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ABSTRACT

NONPARAMETRIC TESTS OF SPATIAL ISOTROPY AND A

CALIBRATION-CAPTURE-RECAPTURE MODEL

In this dissertation we present applied, theoretical, and methodological advances in the

statistical analysis of spatially-referenced and capture-recapture data. An important step

in modeling spatially referenced data is choosing the spatial covariance function. Due to

the development of a variety of covariance models, practitioners are faced with a myriad of

choices for the covariance function. One of these choices is whether or not the covariance

function is isotropic. Isotropy means that the covariance function depends only the distance

between observations in space and not their relative direction. Part I of this dissertation

focuses on nonparametric hypothesis tests of spatial isotropy.

Statisticians have developed diagnostics, including graphical techniques and hypothesis

tests, to assist in determining if an assumption of isotropy is adequate. Nonparametric tests

of isotropy are one subset of these diagnostic methods, and while the theory for several

nonparametric tests has been developed, the efficacy of these methods in practice is less

understood. To begin part I of this dissertation, we develop a comprehensive review of

nonparametric hypothesis tests of isotropy for spatially-referenced data. Our review provides

informative graphics and insight about how nonparametric tests fit into the bigger picture

of modeling spatial data and considerations for choosing a test of isotropy. An extensive

simulation study offers comparisons of method performance and recommendations for test

implementation. Our review also gives rise to a number of open research questions.

In the second section of part I, we develop and demonstrate software that implements

several of the tests. Because the tests were not available in software, we created the R package

spTest, which implements a number of nonparametric tests of isotropy. The package is

open source and available on the Comprehensive R Archive Network (CRAN). We provide a

detailed demonstration of how to use spTest for testing isotropy on two spatially-referenced
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data sets. We offer insights into test limitations and how the tests can be used in conjunction

with graphical techniques to evaluate isotropy properties.

To conclude our work with spatially-referenced data in part I, we develop a new non-

parametric test of spatial isotropy using the spectral representation of the spatial covariance

function. Our new test overcomes some of the short-comings of other nonparametric tests.

We develop theory that describes the distribution of our test statistic and explore the efficacy

of our test via simulations and applications. We also note several difficulties in implementing

the test, explore remedies to these difficulties, and propose several areas of future work.

Finally, in part II of this dissertation, we shift our focus away from spatially-referenced

data to capture-recapture data. Our capture-recapture work is motivated by methane con-

centration data collected by new mobile sensing technology. Because this technology is still

in its infancy, there is a need to develop algorithms to extract meaningful information from

the data. We develop a new Bayesian hierarchical capture-recapture model which we call

the calibration-capture-recapture (CCR) model. We use our model and methane data to

estimate the number and emission rate of methane sources within an urban sampling re-

gion. We apply our CCR model to methane data collected in two U.S. cities. Our new

CCR model provides a framework to draw inference from data collected by mobile sensing

technologies. The methodology for our capture-recapture model is useful in other capture-

recapture settings, and the results of our model are important for informing climate change

and infrastructure discussions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Outline

An important step in modeling spatially-referenced data is appropriately specifying the

second-order properties of the random field. Due the emergence of large spatially referenced

data sets, statisticians have recently developed a plethora of new spatial models for describing

second-order structure. A scientist developing a model for spatial data has a number of

options regarding the nature of the dependence between observations. One of these options

is deciding whether or not the dependence between observations depends on direction, or,

in other words, whether or not the spatial covariance function is isotropic. Isotropy implies

that spatial dependence is a function of only the distance and not the direction of the spatial

separation between sampling locations.

A researcher may use graphical techniques, such as directional sample semivariograms,

to determine whether an assumption of isotropy holds. These graphical diagnostics can be

difficult to assess, subject to personal interpretation, and potentially misleading as they typ-

ically do not include a measure of uncertainty. A hypothesis test can serve as an alternative

to graphical techniques and be less subjective. To avoid potential misspecification of the

spatial covariance function, statisticians have developed a number of nonparametric tests of

isotropy (e.g., Guan et al., 2004; Maity and Sherman, 2012). While these nonparametric tests

have sound theoretical development, there is less understanding regarding the use and per-

formance of the methods for applied problems. Additionally, these methods were not widely

available in software. In Chapters 2 and 3, we explore the use of these methods in prac-

tice and develop and demonstrate software that implements several of the investigated tests.

1



Through our work, we provide clear guidelines and examples of how to use these methods to

assist practitioners in deciding whether or not an assumption of isotropy is reasonable.

An exploration of existing nonparametric tests of spatial isotropy reveals several practical

challenges for each of the methods. In Chapter 4 we develop a new nonparametric test

of isotropy that overcomes some of these challenges. Our new method uses the spectral

representation of the spatial covariance function. We explore the challenges of aliasing when

using the spectral representation, and develop a diagnostic to aid in determining whether

or not aliasing is a concern. Our new test and diagnostic provide new tools for assessing

anisotropy and aliasing concerns in spatial data.

Finally, we change our focus in Chapter 5 and develop a new capture-recapture model,

which we call calibration-capture-recapture (CCR), to estimate the number of methane

sources in an urban sampling area. We apply our model to data collected by atmospheric

methane analyzers mounted on Google Street View (GSV) cars. Because this mobile detec-

tion technology has only recently been deployed, our model is one of the earliest statistical

models used to analyze methane data collected by mobile detection platforms. Our model

couples calibration and capture-recapture models to estimate the number of methane sources,

the probability of source detection, and source emission rate.

In the remainder of this chapter, we provide notation and definitions for spatial statistics

used in Chapters 2-4.

1.2 Spatial Statistics

In this section we provide background and definitions on geostatistics. For additional

background, see Schabenberger and Gotway (2004). Let {Y (s) : s 2 D ✓ R
d} be a set of

random variables with a well-defined joint probability distribution and indexed by spatial

location s. We call the set {Y (s)} a spatial stochastic process or random field (RF). For the

remainder of the dissertation, we assume the common case of d = 2, although many of the

results hold for the more general case of d ≥ 2.
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Let {s1, . . . , sn} 2 D be the finite set of locations at which the RF is observed, providing

the random vector Y = (Y (s1), . . . , Y (sn))
>. The sampling locations may follow one of

several spatial sampling designs, for example, gridded locations, randomly and uniformly

distributed locations, a cluster design, or any other general design. Note that there is a

distinction between a lattice process and a geostatistical process observed on a grid (e.g.,

Fuentes and Reich, 2010; Schabenberger and Gotway, 2004, pg. 6-10).

It is often of interest to infer the effect of covariates on the RF, deduce dependence struc-

ture, and/or predict Y with associated uncertainty at new locations. To achieve these goals,

we must specify the distributional properties of the spatial process. A common assumption is

that the finite-dimensional joint distribution of {Y (s) : s 2 D ✓ R
2} is multivariate normal,

in which case we call the RF a Gaussian random field (GRF).

A RF is strictly stationary if its distribution is invariant under coordinate translation,

thus

P(Y (s1) < y1, · · · , Y (sk) < yk) = P(Y (s1 + h) < y1, · · · , Y (sk + h) < yk) (1)

for all spatial lags h = (h1, h2)
> 2 R

2 and k 2 Z
+. A RF is weakly, or second-order,

stationary if

E(Y (s)) = E(Y (s+ h)) = µ

and

Cov(Y (s), Y (s+ h)) = Cov(Y (0), Y (h)) = C(h),

(2)

where C(h) < 1 is called the covariance function or covariogram. In this dissertation we

focus on second-order properties of the random field; thus, hereafter we assume µ = 0. A RF

that is weakly stationary (2) has a constant mean, and the covariance between values at two

spatial locations depends only on the spatial lag. Absolute coordinates are irrelevant for the

3



mean, variance, and covariance of a weakly stationary RF. A RF is intrinsically stationary if

E(Y (s+ h)− Y (h)) = 0

and

Var(Y (s+ h)− Y (s)) = 2γ(h),

(3)

where 2γ(h) is called the variogram function or variogram, and γ(h) = 1
2
Var(Y (s+h)−Y (s))

is the semivariogram function or semivariogram. Note that intrinsic stationarity is defined

in terms of the increments Y (s+ h)− Y (s).

The relationship between the different types of stationarity is given by

strict =) weak =) intrinsic. (4)

In general the converse of (4) is not true; however, the converse of (4) holds under the

assumption that the RF is a GRF. From (2) and (3) it follows that γ(h) = C(0) − C(h)

when the RF is weakly stationary. This relationship implies that the second-order properties

of a weakly stationary RF can be viewed from the perspective of either the (semi)variogram

or covariogram.

A common simplifying assumption on the spatial dependence structure is that it is

isotropic.

Definition 1. A second-order stationary spatial process is isotropic if the semivariogram,

γ(h) (or equivalently, the covariance function C(h)) of the spatial process depends on the lag

vector h only through its Euclidean length, h = ||h|| (i.e., γ(h) = γ0(h) for some function

γ0(·) of a univariate argument).

Isotropy implies that the dependence between any two observations depends only on the

distance between their sampling locations and not on their relative orientation. A spatial

process that is not isotropic is called anisotropic. Anisotropy is often broadly categorized

4
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Figure 1.1: Heat maps displaying simulated data from two stationary random fields (RFs)
over a section of the midwestern United States. Figure 1.1a displays data simulated from
an isotropic covariance function. Figure 1.1b shows data simulated from a geometrically

anisotropic covariance function. The existence of anisotropy in Figure 1.1b is evidenced by
bands of similar values running in the northwest to southeast directions. These bands
indicate that spatial dependence is stronger in the NW-SE direction than the SW-NE

direction.
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as either geometric or zonal (Zimmerman, 1993). In practice, if a process is assumed to

be anisotropic, it is often assumed to be geometrically anisotropic due to its precise formal

and functional definition (Ecker and Gelfand, 1999). Geometric anisotropy is governed by a

scaling parameter, R > 1, and rotation parameter, 0  ✓ < 2⇡, and implies the anisotropy

can be corrected via a linear transformation of the lag vector or, equivalently, the sampling

locations (Cressie, 1993, pg. 64). Geometric anisotropy implies that the range, the distance

at which correlation between observations equals zero, of the spatial process is direction

dependent. Figure 1.1 displays data simulated from two stationary RFs, one that is isotropic

and one that is geometrically anisotropic. Although there is some disagreement on the

definition (e.g., see Isaaks and Srivastava (1989, pg. 377,385) and Journel and Huijbregts

(1978, pg. 181)), most authors agree that a common element of zonal anisotropy is a direction

dependent sill. For a second-order stationary RF, the sill is defined as C(0), the value of the

covariance function at the origin. We refer the interested reader to Zimmerman (1993) for

more discussion on geometric, zonal, and other types of anisotropies.

The aforementioned property of isotropy is defined in terms of examining the spatial

random process in the spatial domain, where second-order properties depend on the spatial

separation, h. Alternatively, a spatial random process and its covariance function can be

represented in the spectral domain using Fourier analysis. For the purposes of investigating

second-order properties, we are interested in the spectral representation of the covariance

function, called the spectral density function and denoted f(ω), where ω = (!1, !2). Under

certain conditions and assumptions (Fuentes and Reich, 2010, pg. 62), the spectral density

function is given by

f(ω) =
1

(2⇡)2

Z

R2

exp(−iωTh)C(h)dh, (5)

so that the covariance function, C(h), and the spectral density function, f(ω), form a Fourier

transform pair.
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Properties of the covariance function imply properties of the spectral density. Conse-

quently, second-order properties of a second-order stationary RF can be explored via either

the covariance function or the spectral density function. For example, if the covariance

function is isotropic, then the spectral density (5) depends on ω only through its length,

! = ||ω||, and we can write f(ω) = f0(!), where f0(·) is called the isotropic spectral density

(Fuentes, 2013). We provide more details on the spectral representation and its properties

in Chapter 4.
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CHAPTER 2

A REVIEW OF NONPARAMETRIC TESTS OF ISOTROPY

2.1 Introduction

Early spatial models relied on the simplifying assumptions that the covariance function

is stationary and isotropic. With the emergence of new sources of spatial data, for instance,

remote sensing via satellite, climate model output, or environmental monitoring, a variety

of methods and models have been developed that relax these assumptions. In the case of

anisotropy, there are a number of methods for modeling both zonal anisotropy (Journel and

Huijbregts, 1978, pg. 179-184; Ecker and Gelfand, 2003; Schabenberger and Gotway, 2004,

pg. 152; Banerjee et al., 2014, pg. 31) and geometric anisotropy (Borgman and Chao, 1994;

Ecker and Gelfand, 1999). Rapid growth of computing power has allowed the implementation

and estimation of these models.

When modeling a spatial process, the specification of the covariance function will have

an effect on kriging and parameter estimates and the associated uncertainty (Cressie, 1993,

pg. 127-135). Sherman (2011, pg. 87-90) and Guan et al. (2004) use numerical examples to

demonstrate the adverse implications of incorrectly specifying isotropy properties on kriging

estimates. Given the variety of choices available regarding the properties of the covariance

function (e.g., parametric forms, isotropy, stationarity) and the effect these choices can have

on inference, practitioners may seek methods to inform the selection of an appropriate co-

variance model.

A number of graphical diagnostics have been proposed to evaluate isotropy properties in

observed data. Perhaps the most commonly used methods are directional semivariograms

and rose diagrams (Matheron, 1961; Isaaks and Srivastava, 1989, pg. 149-154). Banerjee
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et al. (2014, pg. 38-40) suggest using an empirical semivariogram contour plot to assess

isotropy as a more informative method than directional sample semivariograms. Another

technique involves comparing empirical estimates of the covariance at different directional

lags to assess symmetry for data on gridded sampling locations (Modjeska and Rawlings,

1983). One caveat of the aforementioned methods is that they can be challenging to assess,

are open to subjective interpretations, and can be misleading (Guan et al., 2004) because

they typically do not include a measure of uncertainty. Experienced statisticians may have

intuition about the interpretation and reliability of these diagnostics, but a novice user may

wish to evaluate assumptions via a hypothesis test.

Statistical hypothesis tests of second-order properties can be used to supplement and

reinforce intuition about graphical diagnostics and can be more objective. Like the graph-

ical techniques, hypothesis tests have their own caveats; for example, a parametric test of

isotropy demands specification of the covariance function. A nonparametric method for test-

ing isotropy avoids the potential problems of misspecification of the covariance function and

the requirement of model estimation under both the null and alternative hypotheses, which

can be computationally expensive for large datasets. Furthermore, nonparametric methods

do not require the common assumption of geometric anisotropy. However, in abandoning

the parametric assumptions about the covariance function, implementing a test of isotropy

presents several challenges (see Section 2.5). A nonparametric test of isotropy or symmetry

can serve as another form of exploratory data analysis that supplements graphical techniques

and informs the choice of an appropriate nonparametric or parametric model. Figure 2.1

illustrates the process for assessing and modeling isotropy properties.

In this chapter we review nonparametric hypothesis tests developed to test the assump-

tions of symmetry and isotropy in spatial processes. We summarize tests in both the spatial

and spectral domain and provide tables that enable convenient comparisons of test proper-

ties. A simulation study evaluates the empirical size and power of several of the methods and

enables a direct comparison of method performance. We provide recommendations regarding
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Figure 2.1: A flow chart illustrating the process of assessing and modeling isotropy in
spatial data. The gray boxes indicate the focus of this chapter.
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choices for test implementation and investigate the effects of these choices via simulations.

Finally, we include graphics that demonstrate considerations for choosing a nonparametric

test and illustrate the process of determining isotropy properties.

The remainder of this chapter is organized as follows: Section 2.2 establishes some addi-

tional definitions; Section 2.3 details the various nonparametric hypothesis tests of isotropy

and symmetry and includes Tables 2.1-2.4 which facilitate comparison between tests as well

as test selection for users; Section 2.4 describes the simulation study comparing the various

methods and displays some of the results; Section 2.5 provides recommendations for test

implementation; and Section 2.6 proposes new avenues of future research and concludes the

chapter. Additional details on the simulation study and additional simulation results are

available in the Section 2.7.

2.2 Additional Background and Definitions

The classical, moment-based estimator of the semivariogram (Matheron, 1962) is

bγ(h) = 1

2|D(h)|
X

[Y (s)− Y (s+ h)]2, (6)

where the sum is over D(h) = {s : s, s + h 2 D} and |D(h)| is the number of elements in

D(h). The set D(h) is the set of sampling location pairs that are separated by spatial lag

h. This nonparametric estimator of second-order properties is used as the point estimator

in several of the nonparametric tests of isotropy.

In addition to isotropy, symmetry is another directional property of the covariance (semi-

variogram) function, which is often used to describe the spatial variation of processes on a

grid. We discuss symmetry properties here as they are a subset of isotropy, and methods for

testing isotropy can often be used to test symmetry. The following definitions come from Lu

and Zimmerman (2005) and Scaccia and Martin (2005) where the notation C(h1, h2) denotes
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the covariance between random variables located h1 columns and h2 rows apart on the grid,

denoted L2.

Definition 2. A second-order stationary spatial process on a grid is reflection or axially

symmetric if C(h1, h2) = C(−h1, h2) for all (h1, h2) 2 L2.

Definition 3. A second-order stationary spatial process on a grid is diagonally or laterally

symmetric if C(h1, h2) = C(h2, h1) for all (h1, h2) 2 L2.

Definition 4. A second-order stationary spatial process on a grid is completely symmetric

if it is both reflection and laterally symmetric (i.e., C(h1, h2) = C(−h1, h2) = C(h2, h1) =

C(−h2, h1) for all (h1, h2) 2 L2).

Complete symmetry is a weaker property than isotropy. Isotropy requires that C(h1, h2)

depends only on
p
h21 + h22 for all h1, h2. The relationship between these properties is given

by:

isotropy =) complete symmetry =)
reflection symmetry

diagonal symmetry
. (7)

Thus, rejecting a null hypothesis of reflection symmetry implies evidence against the assump-

tions of reflection symmetry, complete symmetry, and isotropy. However, failure to reject a

null hypothesis of reflection symmetry does not imply an assumption of complete symmetry

or isotropy is appropriate.

As we mentioned in Chapter 1, properties of the covariance function imply properties of

the spectral density. Test statistics quantifying second-order properties can be constructed

using the periodogram, an estimator of the spectral density (5) and denoted by I(·). For

a real-valued spatial process observed on a rectangular grid Z
2 ⇢ R

2, a moment-based
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periodogram used to estimate (5) is

I(!1, !2) =
1

(2⇡)2

n1−1X

h1=−n1+1

n2−1X

h2=−n2+1

bC(h1, h2) cos(h1!1 + h2!2), (8)

where n1 and n2 denote the number of rows and columns of the grid and bC(h1, h2) is a

non-parametric estimator of the covariance function. It is important to note that, depending

on whether the underlying process is discrete or continuous, (8) is an estimator of different

quantities. See Fuentes and Reich (2010) for more details on this distinction. In practice,

the periodogram (8) is used to estimate the spectral density at the Fourier or harmonic

frequencies. The frequency ω = (!1, !2) is a Fourier or harmonic frequency if !j is a multiple

of 2⇡/nj, j = 1, 2. Furthermore, the set of frequencies is limited to {!j = 2⇡kj/nj, kj =

0,±1,±2, . . . ,±n⇤
j}, where n⇤

j is (nj − 1)/2 if nj is odd and nj/2− 1 if nj is even.

2.3 Tests of Isotropy and Symmetry

2.3.1 Brief History

Matheron (1961) developed one of the earliest hypothesis tests of isotropy when he used

normality of sample variogram estimators to construct a χ2 test for anisotropy in mineral

deposit data. Cabana (1987) tested for geometric anisotropy using level curves of random

fields. Vecchia (1988) and Baczkowski and Mardia (1990) developed tests for isotropy as-

suming a parametric covariance function. Baczkowski (1990) also proposed a randomization

test for isotropy. Despite these early works, little work on testing isotropy was published

during the 1990s, although the PhD dissertation work of Lu (1994) would eventually have a

noteworthy impact on the literature. Then, in the 2000s, a number of nonparametric tests of

second-order properties emerged. Some of the developments used estimates of the variogram

or covariogram to test symmetry and isotropy properties (Lu and Zimmerman, 2001; Guan,

2003; Guan et al., 2004, 2007; Maity and Sherman, 2012). These works generally borrowed
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ideas from two bodies of literature: (a) theory on the distributional and asymptotic properties

of semivariogram estimators (e.g., Baczkowski and Mardia, 1987; Cressie, 1993, pg. 69-47;

Hall and Patil, 1994) and (b) subsampling techniques to estimate the variance of statistics

derived from spatial data (e.g., Possolo, 1991; Politis and Sherman, 2001; Sherman, 1996;

Lahiri, 2003; Lahiri and Zhu, 2006). Other nonparametric methods used the spectral domain

to test isotropy and symmetry (Scaccia and Martin, 2002, 2005; Lu and Zimmerman, 2005;

Fuentes, 2005). These works generally extended ideas used in the time series literature (e.g.,

Priestley and Rao, 1969; Priestley, 1981) to the spatial case. Methods for testing isotropy

and symmetry in both the spatial and spectral domains, under the assumption of a para-

metric covariance function, have also been developed recently (Stein et al., 2004; Haskard,

2007; Fuentes, 2007; Matsuda and Yajima, 2009; Scaccia and Martin, 2011).

2.3.2 Nonparametric Methods in the Spatial Domain

A popular approach to testing second-order properties was pioneered in the works of Lu

(1994) and Lu and Zimmerman (2001) who leveraged the joint asymptotic normality of the

sample variogram computed at different spatial lags. The subsequent works of Guan et al.

(2004, 2007) and Maity and Sherman (2012) built upon these ideas and are the primary

focus of this subsection. Lu (1994) details methods for testing axial symmetry. While Lu

and Zimmerman (2001), Guan et al. (2004), and Maity and Sherman (2012) focus on testing

isotropy, these methods can also be used to test symmetry. Finally, Bowman and Crujeiras

(2013) detail a more computational approach for testing isotropy. Both Li et al. (2007,

2008b) and Jun and Genton (2012) use an approach analogous to the methods from Lu

and Zimmerman (2001), Guan et al. (2004, 2007), and Maity and Sherman (2012) but for

spatiotemporal data. Table 2.1 summarizes test properties discussed in this section and

Section 2.3.3.

Nonparametric tests for anisotropy in the spatial domain are based on a null hypothesis

that is an approximation to isotropy. Under the null hypothesis that the RF is isotropic,
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it follows that the values of the semivariogram γ(·) evaluated at any two spatial lags that

have the same norm are equal, regardless of the direction of the lags. To fully specify the

most general null hypothesis of isotropy, theoretically, one would need to compare variogram

values for an infinite set of lags. In practice a small number of lags are specified. Then it is

possible to test a hypothesis consisting of a set of linear contrasts of the form

H0 : Aγ(·) = 0 (9)

as a proxy for the null hypothesis of isotropy, where A is a full row rank matrix (Lu and

Zimmerman, 2001). For example, a set of lags, denoted Λ, commonly used in practice for

gridded sampling locations with unit spacing is

Λ = {h1 = (1, 0),h2 = (0, 1),h3 = (1, 1),h4 = (−1, 1)}, (10)

and the corresponding A matrix under H0 : Aγ(Λ) = 0 is

A =

2
64
1 −1 0 0

0 0 1 −1

3
75 . (11)

One of the first steps in detecting potential anisotropy is the choice of lags, as the test results

will only hold for the particular set of lags considered (Guan et al., 2004). While this choice

is subjective, there are several considerations and useful guidelines for determining the set

of lags (see Section 2.5).

For nonparametric tests of symmetry, the null hypothesis of symmetry using (9) can be

expressed by a countable set of contrasts for a process observed on a grid. Tests of symmetry

will be subject to similar practical considers as tests of isotropy, and practitioners testing

symmetry properties will need to choose a small set of lags and form a hypothesis that is

a surrogate for symmetry. For example, testing reflection symmetry of a process observed
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on the integer grid would require comparing estimates of C(·) evaluated at the lag pairs

{(1, 0), (−1, 0)}, {(2, 0), (−2, 0)}, {(1, 1), (−1, 1)}, etc.

The tests in Lu and Zimmerman (2001), Guan et al. (2004, 2007), and Maity and Sherman

(2012) involve estimating either the semivariogram γ(·) or covariogram C(·) at the set of

chosen lags Λ. Denoting the set of point estimates of the semivariogram/covariance function

at the chosen lags as bGn, the true values as G, and normalizing constant an, a central result

for all three methods is that

an(bGn −G)
d−−−!

n!1
MVN(0,Σ), (12)

under increasing domain asymptotics and mild moment and mixing conditions on the RF.

Using the A matrix, an estimate of the variance covariance matrix, bΣ, and bGn, a quadratic

form is constructed, and a p-value can be obtained from an asymptotic χ2 distribution with

degrees of freedom given by the row rank of A. The primary differences between these works

are the assumed distribution of sampling locations, the shape of the sampling domain, and

the estimation of G and Σ. These differences are important when choosing a test that is

appropriate for a particular set of data (see Tables 2.1 and 2.2 and Figure 2.4 for more

information about these differences).

Maity and Sherman (2012) developed a test with the fewest restrictions on the shape of

the sampling region and distribution of sampling locations. Their test can be used when

the sampling region is any convex subset in R
d and the distribution of sampling locations in

the region follows any general spatial sampling design. The test in Guan et al. (2004) also

allows convex subsets in R
d and is developed for gridded and non-gridded sampling locations

but requires non-gridded sampling locations to be uniformly distributed on the domain (i.e.,

generated by a homogenous Poisson process). The Poisson assumption is dropped in Guan

et al. (2007). Lu and Zimmerman (2001) require the domain to be rectangular and the

observations to lie on a grid.
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Table 2.1: Properties of nonparametric tests of isotropy. “Sym” indicates whether or not the test can be used to test
symmetry properties. “Domain” refers to the domain used to represent the RF (spatial or spectral), “Test Stat Based On”

lists the nonparametric estimator used to construct the test statistic “Dist’n” gives the limiting asymptotic distribution of the
test statistic, and “GP” denotes whether the test requires data to be generated from a Gaussian process.

Hypothesis Test Properties
Test Method Isotropy Sym Domain Test Stat Based On Asymptotics Dist’n GP
Lu and Zimmerman (2001) yes yes spatial semivariogram inc domain χ2 yes
Guan et al. (2004, 2007) yes yes spatial (kernel)a variogram inc domain χ2 b no
Scaccia and Martin (2002, 2005) partial yes spectral periodogram inc domain Z, t no
Lu and Zimmerman (2005) partial yes spectral periodogram inc domain χ2, F no
Fuentes (2005) partial no spectral spatial periodogram mixed χ2 yes
Maity and Sherman (2012) yes yes spatial kernel covariogram inc domain χ2 no
Bowman and Crujeiras (2013) yes no spatial variogram inc domain χ2 c yes
Van Hala et al. (2014) yes yes spectral empirical likelihood mixed χ2 no
afor gridded sampling locations, the estimator in (6) is used while a kernel semivariogram estimator is used for non-gridded sampling locations
bp-values may need to be approximated using finite sample adjustments
c distribution is approximately χ2
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Table 2.2: Test implementation, part 1. “Subsamp” defines whether spatial subsampling procedures are needed to perform
the test, “S&P Sim” denotes whether or not the author(s) of the method provide a simulation of test size and power (See also

Table 2.4).

Hypothesis Test Implementation
Test Method Sampling Domain Shape Sampling Design Subsamp S&P Sim Software
Lu and Zimmerman (2001) rectangular in R

2 grid no yesa no
Guan et al. (2004, 2007) convex subsets in R

d grid/unifb/non-unifc yes yesa R pkg spTest

Scaccia and Martin (2002, 2005) rectangular in R
2 grid no yesa no

Lu and Zimmerman (2005) rectangular in R
2 grid no yes R pkg spTest

Fuentes (2005) rectangular in R
d grid no yesa no

Maity and Sherman (2012) convex subsets in R
d non-unifc yes yesa R pkg spTest

Bowman and Crujeiras (2013) convex subsets in R
d unifb no yesa R pkg sm

Van Hala et al. (2014) subsets in R
d non-unifc no yesa no

a simulated data are Gaussian only
b sampling locations must be generated by homogeneous Poisson process, i.e. uniformly distributed on the domain
c sampling locations can be generated by any general sampling design

18



Another difference between methods is the form of the nonparametric estimator of G.

In Lu and Zimmerman (2001), bGn is computed using the log of the classical sample semi-

variogram estimator (6). Guan et al. (2004, 2007) also use the estimator in (6) for gridded

sampling locations, but use a kernel estimator of γ(h) for non-gridded locations. Maity and

Sherman (2012) use a kernel estimator of the covariance function. When smoothing over

spatial lags in R
2, the Nadaraya-Watson (Nadaraya, 1964; Watson, 1964) product kernel

estimator is typically adopted, independently smoothing over horizontal and vertical lags.

Common choices for the kernel are the Epanechnikov or truncated Gaussian kernels. The

kernel estimators also require the selection of a bandwidth parameter, w. Choosing an appro-

priate bandwidth is one of the challenges of implementing the tests for non-gridded sampling

locations, and the conclusion of the test has the potential to be sensitive to the choice of the

bandwidth parameter (see Section 2.5 for recommendations on bandwidth selection).

Nonparametric tests in the spatial domain also vary in the estimation ofΣ, the asymptotic

variance-covariance of bGn in (12). Lu and Zimmerman (2001) use a plug-in estimator that

requires the choice of a parameter, m, that truncates the sum used in estimation. Spatial

resampling methods are another approach used to estimate Σ. The method used for spatial

resampling and properties of estimators computed from spatial resampling will depend on

the underlying spatial sampling design (Lahiri, 2003, pg. 281). Guan et al. (2004, 2007) use

a moving window approach, creating overlapping subblocks that cover the sampling region.

Maity and Sherman (2012) employ the grid based block bootstrap (GBBB) (Lahiri and

Zhu, 2006). The GBBB approach divides the spatial domain into regions, then replaces each

region by sampling (with replacement) a block of the sampling domain having the same shape

and volume as the region, creating a spatial permutation of blocks of sampling locations.

When using the resampling methods, the user must choose the window or block size and the

conclusion of the test has the potential to change based on the chosen size. Irregularly shaped

sampling domains can pose a challenge in using the subsampling methods. For example,

for an irregularly shaped sampling domain, many incomplete blocks may complicate the
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subsampling procedure. We summarize guidelines for choosing the window/block size in

Section 2.5.

Another approach to testing isotropy in the spatial domain is given by Bowman and

Crujeiras (2013) who take a more empirical and computationally-intensive approach. Their

methods are available in the R software (R Core Team, 2015) package sm (Bowman and

Azzalini, 2014). One caveat of using the sm package is that the methods are computationally

expensive, even for moderate sample sizes. For example, a test of isotropy on 300 uniformly

distributed sampling locations on a 10 ⇥ 16 sampling domain took approximately 9.5 minutes

where the methods from Guan et al. (2004) took 1.6 seconds using a laptop with 8 GB of

memory and a 2 GHz Intel Core i7 processor. Because of the computational costs, we do

not consider this method further.

