with a large two-dimensional
model, the three-dimensional model provides a detailed
analysis of a limited portion of a large stream-aquifer
system. With this combination of models it is possible
to obtain a localized detailed flow analysis where it
is needed without consuming large amounts of computer
time and storage in an unnecessarily detailed simula-
tion of areas which are not of major concern, or in
which the flow can be accurately simulated using less
sophisticated methods.

The various components of this model have been set
up as separate subroutines so that a given component
can be easily modified, replaced, or in some cases de-
leted without disturbing any other part of the computer
program. For this reason the model is readily adapta-
ble for use in analyzing flow in several types of
groundwater-surface water systems other than a stream-
aquifer system. The following recommendations are made
for the use of this model in analyzing flow in these
systems.

1. With no modification necessary other than set-
ting up the appropriate geometry for a given
case the model may be used to simulate the
interaction between earth canals and the ad-
jacent aquifer. Because of its capability of
simulating three-dimensional flow, the model
is particularly wuseful in the analysis of
seepage loss problems, inwhich vertical flows
are important.

2. The model may be used to analyze flow in
drainage channels, and is particularly useful
as a design tool, in determining the most ef-
ficient channel geometry for obtaining optimal
drainage conditions. No modification of the
model is necessary for this application except
setting up the appropriate geometry for the
particular case.

40

The model may be used to analyze flows in re-
charge pits, and is especially useful as de-
sign tool for determining efficient geometry,
as was the case for drainage channels. The
capability of the model to simulate three-
dimensional flow is advantageous in this ap-
plication, because vertical flowdownward from
recharge pits is often important. A suggested
adaptation of the model for this application
is a replacement of the subroutine for comput-
ing surface water elevations by the Manning
formula. This subroutine is used in the model
in its present formto determine depth of flow
in the river. No adaptation of the model is
necessary for the correct representation of
the recharge pit boundaries, in which no silt
layer is present. By assigning the silt layer
hydraulic conductivity a value equal to
the hydraulic conductivity of the surrounding
aquifer material, and the silt layer bubbling
pressure head a value of zero, the flow re-
tarding effects of the layer are neutralized.
The model then simulates flow across the
boundary as if no silt layer were present.
For this application the use of the three-
dimensional model segment alone is recommended.

With only an adaptation of the model subrou-
tine for determining surface water elevation,
the model can be used to simulate the interac-
tion between a lake or reservoir and the sur-
rounding aguifer. This model is esvecially
useful in determining the change in storage of
a reservoir-aquifer system due to a given
change in water surface elevation in the res-
ervoir. Such information is useful in deter-
mining optimal reservoir management policies,
The three-dimensional model segment, used
alone, should provide an adequate representa-
tion of flow in a reservoir-aquifer system.
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APPENDIX A: DESCRIPTION AND
LISTING OF COMPUTER PROGRAM .-

Description of Program and Subroutines

PROGRAM LINKFLO is the control program which directs
the sequence of operations for solving the system
of equations for flow in the stream-aquifer sys-
tem. Appropriate subroutines are called from
LINKFLO as needed for calculating the various
components of flow, for adjusting boundary condi-
tions, and for reading data. The time increment-
loop is controlled by LINKFLO.

SUBROUTINE INITIAL reads in and prints out initial
data, sets up the grid system for the groundwater
flow equation, and establishes river channel ge-
ometry and canal distribution regions,

SUBROUTINE BCON reads in boundary conditions at the
beginning of each time increment and computes dis-
charge and head in each river grid, and surface
inflow for every surface grid.

out intermediate and final
river discharges and water

SUBROUTINE SCRIBE prints
results, including
table elevations.

SUBROUTINE MATROP
dimensional
out.

arranges two-dimensional and three-
arrays in a standard form for print-

SUBROUTINE MATSOL sets up the coefficient matrix and
the right hand side column vector for solving the
groundwater flow equations.

SUBROUTINE SIDE is called from MATSOL to compute coef-
ficients and column vector values for those grids

in the two-dimensional model segment that are
surrounded on all sides by other two-dimensional
grids.
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SUBROUTINE STRAN is called from MATSOL to compute co-
efficients and column vector values for grids in
the two-dimensional model segment that are adja
cent on one side to a column of grids in the
three-dimensional model segment.

SUBROUTINE CTRAN is called from MATSOL to compute co-
efficients and column vector values for grids in
the three-dimensional model segment that are adja-
cent on one side to a grid in the two-dimensional
model segment.

SUBROUTINE CENTER is called from MATSOL to compute co-
efficients and column vector values for grids in
the three-dimensional model segment that are sur-
rounded laterally by other three-dimensional
grids.

SUBROUTINE BSOLVE 1is called from MATSOL to solve the
matrix for new values of head in each groundwater
grid using the Gauss-Elimination technique.

SUBROUTINE RIVBND computes seepage rates to and from
the aquifer for each river grid of the model.

SUBROUTINE SPLIT is called from RIVBND to compute
seepage rates in the river grids located in the
three-dimensional model segment.

SUBROUTINE STORE computes the mass balance for the
aquifer in all interior grids of the model at the
end of each time increment.

SUBROUTINE ADJUST computes values for unsaturated hy-
draulic conductivity and derivative of saturation
with respect to head for every grid in the three-
dimensional model segment at the beginning of each
time increment.

SUBROUTINE KFNP is called from CTRAN to compute values
of unsaturated hydraulic conductivity above the
water table for two-dimensional grids.



APPENDIX B: INPUT DATA

Table B-1 Initial Water Table Elevations in Feet, Upstream Segment

N 1 2 3 4 5 6 7 8
1 3741 3736 3745 3765 3580 3790 3800 3815
2 5728 3727 3735 3763 377 3781 3795 3812
3 3717 3719 3735 3760 3770 3772 3785 3810
4 3705 3705 3715 3740 3745 3750 3760 3795
5 3696 3695 3694 3720 3725 3730 3740 3775
6 3691 3686 3685 3701 3705 3710 3720 3760
7 3681 3674 3673 3680 3685 3690 3700 3745
8 3670 3665 5662 3660 3660 3665 3681 3721
9 3660 3650 3648 3649 3649 3655 3665 3680
10 3650 3641 3639 3637 3632 3635 3651 3680
11 3640 3633 3632 3629 3629 3628 3641 3681
12 3632 3629 3625 3624 3624 3625 3640 3660

Table B-2 Initial Heads in Feet, Center Segment

N 1 2 3 4 5 6 7 8
1 3625 3620 3615 3616 3617 3618 3630 3655
2 3618 3612 3606 3608 3610 3611 3619 3656
3 3611 3605 3600 3603 3606 3608 3621 3651
4 3608 3602 35098 3600 3603 3607 3614 3630
5 3613 3600 3597 3599 3600 3604 3610 3625
6 3621 3598 3504 3595 3596 3600 3611 3621
7 3601 3595 3590 3589 3590 3592 3601 3621
8 3594 3588 3586 3588 3589 3588 3592 3616

Table B-3 Initial Water Table Elevations in Feet, Downstream Segment

N 1 2 3 4 5 6 7 8
1 3600 3582 3581 3583 3583 3584 3589 3610
2 3590 3581 3574 3577 3577 3577 3580 3601
3 3580 3571 3564 3563 3565 3567 3575 3595
4 3570 3555 3554 3553 3555 3558 3570 3595
5 3560 3541 3542 3543 3544 3544 3550 3556
6 3541 3534 3534 3535 3537 3538 3541 3547
7 3525 3527 3525 3527 3529 3530 3532 3538
8 3517 3515 3513 3511 3511 3513 3518 3520
9 3506 3502 3500 3497 3496 3495 3502 3530
10 3489 3488 3484 3483 3483 3482 3500 3570
11 3477 3474 3477 3477 3478 3479 3485 3500
12 3453 3451 3454 3457 3460 3461 3475 3485
13 5438 2436 3437 3440 3442 3444 3450 3465
14 3426 3426 3428 3430 3432 3436 3435 3445
15 3417 5418 3419 3421 3423 3425 3428 3430
16 3405 3407 3408 3407 3408 3408 3410 3415
17 3393 3395 3394 3394 3395 3396 3398 3405
18 3383 3384 5382 3383 3383 3384 3387 3400
19 3568 3371 3372 3372 3371 3372 3373 3380
20 3354 3357 3358 3360 3360 3360 3360 3365
21 3545 3347 3348 3349 3350 5352 3355 3360
22 3336 3337 3338 3338 3340 3344 3350 3355
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Table B-4 Bedrock Elevations in Feet, Upstream Segment

1\\\\3 1 2 3 a 5 6 7 8
1 3740 3710 3730 3750 3755 3760 3770 3790
2 3715 3700 3720 3762 3774 3780 3794 3811
3 3703 3680 3720 3750 3755 3760 3780 3800
4 3680 3670 3714 3739 3744 3749 3759 3794
5 3685 3660 3680 3719 3724 3729 3739 3774
6 3690 3670 3655 3700 3704 3709 3719 3759
7 3680 3655 3645 3679 3684 3689 3699 3744
8 3660 3636 3620 3630 3645 3655 3680 3720
9 3630 3610 3610 3632 3634 3645 3650 3660
10 3645 3610 3590 3600 3610 3520 3645 3675
1 3630 3611 3507 3686 3600 3620 3635 3670
12 3630 3704 3592 3580 3590 3600 3625 3640

Table B-5 Grid Center

Elevations in Feet, Center Segment

Level 1
‘:\\\i 1 2 3 4 5 6 7 8
1 3575 3572 3570 3570 3570 3570 3580 3605
2 3570 3565 3564 3563 3563 3563 3580 3610
3 3565 3563 3561 3560 3560 3560 3580 3605
4 3565 3560 3557 3557 3557 3557 3573 3595
5 3565 3557 3555 3555 3555 3555 3565 3585
6 3565 3553 3552 3552 3552 3552 3560 3575
7 3555 3548 3548 3548 3548 3548 3555 3570
8 3550 3545 3541 3540 3540 3540 3550 3565
Level 2
;\\3\ 1 2 3 4 5 6 T 8
1 3600 3597 3595 3595 3595 3595 3605 3630
2 3595 3500 3589 3588 3588 3588 3605 3635
3 3590 3588 3586 3585 3585 3585 3605 3630
4 3590 3585 3582 3582 3582 3582 3598 3620
5 3590 3582 3580 3580 3580 3580 3590 3610
6 3590 3578 3577 3577 3577 3577 3585 3600
7 3580 3573 3573 3573 3573 3573 3580 3595
8 3575 3570 3566 3565 3565 3565 3575 3590
Level 3
;‘\\i 1 2 3 4 5 6 7 8
1 3615 3612 3610 3610 3610 3610 3620 3645
2 3610 3605 3604 3603 3603 3603 3620 3650
3 3605 3603 3601 3600 3600 3600 3620 3645
4 3605 3600 3597 3597 3597 3597 3613 3635
5 3605 3597 3595 3595 3595 3595 3605 3625
6 3605 3593 3592 3592 3592 3592 3600 3615
7 3595 3588 3588 3588 3588 3588 3595 3610
8 3590 3585 3581 3580 3580 3580 3590 3605
Level 4
:‘\\ik 1 2 3 4 5 6 7 8
! 3625 3622 3620 3620 3620 3620 3630 3655
2 3620 3615 3614 3613 3613 3613 3630 3660
3 3615 3613 3611 3610 3610 3610 3630 3655
4 3615 3610 3607 3607 3607 3607 3623 3645
5 3615 3607 3605 3605 3605 3605 3615 3635
6 3615 3603 3602 3602 3602 3602 3610 3625
7 3605 3598 3598 3598 3598 3598 3605 3620
8 3600 3595 3591 3590 3590 3590 3600 3615
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Table B-6 Bedrock Elevations in Feet, Downstream Segment

\3 1 2 3 4 5 6 7 8
i
1 3599 3585 3565 3540 3520 3518 3570 3600
2 3589 3580 3560 3525 3515 3530 3560 3600
3 3579 3570 3520 3525 3530 3530 3570 3590
4 3569 3540 3490 3520 3530 3540 3555 3550
5 3559 3535 3480 3500 3505 3510 3520 3550
6 3540 3510 3480 3505 3510 3515 3525 3520
¥ 3515 3490 3465 3475 3475 3480 3500 3515
8 3490 3460 3455 3450 3460 3470 3500 3500
9 3495 3460 3440 3435 3445 3478 3510 3500
10 3480 3400 3420 3440 3450 3460 3450 3500
11 3455 3435 3410 3420 3430 3440 3470 3480
12 3450 3415 3380 3405 3420 3440 3450 3484
13 3410 3390 3360 3370 3400 3410 3420 3450
14 3420 3395 3365 3375 3405 3425 3430 3430
15 3410 3370 3320 3355 3375 3390 3410 3400
16 3340 3240 3280 3330 3370 3375 3365 3280
17 3260 3190 3280 3350 3355 3345 3370 3300
18 3260 3160 3280 3515 3325 3340 3350 3560
19 3180 3210 3270 3310 3320 3325 3350 3379
20 3280 3300 3320 3290 3300 3310 3330 3364
21 3330 3320 3300 3280 3280 3275 3305 3340
22 3330 3315 3300 3300 3300 3280 3305 3340
Table B-7 Hydraulic Conductivities in Feet Per Day, lpstream Segment
N 1 2 3 4 5 6 7 8
1 0 360 445 357 214 178 223 214
2 360 396 178 0 0 0 0 ]
3 481 410 267 267 178 223 538 267
4 535 382 0 0 0 0 0 0
5 365 611 191 0 0 0 0 0
6 0 1087 440 0 0 0 0 0
7 a 845 286 0 0 ] a 0
8 668 618 528 544 802 1070 920 344
9 401 480 528 786 758 1003 869 535
10 0 557 436 440 525 624 668 ]
11 267 535 627 401 445 836 668 0
12 401 187 501 368 369 350 401 334
Table B-8 Iiydraulic Conductivities in Feet Per Day, Center Segment
_: ] 1 2 3 B 5 G 7 8
i
1 267 520 586 270 167 184 107 67
2 01 771 1560 a0l 239 257 134 0
3 334 786 1470 342 273 334 802 7
4 753 826 1096 409 219 271 389 60
5 1357 1470 380 357 300 525 286 60
b 0 956 643 400 400 835 0 0
7 0 668 675 550 500 500 0 0
8 100 511 800 750 600 575 145 1070
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Table B-9 Hydraulic Conductivities in Feet Per Day, Downstream Segment

v

1 2 3 4 5 6 7 8
1 0 0 965 848 668 636 892 936
2 0 0 1337 683 623 578 612 1003
3 0 0 303 739 574 452 1337 445
4 0 743 564 810 807 928 972 445
5 0 1241 608 532 515 516 491 802
6 0 574 487 668 668 732 551 311
7 119 747 403 426 488 557 574 557
8 461 555 516 445 481 497 735 167
9 822 571 491 360 341 257 0 84
10 334 691 473 622 689 642 36 0
11 535 668 467 468 468 535 624 267
12 160 418 492 445 501 786 297 0
13 102 341 334 658 636 520 311 201
14 802 496 507 610 743 481 0 0
15 1226 535 378 365 426 418 257 0
16 229 356 443 616 786 579 372 229
17 295 289 567 1047 936 535 963 334
18 275 294 631 630 469 477 382 361
19 285 400 545 624 545 456 608 0
20 364 405 489 286 378 393 418 0
21 557 325 227 176 194 217 297 100
22 557 325 227 176 194 217 297 100
Table B-10 Mean Monthly Discharge below John Martin Dam, at Lamar,
and at Coolidge, in Cubic Feet Per Second
Beation TJen __Feb  War __kpr  Tay "L”"iu_,.‘ Tal  hug Sep Ot Wov Dec
1958
:ai‘r"‘f" 7.7 5.9 5.8 39.5 115 401 S0 896 KOS 820 0.6 6.8
Lamar 6.9 5.3 52 7. 116 40 s 2 227 6 8.2 6.0
Coolldge 123 138 1200 114 318 29 30 MO0 327 276 163 187
1959
37";;.:““" 8.6 7.5 66 S5 708 T2 910 9 4Nl 96.8 35 2.9
Lanar 120 82 46 141 261 199 38l 379 237 7.6 26.6 16.2
Coolidge 42 14 140 198 M7 266 374 470 413 M6 177 159
1960
’“;.:""“‘ 2.8 34 3.5 136 Bas 8 a2 2. B.a 9] 568 8
Lamar 125 0.4 e9.2 8§32 342 16.4  65.9 11, 4 109 38 43
Coolidge 135 178 33 206 406 209 107 1. 0.9 30.4 60.6 763
1961
nri
e :‘""‘ 3.0 3.6 3.2 4SS 111 223 358 442 4m 319 5.9 4.1
Lamar 5.8 4.2 0.8 188 81 107 72.7 &3 7.4 2.2 454 s2.0
Coolidge 103 4 106 198 35.1 M6 138 142 0.4 199 149 137
1962
dnn WRURT 34 38 41 e a3 a6 411 287 41,7 69,8 47,8 3.3
Lamar 3.0 .8 2.4 M4 58,6 6.6 172 72. 4.8 4.8 8.7 9.0
Coolldze 16 146 121 281 302 305 188 111 18,8 181 ss.2
1963
B " 36 34 0.5 407 126 137 6.1 77 316 W 39.4 9.9
Lomar 214 481 259 178 6.4 20,8 47,7 30, 61.8 4.8 2.2 2.3
Coalidgo 92.1 160 149 178 6.6 989 5.5 14, 63.2 19,0 29.2 .7
1964
J;;,E_:“""' 2.9 2.8 1.9 18§ 28 235 133 167 4.9 N6 7.0 1A
Laaar P T © 1.6 8.8 1M 99.2  10.2 18, 7.0 69 23 23
Coalidpe 51.9 6.2 47.1 64.2 ol 242 26.9 1 b | 3.3 17.5 20.3
1965
‘““;‘::'” L A7 AR Eue A% e 272 gsa 27 857 144 217 281
Lasar s 0.7 1.1 431 BB.0 1358 480 1547 669 5.7 L5 188
Coolidge 20,7 278 29.0 18,9  S8.7 8221 741 19’9  1o7% 200 229 370
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Table B-11 Monthly Diversions to Major Canals and Inflows from
Big Sandy Creek, in Acre-Feet

