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ABSTRACT 

 

BATTERY END-OF-LIFE CONSIDERATIONS FOR 

PLUG-IN HYBRID ELECTRIC VEHICLES 

 

Plug-in hybrid electric vehicles (PHEVs) represent an advanced vehicle technology with 

the potential to displace petroleum consumption with energy generated on the US electric grid. 

While many benefits have been associated with the increased electrification of the US vehicle 

fleet, concerns over battery lifetime and replacement costs remain an obstacle to widespread 

PHEV adoption. In order to accurately determine the lifecycle cost of PHEVs, assessment studies 

must make use of informed assumptions regarding battery degradation and replacement. These 

assumptions should approach end-of-life (EOL) metrics not only in terms of pack level 

degradation but also loss of vehicle efficiency and performance in order to accurately represent 

consumer incentive for battery replacement. Battery degradation calculations should also remain 

sensitive to the range of ambient conditions and usage scenarios likely to be encountered in the 

US market. Degradation resulting from a single duty cycle has the potential to misrepresent 

battery life distributions for the US fleet. 

In this study, the sensitivity of PHEV lifecycle cost to the battery replacement assumption 

is explored to underscore the need for an improved understanding of PHEV battery EOL 

conditions. PHEV specific battery test results are presented to evaluate the ability of industry 

standard life test procedures to predict battery degradation in PHEVs. These test results are used 

as inputs to a vehicle simulation program to understand changes in efficiency and performance 

with respect to battery degradation using a light commercial vehicle simulated as a blended-mode 
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capable, parallel PHEV20. A predictive battery degradation model based on empirical data is 

used to explore sensitivity of battery wear to various parameters including design variables, 

ambient conditions, and usage scenarios. A distribution of expected wear rates for a light-duty, 

midsize passenger vehicle modeled as a series PHEV35 is presented to highlight the uncertainty 

associated with battery life subject to US ambient conditions and driving distributions. 

The results of this study show that active management of PHEV battery degradation by 

the vehicle control system can improve PHEV performance and fuel consumption relative to a 

more passive baseline. Simulation of the PHEV20 throughout its battery lifetime shows that 

battery replacement will be neither economically incentivized nor necessary to maintain 

performance. The spectrum of climate and usage conditions PHEVs are expected to face in the 

US market suggest that the assumption of a single average ambient condition for battery wear 

calculations may not be representative of observed behavior in the fleet. These results have 

important implications for techno-economic evaluations of PHEVs which have treated battery 

replacement and its costs with inconsistency. 
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1. Introduction 

Plug-in hybrid electric vehicles (PHEVs) are an alternative transportation technology 

capable of sourcing energy from both the electric grid and conventional gasoline [1]. By storing 

energy on board the vehicle in the form of electricity, PHEVs offer the potential to significantly 

reduce petroleum consumption, reduce greenhouse gas and criteria emissions, and improve US 

energy security. Following a full charge, PHEVs operate primarily on electricity for a nominal 

charge depleting (CD) range before switching to charge sustaining (CS) mode and operating on 

gasoline. The ability of a PHEV to meet vehicle power requirements in an all-electric mode is 

closely tied to pack power while the distance a PHEV can travel in CD mode is largely dependent 

on the available capacity of the pack. Packs with high power and energy density are advantageous 

for PHEVs as they increase the electric capabilities of the power-train without significantly 

impacting vehicle mass. A brief review of select automotive battery chemistry candidates is 

presented in Table 1 (data adapted from [2]). 

Table 1. Comparison of automotive battery chemistries. 

 
Temperature 

(C) 

Efficiency 

(%) 

Energy 

Density 

(Wh/kg) 

Power 

Density 

(W/kg) 

Voltage 

(V) 

Self-

discharge 

(%/month) 

Cost 

Estimate 

($/kWh) 

Lead Acid -30 to 60 85 20 – 40 300 2.1 4 – 8 150 

NiMH -20 to 50 80 40 – 60 500 – 1300 1.2 20 500 

Li-ion -20 to 55 93 100 – 200 800 – 3000 ~3.6 1 – 5 800 

 

Lithium based technology has emerged in recent years as the chemistry of choice for 

PHEV batteries. Lithium technology provides the favorable aspect of relatively high energy 

density required of storage devices in PHEVs to achieve significant CD range. Additionally, 

lithium tends to exhibit superior cycle life compared to competitive technologies. Despite 

favorable cycle life, lithium still suffers from reduced utility subject to both age and cycling. The 
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impacts of age and cycling are evident both in terms of reduced power capabilities and a loss of 

available energy. 

While PHEVs can be negatively impacted by loss of battery power and energy, they have 

the potential to mitigate the vehicle level effects of battery degradation through increased 

utilization of the internal combustion engine (ICE). While loss of pack capacity will cause the CD 

range of the vehicle to decrease, this is generally a small fraction of the total vehicle range. 

Hundreds of miles can still be accomplished by operating in CS mode. Control strategies that 

allow for blended operation between the electric motor and the ICE in CD mode also allow 

PHEVs to prevent loss of battery power from impacting total vehicle power. 

The disconnect between battery degradation and loss of PHEV efficiency and power 

raises many questions. For instance: 

 How has PHEV battery end-of-life traditionally been defined? 

 Is PHEV battery end-of-life expected to be an indicator of consumer behavior 

regarding battery replacement? 

 How can PHEV battery end-of-life be accurately predicted? 

 What are anticipated levels of PHEV battery degradation in the US market? 

 Will battery replacement be a necessary part of PHEV lifecycle costs? 

This analysis will address these issues using lithium battery test data under a matrix of 

conditions. Test data will be used to inform models that will interpret the vehicle level impacts of 

PHEV battery degradation and predict battery wear based on a range of expected usage scenarios. 

To begin this analysis, a review of PHEV lifecycle studies is conducted, followed by a discussion 

of PHEV battery life testing and simulation methods used to determine battery life. 

1.1. Impact of Battery Replacement on PHEV Lifecycle Cost 

While PHEVs promise benefits to many elements of society, the market share that 

PHEVs will achieve in the near-term is dependent on their cost-competitiveness with 
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conventional vehicles. The incremental cost of PHEVs relative to conventional internal 

combustion vehicles is primarily associated with the costs of electric drivetrain and battery 

energy storage system. Advancements in electric drive technologies and the maturation of battery 

manufacturing systems will drive down PHEV prices with government incentives used to narrow 

the price gap in the interim, but the role of battery lifetime on PHEV incremental cost is 

uncertain. 

The recent studies which have sought to quantify the incremental cost of PHEVs relative 

to conventional vehicles have been inconsistent in their assumptions as to whether PHEVs will 

require battery replacement during their useful life, a decision that has large effect on the lifecycle 

cost of a PHEV. In [3], the Electric Power Research Institute (EPRI) discusses the need for 

battery replacement by examining the distance required by battery warranties, the batteries usable 

state-of-charge (SOC), and how the vehicle’s battery management system (BMS) handles 

degradation over time. Because the vehicles’ lifecycle costs are sensitive to battery replacement, 

two sets of lifecycle costs are presented with each using different assumptions regarding 

replacement. A study by the Massachusetts Institute of Technology (MIT) assumes that no battery 

replacements will be necessary during a PHEV’s useful life [4]. An Argonne National Laboratory 

(ANL) study presents lifecycle costs based on two different battery sizes; one in which a single 

battery replacement is required, and one sized such that replacement is not necessary [5]. EPRI’s 

2004 report [6] assumes no battery replacements in lifecycle analysis and justifies this claim with 

testing data, usage statistics, and technology improvement assumptions. The National Academy 

of Sciences (NAS) presents incremental costs of PHEVs without including the cost of battery 

replacement in a lifecycle costs analysis [7]. However, NAS does include battery life expectations 

that range from 3-8 years in the near term to 9-15 years by 2030; implying the need for battery 

replacement in a large percentage of PHEVs for years to come.  In these 5 studies, the decision to 

include battery replacement in a lifecycle cost analysis increases the incremental cost of a PHEV 

by between 33% and 84%, as shown in Table 2. 
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Table 2. Impact of the battery replacement assumption on the incremental cost of PHEVs 

for various PHEV cost studies. 