2.3.3 Nonparametric Methods in the Spectral Domain

For gridded sampling locations, nonparametric spectral methods have been developed for

testing symmetry (Scaccia and Martin, 2002, 2005; Lu and Zimmerman, 2005) and stationar-

ity (Fuentes, 2005), but none are designed with a primary goal of testing isotropy. This may,

in part, be due to the aliasing that occurs when estimating the spectral density of a continu-

ous process observed on a discrete set of locations (Fuentes and Reich, 2010). Additionally,

due to the difficulties presented by non-gridded sampling locations, historically there have

been fewer developments using spectral methods for non-gridded sampling locations than

for gridded (or lattice) data, but this is an area that has received more attention recently

(see, e.g., Fuentes, 2007; Matsuda and Yajima, 2009; Bandyopadhyay et al., 2015). Despite

the challenges, Van Hala et al. (2014) have proposed a nonparametric, empirical likelihood

approach to test isotropy and separability for non-gridded sampling locations.

The primary motivation for using the spectral domain over the spatial domain are sim-

pler asymptotics in the spectral domain. Unlike estimates of the variogram or covariogram

at different spatial lags, estimates of the spectral density at different frequencies via the

20



periodogram are asymptotically independent under certain conditions (Pagano, 1971; Sch-

abenberger and Gotway, 2004, pg. 78,194). Additionally, in practice, tests of symmetry

in the spectral domain are generally not subject to as many choices (e.g., spatial lag set,

bandwidth, block size) as those in the spatial domain.

Analogous to testing isotropy in the spatial domain by using a finite set of spatial lags,

tests of symmetry in the spectral domain typically involve estimating and comparing the

spectral density (5) at a finite set of the Fourier frequencies. For example, axial symmetry

(2) of the covariance function implies axial symmetry of the spectral density, f(!1, !2) =

f(−!1, !2), which can be evaluated by comparing I(!1, !2) to I(−!1, !2) at a finite set of

frequencies. Similarly, the null hypothesis of isotropy can be approximated by comparing

periodogram estimates (8) at a set of distinct frequencies with the same norm (Fuentes, 2005).

Although most of the current spectral methods are not directly designed to test isotropy, the

hypothesis of complete symmetry can be used to reject the assumption of isotropy due to

(7). However, certain types of anisotropy may not be detected by these tests. For example,

a geometrically anisotropic process having the major axis of the ellipses of equicorrelation

parallel to the x-axis is axially symmetric, and the anisotropy wouldn’t be detected by a test

of axial symmetry.

Scaccia and Martin (2002, 2005) use the periodogram (8) to develop a test for axial sym-

metry. They propose three test statistics that are a function of the periodogram values. The

first test statistic uses the average of the difference in the log of the periodogram values,

log I(!1, !2) − log I(!1,−!2). The second and third test statistics use the average of stan-

dardized periodogram differences, [I(!1, !2) − I(!1,−!2)]/[I(!1, !2) + I(!1,−!2)]. These

test statistics are shown to asymptotically follow a standard normal or t distribution via the

Central Limit Theorem, and the corresponding distributions are used to obtain a p-value.

Lu and Zimmerman (2005) also use the periodogram as an estimator of the spectral

density to test properties of axial and complete symmetry of processes on the integer grid,

Z
2. They use the asymptotic distribution of the periodogram to construct two potential test
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statistics. Both test statistics leverage the fact that, under certain conditions and at certain

frequencies,

2I(!1, !2)

f(!1, !2)

iid−−−−−!
n1,n2!1

χ2
2, (13)

where f() is the spectral density of the (non-continuous) process on the grid. Under the null

hypothesis of axial or complete symmetry, (13) implies that ratios of periodogram values

at different frequencies follow an F (2, 2) distribution. The preferred test statistic produces

a p-value via a Cramér-von Mises (CvM) goodness of fit test using the appropriate set

of periodogram ratios. Because rejecting a hypothesis of axial symmetry implies rejecting

a hypothesis of complete symmetry, Lu and Zimmerman (2005) recommend a two-stage

procedure for testing complete symmetry. At the first stage, they test the hypothesis of axial

symmetry, and if the null hypothesis is not rejected, they test the hypothesis of complete

symmetry. To control the overall type-I error rate at ↵, the tests at each stage can be

performed using a significance level of ↵/2.

Leveraging the asymptotic independence of the periodogram at different frequencies,

Van Hala et al. (2014) propose a spatial frequency domain empirical likelihood (SFDEL)

approach that can be used for inference about spatial covariance structure. One of the

applications of this method is testing isotropy. An advantage of this method over other

frequency domain approaches is that it can be used for non-gridded sampling locations. To

implement the test, the user must select the set of lags and, because the sampling locations

are not gridded, the number and spacing of frequencies. Van Hala et al. (2014) offer some

guidelines for these choices based on the simulations and theoretical considerations (e.g., the

frequencies need to be asymptotically distant). After these choices are made, Van Hala et al.

(2014) maximize an empirical likelihood under a moment constraint corresponding to isotropy

and show that the log-ratio of the constrained and unconstrained maximizer asymptotically

follows a χ2 distribution. The SFDEL method relies on the asymptotic independence of the
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periodogram values, and the smallest sample size used in simulations was n = 600. Thus, it

is not clear how the method will perform for smaller sample sizes.

Fuentes (2005) introduces a nonparametric, spatially varying spectral density to represent

nonstationary spatial processes. While the method can be used to test the assumption of

isotropy, the test requires a large sample size on a fine grid. For this reason, and also because

the test was primarily designed to test the assumption of stationarity, we do not consider it

further.

2.4 Simulation Study

We designed a simulation study to compare the empirical size, power, and computational

costs for four of the methods. For gridded sampling locations, we compare Lu and Zimmer-

man (2005)[hereafter, LZ] to Guan et al. (2004)[hereafter denoted as GSC or GSC-g when

we are specifically referring to the test when applied to gridded sampling locations]. For uni-

formly distributed sampling locations we compare Maity and Sherman (2012)[MS] to Guan

et al. (2004, 2007)[GSC-u for the method used for uniformly distributed sampling locations].

We performed the tests on the same realizations of the RF. Data are simulated on rect-

angular grids or rectangular sampling domains because they are more realistic than square

domains and simulations on rectangular domains were not previously demonstrated. We sim-

ulate Gaussian RFs with mean zero and exponential covariance functions with no nugget, a

sill equal to one, and effective range values corresponding to short, medium, and long range

dependence. The effective range is the range at which spatial correlation equals 0.05. We

introduce varying degrees of geometric anisotropy via coordinate transformations governed

by a rotation parameter ✓ and scaling parameter R that define the ellipses of equicorrelation

(see Figure 2.5 in Section 2.7). The parameter ✓ quantifies the angle between the major axis

of the ellipse and the x-axis (counter-clockwise rotation) while R gives the ratio of the major

and minor axes of the ellipse. We also performed simulations that investigate the effect of

the lag set, block size, and bandwidth. Although some simulations are given in the original
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Table 2.3: Test implementation, part 2. This table continues the list of choices and considerations for implementing a given
test. “Samp Size (S/A)” indicates the minimum sample sizes used in simulations (S) and applications (A) provided by the

author(s) of the method.

Hypothesis Test Implementation

Test Method Choices Other Considerations Samp Size (S/A)

Lu and Zimmerman (2001) spatial lag set, truncation

parameter

optimal truncation

parameter

100/112

Guan et al. (2004) gridded design spatial lag set, window

size

optimal window size, edge

effects, finite sample

adjustment

400/289

Guan et al. (2004) uniform design

Guan et al. (2007) non-uniform design
spatial lag set, kernel

function, bandwidth

parameter, window size

optimal bandwidth &

window size, edge effects,

finite sample adjustment

400/289

500/584

Scaccia and Martin (2002, 2005) test statistic requires gridded sampling

locations; designed to test

symmetry

121/–
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Lu and Zimmerman (2005) test statistic requires gridded sampling

locations; two-stage

testing procedure,

designed to test

symmetry; relies on

asymptotic independence

100/–

Fuentes (2005) kernel function,

bandwidth parameters,

frequency set, spatial

knots

requires fine grid; designed

to test stationarity

5175/5175

Maity and Sherman (2012) lag set Λ, kernel function,

bandwidth parameter,

subblock size, number of

bootstrap samples

optimal bandwidth &

block size

350/584

Bowman and Crujeiras (2013) bandwidth parameter computationally intensive 49/148
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Van Hala et al. (2014) lag set, number and

spacing of frequencies

optimal number and

spacing of frequencies,

relies on asymptotic

independence

600/–
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works, our simulations serve to provide a direct comparison of the effects of changing these

values and provide further insight into how to choose them. See Section 2.7 for additional

simulation details and results.

Figures 2.2 and 2.3 illustrate a subset of the simulation results comparing empirical size,

power, and computational time (full results in Section 2.7, Tables 2.5 and 2.6). These simu-

lations indicate that nonparametric tests for anisotropy have higher power for gridded (Table

2.5 and Figure 2.2) than for non-gridded (Table 2.6 and Figure 2.3) sampling designs. In

both comparisons the methods from GSC have favorable empirical power over the competitor

with a comparable empirical size. As the effective range increases, both empirical size and

power tend to increase for the methods from GSC, but they tend to decrease for MS. GSC-g

and LZ have similar computation time, while MS is much more computationally expensive

than GSC-u. This difference is due to the bootstrapping required by MS.

Unsurprisingly, as the strength of anisotropy increases (measured by R), power increases

for all the methods. For a geometrically anisotropic process, the major and minor axes of

anisotropy are orthogonal. In comparing the effect of the orientation of isotropy (✓) on the

methods, it is important to note that, when ✓ = 0, the major axis of the ellipse defining

the geometric anisotropy is parallel to the x-axis and corresponds to a spatial process that

is axially symmetric but not completely symmetric. When ✓ = 3⇡/8 the major axis of the

ellipse forms a 67.5-degree angle with the x-axis, and the spatial process is neither axially nor

completely symmetric (see Figure 2.5 in Section 2.7 for contours of equal correlation used

in the simulation). The original works generally only simulate data from a geometrically

anisotropic process with the major axis of anisotropy forming a 45-degree angle with the x-

axis; hence, our simulation study more carefully explores the effect of changing the orientation

of geometric anisotropy. The methods from GSC exhibit higher power when ✓ = 0 than when

✓ = 3⇡/8. This is due to the fact that the lag set, Λ, from (10) used for the tests contains

a pair of spatial lags that are parallel to the major and minor axes of anisotropy when

✓ = 0, indicating that an informed choice of spatial lags improves the test’s ability to detect
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anisotropy. This same result does not hold for MS. It is unclear whether this behavior is

observed because the method uses the covariogram rather than the semivariogram, the GBBB

rather than moving window approach for estimating Σ, or perhaps both. The simulation

results indicate that the LZ test has low empirical power; however, this method was developed

to test symmetry properties on square grids, and the choice of a rectangular grid for our

simulation study does not allow for a large number of periodogram ordinates for the second

stage of the procedure for testing the complete symmetry hypothesis.

Results from simulations that investigate the effects of changing the lag set, the block

size, and the bandwidth for non-gridded sampling locations are displayed in Tables 2.7-2.9,

respectively, in Section 2.7. For both GSC-u and MS, the lag set in (10) provided an empirical

size close to the nominal level. Using more lags or longer lags decreased the size and power for

GSC-u. This may be due to the additional uncertainty induced by estimating the covariance

between the semivariance at more lags and the larger variance of semivariance estimates

at longer lags. For MS the longer lags lead to an inflated size and more lags decreased the

power. In this case, the GBBB may not be capturing the uncertainty in covariance estimates

at longer lags with the chosen block size. The MS test was not overly sensitive to block size

with larger blocks leading to slightly higher power. MS found that an overly large block

size was adverse for test size. For GSC-u the small and normal sized windows performed

at nominal size levels with comparable power while larger windows were detrimental to

test size and power. For GSC-u, we find that choosing a large window tends to lead to

overestimation of the asymptotic variance-covariance matrix due to fewer blocks being used

to re-estimate the semivariance. Finally, the results investigating the bandwidth selection for

GSC-u indicate that choosing an overly large bandwidth inflates test size while choosing too

small a bandwidth deflates test size and power. However, the results also indicate that, for

the small sample size, test size and power are less negatively affected when approximating

the p-value via the finite sample adjustment.
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Weller (2016c) demonstrates applications of several of these methods on two real data

sets. The R package spTest (Weller, 2016d) implements the tests in LZ, GSC, and MS

for rectangular grids and sampling regions and is available on the Comprehensive R Archive

Network (CRAN). The R scripts for reproducing simulation results are available online: https:

//sites.google.com/site/zachdweller/research.

2.5 Recommendations

Based on the simulation results, we offer recommendations for implementation of non-

parametric tests of isotropy. The flow chart in Figure 2.1 along with Figure 2.4 summarize

the steps in the process. Tables 2.1-2.4 compare the tests. Table 2.4 summarizes the recom-

mendations provided below.

In choosing a nonparametric test for isotropy, the distribution of sampling locations on

the sampling domain is perhaps the most important consideration. Data on a grid simplifies

estimation because the semivariogram or covariogram can be estimated at spatial lags that

are exactly observed separating pairs of sampling locations. A grid also allows the option of

using easily implemented tests in the spectral domain.

Sample size requirements for the asymptotic properties of tests using the spatial domain

to approximately hold will depend on the dependence structure of the random field. GSC

note that convergence of their test statistic is slow in the case of gridded sampling locations

and obtain an approximate p-value via subsampling rather than the asymptotic χ2 distribu-

tion. Tests using the spectral domain rely on the asymptotic independence of periodogram

values, and correlation in finite samples can lead to an inflated test size (LZ). Based on our

simulations, we recommend the sample size be at least 150 for gridded sampling locations

and at least 300 for non-gridded sampling locations. However, power tends be low when the

sample size is small and/or the anisotropy is weak (Figures 2.2 and 2.3).

We focus on implementation of the methods that use the spatial domain for the remainder

of this section. We discuss the choice of lags, block size, and bandwidth for the tests in GSC
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Figure 2.2: Empirical size and power for Guan et al. (2004) [GSC-g] and Lu and
Zimmerman (2005) [LZ] for 1000 realizations of a mean 0 GRF with gridded sampling
locations using a nominal level of ↵ = 0.05. Colors and shapes indicate the type of

anisotropy. Gray points correspond to the isotropic case. The results correspond to a
“medium” effective range. Computational time for each method is also displayed.

30



P
ro

p
o

rt
io

n
 o

f 
R

e
je

c
ti
o

n
s

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

GSC-u GSC-u MS MS

N = 300 N = 450 N = 300 N = 450

(2.17s) (4.44s) (83.40s) (271.22s)

Method
(Time: 1 Test)

R = 0

R = 2

R = 2

θ = 0

θ = 3π 8
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distributed sampling locations using a nominal level of ↵ = 0.05. Colors and shapes
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displayed.
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Table 2.4: General Recommendations for Test Implementation. This table contains a list of general recommendations for test
implementation. These guidelines will not apply in all situations and will vary based on a variety of factors including, but not
limited to, the sample size, density of sampling locations, and scale of the problem. See additional discussion in Section 2.5.

Hypothesis Test Choices
Test Method Lag Seta Block Size Bandwidth P-value min. n

Guan et al. (2004) gridded design
Length: short

nb < n1/2 n/a finite sample
adjustment

150

Guan et al. (2004, 2007)
uniform design Orientation: Eqn (10)

nb . n1/2 0.6 < w < 0.9b finite sample
adjustment when
n < 500, asymptotic
χ2 when n ≥ 500

300

Maity and Sherman (2012)
Number: 4 (2 pairs)

nb & n1/2 empirical asymptotic χ2 300

a Prior knowledge, if available, should be used to inform the choice of lags.
b Our simulations suggest these bandwidth values are reasonable when using a Gaussian kernel with truncation parameter of 1.5.
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and MS. Due to the large number of choices required to implement the tests (e.g., block

size, bandwidth, kernel function, subsampling method), features of the random field (e.g.,

sill, range), and properties of the sampling design (e.g., density of sampling locations, shape

of sampling domain), the recommendations we offer will not apply in all situations. The

numerous moving parts make it challenging to develop general recommendations, especially

when choosing a bandwidth.

When determining the lag set, Λ, for use in (9), the user needs to select

(a) the norm of the lags (e.g., Euclidean distance),

(b) the orientation (direction) of the lags, and

(c) the number of lags.

Regarding (a), short lags are preferred because estimates of the spatial dependence at large

lags tend to be more variable than estimates at shorter lags. Additionally, empirical and

theoretical evidence (Lu and Zimmerman, 2001) indicates that values of γ(·) in two different

directions generally exhibit the largest difference at a lag less than the effective range, the

distance beyond which pairs of observations can be assumed to be independent. Finally,

there is mathematical support that correctly specifying the covariance function at short lags

is important for spatial prediction (Stein, 1988). Considering (b), if the process is anisotropic,

the ideal choice of Λ and A produces contrasting lags with the same norm but oriented in the

direction of weakest and strongest spatial correlation. Typically, the directions of weakest

and strongest spatial correlation will be orthogonal and thus, lags contrasted using the A

matrix should also be orthogonal. Prior information, if available, about the underlying

physical/biological process giving rise to the data can also be used to inform the orientation

of the lags (Guan et al., 2004). If no prior information about potential anisotropy is available,

lags oriented in the same directions as those in (10) are a good starting set. In regards to (c),

detecting certain types of anisotropy requires a sufficient number of lags but using a large
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Figure 2.4: Spatial sampling design considerations for choosing a nonparametric hypothesis
test of isotropy, including LZ = Lu and Zimmerman (2005); SM = Scaccia and Martin

(2005); GSC-g = Guan et al. (2004) for gridded sampling locations; GSC-u = Guan et al.
(2004) for uniformly distributed sampling locations; MS = Maity and Sherman (2012);

GSC-n = Guan et al. (2007) for non-uniform sampling locations. The method we
recommended for testing isotropy in each situation is given in bold.
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number of lags requires a large number of observations (Guan et al., 2004). As a general

guideline, we suggest using four lags to construct two contrasts.

Several tests require selection of a window or block size to estimate the variance-covariance

matrix. The moving window from GSC creates overlapping subblocks of data by sliding

the window over a grid placed on the region. Each of these subblocks are used to re-

estimate the semivariance. The block size from MS defines the size of resampled blocks

when implementing the GBBB. The GBBB permutes resampled blocks to create a new

realization of the process over the entire domain. Choosing the window size in GSC requires

balancing two competing goals. First, the moving window should be large enough to create

subblocks that are representative of the dependence structure for the entire RF. Second,

the window should be small enough to allow for a sufficient number of subblocks to re-

estimate the semivariance, as these values are used to obtain an estimate of the asymptotic

variance-covariance. A window that is too large or too small can potentially lead to under-

or over-estimation of the asymptotic variance-covariance. For GSC-u, the windows must be

large enough to ensure enough pairs of sampling locations are in each subblock to compute an

estimate of the semivariance without having to over-smooth. For gridded sampling locations,

GSC demonstrate good empirical size and power by using moving windows with size of only

2⇥ 2. However, they find slow convergence to the asymptotic χ2 distribution, and a p-value

is instead computed by approximating the distribution of the test statistic by computing its

value for each of the subblocks. Hence, approximating the p-value to two decimal places will

require at least 100 subblocks over the sampling region. This may not be possible in practice.

For example, a 12⇥12 grid of sampling locations with moving windows of size 2⇥2 results in

only 90 subblocks when correcting for edge effects. The challenge of choosing the block size

in MS is subject to similar considerations as the window size in GSC. The p-value for both

tests will change when performing the test with different window or block sizes, and the user

may decide to perform the test with different block sizes (e.g., MS). There are a number of

works on resampling spatial data to obtain an estimate of the variance of a spatial statistic
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(e.g., Sherman, 1996; Politis and Sherman, 2001; Lahiri, 2003; Lahiri and Zhu, 2006), but

they do not directly consider variance estimation in the case of a nonparametric estimate of

the semivariogram/covariogram. Denoting the number of points per block as nb, Sherman

(1996) proposes choosing the block size such that nb ⇡ cn1/2 for a constant, c, when the

spatial dependence does not exhibit a large range. In a number of different applications of

spatial subsampling, c is typically chosen to be between 0.5 and 2 (Politis and Sherman, 2001;

Guan et al., 2004, 2006). Based on our simulations, we find acceptable empirical size and

power for GSC-g using small windows and approximating the p-value with the finite sample

adjustment. Thus, we recommend setting nb < n1/2 for GSC-g. For example, we used

windows with size 3⇥ 2 and 5⇥ 3 for sampling domains of 18⇥ 12 and 25⇥ 15, respectively.

In the case of uniformly distributed sampling locations (see Table 2.8 in Section 2.7), the

empirical size and power from GSC-u was negatively affected by a large moving window size;

hence, we recommend setting c = 1 and choosing nb . n1/2. For the MS test, a small block

size negatively affected the empirical size and power; thus, we recommend choosing nb & n1/2

for this test.

Between the choices of a lag set, block size, and bandwidth, choosing an appropriate

bandwidth to smooth over observed spatial lags for non-gridded sampling locations is the

most challenging. For GSC-u the user needs to choose the form of the smoothing kernel as

well as the bandwidth for both the entire grid and the subblocks while MS use an Epanech-

nikov kernel and empirical bandwidth based on a user-specified tuning parameter. If the

selected bandwidth is too large then over-smoothing occurs. In over-smoothing, there is

very little filtering of the lag distance and direction. The lack of filtering produces similar

estimates of the spatial dependence at lags with different directions and distances. If the

selected bandwidth is too small, then there is very little smoothing and estimates of the

spatial dependence are based on a small number of pairs of sampling locations and thus

highly variable. Considering the aforementioned effects of the bandwidth, the bandwidth

should decrease as n increases under the usual increasing domain asymptotics. For example,
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simulations (not included) indicated a bandwidth of w = 0.65 maintains nominal size when

n = 950, but leads to deflated test size and power when n = 400 on a smaller domain. Garćıa-

Soidán et al. (2004), Garćıa-Soidán (2007), and Kim and Park (2012) develop theoretically

optimal bandwidths for nonparametric semivariogram estimation, but these works are not

applicable here because they focus on the isotropic case and require an estimate of the second

derivative of the semivariogram. We have found that the empirical bandwidth used by MS

tends to produce nominal size (see Table 2.6). For GSC-u we find the most consistent results

with a bandwidth in the range of 0.60 < w < 0.90 when using a normal kernel truncated

at 1.5, but these values will change when a different truncation value or kernel function are

employed. For small sample sizes (n < 500), our simulations demonstrate that test size and

power are less affected by the choice of bandwidth when the p-value is approximated using

a finite sample adjustment, indicating poor convergence to the asymptotic χ2 distribution.

Thus, the user should consider using the finite sample adjustment for non-gridded sampling

locations when the sample size is small and there are at least 100 subblocks. While it is

challenging to choose a bandwidth for GSC-u and the p-value of the test is sensitive to this

parameter, GSC-u exhibits nominal size and has substantially higher power than MS when

an appropriate bandwidth is selected.

2.6 Discussion

There is a volume of work on tests for isotropy in other areas of spatial statistics. Methods

for detecting anisotropy in spatial point process data have been developed (e.g., Schaben-

berger and Gotway (2004, pg. 200-205), Guan (2003), Guan et al. (2006), and Nicolis et al.

(2010)). For multivariate spatial data, Jona-Lasinio (2001) proposed a test for isotropy.

Gneiting et al. (2007) provided a review of potential second-order assumptions and models

for spatiotemporal geostatistical data, and a number of tests for second-order properties of

spatiotemporal data have been developed (e.g., Fuentes (2006), Li et al. (2007), Park and

Fuentes (2008), Shao and Li (2009), Jun and Genton (2012)). Li et al. (2008a) constructed
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a test of the covariance structure for multivariate spatiotemporal data. Tests for isotropy

have also been developed in the computer science literature (e.g., Molina and Feito, 2002;

Chorti and Hristopulos, 2008; Spiliopoulos et al., 2011; Thon et al., 2015).

Appropriately specifying the second-order properties of the random field is an impor-

tant step in modeling spatial data, and a number of models have been developed to capture

anisotropy in spatial processes. Graphical tools, such as directional sample semivariograms,

are commonly used to evaluate the assumption of isotropy, but these diagnostics can be mis-

leading and open to subjective interpretation. We have presented and reviewed a number of

procedures that can be used to more objectively test hypotheses of isotropy and symmetry

without assuming a parametric form for the covariance function. These tests may be help-

ful for a novice user deciding on an appropriate spatial model. In abandoning parametric

assumptions, these hypothesis testing procedures are subject and sensitive to choices regard-

ing smoothing parameters, subsampling procedures, and finite sample adjustments. The test

that is most appropriate for a set of data will largely depend on the sampling design. Ad-

ditionally, there are trade-offs between the empirical power demonstrated by the tests and

the number of choices user must make to implement the tests (e.g., between Guan et al.

(2004) and Maity and Sherman (2012)). We have offered recommendations regarding the

various choices of method and their implementation and have made the tests available in the

spTest software. Because of the sensitivity of the tests to the various choices, we believe that

graphical techniques and nonparametric hypothesis tests should be used in a complementary

role. Graphical techniques can provide an initial indication of isotropy properties and inform

sensible choices for a hypothesis test (e.g., in choosing the spatial lag set), while hypothesis

tests can affirm intuition about graphical techniques.
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2.7 Simulation Study Details and Further Results

We define the isotropic exponential covariance function as

C(h) =

8
><
>:

σ2 exp(−φh) if h > 0,

⌧ 2 + σ2 otherwise
(14)

where h = ||si − sj|| is the distance between sites si and sj (Irvine et al., 2007). The

corresponding semivariogram is γ(h) = (⌧ 2 + σ2) − σ2 exp(−φh), where ⌧ 2 is the nugget,

⌧ 2 + σ2 is the sill, and the effective range, ⇠, the distance beyond which the correlation

between observations is less than 0.05, is

⇠ =
−1

φ
log

✓
0.05

⌧ 2 + σ2

σ2

◆
.

Simulations in Section 2.4 were performed using the exponential covariance function (14)

with a partial sill of one (σ2 = 1) and no nugget (⌧ 2 = 0). We also performed simulations

using different nugget values (results not included). Introducing a nugget lead to decreased

empirical test size and power. For the no nugget simulations, we chose the effective range,

⇠, for isotropic processes to be 3, 6, and 12 corresponding to short, medium, and long range

dependence. We introduce geometric anisotropy by transforming the sampling locations

according to a scaling parameter, R, and a rotation parameter, ✓. Given an (R, ✓) pair, the

coordinates (x, y) are transformed to the anisotropic coordinates, (xa, ya) via

(xa, ya) = (x, y)

2
64

cos ✓ sin ✓

− sin ✓ cos ✓

3
75

2
64
1 0

0 1
R

3
75 .

A realization from the anisotropic process is then created by simulating using the distance

matrix from the transformed coordinates and placing the observed values at their corre-

sponding untransformed sampling locations. Figure 2.5 shows the isotropic exponential cor-
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relogram corresponding to ⌧ 2 = 1 and ⇠ = 6 and contours of equicorrelation corresponding

to the (R, ✓) values used in the simulation study. Note that R = 0 and ✓ = 0 corresponds to

an isotropic process and a larger value of R corresponds to a more anisotropic process.

For the simulations comparing the GSC-g and LZ tests in Table 2.5, data were simulated

on a subset of the integer grid, Z2. The p-values for the GSC-g test were approximated using

a finite sample statistic (Guan et al., 2004), and we used the lag set in (10) and A matrix

in (11). For the results involving the LZ test, a test of complete symmetry was performed

as an approximation to the null hypothesis of isotropy. The p-values for the LZ test were

obtained using the CvM* statistic. A nominal level of ↵ = 0.05 was maintained by first

testing reflection symmetry at ↵ = 0.025 then testing complete symmetry at ↵ = 0.025 if

the hypothesis of reflection symmetry was not rejected. For the GSC-g test, the moving

window dimensions were 3⇥ 2 (width, height) and 5⇥ 3 for the parent grids of 18⇥ 12 and

25⇥ 15, respectively.

For the simulations in Table 2.6 comparing the GSC-u and MS tests, we simulated data at

random, uniformly distributed sampling locations on 10⇥ 16 and 10⇥ 20 sampling domains.

The lag set, Λ, used for both tests is given in (10) with A matrix (11), and the p-values for

both methods were obtained using the asymptotic χ2
2 distribution. For semivariogram esti-

mates in GSC-u, we use independent (product) Gaussian (normal) kernels with a truncation

parameter of 1.5. The bandwidth for the Gaussian kernel for smoothing over lags on the en-

tire field and on moving windows was chosen as w = 0.75. We used the empirical bandwidth

and the product Epanechnikov kernel given in Maity and Sherman (2012) to implement the

MS test. For both tests, a grid with spacing of 1 was laid on the sampling region. Using this

grid, the moving window dimensions for the GSC-u test were 4 ⇥ 2 and the block size for

the MS test were 4 ⇥ 2. For the MS test, B = 100 resamples using the GBBB were used to

estimate the asymptotic variance-covariance matrix.

For the results in Tables 2.7 - 2.9, we simulated mean 0, Gaussian RFs with exponential

covariance function with no nugget, a sill of one, and medium effective range (⇠ = 6).
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Sampling locations were generated randomly and uniformly over a 16⇥10 sampling domain.

We use the lag set and A matrix from 10 and 11, respectively, unless otherwise noted. All

tests were performed using a nominal level of ↵ = 0.05. For the GSC-u tests, we use product

Gaussian kernels with a truncation parameter of 1.5. For the MS tests, we use the default

product Epanechnikov kernels with empirical bandwidth specified in Maity and Sherman

(2012).

The simulation results in Table 2.7 demonstrate the effects of changing the set of lags for

the GSC-u and MS tests. For these simulations, the lag set labeled “regular” corresponds to

the lag set given in (17). The lag set labeled “long” represents the lags in (17) multiplied by

2.5. Finally, the lag set labeled “more” stands for the lags in (17) with the additional pair of

lags {h5 = (1.132, 0.469)
0

,h6 = (−0.469, 1.132)
0}. The lags h5 and h6 are a pair of lags the

create approximate 22.5◦ and 112.5◦ angles, respectively, with the x-axis (counter-clock wise

rotation) and have Euclidean length of approximately 1.22. These were chosen to supplement

the lag pairs (h1,h2) which have unit length and create 0◦ and 90◦ angles with the x-axis and

(h3,h4) which have length
p
2 ⇡ 1.41 and create 45◦ and 135◦ angles with the x-axis. The lag

sets are plotted in Figure 2.6. The A matrix for the“more” lag set was constructed as in (11),

where orthogonal lags are contrasted. The p-values were calculated using the asymptotic χ2

distribution with degrees of freedom based on the number of pairs of lags contrasted. For

the GSC-u method, we used a bandwidth of 0.75. The moving window dimensions were 4 ⇥

2. For the MS method, we chose block dimensions of 4 ⇥ 2 and used B = 75 resamples using

the GBBB to estimate the asymptotic variance-covariance matrix. Table 2.8 demonstrates

the effects of changing the block size for the GSC-u and MS tests. For these simulations,

the labels “small”, “medium”, and “large” correspond to moving windows/blocks of size 3⇥2,

4⇥ 2, and 5⇥ 3, respectively. Because we simulated n = 300 uniformly distributed sampling

locations on a 16⇥ 10 domain, we expect 1.875 sampling locations per unit area. Thus, we

expect nb = 11.3, 15, and 28.1 points per block for the small, medium, and large block sizes,

respectively. We find that the methods tend to have nominal size when nb ⇡ n1/2 = 17.3.
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Table 2.5: Empirical size and power for Guan et al. (2004) [denoted GSC-g] and Lu and
Zimmerman (2005) [denoted LZ] for 1000 realizations of a mean 0 GRF with gridded

sampling locations using a nominal level of ↵ = 0.05. Computational time for each method
is also included.