Canal or Hanth
Cord o, o T AT S S . W S
1958
‘c""lﬁ, it 0 0 o 0 900 3000 4000 5400 4800 2700 0 0
m"‘::‘ 0 Q 0 0 100 500 1100 1200 800 600 0 0
Aalty 0 0 0 BDOO 1900 15200 20800 24100 19800 17500 400 0
Canal N L
E-'-_-:“ 800 600 0 700 2800 4000 6200 9100 7500 4800 2200 1000
Eﬁlm:‘ © © o 0 100 300 400 400 300 30 100 0
il P} o o o 300 O 500 800 800 500 200 2
TTL.GERE 5 9 0 0 40 40 190 190 1600 1100 500 0
kifala oo 400 0 0 7
Eads 900 1800 1800 3200 2700 2300 1500 100
el 0 o 0 0 0 0 0o s00 100 0 0 0
('m""‘ﬁﬂ’ 2028 2514 2287 18 1207 460 832 537 94 967 3869 3857
1959
v © © 0 1900 3500 4300 5300 4700 2200 500 O O
Pl 0 o 0 300  S00 600 1000 1000 600 0 0 0
gt 0 0 0 14900 18000 18100 22200 22200 9900 3900 0 0
Canal 0 0 0 5400 8200 BSOD 9700 8300 5500 1500 800 500
"u"::, [ o @ 300 500 600 600 500 300 ° o 0
c.:::l 0 o 0 600 1500 900 1300 1400 700 0 0 0
fat. Srahae 0 o © 900 2700 2400 3100 3000 1800 0 0 0
%"‘E:“ 0 [} 0 1000 3000 2900 3100 3000 2200 300 0 0
ot 0 0 0 0 0 0 0 0 0 0 0 0
E:Lﬁ’""’ 3160 3917 3564 3503 1881 1029 1296 836 1518 380 1521 1516
1860
;’::1"“ 0 o 0 300 3100 1700 3000 500 400 1000 200 0
%:::' 0 o 0 100 500 200 700 600 400 [} 0 0
c‘::’l' 0 ) 0 1400 21000 14300 14500 600 400 3100 3300 0
é;:: 400 0 0 800 6100 5000 5400 1300 800 1400 900 900
?i::, 0 o ¢ 100 sco 400 300 100 100 200 100 0
?'::Tl 0 0 [} 0 s00 o 100 o 0 [ 0 0
Lhramaa g @ 0 200 1600 1300 1300 100 0 o 9 o
gﬁ‘;"’ 0 0 0 1000 2200 1900 2100 1500 1000 1500 1400 1000
E;::?n [ o o 0 100 400 200 o 0 [ 0 0
f]‘,:ei"“y 1242 1540 1401 1377 739 404 510 319 596 423 1694 1509
1961
o 9 g 2300 1600 1200 2800 2200 2700 1200 600 0
o 0 o 100 600 200 300 700 500 300 o 0
0 ‘0 0 10400 2400 6000 14500 15500 16400 17500 500 0
500 400 100 2700 2300 2700 6200 5600  S500 4400 1900 900
o o o 3200 200 300 400 s00 200 00 200 0
syt 0 0 0 300 100 400 300 o 0 0 o 0
11y Granen 0 a 0 900 600 300 1300 900 800 1300 100 0
E:z‘:‘" 600 © 100 2600 2200 2200 3000 3000 1800 1300 1200 600
f.z::f" 0 o 0 o 200 100 200 0 0 0 3 0
c‘;:;““‘" 1383 1715 1560 1534 82 451 568 366 564 548 2195 2188
1962
::::1‘“‘ 2 o 0 2600 2500 2200 3300 2300 1500 1200 900 0
;;;_::‘ 0 o 0 300 900 600 900 800 600 700 200 0
Y 0 0 0 12400 16100 16400 19300 6600 o 400 900 o
o 0 [ 0 S400 5300 5300 9100 S400 1100 1300 1800 1600
E:;‘Et 0 o @ 100 300 400 400 200 100 100 100 0
Eﬁ:’ 0 0 0 400 100 100 800 200 0 o o 0
AeTie TN 0 o 0 500 1000 1600 1900 800 SO0 700 700 500
mi:“}i" 9 © 0 1700 2800 3100 3300 2200 1600 1000 80O 600
et 0 0 (] 0 0 0 0 0 0 0 100 300
E:.:"“" 1792 2222 2021 1987 1067 S84 735 474 861 293 1174 117l
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Table B-11 Continued

Canal or Honth
Tribut —an___Feb___Wa a) Jun Ju ) Bet Nov__ Dec
1963

Lm,i;;' 0 0 300 2300 900 1500 900 1900 2500 700 960 180

E.::;‘ 0 O 200 700 700 600 700 700 600 500 460 60
ty 7 =

P 0 0 0 7300 3100 2500 2200 7E0O 7500 0 o 0

Canal 0 100 100 3300 2100 3500 1400 3900 3900 a00 760 620

yde

Crnai 0 0 0 200 200 200 w0 200 200 100 120 100

Manvel

canal 0 0 0 100 0 100 o 100 0 0 o 0

X-Y, Graham

Cansi 0 [ 0 1000 o 300 100 600 500 00 310 370

ﬁ:“’ 0 0 1000 2900 2300 2000 1600 2600 2100 1600 980 68D

g“:’;' 100 0 o 200 300 100 0 0 0 200 180 ]

c'iff"'g’ 959 1189 1082 1063 371 M2 393 254 46l 192 7170 768

1964

’:‘“Im‘ a 0 0 1270 520 1390 780 1030 0 o 210 130

g;i‘ 0 0 0 640 750 230 650 630 710 550 410 0
ty ¥

Camal a o a 3360 2380 4500 2150 3020 o o o L]

JASLy 400 210 430 1830 2470 2390 3780 2310 860 680 840 610
L]

mﬁﬁ 4 0 60 120 20 [ 0 0 0 0 0 0 (]

Manvel

canal o o 0 ° o 0 0 0 0 o 0 [

AL el 0 0 0 o st 80 130 o 0 0 0

%g'hla = -

- 430 390 750 2060 1380 2300 21820 2050 1160 600 850 850

isson
3: . 0 0 0 20 170 180 180 60 0 0 0 0
Big Sandy
et 629 780 709 697 374 208 258 166 302 909 3638 3627

1965
l___'“ m’"‘ 0 0 o 530 1370 #90 1480 3480 2090  4lo 0 0

Keesce -

o 0 o 270 820 860 130 90  7%0 550 0 ) 0
g::{ 0 0 D 1500 6160 8940 1A3T0 27670 13860 14040 10710 1CHRO
';F;\:; 330 490 430 1340 4680 2610 3510  S780 3410 2850 2320 2890
Hyde "

i 0 0 o w0 1m0 0 70 &0 500 7o 280 0
vel

il 0 o 0 0 0 0 0 0 o 0 0 0

X-Y, Grahan

ey 0 0 0 o 30 sk 0 o 0 0 0 0

::;“i:" [ o 0 2040 2040 1683 790 3080 1570 360 [) 0

isson
Msl 2 0 0 o 10 150 o 0 0 0 0 0
'Tl.i""" 2971 3684 3381 3294 1769 988 1219 786 1427 1130 4524 4510

Table B-12 Parameters Defining Channel Geometry in Each River Grid of Model

River  Channel Channel Bed Channel Bed Slope, River Channel Channel Bed Channel Bed Slope,

Grid Width, Feet Elevation, Feet Feet/Feet Grid Width, Feet Elevation, Feet Feet/Feet
1 115 3737 0.001033 22 68 3570 0.001114
2 144 3727 0.001225 23 79 3563 0.000947
3 144 3717 0.001065 24 113 3554 0.000968
4 115 3705 0.001112 25 113 3543 0.001285
5 144 3694 0.001125 26 90 3534 0.001136
6 173 3684 0.001065 27 113 3525 0.001291
7 144 3672 0.001291 28 S0 3509 0.001470
8 58 3661 0.001488 29 101 3499 0.001768
9 86 3648 0.001420 30 113 3484 0.000988
10 85 3636 0.000985 31 124 3470 0.001398
11 85 3627 0.001052 32 145 3456 0.001296
12 85 3624 0.001136 33 145 3444 0.001488
13 85 3617 0.002156 34 242 3433 0.001420
) 85 3609 0.001452 35 242 3422 0.001448
15 85 3605 0.001205 36 242 3408 0.001263
16 43 3602 0.001488 37 217 3399 0.001389
17 64 3600 0.001263 38 169 3385 0.001560
i | 85 3596 0.001049 39 145 3373 0.001420
(it} 85 3590 0.001077 40 145 3360 0.001556
‘0 85 3588 0.001296 41 145 3349 0.001405
P 85 3682 0.001291 42 133 3338 0.001403
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Table B-13 Monthly Precipitation at Lamar, in Inches

Year
;:;B¥\\\ 1958 1959 1960 1961 1962 1963 1964 1965

January T3 .79 1.43 0 .89 .42 0 .36
February 21 .16 2.07 .84 o i | .14 .75 .49
March 1.75 .29 .50 .90 .34 1.01 .19 1.21
April .94 .94 G .44 .68 0 1.07 .03
May 3.62 2,25 1.91 .97 2.20 .58 6.97 2.40
June 3.05 2.58 .64 4.27 1.97 1.93 o 4 6.60
July 3.84 .87 1.68 3.21 4,36 1.81 .32 1.14
August .75 2.08 .26 3.22 .64 2.09 .42 2.50
September 97 1.60 .99 .92 .66 1.18 .96 115
October .04 1.58 1.76 B e, .41 .10 w17 1.82
November i 4 .16 .18 1.18 .54 .29 .36 .05
December .08 .08 .87 .23 Jd2 .38 .21 1.75

Table B-14 Estimated Monthly Evapotranspiration for Study Area, in Inches

Year
Month 1958 1959 1960 1961 1962 1963 1964 1965
January 0 0 0 0 0 0 0 0
February 0 0 0 0 0 0 0 0
March 0 0 0 0 0 0 0 0
April 1.08 1,21 1.51 1.18 152 1.60 1.25 1.55
May 3.2 2.88 2.69 2.81 3.25 3.29 3.00 3.00
June 6.37 6.80 6.30 3.61 5.89 7.04 6.19 5.84
July 7.68 8.05 7.95 B.08 7.95 9.54 9,38 8.67
August 6.24 6.25 6.40 5.94 6.24 6.40 5.94 5.63
September 3.18 2.55 3.01 2.47 2.82 3.49 2.86 2,32
October 0 0 0 0 0 0 0 0
November 0 0 0 0 0 0 0 0
December 0 0 0 0 0 0 0 0
Table B-15 Canal Distribution Region Parameters
Percentage of Distribution Area of Portion of Distributed
Canal Region Lying Inside the Region Lying Inside the Study
Study Area Area, Square Miles
Keesee 0.60 0.9
Fort Bent 1.00 2.7
Amity 0.25 16.2
Lamar 0.15 7.3
Hyde 1.00 4.4
Manvel 0.80 3.9
X-Y, Graham 1.00 14.4
Buffalo 1.00 18.6
Sisson 1.00 2.6
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PROGRAM LISTING

OO0 00O00O0 QOO0 0

OO0

PROGRAM LINKFLOLINPUT+OUTPUT+TAPES=INPUTTAPE6=0UTPUT) 5
COMMON LCoMsNsLRLILRMsLRIVsNADJsNCAN+sHPBsSKsTHsSY»AN+BSCsVT+POR»
2TIMEZTCONsDT+C(3B4)+DXC(B) +DY(B) sDZ(4)+DB(B) +IRIVI(AT) »JRIVI4T) » g
3RRED(47) +RWID(4T) sRSLP(4T) +QRIV(&AT) +DIV(4T) sRSO(4T) s VMS(47)» L
4VMB (4T) 3SDRIV(20) +FKFAC(20)sCDV(9) +PCT(9) »AREA(9) s LCAN(10)»
SQUMD(3) +QLAM(3) s QKAN(3) vCM(3B4,49) sNDL(12+8) +NDC(B»B) sNDR(22+8) s
GEHTEMP (B4B) +QIC(BeB) +KODC(BeBr&) s HCP(B4Bo4) +ZC(BsBr4) +sCKC(BsBr4)»
TCKSAT(RBsBeé) yDSOHP (BeBe &)

COMMON /A/ LLDXL(12)+KODL(1298) +CKL(12+8B)sHLP(12+B)+2ZBL(12+8)

20ILt12+8)

COMMON /R/ LRsDXR(22)+KODR(22+8) +CKR(2298) sHRP (22+8) +ZBR(22+8)»

20IR(22+8)

P E AR AR IR ERE R RN RN E R RN ORI E RO RO SRR R RN RO R RO OR DB RD B DO
THIS IS THE CONTROL PROGRAM WHICH DIRECTS THE SEQUENCE OF OPERATIONS
FNR SOLVING THE SYSTEM OF EQUATIONS FOR FLOwW IN THE STREAM-AQUIFER
SYSTEM. APPROPRIATE SUBROUTINES ARE CALLED FROM LINKFLO AS NEEDED
FOR CALCULATING THE VARIOUS COMPONENTS OF FLOWs FOR ADJUSTING
ROUNDARY CONDITIONSs AND FOR READING DATA. THE TIME INCREMENTING
LONP 1S CONTROLLED BY LINKFLO.

CReORODOODOORORRRARRODOORROCOCORNORORDDRRRRORREDEORORORERDOORBBREROED

JUMP=1
TIMF=0,0
TBEG=0.0
TEND=2520,0
DT=10.0 '
DT=30.0 i
Tw=60,0 X
Tw=30.0
NT=R4
TIME=THEG+DT
TCON=TREG+TwW
CaLL INITIAL
D7 ITIME=1eNT
CALL RCON(JUMP)
CALL ADJLIST
CALL MATSNL
CALL RIVABND
CALL STORE
IF(TIMELLTLTCON) GO TO 6
CALL SCRTBE
TCON=TIME+TwW
WRITE(64107) TIMF
107 FCRMAT(]OXs2TIME=#3F10,2+5X9#DAYS®,4/)
6 TIME=TIMF +DT
T CONTINUE
CaLL EXIT &
FND
SUBROUTINE INITIAL
COMMON LCeMeNsLRL'LAMsLRIVyNADJINCANsHPR+SK+THsSYsANsBSCysVTsPORS
2TIMEZTCONSDTC(3R4) +DXC(R) sDY (B) sDZ (4) +DRI(B) » IRIV(4T) o JRIV(4T) »
IRAEN(LT) «RWIN(A4T) yRSLP(4T) +QRIVIAT) «DIV(4T) +RSOLET) s VMS(4T) » 1
4VMR (4T) «SNRIV(20) oFKFAC(20) «CDV(9) sPCT(9) +AREA(9) s LCAN(10)» *
SAIMND(3) +QOLAM(3) vQKAN(3) oCM(3B44+469) +NDL(12+B) s NNDC(B+8B) s NDR(22:8) ;
GHTEMP (B+R)+QIC(B4B) +KODC(B+s8+4) yHCP (B4B34) s ZC(BsBss) «CKC(BsBséd) 14
TCKSAT(ReBsd) s DSDHP (BeBes)
COMMON /A7 LL+DXL(12)+KODL(12¢8)+CKL(12+8)+HLP(12+8)+ZBL(12+8)»
20TL(1248)
COMMON /R/ LR+DXR(22)+KODR(22+8)+sCKR(2258) +HRP(22+8)+ZBR(2298) »
20IR(22+8)

P T T Ty L e T e
SYSTEM FOR THE GROUMDWATER FLOW EQUATIONsy AND ESTABLISHES RIVER

THIS SUBROUTINE READS IN AND PRINTS OUT INITIAL DATAs SETS UP THE GRID
CHANNEL GEOMETRY AND CANAL DISTRIBUTION REGIONS., DATA VALUES ARE READ
FROM PUNCHED CARDS. CARD FORMATS ARE INDICATED IN THIS SUBROUTINE

FOR EACH INITIAL PARAMETER.