Organization (year) 
Vehicle 

configurations 

% Increase in incremental 

cost for one battery 

replacement 

EPRI (2001) PHEV 20, 60 52-71% 

ANL (2001) PHEV 30 33-47% 

EPRI (2004) PHEV 20 57-64% 

MIT (2007) PHEV 10, 30, 60 44-75% 

NAS (2010) PHEV 10, 40 39-84% 

 

The battery replacement assumption has been demonstrated to significantly impact the 

lifecycle cost of PHEVs. In light of this large effect, a more detailed study of PHEV battery end-

of-life (EOL) is required. In order to inform this study, industry standard EOL testing metrics as 

established by the United States Advanced Battery Consortium (USABC) are reviewed. 

1.2. USABC Test Procedure and Thermodynamic State-of-Charge 

The industry standard method for determining the lifetime and capabilities of automotive 

batteries is through USABC testing, but the applicability of USABC test procedures to the 

conditions of use of modern PHEVs is uncertain.   

The USABC was formed in January of 1991 in an effort to promote the long term 

research and development of electrochemical energy storage systems. Currently operating under 

the guidance of the United States Council for Automotive Research (USCAR), USABC promotes 

collaboration between leaders of industry and academia in order to accelerate the development of 

high power and energy batteries for use in electric, hybrid, and fuel cell vehicles [8]. 

As part of its mission, the USABC publishes test procedures to guide the development of 

electrochemical energy storage systems. During its inception in the early 1990’s, battery electric 

vehicles (BEVs) were receiving considerable attention from US automakers in anticipation of 

their commercial release. As such, USABC established battery testing procedures designed 

primarily for all-electric BEVs. These USABC standards established battery EOL for BEVs as 
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the stage at which specific failure criteria is met (e.g., capacity and/or power degradation). 

Specifically, when either: 

(1) “the net delivered capacity of a cell, module, or battery is less than 80% of its 

rated capacity when measured on the DST (Reference Performance Test); or 

(2) the peak power capability (determined using the Peak Power Test) is less than 

80% of the rated power at 80% DoD,” 

with DoD (depth of discharge) defined as: 

“the ratio of the net Ampere-hours discharged from a battery at a given rate to the 

rated capacity.” 

USABC last updated its battery EOL testing procedures in January of 1996 [9]. Since that 

time, vehicles have become far more sophisticated in their measurement and management of 

battery SOC; to the point that the USABC definition of EOL must be reexamined. 

Conventionally SOC and DoD (where, DoD=1-SOC) are nameplate capacity-based, 

using a method known as Coulomb Counting to determine the percent of remaining charge 

relative to nameplate capacity [10]. Capacity-based SOC measurement is widely used in testing 

environments due to its high degree of stability and consistency; however, this method can be 

misleading as it does not represent the actual thermodynamic “state” of the battery [11] including 

Peukert effects, temperature effects, self-discharge, and capacity degradation. Modern BMS are 

now capable of taking these variables into account to determining a battery’s thermodynamic 

SOC (t-SOC), where the t-SOC is a characterization of the battery with respect to its 

instantaneous chemical composition and extent of reaction [12]. The discrepancy between SOC 

and t-SOC in batteries of various ages can be seen in Figure 1. 

Advancements in BMS systems have important ramifications for how modern PHEVs 

manage their batteries as the batteries degrade over the vehicle’s lifetime. Electric vehicles built 

in the 1990’s were designed to maintain their original range over their lifetime and as a result 

experienced accelerated power degradation once capacity degradation necessitated the use of the 
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battery under low t-SOC. Because PHEVs do not have so strict a requirement on battery capacity 

(as they are able to drive under a hybrid mode), PHEV degradation control strategies (DCS) are 

now capable of preventing a battery from being depleted to the point where this accelerated 

degradation occurs. This allows PHEVs to operate within a t-SOC “window” that supplies 

adequate battery power while avoiding the accelerated degradation which occurs at extreme t-

SOC. The lower limit that a DCS places on t-SOC is especially critical to PHEVs as they will 

operate at low t-SOC for travel in CS mode.  

 

Figure 1. Variation of t-SOC as a result of capacity degradation. 

1.3. Modeling PHEV Battery EOL 

PHEV battery life has traditionally been predicted through the use of testing and 

simulation. While PHEV specific battery life test procedures have the ability to produce a high 

level of resolution with respect to the system level effects of battery degradation, there are 

significant drawbacks associated with using battery life testing to predict battery degradation in 

the fleet. Most notably, testing procedures are only capable of capturing the effects of individual 

duty cycles on a battery. Multiple testing schedules would be necessary to sweep the multi-

dimensional space of ambient conditions and usage scenarios to which PHEV batteries are likely 

0% 20% 40% 60% 80% 100% 

0% 20% 40% 60% 80% 100% 

Old Battery 

Midlife Battery 

New Battery 

Nameplate Depth of Discharge (DOD) 
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to be subjected. When considering the substantial investment of time and capital necessary to 

perform a single test schedule, the notion of developing PHEV battery life estimations purely via 

testing immediately becomes cost prohibitive. 

Battery life predictions under a matrix of conditions become feasible only through the use 

of modeling and simulation. High fidelity battery life simulation scenarios that capture varying 

ambient temperature profiles, battery sizes, and driving patterns are of great value to battery 

manufacturers and vehicle OEMs as they inform in the design process by constructing systems 

capable of maintaining acceptable utility for a desired period of time. These model based designs 

provide the benefits of reduced development time and cost through the use of optimization 

algorithms used to determine optimal battery chemistry, size, and thermal management. The two 

approaches generally applied to creating predictive battery degradation models are 1) physics-

based and 2) empirical. 

Physics-based models utilize analytical relationships describing chemical reactions in the 

battery to predict degradation resulting from specific fade mechanisms. Loss of battery power and 

energy can be attributed to a number of factors including: irreversible chemical reactions, 

mechanically induced fatigue, and thermal stress. These factors are generally superimposed 

making it difficult to isolate individual contributions to overall loss of power and energy. A 

summary of degradation mechanisms occurring at the cell anode as summarized by [13] is 

presented below in Table 3. 