(a) Sample size of n = 216 gridded sampling
locations.

18 cols ⇥ 12 rows grid
effective range

R ✓ Method 3 6 12

0 0 GSC-g 0.04 0.05 0.05
LZ 0.05 0.08 0.05

p
2 0 GSC-g 0.29 0.37 0.36

LZ 0.07 0.09 0.09

2 0 GSC-g 0.82 0.86 0.87
LZ 0.17 0.15 0.15

p
2

3π
8

GSC-g 0.25 0.27 0.29
LZ 0.10 0.12 0.12

2 3π
8

GSC-g 0.75 0.78 0.80
LZ 0.29 0.31 0.31

Computational Time for 1 Test
GSC-g 1.11 seconds
LZ 1.45 seconds

(b) Sample size of n = 375 gridded sampling
locations.

25 cols ⇥ 15 rows grid
effective range

R ✓ Method 3 6 12

0 0 GSC-g 0.05 0.06 0.06
LZ 0.06 0.06 0.08

p
2 0 GSC-g 0.59 0.63 0.63

LZ 0.08 0.10 0.09

2 0 GSC-g 0.98 0.99 0.98
LZ 0.17 0.15 0.15

p
2

3π
8

GSC-g 0.51 0.52 0.54
LZ 0.13 0.16 0.17

2 3π
8

GSC-g 0.96 0.97 0.98
LZ 0.40 0.43 0.46

Computational Time for 1 Test
GSC-g 7.29 seconds
LZ 4.99 seconds

For both tests, we used the lags in (17), and the blocks are defined by a grid with spacing

0.5 placed on the sampling region (i.e., a 4 ⇥ 2 window is achieved by setting the window

dimensions to 8⇥ 4 in the spTest software). We performed the tests using a nominal level

of ↵ = 0.05, and the p-values were calculated using the asymptotic χ2 distribution. For

the GSC-u method, we used a bandwidth of 0.75. For the MS method, we used B = 100

resamples using the GBBB to estimate the asymptotic variance-covariance matrix. Finally,

Table 2.9 demonstrates the effects of changing the bandwidth for the GSC-u test. We

use bandwidths of w = 0.65, 0.75, and 0.85. The p-values are calculated using both the

asymptotic χ2 distribution and using a finite sample adjustment similar to the one used by

Guan et al. (2004) for gridded sampling locations.
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Table 2.6: Empirical size and power for Guan et al. (2004) [denoted GSC-u] and Maity and
Sherman (2012) [denoted MS] for 1000 realizations of a mean 0 GRF with uniformly

distributed sampling locations using a nominal level of ↵ = 0.05. Computational time for
each method is also included.

(a) Sample size of n = 300 uniformly distributed
sampling locations.

10 height ⇥ 16 width domain
effective range

R ✓ Method 3 6 12

0 0 GSC-u 0.02 0.03 0.04
MS 0.04 0.04 0.04

p
2 0 GSC-u 0.10 0.19 0.19

MS 0.08 0.06 0.05

2 0 GSC-u 0.43 0.50 0.53
MS 0.21 0.13 0.13

p
2

3π
8

GSC-u 0.10 0.16 0.16
MS 0.11 0.06 0.05

2 3π
8

GSC-u 0.37 0.48 0.51
MS 0.27 0.18 0.16

Computational Time for 1 Test
GSC-u 2.17 seconds
MS 83.40 seconds

(b) Sample size of n = 450 uniformly distributed
sampling locations.

10 height ⇥ 20 width domain
effective range

R ✓ Method 3 6 12

0 0 GSC-u 0.02 0.03 0.05
MS 0.04 0.04 0.02

p
2 0 GSC-u 0.13 0.22 0.24

MS 0.10 0.07 0.05

2 0 GSC-u 0.57 0.65 0.69
MS 0.29 0.19 0.16

p
2

3π
8

GSC-u 0.13 0.18 0.23
MS 0.13 0.09 0.06

2 3π
8

GSC-u 0.53 0.64 0.67
MS 0.38 0.26 0.21

Computational Time for 1 Test
GSC-u 4.44 seconds
MS 162.35 seconds

Table 2.7: Effects of changing the lag set. Empirical size and power for Guan et al. (2004)
[denoted GSC-u] and Maity and Sherman (2012) [MS] for 500 realizations of a mean 0

GRF with n = 400 uniformly distributed sampling locations. The label “regular”
corresponds to the lag set in (17), while “long” represents using longer lags, and “more”

denotes using more lags (see Figure 2.6).

16 width ⇥ 10 height domain
Lag Set

R ✓ Method regular long more

0 0 GSC-u 0.03 0.02 0.03
MS 0.02 0.18 0.03

p
2

3π
8

GSC-u 0.18 0.07 0.13
MS 0.10 0.23 0.08

2 3π
8

GSC-u 0.56 0.19 0.51
MS 0.24 0.38 0.22
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Figure 2.6: The lag sets used for the simulations in Table 2.7. These simulations were
designed to explore the effect of changing the spatial lag sets on test size and power.

“Regular” denotes the usual set of spatial lags used to test isotropy. “Long” denotes a set of
spatial lags with greater Euclidean length than those in the “regular” set. “More” denotes a

set of spatial lags that cover more directions than the “regular” set.
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Table 2.8: Effects of changing the window/block size. Empirical size and power for Guan
et al. (2004) [denoted GSC-u] and Maity and Sherman (2012) [MS] for 500 realizations of a
mean 0 GRF with n = 300 uniformly distributed sampling locations. The label “medium”
corresponds to the window/block size of 4⇥ 2, while “small” represents using a smaller

window, and “large” denotes using a larger window.

16 width ⇥ 10 height domain
Window/Block Size

R ✓ Method small medium large

0 0 GSC-u 0.05 0.04 0.01
MS 0.03 0.04 0.04

p
2 0 GSC-u 0.17 0.13 0.04

MS 0.06 0.07 0.08

2 0 GSC-u 0.58 0.53 0.23
MS 0.20 0.20 0.22

Table 2.9: Effects of changing bandwidth. “Bdwth” denotes the bandwidth used in the
Gaussian smoothing kernel. Empirical size and power for Guan et al. (2004) [denoted

GSC-u] for 500 realizations of a mean 0 GRF with n = 400 uniformly distributed sampling
locations using a nominal level of ↵ = 0.05.

(a) P-value: asymptotic χ2 distribution

16 width ⇥ 10 height domain
Effective Range

R ✓ Bdwth 3 6 12

0 0 0.65 0.00 0.00 0.01
0.75 0.02 0.04 0.06
0.85 0.07 0.13 0.14

p
2 0 0.65 0.02 0.05 0.08

0.75 0.12 0.20 0.23
0.85 0.26 0.34 0.38

2 0 0.65 0.18 0.24 0.29
0.75 0.51 0.60 0.62
0.85 0.67 0.72 0.75

p
2

3π
8

0.65 0.03 0.04 0.03
0.75 0.14 0.17 0.21
0.85 0.24 0.32 0.40

2 3π
8

0.65 0.16 0.23 0.27
0.75 0.46 0.55 0.57
0.85 0.63 0.74 0.74

(b) P-value: finite sample

16 width ⇥ 10 height domain
Effective Range

R ✓ Bdwth 3 6 12

0 0 0.65 0.01 0.03 0.05
0.75 0.03 0.07 0.08
0.85 0.06 0.09 0.11

p
2 0 0.65 0.09 0.17 0.19

0.75 0.18 0.27 0.32
0.85 0.24 0.31 0.37

2 0 0.65 0.42 0.51 0.50
0.75 0.63 0.65 0.68
0.85 0.65 0.71 0.73

p
2

3π
8

0.65 0.11 0.11 0.16
0.75 0.19 0.20 0.30
0.85 0.23 0.27 0.37

2 3π
8

0.65 0.36 0.45 0.46
0.75 0.53 0.61 0.61
0.85 0.58 0.68 0.67
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CHAPTER 3

SPTEST: AN R PACKAGE IMPLEMENTING NONPARAMETRIC TESTS

OF ISOTROPY

3.1 Introduction

An important step in modeling a spatial process is choosing the form of the covariance

function. The form of the covariance function will have an effect on kriging as well as

parameter estimates and the associated uncertainty (Cressie, 1993, pg. 127-135). A common

simplifying assumption about the spatial covariance function is that it is isotropic, that is, the

dependence between sampling locations depends only on the distance between locations and

not on their relative orientation. This assumption may not always be reasonable; for example,

wind may lead to directional dependence in environmental monitoring data. Misspecification

of the second order properties can lead to misleading inference. Sherman (2011, pg. 87-90)

and Guan et al. (2004) summarize the effects of incorrectly specifying isotropy properties on

kriging estimates through numerical examples. In order to choose an appropriate model, a

statistician must first assess the nature of the spatial variation of his or her data. To check

for anisotropy (directional dependence) in spatially-referenced data, a number of graphical

techniques are available, such as directional sample variograms or rose diagrams (Matheron,

1961; Isaaks and Srivastava, 1989, pg. 149-154). Spatial statisticians may have intuition

about the interpretation and reliability of these diagnostics, but a less experienced user may

desire evaluation of assumptions via a hypothesis test.

A number of nonparametric tests of isotropy, which avoid the choice of a parametric

covariance function, have been developed (see, e.g., Lu and Zimmerman, 2001; Guan et al.,

2004; Lu and Zimmerman, 2005; Maity and Sherman, 2012). In Weller and Hoeting (2016),
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we provide a review of the different nonparametric methods available for testing isotropy

and symmetry properties, including an extensive simulation study. In the current chapter,

we aim to showcase the functionality of our R (R Core Team, 2015) package spTest (Weller,

2016d), which implements several of the aforementioned methods. We use two real data

examples to illustrate how the nonparametric hypothesis tests available in spTest can be used

to assess isotropy properties in spatially-referenced data. The examples also demonstrate

how graphical techniques and hypothesis tests can be used in a complementary role. The

remainder of this chapter is organized as follows: Sections 3.2 and 3.3 establish additional

notation and background information; Section 3.4 describes the functionality of the spTest

package; Section 3.5 demonstrates how to use the functions in spTest in conjunction with

graphical techniques on two different data sets; Section 3.6 concludes the chapter with a

discussion.

3.2 Nonparametric Covariance Functions and Estimation

When modeling a RF, a typical assumption is that the spatial covariance C(h) or semi-

variogram γ(h) funtion can be described by a parametric model. A number of methods are

available for estimating the parameters of these models, for example, maximum likelihood

or least squares (Cressie, 1993, pg. 90-97). Parametric models ensure that the covariance

function is valid and provide parameters that can be interpreted as describing characteristics

of the random field, such as the range of dependence or the direction of anisotropy (Sch-

abenberger and Gotway, 2004, pg. 141-152). The methods in spTest are nonparametric tests

of isotropy, which circumvent the choice of a parametric form for the covariance (semivar-

iogram) function. A nonparametric test of isotropy escapes potential misspecification of a

parametric covariance function and avoids the potential for having to estimate the covariance

function twice (e.g., under the null and alternative hypothesis for a likelihood-ratio test).

A nonparametric test of isotropy requires a nonparametric estimator of second order

properties of the RF. We discuss nonparametric estimation of the semivariogram function
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here and note that similar techniques can be used for nonparametric estimation of the co-

variance function. The classical moment-based estimator of the semivariogram (Matheron,

1962) is the sample semivariogram given by

bγ(h) = 1

2|D(h)|
X

[Y (s)− Y (s+ h)]2, (15)

where the sum is over D(h) = {s : s, s + h 2 D} and |D(h)| is the number of elements

in D(h). The set D(h) is the set of sampling location pairs that are separated by spatial

lag h. There are two important modifications to the estimator in (15) that are pertinent

to the methods described in this chapter. First, for non-gridded sampling locations, the

estimator needs to be modified to account for the fact that very few or no pairs of locations

will be separated by a specific spatial lag, h. One solution to this challenge is to specify

a distance tolerance, ✏, such that lags having length ||h|| ± ✏ are included in estimating

the semivariogram at lag h. Second, directional sample semivariograms can be estimated

by using only observations that are separated by spatial lags in a specific direction. For

example, to investigate potential anisotropy, we can compare sample semivariograms between

the horizontal and vertical directions. For non-gridded sampling locations, very few pairs of

locations will lie at a specific distance and directional lag, so we need to allow for both a

distance and a directional tolerance when estimating the semivariogram. A common method

for doing this is by using a product kernel smoother that smoothes over both the horizontal

(h1) and vertical (h2) components of the spatial lag h = (h1, h2)
>.

Spatial RFs and their second order properties can also be expressed in the spectral (or

frequency) domain using Fourier transforms. The spectral representation of RFs and their

second order properties provides alternative methods for testing second order properties.

Here we focus only on the methods in the spatial domain and refer the interested reader to

Weller and Hoeting (2016), Fuentes and Reich (2010), and/or Chapter 4. We note that that,
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in addition to the methods from the spatial domain, the nonparametric spectral methods

from Lu and Zimmerman (2005) are also implemented in spTest.

3.3 Nonparametric Tests of Isotropy

Lu (1994) and Lu and Zimmerman (2001) pioneered a popular approach to testing second-

order properties when they used the joint asymptotic normality of the sample semivariogram

computed at different spatial lags to evaluate symmetry and isotropy properties. The sub-

sequent works of Guan et al. (2004, 2007) and Maity and Sherman (2012) built upon these

ideas and are the primary methods programmed in spTest. Here we give an overview of the

tests in Guan et al. (2004) and Maity and Sherman (2012).

Under the null hypothesis that the RF is isotropic, it follows that the values of γ(·) evalu-

ated at any two spatial lags that have the same norm are equal, independent of the direction

of the lags. For example, under the assumption of isotropy, γ((−6, 0)) = γ
((p

3,
p
3
))
. To

completely specify the null hypothesis of isotropy, theoretically, one would need to compare

semivariogram values for an infinite set of lags. In practice, a small number of lags are

specified. Then it is possible to test a hypothesis consisting of a set of linear contrasts of the

form

H0 : Aγ(·) = 0 (16)

as a proxy for the null hypothesis of isotropy, where A is a full row rank matrix (Lu and

Zimmerman, 2001). For example, a set of lags, denoted Λ, commonly used in practice on
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gridded sampling locations with unit spacing is

Λ = {h1 = (1, 0),h2 = (0, 1),h3 = (1, 1),h4 = (−1, 1)}, (17)

and the corresponding A matrix under H0 : Aγ(Λ) = 0 is

A =

2
64
1 −1 0 0

0 0 1 −1

3
75 . (18)

In other words, using (17) and (18) under the hypothesis (16), we contrast the semivari-

ogram values at lags h1 = (1, 0) and h2 = (0, 1), and likewise, contrast semivariogram values

at lags h3 = (1, 1) and h4 = (−1, 1). An important step in detecting anisotropy is the choice

of lags, Λ, as the test results will only hold for the set of lags considered (Guan et al., 2004).

While this choice is somewhat subjective, there are several considerations for determining

the set of lags. First, in terms of Euclidean distance, short lags should be chosen. Short lags

are preferred because estimates of the semivariogram at long lags tend to be more variable.

Second, pairs of orthogonal lags should be contrasted because, for an anisotropic process,

the directions of strongest and weakest spatial correlation will typically be orthogonal. For

other considerations and more detailed guidelines regarding the choice of lags, see Weller

and Hoeting (2016), Lu and Zimmerman (2001), and Guan et al. (2004).

The tests in Guan et al. (2004) and Maity and Sherman (2012) require estimating the

semivariogram and covariance function values, respectively, at the set of chosen lags. We

denote the vector of point estimates of the semivariogram/covariance function at the chosen

lags as bGn, the true values as G, and the asymptotic variance-covariance matrix of bGn as
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Σ. Under increasing domain asymptotics, a central result for both methods is that

an(bGn −G)
d−−−!

n!1
MVN(0,Σ), (19)

where an is a normalizing constant. This result holds assuming stationarity of the RF and

mild conditions on the RF’s mixing and moments. See Section 3.6 for additional discussion

regarding the assumptions for the tests. The test statistic is a quadratic form

TS = b2n(A
bGn)

>(AbΣA>)−1(AbGn), (20)

where bΣ is an estimate of the asymptotic variance-covariance matrix and bn is a normalizing

constant. A p value can be obtained from the asymptotic χ2 distribution with degrees of

freedom given by the row rank of A. Important differences between these works regard the

distribution of sampling locations, shape of the sampling domain, and estimation of G and

Σ. Table 3.1 outlines the primary differences between these methods; we refer the interested

reader to Weller and Hoeting (2016) for more details.

3.4 Nonparametric Tests Implemented in spTest

The R package spTest includes functions for implementing the tests developed in Guan

et al. (2004), Lu and Zimmerman (2005), and Maity and Sherman (2012). The spTest

functions for implementing these tests are listed in Table 3.1. For example, the test from

Guan et al. (2004) for data observed at non-gridded, but uniformly distributed, sampling

locations is implemented in the function GuanTestUnif, which takes the following arguments:

GuanTestUnif(spdata, lagmat, A, df, h = 0.7, kernel = "norm",

truncation = 1.5, xlims, ylims, grid.spacing = c(1, 1),

window.dims = c(2, 2), subblock.h, sig.est.finite = T).
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Table 3.1: Nonparametric tests of isotropy available in the R package spTest, including
GSC = Guan et al. (2004), LZ = Lu and Zimmerman (2005), and MS = Maity and
Sherman (2012). The column “spTest Func’n” lists the name of the function used to

implement the test in the spTest package. “Design” indicates the spatial sampling design
for which the test is valid. “Estimator” describes the method used to estimate second order

properties.

Hypothesis Test Properties
Method spTest Func’n Design Estimator Primary User Choices
GSC GuanTestGrid grid sample semi-

variogram
lag set, window size

LZ LuTest grid periodogram −
GSC GuanTestUnif uniforma kernel sample

semivari-
ogram

lag set, window size, bandwidth

MS MaityTest any kernel sample
covariogram

lag set, block size

a sampling locations must be uniformly distributed on the domain

There are several necessary inputs. The matrix spdata includes the coordinates of sam-

pling locations and the corresponding data values. The spatial lags used to estimate the

semivariogram, denoted Λ, are specified in the matrix lagmat. The matrix A in (20) is

specified by A and provides the contrasts of the semivariogram estimates, and its row rank

is indicated by the parameter df (the degrees of freedom for the asymptotic χ2 distribu-

tion). The values h and kernel provide the bandwidth (smoothing) parameter and form

of the kernel smoother, respectively, used to smooth over spatial lags when estimating the

semivariogram. If a normal smoothing kernel is used, then the truncation parameter in-

dicates where to truncate the normal kernel (i.e., zero weight for spatial lags larger than

this value). The parameters xlims and ylims give the horizontal and vertical limits of the

sampling region (a rectangular sampling region is assumed). When performing a nonpara-

metric tests of isotropy for non-gridded sampling locations, we must place a grid on the

sampling domain and choosing a moving window or block size to estimate Σ in (19) (see

Section 3.5.2). A grid is placed over the sampling region according the width and height

specified by grid.spacing. The dimensions of the moving window, given in the units of
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the underlying grid, are determined by the values in window.dims. The bandwidth of the

smoothing kernel used to estimate the semivariogram on the subblocks of data created by the

moving window is indicated by subblock.h and a finite sample adjustment to the estimate

of the asymptotic variance-covariance matrix is made by setting sig.est.finte = T. For

more information about the different arguments and guidelines on how to choose them, see

Weller and Hoeting (2016), the spTest manual, and the original works (Guan et al., 2004,

2007; Maity and Sherman, 2012).

3.5 Applications: Using spTest to Check for Anisotropy

We demonstrate the functionality of the spTest package on two data sets: the first

containing data at gridded sampling locations; the second containing data collected via a

non-gridded sampling design. For more details on the functions and examples using simu-

lated data, see the spTest manual. The spTest package can be used independently of other

packages built for analyzing spatial data, but it works nicely with two other packages loaded

into R: fields (Nychka et al., 2014) and geoR (Ribeiro Jr. and Diggle, 2001). We also

load the splines (R Core Team, 2015), MASS (Venables and Ripley, 2002), and rgdal (Bi-

vand et al., 2016) packages, which we use to estimate mean functions, compute studentized

residuals, and calculate map projection coordinates, respectively.

R> library("spTest")

R> library("fields")

R> library("geoR")

R> library("splines")

R> library("MASS")

R> library("rgdal")

For the two examples given below, we use graphical diagnostics and the hypothesis tests

implemented in spTest to determine whether or not an assumption of isotropy is reasonable
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for spatially-referenced data. The general strategy will be to first do exploratory data analysis

(EDA) of the original data and create a model for the mean of the spatial process using

appropriate covariates. After estimating a model for the mean, we extract residuals and again

use EDA to check for remaining spatial dependence and utilize graphical diagnostics and

hypothesis tests to investigate potential anisotropy. For brevity, we have not included the full

version of EDA code and plots; instead, we include only the most relevant to demonstrating

the functionality of the spTest package. The complete version of the code is available on

github (Weller, 2016b).

3.5.1 Gridded Sampling Locations

The gridded data used in this section come from the North American Regional Climate

Change Assessment Program [NARCCAP] (Mearns et al., 2009). The data set WRFG in

spTest includes coordinates and a 24-year average of yearly average temperatures from runs

of the Weather Research and Forecasting - Grell configuration (WRFG) regional climate

model (RCM) using boundary conditions from the National Centers for Environmental Pre-

diction (NCEP). The original data are available on the NARCCAP website and the R code

used to create the yearly averages is available on github (Weller, 2016a). The data set

contains both latitude and longitude and universal transverse mercator (UTM) coordinates.

The UTM coordinates specify the regular grid for 14,606 grid boxes along with average tem-

perature at surface at each grid box. Figure 3.1 displays a heat map of all of the data and

was created using the image.plot function from the fields package. Due to computational

considerations and because the methods in spTest assume stationarity, for our analysis we

use a 20 ⇥ 20 subset of the grid boxes defined by the UTM coordinates over the central

United States (see Figures 3.1 and 3.2a).

R> data("WRFG")

R> coords <- expand.grid(WRFG$xc, WRFG$yc)

R> sub <- which(coords[, 1] > 2900000 & coords[, 1] < 3950000 &
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+ coords[, 2] > 1200000 & coords[, 2] < 2250000)

R> coords.ll <- cbind((WRFG$lon - 360)[sub], WRFG$lat[sub])

R> image.plot(WRFG$lon - 360, WRFG$lat, WRFG$WRFG.NCEP.tas,

+ col = two.colors(n = 256, start = "blue3", end = "red3",

+ middle = "gray60"), legend.lab = "Temp (K)",

+ legend.cex = 0.8, legend.line = 2.2, xlab = "Longitude",

+ ylab = "Latitude", main = "Mean WRFG-NCEP Temperatures")

R> world(add = T)

R> left <- seq(1, 400, by = 20)

R> right <- seq(20, 400, by = 20)

R> for (i in 2:20) {

+ segments(coords.ll[i - 1, 1], coords.ll[i - 1, 2],

+ coords.ll[i, 1], coords.ll[i, 2], lwd = 2)

+ segments(coords.ll[left[i - 1], 1], coords.ll[left[i -

+ 1], 2], coords.ll[left[i], 1], coords.ll[left[i],

+ 2], lwd = 2)

+ segments(coords.ll[right[i - 1], 1], coords.ll[right[i -

+ 1], 2], coords.ll[right[i], 1], coords.ll[right[i],

+ 2], lwd = 2)

+ j <- i + 380

+ segments(coords.ll[j - 1, 1], coords.ll[j - 1, 2],

+ coords.ll[j, 1], coords.ll[j, 2], lwd = 2)

+ }

To investigate potential anisotropy in the relevant subset of these data, we can examine

two graphical diagnostics: a heat map and directional sample semivariograms. We use the

function variog4 from the geoR package to estimate directional semivariograms to visually

assess isotropy properties.
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Figure 3.1: Heat map of temperatures in latitude and longitude coordinates. The
temperature values are the 24 year average of WRFG-NCEP yearly average temperature.
The black box indicates the relevant subset of data used for the example in Section 3.5.1,

and this subset is displayed in Figure 3.2a.
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R> tas <- c(WRFG$WRFG.NCEP.tas)[sub]

R> x.coord <- unique(coords[sub, 1])

R> y.coord <- unique(coords[sub, 2])

R> nx <- length(x.coord)

R> ny <- length(y.coord)

R> tas.mat <- matrix(tas, nrow = nx, ncol = ny, byrow = F)

R> image.plot(x.coord, y.coord, tas.mat, col = two.colors(n = 256,

+ start = "blue3", end = "red3", middle = "gray60"),

+ legend.lab = "Temp (K)", legend.cex = 0.8, legend.line = 2.2,

+ ylab = "Northing", xlab = "Easting",

+ main = "Subset of Temperatures")

R> tas.geodat <- as.geodata(cbind(coords[sub, 1], coords[sub,

+ 2], tas))

R> plot(variog4(tas.geodat), xlab = "distance (meters)",

+ ylab = "estimated semivariogram")

R> title("Directional Sample Semivariograms")

The heat map in Figure 3.2a indicates that the spatial process is anisotropic, having a

stronger spatial dependence in the horizontal direction than the vertical direction. Intuitively,

northing coordinates are an important factor in determining average temperature, and we

need to include its effect in a model for these data. We also notice non-linear trends in

temperature as a function of easting coordinates in Figure 3.2a. Thus, the anisotropy can be

attributed, at least in part, to the fact that we have not modeled important covariates related

to the process. The directional sample semivariograms in Figure 3.2b reaffirm the notion

that the data exhibit anisotropy as the 90◦ sample semivariogram appears much different

than the other three. Before modeling the effects of northing and easting coordinates, we
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Figure 3.2: Graphical assessments of isotropy in the 20⇥ 20 subset of WRFG temperature
data. Because northing coordinates have not been accounted for, the heat map

(Figure 3.2a) indicates that the dependence between observations is stronger in the
east-west direction than the north-south direction. The directional dependence is also

evidenced by the differences between the directional sample semivariograms (Figure 3.2b).

use the GuanTestGrid function from spTest to affirm our understanding that these data

exhibit anisotropy.

Necessary conditions for the asymptotic properties of the nonparametric tests to hold

are typically met when the data are Gaussian (see Section 3.6). A quantile-quantile (QQ)

plot (not shown) of the relevant subset of WRFG temperatures indicates that a Gaussian

assumption is reasonable. To implement the nonparametric test in Guan et al. (2004) via

the function GuanTestGrid, we need to specify the spatial lags that will be used to test for

differences in the semivariogram. For this test we choose the lag set (17) and use the matrix

A in (18) to contrast the semivariogram estimates. With the first row of A and the first two

entries of Λ, we are contrasting the estimated dependence structure in the 0◦(h1) and 90◦(h2)

directions for data separated by one horizontal or vertical sampling location. The second row

of A and second two entries of Λ contrast the estimated dependence structure in the 45◦(h3)

and 135◦(h4) directions for data separated by one diagonal sampling location. Because the

grid spacing between sampling locations is 50,000 meters, we set the the scaling parameter
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delta = 50,000. To create subblocks of data used to estimate Σ in (20), we choose a

moving window with a size of 4 ⇥ 4 grid cells. The moving window dimensions should be

chosen so that the window has the same shape (i.e., square or rectangle) and orientation as

the sampling domain. To maximize the amount of data used to estimate Σ, the dimensions

of the window should evenly divide the number of columns and rows, respectively, of the

entire region. The window dimensions should also be compatible with the spatial lags in

Λ. For example, if sampling locations are on the integer grid Z
2, a window with dimensions

of 2 ⇥ 2 grid cells cannot be used to estimate the variability of the semivariogram at a lag

with Euclidean distance longer than
p
2, the maximum distance between locations in the

moving window. For this example there are 20 rows and columns, and we are using lags with

spacings of one or two sampling locations; hence, window dimensions of 2⇥ 2 or 4⇥ 4 grid

cells are reasonable choices. We run the test using window dimensions of 4⇥ 4 grid cells via

the following code, suppressing some of the output for brevity.

R> my.delta <- 50000

R> mylags <- rbind(c(1, 0), c(0, 1), c(1, 1), c(-1, 1))

R> myA <- rbind(c(1, -1, 0, 0), c(0, 0, 1, -1))

R> tr <- GuanTestGrid(spdata = tas.geodat, delta = my.delta,

+ lagmat = mylags, A = myA, df = 2, window.dims = c(4,

+ 4), pt.est.edge = TRUE, sig.est.edge = TRUE,

+ sig.est.finite = TRUE)

R> tr$alternative <- NULL

R> tr$sigma.hat <- NULL

R> print(tr)

Test of isotropy from Guan et. al. (2004) for gridded

sampling locations using the sample semivariogram.
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data: tas.geodat

Chi-sq = 34.063, df = 2, p-value = 4.012e-08

p-value (finite adj.) < 2.2e-16, number of subblocks: 240

sample estimates: (lag value)

(1,0) (0,1) (1,1) (-1,1)

0.02887917 0.07927363 0.09644188 0.11504961

As we suspected, the results of the hypothesis test (p value < 0.05) indicate that the

data exhibit anisotropy. We note that for gridded data, Guan et al. (2004) recommend using

the p value computed via a finite sample correction. The function GuanTestGrid, and other

functions in spTest, return a p value(s) for the test and information used in computing the

p value, such as the point estimates (bGn), estimates of the asymptotic variance-covariance

matrix (bΣ), the number of subblocks used to estimate Σ, and other information about the

estimation process. We note that the point estimates for the directional semivariograms are

slightly different between the functions from the spTest and geoR packages due to different

kernel methods used in estimation.

As previously mentioned, we need to model the effects of northing and easting UTM

coordinates on average temperature. We fit temperature as a nonparametric additive func-

tion of both the northing and easting coordinates via least-squares using cubic splines. The

cubic splines can be specified using the function ns from the splines package and the least

squares fit is computed via the lm function.

R> m1 <- lm(tas ~ ns(coords[sub, 1], df = 3) + ns(coords[sub,

+ 2], df = 3))

R> summary(m1)

After removing the mean effects of the coordinates, we can check for any remaining (un-

accounted for) spatial dependence and evidence of anisotropy in the residuals using graphical
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diagnostics and a hypothesis test. A QQ plot of the studentized residuals (not shown) indi-

cates that a Gaussian assumption is reasonable.

R> resid.mat <- matrix(studres(m1), nrow = nx, ncol = ny,

+ byrow = F)

R> image.plot(x.coord, y.coord, resid.mat, col = two.colors(n = 256,

+ start = "blue3", end = "red3", middle = "gray60"),

+ xlab = "Easting", ylab = "Northing")

R> title("Heat Map of Studentized Residuals")

R> resid.geo <- as.geodata(as.matrix(cbind(coords[sub, 1:2],

+ studres(m1))))

R> plot(variog4(resid.geo), xlab = "distance (meters)",

+ ylab = "estimated semivariogram")

R> title("Directional Sample Semivariograms")

The clusters of similar values in the heat map of Figure 3.3a, and the increase, followed

by a leveling off, of the semivariogram values as distance increases in the directional sam-

ple semivariograms in Figure 3.3b indicate that the residuals are still spatially dependent.