GORGBRGERLEOOROBRDODORDREOVORRORNBREGOEDOROOPOOEIONRLGRRREORRORERDRBREREDS

WRITE(6+2)
? FORMAT(1H1+50X+#INITIAL DATA®4/)
REAND(S+10)LLsLCoLRoMeNsLRLsLRMsLRIVsNCANsNADY
LL = NUMBER OF GRIDS IN THE I DIRECTION = UPSTREAM 2-D SEGMENT
LC - NUMBER OF GRIDS IN THE I DIRECTION - CENTER SEGMENT
LR = NUMRER OF GRIDS IN THE I DIRECTION ~ DOWNSTREAM 2-D SEGMENT
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OO0 00

OO0

M = NUMBER OF GRIDS IN THE J DIRECTION =~
N = NUMBER OF GRIDS IN THF k DIRECTION
LRL = DIMENSION OF FURTHES DOWNSTREAM RIVER GRIN IN THE UPSTREAM 2-=D SEGMENT
LRM = DIMENSION OF FURTHES DOWNSTREAM RIVER GRID IN THE CENTER SEGMENT
LRIV = DIMENSION OF FURTHEST DOWNSTREAM RIVER GRID IN THE DOWNSTREAM 2-D SEG.
NCAN = NUMBER OF CANALS DIVFRTING FROM THE RIVER IN THE STUDY AREA
NADJ = ARRAY SIZE OF DISCRETIZED PLOTS OF RELATIVE PERMEABILITY AND
SATURATION DERIVATIVE.
WRITE (6+3)
3 FORMAT (X #LL* 93X s PLCo2 33X o P LR# ANy EMB oA X g ENB 2 X 4y B RL By 2X oL RM® 41Xy
2OLRIVE, I X ®MNCAN®, I X 2NADJ®)
WRITE(6+10) LLsLCsLRsMsNsLRLsLRM+LRIVsNCANsNADY
10 FORMAT(101I5)
READ (5¢20) HPBoANsPORsSYsSKsTH
HPB = SILT LAYER BUBBLING PRESSURE HEAD
AN = MANNING ROUGHNESS COEFFICIENT
POR = POROSITY
SY = SPECIFIC YIELD
SK = SILT LAYER HYDRAULIC CONDUCTIVITY
TH = SILT LAYER THICKNESS
20 FORMAT(6F5.2)
WRITE (644)
4 FORMAT (2X o #HPB® 33X o #AN® 32X y BPOR® ¢ 3N ¢ #SY# 3 3N #SKH 33X, @THE)
WRITF(6420) HPBsANsPORsSYsSKsTH
GRID PARAMETERS - UPSTREAM SEGMENT
DO T I=1sLL
HLP = HFAD
READ(S+11) (HLP(IsJ)wd=1eM)
ZBL - REDROCK ELEVATION
READ(S911) (ZBL(Isd)ed=14M)
CKL = HYDRAULIC CONDUCTIVITY
READ(54+11) (CKL(TeJ)ad=1aM)
KODL = BOUNDARY CONDITION INDICATOR
READ(5+12) (KODL(TIsJ)eJ=1aM)
NNL = CANAL DISTRIRUTION AREA INDICATOR
READ(5+12) (NDL(Isd)ed=1sM)
11 FORMAT (BFA.0)
12 FORMAT (RIB)
7 CONTINUE
GRID PARAMETERS = CENTER SEGMENT
DO B I=1sLC
DO 9 K=1aN
READ(S54+11) (HCP(IsJeK)sJd=1lsM)
ZC = GRID CENTER ELEVATION
READ(Ss11) (ZC(TIwJdsK)ed=1eM)
CKSAT = HYDRAULIC CONDUCTIVITY UNDER FULLY SATURATED CONDITIONS
READ(S+11) (CKSAT(IeJeK)eJd=1leM)
READ(S54+12) (KODC(TIsJsK)eJd=1eM)
e CONTINUE
READ(54+12) (NDC(Tsd)ad=1lsM)
R CONTINUE
GRID PARAMETERS = DOWNSTREAM SEGMENT
D0 17 I=14LR
READ(S911) (HRP(IsJ)sd=1leM)
READ(Ss11) (ZBR(IsJd)ed=1eM)
READ(5+11) (CKR(IsJ)ed=1leM)
READ(5+12) (KODR(TsJd)eJ=1eM)
READ(S412) (NDR(TIsJ)sd=1leM)
17 CONTINUE
WRITE(645)
S FORMAT(40X+*INITIAL WATER TABLE = UPSTREAM®,/)
CALL MATROP(LLeMsHLP)
DO B85 K=14N
DO 86 I=1,LC
DO A6 J=1wM
HTEMP (I« J)=HCP(IsJsK)
86 CONTINUE
WRITE(6477) K
77 FORMAT (4BX+®*INITIAL HEADS AT LEVEL®*s+I4+® OF CENTER®,/)
CALL MATROP(LCsMsHTEMP)
85 CONTINUE
WRITE(6+105)
105 FORMAT (40Xs*INITIAL WATER TABLE = DOWNSTREAM®,/)
CALL MATROP(LRsMysHRP)
WRITE(6+106)
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106

186
177
185

107

205

242
203
241

202

560

570

561

565

571

562

572

660

670

66]

671

662

672

FORMAT (40X #*BEDROCK ELEVATIONS = UPSTREAM®,/)

CALL MATROPI(LLeMesZBL)

DO 185 K=]1sN

DO 186 I=1.LC

DO 186 JU=lsM

HTEMP(I+J)=ZC(TsJrK)

CONTINUE

WRITE(64+177) K

FORMAT (40X+*GRID CENTER ELEVATIONS AT LEVEL®+I4+® OF CENTER®,/)
CALL MATROP(LCs+M+HTEMP)

CONTINUE

WRITE(64107)

FORMAT (40X +*BEDROCK ELEVATIONS = DOWNSTREAM®,/)
CALL MATROP(LReM»ZBR)

WRITE(64205)

FORMAT (40X *HYDRAULIC CONDUCTIVITIES UPSTREAM®,/)
CALL MATROP(LLeMsCKL)

DO 241 K=1sN

DN 242 1=1sLC

DO 242 J=1+M

HTEMP (T +J)=CKSAT(IsJsK)

CONTINUE

WRITE(64+203) K

FORMAT (40X+#SAT., HYDR., CONDUCTIVITIES AT LEVEL®yI4s# OF CENTER®y/)
CALL MATROP(LCeMsHTEMP)

CONTINUE

WRITF (6+202)

FORMAT (40X 9 #*HYDRAULIC CONDUCTIVITIES DOWNSTREAM®,./)

CALL MATROP(LRsMsCKR)

WRITE(6+560)

FORMAT (20Xs ®KODL =5 /)

DO 570 I=1sLL

WRITE(6+565) (KODL(Ted)sJ=1sM)

CONTINUE

DO 571 K=1sN

WRITE(6+561) K

FORMAT (20X+#KODC AT LEVEL®+415+/)

DO ST1 I=1sLC

WRITE(6+4565) (KODC(IsJsK)eJ=1laM)

FORMAT (AT12)

CONTINUE

WRITE (6+562)

FORMAT (20X s #KODR%4 /)

DO 572 1=1sLR

WRITE(6+565) (KODR(IsJ)eJ=1eM)

CONTINUE

WRITE (hs660)

FORMAT (40Xs #*NDL #+/)

DO 670 I=1sLL

WRITE(6:565) (NDL(TIeJ)ed=1lsM)
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CONTINUE e
WRITE (64+66K1) i
FORMAT (40X s ®NDC*®+/) i
DN 671 I[=1+LC 2
WRITE(6+4565) (NDC(Ied)ed=1aM) y
CONT INUE r

WRITE (6+4662)
FORMAT (40X s ®*NDR*®+ /) 5
DO 672 I=1+LR

WRITE(6+565) (NDR(IsJ)sd=1aM)

CONTINUE

C GRID SIZE IN I DIRECTION
UPSTREAM SEGMENT

c

c

c

a0l

802

READ(S5+11) (DXL (I)seI=1sLL)

WRITE(6+801) '
FORMAT (20Xs#DXL*®) :
WRITE(6sB02) (DXL(I)wI=1s12)

FORMAT (2X+12FB,0)

CENTER SEGMENT

803

804

READ(5+11) (DXC(I)sI=1sLC)
WRITE(6+803)
FORMAT (20X #DXC*)
WRITE(6+B04) (DXC(I)sI=1,8)
FORMAT (2XsBFB.0)

DOWNSTREAM SEGMENT

READ(5+11) (DXR(I)#I=1+LR)
WRITE(6+805)
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B05 FORMAT(20XsoDXP®)

WRITE(6+806) (DXRI(I)sT=14s11)

806 FCRMAT(2X411F8,0)

WRITE(6+R06) (DXR(I)sI=12+22)
GRID SIZE IN J DIRECTION

READ(S+11) (DY (J)ed=1aM)

WRITE(6,80T)

B07 FCRMAT(20Xs#NY#)

WRITE (6+B04) (DY (J)eJ=148)
GRID SIZE IN K DIRECTION

READ(Ss1]1) (DZ(K)sK=1eN)

WRITF (6+809)

B09 FORMAT(20Xs#NZ#)

WRITE(AR+810) (DZ(K)sK=1s4)

810 FORMAT(2Xs4FR.0)

GRID SIZE IN I DIRECTION AT RIVER BEND
READ(S+11) (DB(J)ed=1leM)
WRITE(64811)

811 FORMAT(20Xs#DB*)

WRITE (6+804) (DRA(J)eJ=148)
CANAL DISTRIBUTION AREA PARAMETERS
PERCENT INSIDE STUDY REGION

READ (5+130) (PCT(I)sI=1+9)

130 FORMAT(9FA,.2)

WRITF (6+4900)

900 FORMAT(20X«®PCT*#)

WRITE(64130) (PCT(I)sI=1+9)
AREA INSIDE STUDY REGION

READ(5+13) (AREA(I)+I=1+9)

13 FORMAT(AKF10,0)

WRITE (Ae902)

902 FORMAT(20Xs2AREA®)

WRITE(6+901) (AREA(I)+I=149)

901 FORMAT(5Xs9F12,0)

RIVER GRID IN WHICH DIVERSION POINT IS LOCATED
READ (5¢14) (LCAN(I)sI=1+10)

14 FORMAT(1015)

WRITF(6+904)

904 FORMAT (20X e® L CAN®)

WEITE (6+4905) (LCAN(I)}sI=14+10)

905 FCRAMAT(SX+10110)

WRITE(6+950)

RIVER PARAMETERS

950 FORMAT(35X+®RIVER PARAMETERS®,/)

WRITE (64951)

G951 FORMAT(2X s #IRIVH 34X s # JRIVE AN s PRANID® 44X s #RBED® 44Xy #RSLP®)
RTIVER GRID NUMBFRING BREGINS WITH 6 IN THE FURTHEST UPSTREAM GRID OF THE MONEL
THE FIRST 5 NUMBERS ARE RESERVED FOR INDICATION BOUNDARY CONDITIONS IN
AQUIFER GRIDS.

DO 22 I=6sLRIV
T=RIVER GRID SURSCRIPT (USED AS ROUNDARY CONDITION INDICATOR)
IRIVsJRIV = GRID LOCATION IN I+JsDIRECTIONS ( IN 3=D SEGMENT RIVER GRIDS

ARE LOCATED IN THE UPPERMOST LAYER OF GRIDS )

RWID = WIDTH OF CHANNEL

RRED = ELEVATION OF CHANNEL BED

RSLP = CHAMNEL RED SLOPE
READ(5+15) TRIV(I)sJRIVI(T)+RWID(1)+sRBREDN(I) +RSLP(I)
WRITE(6415) IRIVII)«JRIV(I)+RWIDII)+RBED(I)sRSLP(I)

15 FCRMAT(218+2F8,04F8.6)

RSO - PATE OF SFEPAGE FROM RIVER
RSO(T1)=0.0

22 CONTINUE
DO 23 I=1.5
IRIVII)I=IRIV(H)

JRIVII)=JRIV(6)

RWID(I)=RWID (&)

RRED(I)=RRED(6)

RSLP(I)=RSLPI(6)

REO(I)=0.0
23 CONTINUE
ARRAYS OF VALUES OF DISCRETIZED CURVES OF RELATIVE PERMEABILITY AND
SATURATION AS FUNCTIONS OF HEAD
RELATIVE PERMEARILITY

READ(S5+16) (FKFACI(I)sI=1+NADY)

16 FORMAT(10FS,.3)

WRITE (A+960)

HSTEP=STEP=0.5 FEET=--==DEFINED IN KFNP AND ADJUST
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960 FORMAT(20Xs®FKFAC®)
WRITF(6+961) (FKFAC(I)«I=1.NADJ)
961 FCRMAT(10X+20F6,3)
C SATURATION DERIVATIVF
READ(5+16) (SDRIV(I)«I=1eNADJ)
WRITF (A+962)
962 FORMAT(20X+#SDRIV®)

WRITF(6+4961) (SDRIV(I)sI=1«NADJ)

CONTINUE

RETURN

END

SUBROUTINE RCON (JUMP)

COMMON LCsMsNsLRLsLRMsLRIVsNADJsNCANsHPB+SKsTHeSYsAN+sBSCsVTsPOR»
2TIMESsTCONsDT+C(384) 4DXC(8) +DY(8B)sNZ(4)+DR(8B) s IRIVI4T) s JRIVI(4T) »
JRABED(47) +RWID(4T) sRSLP (4T) +QRIV(4T) DIV (4T) sRSO(4T) s VMS(4T)
AVMB (47) +SDRIV(20) «FKFAC(20) +CDV(9) 4PCT(9) s AREA(9) s LCAN(10)»
SQUMD (3) +QLAM(3) vQKAN(3) +CM(3B4+49) ¢NDL(12+8) 4NNC(B+8) «NDR(22+8) »
GHTEMP (B4R ) +QTC(B+B) +KONCiB4B8y4) yHCP (AeBs4) +ZC(BeBsé) «CKC(BeBob)y
TCKSAT(BeBya) 4NSDHP (BsB &)

COMMON /A7 LLsDXL(12)«¥ODL(12+8)+CKL(12+B)sHLP(12+B)+ZRL(1248)
20TL(12+8)

COMMON /R/ LPsDXR(22) +KODR(22+8) sCKR(22+B) +HRP (22+8B) +ZBR(22+8) »
2QIR(22+8)

CHOCEODOBRBDVBOLRRDRGOHOCDDOOBDRBODEBBIDEEBROEBDNBBBBOBONBDEQDROBBORDD
THIS SURROUTINE READS IN ROUNDARY CONDITIONS AT THE BEGINNING OF

FACH TIME INCREMENT AND COMPUTES DISCHARGF AND HEAD IN EACH RIVER GRID
AMD SURFACF INFLOW FOR EVFRY SURFACE GRID., DATA VALUES ARE READ FROM
PUNCHED CARDS. CARD FORMATS ARE INDICATED IN THIS SUBROUTINE FOR EACH
ROUNDARY PARAMETER,
sasesopatocootoooatesooodeDeBstRRDORRDOCRORRORBICEDORPRERbROCORRERBOBEDE

OO0 O00O0

JUuMp=1
IF (JUMP,GT.1) GO TO 16
0T=0,0
READ (5510) (QUMD(I) +QLAM(T)sQKAN(I)sI=1+3)
10 FORMAT(9FR,1)
AT=QJUMD (1) +QUMD (2) +QJIMD (3)
QUMD (JUMP) = (QUMD (1) +QUMD(2) +QUMD (3)) /3,0
QLAM(JUMP)=(QLAM(]1) +QLAM(2) +QLAM(3) ) /3,0
QKAN(JUMP) = (QKAN(]) «QKAN(2) *QKAN(3)) /3,0
REAND(S+11) ETsPRECIP
11 FOPMAT(2FB.2)
READ (S5+12) (CDV(I)+I=1+NCAN)+ BSC
RSC=RSC*],25
12 FORMAT(10F6.0)
CONVERSTON TO CURIC FEET PER DAY OR FEET PER DAY
C TINCHES PER MONTH TO FEET PER DAY
ET=ET/360,0
PRECIP=PRECIP/360.0
00 A I=1+NCAN
C ACRE FEET PER MONTH TO CURIC FEET PER DAY
COVIiT)=CDV(1)®43560,0/30,0
A CONTINUE
C ACRE FEET PFR MONTH TO CUBIC FEET PER DAY
RSC=RSC*43560.0730.0
C ADDITION OF 10 CFS TO LAMAR CANAL FROM POWER PLANT
COV(&)=CDV(4)+B64000,0
C WATER TABLE FLUCTUATIONS IN EDGE GRIDS
HLP(9+1)=HLP(9+1)=0,05
HLP(10s1)=HLP(10+41)=0.05
HLP(12+]1)=HLP(12+s1)+0,03
HLP (RsA)=HLP (A+8)+0,10
HLP(9+R)=HLP(9+8)~0,05
HLP({11+8)=HLP(11+8)~-0.10
HCP(291)=HCP(2+«1)+0,04
HCP (4+]1)=HCP(44+1)+0,04
HCP (5+1)=HCP (54+1)+0,09
HCP (Bs1)=HCP(841)+0,06
HCP(1+R)=HCP(1+8)+0.,05
HCP(3+R)=HCP (3+8)+0,10
HCP (4+8)=HCP (44+8)+0,05
HCP (/AsAR)=HCP (6+B)+0,07
HCP (AyA)=HCP (ReB)+0,10
HRP (Ts1)=HRP(T»1)+0,07
DO 26/ 1=RAs1]
HEP (Tol)=HRP (I41)+0,02