While physics-based models can be extremely accurate in predicting chemically induced 

reactions, they tend to be computationally expensive requiring simultaneous solutions to multiple 

partial differential and algebraic equations. This can complicate system design processes that seek 

to use a battery wear model as part of a larger iterative design process. Additionally, certain 

degradation mechanisms cannot be analytically described and the contributing nature of 

competing mechanisms is often difficult to predict. 
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Table 3. Summary of lithium battery degradation mechanisms occurring at the anode. 
Cause Effect Leads to 

Electrolyte decomposition Loss of lithium impedance rise 
Capacity fade, 

power fade 

Solvent co-intercalation, gas evolution 

and subsequent cracking formation in 

particles 

Loss of active material, Loss of Li Capacity fade 

Decrease of accessible surface area due to 

continuous SEI growth 
Impedance rise Power fade 

Changes in porosity due to volume 

changes, SEI formation and growth 
Impedance rise, over-potentials Power fade 

Contact loss of active material particles 

due to volume changes during cycling 
Loss of active material Capacity fade 

Decomposition of binder Loss of Li, loss of mechanical stability Capacity fade 

Current collector corrosion 

Over-potentials, impedance rise, 

inhomogeneous distribution of current 

and potential 

Power fade 

Metallic lithium plating and subsequent 

electrolyte decomposition by metallic Li 
Loss of lithium (Loss of electrolyte) 

Capacity fade, 

power fade 

 

Empirical models use experimental cycling and shelf life data to inform best fit equations 

that describe loss of power and energy. Equations can be fit based on optimal mathematical 

formulas and/or physically based phenomena. Empirical models are able to capture the effects of 

multiple degradation mechanisms over a range of storage and cycling conditions. These models 

tend to computationally efficient and are well suited to integration into larger vehicle system 

design algorithms. Despite these advantages, empirical models are limited to the spectrum of 

testing conditions used to generate the model. Care must be taken when applying empirical 

models not to exceed stated bounds of operation. 

The current analysis makes use of empirical models that are both PHEV specific and 

constructed using more general test data for lithium batteries. A description of testing procedures 

used in this analysis is now presented. 
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2. Testing Procedures 

The current analysis makes use of two testing data sets: 1) a PHEV specific data set 

generated in a collaborative effort by the EPRI and Southern California Edison (SCE) capturing 

over 4000 cycles and 2) a collection of battery test data (both calendar and cycling) organized by 

the National Renewable Energy Laboratory (NREL) to inform a predictive battery degradation 

model. A description of testing procedures used to generate these data sets is now provided. 

2.1. Southern California Edison Test Conditions 

Between 2005 and 2009, a PHEV battery pack was degraded in the laboratory over 4323 

charge-discharge cycles using a PHEV-specific test profile. The battery test profile was 

developed to simulate the duty cycle of a PHEV battery in CD mode, in CS hybrid mode, and in 

recharging mode. The battery test profile was derived from a dynamic vehicle-level simulation of 

a portion of the INRETS URB1 vehicle test cycle. The battery test cycle replicates the urban 

driving conditions likely to be the most demanding to the battery (low speed, high acceleration 

and charge-sustained HEV mode at low battery SOC). Details of the battery and vehicle 

characteristics can be found in [14] and [15]. 

This PHEV specific test profile is made up of a series of CD, CS and charging modes to 

simulate the types of battery usage which are common to PHEVs. 
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2.1.1. Charge Depleting Mode Testing 

The CD mode begins with a fully charged battery. The 181.5 second EV test profile (see 

Figure 2) was repeatedly applied to the battery until the battery voltage drops below a pre-defined 

threshold for 10 consecutive seconds. This threshold was determined at the beginning of the life 

cycle test to ensure that the battery SOC at the end of the CD mode was approximately 25%. 

 

Figure 2. PHEV CD test profile used to define PHEV-specific battery degradation test 

procedure 
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2.1.2. Charge Sustaining Mode Testing 

The CS mode starts at the completion of the CD mode. The 181.5 second HEV test 

profile (see Figure 3) was continually applied to the battery until the total duration of the CD 

mode and the CS mode reached a combined 2.6 hours (equivalent to a 50 mile trip). The battery 

was then allowed to rest for 15 minutes before the next mode. 

  

Figure 3. PHEV CS test profile used to define PHEV-specific battery degradation test 

procedure 
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2.1.3. Battery Charging Mode Testing 

After completion of the simulated driving profile, the battery was charged using the 

manufacturer's suggested charge algorithm (see Figure 4) at the highest rate that would not 

present any detrimental effect to the battery life (3.5 hrs for a full charge). At the completion of 

this mode, a rest period lasting approximately one hour was applied to allow for chemical and 

thermal stabilization before the start of a new test cycle. 

 

Figure 4. PHEV charging profile used to define PHEV-specific battery degradation test 

procedure. 
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Table 4. SCE EVTC battery degradation test equipment. 

Make Model Description 

AeroVironment Inc., Simi Valley, CA ABC-150 Battery Cycler 

Neslab, Oak Park, IL HX-300 Recirculation Chiller 

National Instruments, Austin, TX PCi-CAN2 Series 2 CAN Communication Interface Card 

AeroVironment Inc., Simi Valley, CA SmartGuard Type E 12-bit data acquisition system 
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Table 5. PHEV battery module specifications. 

Manufacturer Saft 

Battery Chemistry Lithium Ion 

Number of Cells/Pack 102 

Number of Modules/Pack 17 

Nominal Pack Voltage (VDC) 367 

Cell Capacity (Ahrs) 41 @ C/3 

Pack Energy (kWh) 15.5 @ C/3 

Peak Pack Power (kW) 100 

Module Dimensions (mm) 190 x 123 x 242 

Pack Weight (kg) 136 

Total System Weight (kg) 180 

Charger 3.3 kW Conductive 208-240 VAC Input 

Cooling Circulated liquid at 25°C, Continuous 0.5 l min
-1

 flow 

Battery Monitoring SAFT BMS with voltage, current, and temperature sensing 

 

Reference Performance Tests (RPTs) were conducted before the start of the life cycle 

test, and at periodic intervals every 240 test cycles (equivalent to approximately 2 months of 

testing) to characterize the performance of the battery. The following tests are included in each 

RPT: 

• A constant current discharge at a rate of C/1 

• A constant current discharge at a rate of C/3 

• A peak power test 

• A Hybrid Pulse Power Characterization (HPPC) Test (performed in the dual mode 

configuration) 

The first three tests were performed using the methods of the USABC Electric Vehicle 

Test Procedure Manual [9]; the HPPC test was performed using the methods the Partnership for a 

New Generation of Vehicles (PNGV) Battery Test Manual [16]. A preliminary cycle, including a 

discharge at a constant current rate of C/3 down to 60% DoD and a full recharge, was performed 

prior to each RPT. A 30 minute rest was included in between each charge and discharge. 
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2.2. NREL Test Conditions 

For the purpose of developing a predictive battery degradation model, NREL collected 

lithium life test data from multiple sources to describe resistance growth and capacity fade as a 

function of both storage and cycling [17]. Testing conditions for all datasets are described below 

in Table 6. 

Table 6. NREL lithium life test dataset parameters. 