However, the plots in Figure 3.3 do not clearly illustrate whether or not the residuals exhibit

anisotropy. There appears to be directional dependence along the NW to SE direction in

the northern parts of the heatmap (Figure 3.3a). The directional sample semivariograms do

not appear to be different until the distance is greater than 200,000 meters. Semivariogram

estimates at large distances can be unreliable because there are fewer pairs of sampling loca-

tions to estimate this value than at short distances. Likewise, directional semivariograms are

less reliable than a uni-directional semivariogram because fewer pairs of sampling locations

are used at each distance for directional estimation. The unreliability of the sample semi-

variograms at the larger distances, coupled with the lack of a measure of uncertainty, make

it difficult to determine whether or not an assumption of isotropy is reasonable using a plot
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Figure 3.3: Graphical assessments of isotropy in the studentized residuals from the WRFG
temperature data. The appearance of elongated areas of similar residual values in the heat

map (Figure 3.3a) indicates that the process may be anisotropic. The directional
semivariograms (Figure 3.3b) do not appear to exhibit differences, indicating that the

process is isotropic. A nonparametric test of isotropy can assist in determining whether or
not an assumption of isotropy is reasonable.

of the directional sample semivariogams. To gain more insight into the isotropy properties,

we perform a nonparametric hypothesis test of isotropy using the residuals with the same

choices for Λ, A, and the window dimensions.

R> tr <- GuanTestGrid(spdata = resid.geo, delta = my.delta,

+ lagmat = mylags, A = myA, df = 2, window.dims = c(4,

+ 4))

R> tr$p.value.finite

p.value.finite

0.2

Here the residuals do not provide evidence for anisotropy (p value > 0.05). These results

suggest that it may be appropriate to choose an isotropic covariance function to model

the residuals. However, it is important to note that we have not included the effect of

other potentially influential covariates such as elevation or water cover in the model for
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temperature. Additionally, although we examined a 20⇥20 subset of the data, the grid boxes

still cover a large geographic region of the U.S., and thus an assumption of stationarity, which

is needed for the asymptotic properties of the hypothesis test to hold, may not be reasonable.

3.5.2 Non-gridded Sampling Locations

The non-gridded data set used in this section describes monthly surface meterology in a

region of the state of Colorado and comes from the National Center for Atmospheric Research

(NCAR). The data are available in the R package fields. For this example, our variable of

interest is the log (mm) of the 30-year average of average yearly precipitation at 344 station

locations during the time period 1968-1997.

Like the temperature data, our goal will be to model the mean effect of covariates and

check for spatial dependence and potential anisotropy in the residuals. The first two steps of

the analysis are to compute the yearly precipitation averages and convert the latitude/longi-

tude coordinates to UTM coordinates. We divide the UTM coordinates by 100,000 so that

distances are measured in hundreds of kilometers. Scaling the coordinates eases the choice

of tuning parameters for the test in Guan et al. (2004). To meet the Gaussian assumption,

we take the log transform of the average precipitation. Figure 3.4 displays quilt plots of the

log precipitation values and the elevation of the stations.

R> data("COmonthlyMet")

R> sub30 <- CO.ppt[74:103, , ]

R> nstations <- 376

R> years <- 1968:1997

R> nyears <- length(years)

R> yr.avg <- matrix(data = NA, nrow = nstations, ncol = nyears)

R> for (i in 1:nyears) {

+ yr.dat <- sub30[i, , ]

+ yr.avg[, i] <- apply(yr.dat, 2, mean, na.rm = T)

64



+ }

R> avg30 <- apply(yr.avg, 1, mean, na.rm = T)

R> CO.loc.utm <- project(as.matrix(CO.loc),

+ "+proj=utm +zone=13 ellps=WGS84")/1e+05

R> quilt.plot(CO.loc.utm, log(avg30), col = two.colors(n = 256,

+ start = "blue3", end = "red3", middle = "gray60"),

+ legend.lab = "Precip (log mm)", legend.cex = 0.8,

+ legend.line = 2.2, xlab = "Easting", ylab = "Northing",

+ main = "Quilt Plot of log(precip)")

R> mp <- map("state", region = c("colorado", "wyoming",

+ "nebraska", "utah", "new mexico", "oklahoma"), plot = F)

R> states <- project(cbind(mp$x, mp$y),

+ "+proj=utm +zone=13 ellps=WGS84")/1e+05

R> points(states[, 1], states[, 2], type = "l", lwd = 1.5)

R> quilt.plot(CO.loc.utm, CO.elev, col = two.colors(n = 256,

+ start = "blue3", end = "red3", middle = "gray60"),

+ legend.lab = "Elevation (meters)", legend.cex = 0.8,

+ legend.line = 2.7, xlab = "Easting", ylab = "Northing",

+ main = "Quilt Plot of Elevation")

R> points(states[, 1], states[, 2], type = "l", lwd = 1.5)

Colorado has two distinct geographic regions: the mountainous region in the west and

the plains region in the east. Figure 3.4b illustrates these two regions, and we can begin

to notice a possible relationship between elevation and average precipitation. We explore

the potential relationship between log precipitation and elevation using scatter plots (see

Figure 3.5a).
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Figure 3.4: Quilt plots showing the locations of the weather stations in Colorado and
surrounding region along with the log of average yearly precipitation (3.4a) and elevation

(3.4b) at each station.

R> plot(CO.elev, log(avg30), xlab = "Elevation (meters)",

+ ylab = "Precip (log mm)",

+ main = "Scatter of log(precip) vs. Elevation")

R> m1 <- lm(log(avg30) ~ ns(CO.elev, df = 3))

R> summary(m1)

R> fits <- m1$fitted.values

R> bad <- is.na(avg30)

R> x <- CO.elev[which(!bad)]

R> lines(sort(x), fits[order(x)], lwd = 3, col = "red")

R> qqnorm(studres(m1))

R> abline(0, 1)

We fit a cubic smoothing spline via least squares to model the relationship between

log(precipitation) and elevation. The estimate is shown in Figure 3.5a, and a QQ plot of

residuals in Figure 3.5b indicates that a Gaussian assumption is reasonable. We will use the
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Figure 3.5: Results from the model relating log(precipitation) and elevation. Figure 3.5a
displays the nonparametric fit relating elevation to log(precipitation). Figure 3.5b shows

the QQ plot of studenized residuals from the nonparametric fit.

residuals from this model to check for remaining spatial dependence and potential anisotropy.

We use variog4 to estimate directional sample semivariograms.

R> precip.resid <- cbind(CO.loc.utm[which(!bad), ][, 1],

+ CO.loc.utm[which(!bad), ][, 2], studres(m1))

R> precip.geo <- as.geodata(precip.resid)

R> plot(variog4(precip.geo), xlab = "distance (100s of km)",

+ ylab = "estimated semivariogram", legend = F)

R> legend("bottomright", legend = c(expression(0 * degree),

+ expression(45 * degree), expression(90 * degree),

+ expression(135 * degree)), col = 1:4, lty = 1:4)

R> title("Directional Sample Semivariograms")

The increase, followed by a leveling off, of the semivariogram values as distance increases

in Figure 3.6 indicates that there is spatial dependence remaining in the data. We notice

that the 0◦ semivariogram appears to be slightly different than the other three, but there is

no measure of uncertainty, so we cannot determine if the differences are statistically signifi-
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Figure 3.6: A graphical assessment of isotropy in the studentized residuals from the model
relating log(precipitation) to elevation generated by using the geoR function variog4. The
directional sample semivariogram in the 0◦ direction appears to be different from the other
three at distances less than 2. Because there is no measure of uncertainty, it can be difficult

to determine whether or not an assumption of isotropy is reasonable.
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cant. The sample semivariograms also suggest the presence of a large amount of small scale

variation, often called a nugget effect, in the data. This can be seen by noting the ratio of

semivariogram values at the shortest observed distance to the semivariogram values at the

longest reliable distance. The large jumps and decrease in the estimated semivariogram val-

ues in Figure 3.6 indicate that semivariogram estimates become unreliable beyond a distance

of two. The sample semivariogram values in Figure 3.6 are approximately 0.7 at the short-

est distance and approximately 1.1 at a distance of two. This suggests that approximately

63% ⇡ (0.7/1.1)100% of the variability in the data is due to small scale variation. We note

the apparently large nugget effect because this small scale variation is detrimental to the size

and power of nonparametric tests of isotropy (Weller and Hoeting, 2016). Despite the small

scale variation, we will proceed with nonparametric hypothesis tests to assist in determining

if an assumption of isotropy is reasonable.

There are two procedures for testing isotropy in non-gridded data available in spTest:

Guan et al. (2004) and Maity and Sherman (2012). To choose between these two, we need

to decide whether or not it is reasonable to assume that sampling locations are uniformly

distributed on the sampling domain. The methods for non-gridded data from Guan et al.

(2004) rely on the assumption that sampling locations are uniformly distributed while Maity

and Sherman (2012) can be used on any general sampling design. To check this assumption,

we can turn to methods from the spatial point process literature to perform a test of complete

spatial randomness (CSR) (i.e., a uniform spatial distribution) for the sampling locations.

Methods for testing CSR are available in the R package spatstat (Baddeley and Turner,

2005). For brevity, we do not display the results of the CSR test here, but note that they do

not provide evidence against the assumption of CSR for these sampling locations so either

test of isotropy can be used.

For both Guan et al. (2004) and Maity and Sherman (2012), we need to choose the lag

set, Λ, and the contrast matrix, A. Because semivariogram estimates appear to be unreliable

at distances greater than two, we should choose lags having Euclidean distance less than this
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distance. We choose the lag set

Λ = {h1 = (0.60, 0),h2 = (0, 0.60),h3 = (0.45, 0.45),h4 = (−0.45, 0.45)},

and again we use the matrix A in (18). The set Λ corresponds to lags in the 0◦, 90◦, 45◦, 135◦

directions, respectively, having Euclidean distances of ||h1|| = ||h2|| = 0.60 (60 km) and

||h3|| = ||h4|| ⇡ 0.64 (64 km).

R> mylags <- rbind(c(0.60, 0), c(0, 0.60), c(0.45, 0.45), c(-0.45, 0.45))

R> myA <- rbind(c(1, -1, 0 , 0), c(0, 0, 1, -1))

The next step in implementing the methods from Guan et al. (2004) and Maity and

Sherman (2012) is to determine the size of the moving windows and the block size, respec-

tively, used to estimate the asymptotic variance-covariance matrix, Σ. The moving window

is shifted over the sampling region, creating subblocks of data used to estimate Σ. Likewise,

for the test in Maity and Sherman (2012), the block size is used to implement the grid-based

block bootstrap [GBBB] (Lahiri and Zhu, 2006).

There are two steps in determining the appropriate window/block size for non-gridded

sampling locations. First, we place a grid over the sampling domain; second, we specify

scaling parameters that will define the window/block size in terms of that grid. We should

complete this two step process while keeping three goals in mind: (1) the number of sampling

locations per window/block, denoted nb, should be approximately
p
n (Weller and Hoeting,

2016); (2) the windows/blocks should have have the same orientation (i.e., square or rect-

angle) as the entire sampling domain; and (3) the scaling parameters should be compatible

with the dimensions of the underlying grid.

For the Colorado precipitation data, recall that one unit of distance equals 100 km. The

dimensions of the sampling region are approximately 7.3 ⇥ 5.5 (width ⇥ height), providing

a total area of 40.15. For n = 344 uniformly distributed sampling locations, we expect

approximately 344/40.15 = 8.6 sampling locations per unit area. Recalling goal (1), we seek
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to construct windows/blocks with nb ⇡
p
344 = 18.5 sampling locations, or equivalently,

windows/blocks with an area of approximately 18.5/8.6 = 2.15. Goal (2) indicates we want

to create rectangular windows/blocks with slightly larger width than height, and (3) says

that if our grid divides the x-axis into 12 grid cells, then the scaling parameter defining the

width of the window/block should be 3 or 4 because those numbers evenly divide 12. For the

CO precipitation data, if we choose our grid to divide the x-axis into 16 cells and the y-axis

into 12 cells, we have a grid with (x, y) spacing of roughly (7.3/16, 5.5/12) ⇡ (0.46, 0.46).

The resulting grid is plotted in Figure 3.7. Then, choosing our scaling parameters to be 4⇥3,

we have windows/blocks with dimensions of approximately (4)(0.46)⇥(3)(0.46) = 1.84⇥1.38

and area of (1.84)(1.38) ⇡ 2.54, or equivalently with an expected number of points per block

of nb = (2.54)(8.6) ⇡ 21.8.

R> quilt.plot(precip.resid[, 1:2], precip.resid[, 3],

+ col = two.colors(n = 256,

+ start = "blue3", end = "red3", middle = "gray60"),

+ xlab = "Longitude", ylab = "Latitude", xlim = c(0.75,

+ 8.65), ylim = c(40.1, 46.2))

R> title("Quilt Plot of Residuals and Grid Used for Subsampling")

R> tol <- 0.02

R> my.xlims <- c(min(precip.resid[, 1]) - tol, max(precip.resid[,

+ 1]) + tol)

R> my.ylims <- c(min(precip.resid[, 2]) - tol, max(precip.resid[,

+ 2]) + tol)

R> xlen <- my.xlims[2] - my.xlims[1]

R> ylen <- my.ylims[2] - my.ylims[1]

R> my.grid.spacing <- c(xlen/16, ylen/12)

R> xgrid <- seq(my.xlims[1], my.xlims[2], by = my.grid.spacing[1])

R> ygrid <- seq(my.ylims[1], my.ylims[2], by = my.grid.spacing[2])
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Figure 3.7: Quilt plot of the studentized residuals from the model relating elevation to
log(precipitation) for the weather station locations. The grid placed on the region that is
used to define the moving windows in Guan et al. (2004) and block size in Maity and

Sherman (2012) is also shown. Because the sampling locations are not gridded, it can be
difficult to assess isotropy properties via a quilt plot.

R> segments(x0 = xgrid, y0 = min(my.ylims), y1 = max(my.ylims),

+ lty = 2)

R> segments(x0 = min(my.xlims), y0 = ygrid, x1 = max(my.xlims),

+ lty = 2)

For the functions GuanTestUnif and MaityTest, the upper and lower limits of the sam-

pling region in the x and y directions are given by the xlims and ylims arguments. Note that

the values defining the upper and lower limits should be slightly larger than the minimum

and maximum observed x and y coordinates. The horizontal and vertical spacing, respec-

tively, of the grid laid on the sampling region is defined by the two values in grid.spacing.
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The horizontal and vertical scaling parameters that define the size of the moving windows

in GuanTestUnif and blocks in MaityTest in terms of the underlying grid are given by the

window.dims and block.dims arguments, respectively. We recommend using visualizations

of different grid choices and algebraic calculations, as done above, to assist in choosing a

grid and the window/block dimensions. When the scaling parameters defining the moving

window or block dimensions are not compatible with the number of rows or columns of

gridded sampling locations or the dimensions of the grid laid on the sampling region for

non-gridded locations, the functions in spTest will print a warning message because they

do not currently handle partial (incomplete) blocks. Likewise, if the chosen window or block

dimensions for non-gridded sampling locations creates (sub)blocks of data with few or no

sampling locations, the functions GuanTestUnif and MaityTest will discard (sub)blocks that

do not have enough sampling locations and print a warning message. The p value of the

hypothesis test will be sensitive to the choice of moving window and block dimensions. See

Weller and Hoeting (2016) and the original works (Guan et al., 2004; Maity and Sherman,

2012) for more recommendations on choosing these values.

The next step for implementing the test in Guan et al. (2004) is choosing the smoothing

(bandwidth) parameters for smoothing over lags on the entire domain and within each sub-

block created by the moving windows. The smoothing parameters should be chosen based

on the number and density of the sampling locations with larger values of the smoothing

parameter inducing higher levels of smoothing, i.e., allowing a greater distance and direction

tolerance. In our experience, smoothing parameter values between 0.6 and 0.9 tend to pro-

duce reasonable results when using a standard normal Gaussian smoothing kernel truncated

at 1.5. However, the p value of the hypothesis test will change with the bandwidth. For this

example, we choose a bandwidth of h = 0.70 for smoothing over lags on the entire domain,

and a bandwidth of subblock.h = 0.85 for smoothing over lags on on the subblocks of data

created by the moving window. Choosing a larger bandwidth for the subblocks equates to

allowing for a larger lag distance and direction tolerance, which is needed for subblocks that
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have few sampling locations. We also use the default Gaussian smoothing kernel (kernel =

"norm") truncated at 1.5 (truncation = 1.5). Because the sample size is less than 500, we

use a finite sample adjustment to approximate the p value (Guan et al., 2004; Weller and

Hoeting, 2016).

Finally, for the test in Maity and Sherman (2012) we need to choose the number of

bootstrap resamples that will be used in the GBBB procedure to estimate Σ. We recommend

using at least 50 bootstrap samples; however, the bootstrapping procedure is computationally

intensive. We choose nBoot = 100 bootstrap samples for our example, and we note that the

number of bootstraps does not affect the precision of the p value, which is computed via

the asymptotic χ2 distribution. Having determined values for the different options, we can

now perform the hypothesis tests. For reproducibility of the bootstrap in the MaityTest

function, we set the random seed.

R> myh <- 0.7

R> myh.sb <- 0.85

R> tr.guan <- GuanTestUnif(spdata = precip.resid, lagmat = mylags,

+ A = myA, df = 2, h = myh, kernel = "norm", truncation = 1.5,

+ xlims = my.xlims, ylims = my.ylims, grid.spacing = my.grid.spacing,

+ window.dims = c(4, 3), subblock.h = myh.sb)

R> tr.guan$p.value.finite

p.value.finite

0.04615385

R> set.seed(2016)

R> tr.maity <- MaityTest(spdata = precip.resid, lagmat = mylags,

+ A = myA, df = 2, xlims = my.xlims, ylims = my.ylims,

+ grid.spacing = my.grid.spacing, block.dims = c(4,
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+ 3), nBoot = 100)

R> tr.maity$p.value

p.value.chisq

0.021859

For both of the tests, the data provide evidence in favor of anisotropy (p value < 0.05).

Thus, an isotropic model may be appropriate for modeling the residuals. Additionally,

the apparent anisotropy may also be present due to unaccounted for covariates (e.g., nor-

thing/easting coordinates).

3.6 Discussion

Choosing a covariance function is an important step in modeling spatially-referenced data

and a variety of choices for the covariance function are available (e.g., anisotropy, nonsta-

tionarity, parametric forms). The R package spTest implements several nonparametric tests

for checking isotropy properties which avoid specifying a parametric form for the covariance

function. Weller and Hoeting (2016) perform a simulation study comparing the empirical

size and power of the methods for different degrees of anisotropy. They find that methods

from Guan et al. (2004) tend to outperform the competitor for gridded and non-gridded

data.

One concern regarding the methods in spTest is that they tend to have low power when

the anisotropy is weak and the data are not gridded (Weller and Hoeting, 2016; Guan et al.,

2004; Maity and Sherman, 2012). A second concern is that the results of the tests are

potentially sensitive to user choices, for example, the moving window size and bandwidth

in the method from Guan et al. (2004). The optimal choices for these values is still an

open question. Weller and Hoeting (2016) offer further recommendations for how to choose

the user defined values, such as the window size and bandwidth, based on simulated data.

Finally, as noted earlier, the size and power of the methods are adversely affected by the
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presence of small scale variation (nugget effect). Because of these concerns, we recommend

using the nonparametric methods in conjunction with graphical techniques.

An implicit assumption of the methods discussed in this chapter is ergodicity of the

spatial process, an assumption that is difficult to verify (Cressie, 1993, pg. 57-58). However,

there are two important assumptions which practitioners should consider. The first is an

assumption of strict stationarity (1). While this assumption is also difficult to check, it

follows from assuming the RF is weakly stationary and Gaussian (4). The assumption of

Gaussian data lies at the heart of many spatial analyses (Gelfand and Schliep, 2016) and is

easily checked with a QQ plot. The assumption of weak stationarity may be questionable

for spatial data over large geographic regions and methods have been developed for testing

this assumption (see, e.g., Corstanje et al., 2008; Fuentes, 2005; Jun and Genton, 2012;

Bandyopadhyay and Rao, 2015). The second assumption required is a mixing condition that

states the dependence between observations goes to 0 at large distances (Hall and Patil, 1994;

Sherman and Carlstein, 1994). In the case of a stationary GRF, this condition is met when

the covariance function C(h) is 0 for sufficiently large ||h||, which also implies ergodicity

(Cressie, 1993, pg. 58). One way to check this assumption in practice is to look for a leveling

off of the sample covariogram or semivariogram values as distance increases, indicating that

the data are nearly independent at large distances.

After determining whether or not an assumption of isotropy is reasonable, we can choose

a parametric or nonparametric model for the covariance function. Weller and Hoeting (2016)

further illustrate the role of nonparametric tests of isotropy in the process of modeling

spatially-referenced data. We have demonstrated how graphical techniques and the functions

available in the R package spTest can be used in a complementary role to check for anisotropy.
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CHAPTER 4

A SPECTRAL DOMAIN NONPARAMETRIC TEST OF SPATIAL

ISOTROPY

4.1 Introduction

Modeling spatially-referenced data typically requires choosing a covariance function to

describe spatial dependence. Due to numerous recent developments, there are a wide variety

of covariance models available. A common simplifying assumption is that the covariance

function is isotropic. Isotropy implies that the dependence between any two observations

depends only on the Euclidean distance between their sampling locations and not on their

relative orientation. Graphical techniques, such as directional sample variograms, are typi-

cally used to check the assumption of isotropy, but their interpretation is subjective and open

to interpretation. Thus, there is a need for more objective assessments of this assumption.

We develop a nonparametric hypothesis test of the assumption of isotropy using the

spectral representation of the covariance function. While spectral methods have been used for

some time in the time series context, there have been a number of more recent developments

on the use of spectral methods for the analysis of spatial random fields (RFs) (see, e.g.,

Fuentes, 2001, 2007). By using a nonparametric test, we avoid the problems of choosing a

covariance function from the plethora of available models, misspecification of the covariance

function, and the need to estimate the covariance function under the null and alternative

hypotheses.

There are several methods that use nonparametric estimation of the spectral density, the

Fourier transform of the covariance function, to test second order properties. For example,

Lu and Zimmerman (2005) and Scaccia and Martin (2005, 2002) test symmetry properties
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of the covariance function for lattice processes. Fuentes (2005) develops a nonparametric,

spatially varying spectral density to test for nonstationarity. Van Hala et al. (2014) use a

spatial frequency domain empirical likelihood (SFDEL) to test isotropy and separability of

the covariance function. None of these methods were developed with the primary goal of

testing isotropy. Thus, while many of the concepts that are used for our test are not new,

their combined use for testing isotropy has not been previously exploited or explored. Our

method is the first to use the spectral representation of the covariance function with the

primary goal of testing the assumption of isotropy.

Guan et al. (2004), Maity and Sherman (2012), and others have developed nonparametric

tests of isotropy in the spatial domain. Two drawbacks of these methods are that they

require the choice of tuning parameters, and they can be computationally intensive (Weller

and Hoeting, 2016). For these spatial domain tests, the tuning parameters can affect test

results and their optimality remains an open question. As a result, there is a need to develop

methods that are tuning-parameter free and less computationally expensive. The spectral

method we develop addresses both of these issues as it avoids the need to choose tuning

parameters and is less computationally intensive than methods in the spatial domain. For a

review of nonparametric methods for testing isotropy and symmetry, see Weller and Hoeting

(2016).

The rest of this chapter is organized as follows: in Section 4.2 we outline important

background on spectral methods and provide the motivating theorem for our test; Section

4.3 describes the periodogram, the nonparametric estimator of the spectral density, and

its properties; Section 4.4 develops the proposed test statistics and describes associated

challenges; Sections 4.5 and 4.6 offer a simulation study and application of the new method,

respectively; we discuss the new test in Section 4.7. Finally, we discuss the problem of

aliasing, develop a graphical diagnostic for aliasing, and explore the effects of aliasing on

covariance estimation in Section 4.8.
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4.2 Background and Definitions

First we provide a review of notation, definitions, and results regarding spatial RFs

and their spectral representation. We follow the introductions given by Schabenberger and

Gotway (2004) and Fuentes and Reich (2010); see these sources for additional background.

Below we assume dimension d = 2, although many of the results hold for the more general

case of d ≥ 2. When working in the spectral domain, one important distinction is whether

the spatial process is a geostatistical (continuous) process or lattice (discrete) process. We

focus on the case of a geostatistical process observed at gridded sampling locations.

4.2.1 Spectral Representation of the Covariance Function

Let {Y (s) : s 2 D ✓ R
2} be a mean square continuous, second order (weakly) stationary,

mean 0, RF with covariance function C(h),h = (h1, h2)
>. For the purposes of investigating

the second order properties, we are interested in the spectral representation of the covariance

function of the RF, called the spectral density function and denoted f(ω),ω = (!1, !2)
>.

To ensure the existence of the spectral density, we assume C(h) ! 0 as h ! 1, and C(h) is

absolutely integrable, i.e.,
R
R2 |C(h)|dh < 1. The spectral representation of the covariance

function C(h) in R
2 is given by

C(h) =

Z

R2

exp(ih>ω)f(ω)dω, (21)

and the spectral density function is given by

f(ω) =
1

(2⇡)2

Z

R2

exp(−iω>h)C(h)dh, (22)

so that C(h) and f(ω) form a Fourier transform pair, (21) and (22). Properties of the

covariance function will imply properties of the spectral density. Namely, if the covariance

function is isotropic, then the spectral density function is isotropic. Thus, second order
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properties of a weakly stationary RF can be explored via either the covariance function or

the spectral density function.

When modeling a spatial RF, a common simplifying assumption about the covariance

function is that it is isotropic.

Definition 5. A second order stationary spatial process is isotropic if the covariance function

C(h) of the spatial process depends on the lag vector h only through its Euclidean length,

||h||, i.e., C(h) = C(h1, h2) = C0(h), where h = ||h|| and C0(·) is a valid covariance function

taking a univariate argument.

A spatial process that is not isotropic is called anisotropic.

As one example, the isotropic Matérn covariance function is

C(h) = C0(h) =
⇡φ

2ν−1Γ(ν + 1)α2ν
(αh)νKν(αh) (23)

with parameters (ν,α,φ) all greater than 0, and where Kν is a modified Bessel function of

the third kind. The parameter α governs the range of spatial correlation, ν determines the

smoothness of the process, and φ is proportional to the process variance times the range

to the 2νth power (Fuentes and Reich, 2010). The corresponding isotropic Matérn spectral

spectral density function is given by

f(ω) = f(ω1,ω2) = f0(ω) = φ(α2 + ω2)−ν−1, (24)

where ω = ||ω|| and f0(·) is a spectral density function taking a univariate argument. Two

examples of the Matérn covariance and spectral density function are plotted in Figure 4.1. In

Section 4.5, we simulate data from RFs with isotropic (23) and anisotropic Matérn covariance

functions.

Due to the one to one relationship between the covariance function and spectral density

function in (21) and (22), we can use the spectral density as an alternative to the covariance
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Figure 4.1: Isotropic Matérn covariance functions (left) and spectral density functions
(right). The red functions correspond to a Matérn covariance function with smoothness
ν = 0.5 (i.e., an exponential covariance function) while the black functions correspond to

ν = 1.

function for exploring directional dependence properties (see, e.g., Lu and Zimmerman, 2005;

Scaccia and Martin, 2005, 2002). To develop a test of isotropy in the spectral domain, we

rely on the following theorem:

Theorem 1. (Adler, 1981; Yaglom, 1987; Fuentes, 2005, 2013) Let Y be a real, second

order stationary random field in R
2 with valid, continuous covariance function C(h),h =

(h1, h2)
>. Assume that

R
R2 |C(h)|2dh <1. Then the covariance function C(h) is isotropic,

C(h) = C0(h), h = ||h|| = (h21+h
2
2)

1/2, if and only if the spectral density function is isotropic,

f(ω) = f0(ω),ω = ||ω|| = (ω2
1 + ω2

2)
1/2.

Theorem 1 implies that we can investigate the isotropy of the covariance function by

examining the isotropy of the spectral density function. To perform this investigation via a

hypothesis test, we need an estimator of the spectral density function (22).
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4.3 Periodogram

In this section, we describe the periodogram, an estimator of the the spectral density

function (22) and consider its asymptotic properties. We observe the continuous process Y

at a finite set of locations. We assume the sampling locations form a rectangular grid. If we

have n gridded sampling locations with row and column spacing ∆ = (δ1, δ2)
>, then, due to

the aliasing phenomenon, we restrict estimation of the spectral density to frequencies within

the interval ω 2 [−⇡/δ1, ⇡/δ1) ⇥ [−⇡/δ2, ⇡/δ2). The aliasing phenomenon refers to the fact

that it is not possible to distinguish oscillations that differ by an integer multiple of 2⇡ when

observations occur at a discrete set of points. More generally, aliasing means that it is not

possible to recover a continuous signal from a finite set of observation locations (see Fuentes

and Reich (2010, pg. 58-62) for more details). We can then write the spectral density of the

lattice process in terms of the spectral density of the continuous process as

f∆(ω) =
X

z2Z2

f

✓
ω +

2⇡z

∆

◆
=
X

z12Z

X

z22Z
f

✓
!1 +

2⇡z1
δ1

, !2 +
2⇡z2
δ2

◆
. (25)

The periodogram, denoted I(ω), is a nonparametric estimator of the aliased spectral density

(25) and can be computed by taking the Fourier transform of the sample covariance,

I(ω) =
δ1δ2
(2⇡)2

n1−1X

h1=−n1+1

n2−1X

h2=−n2+1

bC(∆ ◦ h) exp
(
−i(∆ ◦ s)>ω

)
, (26)

where v ◦ w = (v1w1, v2w2) is the Hadamard product. The sample covariance bC(∆ ◦ h) is

defined as

bC(∆ ◦ h) = 1

n

n1X

s1=1

n2X

s2=1

Y (∆ ◦ s)Y (∆ ◦ (s+ h)). (27)

where n = n1 ⇥ n2, the number of rows (n1) times the number of columns (n2).

The asymptotic properties of the spatial periodogram I(ω) depend on a number of factors,

including (1) the frequency ω, (2) the shape of the sampling domain, (3) whether or not the
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spatial process is discrete or continuous and (4) for a geostatistical process, the type of spatial

asymptotics used (Bandyopadhyay and Lahiri, 2009). Accordingly, there is a rich literature

on the asymptotic properties of Fourier transforms (e.g., Brillinger, 1970, 1974; Pagano, 1971;

Guyon, 1982; Stein, 1995; Crujeiras, 2006; Lim and Stein, 2008; Bandyopadhyay and Lahiri,

2009). Finite sample properties of the periodogram have also been derived (e.g., see Kim

and Fuentes, 2000; Fuentes and Smith, 2001; Crujeiras, 2006; Porcu et al., 2009). Next, we

provide a brief description of different spatial asymptotic schemes and discuss the asymptotic

properties of I(ω) relevant for our test of isotropy.

Under increasing domain asymptotics, the size of the sampling region grows without

bound, but the spacing between sampling locations does not change. This asymptotic scheme

is typically used for discrete (lattice) spatial processes (e.g., see Brillinger, 1981). Infill, or

fixed-domain, asymptotics assume that the size of the sampling domain is fixed and the

spacing between sampling locations goes to zero. Infill asymptotics are often used when

considering continuous (geostatistical) spatial processes (e.g., see Stein, 1995; Zhang, 2004).

Finally, under mixed increasing domain and infill asymptotics, the size of the sampling

domain grows without bound and the spacing between sampling locations goes to zero (e.g.,

see Fuentes, 2002).