'z ]
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2h CONTINUE
HRP(I+1)=HRP(T+1)+0,02
26 CONTINUE
HRP{12+1)=HRP(12+s1)+0,07
DO 27 I=13,18
HRP (T+1)=HRP(I+1)+0.04
27 CONTINUE
HRP (19411 =HRP(194+1)+0,12
HRP (2041)=HRP (20+1)+0.18
HREP (21+1)=HRP(2141)+0,15
HRP (2+R)=HRP(2+8)+0,08
HRP (3+8)=HRP (348) +0,10
HRP (5+B)=HRP (548)+0.09
HRP (AsR)=HRP (648)+0,03
HRP (T+R)=HRP (T7+8)+0,07
HRP (8+R)I=HRP (B48)+0,20
HRP ({13+A)=HRP(13+B)+0.05
HRP (1648)=HRP{16+8)=0.06
HFP (17+B)=HRP(17+8)=0,.05
HRP (18+8)=HRP(1848)=0,03
HRP(2142)=HRP(214+2)+0.10
HRP(21+3)=HRP(21+3)+0,02
HRP(2)44)=HRP (2144)=0,01
HRP (21 +5)=HRP (21+5)=0.01
HRP (21 +6)=HRP (214+6)=0.03
HEP (21eT)=HRPP (2147} =0.05
WETIGHTING FACTOR FOR DIVFRSIONS BASED ON JMD RELEASES
16 FAC=3,0#QJMD (JUMP) /0T
COMPUTATINN OF SURFACE INPUT (CUBIC FEET PER DAY)
DO 20 I=la.LL
DO 20 J=1wM
NA=NDL (TeJ)
IF(NA.EQ.0) GO TO 21
QIL(T+J)=(PRECIP=ET)®DXL (I)®DY (J)+CDV (NA)2FAC®*PCT (NA) #DXL (1) #®
20Y (J) /AREA (NA)
GO To 20
21 QIL(I+)=(PRECIP-ET)#DXL (I)#DY (J}
20 CCNTINUE
DC 30 I=lsLC
D0 30 J=lwM
NA=NDC (TsJ)
IFINA.FQ.0) GO TO 31
QIC(T+)=(PRECIP=ET)®DXCI(I)*DY (J) +CDV(NA)®FAC*PCT (NA)#DXC(I)*
2DY(J)/AREA (NAY
GO TO 20
31 QIC(TsJI=(PRECIP=ET)I®#DXC(I)*DY (J)
30 CONTINUE
DO 40 I=l.LR
NO 40 Jslam
NA=NDR (TeJ)
IF(1.EQ.B) DXR(TI)=DR(J)
IF(NALEG.D) GO TO 41
QIR(I+J)=(PRECIP=ET)SDXR(I)®DY (J)+COV (NA)FACHPCT (NA)#DXR(I)#
2DY (J) ZARF A (NAY
GO TO 40
41 QIR(I«J)=(PRECIP=~ET)®#DXR(I)=DY (J)
40 CONTINUE
SPECIAL CASES
LAMAR WELLS
QIC(4+3)=QIC(4+3)=432000.0
QIC(424)=QIC (4+4)=-432000,0
RIG SANDY CREEK DISCHARGE FROM GRIDS
QIR (5+6)=NIR(5+6)~0,05%#RSC
OIR(S+T)1=QIR(S5+T)=0,10%#RSC
DO 601 I=1sLL
DO 601 J=14+M
IF(NDL(T9J) cER.O0) QIL(T»u)=0,0
601 CONTINUE
DO 602 I=1sLC
DO 602 U=1+M
IFI(NDCI(TI+J) .EQ.0) QIC(IsJ)=0,0
602 CONTINUFE
DO 603 I=1sLR
DO 603 JU=1+M
IF(NDR(I+J).EQ,0) QIR(I»J)=0,0
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603 CONTINUE
RIVER FLOW CALCULATIONS
LAMAR GAGING STATION IS LOCATED AT RIVER GRID NO. 20
DIVERSINNS =~ CONVERT TO CFS
DO &7 I=1+LRIV
DIVII)=0,0
47 CONTINUE
DC 57 I=1+NCAN
L=LCANI(]I)
CANAL DIVERSIONS CONVERTED TO CFS
DIV(L)=DIV(L)+CDV(I)®FAC/86400,0
57 CONTINUE
L=LCAN(10)
RIG SANDY CREEXK TRIBUTARY INFLOW
BIG SANDY CREEK DISCHARGE CONVERTED TO CFS
DIVIL)=DIV(L)=RSC/86400.,0
CALCULATIONS OF FLOW AT ALL RIVER SECTIONS
QRIV(20)=QLAM(JUMP)
D=(QRIV(20)®AN/(]1.4B6*RWID(20) #SQRT(RSLP(20))))®*0,6
I=IRIV(20)
J=JRIV(20)
HCP(IsJsN)=RRED(20) +D
DO 67 I=1y14
RIVER FLOWS UPSTREAM FROM LAMAR
L=20~1
QRIVIL)=0ORIV(L+1)+DIVI(L*1)+0,5/8B6400,0®(RSO(L+1)+RSO(L))
IF(QRIVI(L) 4LT4040) QRIVIL)=0,0
D=(QRIVIL)®AN/ (1 . 4BE6*RWID(L) *SQRT(RSLPI(L))))®®0,6
IG=IRIVI(L)
JE=JRIV L)
IF(L+GT.LRL) GO TO 62
HLP (IG+JG)=RRED(L)+D
GO TO 67
62 HCP(IG+JGsN)=RBED(L) +D
67 CONTINUE
DO 77 L=21+4T7
RIVER FLOWS DOWNSTREAM FROM LAMAR
QRIVI(L)=QARIVI(L-1)-DIVI(L)~0,5/B6400,0#(RSO(L=-1)+RSO(L))
IF(QRIV(L) «LT.0.0) QRIVI(L)=0,0
D=(QRIVIL)®AN/ (1.4B6*RWID(L)=SQRT(RSLP(L))))®*=0,6
IG=IRIVI(L)
JG=JRIVIL)
IF(L.GT.LRM) GO TO 72
HCP(IGwsJGeN) =RREDI(L)+D
GO TO 77
72 HRP(IG+JG)=RBED(L)+D
T7 CONTINUE
WRITE(6+4206)

206 FORMAT (12X+#Q0UMD®+IX+2QRIVIL)®412X+#QLAME |2X s 2QKANB2BXs2QRIV(47)®

Pe2Xe B JUMPEB 4 Xy 8T IME®)

WRITE(64207) QUMD (JUMP) +QRIV(6) s QLAM(JUMP) s QKAN (JUMP) s QRIVILRIV) »

2JUMP o TIME
207 FORMAT(S5F16.2+15+F10,2)
JUMP=JlJMP + 1
IF (JUMP,G6T,.3) JUMP=]
RETURN
END
SUBROUTIME SCRIBE

COMMON LCsMsNsLRLILRMsLKRIVsNADJsNCANsHPB+SKsTHsSYsANsBSCsVT+PORs
2TIME«TCONsDT+C (384) yDXC(B) sDY(8) +sDZ(4)sDRI(B) s IRIVI&T) 2 JRIV(AT)
3RBED (47) yRWID(47) sRSLP(47) sQRIV(4T) DIV (4T) sRSO(4T) s VMS (4T ) »
AVMB (4T) 4 SDRIV(20) +FKFAC(20) +CDV(9) +PCT(9) +AREA(9) sLCAN(10) s
SQUMD (3) 4 QLAM(3) «QKAN(3) +yCM(384449) 4NDL (12+8) «NDC(Bs8) sNDR(22+8) s
6HTEMP (BsB) +QIC (BsB) sKODC (BsBs4) sHCP(BsBs4) s ZC(BsRs&) yCKC(BrBak)

TCKSAT(BsBe8) 4NSDHP (AR 4)

COMMON A/ LL+DXL(12)+KODL(1248)sCKL(12+8)sHLP(129B)sZBL(12+8)»

20TL(124+8)

COMMON /R/ LR+DXR(22)+KODR(22+B) +CKR(22+8) s HRP (22+8) +ZBR(22+8)»

2QIR(22+8)

ARGEHBRVORRBCORORDVEOBRGEORCRCORNORODANCRBRGHDERGBBRRORRCRADDORBRBDERD

THIS SUBROUTINE PRINTS OUT INTERMEDIATE AND FINAL RESULTS»
RIVER DISCHARGES AND WATER TABLE ELEVATIONS.
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O0O000O0

987

T4

75

a6
77
as

76

42
103
41

400

401

4n2

561
565
571

70

o

T2

22

DIMENSIONS OF B MUST MATCH DIMENSIONS OF VARIABLE CALLED FROM MAIN PROGRAM

se
TH
IN

WRITE(6+987)

FORMAT (/77 95X 9 ® X X000 XK 00K00CX00CXK 0000000000000 X X X
EXXXXXXXXX XXX AXXX XXX RAXAXRXK Sy /)
WRITE(6+74&) TIME

FORMAT (SX+2TIMF=2,F10.2+//)

WRITE(6475)

FORMAT (40X+#WATER TABLE ELEVATIONS UPSTREAM®,/)
CALL MATROP (LLsMsHLP)

DO BS K=]l.N

DO 86 I=1.LC

DO B6 J=1+M

HTEMP (IsJ)=HCP(1sJsK)

CONTINUE

WRITE(6+77) K

FORMAT (48X s #HEADS AT LEVEL®+15+2X+#0F CENTER®,/)
CALL MATROP(LCw+MsHTEMP)

CONT INUE

WRITE(6:76)

FORMAT (40X +*WATER TABLE FLEVATIONS DOWNSTREAM®,/)
CALL MATROP(LRsMsHRP)

DO 4] K=1sN

DO 42 I=1.LC

DO 42 J=1sM

HTEMP (14J)=CKC(IsJeK)

CONTINUE

WRITE(6+4103) K

FORMAT (40X +#CONDUCTIVITIES AT LEVEL*®#415+2Xe®0F CENTER (FT/DAY)®,:/)
CALL MATROP(LCsMsHTEMP)

CONTINUE

WRITFE (6+400)

FORMAT (40X+2SURFACE FLUX UPSTREAMy CFD#,/)
CALL MATROPI(LLsMsQIL)

WRITE(As40])

FORMAT (40X +#SURFACE FLUX CENTERs CFD®4/)

CALL MATROP(LCsMsQIC)

WRITE (6+402)

FORMAT (40X ®SURFACE FLUX DOWNSTREAMs CFD®4/)
CALL MATROP(LR«MsQIR)

DO S7T1 K=1sN

WRITE(As561) K

FOPMAT (20X+2K0DC AT LEVEL®+I5+/)

DO 571 I=1sLC

WRITE (A«565) (KODC(TsJeK)sJ=1sM)

FORMAT (RTI12)

CONT INUE

WRITE (AsT0)

FORMAT (10X 9 #SECTION®s 10X+ #RIVER FLOWs CFS®y 10X+ ®#SEEPAGE RATE OUT,
2ACRE=-FEET/DAY®4/)

DO T2 L=6sLRIV

RSO(L)=RSO(L)/43560.0

WRITE(6+T1) LsQRIVIL)sRSO(L)

FORMAT (S5X9T10+F25.24F30.2)
REO(L)=RSO(L)*43560,0

CONTINUE

VT=vT/43560.0

WRITE(6+¢22) TIMESVT

FORMAT (SXs®TIME=%+F10,2+5X+*TOTAL VOLUME OF SEEPAGE IN TIME INCREM
2ENT=24F20,.3+5Xs2ACRE=FEET®2,/)

VI=VT®#43560.0

RETURN

END

SUBROUTINE MATROP (NRs NCs B)

DIMENSION RI(NRsNC)sA(B)

L T T T T T g R g e,
IS SURROUTINE ARRANGES TwWN=DIMENSIONAL AND THREE-DIMENSIONAL ARRAYS
A STANDARD FORM FOR PRINTOUT,

L T R T T R T e

DC 11 I=1sNC.B

IN=1/8

DO 9 J=1sNR
IF((IN+1)#B.LF.NC) 143
DO 2 JJ=1+8
JJUJ=IN®B+ U

57



OO0 0O00

2 AlJJ)I=B(JvJIJ)
GO TO 6
3 LL=NC=8%IN
DO 4 Ju=1sLL
JUJ=IN®8+JJ
4 AtJJ)=B(JsJUY)
LL=LL+]
DO 5 JJ=LL+B
AlJJy)=0,0
IF (A(1).,LT.0,001) GO TO 1l&
IF (IN) TeTs8
WRITE(6+12) (A(II)sII=148)4J
GO TO 9
WRITE (6+12) (A(II)eII=1+8)» IN
GO TO 9
14 IF(IN) 15415416
15 WRITE (6+17) (A(II)sII=1s8)s J
GO To 9
16 WRITE (6+17) (A(II)sII=1+8)y IN
9 CONTINUE
IF(NCoLE. (IN«1)®#8) 11410
10 WRITE (6+13)
11 CONTINUE
12 FORMAT(1H #BF15.2+14)
13 FORMAT (1HO0«//)
17 FORMAT (1H +RF15,2+14)
RETURN
END
SUBROUTINE MATSOL
COMMON LCsMaNsLRLsLRMsLRIVINADJsNCANsHPBsSKsTHsSYsANsBSCsVT+POR
2TIMEsTCONsDT+C(384) +DXC(B) 9DY(B)sDZ(4)sDR(B)+IRIVIST) s JRIVI(4T) s
3RBED (47) sRWID(4T) sRSLP(47) +QRIV(47)4DIV(4T) sRSO(4T) yVMS(4T) s
AVMB (4T)+SDRIV(20) s FKFAC(20)+CDV(9) sPCTI(9)+AREA(9) s LCAN(10)»
SQUMD (3) +ALAM(3) sQKAN(3) sCM(3B4449) «NDL (12+8B) 4NDC(B«8) sNDR(22+8) »
GEHTEMP (B+B) 9QIC(B+8B) «KODC(BsBs &) sHCP (BsBos) v ZC(BuBs&) sCKC(BoBod) o
TCKSAT(BsBe4) +DSDHP (B3B8 4)
COMMON /A7 LL+DXL(12)+KODL(12+s8)+CKL(12+s8)sHLP(12+8)+ZBL(12+sB)+
20IL(12+8)
COMMON /B/ LRsDXR(22)sKODR(22+8)+CKR(2248) +HRP (22+8)+ZBR(22+8)»
2QIR(22+8)

] ~ o n

L L T Y T T T T T ey

THIS SUBROUTINE SETS UP THE COEFFICIENT MATRIX AND THE RIGHT HAND SIDE
COLUMN VECTOR FOR SOLVING THE GROUNDWATER FLOW EQUATIONS. THIS

SUBRQUTINE IS ARRANGED FOR SETTING UP A COEFFICIENT MATRIX FOR A THREE-
DTMENSTIONAL GRID SYSTEM INTERFACED ON EACH END IN THE I DIRECTION

WITH TWO=DIMENSIONAL GRID SYSTEwmS, THE VALUE OF M MUST BE EQUAL T0O THE
NUMBER OF GRIDS IN A ROW ACR0OSS THE MODEL IN THE J DIRECTION., TO MINIMIZE
COMPUTER TIME AND STORAGE NFEDED TO SOLVE THE MATRIX OF GROUNDWATER FLOW
EQUATIONS, THE VALUE OF M SHOULDs IF POSSIBLEs» CORRESPOND TO

THE SMALLEST LATERAL GRID DIMENSION OF THE ENTIRE MODEL GRID SYSTEM.

GROOBDCORNDADDORVREBBGRDODRDOVBRROODOROOBBOBORDBVDRONVDBHOIBVORBVODOBS

ISIDE=1

NA=(M=2)@((LL=1)+LC®N+(LR=1))

NE=26 (M=2) &N+ ]

MSUR=M

DO 7 I=1sNA

CtI)=0.0

DO T J=1.NB

CM(Ted)=0,0
7 CONTINUE

LRLL=LRL+1

DO B8 L=LRLLsLRM

I=IRIVI(L)

JEJRIVIL)

VMBIL)=SK® (((HCP(IsJsN)~RBED(L))~HPB)+TH)/TH

VMS (L) =SK# ((HCP(TvsJsN)=-RBRED(L))~HPB)#0,5/TH
A CONTINUE

LREG=1

LEND=(M=2)® (LL=-2)

CALL SIDE (LBEGeLENDsLLsKODL+CKL9HLP+ZBLsDXL+QIL +MSUB)

LREG=LEND-]1

LENND=LEND+ (M=2)

CALL STRAN (LBEGs+LEND+LL+KODLsCKL+HLP+ZBLDXLsQILYMSUBISIDE)

LAEG=LEND]
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LEND=LEND+ (M=2) #N

CALL CTRAN (LBEG+LENDsLL»KODL9CKLYHLP»ZBLsDXLsQIL»MSUByISIDE)

LBEG=LFND+1

LEND=LEND+ (M=2)&N® (| C=2)

CALL CENTER (LBEGsLEND)

LBEG=LEND+1

LEND=LEND+ (M=2) &N

ISIDE=2

CALL CTRAN (LBEGsLENDsLR+KODRsCKRsHRPsZBRsDXRsQIRsMSUB,ISIDE)

LBEG=LEND+1

LEND=LEND+ (M=2)

CALL STRAN (LBEG+LENDsILRyKODRsCKRsHRP+ZBRsDXRsQIRIMSUBsISIDE)

LREG=LEND+1

LEND=LEND+ (M=2)# (LR=2)

CALL SIDF (LREG+LENDsLR+KODRyCKRsHRP+ZBRsDXRsQIRsMSUR)

CALL BSOLVE(CMsNAsNBsC)

LRR=LR=1

MR=M=1

NT=0

DO 70 1=2sLL

DO 70 J=2sMR

NT=NT+1

HLP (TsJ)=C(NT)

70 CONTINUE

DO 71 1I=1sLC

00 71 J=24+MR

DO 71 K=14N

NT=NT+1

HCP (IoJeK)=C(NT)

71 CONTINUE

DO 72 I=1s+LRR

DO 72 J=2+MR

NT=NT+1

HRP (I+J)=C(NT)

T2 CONTINUE

RETURN

END

SUBROUTINE SIDE (LBsLEsLSyKODSyCKS+HSP+ZRSsDXS»sQISaMS)

DIMENSION KODS(LSsMS) +sCKS(LSsMS) yHSP(LSIMS) 9 ZBS(LSaMS) sDXS(LS) »
20IS5(LSeMS)

COMMON LCoaMaNILRLSLRMsLRIVsNADJsNCAN«HPBySKsTHeSYsANsBSCoVT+PORY
2TIMESTCONsDT2C(384) yDXC(R) +DY(R) «DZ(4) sDR(B) s IRIVIGT) s JRIVI(4T)
3RBED (47) sRWID(4T) s RSLP(47) +QRIV(4T) aDIV(4T) sRSO(4T) s VMS (4T ) »
4UMB (47) sSDRIV(20) +FKFACI(20)+CDV(9) sPCT(9) +AREA(9) s LCAN(10)»
SQAUMD (3) +QLAM(3) s QKAN(3) s CM (384 449) o NDL (124+8) 4 NDC(848) +NOR(22+8) »
GHTEMP (BeRB) +QIC(A8) +KODC(B4Bs4) sHCP (BB a4 ) 9 ZC(BeBs&) sCKC(BeBok) o
TCKSAT(BeBs4) 4y DSOHP (R9B44)

T e R T T L R R T R R R T W S R T P S g g g g gy
THIS SUBROUTINE IS CALLED FROM MATSOL TO COMPUTE COEFFICIENTS AND COLUMN
VECTOR VALUES FOR THOSE GRIDNS IN THE TWO-DIMENSIONAL MODEL SEGMENT THAT
ARE SURROUNDED ON ALL SIDES BY OTHER TWO-DIMENSTONAL GRIDS.