 Storage Tests Cycling Tests 

Resistance 

Growth 

T= 20, 40, 60 C 

SOC= 50, 100% 

DoD= 20, 40, 60, 80% 

Charge voltage= 3.9, 4.0, 4.1 V 

Cycles per day= 1, 4 

Capacity 

Fade 

T= 0, 10, 23, 40, 55 C 

Voltage= 3.6, 4.1 V 

DoD= 20, 40, 60, 80% 

Charge voltage= 3.9, 4.0, 4.1 V 

Cycles per day= 1, 4 

 

The assembled dataset consists exclusively of cell level test data for lithium ion 

graphite/nickel-cobalt-aluminum chemistry. This particular chemistry is potentially well suited to 

automotive applications as it exhibits acceptable power density, energy density, and life 

characteristics. As such, the assembled data set is assumed to be representative of near term 

lithium technology for use in PHEV battery packs. Application of the assembled dataset to a 

predictive battery degradation model is outlined in section 0. 
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3. Modeling and Simulation Design 

Using the two data sets generated from testing procedures described in Section 2, models 

were developed to 1) analyze effects of PHEV battery degradation on vehicle efficiency and 

performance and 2) understand the sensitivity of battery degradation to various usage, ambient 

condition, and vehicle design scenarios. The SCE test data was used as an input for battery 

parameters in a detailed vehicle simulation program to understand the vehicle level effects of 

battery degradation on a PHEV. The datasets organized by NREL were used to develop an 

empirical model of battery degradation in lithium packs. The predictive battery degradation 

model is supported by a high level vehicle simulation tool and a lumped parameter thermal 

vehicle model that predicts cabin and battery temperature based on ambient conditions and 

driving distance. Detailed descriptions of these two approaches are outlined below. 

3.1. Detailed Vehicle Level Simulations 

To determine the effects of battery degradation on PHEV attributes, a light commercial 

vehicle was modeled and simulated as a blended-mode capable, parallel PHEV20. A Modelica-

based vehicle simulation environment representing the LFM (light, fast, modifiable) vehicle 

model presented in [18] was used to relate battery degradation to changes in vehicle performance.  

These simulations assume that calendar life degradation in practice is insignificantly different 

from calendar life degradation in the laboratory, that module-level performance degradation 

dominates over pack level effects such as module imbalance, and that the rate of battery 

degradation is independent of control strategy.   

Simulations were performed using two DCSs: a “Static DCS” and a “Dynamic DCS”. 

The Static DCS maintained the SOC window in the battery such that the energy available for 
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discharge remained constant over the battery’s life (equivalent to maintaining a constant, 

minimum capacity-based SOC over the lifetime of the vehicle). The Dynamic DCS allowed for a 

constant percentage of thermodynamic capacity to be utilized in CD mode such that the energy 

available for discharge was a function of the actual energy available in the battery instead of rated 

capacity (equivalent to measuring and recalibrating the minimum t-SOC continuously over the 

lifetime of the vehicle). The Dynamic DCS ensured that the vehicle entered CS mode at 25% t-

SOC. 

The vehicle model employed in these simulations represents a real vehicle which was 

designed so that the battery was not oversized in terms of its power output, thereby minimizing 

incremental costs. As such, any loss of battery power from original specifications would be 

immediately visible at the vehicle level. Modern PHEVs are designed with some battery power 

margin to allow for battery degradation without affecting the electrical power capability of the 

drive-train. As such, these degradation simulations represent a worst-case scenario. 

3.2. Predictive Battery Degradation Model 

In order to explore the sensitivity and variability of battery wear in PHEVs to various 

parameters, a predictive battery wear model was implemented. The life model is informed by 

vehicle power train and battery pack thermal modeling capabilities. It was possible to capture the 

effects of drive cycle based loading and ambient conditions on battery wear rates in a predictive 

and robust method. An overview of this integrated approach is provided, followed by an 

explanation of various design and usage scenarios employed. 
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3.2.1. Life Model 

Battery aging is caused by multiple phenomena related to both cycling and calendar age. 

Battery degradation is accelerated with the DoD of cycling, elevated temperature, and elevated 

voltage exposure, among other factors. At the battery terminals, the observable effects of 

degradation are an increase in resistance and a reduction in capacity. These two effects can be 

correlated with power and energy loss that cause battery EOL in an application. Mechanisms for 

resistance growth include loss of electrical conduction paths in the electrodes, fracture and 

isolation of electrode sites, growth of film layers at the electrode surface, and degradation of 

electrolyte. Mechanisms for capacity loss include fracture, isolation, and chemical degradation of 

electrode material, as well as loss of cyclable lithium from the system as a byproduct of side 

reactions. 

Under storage or calendar-aging conditions, the dominant fade mechanism is typically 

growth of a resistive film layer at the electrode surface. As the layer grows, cyclable lithium is 

also consumed from the system, reducing capacity. In the present model, resistance growth and 

lithium capacity loss are assumed to be proportional to the square-root of time, t
1/2

, typical of 

diffusion-limited film-growth processes [19]. Under cycling-intense conditions, degradation is 

mainly caused by structural degradation of the electrode matrix and active sites. Cycling-driven 

degradation is assumed to be proportional to the number of cycles, N. Cell resistance growth due 

to calendar- and cycling-driven mechanisms are assumed to be additive: 

 R = ao + a1t
1/2

 + a2N (1) 

Cell capacity is assumed to be controlled by either loss of cyclable lithium or loss of 

electrode sites,  

 Q = min(QLi, Qsites) (2) 

where 

 QLi = bo + b1t
1/2

 (3) 

 Qsites = co +c1N (4) 
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Models (1), (3), and (4) are readily fit to a resistance or capacity trajectory measured over 

time for one specific storage or cycling condition. Using multiple storage and cycling datasets, 

functional dependence can be built for rate constants a1(T, V, DoD), a2(T, V, DoD), b1(T, V, DoD), 

c1(T, V, DoD). The present battery life model was fit to laboratory aging datasets [20]-[23] for the 

lithium-ion graphite/nickel-cobalt-aluminum (NCA) chemistry as described in [23]. The NCA 

chemistry has generally graceful aging characteristics, and is expected to achieve 8 or more years 

of life when sized appropriately for a vehicle application. 

The life model employed in this analysis was matched to experimental data for a NCA 

lithium-ion cell with up to 25% battery capacity fade. Beyond this level of wear, fade rates may 

accelerate, as sometimes evidenced by experimental data by a sharp drop in remaining capacity 

with continued cycling. The present life model does not capture possible accelerating fade 

mechanisms that could occur beyond 25% capacity fade. 

Additionally, the life model has been shown to have weak sensitivity to normal battery 

temperature variation over the course of a single day. As such, this analysis uses average monthly 

temperatures as inputs to the life model in order to capture the effect of seasonal variability in 

disparate climate regions of the US. 

While high heat generation rates resulting from aggressive driving are correlated to 

increased battery temperature, the impact of fast charging as it relates to rate-induced wear is not 

considered in the present model. 
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3.2.2. FAST Vehicle Model 

Vehicle modeling was performed using a high-level tool developed by NREL known as 

FAST (Future Automotive Systems Tool). Analysis focuses on a PHEV with 35-mi (56-km) of 

nominal CD range followed by CS operation via a gasoline fueled ICE (PHEV35). Table 7 

summarizes the component parameters selected for the PHEV35 model, which are roughly 

similar to the configuration of the production Chevrolet Volt [24]. 

Table 7. PHEV 35 FAST vehicle model inputs. 

Cd 0.28 

Frontal Area (m
2
) 2.13 

Vehicle Mass (kg) 1850 

Engine Power (kW) 63 

Motor Power (kW) 111 

Battery Capacity (kWh) 16 

Battery Max Allowable DoD 65% 

Battery Max State of Charge 85% 

Battery Thermal Management System Liquid heating/cooling 

Accessory Load (W) 300 

 

Battery internal heat generation rates were correlated with drive cycles using cell-level 

test data for a representative Li chemistry. Nominal heat generation rates were determined using 

the California Air Resources Board (CARB) LA92 drive cycle, which was found to produce 

moderate heat generation rates characteristic of real-world drive cycles (see Table 8). 