Fuentes (2001, 2002) and Fuentes and Reich (2010) provide theoretical moment proper-

ties of the periodogram (26) under different asymptotic schemes. Under increasing domain

asymptotics, the aliasing problem does not diminish as the sample size increases so that

the periodogram (26) is always estimating the aliased spectral density (25). Under fixed

domain asymptotics, we gain more information about the covariance function at short and

medium distance spatial lags than at the longest lags as the sample size increases. Because

the periodogram is computed as the Fourier transform of the sample covariance function

(27) over all observed spatial lags, neither increasing domain or fixed domain asymptotics

alone is satisfactory for considering periodogram asymptotics. As a result, we follow Fuentes

(2002) and adopt a mixed asymptotic scheme to ensure an accurate nonparametric estimate
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of the spectral density function (22). Like Fuentes (2002), we also assume a Gaussian RF.

Under the mixed scheme, the asymptotic expected value and variance of I(ω) are f(ω) and

f 2(ω), respectively. Periodogram values at fixed, distinct frequencies are also asymptoti-

cally uncorrelated. This asymptotically uncorrelated property of the periodogram makes the

spectral domain attractive for doing computations such as fitting parametric models (Fuentes

and Reich, 2010). In summary, under mixed asymptotics, the periodgram has the following

asymptotic properties:

lim
n!1

8
>>>>>><
>>>>>>:

E(I(ω)) = f(ω) for ω 2 [−⇡/∆, ⇡/∆)2,

Var(I(ω)) = f 2(ω), and

Cov(I(ω1), I(ω2)) = 0 for ω1 6= ω2.

(28)

These results indicate that the periodogram is an asymptotically unbiased, but inconsistent

estimator of the periodogram. In both the time series and spatial settings, the typical

approach to developing a consistent estimator of the spectral density at frequency ω is to

smooth (e.g., average) the periodogram values in a small frequency interval containing ω

(e.g., see Brockwell and Davis, 2009, pg. 124-125). In our development of a test statistic

for testing isotropy, we choose not to smooth the periodogram for two reasons. First, if the

spatial process is anisotropic, smoothing may result in some loss of the directional signal in

the periodogram. Second, smoothing introduces dependence between periodogram values at

distinct, but nearby, frequencies. We rely on the result that periodogram values at distinct

frequencies are approximately uncorrelated in deriving the distribution of our test statistic.

Results of our test may vary when using the smoothed periodogram, and its use for our test

is an area of future work.

Finally, we also want to know the asymptotic distribution of the periodogram under the

mixed asymptotic scheme. To this end, we prove the following new result which gives the

asymptotic distribution of the periodogram.
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Theorem 2. Let {Y (s) : s 2 R
2} be a mean 0, weakly stationary random field with co-

variance function C(h), where the covariance function satisfies |C(h)| ! 0 as ||h|| ! 0

and
R
R2 |C(h)|dh < 1. Let f(ω) be the spectral density associated with C(h) satisfying

R
R2 |f(ω)|dω < 1. Assume that Y satisfies conditions (A.1) and (A.2) of Bandyopadhyay

and Lahiri (2009, pg. 228), and is observed at n sampling locations on a n1 ⇥n2 rectangular

grid (n = n1n2). Let δ = δ1 = δ2 denotes the spacing between rows and columns. Under

the mixed asymptotic scheme (Fuentes, 2002), assume that δ ! 0, n1 ! 1, n2 ! 1,

n1/n2 ! c for a constant c > 0, δn1 ! 1, and δn2 ! 1.

Under these conditions and for frequencies ωn ! ω 2 R
2 \0 , the asymptotic distribution

of the periodogram is given by

2
I(ωn)

f(ω)

D−! χ2
2.

Proof. Because |C(h)| ! 0 as ||h|| ! 0 and
R
R2 |C(h)|dh < 1, the spectral density

function f(ω) exists. Because
R
R2 |C(h)|dh < 1, we can write F (ω) = F (!1, !2) =

R ω1

−1
R ω2

−1 f(v1, v2)dv2dv1. Therefore, by the Fundamental Theorem of Lebesgue Calculus,

the spectral distribution function F (ω) is absolutely continuous. By Theorem 7 of Rosen-

blatt (1985, pg. 73), the absolute continuity of the spectral distribution function implies that

the process Y is strongly mixing. We assume this strong mixing satisfies conditions (A.1)

and (A.2) of Bandyopadhyay and Lahiri (2009, pg. 228), which place a moment restriction on

Y and state that the dependence between observations goes to 0 as their spatial separation

gets large. Finally, by defining the mixed asymptotic scheme as, δ ! 0, n1 ! 1, n2 ! 1,

n1/n2 ! c for a constant c > 0, δn1 ! 1, and δn2 ! 1, we satisfy condition (A.3) of

Bandyopadhyay and Lahiri (2009, pg. 237) which states that the the volume of the sampling

domain must grow at a faster rate than the rate at which the distance between sampling

locations decreases. Namely, we let the set Z2 (Bandyopadhyay and Lahiri, 2009, pg. 226)

be the integer grid Z
2, ηn = δ and λn = δn so that ηnλn = δδn = δ2n1n2 ! 1.
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For ω 2 R
2, define the cosine and sine transforms, respectively, of spatial data at n

sampling locations as

Cn(ω) =
1p
n

nX

i=1

cos(ω>si)Y (si)

and,

Sn(ω) =
1p
n

nX

i=1

sin(ω>si)Y (si).

With conditions (A.1)-(A.3) satisfied, Theorem 3.5 of Bandyopadhyay and Lahiri (2009, pg.

238) states the following:

For r 2 Z
+, let {ω1n}, . . . {ωrn} be frequencies of the form ωjn =

2πkjn

δn
for kjn 2 Z

2 \ 0

such that ωjn 6= 0 8 jn, ωjn ! ωj 2 R
2 \ 0, and ωj ± ωk 6= 0 8 1  j 6= k  r. Then

δ[Cn(ω1n), Sn(ω1n), . . . , Cn(ωrn), Sn(ωrn)]
> D−! N(0,Σ)

where Σ is block diagonal with r blocks of the form
⇣

(2π)2

2
f(ωl)

⌘
I2 for l = 1, 2, . . . , r.
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Letting ω = ωjn, the periodogram can be written as follows (e.g., see Fuentes and Reich,

2010, pg. 68):

In(ω) =
δ2

(2⇡)2n

∣∣∣∣∣

nX

i=1

Y (si) exp
{
−is>i ω

 
∣∣∣∣∣

2

=
δ2

(2⇡)2n

∣∣∣∣∣

nX

i=1

cos(ω>si)Y (si)− i sin(ω>si)Y (si)

∣∣∣∣∣

2

=

∣∣∣∣∣

✓
δ

2⇡
p
n

◆ nX

i=1

cos(ω>si)Y (si)− i sin(ω>si)Y (si)

∣∣∣∣∣

2

=

∣∣∣∣
δCn(ω)

2⇡
+ i

δSn(ω)

2⇡

∣∣∣∣
2

=

✓
δCn(ω)

2⇡

◆2

+

✓
δSn(ω)

2⇡

◆2

=

0
@

q
(2π)2

2
f(ωj)

2⇡

δCn(ω)q
(2π)2

2
f(ωj)

1
A

2

+

0
@

q
(2π)2

2
f(ωj)

2⇡

δSn(ω)q
(2π)2

2
f(ωj)

1
A

2

=

0
@
r
f(ωj)

2

δCn(ω)q
(2π)2

2
f(ωj)

1
A

2

+

0
@
r
f(ωj)

2

δSn(ω)q
(2π)2

2
f(ωj)

1
A

2

=
f(ωj)

2

8
<
:

0
@ δCn(ω)q

(2π)2

2
f(ω)

1
A

2

+

0
@ δSn(ω)q

(2π)2

2
f(ωj)

1
A

29=
; .

Rearranging, we can write,

2In(ω)

f(ωj)
=

0
@ δCn(ω)q

(2π)2

2
f(ωj)

1
A

2

+

0
@ δSn(ω)q

(2π)2

2
f(ωj)

1
A

2

.
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From Theorem 3.5 of Bandyopadhyay and Lahiri (2009, pg. 238), we have that

Zc =
δCn(ω)q
(2π)2

2
f(ωj)

D−! N(0, 1), Zs =
δSn(ω)q
(2π)2

2
f(ωj)

D−! N(0, 1)

and Zc and Zs are asymptotically independent. Because g(x) = x2 is a continuous function,

it follows that

2In(ω)

f(ωj)
= (Zc)

2 + (Zs)
2 D−! χ2

2,

because φZ2
c+Z2

s
(t) = φZ2

c
(t)φZ2

s
(t) ! φχ2

1
(t)φχ2

1
(t) = φχ2

2
(t), where φX(t) is the characteristic

function of random variable X.

Note that an assumption that the RF is a Gaussian RF is not required for Theorem 2.

However, the mixing conditions of Bandyopadhyay and Lahiri (2009) are satisfied in the case

that the RF is a Gaussian RF with C(h) = 0 for sufficiently large ||h|| (Maity and Sherman,

2012).

While the periodogram has attractive asymptotic properties, aliasing may thwart its

use for testing isotropy. Isotropy of the spectral density of the continuous (geostatistical)

process, f(ω), does not imply isotropy of the aliased spectral density, f∆(ω). In order to

use spectral methods for a continuous process, the spacing between sampling locations must

be small enough “so that higher frequencies make only negligible contribution to the total

power of the process” (Fuentes, 2002). Similar to Fuentes (2002) and Crujeiras et al. (2010),

we assume that aliasing is not a concern so that f(ω) ⇡ f∆(ω). We explore the impact of

aliasing on covariance estimation and develop a graphical diagnostic to assess whether or not

aliasing is a concern in Section 4.8.
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4.4 Test Statistic

4.4.1 Constructing a Test Statistic

In this section we develop potential test statistics to test the hypotheses,

H0 : C(h) = C0(||h||); (covariance function is isotropic)

H1 : C(h) 6= C0(||h||); (covariance function is anisotropic).

(29)

By Theorem (1), we can rewrite (29) in terms of the spectral density function,

H0 : f(ω) = f0(||ω||); (spectral density function is isotropic)

H1 : f(ω) 6= f0(||ω||); (spectral density function is anisotropic).

(30)

In developing a test statistic for isotropy, we follow steps similar to those used in Scaccia

and Martin (2005) who used the periodogram to test symmetry and separability of lattice

processes. Under the null hypothesis of isotropy, we have that f(ωi) = f(ωj) when ||ωi|| =

||ωj||. To estimate differences in the spectral density at different frequencies with the same

norm, we consider the log ratio of periodogram values Dk where

Dk = log

✓
I(ωi)

I(ωj)

◆
= log I(ωi)− log I(ωj) where ||ωi|| = ||ωj||.

Using the log of the periodogram approximately stabilizes the variance and reduces the non-

normality of the periodogram values (Scaccia and Martin, 2005). Under the null hypothesis

(30) of isotropy, the expected log ratio equals 0:

E(Dk) = E[log I(ωi)]− E[log I(ωj)] = 0. (31)
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Figure 4.2: The circles (◦) denote the set of Fourier frequencies F (32) for data observed on
a 14⇥ 11 (rows ⇥ columns) subset of Z2. The red circles indicate the frequencies in the set
K (33) that are used to test isotropy. There are K = 30 pairs of frequencies with the same

norm in K.
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We wish to use the mean of the Dk values to compute a test statistic. To construct the

Dk’s, we begin by estimating the periodogram (26) at the set of Fourier frequencies,

F =

⇢
ω = (!1, !2) : !1 =

2⇡

δ1n1

k1, !2 =
2⇡

δ2n2

k2

}
(32)

where

k1 2
⇢
−
⌊
n1 − 1

2

⌫
,−
⌊
n1 − 2

2

⌫
, . . . , 0, . . . ,

⌊
n1 − 2

2

⌫
,

⌊
n1 − 1

2

⌫}
,

k2 2
⇢
−
⌊
n2 − 1

2

⌫
,−
⌊
n2 − 2

2

⌫
, . . . , 0, . . . ,

⌊
n2 − 2

2

⌫
,

⌊
n2 − 1

2

⌫}
,

and δ1, δ2 are the spacings between the rows and columns, respectively. Figure 4.2 displays

the set of Fourier frequencies F (32) for data observed on a 14⇥11 (rows ⇥ columns) subset of

Z
2 (i.e., δ1 = δ2 = 1). Because the periodogram is an even function, it follows that I(!1, !2) =

I(−!1,−!2), and I(!1, ⇡) = I(−!1, ⇡). As a result, only a subset of the periodogram values

will be useful for testing isotropy (Lu and Zimmerman, 2005). Specifically, Dk is computed

at the set of relevant frequencies K, where

K = F \ ({(!1, !2) : !2 < 0} [ {(!1, !2) : !1  0 and !2 = 0 or ⇡}) . (33)

Figure 4.2 displays the set K for data on a 14 ⇥ 11 subset of Z2. In Figure 4.2 there are

K = 30 pairs of frequencies in the set K with the same norm. If the spacing between sampling

locations in the row and columns is the same (δ1 = δ2), then due to the construction of the

Fourier frequencies (32), the number of pairs of frequencies having the same norm K will

depend on the number of common factors between the number of rows n1 and number of

columns n2. More common factors between n1 and n2 implies a larger K.

Let D̄ =
⇣PK

k=1Dk

⌘
/K, where K is the number of pairs of Fourier frequencies in K that

have the same norm. It follows from (31) that, under the null hypothesis of isotropy (30),
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E(D̄) = 0. Recall, periodogram values are approximately uncorrelated (28). As a result,

Z =
D̄ − 0

σD̄

D−! N(0, 1) (34)

by the Central Limit Theorem.

4.4.2 Test Statistic Variance Approximations

To use the test statistic (34) in practice, we need an estimator of σ2
D̄
, where

σ2
D̄ = Var(D) = Var

 PK
k=1Dk

K

!
=

1

K2

"
KX

k=1

Var(Dk) + 2
X

1k<lK

Cov(Dk, Dl)

#
. (35)

We can rewrite Var(Dk) in (35) as:

Var(Dk) = Var[log I(ωi)− log I(ωj)]

= Var [log I(ωi)] + Var [log I(ωj)]− 2Cov [log I(ωi), log I(ωj)] .

(36)

Assuming the asymptotic property of uncorrelated periodogram values (28),

Cov [log I(ωi), log I(ωj)] = 0, for ωi 6= ωj. (37)

Next we explore two approximations of Var[log I(ωi)] in (36). The first approach is to use

the asymptotic properties (28) of the periodogram and a first order Taylor series:

Var (log I(ω)) ⇡


1

E(I(ω))

]2
Var(I(ω))

=


1

f(ω)

]2
(f(ω))2 = 1.

(38)

The second approach to approximate Var[log I(ω)] is to consider the asymptotic distribution

of log(I(ω)/f(ω)). Recall, Theorem 2 states that under mixed increasing domain and infill
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asymptotics,

I(ω)

f(ω)

D−! 1

2
χ2
2 for ω 2 R

2 \ 0.

where
D−! represents convergence in distribution. Equivalently, we can write

I(ω)

f(ω)

D−! Exp(1) for ω 2 R
2 \ 0

because a χ2
2/2 distribution is an an exponential distribution with parameter 1. By the

continous mapping theorem, if Xn
D−! X and g : R ! R is a continuous function, then

g(Xn)
D−! g(X). If we let g(x) = − log x, which is a continuous function for x > 0, then

− log

✓
I(ω)

f(ω)

◆
D−! − log(Exp(1)) = Gumbel(0,1). (39)

for ω 2 R
2 \ 0. If X ⇠ Gumbel(0,1), then Var(X) = ⇡2/6. Therefore, it follows from (39)

that

Var(log f(ω)− log I(ω)) = Var(log I(ω)) ⇡ ⇡2/6. (40)

To complete our estimate of Var(D̄) we need to explore Cov(Dk, Dl) in (35), where

Cov(Dk, Dl) = E(DkDl)− E(Dk)E(Dl).

Recall that E(Dk) = 0 under the null hypothesis of isotropy (30). Next

E(DkDl) = E [(log I(ωk1)− log I(ωk2)) (log I(ωl1)− log I(ωl2))]

= E [log I(ωk1) log I(ωl1)− log I(ωk2) log I(ωl1)

− log I(ωk1) log I(ωl2) + log I(ωk2) log I(ωl2)]

where ||ωk1 || = ||ωk2 || ⌘ ||ωk|| and ||ωl1 || = ||ωl2 || ⌘ ||ωl||. There are two cases to

consider: (1) ||ωk|| 6= ||ωl|| and (2) ||ωk|| = ||ωl||. In case (1) we can use the asymptotic
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independence of periodogram values to obtain E(DkDl) = E(Dk)E(Dl) = 0. In case (2) all

of the frequencies have the same norm. Therefore, under H0, all the periodogram values will

have the same expectation so that E(DkDl) = 0. Thus, Cov(Dk, Dl) = 0, and we ignore the

second summand in (35).

Combining the above results, we have two approximations for Var(D). The first is given

by first plugging the results from (38) and (37) into (36), then substituting that result into

(35). This gives the following variance approximation,

Taylor series: σ2
D̄ ⇡ 2

K
. (41)

The second variance approximation is obtained by first plugging (40) and (37) into (36),

then substituting that result into (35),

asymptotic distribution: σ2
D̄ ⇡ ⇡2/3

K
⇡ 3.29

K
. (42)

It is important to note that when deriving expressions for both summands in (35), we have

have used the assumption that periodogram values are approximately uncorrelated (28).

Uncorrelated periodogram values is an asymptotic property and, as we discuss further in

Section 4.5.3 below, may not hold for finite samples.
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4.4.3 Three Test Statistics

Given (34) and the variance approximations in (41) and (42), consider three test statistics

for testing isotropy:

Z1 =
D̄ − 0p
2/K

, (43)

Z2 =
D̄ − 0p
⇡2/(3K)

, and (44)

t =
D̄ − 0

SDk
/
p
K
. (45)

Here (43) and (44) follow from the variance approximations (41) and (42), respectively. In

(45) SDk
is the sample standard deviation of the Dk’s. Assuming the Dk’s are approximately

uncorrelated, ttest follows a Student t distribution with K−1 degrees of freedom. We explore

the size and power of these test statistics in Section 4.5.

4.5 Simulation Study

4.5.1 Set Up

We perform a simulation study to evaluate the performance of our spectral domain non-

parametricl test of spatial isotropy. The simulation study allows us to evaluate our three

test statistics and compare our method with other tests of spatial covariance properties. We

compare the empirical size, power, and computational cost of our method with the test of

complete symmetry from Lu and Zimmerman (2005) and the test of isotropy from Guan

et al. (2004). We perform the tests on the same realizations of the RF. Except where noted,

we simulate mean 0, Gaussian RFs on rectangular subsets of Z2. We use a Matérn covariance

function (23) with the sill (σ2) and smoothness (ν) equal to one. We vary α−1 so that the

effective range, the distance at which spatial correlation equals 0.05, of an isotropic process

corresponded to short (α−1 = 0.75), medium (α−1 = 1.52), and long range (α−1 = 3.1)

95



dependence. The parameter φ in (23) is given by

φ =
σ2↵2νΓ(ν + 1)

πΓ(ν)
.

We simulate data from isotropic and geometrically anisotropic covariance functions. Follow-

ing Weller and Hoeting (2016) we introduce geometric anisotropy via coordinate transfor-

mations. Geometric anisotropy is governed by a rotation parameter θ and scaling parameter

R that define the ellipses of equicorrelation (see the contour figures embedded in Table 4.1).

The parameter θ, 0  θ < π, quantifies the angle between the major axis of the ellipse and

the x-axis (counter-clockwise rotation) while R > 1 gives the ratio of the major and minor

axes of the ellipse. Note that R = 1 and θ = 0 corresponds to the isotropic case. As R

becomes larger, the spatial process becomes more anisotropic (i.e., the spatial dependence

becomes stronger in the direction of θ than in the direction perpendicular to θ).

4.5.2 Results

Table 4.1 displays the empirical size and power for the three test statistics proposed in

Section 4.4.2. Test statistics Z2 (44) and t (45) have nominal size for the tests we considered.

Test statistic Z1 (43) has inflated Type I errors and is thus anti-conservative. These results

indicate that the Taylor series variance (41) is a poor approximation. An examination of

the simulated D̄ values indicated that the empirical variance of D̄ was much larger than the

approximation in (41). This poor approximation leads to an inflated test size when using

the test statistic Z1.

The results in Table 4.1 indicate that Z1 has higher empirical power than Z2 and t,

although this is at the expense of an inflated size. Test statistics Z2 and t have very similar

power in practice. As expected, when θ = 3π/8, all three test statistics display larger power

as the process becomes more anisotropic (larger R). Surprisingly, the results indicate that all

three test statistics have low empirical power when θ = 0. We further explore the power of
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Table 4.1: Comparison of test statistic performance. We compare the size and power of our
three test statistics: (43), (44), (45). Empirical size and power are based on 1000

realizations of a random field with a Matérn covariance function and nominal size of
↵ = 0.05.

18 cols ⇥ 12 rows grid
effective range

Contour R ✓ Test Stat 3 6 12
Z1 0.14 0.12 0.12

S
iz
e 0 0 Z2 0.05 0.05 0.04

ttest 0.05 0.05 0.05

Z1 0.12 0.11 0.11

P
ow

er

p
2 0 Z2 0.05 0.04 0.04

ttest 0.05 0.04 0.06
Z1 0.12 0.10 0.08

2 0 Z2 0.04 0.04 0.03
ttest 0.04 0.05 0.04
Z1 0.35 0.45 0.43p

2
3π
8

Z2 0.19 0.28 0.29
ttest 0.18 0.29 0.31
Z1 0.71 0.85 0.83

2 3π
8

Z2 0.54 0.71 0.71
ttest 0.51 0.70 0.72

the test statistic t as a function of ✓ below. Based on the size and power results in Table 4.1,

we recommend using either test statistic Z2 (44) or t (45) to test spatial isotropy.

Table 4.2 explores the size and power of our test, using test statistic t (44), compared to

the nonparametric tests from Lu and Zimmerman (2005) and Guan et al. (2004). The data

for this table were simulated on an 18 ⇥ 12 subset of Z2. For this grid there were enough

frequencies to perform the test of reflection and complete symmetry in Lu and Zimmerman

(2005). Reflection and complete symmetry are covariance function properties for lattice

(discrete) processes. The relationship between isotropy and the different types of symmetry
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Table 4.2: Comparison of methods. We compare the size and power of our three methods
for testing second order properties. The value ttest (45) is our method for testing isotropy

using the spectral domain. LZ denotes the test of complete symmetry from Lu and
Zimmerman (2005) using spectral methods. GSC denotes the test of isotropy from Guan

et al. (2004) in the spatial domain. Empirical size and power are based on 1000 realizations
of a GRF with a Matérn covariance function and nominal size of ↵ = 0.05.

18 cols ⇥ 12 rows grid
effective range

Contour R ✓ Test Stat 3 6 12
ttest 0.05 0.05 0.05

S
iz
e 0 0 LZ 0.05 0.06 0.06

GSC 0.04 0.07 0.13

ttest 0.05 0.04 0.06

P
ow

er

p
2 0 LZ 0.05 0.06 0.06

GSC 0.64 0.76 0.75
ttest 0.04 0.05 0.04

2 0 LZ 0.08 0.08 0.08
GSC 1.00 1.00 1.00
ttest 0.18 0.29 0.31p

2
3π
8

LZ 0.16 0.25 0.27
GSC 0.46 0.65 0.66
ttest 0.51 0.70 0.72

2 3π
8

LZ 0.51 0.67 0.68
GSC 0.99 1.00 0.99

is

isotropy =) complete symmetry =) reflection symmetry. (46)

If the covariance function of a lattice process is isotropic, then it is completely and reflection

symmetric. As a result, the test in Lu and Zimmerman (2005) can be used to reject a null

hypothesis of isotropy. However, the test in Lu and Zimmerman (2005) is testing a more

narrow hypothesis (symmetry) than our method (isotropy). Because of the relationship (46),

failing to reject a null hypothesis of reflection and/or complete symmetry does not imply that

an assumption of isotropy is appropriate. Similarly, rejecting a null hypothesis of reflection

symmetry implies rejecting the null hypothesis of complete symmetry, but failing to reject

a null hypothesis of reflection symmetry does not imply that an assumption of complete
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Figure 4.3: Empirical power of spectral hypothesis tests as a function of ✓ for data on a
20⇥ 14 subset of Z2. The black points correspond to a test of isotropy using ttest (45) while
the red points correspond to a test of reflection symmetry from Lu and Zimmerman (2005).
Empirical power is based on 500 realizations of a GRF with a Matérn covariance function

and nominal size of ↵ = 0.05.

symmetry is appropriate. As a result, Lu and Zimmerman (2005) use a two-stage approach

to test the assumption of complete symmetry: by first testing reflection symmetry then

testing complete symmetry. To control the overall Type I error rate of a test of complete

symmetry at level ↵, each of the tests is performed at a level of ↵/2. The results in Table 4.2

indicate that the size and power of the two spectral methods (ttest and Lu and Zimmerman

(2005)) are similar. While the spatial method of Guan et al. (2004) exhibits an inflated size

as the effective range increases, the tests using the spectral domain maintain nominal size.

The power for the spatial method (Guan et al., 2004) is larger than both spectral methods.

Figure 4.3 compares the power of our test to the test from Lu and Zimmerman (2005) as

a function of the angle of geometric anisotropy, ✓. For these simulations, we used a 20⇥ 14

subset of Z2. These grid dimensions do not allow us to perform the test of complete symmetry
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Figure 4.4: Periodogram values as a function of geometric anisotropy. The plots display the
mean periodogram values (26) for an isotropic process (A) and two geometrically

anisotropic processes, (B) and (C). The mean values are based on 500 realizations of a
GRF with Matérn covariance function on a 21⇥ 15 subset of Z2. The black points in the
plots are the Fourier frequencies. The power for spectral tests of directional dependence is

larger when ✓ = ⇡/4 because there are more pairs of frequencies with the same norm
having different periodogram values than when ✓ = 0. This tends to lead to larger values of
|D̄| and the test statistic, therefore increasing power. Figure 4.3 displays empirical power

as a function of ✓.

from Lu and Zimmerman (2005), which was designed for square grids. As a result, only the

test of reflection symmetry was performed. Under this scenario, our method has higher

power than Lu and Zimmerman (2005). Both methods, which use the spectral domain, have

little to no power when the direction of strongest correlation is parallel to the x or y axis

(✓ = 0, ⇡/2) and the highest power when the direction of strongest correlation creates a

45-degree angle with the x and y axis (✓ = ⇡/4). The change in power as a function of ✓

occurs because the periodogram measures the directional dependence present in the spatial

domain (see Figure 4.4) though the estimates of the spectral density at different frequencies.

When ✓ = ⇡/4 there are many Fourier frequencies that have the same norm but different

periodogram values (Figure 4.4C). These many different periodogram values tend to lead

to larger values of the statistic |D̄|, a larger test statistic, e.g., (45), and therefore larger

power. When ✓ = 0 or ⇡/2, there are relatively fewer frequencies with the same norm having

different periodogram values. This tends to lead to smaller values of the statistic |D̄|, a

smaller test statistic, and therefore smaller power.
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The results in Table 4.3 explore the power of our method as a function of the sample size

n. To emulate mixed increasing domain and infill asymptotics, we increased the domain size

and reduced the spacing between sampling locations as we increased the sample size. The

dimensions and spacings of the grids used in the simulation were as follows: (1) n = 104

on a 18 ⇥ 13 grid with spacing ∆ = (2, 2), (2) n = 459 on a 27 ⇥ 17 grid with spacing

∆ = (1, 1), and (3) n = 2109 on a 57 ⇥ 37 grid with spacing ∆ = (0.5, 0.5). Under these

three scenarios, the distance between sampling locations decreases (δ1 = δ2 = 2, 1, 0.5) while

the size of the domain increases (maximum distances of 27.8, 30.5, and 33.3, respectively).

For these simulations, we set ν = 1, σ2 = 1, and α−1 = 1.53. As expected, the empirical

power increases as a function of n. Similar to the results in Figure 4.3, the power increases

as θ goes from 0 to π/4.

The computation time for our method is significantly less than the time needed for

the tests in Lu and Zimmerman (2005) and Guan et al. (2004) (Table 4.4). The larger

computation time for Lu and Zimmerman (2005) is due to the fact that the distribution of

the test statistic needs to be simulated to compute a p value. Guan et al. (2004) requires

spatial subsampling, which increases computation time. For a large data set, our test will

offer a substantial computational savings over other methods.

Table 4.3: Empirical power as a function of n. Empirical power is based on 1000
realizations of a GRF with a Matérn covariance function and nominal size of α = 0.05. We

used the t test statistic (45) and mixed increasing domain/infill spatial asymptotics.

Contour R θ n Power
104 0.15

1.7 7π
8

459 0.72
2109 0.88
104 0.29

1.7
π
4 459 0.94

2109 1.00
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Table 4.4: Computation time for tests of second order properties for a 25⇥ 16 grid of
sampling locations.

Method ttest LZ GSC
Computation Time 0.06 s 5.48 s 6.09 s

4.5.3 Variance Estimation and Finite Sample Correlation

In simulation studies we found that the empirical variance of D̄ was not always well

approximated by the expressions in the denominator of the test statistics (43), (44), and (45).

The asymptotic assumption that Cov(Dk, Dl) = 0 is not always adequate in practice, and the

Dk values can have high positive correlation. The positive correlation increases the empirical

variance (35) of D̄ thus inflating test size. Positive correlation between theDk values becomes

non-negligible as the number of frequencies with the same norm increases. Because we

estimate the spectral density at the Fourier frequencies F and the Fourier frequencies are

a function of the number of rows and columns of gridded data (see (32)), the number of

frequencies with the same norm will be a function of the number of rows and columns of

data. Square grids with equal spacing between rows and columns allow for the maximum

number of Fourier frequencies having the same norm. For example, if there are n = 400

sampling locations, a 20⇥ 20 grid of Z2 creates K = 291 pairs of frequencies in K with the

same norm while a 25⇥ 16 grid creates K = 84.

We explored several methods to account for or reduce the large finite sample correla-

tions that occur for square grids. First we derived the approximate finite sample covariance
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(correlation) via a Taylor series expansion of Cov(Dk, Dl),

Cov(Dk, Dl) = E [(log I(ωk1)− log I(ωk2)) (log I(ωl1)− log I(ωl2))]

= E [log I(ωk1) log I(ωl1)− log I(ωk2) log I(ωl1)

− log I(ωk1) log I(ωl2) + log I(ωk2) log I(ωl2)]

⇡ log f(ωk1) log f(ωl1)−
1

2
{log f(ωl1) + log f(ωk1)}

−
✓
log f(ωk2) log f(ωl1)−

1

2
{log f(ωl1) + log f(ωk2)}

◆

−
✓
log f(ωk1) log f(ωl2)−

1

2
{log f(ωl2) + log f(ωk1)}

◆

+ log f(ωk2) log f(ωl2)−
1

2
{log f(ωl2) + log f(ωk2)} .

(47)

The Taylor series expansion (47) gives an expression that is a function of the spectral density

function, f(ω). Similarily, expressions for the finite sample covariance of I(ωi) and I(ωj)

have been derived (Kim and Fuentes, 2000; Crujeiras, 2006; Fuentes and Smith, 2001) but

also depend on the value of the spectral density function, which is unknown. Because our test

is nonparametric, we do not want to assume and/or estimate a parametric spectral density

function.