LA AL R R Ry LR R L R R R - L R R R L

PERM(CK]1sCK29HL1oZ1aH2+Z2e XYsDXYLoDXY2)= (2., 0#CK]1H#CK2* (H1=21)%(H2~22
2I%XY) /(DXY2*CK1* (H1=Z1) +DXY1#CK2#% (H2=-Z2))

IM= (M=2) #N+1

IC=1M=1

IN=1M+1

IA=IM= (M=2)

IR=IM+ (M=2)

LSR=LS~-1

MR=M=1

DO 8 I=24LSR

DO B J=2+MR

IF(ISINDE.EQ.2.AND.T.EQ.8) DXS(I)=DRI(J)

IF(KODS(I+J) eEQel.0R.KODS(IvJ).GE.6) GO TO 60
IF(CKS(IeJ)alLTL0,005) GO TO 60
CHMLBsTA)=PERM(CKS (TsJ) sCKS(I=10d) sHSP(TsJ) sZBS(I+J)sHSP(I=1sJ)s
2ZBS(I=1+J)sDY(J) 9DXS(I)»DXS(I=1))
IF(KODS(TI=1sJ) uNE.]1 ANDKODS(I=1sJ).LT.6) GO TO 20
CM(LRsIM)=CM(LBsIM)=CM(LBsIA)

C(LR)=C(LR)~HSP(I=1+J)#CM(LB+IA)

CM{LB+IA)Y=0,0

20 CM(LBsIR)=PERM(CKS(Isd) sCKS(I+1aJ)yHSP(IeJ) ¢+ZBS(IeJ) sHSP(I*1sd) s

SIZBS(I+1+5J)sDY(J)sDXS(I)sDXS(I+1))
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IF(KODS(I+19sJ) eNEo1.ANDKONS(I+1eJ)LT.6) GO TO 30

CM(LReIM)=CM(LBs IM)=CM(LBsIB)

C(LB)=C(LB)=HSP(I+14+J)=*CMI(LB+1IB)

CM(LR+IB)=0,0

30 CM(LR+IC)=PERM(CKS{IsJ)sCKS(IoJ=1)sHSP(IsJ)eZBS(IeJ)sHSP(IsJ=1)s
2ZBS(I+J=1)+DXS(I) DY (J)sDY(J=1))

IF (KODS(TeJ=1) s NEo 1, ANDKODS(IsJ=1)eLT.6) GO TO 40

CM(LRsIM)=CM(LBsIM)~CM(LB+IC)

C(LB)=C(LR)=HSP(IsJ=1)*CM(LBsIC)

CM(LBsIC)=0,0

40 CM(LP»ID)=PERM(CKS(T9J)oCKS{IoJ*+1) sHSP(IsJ)9ZBS(IvJ)sHSP(IsJel) s
CZRS(ToJ+1)9DXS(T) DY (J)sDY(J+1))

IF(KODS(TeJe*l) uNE.1,AND.KODS(IsJ*1).LT.6) GO TO SO

CM(LRyIM)=CM(LBesIM)=CM(LEID)

CILR)=C(LB)=HSP(IsJ+1)2CM(LByID)

CM(LR+ID)=0,0

50 CM(LRyIM)=CM(LBsIM)=(CM(LByIA)+CM(LBsIB)+CMILB+IC)+CMI(LBsID) )~
2DXS(1)*DY (J)*SY/DT

C(LB)=C(LB)=HSP(I+J)®#(DXS(I)®DY(J)®SY/DT)=QIS(I+J)

GC TO 70

60 CM(LRyIM)=1.0
CILR)=HSP(I+J)

T0 LR=LR+1
LBR=LB~1

8 CONTINUE

LCK=LA=1

IF(LCK.NEL.LE) WRITE(64+7T)

77 FORMAT(S5X+%ERROR IN LOOP INDEX IN SUBROUTINE SIDE®:/)

RETURN

END

SUBROUTINE STRAN (LRsLE+LS+KODS+CKSsHSP+ZBS+DXS+QIS+MS+ISIDE)

DIMENSION KONS(LS+MS) 2CKS(LS+MS) +HSP(LS+MS) s+ ZBS(LS+MS) +DXS(LS) »
2QIS(LSwMS)

COMMON LCoMsNsLRLsLRMsLRIVINADJsNCAN«HPBsSKsTHsSY»ANsASCsVTsPOR
2TIME»TCONSDT4C(384) +DXC(R) DY (B) +DZ(4)sDR(B) s IRIVI(AT) s JRIV(4T) »
JRBED(47) +sRWID(4T7) sRSLP(4T) +vQRIV(4T) sDIVIAT) sRSO(4T) 4 VMS(4T) »
A4VMB (47) +SDRIVI20) +FKFAC(20) +CDV(9) +PCT(9) vAREA(9) s LCAN(10) »
SQUMD (3) s QLAM(3) s QKAN(3) sCM(3B4449) o NDL (12+8) yNDC(B4A) «NDR(2248) »
6HTEMP (R4B) 29QIC(BeB) +KODCIByBab) yHCP(BoB44) +ZC(B4844) 4CKC(BeBo& )y
TCKSAT (BeRsé) 4 DSDHP (B9 84 4)

L L T T T T T T
THIS SUBROUTINE IS CALLED FROM MATSOL T0 COMPUTE COEFFICIENTS AND COLUMN
VECTOR VALUES FOR GRIDS IN THE TWO-DIMENSTONAL MODEL SEGMENT THAT ARE
ADJACENT ON ONE SIDE TO A COLUMN OF GRIDS IN THE THREE=-DIMENSIONAL MODEL

SEGMENT.
BOHRBRBROORORBONRNBNBTBORBORNORNN0NNBRBONNODNREBIDOCROROERORONOBONODDY

PERM(CK]1 9sCK2eH1 9Z1aH2oZ2 o XYsDXY1sDXY2)=(2.0°CKL®*CK2®* (H]1~Z]1)® (H2~-22
2)8XY) /(DXY2HCK1®#(H1=Z1)+DXY1#CK2#%* (H2=~22))
TPERM(CK1sCKPeH13Z) s STASXYsDX1sDX2)=(2,0#CK12CK2% (H1=2])2STASXY)/
2(DX2#CK1®(H1=Z1)+DX]1®#CK22STA)
IM=(M=2) #N+1
IC=1M=]
IN=TMe+]
MR=M=]
GO TO (15+16) ISIDE
15 1S=LS
I=1
IA=IM=~(M=2)
GO TO 17
16 IS=1
I=LC
IB=IM+ (M=2)
17 DO 8 J=2sMR
IF(KODS(1SvJ) EQ,1.0R.KONS(ISsJ) .GE.E) GO TO 90
IF(CKS(ISsJ) LTL.0.005) GO TO 90
CM(LRsIC)=PERM(CKS(ISsJ) sCKS(ISsJ=1)+HSP(ISeJ)+ZBS(ISsJ) sHSP(ISsJ=
21) 9ZRS(1SsJ=1)sDXS(IS)+DY (J)sDY (J=1))
IF(KODS(ISsJ=1) «NE. 1. AND . KONS(ISed=1).LT.6) GO TO 20
CH(LBsIM)=CM(LBsIM) -CM(LPsIC)
CILB)=C(LB)=HSP(ISsJ=1)2CM(LAsIC)
CM(LBsIC)=0.0
20 CM(LRsID)=PERMI(CKS(ISsJ) +CKS(ISaJ+]1)sHSP(IS+J)+ZBS(ISeJ) sHSP(ISsJe
21 s ZRS(ISsJ+1) s DXS(TIS) sDY(J)eDY (J*]1))
IF (KODS(ISsU+1) eNEL1.AND,KODS(ISeJ+1).LT.6) GO TO 30
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CM(LAsIM)=CM(LRsIM) =CM(LR+1ID)
C(LB)=C(LR)~HSP(IS+J+1)=CM(LB»ID)
CM(LBs1ID)=0.0

30 CM(LRsIM)=CM(LBs IM) =(CM(LB+IC)+CM(LB+ID))

GO TO (40460) ISIDE

40 CM(LPsTA)=PERM(CKS(ISesJ)sCKS(IS=1+J) sHSP(IS+J)sZBS(ISsJ) sHSP(IS~1»

2J)9ZBS(IS=19J) sDY (J)sDXS(IS) s DXS(IS=1))
IF(KODS(IS=1+J) «NEo1oaANDKNDS(IS=1+J)4LTus6) GO TO 45
CM(LRy IM)=CM(LBs IM) =CM(LBsIA)
CILR)=C(LB)=HSP(IS~=1+J)2#CM(LBs»IA)

CMILR»1A)=0,0

45 CM(LR+IM)=CM(LBsIM)=CM(LBsIA)

BRK=ZC(I+Js1)=0,5%D7(1)
DO 107 KI=1lsN
IF(CKSAT(I9JsKI) oL T.0.005) BRK=BRK+DZ (KI)

107 CONTINUE

STC=HCP (I +JsN)=BRK

DC 55 K=1sN

IB=IM+ ((M=1=J) +(J=2)=N+K)

IF(STC.LE.0.0) GO TO 49

TOP=ZC(T1sJsK)+0.5%DZ(K)

BOT=ZC(TsJsK)=0.5#DZ (K)

IF(BOT.GF .HCP(I+JsK)) GO TO 49

IF(TOP.GT.HCP(19JsK) 4ANDBOT.LT4HCP(IsJsK)) GO TO 46
CM(LB+IR)=DZ(K)/STCETPERMI(CKS(IS»J) +CKSAT(IrJeK) sHSP(ISsJ) +ZRS(ISH
2J)»STCHDY (J) 2 DXS(IS)sDXC(I))

GO TO 47

46 DZR=HCP(I+JsK)=BOT

CM(LB+»IB)=DZR/STCE*TPERM(CKS(ISsJ) +CKSAT(I9JsK) sHSP(IS»J) +ZBS(ISeJ)
29STCsDY (J)+DXAS(IS) »DXC(I))

4T IF(KODC(T+JeK)oNEL1) GO TO 50

49
50
55

60

65

207

66

CMILBs IMI=CM(LRsIM) ~=CM(LRs+1IB)
C(LB)=C(LB)=-HCP(IsJsK)}=CM(LEsIB)

CM(LR+IR)=0,0

CM(LReIM)=CM(LBsIM)=CM(LRsIB)

CONTINUE

G0N TO 80
CM(LR+IB)=PERMI(CKS(TISsJ) sCKS(IS*+1+J) sHSP(ISsJ) s ZBS(ISsJ) sHSP(IS+1,
2J)9ZBRS{IS+1eJ) oDY(J)eDXS(IS)sDXS(IS+1)1)
IF(KODS(IS+1eJ) aNEa 1 AND.KNDS(IS+1eJ)4LT6) GO TO 65
CM(LRs IM)=CM(LBs IM)=CM(LB+1IB)
C{LR)=C(LB)=HSP(IS+1+J)=*CM(LBsIB)
CMILBsIM)=CM(LBsIM)=CM(LBs]IB)
BREK=ZC(IsJel)=0,5%D2(1)

DO 207 KI=1sN

IF(CKSAT(T9JoKI)oLT.0,005) BRK=BRK+DZ (KI)

CONTINUE

STC=HCP(T1s+JsN)=BRK

DO 75 K=1sN

IA=TM=((J=1)+(M=1=J)#N+ (N=K))

IF(STC,LE.0.0) GO TO 69

TOP=ZC(I1+JsK)+0.5%D7 (K)

BOT=ZC(TeJesK)=0.5%DZ(K)

IF(BOT,GE.HCP(I+JsK)) GO TO 69

IF(TOP.GT ,HCP (T e JeK) sAND.BOT,LT.HCP(I+JsK)) GO TO 66
CMILBe2IA)=DZ(K) /STCSTPERM(CKS(ISsJ) +CKSAT(IsJsK) sHSP(ISsJ)+ZBS(ISy

2J)2STCHDY (J) 9DXS(IS)eDXC(I))

GO TO 67
DZR=HCP (I1+JsK)=BOT
CM(LB»IA)=DZR/STCA*TPERM(CKS(ISsJ) +yCKSAT(I9JaK) +HSP(ISesJ) +ZBS(ISeJ)

2eSTCoDY () oDXS(IS) s DXC(I))

&7

69
70
75
a0

S0

89

IF (KODC(IsJek).NE.1) GO TO 70
CM{LRsTM)=CM(LRsIM)=CM(LRsIA)
C(LB)=C(LR)=HCP(I+JsK)#CM(LBsIA)
CM(LBsIA)=0.0

CM(LRsTM)=CM(LRsIM) =CM(LP+IA)

CONTINUF
CM(LRsIM)=CM(LBsIM)=DXS(IS)*DY(J)®SY/DT
C(LB)=CI(LB)~HSP(IS+J)#DXS(IS)®DY (J)®SY/DT~QIS(IS+J)
GO TO 99

CM(LRsIM)=1.0

C(LR)=HSP(IS+J)

LB=LB+1

CONTINUE

LCK=LB~1

IF(LCK.NELLE) WRITE (6+77)
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77 FORMAT (SX+*ERROR IN LOOP INDEX IN SUBROUTINE- STRAN®/)

RETURN

END

SUBROUTINE CTRAN (LBsLEsLS+KODS+CKS+HSP+ZBSsDXS+QISsMS+ISIDE)

DIMENSION KODS(LS+MS) sCKS(LSsMS) sHSP(LSsMS) s ZBS(LS+MS) +DXS(LS) »
2RIS(LSWMS)

COMMON LCoMeNsLRLsLRMsLRIVINADJINCAN+HPBsSKeTHsSY»ANsBSCsVT+PORS
2TIME«TCON9DT+C(384) sDXC(B) sDY(B) sDZ(4)+sDB(B) s IRIV(G4T) v JRIV(4T) s
IRBED(4T7) sRWID (4T ) sRSLP(4T) «QRIV(4T) sDIV(4T) sRSO(&T) s VMS (4T ) »
4VMB (47)9SDRIV(20) +FKFAC(20)9CDV(9) sPCT(9) s AREA(9) +LCAN(10) »
SQUMD (3) +QLAM(3) sQKAN(3) +CM(384,+49) yNDL(12+8) yNDC(B+sB) yNDR(22+8) »
6HTEMP (B9B) »QIC(B9sB) yKODC(BsBy &) s HCP (ByBsé) s ZC(B4Br4) yCKC(B1Bok) s
TCKSAT(B4Bs4) sDSDHP (Bs844)

SHGOEROBDNENDOROOBERRORCCENCGCRRORRORGRREEREERROERGORRROERDORERRROREED

THIS SUBROUTINE IS CALLED FROM MATSOL TO COMPUTE COEFFICIENTS AND COLUMN
VECTOR VALUES FOR GRIDS INT HE THREE=-DIMENSIONAL MODEL SEGMENT THAT ARE
ADJACENT ON ONE SIDE TO A GRID IN THE TwWO-DIMENSIONAL MODEL SEGMENT,