Table 8. Cycle attributes for tested cycles using PHEV35 

 

Cycle 

time, s 

Cycle distance, 

km 

Avg Speed, 

km*hr
-1

 

Avg Heat 

Generation Rate, W 

UDDS 1369 11.99 31.5 103 

LA92 1435 15.80 39.6 232 

US06 600 12.89 77.8 622 
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3.2.3. Vehicle Thermal Model 

In order to correlate ambient conditions to battery temperature, a detailed thermal vehicle 

model was implemented. Based on previous analysis done by NREL on a Toyota Prius [25], the 

thermal model captures both heating due to ambient temperature profiles and solar loading (see 

Figure 5). These inputs are merged with battery internal heat generation profiles during driving 

and charging to calculate average battery temperature over the course of a 24 hour period. In 

addition to passive-heat-transfer-to-ambient, the PHEV35 battery pack is equipped with an active 

thermal management system (TMS) capable of maintaining battery temperature within a desired 

band when driven or plugged-in. 

 

Figure 5. Vehicle thermal model employed to calculate battery temperature with respect to 

ambient temperature, solar loading, and thermal insulation. 

Contributions to battery temperature in the PHEV35 are attributed to three sources: 1) 

ambient temperature, 2) solar loading and 3) heat generation plus active heating/cooling while 

driving. A baseline battery temperature is calculated as a difference above ambient due to solar 

loading (shown in Figure 6 in green). Heat generated during driving/charging and the effects of 

the active TMS are shown in red. The TMS is assumed to only operate when the vehicle is being 

driven or while plugged-in. All scenarios assume that the PHEV35 is left unplugged 

approximately 8 hours during the course of the day. 
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Figure 6. Battery temperature contributions from ambient, solar loading, active cooling, 

and internal heat generation. 

While battery temperature calculations are performed to account for variations in driver 

aggression, active versus passive TMS, and daily distance, the cell level effects of temperature on 

internal resistance and capacity are not captured in the present model. For example, a battery pack 

in Minneapolis may experience significantly lower temperatures and subsequently reduced 

vehicle efficiency and CD range. Additionally, auxiliary loading placed on the PHEV35 resulting 

from operation of the active TMS with the potential to limit CD range are not considered. 

Auxiliary climate control loading has the potential to significantly impact the CD range of 

PHEVs as shown in [26]. Future analysis may address temperature effects on cell internal 

resistance and capacity to quantify the impact on PHEV efficiency and utility. 

3.2.4. Initial Sensitivity Analysis 

Upon successful integration of the battery life model, vehicle model and thermal model 

the PHEV35 was run through an initial sensitivity analysis to determine the conditions under 

which battery wear rates exhibited the greatest variability. A matrix of location, vehicle design, 

and usage scenarios was implemented with the primary outputs being battery resistance growth 
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and capacity fade at 8 years. Figure 7 and Figure 8 show the resulting variability of capacity loss 

and resistance growth for the PHEV35 (specific criteria can be found in Table 9). 

 

Figure 7. Battery wear sensitivity analysis for 8 year resistance growth on PHEV35. 

 

Figure 8. Battery wear sensitivity analysis for 8 year capacity fade on PHEV35. 
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Table 9. Design of experiments matrix for PHEV35 sensitivity analysis. 

 Criteria producing greatest wear Criteria producing least wear 

Max Allowed DoD 87% 55% 

Ambient Conditions Phoenix, AZ Portland, ME 

Vehicle Miles Traveled 20,000 miles 5,000 miles 

Charging Pattern End-of-day Just-in-time 

Pack Insulation Cabin dominated Ambient dominated 

Driver Aggression US06 UDDS 

 

Initial analysis indicates that ambient conditions and vehicle design parameters contribute 

significantly to variability of battery wear while usage patterns have a relatively minimal impact. 

The PHEV35 saw a limited impact on resistance growth relative to variation in charging pattern, 

pack insulation, and driver aggression (less than 3% for each). Note that the impact of fast 

charging is not considered in the present work. 

After the initial sensitivity analysis, a more thorough investigation of the three conditions 

contributing the most uncertainty to battery wear was conducted. This analysis focuses on the 

effects of maximum allowable DoD, ambient conditions, and VMT. An explanation of the design 

of experiments is now presented. 

3.2.5. Design of Experiments 

After the initial sensitivity analysis, a more thorough investigation of the three conditions 

contributing the most uncertainty to battery wear was conducted. The PHEV35 analysis focused 

on ambient conditions, maximum allowable DoD, and VMT. An explanation of the design of 

experiments will now be presented. 

3.2.5.1. Depth-of-Discharge 

The effect of DoD on battery wear is explored for the PHEV35. The PHEV35 was 

assigned a nominal value for DoD and maximum SOC. These values are adjusted over a feasible 

range to explore the effect on wear (55-87% maximum allowed DoD). The SOC window of the 
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pack is adjusted relative to total energy to ensure that the available energy in the pack remains 

constant for all DoDs. By adjusting DoD and maximum SOC, the life model will capture the wear 

effects of deep cycling and operation at high voltages. 

Adjusting pack energy has an impact on vehicle mass (and cost) and is subsequently 

related to CD range, efficiency, and acceleration. In light of these interactions, DoD was 

restricted to values that produced vehicle range, efficiency, and acceleration values within ±1% of 

the nominal design. 

3.2.5.2. US Ambient Conditions 

An expected distribution of wear rates was desired subject to US ambient conditions. 

Current HEV population data was used as an estimate for the future distribution of PHEVs. HEV 

population statistics highlight both large markets and regions where consumers have shown a 

tendency towards early adoption of advanced vehicle technology. The Polk Company’s 2010 

light duty vehicle registration dataset [27] was used to determine the top 100 US metropolitan 

areas in terms of number of HEVs (see Figure 9). These locations account for approximately 75% 

of the total US HEV population and represent a plausible estimate for the location distribution of 

PHEV early adopters. 

 

Figure 9. US metropolitan areas with large HEV populations overlaid onto average ambient 

temperature. 
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In addition to national temperature distributions, Los Angeles, CA was selected as a 

location for analysis based on its large share of the HEV market (see Table 10) and its moderate 

climate which produces battery wear representative of the US average. 

Table 10. Top 5 US metropolitan areas in terms of HEV population. 

Metropolitan Area HEVs 

Los Angeles, CA 149,042 

New York City, NY 86,773 

San Francisco, CA 82,756 

Washington, D.C. 66,720 

Chicago, IL 52,158 

 

Ambient temperature and solar irradiation data was assembled from NREL’s Typical 

Meteorological Year Database (TMY3) [28]. The national weighted distribution of average yearly 

ambient temperatures can be seen in Figure 10. TMY3 data was aggregated into monthly 

averages as hourly and daily battery temperature variations were shown to have a negligible 

effect on wear rates in the battery life model. 

 

Figure 10. Distribution of average ambient temperatures for sampled US HEV population. 
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3.2.5.3. Vehicle Miles Traveled 

Daily distance for each vehicle day was determined using the distribution of national 

averages according to the 2001 National Household Travel Survey (NHTS) [29]. Using this 

distribution, a zero mile per day probability was calculated as approximately 16% (about one day 

per week) such that the nominal VMT of the distribution was equal to 12,375 miles per year 

(19,916 km*yr-1). 

Yearly VMT was adjusted from 5,000 to 20,000 miles per year (8,047 to 32,187 km*yr-

1) to determine the effect of variable cycling on battery wear rates in the PHEV35. VMT was 

adjusted by scaling the NHTS distances while holding probability values constant as shown in 

Figure 11. 