As a second attempt to reduce finite sample correlation and improve our approximation

to Var(D̄), we used a subset of the Fourier frequencies to compute our test statistic (45) for

data on square grids. We used two different subsets of K for testing isotropy: (1) use every

other Fourier frequency, or (2) use only frequencies that have norm less than half of the

maximum norm. Simulations indicated that reducing the number of frequencies for square

grids did not adequately reduce the positive correlation (inflated size) and resulted in a loss

of the anisotropic signal (reduced power).

Finally, we attempted to adjust K to account for effective sample size. Simulations

indicated that, even with the correct adjustment to K, the method for testing symmetry

from Lu and Zimmerman (2005), which was designed for square grids, had larger power than
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our test. We believe that this is due to the fact that Lu and Zimmerman (2005) test the

more specific hypothesis of symmetry, a property implied by isotropy. Square grids provide

a large number of pairs of frequencies for testing symmetry. As a result, for square grids we

recommend using Lu and Zimmerman (2005).

4.6 Application: WRFG Temperatures

We apply our method to gridded temperature data from the North American Regional

Climate Change Assessment Program [NARCAPP] (Mearns et al., 2009). The data set

WRFG in the R package spTest (Weller, 2016d) includes coordinates and the 24-year average

of yearly average temperature from runs of the Weather Research and Forecasting - Grell

configuration (WRFG) regional climate model (RCM) using boundary conditions from the

National Centers for Environmental Prediction. We focus on a 25⇥ 20 subset of these data

over the central United States (Figure 4.5). We perform a similar analysis to Weller (2016c)

who analyzed a 20⇥ 20 subset of these data.

Before testing for directional dependence, we first model the effects of northing and

easting coordinates UTM coordinates on average temperature. We fit the mean temperature

as a nonparametric, additive function of both the easting and northing coordinates via least-

squares using cubic splines. After removing the trends in temperature, we use the graphical

diagnostic from Section 4.8.3 to check for aliasing. After determining that aliasing is not a

concern (see Section 4.8.3), we test for directional dependence in the studentized residuals

(see Figure 4.5) using our spectral method ttest and the spatial method from Guan et al.

(2004). For our spectral test, there are K = 122 frequencies with the same norm. The log

periodogram values at these frequencies provided D̄ = −0.11 and ttest = −0.66. Thus, based

on our spectral test, there is not enough evidence to reject an assumption of isotropy (p value

= 0.51). Likewise, the spatial test from Guan et al. (2004) indicated a failure to reject the

isotropy assumption (p value = 0.09). For this example, the first advantage of our method

is the avoidance of choosing the tuning parameters needed for Guan et al. (2004), such as
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Figure 4.5: Heat maps displaying the 25⇥ 20 subset of WRFG data (left) and the
studentized residuals (right) used to test for directional dependence in Section 4.6.

the spatial lag set and the moving window size. The second advantage is the computation

time: 0.08 seconds for our method and 36.6 second for Guan et al. (2004).

4.7 Discussion

While spectral methods are not commonly used for spatially-referenced data, we de-

veloped a nonparametric test of spatial isotropy using the spectral representation of the

covariance function. Use of the spectral domain presents several challenges, including vari-

ance approximations and correlation of nonparametric estimators. We were able to address

and overcome these challenges to develop a test statistic and approximate its variance (Sec-

tion 4.4) in order to test for anisotropy. Finally, we explored the size and power of our

method via simulation studies and applied the method to a data set of temperatures over

the central U.S.

Our test has several advantages over other tests of isotropy. Our test avoids potential

misspecification of a parametric covariance function. Additionally, we avoid the need to esti-

mate covariance parameters under the null and alternative hypotheses (e.g., for a likelihood

ratio test), which is computationally demanding for large data sets. Our test has larger

power for rectangular grids than the nonparametric spectral methods of Lu and Zimmerman
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Figure 4.6: Example of aliasing. Plots of y = cos(x) [black line] and y = cos(3x) [red line]
for 0  x  6⇡. If we observe y at the set of locations x 2 {0, ⇡/2, ⇡, . . . , 11⇡/2, 6⇡}, the

aliasing effect refers to the fact that we cannot distinguish between the frequencies 1 and 3.

(2005). Nonparametric tests of isotropy in the spatial domain require user choices, such as

lag set and window size (e.g., Guan et al., 2004). Nonparametric spatial domain tests are

potentially sensitive to these choices and their optimality remains an open question (Weller

and Hoeting, 2016). Thus, an attractive feature of our spectral test is avoidance of these

user choices Likewise, our test does not require spatial subsampling, which reduces the com-

putation time. This computational savings increases with sample size because the number

of spatial subsamples increases with sample size.

4.8 Aliasing in the Spectral Domain

4.8.1 Introduction

The aliasing phenomenon described in Section 4.3 can present a major challenge when

using spectral methods for geostatistical processes. The aliasing phenomenon refers to the

fact that it is not possible to recover a continuous signal from a discrete set of observa-

tions (Fuentes and Reich, 2010). Figure 4.6 displays the aliasing phenomenon using the cos
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function. Recall, the aliased spectral density f∆(ω) is given by

f∆(ω) =
X

z2Z2

f

✓
ω +

2⇡z

∆

◆
=
X

z12Z

X

z22Z
f

✓
!1 +

2⇡z1
δ1

, !2 +
2⇡z2
δ2

◆
(48)

where −π/∆ < ω < π/∆ and ∆ = (δ1, δ2) is the row and column spacing between sampling

locations. When using the spectral domain to estimate the spatial covariance function, the

use of the aliased spectral density creates an undesirable computational burden because (48)

must be evaluated at at every iteration of a maximization procedure. Our test of isotropy

relies on the assumption that aliasing is not a concern so that f∆(ω) ⇡ f(ω) (see Section 4.3).

The causes and effects of aliasing for spatial data are not well understood. When developing

spectral methods for geostatistical processes, the concerns raised by aliasing are usually

avoided by either adopting a mixed asymptotic framework (Fuentes, 2002) or assuming that

spacing between sampling locations is sufficiently small (Crujeiras and Fernández-Casal,

2010). For a finite sample where the covariance function is unknown, it is unclear when

aliasing is a concern and what effects it may have on estimation. As a result we seek to

understand when aliasing is a concern, i.e., when f∆(ω) is a poor approximation of f(ω),

how to check for aliasing, and the effects of aliasing on covariance estimation. We propose a

graphical diagnostic to detect aliasing and explore the effect of aliasing on estimation when

using the Whittle approximation.

4.8.2 What Causes Aliasing?

Because we cannot distinguish between frequencies differing by a multiple of 2π/∆ for

a finite sample, the spectrum of the sample is restricted to the principle interval −π/∆ <

ω < π/∆. Frequencies outside of this interval have an alias in this interval and are therefore

“folded” down into the principle interval (Fuentes and Reich, 2010). For any finite sample of

a continuous process with non-zero spacing between locations (∆ > 0), the aliased spectral

density (48) will be different than the unaliased spectral density (22).
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Figure 4.7: The Matérn spectral density (24) and aliased spectral density (48) for different
values of ∆, the spacing between sampling locations. For this example, we set σ2 = 1,
ν = 0.5, and α−1 = 2. With these parameters, the difference between f∆(ω) and f(ω)
becomes negligible, indicating the aliasing is not a concern, once the spacing between

sampling location is less than 1.

Another way to understand and motivate the aliasing concern is the concept of the power

of the spatial process. The total power of the spatial process is the integral of the spectral

density and is equal to the variance of the process (Schabenberger and Gotway, 2004, pg. 70-

71). The spectral density describes how the power is distributed across frequencies, and the

integral Z d

c

Z b

a

f(ω)dω1dω2

is the contribution to the total power from frequencies ω1 2 (a, b)⇥ ω2 2 (c, d). In order for

f∆(ω) ⇡ f(ω), the frequencies π/∆ must be high enough that the power from frequencies

outside of the principle interval make a negligible contribution to the total power of the

process (Fuentes and Reich, 2010). In other words, aliasing is not a concern if either the

spacing between sampling locations is sufficiently small and/or the generating process is

such that high frequencies contribute little to the total power. Next, we examine how the

spacing between sampling locations and the characteristics of the covariance function affect

the principle interval and power at high frequencies.

To demonstrate the aliasing phenomenon, we explore the difference between the unaliased

(f(ω)) and aliased (f∆(ω)) spectral density functions as a function of the spacing between
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Figure 4.8: Plots of the Matérn spectral density (24) and aliased spectral density (48) for
different values of the range (↵−1) and smoothness (ν) parameters. In addition to the

spacing between sampling locations, the range and smoothness of the generating covariance
function will also determine when aliasing is a concern, i.e., when f∆(ω) is a poor

approximation of f(ω). As the range and smoothness increase, there is less mass as high
frequencies; therefore, the aliased spectral density f∆ begins to look more like the unaliased
spectral density f . For all four plots, the variance (σ2) is 1 and the sampling locations are

assumed to be on the integer grid Z
2 (i.e., ∆ = (1, 1)).
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sampling locations and the generating spatial covariance function. Figure 4.7 shows the

difference between the Matérn aliased spectral density (48) and unaliased spectral density

(24) as a function of the spacing between sampling locations ∆. For this plot, we set σ2 = 1,

ν = 0.5, and α−1 = 2, corresponding to an exponential covariance function with an effective

range of approximately 5.8. We truncate the sum in (48) to the first 2,601 terms, z1, z2 2

{−25,−24, . . . , 24, 25}. In Figure 4.7 we can see that the difference between f(ω) and f∆(ω)

becomes negligible as the spacing between sampling locations decreases, as expected. Figure

4.8 displays the aliased spectral density for a Matérn covariance function using different

values of the range (α−1) and smoothness (ν) parameters. We assume δ = δ1 = δ2 = 1 and

again truncate the sum in (48) to the first 2,601 terms. Based on these plots, we can begin

to see when aliasing may be a concern. In particular, the aliased spectral density is a poor

approximation of the spectral density when the range and/or smoothness parameters are

small. In this case, there is more power (larger spectral density) at high frequencies, which

is folded down into the principle interval. This causes a disagreement between the aliased

and unaliased spectral density.

Thus, large spacing between sampling locations, a small range, small smoothness, or a

combination there of will imply that aliasing is a concern. In practice the covariance function

generating the spatial process is unknown; therefore, we cannot compare the spectral density

to the aliased spectral density as in Figures 4.7 and 4.8. Likewise, the spacing between

sampling locations is relative to the effective range, which is unknown. As a result, we

develop a graphical technique using observed data to help determine whether or not aliasing

is a concern.

4.8.3 A Graphical Diagnostic for Aliasing

In this section, we develop a graphical diagnostic to assess when aliasing may be a concern,

i.e., when f∆(ω) is a poor approximation of f(ω). We check for aliasing by comparing

periodogram values estimated using the full grid of sampling locations and sub grids of
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sampling locations. If the estimated periodogram values on the full and sub grid are similar,

it suggests that the spacing between sampling locations is small enough so that aliasing is

not a concern. Because the Fourier frequencies (32) used to estimate the spectral density are

a function of the distance between sampling locations and the sample size, the challenge in

comparing periodogram values on the full and sub grids lies in matching Fourier frequencies

that are “close”.

Here we describe one way to compare periodogram values from a full and sub grid, using

an example. Suppose we have a parent grid that is a 21⇥21 subset of Z2 (∆ = (1, 1)). From

this parent grid, we want to create square sub grids using as many of the sampling locations

as possible. To this end, we create 11 ⇥ 11 and 10 ⇥ 10 sub grids with spacing ∆ = (2, 2).

Figure 4.9 plots the parent grid and two sub grids. Because the spacing between sampling

locations is different from the parent grid and the number of rows and columns varies between

the two sub grids, the set of Fourier frequencies (32) for the sub grids will be different than

those from the parent grid. To check for aliasing, we want to compare estimates of the

spectral density from the full and sub grids at frequencies that are “close”. The definition of

close frequencies will depend on the problem (i.e., the number of sampling locations and grid

spacing). Therefore, a visual inspection of the frequencies (e.g., see Figure 4.10) can help

inform how they should be matched. For our example, we match sub grid frequencies with

parent frequencies within 0.1 (i.e., sub grid frequencies (!s
1, !

s
2) are close to parent frequencies

(!p
1, !

p
2) if !

p
i − 0.1  !s

i  !p
i + 0.1 for i = 1, 2). Due to the symmetry of the periodogram

(see Section 4.4), only frequencies with !2 ≥ 0 are matched. Figure 4.10 displays the Fourier

frequencies corresponding to the full and subgrids and the region where Fourier frequencies

were matched to compare periodogram values.

We simulate mean 0, GRFs using two isotropic Matérn covariance functions (23) corre-

sponding to a scenario where aliasing may be a concern and one where it may not. The

first covariance function has a small range (↵−1 = 0.57) and smoothness (ν = 0.5). The top

left plot of Figure 4.8 displays the spectral density f(ω) and aliased spectral density f∆(ω)
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Figure 4.9: Plot of the sampling locations from the full grid and two subgrids. The black
circles correspond to the sampling locations from the full 21⇥ 21 grid of sampling locations
with spacing ∆ = (1, 1). The blue and red circles correspond to the sampling locations for

an 11⇥ 11 and 10⇥ 10 subgrid, respectively, with spacing ∆ = (2, 2).
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Figure 4.10: Plot of the Fourier frequencies from the full grid and two subgrids. The black
circles correspond to the Fourier frequencies from the full 21⇥ 21 grid of sampling locations
with spacing ∆ = (1, 1). The blue and red circles correspond to the Fourier frequencies for

the 11⇥ 11 and 10⇥ 10 sub grids, respectively, with spacing ∆ = (2, 2). To check for
aliasing, we compare periodogram values at the Fourier frequencies for the full and sub
grid. Frequencies within the black box in the middle of the plot are matched, and the

periodogoram values are compared at these frequencies.

113



corresponding to this covariance function. This plot suggests that aliasing is a concern be-

cause there is a noticeable difference between the spectral density and the aliased spectral

density. Specifically, the aliased spectral density over-estimates the spectral density function.

The second covariance function has a relatively large range (↵−1 = 1.33) and smoothness

(ν = 1.5). The bottom right plot of Figure 4.8 displays the spectral density f(ω) and aliased

spectral density f∆(ω) corresponding to this covariance function. This plot suggest that

aliasing is a not a concern because the spectral density function and aliased spectral density

function are nearly identical. Of course, we would not know the true spectral density in

practice. However, we hope to use our graphical diagnostic to reach the same conclusions

about aliasing concerns that are readily apparent in Figure 4.8.

For each covariance function, we simulate three realizations of the random field. After

computing the periodogram values for the parent grid and two subgrids, we match the Fourier

frequencies from the parent grid and two subgrids and plot the periodogram from the full

grid versus the two subgrids. These plots can be seen Figure 4.11 for the three realizations.

When the range and smoothness are small, there is more power (larger spectral density) at

high frequencies that is folded down into the principle interval. This causes a disagreement

in periodogram values between the parent and subgrids. More specifically, the periodogram

values from the subgrid, which has larger spacing between sampling locations, tends to be

larger than the periodogram values from the full grid. This disagreement is an indication

that aliasing may be a concern. On the contrary, the periodogram values from the full and

subgrids tend to agree when the range and smoothness are large, indicating the aliasing is

not a concern.

Interpreting these diagnostic plots is analogous to interpreting a normal quantile-quantile

(QQ) plot: an understanding of the appropriate conclusion takes repetition and the conclu-

sion may be open to personal interpretation. The correlation between the periodogram

values from the full and sub grids provides a supplement to the graphical diagnostic. A

strong positive correlation between the values indicates that aliasing is not a concern. For

114



0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0
0

0
.0
4

0
.0
8

I(): sub grid 1

I(
):

 f
u

ll
 g

ri
d

Realization  1

0.0 0.1 0.2 0.3

0
.0
0

0
.0
4

0
.0
8

Realization  1

I(): sub grid 2

I(
):

 f
u

ll
 g

ri
d

0.00 0.05 0.10 0.15

0
.0
0

0
.0
4

0
.0
8

0
.1
2

I(): sub grid 1

I(
):

 f
u

ll
 g

ri
d

Realization  2

0.00 0.05 0.10 0.15 0.20

0
.0
0

0
.0
4

0
.0
8

0
.1
2 Realization  2

I(): sub grid 2

I(
):

 f
u

ll
 g

ri
d

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0
0

0
.0
4

0
.0
8

0
.1
2

I(): sub grid 1

I(
):

 f
u

ll
 g

ri
d

Realization  3

0.00 0.05 0.10 0.15 0.20

0
.0
0

0
.0
4

0
.0
8

0
.1
2

Realization  3

I(): sub grid 2

I(
):

 f
u

ll
 g

ri
d

α
−1

 = 0.57, ν = 0.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0
0

0
.1
0

0
.2
0

I(): sub grid 1

I(
):

 f
u

ll
 g

ri
d

Realization  1

0.00 0.10 0.20 0.30

0
.0
0

0
.1
0

0
.2
0

Realization  1

I(): sub grid 2

I(
):

 f
u

ll
 g

ri
d

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
.4

0
.8

1
.2

I(): sub grid 1

I(
):

 f
u

ll
 g

ri
d

Realization  2

0.0 0.2 0.4 0.6 0.8

0
.0

0
.4

0
.8

1
.2

Realization  2

I(): sub grid 2

I(
):

 f
u

ll
 g

ri
d

0.0 0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

I(): sub grid 1

I(
):

 f
u

ll
 g

ri
d

Realization  3

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.2

0
.4

0
.6

Realization  3

I(): sub grid 2

I(
):

 f
u

ll
 g

ri
d

α
−1

 = 1.33, ν = 1

Figure 4.11: Comparison of periodogram values from the full and subgrids for 3 realizations
of two random fields. The two columns on the left represent periodogram estimates from a
RF with small range (↵−1) and smoothness (ν) parameters. For these columns, we see
substantial disagreement between periodogram values from the full and sub grids,

suggesting that aliasing is a concern. The two columns on the right represent periodogram
estimates from a RF with relatively large range (α−1) and smoothness (ν). For these

columns, we tend to see agreement between periodogram values from the full and subgrids,
suggesting that aliasing may not be a concern (i.e., f∆(ω) ⇡ f(ω)).
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Aliasing Diagnostic: WRFG Data

Figure 4.12: Check for aliasing in the WRFG residuals. We compare periodogram values
estimated using the residuals from the WRFG data on the full grid and two sub grids of
sampling locations. Based on the similarity of the periodogram values from the full grid
and two sub grids, we can conclude that aliasing is not a concern for these data. As a

result, our test of isotropy will not be affected by aliasing.

example, the correlations from the right two columns in Figure 4.11 tended to be greater

0.90. The correlations from the left two columns in Figure 4.11 were typically less than 0.5,

but were sometimes as large as 0.8, indicating that the correlation alone is not sufficient for

determining whether or not aliasing is a concern. Additional knowledge about the underlying

spatial process can also supplement our graphical check for aliasing. Specifically, we have

seen that a small range and/or smoothness can lead to aliasing concerns. Thus, a heat map

(like Figure 4.5) or plot of the empirical covariogram, which give an indication of the range

and smoothness, can supplement our graphical check for aliasing, much like a histogram can

supplement a QQ plot.

We constructed our graphical diagnostic for aliasing using the residuals from the WRFG

temperature data in Section 4.6. The plots are displayed in Figure 4.12 and indicate that

aliasing is not concern for these data. As a result, we can assume that f∆(ω) ⇡ f(ω), which

is required for our spectral test of spatial anisotropy.
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4.8.4 Effects of Aliasing: Whittle Approximation

One of the most well known spectral methods for spatial data is the Whittle approxima-

tion. In this section we explore the effects of aliasing on the estimates given by the Whittle

approximation. An approximation to the Gaussian negative log likelihood (Whittle, 1954)

is given by

n

(2⇡)2

X

ω2F
log f(ω) + In(ω)f(ω)−1 (49)

where F is the set of Fourier frequencies (32), f(!) is the spectral density (22), n = n1n2 is

the sample size, and In(ω) is the periodogram (26). Fuentes and Reich (2010, pg. 76) used

the Whittle approximation for estimating covariance parameters and explored the difference

in estimation when using both f∆(ω) and f(ω) for a set of observed data. For other data

sets, however, it is unclear what effect using f∆(ω) rather than f(ω) in (49) will have on

parameter estimates. An understanding of these effects is important for accurate parameter

estimation and computational savings.

To explore this effect, we simulated 300 realizations of a mean 0 Gaussian random field

and estimated the covariance parameters via the Whittle approximation (49). We limited

our number of simulations to 300 because of the large computation time needed when using

the aliased spectral density in (49). For each realization, there were n = 441 sampling

locations on a 21⇥ 21 subset of Z2(∆ = (1, 1)). We simulated RFs with Matérn covariance

functions with σ2 = 1. We varied the range (↵−1) and smoothness (ν) parameters to emulate

a scenario where aliasing is a concern and one where it is not.

For the first scenario, we set α−1 = 0.57 and ν = 0.5, and a plot of the spectral density and

aliased spectral density with these parameters and unit spacing between sampling locations

is given in the top left plot of Figure 4.8. Our graphical diagnostic for aliasing under this

scenario is plotted in the first two columns of Figure 4.11. From both of these plots, it is

evident that aliasing is a concern. For the second scenario, we set α−1 = 1.33 and ν = 1.0.

A plot of the spectral density and aliased spectral density with these parameters and unit
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spacing between sampling locations is given in the bottom right plot of Figure 4.8. Our

graphical diagnostic for aliasing under this scenario is plotted in the last two columns of

Figure 4.11. Based on these plots, it appears that aliasing is not a concern.

During estimation, we constrained the smoothness parameter 0.5, ν  2 because

smoothness parameters outside of this range are typically considered unrealistic for geo-

statistical data. The results of the parameter estimates using both f(ω) and f∆(ω) in the

Whittle approximation are given in Figures 4.13 and 4.14. Figure 4.13 corresponds to the

first scenario, where aliasing is a concern. Figure 4.14 corresponds to the second scenario,

where aliasing is not a concern.

When aliasing is a concern, the results in Figure 4.13 indicate that using f∆(ω) over

f(ω) in (49) results in better estimation of variance σ2 and range α−1 parameters. When we

use the original spectral density f(ω), we notice bias in the variance and range parameters.

It is important to note that Guyon (1982) proves Whittle estimates are biased, but this bias

can be corrected via tapering (Dahlhaus and Künsch, 1987). Estimation of the smoothness ν

is better when using f(ω) than f∆(ω), but in many applications, the smoothness ν is often

treated as a known, fixed constant.

When aliasing is not a concern, the results in Figure 4.14 show that estimation of the

variance and range parameters are similar whether f∆(ω) or f(ω) is used in the Whittle

approximation. For the smoothness parameter, use of f(ω) results in a large downward

estimation bias while using f∆(ω) creates a relatively slight upward bias. Additional simula-

tions using different parameter values and spacings between sampling locations gave similar

results to those displayed in Figures 4.13 and 4.14 but are not included here.

Considering the results from Figures 4.13 and 4.14, it seems that we should always use the

aliased spectral density f∆(ω) in lieu of the original spectral density f(ω) when performing

estimation via the Whittle approximation (49). However, using f∆(ω) comes with a large

increase in computational cost. For example, under our first scenario with n = 441 sampling
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Figure 4.13: Covariance parameter estimates using the Whittle approximation when
aliasing is a concern. The true covariance parameters are σ2 = 1, ↵−1 = 0.57, and ν = 0.5.
The first row corresponds to using the original spectral density f(ω) for estimation in the
Whittle approximation (49), while the second row corresponds to using the aliased spectral

density f∆(ω) for estimation in (49). Because aliasing is a concern in this scenario,
estimation of the variance σ2 and range α−1 tends to improve when using f∆(ω) rather

than f(ω).

locations, it took 0.05 seconds to compute Whittle estimates using f(ω) but 115.0 seconds

to compute estimates using f∆(ω).

4.8.5 Discussion: Aliasing

When using spectral methods for geostatistical spatial data, the aliasing phenomenon is

typically ignored and not well understood. In addition to a large spacing between sampling

locations, we have explored other factors that can cause aliasing to be a concern, such as a

small range or smoothness of the underlying spatial process. These developments elucidate

when aliasing is a potential concern. We also developed a graphical diagnostic to help

assess whether or not aliasing is a concern based on observed data. Combined with some

understanding of the underlying spatial process, this diagnostic can help inform whether or

not aliasing will have an effect on inference that uses the spectral domain (e.g., our test of

isotropy in Section 4.4 or the Whittle approximation (49)). Aliasing concerns are sometimes
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Figure 4.14: Covariance parameter estimates using the Whittle approximation when
aliasing is not a concern. The true covariance parameters are σ2 = 1, ↵−1 = 1.33, and

ν = 1.0. The first row corresponds to using the original spectral density f(ω) for
estimation in the Whittle approximation (49), while the second row corresponds to using
the aliased spectral density f∆(ω) for estimation in (49). Because aliasing is not a concern
in this scenario, estimation of the variance σ2 and range α−1 are similar whether or not we

use f∆(ω) or f(ω).

avoided by assuming that the spacing between sampling locations is sufficiently small, but

our simulations in Section 4.8.4 suggest that the assumption that aliasing is not a concern

should be given more careful consideration.
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CHAPTER 5

A CALIBRATION-CAPTURE-RECAPTURE MODEL

5.1 Introduction

The greenhouse gas methane (CH4) has a larger global warming potential than CO2

in the first two decades after its release and is considered “the second most important an-

thropogenic greenhouse gas” (Boucher et al., 2009). Methane is the primary component of

natural gas. In several urban areas of the United States, pipelines used to deliver natural

gas have deteriorated and become susceptible to developing leaks. Identifying the locations

of methane emitting sources, such as natural gas leaks, and quantifying their emission rate is

essential for reducing greenhouse gas emissions and understanding the condition of underly-

ing infrastructure. Locating methane sources and estimating their magnitude is traditionally

time-consuming, but recently mobile methane detection technologies have been developed

and employed. By measuring atmospheric methane concentrations at a high frequency with

these mobile technologies, scientists and utility companies hope to identify methane source

locations and quantify their magnitude.

In an effort to locate and quantify the magnitude of methane emitting sources, such as

natural gas leaks, the Environmental Defense Fund (EDF) has initiated a survey of atmo-

spheric methane concentrations in designated sampling regions within several urban areas

(von Fischer et al., 2017). As part of this survey, EDF has partnered with the Google Street

View (GSV) program to place atmosphere analyzers on GSV vehicles. The analyzers on

these vehicles have enabled the collection of precision methane concentrations and their as-

sociated locations on a fine spatial-temporal scale over large metropolitan areas. Because this
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technology is still in its infancy, there is a need to develop algorithms to extract meaningful

information from the data.

In this chapter we present a model to estimate the total number of methane sources

within a sampling region and the emission rate of each of those sources using data collected

by mobile detection platforms. Drivers of the GSV vehicles were instructed to drive every

street within designated sampling areas at least two times. Due to the logistics of driving in

urban areas, some stretches of roadway were sampled only twice, while others were sampled

over 10 times. Detection of methane sources is imperfect due to variables such as wind,

emission rate, and source proximity to the GSV vehicle. Thus, there are sources within a

sampling region that are never detected by the GSV car’s instrumentation. This imperfect

detection, and the aforementioned repeated sampling, lead us to develop a capture-recapture

model to estimate the total number of methane sources.

Capture-recapture models have been widely developed and applied to estimate animal

population size, survival, and other quantities (see, e.g., Nichols, 1992). Over a series of

sampling attempts, individuals in the population are either observed (i.e., captured) or un-

observed. Letting t 2 {1, 2, . . . , T} denote the sampling attempts and i 2 {1, 2, . . . , N}

indicate individuals, each individual produces a capture history Yi = (Yi1, Yi2, . . . , Yit)
>,

where Yit = 1 if individual i is captured on sampling attempt t and 0 otherwise. Typically,

a subset individuals will never be captured. Thus, as in our study, we obtain capture his-

tories on n  N individuals (i.e., on individuals with
Pt

j=1 Yij ≥ 1). A common goal of a

capture-recapture model is to estimate the total population size, N .

One of our goals is to estimate the total number of methane sources N in a sampled re-

gion. The use of a capture-recapture model for data collected by a mobile detection platform

presents several unique challenges. First, unlike traditional capture-recapture data, individ-

ual methane sources are never “marked” or directly observed by our sampling mechanism.

Instead, atmospheric CH4 concentrations measured by instruments on the GSV vehicles are

indicators of a source’s presence. Second, a source’s emission rate, which affects the probabil-
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ity of detection, is never directly observed. Additionally, the measured CH4 concentrations,

a proxy for source emission rate, varies by sampling attempt due to environmental variables

such as wind. Finally, the number of sampling attempts varies by individual for our methane

sources.

In this chapter we develop a new capture-recapture model, which we call the calibration-

capture-recapture (CCR) model, to analyze data collected by mobile methane detection

platforms. Our CCR model addresses the aforementioned challenges and leverages data

from controlled methane release experiments and data collected by GSV vehicles to provide

inference for a number of desired quantities, including the total number of sources and source

emission rate. The CCR model is an integrated population model because it leverages data

from multiple sources to provide inference for characteristics of a population of methane

sources (e.g., see Schaub and Abadi, 2011; Ruiz-Gutierrez et al., 2016). In this chapter

our notation and terminology focuses on the methane monitoring system. However, as we

describe further in Section 5.7, our CCR model can be used for other applications, such as

analyzing data collected by other mobile detection platforms or for more traditional animal

capture-recapture studies.

The remainder of the chapter is organized as follows. We provide details regarding data

collection and processing and the controlled methane release experiments in Section 5.2. In

Section 5.3, we provide background information on calibration and capture-recapture models

and develop our CCR model. Details on our Markov chain Monte Carlo (MCMC) sampling

algorithm are located in Sections 5.4 and 5.5. In Section 5.6 we apply our CCR model to

data collected in two U.S. cities. Because there is a non-disclosure agreement between the

EDF and the utility companies servicing cities where sampling occurs, we redact the city

names in Section 5.6. Finally, Section 5.7 concludes with a discussion and presents avenues

of future research.
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5.2 Data Collection and Processing

In this section we briefly discuss data collection and processing. We used GSV vehicle

data from controlled methane release experiments and collected in two U.S. cities. The

data processing decisions we present here are based on the work and advice of our subject-

area collaborators. More information regarding the instrumentation and study design are

provided in von Fischer et al. (2017).

For the field data, atmospheric CH4 concentrations were collected approximately every

0.5 seconds as GSV cars drove roadways in designated sampling areas. At a typical driving

speed of 40 km/h, methane concentrations were recorded at approximately 5.5 meter spatial

intervals. While ambient atmospheric CH4 concentrations average around 1.8-2.2 parts per

million (ppm), air analyzers on GSV vehicles measured concentrations down to 0.001 ppm.

For each methane measurement, instrumentation also recorded the GSV car’s location via

global positioning system (GPS). Methane concentration readings are not instantaneous

because it takes time for air to move from the intake, located on the car’s bumper, into

the measuring instrument, located inside the car. As a result, CH4 measurements were

adjusted after sampling based on vehicle speed to correct the misalignment between CH4

measurements and GPS locations. A small number of the methane observations (< 1%)

were discarded due to GPS error or because the GSV car was traveling too fast. Although

drivers of GSV vehicles were instructed to drive every street in the sampling region at least

two times, the practicalities of navigating the sampling region resulted in some stretches

of roadway being sampled twice while others were driven as many as ten or more times.

Recording CH4 concentrations on this fine temporal and large spatial scale leads to a large

quantity of data. As one example, instruments in a GSV car recorded over 1.6 million

observations during sampling in one U.S. city.