EH RGO G AOO RN N RO aRC RGO RANGRORCRADERNDORNOORACRAGRRORNDRDEDOTEY

PERM(CK]1 +CK2+SA1+SA2+DISTLI4DIST2)=(2.08CK12CK2#SAL#SA2) /(DIST2®
2CK1+DISTI#CK?)
CPERM(CK1+sCK2sCOsBK+SALsSAZ+DISTL1yDIST2)=(2.0%CK1*CK2*CO*BK®*SAL1*SA
22)/(DIST2#CK1+DIST1#CK2#C0O%BK)
RPERM(CK1+CK2+SA1+SA2+DIST1+DIST2) = (2.0%CK1®CK2®SA1%SA2)/(DIST2
2%CK1+2,0%DIST1*CK2)
TPERM(CKRsSAL11SA2+SL)=2.0%CKB®SA1#SA2/SL
MR=M=1
IM=(M=2) %N+
IE=IM=1
IF=IM+1
IC=IM=N
ID=IM+N
GO TO (10415) ISIDE
10 IB=IMeN® (M=2)
1S=LS
I=1
GO TO 20
15 IA=IM=N®(M=-2)
I1s=1
I=LC
20 DO 8 J=2+MR
DO 8 K=1sN
FK=1,0
BKR=1.0
IF(KODC(IsJeK) sEQu]l OR.KODC(IsJsK) 4GEL6) GO TO 90
IF(CKC(TsJoK)4LT,0,005) GO TO 90
CCCcccccececececececececeececcceccececececcecccecncecececececcececececcceccecececcecececcccececececececccce
IF(KODC(IoJ~19K) 4GE.6.AND.KODC(IsJeK).EQ,3) GO TO 25
IF(KODC(IoJ=1+K) «GE «6.AND.KODC(IsJsK)NE-3) GO TO 28
CM(LByIC)=PERM(CKC(TIoJsK)sCKC(IoJ=1sK)sDXC(I)sDZ(K) DY (J)sDY(U=1))
IF(KODC(IsJ=1eK).NE.L1) GO TO 22
GO TO 21
28 IF(HCP(I+JsK) oGELHCP(IsJ=14K)) CM(LB+IC)=TPERMI(CKC(I+JsK)sDXC(I)sD
2Z(K)#DY(J))
IF(HCP(ToJsK) s LT HCP(IeJ=1+K)) CM(LB4+IC)=RPERM(SK«CKC(I+JsK)sDXC(I
2)+DZ(K) s THeDY (L))
21 CM(LRsIM)=CM(LB+IM) =CM(LBsIC)
CLB)=C(LB)=HCP(IsJ=1eK)=#CM(LBsIC)
CM(LB»IC)=0.0
22 GO TO 30
25 CM(LB+IC)=0.0
IJK=KODC(Isd=19K)
HT=HCP (I9J=1sK)=(ZC(IoJ=19K)=0,5%DZ (K))
CILB)=C(LB)=VMS(IJK)*®#DXC(I)*®HT
DDODDDDNDDODDNDDNDDDNDDDDDDNDNNDDDDDDODDDDDDDDDDDDDDDDDODDDODDDDDDDDDDD
30 IF(KODC(TI9J+19K) JGE.6.AND.KODC(IvJeK) ,EQ.3) GO TO 35
IF(KODC(IwsJ*1sK) oGE.6.AND.KODC(IsJsK) «NE.3) GO TO 38
CMILR+ID)=PERM(CKC(IaJsK)sCKC(InJe1laK)sDXC(I)sDZ(K) DY (J)sDY(J*1))
IF(KODC(TsJ+1eK) ,NE.1) GO TO 232
GO T0 31
AR IF(HCP(TeJeK) ,GELHCP(IsJ+14K)) CM(LB+ID)=TPERMI(CKC(I+JsK)+DXC(I)sD
2ZIK)YDY(J))
IF(HCP(ToJsK) LT, HCP(IsJ+14K)) CM(LBsID)=RPERM({SK+CKC(TI+JsK)sDXC(I
2)eDZ(K) 9 THeDY (U))
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31 CM(LRsIM)I=CM(LBsIM)=CM(LBs1D)
C(LB)=C(LB)~HCP(IsJ+1sK)=*CMI(LB+ID)
CM(LRsID)=0,0
32 GO TO 40
35 CM(LB+1ID)=0,0
IJK=KODC(IsJ+1sK)
HT=HCP (IsJ*1losK)=(ZC(TsJ+19K)=0,5%DZ (K))
C(LB)=C(LB)=VMS(IJUK)®DXC(I)*®HT
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
40 IF (K.EQ.N) GO TO 49
IF(KODC(TsJeK+1).,EQ.5) GO TO 49
IF(CKC(TsJeK+1).LT.0.005) GO TO 49
IF (KODC(IsJeK+1) ,GE.6.AND.KODC(I+JsK) .EQ.4) GO TO 45
IFfKnDc(IlJOK‘l’.GE.G.‘ND.KODC‘I'J.K).NE." GD TD 48
CM(LBy IF)=PERM(CKSAT (I+JeK) sCKSAT(TsJsK+1)+DXC(T)sDY(J)sDZ(K)»
2DZ (k+1))
IF(KODC(TsJeK+1) NE.1) GO TO 42
GO TO &1
48 TF(HCP(TI9JoK) LT HCP(IoeJsK+1l)) CM(LB+IF)=TPERM(CKC(IsJsK)sDXC(I)sD
2Y () o DZ (K))
IF(HCP (ToJeK) o LT.HCP (1 9JsK+1)) CM(LR+IF)=RPERM(SKsCKC(IsJsK)+DXC(I
2)+DY(J) s THeDZ (K} )
4] CM(LRsIM)=CM(LBsIM)=CM(LBsIF)
CILB)=C(LB)=HCP(IsJeK+1)2CM(LBsIF)
CM(LBsIF)=0.0
42 GO T0 50 .
45 CM(LBsIF)=0,0
IJK=KODC(IsJsK+1)
CI(LB)=C(LB)=VMB(IJUK)®DXC(I)*DY(J)
GO T0 SO
49 CHM(LBsIF)=0,0
CILB)=C(LR)=QIC(I+J)
EEEEEEEEFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
50 IF(K.EQ.1) GO TO 55
CM(LByTE)=PERM(CKSAT (I +JsK) yCKSAT(I9JsK=1)4DXC(I)sDY(J)sDZ(K)»
2DZ (K=1))
IF (KODCiTsJeK=1) . NE.1) GO TO 52
CM(LBs» IM)=CM(LRsIM)=CM(LBsIE)
C(LR)=C(LB)=HCP(IsJeK=1)=2CM(LB+IE)
CM(LBsIE)=0.0
52 G0 TO 60
55 CM(LB+IE)=0.0
60 GO TO (70+80) ISIDE
A AND B COEFFICIENTS FOR LEFT SIDE (UPSTREAM)
BBBRRABBBRERERBBRBRBRBRBBEEBRBRBRBBBRABRBRARRBBBERBEBRBRRBRRRBBBBRBRBRRBBR
TH TASIM=((M=1=J)+(J=2)®N+K)
IF(KODC(TI+1sJsK) sGE<6.AND.KODC(IsJsK) EQ.2) GO TO 75
IF(KODC(I+1sJsK) GE.6.AND.KODC(I+JsK) NE.2) GO TO 78
CM(LByIR)=PERM(CKC(ToaJsK)»CKC(I+1aJsK)sDY(J)eDZ(K)sDXC(I)esDXC(I+])
2)
IF(KODC(I+1+JeK) NE.1) GO TO 72
GO TO 71
TR IF(HCP(TeJeK) «GE.HCP (I+1sJsK)) CM(LB+IB)=TPERMICKC(IsJsK)sDY(J)sDZ
2(K)sDXC(I))
IF(HCP(TsJsK) LT .HCP(I+1yJsK)) CM(LB+IB)=RPERM(SKsCKC(IsJeK)sDY(J)
2+0Z(K) s THDXC (1))
Tl CM{LRsIM)=CM(LBsIM)=CM(LB»1IB)
CILBI=C(LB)=HCP(I+1lsJsK)=CM(LBsIB)
CM(LR+IR)=0,0
T2 GO 70 73
75 CM(LB+IB)=0,0
TJUK=KODC(I*1lsJsK)
HT=HCP (T+1sJeK)=(ZC(I+19JsK)=0,5*DZ(K))
CILB)=C(LB)=VMS(IJUK)®#DY (J) #HT

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T3 TOP=ZC(IsJsK)+0,.5%D7 (K)

BOT=2C(T4+JsK)=0.5%DZ (K)

IF(TOP.GT,HSP(IS+J)) CALL KFNP(ZC(I+JeK)sHSP(ISsJ) sFKsTOP+BOT)
BKR= (TOP=ZBS(1S+J) ) /DZ (K)

IF (BKR.LT,0.0) BKR=0,0

IF (BKR.GT,1.0) BKR=1.0
CM(LBsTA)=CPERMI(CKC(I+JsK) sCKS(IS+J) +FK+BKReDY (J)sDZ(K)+DXC(I)sDXS
2(18))

IF (KODS(IS#J) «NE,1.AND.KODS(ISsJ)WLT.6) GO TO 74
CM{LByIM)=CM(LAsyIM)=CM(LBsTA)

C(LB)=C(LB)=HSP(IS»J)®*CM(LB»IA)

CMILBs2IA)=0,0
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T4 GO TO 84

A AND B COEFFICIENTS FOR RIGHT SIDE (DOWNSTREAM)
AAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

B0 JB=IM+((M=1=J)®N+ (N=K)+(J=1))

IF(KU“C‘!‘I'J!K‘-GE.&.&ND‘KODC(I.J'KI.Eo.?) GO TO BS

TF(KODC(I=19JsK) 4GEw6.AND.KODC(I+JsK) «.NE.2) GO TO 88

CM(LBsIA)=PERMICKC (I eJsK) sCKC(I=10JeK)sDY(J)sDZ(K)+DXC(I)sDXC(I=1)
2)

IF(KODC(I=1sJsK) NE.1) GO TO B2

GO To 81

BB IF(HCP(IeJsK) sGE.HCP(I=19sJsK)) CM(LBsIA)=TPERM(CKC(IsJsK)+DY(J)sD2Z
2(K)sDXC(I))

IF (HCP(I9JsK) JLT.HCP (I=1sJsK)) CMI(LB+IA)=RPERM(SK+CKC(IsJsK)sDY(J)
2yDZ(K) s THaDXC(I))

A1 CM(LRyIM)=CM(LBsIM)=CM(LAsIA)
C(LB)=C(LB)=HCP(I=1sJsK)*CM(LBsIA)
CM(LRsIA)=0,0

a2 GO TO B3

85 CM(LBsTA)=0,0

TUK=KODC(I=1sJsK)}

HT=HCP (I~19JsK)=(ZC(I=19JsK)=0,54DZ(K))

CILB)=C(LB)=VMS (TJUK) #DY (J) #HT
BBBRRRBRRBRBRRRBRBRBRBRERBREBBRBBRBBREBRRARRBBRREBRRBRBRBBBRRRRBBBRBRBRREBBRBRA

B3 TOP=ZC(IsJsK)+0.,5%DZ (K)

BOT=ZC(lsJeK)=0.5%DZ (K)

IF(TOP.GT HSP(ISsJ)) CALL KFNP(ZC(IsJsK) sHSP(ISsJ)sFK+sTOP»BOT)

BKR=(TOP=ZBS(IS+J) ) /DZ(K)

IF(RKR.LT,0.0) BKR=0,.0

IF(BKR.6T.1.0) BKR=1.0

CM(LBYIR)=CPERM(CKC(IsJoK) +sCKS(ISeJ) sFKsBKRsDY (J)+DZ(K)sDXC(I)+DXS
2(18))

IF (KODS(ISsJ) «NEu1.AND.KODS(ISsJ)«LT.6) GO TO 84

CM(LBsIM)=CM(LBsIM)=CM(LBsIB)

CILB)=C(LB)=HSP(ISsJ)=CM(LB»IB)

CM(LR+IB)=0.0

B4 CM(LAsTM)=CM(LBsIM)=(CM(LBsIA)+CM(LBsIB)+CM(LB+IC)+CM(LB+ID)+

2CM(LB+IE) +CM(LBsIF) +POR=DXC(I)2DY(J)®DZ(K)*DSOHP(I+JsK)/DT)

CILB)I=C(LB)=HCP(I+JsK)®*POR®DXC(I)®DY (J)*DZ(K)*DSDHP (I+JsK) /DT

GO0 TO 99

90 CM(LRsIM)=1,0
CILR)=HCP (IsJsK)

99 LB=LB+1

B CONTINUE

LCK=LA=~1

JF(LCK.NEL.LE) WRITE(64+7)

T FORMAT (SX+s*ERROR IN LOOP INDEX IN SUBROUTINE CTRAN®,/)

RETURN

END

SUBROUTINE CENTER(LBLE)

COMMON LCoMsNsLRLYLRMsLRIVsNADJINCANsHPB»SKeTHsSYsANsBSCsVT+PORY
2TIMEsTCONsDTsC(384)+sDXC(B)+sDY(B)9sDZ(4)+DB(B) s IRIVIGT)»JRIVI&T)»
3RBED (47) sRWID(4T) sRSLP(4T) sQRIV(AT) 4DIV(4T) +RSO(AT) s VMS(4T) »

AVMB (47)ySDRIV(20) +FKFAC(20)sCDV(9) +PCT(9) s AREA(9) s LCANCLO) »
SAQUMD (3) vy QLAM(3) »QKAN(3) +CM(3844+49) ¢NDL(12+8) yNDC(B+B) yNDR(224+8)
GHTEMP (83B) sQIC(BeB) «KODC(BsBos&) yHCP(BoRs&) s ZC(BsBséb) 4CKC(BsBoé)»
TCKSAT(ByAs4) sDSDHP (B4 B4 4)

COMMON /A/ LLeDXL(12)+KODL(129B) sCKL(12+B) +HLP(12+B)+ZBL(12+8)»
2QIL(12+8)

COMMON /BR/ LRsDXR(22)9sKODR(22+8) sCKR(22+8) yHRP (2298) +ZBR(22+8)»
20IR(22+8)

L T LT Ty T Ty Ty T e
THIS SUBROUTINE IS CALLED FROM MATSOL TO COMPUTE COEFFICIENTS AND COLUMN
VECTOR VALUES FOR GRIDS IN THE THREE-DIMENSIONAL MODEL SEGMENT THAT ARE
SURROUNDED LATERALLY BY OTHER THREE=-DIMENSIONAL GRIDS.

LA A A A A R R e e e I I e Y I e TR TSR YT Y Y2

PERMICK] +CK2+SALl+SA29DIST1+DIST2) = (2.0#CK1®#CK2#SA1#SA2)/(DIST2®
2CK1+DIST1#CK2)
RPERM(CK1+CK2+SA19SA2+DISTIHDIST2) = (2.0*CK1*CK2®#SA1®5A2)/(DIST2
2°CK1+2,04DIST1I®"CK2)
DISTI=THs CK1=SK

TPERM(CKBsSALl+SA2+SL)=2.0%CKB®SA1#SA2/SL

IM3 (M=2) #Ne ]

TE=tM=1

IF=Me]
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IC=IM=N
1D=IM+N
IA=IM=(M=2) &N
IR=]IM+ (M=2) &N
MR=M~]1
LCR=LC~=1
AA=345600,0
QR=518400,0
REMA=]1,0
REMR=1,0
IW=4
JW=3
DO 385 K=1sN
TOP=ZC(IWyJWsK) +0,54DZ (K)
IF (HCP(IWsJWsK) «GT,TOP) GO TO 385
HST=HCP (IWsJWsK)
GO TO 386
385 CONTINUF
386 WHTA=HST=(ZC(IWsJW+1)+0,5%DZ (1))
JW=4
DO 485 K=1.N
TOP=ZC(IWsUWsK) +0,.5%DZ (K)
IF(HCP(IWsUWsK) sGT,TOP) GO TO 485
HST=HCP (IWs UWsK)
GO TO 486
485 CONTINUE
486 WHTR=HST=(ZC(IWsJWs1)=0.,5%DZ (1))
DO B8 I=2+LCR
D0 8 J=2.MR
DO 7 K=1sN
IF(KODC(I9JsK) sEQu]lORKODC(IsJeK) GE.6) GO TO 90
IF(CKC(T9JosK)4LT.0,005) GO TO 90
AAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL
10 IF(KODC(I=19sJsK) .GE.6,AND.XKODC(IsJsK).EQ.2) GO TO 15
IF(KODC(I=19JoK) .GE.6.AND.KODC(IsJsK).NE.2) GO TO 18
CM(LBrIA)=PERM(CKC(IoJoK)sCKC(I=19sJoK)oDY(J)sDZ(K)sDXC(I)sDXC(I=1)
2)
IF(KODC(I=1eJeK) NE.L) GO TO 12
GO TO 11
18 IF(HMCP(IsJoK)4GELHCP(I=1aJsK)) CM(LBsIA)=TPERM(CKC(I+JsK)sDY(J)sD2Z
2(K)eDXC(IN)
IF(HCP(TIoJsK) o LTaHCP(I=19JsK)) CM(LBsIA)=RPERM(SKsCKCI(IsJsK)»DY(J)
2+DZ (K)o THHDXC(I))
11 CM(LBsIM)=CM(LBsIM)=CM(LByIA)
C(LR)=C(LB)=HCP(I=1sJsK)®*CM(LBsIA)
CMILAsIAI=0,0
12 GO TO 20
15 CM(LBsIA)=0,0
TJK=KODC(I=1sJ9K)
HT=HCP (I=19JeK)=(ZC(I=1eJsK)=0,52D2Z(K))
C(LB)=C{LB)=VMS(IJK)#=#DY (J)eHT
ABBERBRRBRBRRBBRRRRRBBRBFBEBBBRBBERRBERRBREBRRBBEBBBRBRRRBERBEBBBRRRRBBR
20 IF(KODC(I+leJoK) .GE.6.AND.KODC(IsJsK).EQ.2) GO TD 25
IF(KODC‘I"I.J'K’.GE.&.‘ND.KODC(I.J!K'QNE.21 GO To 28
CM(LByIB)=PERM(CKC(I9JsK)sCKC(TI*1yJsK)sDY (J)+DZ(K)+DXC(I)sDXC(I+1)
2)
IF(KODC(I+1sJsK) NE.1) GO TO 22
GO T0 21
28 IF(HCP(1s.JsK) .GE.HCP(I+1eJsK)) CMI(LBeIB)=TPERM(CKC(IsJsK)+DY(J)+DZ
2(K)sDXC(I))
IF (HCP(TaJsK) dLT ,HCP(I+1lsJeK)) CM(LBsIR)=RPERM(SK«CKC(IvJsK) DY (D)
2eDZ(K) s THWDXC(T))
21 CM(LBsIM)=CM(LHsTIM)=CM(LRAVIB)
CILR)=C(LB)=HCP (I+1sJesK)®CMI(LBW+IB)
CM{LBsIR)=0,0
22 GO TO 30
25 CM(LA+IBR)I=0.0
IUK=KODC(TI+1sJsK)
HT=HCP (T+1aJeK )= (ZC(I+1ladek)=0,5%¥DZ (K))
CILB)=CILR) =VMS(TIJK)#DY (J) *HT
Lo of of of of of of o ol o ol of o o of o o o{ of el o of o of o of o f of of of o o s a{ S o f f o e o o { A f A { o S e o ] A o o o o e o] o o
30 IF(KODC(T9J=19K) ,GE.6.AND.KODC(IsJsK).EQ,3) GO TD 35
IF(KODC(TaJ=1+K) .GE.H6.AND.KODC(IsJeK) NE.3) GO TO 38
CMILRsTC)=PERM(CKC(IsJsR)+sCKC{ToJ=1+K)sDXCUI)sDZ(K)sDY(J) DY (J=1))
IF(KODC(TsJ=1+K) NELL1) GO TO 32
GO TO 21
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38 IF(HCP(T1eJsK) sGE.HCP(IsJ=1sK)) CM(LBsIC)=TPERM(CKC(TIsJsK)sDXC(I)sD
2Z(K)sDY(J))
IF(HCP(ToJoK) oLT.HCP(IsJ=1sK)) CM(LB+IC)=RPERM(SK+CKC(IsJsK)DXC(I
2)9DZ(K) s THsDY (J))
31 CM(LRsIM)=CM(LBsIM)=CM(LBsyIC)
CILB)=C(LB)=HCP(IsJ=1sK)2CM(LBsIC)
CM(LBsIC)=0.0
32 GO TO 40
35 CM(LR+IC)=0,0
1JK=KODC(IsJ=1sK)
HT=HCP (T2 J=1sK)=(ZC(IsJ=1+K)=0,5%DZ (K))
CILB)=C(LB)=VMS(IJK)=DXC(I)*HT
ppoooooDDODODODDDDDDDDDDDDDNDDDDDDDDNDDDDOODODDDDDDODDDDDDDDODDDDDDDDD
40 IF(KODC(T9J+19K) .GE.H6.AND.KODC(IsJ+K) EQ.3) GO TO 45
IF(KODC(IsJ*lsK) .GE.6.AND.KODC(IsJsK).NE.3) GO TO 48
CM(LByID)=PERMICKC(TIeJaK) +CKC(ToJ+1sK)eDXC(I)eNZ(K)sDY(J)sDY(J*1))
IF(KODC(TsJ+1sK) NE,1) GO TO 42
GO TO 41
48 IF(HCP(IeJsK) GE.HCP(IoJ*14K)) CM(LByID)=TPERM(CKC(TosJoK)sDXC(I) D
2Z(K)+DY(U))
IF(HCP (T s JoK) aLToHCP(IvJ+1lsK)) CM(LB+ID)=RPERM(SK+CKC(IvJsK)DXC (I
2)9DZ(K) s THeDY (D))
41 CM(LByIM)=CM(LBsIM)=CM(LR+ID)
C(LB)=C(LB)=HCP(IeJ+1sK)*CM(LBsID)
CM(LBsID)=0,0
42 GO TO 50
45 CM(LBsID)=0,0
TJK=KODC(IsJ+1sK)
HT=HCP (IsJ+1oK)=(ZC(IsJ+1+K)=0,5DZ(K))
C(LB)=C(LB)=VMS(IJK)=®DXC(I)*®*HT
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
50 IF(K.EQ.N) GO TN 59
IF(KNODC(IsJeK+1l) ,EQ,5) GO TO 59
IF(CKC(TeJoK+1),LT,0.005) GO TO 59
IF(KODC(ToJoK+1) sGE .6 .AND.KODC(IsJeK) .EQ. &) GO TO 55
IF(KODC(ToJeK+1l) sGE.6.AND.KODC(IsJeK) ,NE, &) GO TO SB
CM(LByIF)=sPERMI{CKSAT(ToJsK) vCKSAT(ToJoKe1) 9DXC(I)oDY(J)+DZI(K)»
2DZ (K+1))
IF(KODC(IsJeK+1) ,NE.1) GO TO S2
GO TO 51
58 IF(HCP(IoJoK) eLT HCP(IvJsK+1l)) CM(LBsIF)=TPERMI(CKC(I+JsK)sDXC(I)sD
2Y(J)sDZ(K))
IF(HCP(TI9JoK) JLT.HCP(IsJsK+1)) CM(LRsIF)=RPERM(SK+CKC(IvJsK)+DXC(I
2)4DY(J) 9 THNZ (K))
51 CM(LBeIM)=CM(LBs IM)=CM(LR+IF)
CILB)=C(LB)=HCP(JeJsK+1)®CM(LBsIF)
CM{LReIF)=0.0
52 GO TO 60
55 CM(LBsIF)=0,0
[JK=KODC(ToJaK+1l)
C(LB)=C(LB)=VMB(IJK)*®DXC(I)®*DY(J)
GO TO 60
59 CM(LR«IF)=0,0
C(LB)=C({LR)=QIC(I+J)
EEEEEEEEEEEFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
60 IF(K.EQ.L) GO TO 65
CM(LByIE)=PERM(CKSAT(I+JaK)sCKSAT(IeJoK=1)+DXC(I)sDY(J)sDZ(K)>»
2DZ (K=1))
IF(KODC(TsJeK=1) .NE.,1) GO TO 62
CM(LByIM)=CM(LBsIM)=CM(LR+IE)
CILB)=C(LB)=HCP(IsJaK=1)®"CM(LBsIE)
CM(LRsIE)=0.0
62 50 To ToO
65 CM(LAYIE)=0,0
NN M MM MMM M M MMM M MMMMMMMMMMMMMMMM MMM M M M MMM
TO CM(LByIM)=CM(LBs IM)=(CM(LBsTA)+CM(LByIB)+CM(LB+IC)+CM(LBsID)+
2CM (LAY TE) +CM(LBsIF))=PORSDXC(I)®DY (J)2DZ (K) #*DSDHP (TsJsK) /DT
71 C(LB)=C(LB)=HCP(IsJsK)®*POR2DXC(I)2DY (J)®DZ(K)*DSDHP(I1+JsK) /DT
LAMAR WELLS
QP=0,0
IF(TEQ.4.AND.JEQ.3.,AND,K,GT.1) GO TO 601
IF(1.EQ.4,AND.J.EQ.4) GO TO 602
GO TO 72
601 IF(WHTA,LT.0.0) GO TO 72
IF(WHTA.GT.DZ(K)) QP=REMA®QA*DZ (K)/WHTA
IF(WHTALLE.DZ(K)) QGP=REMA#QA
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REMA=REMA=-QP/QA
WHTA=WHTA=DZ (K)
CILR)=C(LR) «QP
WRITE(6+901) QP
901 FORMAT(SXs#QP=#3F9, 295X #CFD®,/)
GO TO 72
602 IF(WHTRB.LT.0.0) GO TO 72
IF (WHTB.GT.DZ(K)) QP=REMReQB#DZ (K)/WHTB
IF(WHTB.LE.DZ(K)) QP=REMB®QB
REMB=REME=QP/QR
WHTR=WHTP=DZ (K)
CILR)=C(LR)+QP
WRITE(6+901) QP
72 GO TO 99
90 CM(LBsyIM)=1.0
CILB)SHCP(IvJsK)
99 LB=LB+1
7 CONTINUE
8 CONTINUE
LCK=LB=1
IF(LCK.NE.LE) WRITE (6+3)
3 FORMAT(SX»#ERROR IN LOOP INDEX IN SUBROUTINE CENTER®,/)
RETURN
END
SUBROUTINE BSOLVE (CeNsMsV)
DIMENSION C(NsM)sVI(N)