 

Figure 11. Daily distance distributions for three yearly VMT values. 

This analysis uses fleet-aggregated driving distance statistics. Future analysis may 

quantify the effect of longitudinal vehicle distance driving distributions on battery wear. 

Longitudinal vehicle distance distributions track the driving behavior of individual vehicles over 

time and tend to exhibit a more focused set of distances with a small number of probability peaks 

representing routes frequently traveled. 
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4. Testing and Simulation Results 

Results of multi-year life testing and simulations are presented in this section. PHEV 

specific battery test results are first presented to understand the effects of industry standard test 

procedure on PHEV battery EOL. Next, detailed vehicle simulation results are presented to 

correlate loss of battery power and energy with changes in vehicle level attributes for two DCSs. 

Lastly, predictive battery degradation simulation results are presented to illustrate the expected 

distribution of battery wear expected in the US market. 

4.1. Southern California Edison test results 

The results of the SCE RPTs are now presented as a function of cycle number to 

demonstrate the degradation of Lithium Ion batteries under PHEV specific test procedure.  

Battery EOL as calculated using the USABC capacity-based SOC can be contrasted with the 

battery EOL as calculated using t-SOC.  In all of these results, no effort is expended to post-hoc 

separate cycling-based degradation from calendar life degradation.   

4.1.1. Battery Degradation Test Results using Capacity-based SOC 

This section presents testing results which illustrate how capacity degradation and power 

degradation develop under USABC tests which use a capacity-based SOC definition.  

Figure 12 presents the battery RPT test results as measured during the battery degradation 

test.  As shown in Figure 12, battery power degrades non-linearly with cycle number. This non-

linear effect is especially evident after approximately 2400 cycles.  Under the USABC testing 

procedure, the battery under test will reach EOL at approximately 3650 cycles due to power limit. 

The energy EOL is not reached in 4323 cycles under the USABC test at the C/3 discharge rate.   
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Figure 12. Energy and power measurements as a function of cycle number. 

The effect that t-SOC has on power degradation rate can be seen in Figure 13 where 

degradation at various capacity based SOC are compared. Power can be seen to degrade at 

comparable rates for the three DoDs until approximately 2400 cycles. At that point, power 

measured at 80% DoD begins to rapidly degrade while power measured at 70% and 60% DoD 

continues to degrade linearly.  

 

Figure 13. Power degradation at various levels of capacity based DoD as a function of cycle 

number. 
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A similar effect can be seen in Figure 14 which shows the battery internal resistance as a 

function of SOC and cycle number. Again, the pack internal resistance at low capacity-based 

SOC is increasing nonlinearly with cycle number after approximately 2400 cycles. 

 

Figure 14. Pack internal discharge resistance as a function of cycle number. 

This acceleration in degradation rate which is evident in all test results at low capacity-

based SOC can be attributed to a significant change in the t-SOC that power is being measured at. 

As the battery capacity degrades, an 80% DoD corresponds to a lower and lower t-SOC 

condition, as seen in Figure 15. At approximately 2400 cycles, the degraded battery capacity 

forces the 80% DoD power test to occur at a t-SOC below 15%. This low t-SOC region has high 

impedance reaction pathways, increasing the internal resistance of the battery system and 

decreasing its peak power. In other words, the USABC test procedure mixes the effects of battery 

capacity degradation with those of battery power degradation; as the battery capacity degrades, 

the low SOC power tests begin to occur at lower and lower t-SOC. 
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Figure 15. Thermodynamic SOC relative to capacity based DoD as a function of cycle 

number. 

These types of results will be familiar to students of battery degradation under USABC 

procedures, but the results’ relevance for evaluating battery EOL must be considered carefully.  

For BEVs, these USABC EOL definitions can be relevant because BEVs are expected to 
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performance plays a more minor role in these functions of the vehicle. Because PHEVs can vary 

their energy management and control strategy by varying engine turn-on conditions and charging 

power demands, they can maintain the usability, drivability and consumer acceptability and can 

avoid battery EOL despite degrading battery capacity.   

4.1.2. Battery Degradation Test Results using t-SOC 
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testing at 20% t-SOC, as opposed to the USABC-required 20% SOC testing procedure. It should 

be noted that results presented in this section reflect testing that occurred for CD cycling from 

100% to 25% SOC. This analysis does not account for differences in degradation rates as a result 

of CD cycling from 100% to 25% t-SOC. While cycling based on t-SOC is believed to extend 

battery life, an additional 5 years of testing would be necessary to fully account for the unique 

degradation mechanisms associated with test procedure based solely on t-SOC. 

Figure 16 shows power and energy degradation measured at 20% t-SOC. This adjustment 

causes power to degrade more linearly as compared to the degradation presented in Figure 12. 

Instead of battery EOL being determined by power degradation, it is now dictated by energy 

degradation. This extends the battery life from approximately 3650 cycles to over 4400 cycles, an 

increase of over 20%. 

 

Figure 16. Energy and power measurements made at 80% DoD and 80% t-DoD as a 

function of cycle number. 

Further evidence of the effect of measuring power degradation at uniform t-SOC can be 

seen in Figure 17. Power can now be seen to degrade at similar rates for all three t-DoD with 

degradation rate remaining relatively constant throughout testing.  
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Figure 17. Power degradation measured at various t-DoD as a function of cycle number. 

Figure 18 shows the effect that t-DoD measurements have on internal resistance as 

batteries degrade. Internal discharge resistance can now be seen to increase more uniformly and 

linearly for all conditions of t-DoD.  

 

Figure 18. Pack internal discharge resistance as a function of cycle number. 
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capacity-based SOC.  Battery systems in PHEVs should be able to use an advanced DCS to avoid 

battery discharges at very low t-SOC, thereby increasing the battery cycle life. 

4.2. Detailed Vehicle Level Simulation Results 

Vehicle simulation results are presented for the PHEV20 in terms of fuel consumption, 

performance, and lifecycle cost.  

4.2.1. Vehicle Fuel Consumption Simulations 

Using the two DCSs, we can see in Figure 19 how fuel consumption is affected by 

battery degradation. PHEV fuel consumption is presented in this paper using an equivalent liter 

per 100 kilometer metric where electric power consumption in the vehicle is converted to 

gasoline consumption using the lower heating value for gasoline. CD and CS fuel consumptions 

are weighted based on vehicle’s utility factor (UF) as defined in SAE J1711 [30]. PHEV UF is 

calculated as the ratio of the distance a PHEV travels in CD mode to the total distance traveled 

prior to a charging event. SAE J2841 [31] is used to predict UF based on CD range. Finally, 

composite fuel consumption is calculated by weighting urban and highway fuel economy based 

on EPA standards (55% urban and 45% highway measured using federal driving schedules) [32]. 

Figure 19 shows that the Dynamic DCS is able to reduce the increase in vehicle fuel 

consumption over the life of the battery pack. Over the 4323 cycles tested the Dynamic DCS fuel 

consumption increases by 25% compared to an increase of 32% using the Static DCS. This effect 

is due in part to the Dynamic DCS allowing the vehicle to operate in a higher SOC window where 

available battery power is superior. While the Dynamic DCS offers lower fuel consumption, it is 

also more susceptible to losses in CD range. Over the tested cycles, the Composite UF for the 

Dynamic DCS decreases by 13% while the Static DCS increases by 11%. While an increase in 

CD Range for degraded batteries may seem counterintuitive, it is a result of the Static DCS 
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maintaining the SOC window in CD mode. As the peak power of the battery decreases with use, 

additional distance is necessary to deplete a constant amount of battery capacity. 