From the raw methane concentration measurements, we identified locations with elevated

methane levels. Elevated methane concentrations are evidence that a methane emitting
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source is close to the GSV vehicle. Because background methane concentrations change on

a spatial and temporal scale, we followed von Fischer et al. (2017) and defined a baseline

CH4 concentration for each methane concentration measurement by the GSV car. For a

given CH4 measurement, the baseline is defined as the average of all methane readings that

occurred within a five minute window and within 400 meters of the given reading. An

elevated methane reading was defined as any concentration that was greater than 110% of

the baseline value. Using these elevated readings, we defined a source detection as at least

four consecutive elevated methane concentration readings as the GSV car travels throughout

the sampling region. Using four consecutive elevated readings aids in the removal of methane

sources that are not of interest for our analysis. For example, transient methane sources such

as vehicle emissions may only produce one or two elevated concentration readings as they

pass by the GSV car.

For a series of elevated readings (i.e., a detection), we used the GPS location associated

with the maximum CH4 concentration as the estimated source location. Therefore, each

estimated source location is a set of GPS coordinates and an associated CH4 concentration.

After the GSV car had driven the entire sampling region two or more times, we processed the

raw methane concentration data from a sampling region using the aforementioned methods.

After this processing, we had a spatial map of estimated source locations and associated

CH4 concentration. Source locations from different sampling attempts that are spatially

close are likely to be detections of the same methane source. Environmental variables, such

as wind, can move methane gas plumes away from their origin. Thus, a methane emitting

source’s estimated location and measured CH4 concentration can change from sampling

attempt to sampling attempt. As a result, we aggregated estimated source locations that

are spatially close into source sites. We created source sites by grouping together estimated

source locations that are within 20 meters of each other. For source site i, let j = 1, . . . ,mi

denote the number of detections at that site (i.e., the number of source locations aggregated

to create the site). The site centroid, an estimate of the source’s origin, was estimated using a
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weighted spatial average of the estimated source locations composing that site. The weights

were based on the CH4 concentration at each of the source locations. Locations with higher

CH4 concentrations, which indicate the GSV vehicle is likely in close proximity to the source,

were given larger weight. Specifically, the weight associated with estimated source location

j at source site i is

wj =
(CH4)jPmi

j=1(CH4)j
.

The centroid of site i is the weighted spatial average

(lon, lat)i =

miX

j=1

(wj)(lon, lat)j,

where “lon” and “lat” denote longitude and latitude coordinates. Finally, the source site is

defined as a circle with a radius of 20 m around the site centroid.

A sampling attempt, or drive-by t, is defined as the GSV car driving through the source

site. The total number of sampling attempts (number of times the GSV car drove through

the site), denoted d, varied by site. We let id denote the ith site in the region sampled d

times. For each drive-by of site id, we let Yidt = 1 if the source was detected (i.e., elevated

readings occurred) and Yidt = 0 if the source was not detected. The number of detections of

source id is

mid =
dX

t=1

Yidt.

Figure 5.1 displays a cartoon that illustrates the sampling and source detection process. As

d increases for a given roadway, sites along that roadway are more likely to be detected.

Note that the set of sites sampled d times does not need to be spatially connected and will

typically be dispersed across road segments in spatially disjoint regions.

Finally, we used additional criteria to aid in the removal of methane sources that are not

of interest for our analysis. We removed any site where
Pd

t=1 Yidt = 1 and d ≥ 5. In other

words, any site where only 1 detection occurred over 5 or more sampling attempts. Again,
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Figure 5.1: Cartoon illustrating the process of detecting methane sources using Google
Street View (GSV) vehicles. For each drive-by of a methane source, instrumentation on the

GSV vehicle measures either elevated methane levels (i.e., detects the source) or
background methane levels (i.e., does not detect the source). Because they emit larger,

more concentrated plumes of methane gas, sources with large emission rates have a higher
probability of detection than sources with small emission rates. Due to the logistics of
driving in an urban area, the number of sampling attempts varies by individual. Some

sources, like source numbers 2, 6, and 7 in this cartoon, are never detected by the GSV car
instruments.
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this criteria aids in the removal of transient methane sources such as vehicle emissions. We

also removed any site where unusually large plumes of elevated methane levels were detected.

An unusually large plume is defined as observing elevated readings over a distance of greater

than 160 meters. We used this criteria to remove larger, non-amendable methane sources

such as wetlands or landfills.

After creating source sites and removing sites that are not of interest, we had n observed

source sites. Let D denote the set of unique sampling attempts across the n sites. For our

study, D = {2, 3, 4, 5, 6, 7, 8, 9, 10}, implying that sources were detected in areas sampled

2-10 times. Let nd, d 2 D denote the number of sources detected in the region sampled d

times and id = 1, 2, . . . , nd denote individuals within the region sampled d times.

5.3 A Calibration-Capture-Recapture Model

In this section we propose a new integrated population model that we call calibration-

capture-recapture (CCR). We begin this section by describing the controlled methane release

experiments and a calibration model for estimating the source emission rate. We then discuss

a capture-recapture appropriate for our data and the issue of estimation of the probability

of source detection. Next we describe parameter-expanded data augmentation and how it

is used in the CCR model. We conclude this section by combining the calibration and

capture-recapture models to fully specify the CCR model for the mobile methane detection

application.

5.3.1 Calibration and Controlled Releases

In this section we describe statistical calibration and the controlled methane release

experiments. Statistical calibration and the particular case of univariate linear statistical

calibration, which we use here, have been widely studied (see Osborne (1991) for a review).

The basic idea behind univariate linear statistical calibration is to first perform a calibration

experiment where C pairs of observations (xc, Yc) are used to estimate the linear relationship
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Figure 5.2: Scatter plot of the relationship between log(release rate) and log(excess CH4)
for the controlled methane releases. Because the distance from the GSV car to the methane
emitting source is unknown in the field, we do not include the known distance from the
controlled release experiments in this plot. The solid line is the estimated simple linear
regression relationship using the CCR model applied to City B. The dashed lines display

the 95% posterior interval for the regression line.

between x and Y . Typically, xc is a precise measurement that is either expensive or difficult

to obtain and Yc is a relatively inexpensive or easy to obtain measurement that serves as a

surrogate for the desired measure xc. Next, we obtain new values of the surrogate, Y
(new)
j , j =

1, . . . ,m, from an unknown value of the precisely measured variableX(new). Finally, using the

estimated relationship based on the calibration data, we desire inference for the unobserved

value X(new).

In our setting, methane concentrations measured by the GSV car’s instrumentation are

a surrogate for a source’s emission rate. Measuring a source’s emission rate is labor and

time intensive and potentially dangerous based on traffic conditions. Conversely, measuring

atmospheric methane concentrations with mobile detection platforms is relatively quick and

automated.
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To understand the relationship between a methane source’s emission rate and the mea-

sured methane levels, von Fischer et al. (2017) performed controlled methane releases and

drove GSV vehicles through the resulting plumes. Using the controlled release data, we

can develop a calibration model to estimate a new source’s unknown emission rate using

measured CH4 levels. During the controlled release experiments, experimenters varied the

distance of the GSV vehicle from the source, the rate of the methane release, and the sur-

rounding conditions (e.g., different types of streets). The range of known release rates varied

from 0.62 L/min to 61.5 L/min. This range was chosen to reflect the range of possible leak

sizes that might be observed in the field, and a total of 10 different release rates were chosen

for testing. For each known release rate, scientists drove the GSV car through the resulting

plume and recorded atmospheric methane concentrations. Although the number of passes

varied for each emission rate, multiple passes of each known emission rate provided a total

of C = 150 replications. An analysis of the controlled release data indicated that the maxi-

mum CH4 on each drive-by was the best proxy for the emission rate. During field sampling

the maximum CH4 is affected by unobserved variables such as the GSV car’s distance from

source, wind direction, and source surface expression. Surface expression refers to the nature

of how methane gas is released into the atmosphere. For example, gas may be moving from

soil to atmosphere through several cracks in the roadway or migrating to escape the soil

at the edge of pavement. Because the maximum CH4 will also depend on the background

methane levels, we define the excess CH4 as the maximum CH4 observed minus the CH4

baseline when a source is detected (i.e., when a series of elevated readings occurs during a

drive-by),

Xc = excess CH4 = (max CH4 − baseline CH4) .

for c = 1, 2, . . . , C. The relationship between the known emission rate, denoted vc, and

observed excess CH4 Xc for the controlled releases is displayed on the log scale in Fig-
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ure 5.2. Based on the controlled release study, we use simple linear regression to model the

relationship between the known log emission rate (log v) and log excess methane (logX).

When a source is detected (Yidt = 1) by the GSV instrumentation in the field, we cal-

culate the excess methane X. We aim to estimate the source’s latent, unknown methane

emission rate V using these excess methane values and the data from the controlled re-

lease experiments. To achieve this goal we employ a Bayesian calibration model as follows.

From the controlled release experiments, we observe C pairs of data (vc, Xc). We model the

relationship between the known release rate v and excess methane X on the log scale as

logXc = β0 + β1 log vc + ✏c (50)

for c = 1, . . . , C, where ✏c ⇠ N(0, σ2). Let mid =
Pd

t=1 Yidt denote the number of detections

and Vid the unknown emission rate for methane source id. For each detection of source id,

we assume

logXidj = β0 + β1 log Vid + ✏idj (51)

where j = 1, . . . ,mid , and ✏idj ⇠ N(0, σ2). To account for uncertainty in source emission

rate, we will couple this calibration model with our capture-recapture model.

Our focus is on developing a capture-recapture model to estimate the number of unob-

served sources while accounting for uncertainty in source emission rate. Therefore, we do not

consider more complicated emission rate estimation schemes here. We provide further discus-

sion on the challenges associated with emission rate estimation and suggested improvements

in Section 5.7.

5.3.2 Capture-Recapture and Detection Probability

Here we describe the capture-recapture model appropriate for our mobile methane de-

tection application. The earliest capture-recapture models made the simplifying assumption

that capture probabilities are the same for each individual and sampling attempt. Models
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with this simplifying assumption are often referred to as model M0 in the capture-recapture

literature (e.g., Otis et al., 1978). A number of models have been developed that relax this as-

sumption (Amstrup et al., 2010). One particular class of capture-recapture models, referred

to as model Mh, accounts for heterogeneity in detection probability between individuals in

the population (Pollock, 2002). For example, an individual’s detection probability may be

modeled as a random effect (e.g., Coull and Agresti, 1999) or as a function of an individual’s

covariate(s) such as weight and/or sex (e.g., Royle, 2009).

We use capture-recapture model Mh to estimate the number of methane sources within

a designated sampling region, and we justify its use here. Because the controlled releases

were performed with the primary goal of calibrating an emission rate estimation algorithm,

experimenters drove the vehicle downwind of the methane source during the controlled re-

leases. As a result of driving downwind, sampling instruments typically recorded elevated

methane levels, but the probability of elevated readings (detections) decreased as the known

emission rate decreased. To further understand the stochastic nature of detecting methane

sources in real urban conditions, von Fischer et al. (2017) conducted extensive sampling in

one U.S. city over a 9 month period. During this sampling, 138 sources were detected, each

of which were driven past an average of 20 times. The probability of detection (elevated

readings) of the sources varied by estimated source emission rate: 0.35 for small sources (0-6

L/min), 0.63 for medium sources (6-42 L/min), and 0.74 for large sources (42+ L/min).

Based on the aforementioned controlled methane release experiments and data from

known methane sources, a source’s emission rate affects the probability of detection (i.e.,

the probability of being “captured” by the GSV car’s instrumentation). Specifically, sources

that have a large emission rate have a larger probability of detection than sources with a

small emission rate because they tend to create larger, more highly concentrated plumes of

methane gas. We model the detection probability of source id as function of the estimated
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source emission rate:

logit(pid) = ↵0 + ↵1Vid . (52)

In a standard capture-recapture modelMh, detection probabilities are modeled as a function

of an individual’s known, observed covariate(s). We treat the emission rate as latent because

we do not observe it directly and instead observe a surrogate, excess CH4, for the emission

rate. To estimate the unobserved emission rate, we used the source’s empirical detection

probability, observed excess CH4 value(s), the controlled release data, and our calibration

model in (50) and (51).

5.3.3 Parameter-Expanded Data Augmentation (PX-DA)

In this section we describe parameter-expanded data augmentation and how we use it to

develop and estimate our calibration-capture-recapture (CCR) model. We used a hierarchical

model to combine the calibration and capture-recapture models to create a CCR model. Our

model provides estimates and uncertainty for the number of methane sources and sampling

region-wide methane emissions while accounting for undetected methane sources. The model

also provides estimates and uncertainty for the detection probability and individual sources’

emission rate.

We estimate the CCR model parameters using Bayesian parameter-expanded data aug-

mentation (PX-DA)(Liu and Wu, 1999). For capture-recapture modeling, data augmentation

involves adding a large number of all-zero encounters, Yi = 0>, to the observed capture data.

These all-zero encounters represent a combination of unobserved methane sources and“artifi-

cial” sources added for ease of computation. In the capture-recapture setting, adding all-zero

encounters equates to model expansion (Royle and Dorazio, 2012). This model expansion as

a result of data augmentation is referred to as parameter-expanded data augmentation (Liu

and Wu, 1999) and distinguished from data augmentation in the sense of Tanner and Wong

(1987). Specifically, adding a large number of all-zero encounters represents an zero-inflation
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of the the observed data. After augmenting the data with all-zero encounters, we have a

K (observed plus augmented) methane sources. We can think of the K methane sources as

a super-population of which there is a subset of sources available for capture (Royle et al.,

2007). We introduce the partially observed, latent, binary variable Zi which represents

membership in the capture-able population (Zi = 1 if individual i is in the capture-able

population). By assuming that Zi| ⇠ Bernoulli( ), the parameter 1− represents the pro-

portion of zero-inflation (e.g., the proportion of all-zero encounters which are not members of

the capture-able population). Thus, we have augmented our data and expanded our model

by introducing all-zero encounter histories, the indicator variable Zi, and the zero-inflation

parameter  .

Royle et al. (2007) first applied PX-DA to analyze capture-recapture data, and Royle

and Dorazio (2012) offers further insight into the computational benefits of PX-DA coupled

with Bayesian analysis for capture-recapture models. We choose to perform estimation using

PX-DA and Bayesian methods because of their computational convenience. In particular,

because our model contains latent, individual parameters for a large number of sources and

several conditional distributions yield convenient forms for Gibbs sampling, PX-DA and a

Bayesian hierarchical model readily yield inference for a number of quantities of interest.

5.3.4 Calibration-Capture-Recapture for Mobile Detection

Here we specify the CCR model for our mobile methane detection application. Unlike a

typical capture-recapture setting, the number of sampling attempts, d, will vary by individual

in our model. For example, some source sites were sampled two times while others were

sampled as many as ten times. As a result, the way we augment the data needs to account

for the varying sampling attempts.

Recall, Yidt = 1 denotes that source id was detected on drive-by t. The set D denotes

the set of sampling attempt values. Note that D can be any discrete subset of Z+ and the

values in D do not need to be consecutive. Likewise, the notation id denotes the i
th methane
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source detected in the region sampled d times. From our data, we obtain detection histories

for n observed methane sources. For example, if we had D = {2, 3, 4, 5}, we can write

n = n2 + n3 + n4 + n5,

where nd is the number of detected (observed) individuals in areas sampled d times. Because

detection of methane sources is imperfect, some individuals (source sites) are never observed.

One of our goals is to estimate the total number of methane sources, N , for a closed pop-

ulation of sources. Our model accounts for the fact that the number of undetected sources

will decrease with the number of sampling attempts (drives).

Because we do not know the number of undetected sources, we augment the data with

Kn = K − n all-zero encounter histories (i.e., Yid = 0>, id 2 {nd + 1, nd + 2, . . . , Knd
}) and

introduce the partially observed latent variable Zid that indicates population membership.

Due to the variable number of sampling attempts, when we augment the data with all-zero

encounters, we also generate the number of sampling attempts for the augmented individuals.

As a result, our totalKn augmented sources (i.e., all-zero encounter histories) can be classified

based on sampling attempt. Continuing the example where D = {2, 3, 4, 5},

Kn = Kn2 +Kn3 +Kn4 +Kn5 ,

is the total number of augmented sources and Knd
denotes the number of augmented indi-

viduals in the region sampled d times. Likewise,

K = Kn + n =
X

d2D
(Knd

+ nd) = K2 +K3 +K4 +K5

is the super population size, and Kd = Knd
+ nd is the super population size in the region

sampled d times. Because we expect that the number of unobserved individuals will decrease

as the number of sampling attempts increase, we decrease the number of augmented indi-
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viduals as the number of sampling attempts increases. For example, we add more missing

individuals to areas that have been sampled twice than to areas that have been sampled four

times (Kn2 > Kn4).

Adding all-zero encounters amounts to a zero-inflation of the detection data. We add a

large number of all-zero encounters, and to estimate N , we estimate what proportion of these

all-zero encounters are members of our population. Let Zid be a partially observed, latent

variable indicating population membership: Zid = 1 if a member of the super-population

is in the population of sources that are available for sampling and Zid = 0 otherwise. We

observe Zid = 1 for id 2 {1, 2, . . . , nd}, d 2 D. We model the methane source detections as

Yidt =

8
>>>>>><
>>>>>>:

0 when Zid = 0,8
>><
>>:

0 w.p. 1− pid

1 w.p. pid

when Zid = 1
(53)

for t 2 {1, 2, . . . , d}, where pid is the probability of detecting source id and given in (52). The

model statement in (53) corresponds to capture-recapture modelMh because the probability

of detection varies by individual. We can rewrite (53) as a Binomial process,

mid =
dX

t=1

Yidt ⇠ Binom(d, Zidpid).

We model the partially observed population membership variables Zid as

Zid ⇠ Bernoulli( d) (54)

for d 2 D and id 2 {1, 2, . . . , Kd}. The parameter 1− d represents the proportion of artificial

zeroes (i.e., zero inflation) added to the region sampled d times due to parameter-expanded

data augmentation. For capture-recapture models, parameter-expanded data augmentation

changes the problem of estimating N to estimating  (Royle et al., 2007) and offers com-
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Table 5.1: A summary of the calibration-capture-recapture (CCR) model. The calibration
model is specified by the top two sections on the left. The capture-recapture model is

described in the right side column. The distribution for the population of emission rates
links the two models.

SLR Calibration Model

Controlled Release Data:

log(Xc) = β0 + β1 log(vc) + ✏c

✏c ⇠ N(0, σ2)

Excess CH4 when source is detected:

log(Xidj) = β0 + β1 log Vid + ✏idj

✏idj ⇠ N(0, σ2)

Model Link

Population of Emission Rates:

Vid ⇠ logNormal(µ, ⌧ 2)

C-R Model with PX-DA

Source detections:

mid =
dX

t=1

Yidt ⇠ Binom(d, Zidpid).

Detection probability function:

logit(pid) = ↵0 + ↵1Vid .

Parameter-Expanded Data Augmentation:

Zid ⇠ Bern( d).

putational benefits (e.g., the dimension of the data does not change with changing N). An

estimate of the number of undetected methane sources in the region sampled d times is

given by N̂d =
PKd

id=1 Zid and the estimated total number of methane sources is given by

N̂ =
P

d2D N̂d.

To couple our calibration and capture-recapture model, we need to specify the distribution

of the unobserved, latent source emission rates Vid . We assume that the source emission rates

follow a logNormal distribution,

Vid |µ, σ2 ⇠ logNormal(µ, ⌧ 2). (55)

We choose a logNormal distribution for the population of source emission rates because a

logNormal distribution has a heavy tail, and we expect that the majority of methane sources

within a sampling region will have small emission rates while a handful of sources will have
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very large emission rates. Note that under the logNormal assumption, the population mean

emission rate is given by E(Vid) = exp{µ + ⌧ 2/2}. Because a source’s detection probability

is a function of emission rate, our model will leverage both an observed source’s empirical

detection probability and measured excess CH4 levels to infer its emission rate.

Table 5.1 summarizes the calibration-capture-recapture (CCR) model. To complete a

Bayesian specification of our model, we choose prior distributions for our parameters of inter-

est. To this end, we assume prior distributions for β0, β1, 1/σ
2, ↵0, ↵1, µ, 1/⌧

2, and  d, d 2 D.

We derive the necessary posterior distributions and describe the MCMC sampling algorithm

for parameter estimation in Section 5.4.

In addition to estimating the total number of methane sources in the sampled region,

our model provides inference for the emission rate of sources detected by the GSV car’s

instrumentation. Each source that is estimated to be a member of the population of sources,

but went undetected by our sampling mechanism, will also have an associated estimated

emission rate. Intuitively, sources that went undetected are more likely to be sources with a

small emission rate rather than a large one. By estimating the emission rate of unobserved

sources, we can estimate the total emissions within a sampling region while accounting for

the undetected sources.

5.4 MCMC Algorithm

In this section we describe the posterior distributions and MCMC sampling algorithm

used to obtain posterior draws from the calibration-capture-recapture model displayed in

Table 5.1. We let Xm denote the excess CH4 values observed when a source is detected, and

s denotes the sth iteration of the sampler. For a variable W , lW denotes logW . The joint

posterior distribution of the unknown parameters and latent variables given the data can be
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written as

[β, σ2,V, µ, ⌧ 2,Z,ψ,α|Xc,Xm,Y] / [Xc,Xm,Y|β, σ2,V,Z,α]

[β] [σ2] [V|µ, ⌧ ] [µ] [⌧ 2] [α] [Z|ψ] [ψ]

/ [Xc|β, σ2] [Xm|β, σ2,V,Y] [Y|V,Z,α]

[β] [σ2] [V|µ, ⌧ ] [µ] [⌧ 2] [α] [Z|ψ] [ψ].

(56)

The likelihood corresponding to the controlled release (calibration) data (50) is

[Xc|β, σ2] /
CY

c=1

1p
2⇡σ2

exp

⇢−1

2σ2
(lXc − β0 − β1vc)

2

}
. (57)

The likelihood for the process of observing excess CH4 when a source is detected (51) is

[Xm|β, σ2,V,Y] /
Y

d2D

KdY

id=1

0
@

Pd
t=1 YidtY

j=1

1p
2⇡σ2

exp

⇢−1

2σ2
(lXidj − β0 − β1lVid)

2

}1
A

I(
Pd

t=1 Yidt
>0)

.

(58)

Finally, the likelihood corresponding to the detection (53) process is

[Y|V,Z,α] /
Y

d2D

KdY

id=1

(Zidp(Vid))
Pd

t=1 Yidt(1− Zidp(Vid))
d−

Pd
t=1 Yidt . (59)

We use Gibbs sampling to estimate (56) with Metropolis-Hastings steps when the condi-

tional posterior distribution is not available in closed form. We outline the MCMC algorithm

here:

1. Update the calibration parameters, β0, β1, σ
2, from their complete conditional distri-

butions using a Gibbs step.

2. Update the detection parameters, ↵0 and ↵1, using a Metropolis-Hastings step to sam-

ple from each complete conditional distribution.
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3. Update the latent source emission rates, Vid . The complete conditional distribution

for the source emission rate depends on whether or not the source was detected by

the GSV car’s instruments (mid > 0) and whether or not it is considered a member

of the population (Zid = 1). These characteristics determine whether a Gibbs step

or a Metropolis-Hasting step are required to sample from the complete conditional

distribution.

4. Update the source emission rate population parameters, µ and ⌧ 2, from their complete

conditional distributions using Gibbs steps.

5. Update the unobserved, latent population membership indicators Zid using their com-

plete conditional distribution and Gibbs step.

6. Update the zero-inflation parameters,  d, by sampling from their complete conditional

distributions using Gibbs steps.

The details of the MCMC algorithm and conditional distributions are given below. Let

γ2 = 1/σ2 and λ2 = 1/τ 2. We let mid =
Pd

t=1 Yidt be the number of detections of source

id. For the majority of the steps, we suppress the iteration counter, (s− 1), that is used to

denote parameter estimates from the previous iteration. The prior distributions are specified

in Section 5.5.
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Step (1): Draw β0. Assuming a N(µβ0 , 1/⇠
2
β0
) prior distribution, the posterior is given

by

[β0|·] / exp

(
−γ2
2

CX

c=1

(lXc − β0 − β1lvc)
2

)

exp

(
−γ2
2

X

d2D

ndX

id=1

midX

j=1

(lXidj − β0 − β1lVid)
2

)

exp

⇢−⇠2β0

2
(β2

0 − 2β0µβ0)

}
.

Combining the above, the posterior distribution of β0 is a normal distribution,

β0|· ⇠ N(✓β0 , ηβ0) where

θβ0 =
γ2
PC

c=1(lXc − β1lvc) + γ2
P

d2D
Pnd

id=1

Pmid

j=1(lXidj − β1lVid) + ξ2β0
µβ0

γ2(C +M) + ξ2β0

and

ηβ0 =
1

γ2(C +M) + ξ2β0

,

where C is the number of replicates from the controlled release experiments and M =
P

d2D
Pnd

id=1mid is the total number of source detections.
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Step (2): Draw β1. Assuming a N(µβ1 , 1/⇠
2
β1
) prior distribution, the posterior distribu-

tion is

[β1|·] / exp

(
−γ2
2

CX

c=1

(lXc − β0 − β1lvc)
2

)

exp

(
−γ2
2

X

d2D

ndX

id=1

midX

j=1

(lXidj − β0 − β1lVid)
2

)

exp

⇢−⇠2β1

2
(β2

1 − 2β1µβ1)

}
.

After some algebra, we can show that the posterior distribution of β1 is a normal distribution,

β1|· ⇠ N(✓β1 , ηβ1) where

θ =
γ2
PC

c=1 lvc(lXc − β0) + γ2
P

d2D
Pnd

id=1 lVid
Pmid

j=1(lXidj − β0) + ξ2β1
µβ1

γ2
PC

c=1 lv
2
c + γ2

P
d2D

Pnd

id=1midlV
2
id
+ ξ2β1

and

ηβ1 =
1

γ2
PC

c=1 lv
2
c + γ2

P
d2D

Pnd

id=1midlV
2
id
+ ξ2β1

.

Step (3): Sample γ2 = 1/σ2. Assuming a Gamma(aγ, bγ) prior distribution, the posterior

is given by

[γ2|·] / (γ2)
C+M

2 exp

(
−γ2

2

 
CX

c=1

(lXc − β0 − β1lvc)
2 +

X

d2D

ndX

id=1

midX

j=1

(lXidj − β0 − β1lVid)
2

!)

(γ2)aγ−1 exp
{
−γ2bγ

 
.
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The posterior distribution of γ2 is a Gamma distribution:

γ2|· ⇠ Gamma(✓γ, ηγ)

where

θγ = aγ +
C +M

2
,

and

ηγ = bγ +
1

2

 
CX

c=1

(lXc − β0 − β1lvc)
2 +

X

d2D

ndX

id=1

midX

j=1

(lXidj − β0 − β1lVid)
2

!
.

Step (4): Draw α0 and α1, conditional on the V and Zid = 1. We assume a normal

prior distribution for each parameter. The conditional posterior distributions are a product

of Binomial probabilities multiplied by the prior. We sample the detection probability pa-

rameters using a random walk Metropolis step, where we propose values from the Normal
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prior distributions. Recall that mid =
Pd

t=1 Yidt is the number of detections of source id.

[↵0, ↵1 | ·] / (⇠2α0
)
1
2 exp

⇢−⇠2α0

2
(↵0 − µα0)

2

}
(⇠2α1

)
1
2 exp

⇢−⇠2α1

2
(↵1 − µα1)

2

}

Y

d2D

KdY

id=1

✓
Zid

exp(↵0 + ↵1Vid)

1 + exp(↵0 + ↵1Vid)

◆Pd
t=1 Yidt

✓
1− Zid

exp(↵0 + ↵1Vid)

1 + exp(↵0 + ↵1Vid)

◆d−
Pd

t=1 Yidt

= (⇠2α0
)
1
2 exp

⇢−⇠2α0

2
(↵0 − µα0)

2

}
(⇠2α1

)
1
2 exp

⇢−⇠2α1

2
(↵1 − µα1)

2

}

Y

d2D

Y

{id:Zid
=1}

✓
exp(↵0 + ↵1Vid)

1 + exp(↵0 + ↵1Vid)

◆mid
✓
1− exp(↵0 + ↵1Vid)

1 + exp(↵0 + ↵1Vid)

◆d−mid

= (⇠2α0
)
1
2 exp

⇢−⇠2α0

2
(↵0 − µα0)

2

}
(⇠2α1

)
1
2 exp

⇢−⇠2α1

2
(↵1 − µα1)

2

}

Y

d2D

Y

{id:Zid
=1}

(pid)
mid (1− pid)

d−mid

= (⇠2α0
)
1
2 exp

⇢−⇠2α0

2
(↵0 − µα0)

2

}
(⇠2α1

)
1
2 exp

⇢−⇠2α1

2
(↵1 − µα1)

2

}

exp

8
<
:log

0
@Y

d2D

Y

{id:Zid
=1}

(pid)
mid (1− pid)

d−mid

1
A
9
=
;

= (⇠2α0
)
1
2 exp

⇢−⇠2α0

2
(↵0 − µα0)

2

}
(⇠2α1

)
1
2 exp

⇢−⇠2α1

2
(↵1 − µα1)

2

}

exp

8
<
:
X

d2D

X

{id:Zid
=1}

mid log pid + (d−mid) log(1− pid)

9
=
; .

At iteration s of the sampler, we propose ↵⇤
0 from a N(↵

(s−1)
0 , 1/⇠2α0

) distribution. The

Metropolis ratio for sampling ↵0 at iteration s is

R
⇣
↵
(s−1)
0 , ↵⇤

0

⌘
= exp

8
<
:

P
d2D

P
{id:Zid

=1}mid log p
⇤
id
+ (d−mid) log(1− p⇤id)

P
d2D

P
{id:Zid

=1}mid log p
(s−1)
id

+ (d−mid) log
⇣
1− p

(s−1)
id

⌘

9
=
; ,

where

p⇤id =
exp(↵⇤

0 + ↵
(s−1)
1 Vid)

1 + exp(↵⇤
0 + ↵

(s−1)
1 Vid)

,

and p
(s−1)
id

is defined analogously. The Metropolis ratio is similar for ↵1.
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Step (5): Sample Vid . The posterior distribution depends on the index id and is given

by

[Vid |·] /
 midY

j=1

exp

⇢−γ2
2

(lXj − β0 − β1lVid)
2

}!I(mid
>0)

(Zidp(Vid))
Pd

t=1 Yidt (1− Zidp(Vid))
d−

Pd
t=1 Yidt

(λ2)1/2 exp

⇢−λ2

2
(lVid − µ)2

}
.

(60)

There are three cases to consider, which are based on the values of mid and Zid . We outline

the posterior distribution of Vid for the three cases below.

Case (1): Source id is detected by the GSV car (mid > 0 =) Zid = 1). In this case we

have mid measurements of excess CH4, Xidj, that we can use to estimate the emission rate

of source id. The posterior is given above in (60). In this case, we can combine the first and
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third lines of (60) to obtain:

[lVid |·] / exp

(
−γ2
2

 
midβ

2
1 lV

2
id
− 2lVidβ1

midX

j=1

(lXidj − β0)

!)

exp

⇢−λ2

2
(lV 2

id
− 2µlVid)

}

/ exp

(✓−γ2

2
midβ

2
1 +

−λ2

2

◆
lV 2

id
+

 
γ2β1

midX

j=1

(lXidj − β0) + λ2µ

!
lVid

)

This implies the following conditional posterior,

log Vid ⇠ N(θV , ηV )

where

θV =
γ2β1

Pmid

j=1(lXj − β0) + λ2µ

γ2midβ
2
1 + λ2

, and

ηV =
1

γ2midβ
2
1 + λ2

.