LA AR A A A LA A L s A A R e Y e L T R T - T

THIS SUBROUTINE IS CALLED FROM MATSOL TO SOLVE THE MATRIX FOR NEW VALUES
OF HEAD IN EACH GROUNDWATER GRID USING THE GAUSS~ELIMINATION TECHNIQUE,
T T T T T T s

LR=(M=1)/2
DO 2 L=1sLR
IM=LR=L+1
DO 2 I=lsIM
DO 1 J=2sM

1 ClLed=1)=C(L+J)
KN=N=L
KM=M=]

ClLsM)=0,0

2 CIKN+1sKM+11=0,0
LR=LR+1
IM=N=1
DO 10 I=14IM
NPIV=I]

LS=1+1
DO 3 L=LSsLR
IF (ABS(C(L#1))aGTABSI(CINPIVs1))) NPIV=L

3 CONTINUE

4 DO 5 J=leM
TEMP=C(T1sJ)
ClTed)=CINPIVsJ)

S CI(NPIVyJ)=TEMP
TEMP=V(I)
VII)I=VINPIV)
VINPIV)=TEMP

6 VII)=V(I)/C(Is1)

DO T J=2.M

T C(IsJ)=C(Isd)/C(Is])
DO 9 L=sLSsLR
TEMP=C(L+s1)
VIL)=VI(L)=TEMP®Y (1)
DO B J=24M

B ClLeJ=1)=C(LsJ)=TEMP=C(T4J)

9 C(LsM)=N,0
IF (LR.LT.N) LR=LR+1

10 CONTINUE
VIN)=V(N) /C(Ns 1)
JM=2
DO 12 I=1.+1IM
L=N=-1
DO 11 JU=PsJM
KM= +J
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11 VILI=VIL)=ClLsJ)BV(KM=]1)
IF (JUMLLT M) JM=gM+1]
12 CONTINUE
RETURN
END
SUBROUTINE RIVBND
COMMON LCsMsNsLRLsLRMyLRIVINADJINCANIHPBsSKsTHsSYsAN+sBSCsVT+POR
2TIMEsTCONWDT+C(384) 9DXC(B) +DY(B)9DZ(4) +DBIB) 2 IRIV(4T) 2 JRIV(4T)
3RBED(AT) sRWIDC(4T) sRSLP (4T ) +QRIVIAT) +DIV(4T) sRSO(LT) 4 VMS(4T) »
4VMB (4T) +SDRIV(20) +FKFAC(20)+CDV(9) «PCT(9) »ARFA(9) +LCAN(10) s
SQUMD (3) +QLAM(3) sQKAN(3) s CM(3B4449) yNDL (12+B) «NDC(B+B) +NDR(2248) »
GHTEMP (ByR) 9 QIC(B9B) sKODC(B4By4) sHCP(BsBo &) yZC(BeBy4) yCKC(RsByG) s
TCKSAT(B4Rs4)sDSDHP (B4844)
COMMON /A/ LL#DXL(12)+KODL(12+8)+CKL(12+8) +HLP(12+B)+ZBL(12+8)
2QIL(124+8)
COMMON /B/ LR+DXR(22)+KODR(22+B)sCKR(22+8) +HRP(22+8) +ZBR(22+8)»
201IR(2248)
GaaaspATTENTION®eee® RIVER MUST REMAIN IN SAME GRID IN Y DIRECTION
(SAME J SUBSCRIPT) CROSSING FROM 2~D TO 3-D OR 3-D TO 2-D REGION

LA A L e T Ty T R -

THIS SUBROUTINE COMPUTES SEEPAGE RATES TO AND FROM THE AQUIFER FOR EACH

RIVER GRID OF THE MODEL.

L g A s R L e e e e e I T T Y T Y NN

TPERMI(CK] sCK29HL1 o Z1 9H2+2Z29XYsDXY1+DXY2)=(2,04CK12CK2® (H1=Z1)® (H2=-7
22)2XY) /(DXY2#*CK1#® (H1=Z1)+DXY1®#CK2%2 (H2=2Z2))
VT=0.,0
DO 6 I=1sLRIV
RSO(I)=0.0
A CONTINUE
DO T L=6sLRL
I=sIRIVI(L)
J=JRIVIL)
IF(KODL(IsJ=1) .,GE.6) GO TO 10
RSO(L)=PSO(L) +TPERM(CKL(TIsJ) s CKL(ToJ=1) oHLP(IsJ)+ZBL(I+J) sHLP(IsJ~-
21)9ZBL(ToJ=1) e DXL (I)wDY () oDY (J=1))® (HLP(IsJ)=HLP(Tsd=1))
10 TF(KNDL(TsJ+1) .GEL6) GO TO 11
RSO(L)=RSO(L)+TPERM(CKL(TsJ) sCKL(ToJel)sHLP(IsJ)sZRL(IoJ) sHLP (I0J#
21)9ZRL (T o J* 1) o DXL (I) oDY (J) DY (J+1) )R (HLP (T s J)=HLP(Tod+1))
11 IF(I.LE.]1) GO TO 12
IF(KODL (T=1+J) 4GE.6) GO TO 12
RSO(L)=RSO(L)*TPERM(CKL (TsJ) oCKLII=10J) ¢HLP(ToU)+ZBL(IsJ)sHLP(TI=1»
2J)9ZBLII=19J)oDY (J)sDXC(T) «DXC(I=1))®(HLP(IsJ)=HLP(I=14J))
12 IF(T1.GE.LL) 60 TO 13
IF(KODL(T+1sJ) .GEL6) GO TO 13
RSO(L)=RSO(L)*TPERM(CKL(ToJ) oCKLII+1aJ) s HLP(Ts ) +ZBL(TsJ)+HLP(I+]1»
2J) 9 ZRL(T+10 ) oDY (J) oDXC(I) 4DXC(I+1))®(HLP(TsJ)=HLP(I+1sJ))
13 VT=VT+RSO(L)*DT
7 CONTINUE
LB=LRL+1
LBCA=LB
LBCB=LRM
CALL SPLIT(LBCA+LBCB)
LB=LRM+1
DO 9 L=LBAsLRIV
I=IRIVIL)
JEJRIVIL)
IF(1.EQ.B8) DXR(I)=DR(J)
IF(KNDR(TsyJ=1) .GE.6) GO TO 70O
RSO(L)=RSO(L) +TPERM(CKRI(I+J) sCKRI(I9J=1)+HRP(I+J)+ZBR(IsJ) +sHRP(IsJ=-
21)9ZBRR{TeJ=1) +DXR(I)eDY(J) sDY(J=1) )R (HRP(I+J)=HRP(IsJ=1))
70 IF(KNDP(I+J+1) .GE.6) GO TO T1
RSO(L)=RSO(L) +TPERM(CKR(T+J) yCKR(TaJ+1) sHRP (T9J)+ZBR(IsJ) +HRP (I s U+
21)9ZBR(TI+J+1)sDXRIT) oDY(J)sDY(J+1) )2 (HRP(IsJ)=HRP(I+J+1))
71 IF(I.LE,]1) GO TO 72
IF(KODR(I=1+J) 4GEL6) GO TO 72
RSO(L)=RSO(L) +*TPERM(CKR(T+J)sCKR(I=1sJ) sHRP(TsJ) +ZBR(IsJ) sHRP(I-1»
2J) 9 ZRR(T=19J) sDY(J) sDXR(T) 4DXR(I=1)) 2 (HRP(1+J)=HRP(I=14J))
72 IF(I.GF.LR) GO TO 73
IF(KODR(T+1eJ) .GE.6) GO TO 73
REOD(L)=RSO(L) +TPERM(CKR (T2 J) +CKR(T*1oJ) sHRP (I9J) +ZBR(TIsJ) +HRP(I+1+
PU e ZRRITo1ed) sDY(J)2DXR(I) «DXR(I*1))#(HRP(IsJ)=HRP(I+14sJ))
TY VT=VT+RSO(L ) =*DT
Q9 CONTINUF

68
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RETUPRN

END

SUBROUTINE SPLITI(LAC»LBC)

COMMON LCosMaNsLRLILRMsLRIVyNADJINCAN+HPBsSKsTHsSYsANsBSCs»VT+POR
2TIME+TCONsDT+C(384) sDXC(B) 4DY(B)sDZ(4) +DBI(B) s IRIVI(AT) v JRIVI4T) »
3RBED (4T) yRWID(4T7) s RSLP(4T7) sQRIV(4T) sDIV(4T) sRSO(4T) s VMS(4T) »
4VMB(47) +SDRIV(20) +FKFAC(20)+CDV(9) sPCT(9) sAREA (D) +LCAN(10) s
SOUMD (3) +QLAM(3) +OKAN(3) +CM(384449) yNDL(12+8) ¢yNDC(RyB) yNDR(2248) s
EHTEMP (B+8) yQIC(8B48) sKODC(ByB94) sHCP(BsBe4) vZC (B854 ) yCKC(BeBy&) s
TCKSAT(8+B94) sDSDHP (BsB44)

COMMON /A/ LLDXL(12)sKODL(12+8)sCKL(1248) sHLP(12+8)+ZBL(12+8)
20IL(12+8)

COMMON /R/ LRsDXR(22) +KODR(229+8)2CKR(22+B)yHRP (2298) +ZRR(224+8)»
20TR(22+8)

SEBATTENTIQON®=#88 RIVER MUST REMAIN IN SAME GRID IN Y DIRECTION
AME J SUBSCRIPT) CROSSING FROM 2=D TO 3-D OR 3~D TO 2-D REGION

GU RSN BB RN BRI BBNNRNABOBDRBOBBDEBVBODBBELBVORBBABLAVBDROBEBBDLRRDBBER

THIS SUBROUTINE IS CALLED FROM RIVBND TO COMPUTE SEEPAGE RATES IN THE

VER GRIDS LOCATED IN THE THREE=-DIMENSIONAL MODEL SEGMENT,

AR AR R R R R RN R RN RGO PR PR OO RO RO R AR ROANNODRDOUORDLOORDOROOD

APERM(CK1+SKAsDXA1+DXA2+THASDS) = (2, 0#CK1#SKASDXAL#DXA2) /(2,04 THASC

2K1+DS#SkA)
BPERM(CK1+DXAl+DXA2+DS)=(2,0%CK1*DXAL1®DXA2/DS)
DO 8 L=LACsLAC

I=IRIVIL)

JEJRIVIL)

VMB (L) =SK® ( ((HCP(I+JsN)=RBED(L))=HPB)+TH)/TH
VMS (L) =SK#((HCP(I+JsN)-RBED(L))~HPR)®#0,5/TH
IF(KODC(TsJ=19N) .GE.6) GO TO 20

IF (HCP(TaJsN) JLT,HCP(IsJ=14N)) GO TO 112
QS=APERM(CKSAT (ToJ=19N) sSKyDXC(I)sDZ(N) s THsDY (J=1))® (HCP{IsJsN)~
2HCP (I9J=14N))

GO TO 114

QS=BPERM(CKC(IsJ=19N) sDXC(T)sDZ(N)+DY(J=1) ) #(HCP(IsJsN)=HCP(TIsJ=10s

2N1)

QU=VMS (L) #DXC(TI)*DZ (N)

IF(QU.GT.QS) GO TO 15

KODC (T+J=1sN)=3

RSO (L)=RSO(L)+QU

GO TO 20

KODC(IsJ=1aN)=0

RSO(L)=RSO(L)+QS

IF(KODC(I+J+1sN).GE.6) GO TO 30
IF(HCP(ToJsN) JLT.HCP(IsJe1lsN)) GO TO 122
QS=APERM(CKSAT(I9J+1sN) sSKsDXC(I)sDZ(N) s THaDY(J+1))#(HCP(IsJsN)=
2HCP (TsJelyN))

GO TO 124

QS=BPERM(CKC(IsJe1sN)sDXC(I)sDZ(N)sDY(J+1))® (HCP(IsJsN)=HCP(IsJ+ls

2N) )

QU=VMS (L) *DXC(I)*DZ(N)

IF{QU.GT.QS) GO TO 25

KODC(IsJsleN)=3

RSO (L)=RSO(L)+QU

60 TO 30

KODC(IsJ+leN)=0

RSO(L)=RSO(L)+QS

IF(I.LE.1) GO TO 40
IF(KODC(I=1sJsN) .GE.6) GO TO 40
IF(HCP(ToJoeN) .LT.HCP(I=1sJsN)) GO TO 32
QS=APERM(CKSAT(I=1sJsN) sSKsDY(J) sDZ(N) s THsDXC(I=1))#(HCP(IsJsN) =
2ZHCP(I=1sJeN))

GO TO 34

QS=RPERM(CKC(I=1+JsN) sDY (J) ¢DZ(N) +sDXC(I=1))*(HCP(IsJsN)=HCP(I=1sJs

2N) )