 

Figure 19. PHEV20 fuel consumption as a function of cycle number. 

Additional understanding of battery degradation’s effect on fuel consumption can be 

garnered by examining its effects on specific modes of operation and drive schedules. Figure 20 

and Figure 21 display fuel consumption for the simulated PHEV20 broken into CD versus CS 

operation and urban versus highway drive schedules respectively. In both instances the scenario 

that relies more heavily on battery power is more efficient over the life of the battery. However, 

CD and urban fuel consumption increase more rapidly than CS and highway fuel consumption 

because of their reliance on battery power. In all cases the Dynamic DCS is able to maintain fuel 

consumption more effectively (see Table 11). 
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Figure 20. Composite fuel consumption as a function of cycle number. 

 

Figure 21. UF-weighted fuel consumption as a function of cycle number. 

4.2.2. Vehicle Performance Simulations 

Regarding performance, Figure 22 shows full-throttle standing acceleration times to 60 

mph (96 kph) for the simulated PHEV20 as its battery degrades. It can be seen that in a blended 

parallel architecture, the simulated PHEV20 is able to maintain its acceleration time well for high 

SOC. However, acceleration does suffer slightly at low SOC. The acceleration time at 30% SOC 
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and 30% t-SOC increased by 57% and 36% respectively over the 4000+ cycles tested. While this 

increase is measurable, the vehicle would still be very drivable after 4000+ cycles, becoming 

relatively sluggish only at low SOC. 

 

Figure 22. Full throttle standing acceleration to 60 mph (96 kph) time as a function of cycle 

number for multiple SOC. 

The vehicle level effects of battery degradation have been presented in this section. We 

have shown PHEV fuel consumption to increase by 32% and 25% respectively for the Static DCS 

and the Dynamic DCS over the course of 4323 CD cycles. For comparison, testing conducted at 

Idaho National Laboratory has shown HEV fuel consumption to increase by 4.2%-14.7% over the 

course of 160,000 miles [33]. Acceleration times were simulated for 90%, 60%, and 30% SOC 

and t-SOC with increases in acceleration time presented in Table 11. 
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Table 11. Changes in equivalent fuel consumption, composite utility factor (UF) and 

acceleration time between cycle 1 and cycle 4323 for the simulated PHEV20 using Static and 

Dynamic DCS. 

 

Δ Static 

DCS 

Δ Dynamic 

DCS 

UF Weighted, Composite Leq 100km
-1

 32% 25% 

Composite CD Leq 100km
-1

 62% 24% 

Composite CS Leq 100km
-1

 23% 14% 

UF Weighted Urban Leq 100km-1 48% 34% 

UF Weighted Highway Leq 100km
-1

 10% 12% 

Composite Utility Factor 11% -13% 

0-60 mph (96 kph) @ 90% SOC (t-SOC) 0% 0% 

0-60 mph (96 kph) @ 60% SOC (t-SOC) 12% 3% 

0-60 mph (96 kph) @ 30% SOC (t-SOC) 57% 36% 

 

4.2.3. Vehicle Lifecycle Cost Simulations 

Given the present state of battery technology, battery costs, energy prices, and personal 

driving patterns, it is highly unlikely that the majority of PHEV owners will be interested in 

battery replacement as a means of financial savings. 

The fuel consumption results of the vehicle simulations were input into a vehicle total 

cost of ownership model.  Inputs to the model include the changes in fuel consumption relative to 

battery degradation presented earlier in this paper, projections for future US energy prices [34], 

projections for lithium-ion battery prices [35], and a constant value of 15,000 for vehicle miles 

traveled (VMT) per year. VMT was modeled as being constant over time in order to represent the 

behavior of a high mileage driver maintaining the use of a PHEV over several years. This is 

meant to simulate the use of a PHEV most likely to benefit from a battery replacement. The 

presented model does not assign a salvage value to batteries that are replaced. While a future 

market for the second use of automotive batteries has been discussed [36], the current absence of 

such a market makes salvage value projections uncertain. 
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Figure 23 presents the results of a present value cost of ownership model reflecting the 

financial benefit of replacing a PHEV battery pack.  The incremental costs of battery replacement 

after 10 years of ownership are not recuperated over a 25 year lifetime of the vehicle.   

 

Figure 23. Cost of ownership model demonstrating the cost of battery replacement in 

PHEVs. 

Using this model, battery replacement in a ten year old PHEV would have a payback 

period of greater than 15 years, potentially exceeding the life of the vehicle. While the payback 

period is sensitive to model parameters (degradation rate, replacement year, etc.), the conclusion 

that battery replacement is not economically incentivized is robust to a variety of scenario 

definitions. The potential financial benefit anticipated as a result of battery replacement is not 

expected to be sufficient incentive for a consumer or fleet manager to invest in a multi-thousand 

dollar battery pack replacement.  

It is also unlikely that consumers will be interested in battery replacement for improved 

performance or increased drivability. While acceleration times have been shown to increase at 

low SOC, the simulated PHEV20 was still able to complete urban and highway drive cycles in 

CS mode at 4323 cycles with adequate performance, including the aggressive US06 drive cycle. 
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Replacement based on vehicle performance degradation would only be anticipated after the 

battery pack has endured far more than 4323 CD cycles. 

4.3. NREL PHEV35 simulation results 

The PHEV35 was simulated to determine battery wear for three conditions: 1) maximum 

allowable DoD (55-87%), 2) distribution of US ambient conditions, and 3) range of VMT (5,000-

20,000 miles per year). 

4.3.1. Depth-of-Discharge 

Battery wear sensitivity to DoD was explored for the PHEV35. All battery sizes allowed 

the vehicle to discharge 10.4 kWh of energy from the battery and achieved consistent CD range, 

acceleration, and efficiency values to within ±1% of the baseline case. Figure 24 shows resistance 

growth and capacity loss at 8 years for a range of battery sizes.  

 

Figure 24. 8 year resistance growth and capacity loss for PHEV35 plotted against DoD. 

Increasing the DoD window of the PHEV35 from 55 to 87% increased resistance growth 

by 18% while capacity loss increased by 8% over the same range. As the DoD window is 

expanded, increased resistance growth limits the power capability of the pack. Loss of pack 
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power would be reflected at the vehicle level in an increased degree of blended electric/petroleum 

operation or reduced all-electric vehicle power. This trend is reflected in the PHEV35 achieving 

reduced amounts of CD range at full power subject to increased DoD (see Figure 25). Full power 

is defined as the ability to discharge at the maximum beginning-of-life (BOL) power without 

violating the terminal voltage limit. 

 

Figure 25. 8 year values for PHEV35 percent BOL CD range and percent BOL CD range at 

full power as a function of DoD. 

Increasing DoD from 55 to 87% can be seen to decrease the percent of BOL CD miles 

that can be achieved after 8 years by 12% while the percent of CD miles that can be achieved at 

full power decreases by 45%. Using near term battery prices ($700/kWh production cost [37]) the 

difference in BOL battery price is approximately $5000 between the 55% and 87% DoD cases. 