We can think of this conditional posterior as the posterior distribution of Vid given calibration

data and the observed excess CH4 values. We can now rewrite the full posterior from Case
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1 as follows:

[Vid |·] /
1

Vid
p
2πηV

exp

⇢ −1

2ηV
(log Vid − θV )

2

}
(p(Vid))

mid (1− p(Vid))
d−mid

⌘ f(Vid).

We propose a new value V ⇤
id
by drawing from a logNormal

⇣
log V

(s−1)
id

, σ2 (s−1)
⌘
distribution.

This implies the following Metropolis ratio:

R(V
(s−1)
id

, V ⇤
id
) =

f
(
V ⇤
id

)
1

V
(s−1)
id

p
2πσ2

exp

⇢
−1
2σ2

⇣
log V

(s−1)
id

− log V ⇤
id

⌘2}

f
⇣
V

(s−1)
id

⌘
1

V ⇤

id

p
2πσ2

exp

⇢
−1
2σ2

⇣
log V ⇤

id
− log V

(s−1)
id

⌘2}

=
exp

n
−1
2ηV

(log V ⇤
id
− θV )

2
o(

p(V ⇤
id
)
)mid

(
1− p(V ⇤

id
)
)d−mid

exp

⇢
−1
2ηV

⇣
log V

(s−1)
id

− θV

⌘2}⇣
p
⇣
V

(s−1)
id

⌘⌘mid
⇣
1− p

⇣
V

(s−1)
id

⌘⌘d−mid

We can rewrite the ratio quantity as

R(V
(s−1)
id

, V ⇤
id
) = R = exp{logR}.

Suppressing the subscripts and letting p⇤ = p(V ⇤
id
), p(s−1) = p

⇣
V

(s−1)
id

⌘
, and m = mid , we

can write

logR =
−1

2ηV
(lV ⇤ − θv)

2 +m log p⇤ + (d−m) log(1− p⇤)

−
 −1

2ηV
(lV (s−1) − θv)

2 +m log p(s−1) + (d−m) log
(
1− p(s−1)

)]

Case (2): Source id is an augmented source that is estimated to be a member of the

population (Zid = 1) due to imperfect detection but was never observed by the GSV car
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(mid = 0). The posterior distribution (60) becomes

[Vid |·] / (1− p(Vid))
d (λ

2)1/2

Vid
exp

⇢−λ2

2
(lVid − µ)2

}
.

In this case we propose V ⇤
id
by drawing from the logNormal

(
µ(s−1), τ 2 (s−1)

)
prior distribution.

The Metropolis ratio becomes

R(V
(s−1)
id

, V ⇤
id
) =

(1− p⇤)d

(1− p(s−1))
d
.

Case (3): Source id is an augmented source that is not estimated to be a population

member (Zid = 0 and mid = 0). The posterior distribution (60) simplifies to

[Vid |·] / (λ2)1/2 exp

⇢−λ2

2
(lVid − µ)2

}
.

In this case we propose and automatically accept values from the logNormal
(
µ(s−1), τ 2 (s−1)

)

prior distribution.
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Step (6): Update µ. We assume a Normal(µ0, 1/⇠
2
µ) prior distribution giving the follow-

ing posterior:

[µ|·] /
 
Y

d2D

KdY

id=1

exp

⇢−λ2

2
(lVid − µ)2

}!
exp

⇢−ξ2µ

2
(µ− µ0)

2

}
.

Some algebra yields a Normal posterior distribution, µ|· ⇠ N(θµ, ηµ), where

θµ =
λ2
P

d2D
PKd

id=1 lVi + ξ2µµ0

λ2K + ξ2µ
and ηµ =

1

λ2K + ξ2µ
.

Step (7): Update λ = 1/τ 2. We assume a Gamma(aλ, bλ) prior. The posterior distribu-

tion is

[λ2|·] /
Y

d2D

KdY

id=1

(λ2)1/2 exp

⇢−λ2

2
(lVid − µ)2

}

(λ2)aλ−1 exp{−λ2bλ}.

Thus the posterior is a Gamma distribution, λ2|· ⇠ Gamma(θλ, ηλ) where

θλ = aλ +
K

2
and ηλ = bλ +

1

2

X

d2D

KdX

id=1

(lVid − µ)2.

Step (8): Sample Zid for d 2 D, id = nd+1, nd+2, . . . , Kd (i.e., when mid =
Pd

t=1 Yidt =

0). The posterior distribution is a Bernoulli:

Zid |· ⇠ Bern(φid)

where

φid =
ψd(1− pid)

d

ψd(1− pid)
d + (1− ψd)

.

Recall we can compute the estimated population size using the Zid values, N̂ =
P

d2D
PKd

id=1 Zid .

We can also compute the estimated total number of sources in the region sampled d times
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Table 5.2: Prior distributions and parameter values for our CCR model.

Parameter Prior Parameter Values
β0 N(µβ0 , 1/⇠

2
β0
) µβ0 = 0, 1/⇠2β0

= 10

β1 N(µβ1 , 1/⇠
2
β1
) µβ1 = 0, 1/⇠2β1

= 10

γ2 = 1/σ2 Gamma(aγ, bγ) aγ = 0.01, bγ = 0.01
↵0 N(µα0 , 1/⇠

2
α0
) µα0 = 0, 1/⇠2α0

= 0.05
↵1 N(µα1 , 1/⇠

2
α1
) µα1 = 0, 1/⇠2α1

= 0.03
µ N(µ0, 1/⇠µ) µ0 = 0, 1/⇠µ = 5

λ2 = 1/τ 2 Gamma(aγ, bγ) aγ = 0.01, bγ = 0.01
ψd, d 2 D Beta(aψd

, bψd
) aψd

= 0.0000001, bψd
= 0.01 8d 2 D

(N̂d =
PKd

id=1 Zid) and number of undetected sources in the region sampled d times, N̂nd
=

N̂d − nd.

Step (9): Update ψd for d 2 D. Assuming a Beta(aψ, bψ) prior, the conditional posterior

is a Beta distribution,

ψd|· ⇠ Beta(θψ, ηψ)

where θψ = aψ +Nd, ηψ = bψ +Kd −Nd, and Nd =
PKd

id=1 Zid .

5.5 Prior Distributions and Data Augmentation

In this section we specify the prior distributions and their associated parameter values

used in our analysis of two U.S. cities described in Section 5.6. We also discuss starting

values and the number of augmented sources. The MCMC sampling algorithm is described

in Section 5.4.

Table 5.2 displays the prior distributions and prior distribution parameter values for our

CCR model. We chose normal priors for all detection coefficients and for the mean of the

log emission rates, µ. For β0, β1, and µ we chose a large variance to make the prior non-

informative. For the detection coefficients α0 and α1, we choose the prior variance based

on the acceptance probability of proposed values during random walk Metropolis sampling.

These variances are relatively small because the detection function and estimated emission
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Table 5.3: The number of augmented sources (i.e., all-zero detection histories) for each city,
classified by sampling attempt. Because the number of undetected sources decreases with
sampling effort, we decrease the number of augmented sources as sampling effort increases.

City Kn2 Kn3 Kn4 Kn5 Kn6 Kn7 Kn8 Kn9 Kn10 Total
A 85 60 40 20 20 20 20 20 20 305
B 40 30 25 15 15 10 10 10 10 165

rate values must agree with the observed detections. For example, if pid = 1 then the number

of detections mid must equal the number of sampling attempts d. We found that smaller

variances produce better mixing than a large variance, which also lead to exceptionally low

acceptance rates. We use non-informative gamma priors for the precision (inverse variance)

parameters. The prior parameters for  d are chosen to approximate a scale prior on Nd

(Link, 2013).

For each city, we also had to choose the number of augmented sources. The number of

augmented sources needs to be large enough to have little effect on the posterior distribution

(i.e., chosen so that N << K). However, adding too many augmented sources increases

computation time. Because we expect the number augmented sources to decrease with

sampling effort, we decrease the number of augmented sources as sampling effort increases.

We add more augmented sources in City A than City B because empirical detection rates

were lower in City A relative to City B. The empirical detection rate is based on the number

of observed source sites in each city and defined as the total number of detections divided

by the total number of sampling attempts from the observed sites. Table 5.3 displays the

counts of augmented sources by sampling attempt for each of the two cities.

We describe the starting values for our MCMC sampling algorithm. We computed start-

ing values for β0, β1, and σ
2 using the controlled release data. Namely, we computed starting

values for β0 and β1 using least squares. The mean square error from the least squares fit

is the starting value for σ2. For each of the n detected sources, the starting values for the

emission rate Vid were computed by averaging the source’s log excess CH4 (Xidj) values,
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Table 5.4: The number of observed methane sources n by sampling attempt in two U.S.
cities. We let nd denote the number of sources detected in the region sampled d times.

Drives 2 3 4 5 6 7 8 9 10 Total, n
City A 22 20 23 6 18 5 9 10 6 119
City B 21 32 25 23 20 23 11 7 8 170

substituting the mean into the least squares regression equation, and solving for Vid . Using

the set of initial emission rate (Vid) values, we calculated the staring values for µ and ⌧ 2

using the mean and variance of the log(Vid) values, respectively. We imputed initial emission

rates for the augmented sources by drawing from a logNormal distribution with the initial µ

and ⌧ 2 parameters. We used random starting values for ↵0, ↵1, the unobserved (augmented)

Zid , and for  d, d 2 D. We generated starting values for ↵0 and ↵1 by drawing from a N(0, 1)

distribution. For each augmented source, we set Zid = 1 with probability 0.15. The starting

values for  d were drawn from a Beta(5, 5) distribution.

We used standard diagnostics to assess convergence of our MCMC algorithm. Specifically,

we checked ACF and trace plots and computed Gelman-Rubin statistics. After discarding

burn-in and thinning the chains, these diagnostics all indicated adequate convergence.

5.6 Application: A Tale of Two Cities

In this section we apply our calibration-capture-recapture model to methane data col-

lected from two U.S. cities. Because of our non-disclosure agreement, we call these two cities

A and B. City A has an accelerated natural gas pipeline replacement program. City B does

not have an accelerated pipeline replacement program and has older infrastructure relative

to City A. Methane concentrations were collected within designated sampling regions in each

city. In City A GSV vehicles sampled approximately 887 miles of roadway two or more times.

In City B approximately 1251 miles of roadway were sampled two or more times. In both

cities the majority of sampled roadway was driven between 2 and 7 times. A very small
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Table 5.5: Posterior estimates from our CCR model. “Post. Med.” denotes the posterior
median and “95% CI” denotes the 95% posterior credible interval based on the highest

posterior density.

City A City B
Parameter Post. Med. 95% CI Post. Med. 95% CI

Total Number of Sources, N 161 (138, 187) 176 (172, 182)
Total Emissions (L/min),

P
Vi 123 (51, 205) 693 (465, 927)

Detection Parameter, α0 -1.64 (-2.47, -0.99) -0.05 (-0.39, 0.26)
Detection Parameter, α1 1.28 (0.44, 2.70) 0.23 (0.11, 0.39)

Avg Emission Rate, eµ+τ2/2 0.76 (0.31, 1.28) 3.91 (2.53, 5.62)
sd(Log Emission Rate), τ 0.76 (0.45, 1.10) 1.07 (0.81, 1.38)

amount of roadway in each city was sampled more than 10 times, and sources are not likely

to go undetected after 10 sampling attempts. For these reasons we restrict our attention to

areas sampled between 2 and 10 times, inclusive, so that D = {2, 3, 4, 5, 6, 7, 8, 9, 10}.

Within the sampled regions, n = 119 and 175 sources were detected in Cities A and

B, respectively (Table 5.4). Using the observed excess CH4 values and a least squares fit

of the controlled release data, the average source emission rate in City A is an estimated

2.15 L/min while in City B it is an estimated 6.07 L/min. Empirical source detection was

much higher in City B than City A. In City A there were 734 drive-bys of the 119 sources,

and the sources were detected on 282 of these sampling attempts. In City B there were 911

drive-bys of the 170 sources which resulted in 576 detections. Based on these numbers, the

empirical detection probabilities, ignoring source emission rate, are 0.38 and 0.63 for Cities

A and B, respectively. We did not estimate a common detection function (i.e., common ↵0

and ↵1) between the two cities because we believe the relationship between emission rate

and detection varies by city due to local conditions (e.g., location of pipeline infrastructure,

urban geography).

We estimated our Bayesian calibration-capture-recapture model via MCMC. See Sections

5.4 and 5.5 for more details on prior distributions, diagnostics, and the MCMC algorithm.

We ran the chains for 1,000,000 iterations using R software (R Core Team, 2015), discarded
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Table 5.6: Posterior estimates of the calibration parameters from our CCR model. “Post.
Med.” denotes the posterior median and “95% CI” denotes the 95% posterior credible

interval based on the highest posterior density.

City A City B
Parameter Post. Med. 95% CI Post. Med. 95% CI

β0, Calibration Parameter -1.18 (-1.67, -0.72) -1.20 (-1.65, -0.74)
β1, Calibration Parameter 0.81 (0.63, 0.98) 0.82 (0.66, 0.99)
σ SD, Calibration Parameter 1.28 (1.18, 1.40) 1.21 (1.13, 1.29)
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Figure 5.3: The estimated detection functions from two U.S. cities. The black and red lines
are the estimated detection functions based on the posterior medians of ↵0 and ↵1 for

Cities A and B, respectively. As expected, the estimated probability of detection increases
with emission rate. The gray and pink lines represent the uncertainty in the detection

function based on posterior draws of ↵0 and ↵1.

the first 10,000 samples for burn-in, and thinned the chain by 25, resulting in 39,600 samples

from the posterior distributions.

The posterior estimates and associated uncertainty of the calibration parameters β0, β1,

and σ2 were similar between the two cities. This is because these estimates are largely

driven by the calibration data which are the same for both cities. It is reassuring that these

estimates are similar even though they were estimated using separate models (Table 5.6).

Based on the 95% highest posterior density intervals of the detection coefficient ↵1, we can

conclude that there is a significant positive relationship between source emission rate and
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Figure 5.4: The posterior distributions for the estimated number of undetected sources
within the sampled regions of Cities A and B. In City A an estimated 42 sources went
undetected while only 6 went undetected in City B. Despite having an estimated fewer

number of total sources, City B has a significantly larger estimate of total emissions due to
the presence of sources with large emission rates.

probability of detection in both U.S. cities (Table 5.5). Figure 5.3 displays the posterior

estimates of the detection function and associated uncertainty. In City A the detection of

small sources is lower than in City B, but the probability of detection increases more quickly

as a function of source emission rate than in City B. As a result of the low detection of small

sources in City A, most of the undetected sources are estimated as small sources.

Figure 5.4 displays the posterior distribution for the number of unobserved sources in

the two cities. In City A, an estimated 42 sources went undetected by the GSV car while

there are just 6 estimated undetected sources in City B. The difference in the estimated

number of sources reflects the difference in the empirical detection rate between the two cities.

Because detection is a function of emission rate, this difference also reflects the difference

in the distributions of source emission rates for the two cities. Recall that roadways within

the designated sampling area were not sampled equally, and during data augmentation, we

include an assignment of sampling effort to augmented sources. As a result, we can break

down the undetected sources based on sampling effort. Figure 5.5 displays the posterior

155



0
.0
0

0
.1
0

0
.2
0

P
o

s
te

ri
o

r 
D

e
n

s
it
y

2  Drives 

0 2 4 6 8 10 12 14 16

0
.0
0

0
.1
0

0
.2
0

3  Drives 

0 2 4 6 8 10 12 14 16

0
.0

0
.2

0
.4

4  Drives 

0 2 4 6 8 10 12 14 16

0
.0

0
.2

0
.4

0
.6

0
.8

P
o

s
te

ri
o

r 
D

e
n

s
it
y

5  Drives 

0 2 4 6 8 10 12 14 16

0
.0

0
.4

0
.8

6  Drives 

0 2 4 6 8 10 12 14 16

0
.0

0
.4

0
.8

7  Drives 

0 2 4 6 8 10 12 14 16

0
.0

0
.4

0
.8

Estimated No. of Undetected Sources

P
o

s
te

ri
o

r 
D

e
n

s
it
y

8  Drives 

0 2 4 6 8 10 12 14 16

0
.0

0
.4

0
.8

Estimated No. of Undetected Sources

9  Drives 

0 2 4 6 8 10 12 14 16

0
.0

0
.4

0
.8

Estimated No. of Undetected Sources

10  Drives 

0 2 4 6 8 10 12 14 16

Figure 5.5: The estimated number of undetected sources in City B, classified by sampling
attempt. As expected, the estimated number of undetected sources decreases as sampling

attempts increases. We see a particularly sharp change in the number of undetected
sources between 5 and 6 sampling attempts.
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Figure 5.6: The estimated number of undetected sources in City A, classified by sampling
attempt. As expected, the estimated number of undetected sources decreases as sampling

attempts increases.
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Figure 5.7: Total emissions per 100 miles of roadway sampled. The posterior distribution
for the total emissions (L/min) per 100 miles of roadway from the sampled regions in two

U.S. cities. These emission totals account for both detected and undetected methane
sources.

distribution of undetected sources in City B by sampling attempt. As expected, the number

of undetected sources decreases with sampling effort. There is a particularly large decrease

in the number of undetected sources when the number of sampling attempts is greater than

6 in City B. The same plot for City A is included in Figure 5.6.

The rate of detected sources is similar between the two cities: 13.4 sources/100 miles in

City A and 13.6 sources/100 miles in City B. Based on the model results, which account for

undetected sources, these rates are an estimated 18.2 (15.6, 21.1) sources/100 miles in City

A and 14.2 (13.7, 14.5) sources/100 miles in City B. The estimated difference in these rates

is primarily because City A had a larger number of sources with a small emission rate, which

tend to have a small empirical detection probability, than City B. As a result of the lower

detection probability, the model indicates that there are more undetected, but small, sources

in City A. This is evidenced by the estimate of the total emissions per 100 miles in each

city. Despite the cities having a similar number of estimated total sources, the estimated

total emission rate in City B, 55.4 (37.2, 74.1) L/min/100 miles is approximately 4 times

greater than the estimated total emission rate in City A, 13.9 (5.8, 23.1) L/min. This is
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Figure 5.8: Posterior distributions of individual emission rates. The posterior distributions
for four detected sources in City B. The distributions reflect uncertainty in individual

emission rates based on the detection probability and the observed excess CH4 values for
that source. The vertical red lines are the naive estimates of the emission rate using a least

squares fit of the controlled release data and the observed excess CH4.

due to the presence of a larger number of sources with a large emission rate in City B. The

posterior distributions of total emissions per 100 miles sampled in the two cities is displayed

in Figure 5.7.

Our model output can also be used to prioritize methane source investigation and repair

and to understand the impacts of those repairs. Figure 5.8 displays the posterior distribution

of emission rate for 4 sources detected in City B. Using the posterior distributions of the

emission rate for our n detected sources, we can readily answer the question, “What is the

probability that this source’s emission rate is greater than r L/min?”. After computing this
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Figure 5.9: Percentage of total methane emissions versus percentage of ranked methane
sources. These plots display the percentage of total methane emissions as a function the

percentage of ranked methane sources and can be used to quantify the impact of removing
the largest methane sources. The sources are ranked by estimated methane emission rate.
For example, in City A, removing the largest 20% of sources would remove an estimated

47% (35.5%, 59.5%) of the total methane emissions. In City B, removing the largest 20% of
sources would remove an estimated 60% (50.8%, 72.8%) of the total methane emissions.

value for each of the sources, we can compile a ranked list of the sources’ potential to be

large. This list would be informative for individual source investigation/repair. Aggregating

estimated source emissions spatially may also be informative. For example, we could estimate

total emissions over several contiguous blocks and compare this estimate to the estimates

over other aggregated blocks to prioritize regional repairs. We can also quantify the impact

of repairing or remedying the largest methane sources. The plots in Figure 5.9 can be used

to estimate the impact of removing the largest methane sources in the sampling region for

each city. These plots display the percent of estimated total emissions versus the percent of

ranked methane sources. For example, in City B it is estimated that removing the largest

20% of sources would remove approximately 47% (35.5%, 59.5%) of the total emissions. In

City A removing the largest 20% of sources results in removing an estimated 60% (50.8%,

72.8%) of total emissions.
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5.7 Discussion

With the development of mobile sensing technology to identify methane sources, such as

natural gas leaks, there is an increasing need for methods that translate the raw CH4 con-

centration data into meaningful quantities. By coupling a calibration and capture-recapture

model, we developed a calibration-capture-recapture (CCR) model to estimate the total num-

ber of methane sources within a designated sampling region. Our model estimates population

characteristics by leveraging data from controlled release experiments and data collected by

sampling in urban areas and is therefore an integrated population model (Schaub and Abadi,

2011). In addition to estimating the total number of sources, we are also able to estimate

individual emission rates and the total methane emissions with our CCR model. By cou-

pling the calibration and capture-recapture model, we are able to appropriately account for

uncertainty in the detection process and individual emission rate estimation process. In the

spirit of Royle (2009) and Royle and Dorazio (2012), we formulated our model as a Bayesian

hierarchical model and used parameter-expanded data augmentation to enable estimation.

Our CCR model has features similar to other population models. Ruiz-Gutierrez et al.

(2016) also develop an integrated population model that uses calibration to improve infer-

ence. They use calibration to improve estimation of false-positive detection errors within

an occupancy model (MacKenzie et al., 2002). In our model we use calibration to improve

estimates of individual methane source emission rates within a capture-recapture model.

We use PX-DA to estimate our CCR model. Based on the work of J.D. Nichols (Nichols

and Karanth, 2002), Royle and Dorazio (2012) provide a heuristic explanation of the duality

and connection between occupancy models and closed population capture-recapture models

developed using PX-DA. Using this duality, we can think of our model in the framework

of occupancy models. Like an occupancy model, we can think of our K sources (observed

plus augmented) as representing sites or patches that are sampled to assess the presence or

absence of a methane emitting source. In fact, the detections of a source over different drive-
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bys are aggregated to create source sites. The augmented sites, having all-zero encounters,

represent both sites where a methane source is present, but was never detected, and sites

where there is no methane source. Within this framework we can make inferences about the

parameter of interest  , the probability that a site contains a methane source.

However, our model is different from traditional occupancy models and constitutes a

capture-recapture model because our sites represent individual members of the population

rather than a location which may hold several individuals. In an occupancy model, site

abundance typically measures the number of animals at the site. In our model we can think

of site abundance as the methane emission rate, a characteristic of the individual source at

that site. Royle and Nichols (2003) develop an occupancy model linking unobserved site

abundance with probability of detecting occupancy at the site. Similarly, our CCR model

links unobserved abundance (source emission rate) with the probability of detection. How-

ever, the models differ in how abundance is modeled. Royle and Nichols (2003) use a discrete

distribution to model abundance (counts) while in our CCR model the distribution for abun-

dance (emission rates) is continuous. Additionally, during sampling we record information

related to abundance (maxCH4), and we leverage controlled release experiments to estimate

the abundance.

Unlike capture-recapture models with a fixed number of sampling attempts, our model

accounts for the preferential sampling that arises due to the logistics of driving a sampling

vehicle in an urban area. A variable number of sampling attempts may naturally arise in other

capture-recapture settings. For example, ease of physical accessibility or weather may lead

to a variable number of sampling attempts in a spatial capture-recapture setting. For camera

trapping surveys, camera failure can lead to a variable number of sampling attempts at a

given site. Our model successfully incorporates the information from the varying sampled

regions to estimate a common detection function and provides insight into the effect of

sampling effort on the detection of individuals. For detection of methane sources, our results
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indicates that five or more sampling attempts greatly reduces the uncertainty in the number

of unobserved sources.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Future Work: Nonparametric Tests of Spatial Isotropy

There are several avenues of future work with nonparametric tests of spatial isotropy.

Methods to more formally characterize the optimal block size and bandwidth parameters for

the tests in the spatial domain would enhance the applicability of the tests. The performance

of the tests for non-gridded data in Guan et al. (2004) and Maity and Sherman (2012)

are sensitive to these choices and their optimality remains an open question. Zhang et al.

(2014) developed a nonparametric method for estimating the asymptotic variance-covariance

matrix of statistics derived from spatial data that avoids choosing tuning parameters which

could simplify test implementation. Another area of future investigation is the effect of

changing the form of the covariance function and its parameters on test size and power. Our

simulations in Chapter 2 used exponential covariance functions (i.e., a Matérn covariance

function with smoothness equal to 0.5). Results may differ for other covariance functions

(e.g., spherical covariance function or Matérn covariance function with smoothness other

than 0.5). A third area of further investigation is to compare nonparametric methods to

parametric methods for testing isotropy (e.g., Scaccia and Martin (2011)). A final area of

future work is development of a formal definition and more careful quantification of power of

tests of spatial isotropy. For example, the degree of geometric anisotropy could be quantified

using different characteristics of the covariance function, including the ratio of the major and

minor axes of the ellipse, degree of rotation of the ellipse relative to one of the coordinate

axes, and range of the process. Furthermore, it is important to consider the effects of density
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and design of sampling locations, sample size, and the amount of noise (nugget and sill) in

the observations on a test’s ability to detect anisotropy.

Improvements to our software package spTest is another area of future work. First, our

new nonparametric test of spatial isotropy in Chapter 4 could readily be incorporated into

the package. Additionally, as new hypothesis tests and graphical techniques are developed,

adding them to the spTest package would provide a convenient suite of diagnostic software

for practitioners. Next, it would be useful to extend the functionality of spTest to handle

non-rectangular sampling domains. Finally, the computational efficiency of spTest functions

can be improved by programming them in C++.

There are several areas of future work related to our new hypothesis test in Chapter 4,

including extending our test to handle missing data and non-gridded sampling locations (e.g.,

Fuentes, 2007). The asymptotic results derived in Bandyopadhyay and Lahiri (2009) may

be useful for this extension. Additionally, improvements to the variance approximations in

Section 4.4.2 might amend the concerns of inflated test size when data are observed on square

grids. Finally, the plots in Figure 4.4 suggest that when ✓ = 0, the power of the test might be

improved by considering the maximum difference between periodogram values at frequencies

with the same norm. For example, the test statistic MDk
= max {Dk} may be informative.

Developing a distribution for this test statistic will present a new set of challenges relative

to those presented in Section 4.5.3. Finally, the use of data tapering or pre-whitening may

also improve test performance, as these methods reduce the bias in the periodogram values.

Our investigation into the aliasing concern in Chapter 4 suggests that we should replace

f(ω) with f∆(ω) in the Whittle approximation (49). An issue with this approach is that

using f∆(ω) greatly increases the computation time, as the aliased spectral density (25)

needs to be computed at each step of the optimization. Additionally, the double infinite sum

in (25) needs to be truncated. Therefore, an area of future research is developing “efficient

and accurate approximations to f∆(ω)” (Stein, 2016). Additionally, we only explored the

effect of aliasing on point estimation using the Whittle approximation. An area of future
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research would be to explore the effect of aliasing on the uncertainty (i.e., standard error)

estimates given by the Whittle approximation. Finally, like other graphical techniques, our

graphical assessment of aliasing may be subjective and open to interpretation. Thus, a final

area of further work would be developing a formal hypothesis test for aliasing.

6.2 Future Work: Calibration-Capture-Recapture

There are many areas of future work in analyzing methane concentration data from mobile

detection platforms. Our capture-recapture model does not discriminate between natural gas

and non-natural gas methane sources. While we attempted to remove non-natural gas sources

during data processing, discriminating types of methane sources is important for identifying

areas of potential infrastructure repair. For example, the locations of natural gas pipelines,

wetlands, and storm drains could be combined with the estimated source sites to provide a

probabilistic classification of the source type.

Factors other than source emission rate, such as wind, traffic-generated air movement,

and changing source expression, will also affect the probability of detecting a source. For

example, if wind is blowing emissions away from the roadway, the source is less likely to

be detected by the GSV car’s instrumentation. Likewise, rain saturated soil can act as a

barrier to methane gas’ movement to the atmosphere. In our CCR model, the probability

of detection is a function only of source emission rate. As a result, non-detection of a source

is attributed only to source emission rate and is evidence that the source’s emission rate is

small. For this reason, we suspect that our individual emission rates are conservative. Thus,

an area of future work is fully understanding the effects of these variables on source detection

and incorporating them into a model for source detection.

We did not include include these other influential covariates here because they are difficult

to quantify at the small, localized scales at which methane sources occur. Air movement due

to wind, traffic, and urban geography poses a particularly onerous challenge. We plan to

perform more controlled methane releases and incorporate more covariates in the future to
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gain a better understanding of the source generating, detection, and emission processes.

For example, age, number of pipeline connections, pipeline gas pressure, material, and soil

types are known to affect the prevalence of natural gas leaks in pipeline infrastructure.

Wind, soil moisture content, underground gas migration, distance from the GSV vehicle,

and surrounding traffic all influence the probability of detecting detecting elevated methane

levels. Given that elevated readings occur, these same variables also influence the levels of

CH4 measured by the GSV instrumentation.

Other capture-recapture models might also be useful for analyzing data collected by GSV

vehicles. Over time, known natural gas leaks are repaired and new gas leaks arise, so it would

be natural to extend our closed-population capture-recapture model to an open population

of methane sources. An Mht capture-recapture model might also be useful for analyzing

the data. Because wind speed and direction can change from sampling attempt to sampling

attempt, the detection probability of an individual source is likely to change with sampling

attempt. In addition to the challenge of quantifying winds at small scales, we do not obtain

an estimate of a source’s emission rate when it is not detected which poses another challenge

in estimating model Mht.

Finally, incorporating the spatial nature of the methane concentration data is another

area of tangental and future work. Maps play a key role in informing discussion on infrastruc-

ture repair. Our capture-recapture models provide estimates for the number of undetected

sources, classified by sampling effort, but they do not provide inference for the specific lo-

cations of those undetected sources. We may consider methane sources as arising due to a

non-homogeneous point process, and inference on the underlying source generating process

may be a surrogate for the quality of infrastructure in a given region. A modified spatial

capture-recapture model may also be appropriate for these data and could be used to infer

the location (i.e., “home site”) of methane sources. In this work, we did not use a spatially

explicit capture-recapture model because we do not know the exact locations of methane

sources. Additionally, an assumption that methane sources occupy a two-dimensional region
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may not be appropriate for our analysis. The locations of natural gas leaks, the methane

source of highest importance and interest for our analysis, tend to be restricted to locations

along roadways where pipeline infrastructure is buried.

6.3 Conclusions

In this dissertation we presented applied, theoretical, and methodological advances in

the statistical analysis of spatially-referenced and capture-recapture data. Our review of

nonparametric tests of isotropy provides insight and guidelines for using the tests in practice.

The software package we developed enables practitioners to easily implement the various

methods. Our new nonparametric tests of isotropy provides a new tool for testing spatial

isotropy and overcomes shortfalls of the other methods. We also discuss many avenues of

future work related to nonparametric tests of spatial isotropy. Finally, our new capture-

recapture model provides a framework to draw inference from data collected by new mobile

sensing technology. The methodology for our capture-recapture model is useful in other

capture-recapture settings, and the results of our model are important for informing climate

change and infrastructure discussions.
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