QU=VMS (L) #DY (J) *DZ (N)
IF(QU.6T,.QS) GO TOo 3S
KODC(I=1eJsN)=2
RSO(L)=RSO(L)+QU

GO TO 40

KODC(I~=1sJeN)=0

RSO (L)=RSO(L)+QS

IF(I.3E.LC) 50 TO 50
IF(KODC(T+1eJoeN) GE.6) GO TO S0
IF(HCP(IoJoN) LT HCP(I+14JsN)) GO TO 42

L9
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QS=APERM(CKSAT(I+19sJsN)»SKsDY(J)sDZ(N)sTHsDXC(I+1))®#(HCP(IsJsN)~=
2HCP (I+19JeN))
GO TO 44
42 QS=BPERM(CKC(I+1sJoN)sDY(J)sDZ(N)sDXC(I*1))®(HCP(IsJsN)=HCP(I+1leJs
2N))
44 QU=VMS{L)®DY(J)®DZ (N)
IF(QU.GT.QS) GO TO 45
KODC(I+loJdsN)=2
RSO(L)=RSO(L) +QU
GO TO 50
45 KODC(I+1leJdeN)=0
RSO(L)=RSO(L) +QS
S0 IF(HCP(IoJsN) sLT.HCP(IsJsN=1)) GO TO 52
QAS=APERM(CKSAT (T9JaeN=1) o+ SKeDXC(I) DY (J) e THsDZ(N=1))®(HCP(IsJeN)=
2HCP(TeJeN=1))
GO TO 5S4
52 QS=BPERM(CKC(IosJsN=1)+DXC(I)sDY(J)9sDZ(N=1) ) (HCP(IsJsN)=HCP(IsJsN=
21))
54 QU=VMB(L)®DXC(I)*DY(J)
IF(QU.GT,.QS) GO TO S5
KODC(IsJdeN=1) =4
RSO (L)=RSO (L) +QU
GO TO 60
55 KODC(IsJeN-1)=0
RSO (L)=RSO (L) +QS
60 VTI=VT+RSO(L)*DT
8 CONTINUE
RETURN
END
SUBROUTINE STORE
COMMON LCsMsNsLRLLRMsLRIVINADJsNCANsHPBsSKeTHsSYsANsBSCsVTsPOR»
2TIMEsTCONsDTsC(384)+DXC(B)sDY(8)sDZ(4)+sDBI(B)sIRIVIAT) s JRIVIET)»
3RBED(4T) +RWID(4T) s RSLP(4T)+sQRIV(4T) +sDIV(4T) +»RSO(&T) s VMS(4T) »
4VMB (4T) »SDRIV(20) s FKFAC(20) sCDV(9) s PCT(9) »AREA(9) s LCAN(10) »
SQUMD (3) +QLAM(3) s QKAN(3) sCM(384949) o NDL(12+8) ¢yNDC(B+B) s NDR(22+8) »
GHTEMP (B3B) sQIC(858) yKODC(B8+8+4) sHCP(B18s4) s2ZC(B+894)+sCKC(B18s4)
TCKSAT(BeBo4) yDSDHP (B84 4)
COMMON /A/ LL+DXL(12)+KODL(1298)9sCKLI(12¢8B)sHLP(12+8)+ZBL(12+8)
2QIL(12+8)
COMMON /B/ LRsDXR(22)sKODR(22+8)sCKR(22+8) sHRP (22+8) yZBR(22+8) »
2QIR(22+8)
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THIS SUBROUTINE COMPUTES THE MASS BALANCE FOR THE AQUIFER IN ALL INTERIOR
GRIDS OF THE MODEL AT THE END OF EACH TIME INCREMENT. RECAUSE STORAGE ABOVE
THE WATER TABLE IS NOT INCLUDED IN THESE CALCULATIONSs THIS MASS BALANCE

IS NOT EXACT,

HGODGOBAVEOBODEREEBOOTRRGDBHGRNIDRBROGDNODORRORODHAGDEBOIDROBNOBOERDBOBES

MR=M=1
LRR=LR=1
STORP=STOR
IF(TIME.LE.DT) STORP=0,0
STOR=0,0
SURF=0,0
SEEP=0,.0
UFL=0.0
PUMP=0,0
$555S SIS ST TSP e s IS FESSS s TESTSSS595555535555%5S
SATURATED STORAGE
DO 7 I=2sLL
DO 7 J=2sMR
STOR=STOR«DXL(IN*0Y(J)® (HLP(I+J)=ZBL(I+J))
7 CONTINUE
DO 8 I=1sLC
DO 8 J=2yMR
DO 8 K=1sN
GTOP=ZC(IoJoK)+0,5%DZ (K)
IF(HCP(I+JeK)uLT.GTOP) GO TO 15
STOR=STOR+DXC({I)4#DY(J)*DZ(K)
GO TO 8
15 GROT=ZC(TeJrK)=D,5%DZ (K)
IF(HCP(TI+JeK).LT.GBOT) GO TO 8
STOR=STOR+DXC(I)®#DY (J)#(HCP(I+JsK)=GBOT)

o R T R
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8 CONTINUE
DO S I=1sLRR
DO 9 J=2+MR
IF(I.EQ.8) DXR(I)=DB(J)
STOR=STOR+DXR (I #DY (J)# (HRP(I+J)=ZBR(TsJ))
9 CONTINUF
STCR=STOR®POR/43560,0
WRITE(Ae11)
11 FORMATIEX+#STORAGE AT PREVIOUS TIME INCREMENT, AF®,TX+#STORAGE AT
ZPRESENT TIME INCREMENTs AF#4/)
WRITE(As12) STORP+STOR
12 FORMAT (15XeFQ,2927XsF9,2)
20 CONTINUE

P ISP s s FEF s rEsSS55555FFSS5F5555555555555555555555%

SURFACE FLUX

D0 27 I=2+LL

DC 27 J=2+MP

SURF=SURF+QIL(IsJ)
27 CONTINUE

DO 28 I=1,sLC

DO 28 JU=24MR

SURF=SURF+QIC(Ted)
28 CONTINUE

DO 29 I=14LRR

DO 29 J=2«MR

SURF=SURF+QIR(I+J)
29 CONTINUE

SURF=SURF=DT/43560.0

P I P TIPS TI PSSP PSS ST F PP FTEIFSSSFIFSSESSTSESFSESS

SEEPAGE FROM RIVER
DC 30 L=6+LRIV
SEEF=SEEP+RSO(L)

30 CCNTINUE
SEEP=SEEP#*DT/43%560.0

EREEEE AR R R AR R R R R R R R R R R R R R A L R A R R R R AR 2]

UNDERFLOW
0N 37 J=24MR
IF(CKL({1sJ) sLEL1.0.0RLCKL(29J) oLEs1,0) GO TO 38
UFL=UFL+ (2. 08CKL (1« I #CEL(2eJ)#(HLP (19 2)~ZBL(1eJ) )2 (HLP(2vJ)=ZBL{
CEeJ))EDY 1Y) /(DXL (22 #CKL (1o J)#(HLP (1o J)=ZBL{1sU) ) +DXL(1)#CKL (20} *®
Z(HLP (20 J)=2RL(2¢J))) 1R (HLP(laJ)=HLP(2:.))
38 IF(CKRIZ214d) aLELl.0.,0R.CKR(22+4J)4LT.1.C) GO TO 37
UFL=UFL+((2,7%CKR {21+ J)#CKR (222 J)#(HRP(21+J)=ZBR(214J) ) ® (HRP (22+J)
Z=1BR(Z22+ ) ! #DY {J} )/ (DAR(22)2CKR(219J)® (HRP(21sJ)=ZBR(21sJ))+DXR (2]
JIRCKRIZZeJIPIHEP (224 J)=ZRR(229J) ) ) )R (HPP (229 J) ~HRP(21+J))
27 CONTINUE
DO 47 T=4+LL
FF(CKL(TI91) ulFE41a040RACKL(T92)oLEsls0) GO TC 48
UFL=UFL* ((2.0%CKL (To1) #CKL(T+2)* (HLP(Ial)=ZBL(Tsl))®(HLP(I+2)=ZRL(
2I02)1%DALII) ) /(DY (2)RCKLII1) #(HLP(T91)=ZBL(I1+1))+DY(1)“CKL(Ts2)*®(
HLP(]#2)=ZBLIT+Z2Y )1 1% (HLPtTIs]1)=HLP(TI+2))
4% TFICKL(TeB) ol T.1.0.0RCKLIToT)oLT41a0) GO TO 47
UFL=UFL+ ((2.0%CKL (I8 *CKL(I+T)®(HLP(I+8)=ZBL(I1+8))#(HLP(I+T)~-ZBL(
2IleT)I#DXLII) ) /DY iT)RCKL(I+8) @ (HLP(T9B)=ZBL(TI+8))+DY(B)SCKLIT+T)®1(
HLP(ToT)=ZRL (I 7)) 1) ®{HLP(I+B)=ZBL(1+8))
47 CONTINUE
DO 57 I=1+LRR
IF(CKR(I»1)4s, "w140.0R.CKRI(I+2).LT.1.0) GO TO S8
UFL=UFL+ ( (2, 0#CKR(Is1) 2 (HRP(191)=ZRR(I+1))®#(HRP(I+2)~=ZBR(I»2))=DXR
21N /(DY (2)#CKR (T s 1) #(HRPII9s1)=ZBR{I+1))+DY(L)#*CKR(TI+2)*(HRP(I+2)~
3ZBR(TI+2))))*(HRP(Ts1)=HRP (T42))
A IF(CKR(T+8)LTal:0,0R.CKR(TsT)sLT41,0) GO TO 57
UFL=UFL+ ((2.0#CKR(I+B)#CKR(I4T)* (HRP(1+8)=ZBR(I4B))*(HRP(I+7)=ZRR(
2ZIeT))IROXR(IN) /(DY (T)®CKR(1+B)#(HRP(I«8)=ZBR(I+8))+DY(B)*CKR(I+T)®(
SHRP (1o T)=ZBR(I+7) )1 )2 {HEP{TsB)=HRP(I+7})
S7 CONTINUE
00 &7 I=1sLC
DC 67 K=14N
IF(CKC (T a1 vK) olTo1.0,0RCKC{Iv29K)aLT.1aC) GO TO 68
UFL=UFL+ ((2.0*CKC(IelsK)*CKC(I92sK)*DXC(I)RDZ(K))/(DY(2)#CKC(LslsK
2Y4DY (1) 2CKC(T92sK)ID)2{HCP (T2 leK)=HCP (142K}
“8 IF(CKC(T9BeK) ,LE,1.0,0R.CKC(TIsToK)ulT.1a0) GO TO &7
UFL=UFL+((2.0°CKC(IoBeX)#CKC(ToT+K)2DAC(I)RDZIK)II/(DY(T)I#CKC(TI+8sK
2)+DY(B)BCKC(TaTsKI ) 1 H{RCPLLIoBoK) =HCP{I+TK})
&7 CONTINUE
UFL=UFL®*DT/43560,0
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555555 PSS EFT PSSP TEFEEIS ST SSSF TS5 55 5555555555555 5555555S5S
PUMPING
PUMP=864000,0%#30,0/43560,0
SIS s E S E TSI FEESTEESESEFSSEETFEESSSSSSES5S55555555535S
MASS BALANCE
ADD=SURF +SEEP+UFL=-PUMP
ERR=STOR=-ADD-STORP
WRITE(6+13)
L3 FORMAT(5X»2ADDITION TO STORAGEs AF®:TXs*ERROR IN STORAGE COMPUTATI
20Ns AF®,/)
WRITE(6s14) ADDSERR
14 FORMAT(12X+F9,2+25X+F9.2)
RETURN
END
SUBROUTINE ADJUST
COMMON LCsMsNsLRLSLRMsLRIV+NADJsNCANsHPBsSKsTHsSYsAN+sBSCsVT+POR»
2TIMEsTCON»DT+C(384)9DXC(B)+DY(B)sDZ(4)+DB(8) s IRIVIAT) v JRIVI&T) »
3RBRED(4T) +RWID(47) «RSLP(4T) +sQRIV(4T) sDIV(4T) sRSO(4T) s VMS(4T)»
4VMB (47) 9 SDRIV(20) + FKFAC(20) +COVI(9) +PCT(9) »AREA(9) s LCAN(10) »
SQUMD (3) +QLAM(3) +sQKAN(3) +CM(384549) yNDL (12+8) yNDC(B+8) +NDR(22+8)»
6HTEMP (BsB)9QIC(ByB) sKODC(Bs894) sHCP(BsRy&) +ZC(ByB24) yCKC(BsBoé)
TCKSAT(BsBs4)+DSDHP (Bs84 &)
COMMON /A/ LLsDXL(12)sKODL(12+8)sCKL(12+8) +HLP(129s8)+ZBL(12+8)»
2QIL(12+8)
COMMON /B/ LR+DXR(22)+KODR(22+8)+CKR(22+8) +HRP (22+8)+ZBR(22+8) s
2QIR(22+8)
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THIS SUBROUTINE COMPUTES VALUES FOR UNSATURATED HYDRAULIC CONDUCTIVITY AND
DERIVATIVE OF SATURATION WITH RESPECT TO HEAD FOR EVERY GRID IN THE
THREE-DIMENSIONAL MODEL SEGMENT AT THE BEGINNING OF EACH TIME INCREMENT.

SRR RN NN RO RSB NORE NSO EOONOORONOOERORORCNOROODRRROCRROEORODRRERD

ALL DZ MUST BE EVENLY DIVISIBLE BY HSTEP
HSTEP=0,5
DO 7 I=1sLC
DO 7 J=14M
DO 7 K=1sN
ADDS=0.0
ADDK=0,0
TOP=ZC(IsJsK)+0.5%DZ (K)
ROT=ZC(T+JsK)=0,5%DZ (K)
IF(TOPL.LE.HCP(I+JsK))GO TO 5
IF(BOT4LT.HCP(IsJeK)) GO TO 104
IF(K.LE.1) GO TO 104
HCP(IsJeK)=HCP (TsJeK=1)
IF(KODC(TsJoK) sEQe0) KODC(IvJoeK)=5
GO TO 10%
104 IF(KODCU(IoJsK) EQ.S) KODCI(IsJeK)=0
105 CONTINUE
ZIP=ROT+0,5*HSTEP
ANZ=DZ (K) /HSTEP
NZ=IFIX(ANZ)
DO 6 NN=1sNZ
HP=ZIP=HCP(IsJsK)
IF(MP.LT.0.0) GO TO 12
AINC=ABRS (HP/HSTEP) +1.0
INC=IFIX(AINC)
IF(INC.LT.1) INC=1
IF(INC,GT.NADJ) INC=NADJ
IF(INC.LT.1.0R.INC.GT.NADJ) WRITE(64+8) INC
B8 FORMAT(SX+®ERROR IN ADJUST®s5Xs®INC=#,]5)
GO TO 13
12 INC=1
13 ADDS=ADDS+SDRIV(INC)
ADDK=ADDK+FKFAC(INC)
ZIP=ZIP+HSTEP
& CONTINUE
DSDHP (1+JsK)=ADDS/ANZ
CKC(I+JoeK)=CKSAT(I+JeK)=*ADDK/ANZ
GO TO 7
S DSDHP(T+JsK)=0,0
CRC{TsJeK)=CKSAT(IsJsK)
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CONTINUE

RETURN

END

SUBROUTINE KFNP(HELEVsHHYD«CFKsTOP+BOT)

COMMON LCsMaNsLPLoLEMsLRIVyNADJINCANsHPBySKaTHsSYsANsBSCsVT+POR
2TIMEsTCONsDT9C(384) 9DXC(B)2DY(B)oDZ(4)+DB(8) yIRIV(4T) s JRIVI4T) »
ARBED(47) sRWID(4T) oRSLP(47) 9 QRIV(&T)aDIV(4LT) sRSNO(AT) s VMS(4T) s
4VMB (4T ) +SDRIV(20) o FXFAC(Z0) sCOV(9) +PCT(9) +AREA(9) sLCAN(10)»
SQUMD (3) +QLAM(3) +QKAN(3) 2 CM (3B4449) sNDL(1298) +NDC(Rs8) s NDR(224+8) »
GHTEMP (R48) +QIC(B48) sKODC(BsBy4) yHCP(R4By4) v ZC(BsBy4) yCKC(Br8e4)y
TCKSAT(B9Be4) +DSDHP (B89 4)

AR BEN R ANO N0 I ENENEROBODNEER AN BANRANDRIDRINCONOONORDOREBDORNIRT
IS SURROUTINE IS CALLED FROM CTRAN T0O COMPUTE VALUES OF UNSATURATED
DRAULIC CONDUCTIVITY ABOVE THE WATER TABLE FOR TWO=-DIMENSIONAL GRIDS.

AE8RQRERDTORNVDEAODORELHVBDOBIDOBOIBVAVOVVBBORDBDOBPDBOBBVODBROOORBED

L DZ MUST AE EVENLY DIVISIBLE BY STEP
STEP=0.5
ADDK=0.0
Z1P=ROT+0,5*STEP
ANZ=(TOP=BOT) /STEP
NZ=IFIX(ANZ)
DO A& NN=14NZ
HP=Z1P-HHYD
IF(HP.LT.0.0) GO TO 12
AINC=HP/STEP+1,0
INC=IFIX (AINC)
IF(INC.LT,1) INC=1
IF(INC.GT.NADJ) INC=NADJ
IF(INC.LT.I.O".INC.GT.NRDJI 'RITE(ﬁOB, INC
FORMAT (SX,#*ERROR IN KFNP#sSXo#INC=#,15)
530 70 13
INC=1
ADDK=ADDK+FKFAC ( INC)
ZIP=ZIP+STEP
CONTINUE
CFK=ADDK/ANZ
RETURN
END
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Abstract: A three-dimensional, finite difference model was
developed for simulating steady and unsteady, saturated and
unsaturated flow in a stream-aquifer system. The basis of
the model is the finite difference form of Richard's equa-
tion for unsaturated and saturated subsurface flow. Effects
of streamflow on groundwater movement are treated by apply-
ing the appropriate boundary conditions to Richard's equa-
tion. Contributions of groundwater to river flow are
quantified by including seepage rates in the computation of
river discharge. The three-dimensional model was developed
for use in this study to interact with two-dimensional model
segments, which were interfaced with the three-dimensional
model on its upstream and downstream ends.
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the model is the finite difference form of Richard's equa-
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of streamflow on groundwater movement are treated by apply-
ing the appropriate boundary conditions to Richard's equa-
tion. Contributions of groundwater to river flow are
quantified by including seepage rates in the computation of
river discharge. The three-dimensional model was developed
for use in this study to interact with two-dimensional model
segments, which were interfaced with the three-dimensional
model on its upstream and downstream ends.




ine model produced results which match observed data
for tnhe study area, which consisted of a 40 mile reach of
tae Arkansas Valley of Southeastern Colorado. Computed
estimates of river discharge at each end of the study area
i and water table elevations throughout the region agreed
i reasonably well with observed data. An analysis of the
sensitivity of results produced by the model to variation
in the values of several input parameters was included as
part of the study.
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