Standalone simulations needed to determine the DoD required to achieve 100% of BOL 

CD range at full power after 8 years were run for the PHEV35. It was determined that a PHEV35 

pack with an approximate DoD of 50% could achieve BOL targets after 8 years of use for both 

CD range and CD range at full power. This design would represent an increase in pack cost of 

over $3000 relative to the baseline scenario of 65% DoD. 
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4.3.2. US Ambient Conditions 

Resistance growth and capacity fade distributions after 8 years of use for the PHEV35 

subject to US ambient temperatures and average driving distributions can be seen in Figure 26 

and Figure 27. The PHEV35 can be seen to exhibit a relatively tight wear distribution. Resistance 

growth ranges from 18-26% and capacity loss ranges from 14-20% over 8 years, subject to 

variation in ambient temperature. 

 

Figure 26. Distribution of 8 year resistance growth for PHEV35. 

 

Figure 27. Distribution of 8 year capacity loss for PHEV35. 
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The general uniformity of the PHEV35 wear distribution can be attributed to the ability 

of the active TMS to regulate battery temperature in disparate climates. Figure 28 shows the 

distribution of battery temperatures experienced by the PHEV35 when exposed to US ambient 

conditions. By reducing average battery temperatures and minimizing the effect of ambient 

conditions on the battery, the active TMS in the PHEV35 allows for reduced wear rates with 

relatively low amounts of variability with respect to regional climate differences experienced in 

the US. 

 

Figure 28. Distribution of average yearly battery temperatures for PHEV35 with US 

ambient and national driving distributions. 

Additionally, the PHEV35 simulated in this analysis used a low enough DoD and 

experienced minimal capacity fade to allow for no loss of BOL CD range at 8 years of operation 

(for all US climates). This resulted in all PHEV35s achieving over 53,000 CD miles (85,600 CD 

km) of operation during their first 8 years. 
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shows the results of this analysis in terms of resistance growth and capacity fade after 8 years 

subject to ambient conditions in Los Angeles, CA. 

 

Figure 29. 8 year resistance growth and capacity loss as a function of annual VMT for 

PHEV35 subject to ambient conditions in Los Angeles, CA. 

Increased VMT can be seen to have opposing effects on resistance growth and capacity 

loss in the PHEV35. Eight year resistance growth increases by 9% over the selected range of 

VMT while capacity fade actually decreases by 2% at high VMT. 

In the life model, capacity loss is dictated by the greater of two fade mechanisms, 

calendar and cycling. In this case, calendar fade is the dominate mechanism driven by high 

voltage exposure. By increasing VMT, the battery is allowed to spend greater amounts of time at 

lower voltages which extends calendar life and thus reduces capacity fade. While the simulated 

phenomena of reduced capacity fade at high VMT has not been directly validated via testing, the 

competing effects of calendar and cycling fade on capacity loss lead the author to believe that the 

impact of PHEV VMT on capacity fade will be relatively muted. 
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CD mode to CS mode, where the latter mode causes relatively little incremental resistance growth 

in the battery. 

VMT was found to have a minimal effect on CD range and the percent of CD range 

achievable at full power after 8 years. CD range at 8 years was 100% of its BOL value for all 

tested VMTs while the percent of BOL CD range that can be achieved at full power only 

decreases by 1% when increasing VMT from 5,000 to 20,000 miles per year.  
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5. Conclusions 

Two PHEV platforms have been implemented in this study (the PHEV20 and PHEV35 

respectively) to analyze the vehicle level effects of battery degradation and understand the 

sensitivity of battery wear to variations in ambient conditions, vehicle design, and consumer 

usage. Conclusions resulting from each analysis will now be summarized. 

5.1. PHEV End-of-Life 

A variety of studies assume that PHEV battery life can be predicted by the USABC cycle 

life test procedure; this assumption has dramatic effects on PHEV lifecycle cost and consumer 

acceptability. This study has shown how a DCS can be designed to extend battery life in PHEVs 

beyond USABC EOL. The effects of battery degradation on a blended parallel PHEV20 have 

been presented both in terms of vehicle efficiency and performance. In light of these effects, it is 

unlikely that the USABC definition for battery EOL will be predictive of how consumers and 

vehicle manufactures will approach battery replacement in PHEVs. 

PHEVs differ from BEVs in that a direct relation between battery performance and 

vehicle performance does not exist. PHEVs can be designed to sense degradation and 

subsequently increase the degree to which they are blended to make up the power difference 

necessary to meet performance requirements. With this understanding, PHEV battery replacement 

would only make sense when a significant improvement in efficiency and/or performance could 

be achieved. In terms of fueling costs, replacement would be justified when the present value of 

fuel savings a battery replacement would provide is greater than the present value of replacement 

cost. This definition does not provide economic justification for pack replacement, even in 

scenarios involving significant battery degradation. In terms of battery replacement to restore as-
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new acceleration performance, the justification for battery replacement based on improvement in 

vehicle performance is more subjective. While the improvement in acceleration a battery 

replacement provides can be quantified, the amount of improvement that justifies an expensive 

battery replacement is an individual decision. 

Finally, as a result of the disconnect between existing testing procedures and modern 

PHEV battery requirements and control capabilities, USABC should consider revising testing 

procedures for the specific application of PHEVs. Future work should anticipate the desire of 

automotive manufactures to design intelligent DCS that allow for adequate performance over the 

vehicle’s life while avoiding battery replacement. 

5.2. Battery Degradation Sensitivity 

Sensitivity of battery wear to ambient conditions, vehicle design, and usage patterns has 

been explored for the PHEV35. This analysis has shown that the spectrum of climate and usage 

conditions PHEVs are expected to face in the US market suggest that the assumption of a single 

average ambient condition for battery wear calculations may not be representative of observed 

behavior in the fleet. 

Ambient conditions have been shown to have a large effect on battery wear for the 

PHEV35 simulated in this study. The effects of ambient conditions on battery life can be 

mitigated by appropriate vehicle design. Thermal insulation and TMSs can be designed to 

regulate temperature and extend battery life. 

DoD was found to significantly impact battery wear. Resistance growth and capacity fade 

were significantly reduced by designing a pack to operate with a relatively low DoD. However, 

pack design for low DoD can increase vehicle up-front costs by requiring additional total energy 

to achieve a desired CD range.  For the modeled PHEV35 the extra battery capacity required for a 

55% vs. 87% DoD window represents a roughly $4900 increment in pack cost. Increased battery 
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energy may also require components such as the electric motor to be resized to maintain vehicle 

acceleration. 

Consumer usage behavior was found to have a relatively low impact on battery wear. The 

modeled PHEV35 saw minimal impact on battery wear due to charging pattern (end-of-day 

versus just-in-time) or driving aggression. Increasing VMT on the PHEV35 from 5,000 to 20,000 

miles per year (8,047 to 32,187 km*yr-1) was found to decrease the percentage of CD range 

achievable at full power by 1%. 

Future work on battery wear prediction may focus on improving the 8 year achievable 

CD VMT estimations for the PHEV35 vehicle platform. Incorporating effects of temperature on 

pack internal resistance and capacity is expected to reduce the achievable CD VMT for PHEVs in 

cold climates as vehicle range is compromised at low pack temperatures. Alternatively, utilizing 

longitudinal driving statistics (such as those developed using NREL’s Transportation Secure Data 

Center) could allow analysis to focus on driving patterns well suited to potential PHEV users. 

Daily distance distributions with low deviation and averages below the CD range of the PHEV 

could improve 8 year achievable VMT estimations. Additional analysis may also seek to develop 

a range of potential near term V2G scenarios to determine the subsequent impact on battery wear. 
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