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ABSTRACT

The investigation of the time series structure of monthly precipitation
and monthly river flow is the subject of this paper. Problems of time series
stationarity, its periodicity and the use of techniques of serial correlation
and variance spectrum in the analysis of time series structures are reviewed
and summarized in this paper. The series of monthly values are made
stationary in two ways: (a) by deducting for each calendar month value its
long term mean, and dividing this difference by the standard deviation of
that month (series A); and (b) by removing periodicity from the series
after fitting a 12-month period and its significant harmonics (series B). The
following mathematical models have been used in approximating the strficture
of stochastic component of time series: (1) Independent series model for
series A and series B; (2) Markov I Model, or the first order linear Markov
Model; and (3) Markov I Log Model, or the first order linear Markov Model
applied to the logarithms of monthly values.

The data used in this study consisted of monthly values of 219 precipita-
tion stations and 137 runoff stations. All 356 series were made stationary,
either by obtaining series A or series B. The explained variances by the
12-month period and its significant harmonics for precipitation and runoff are
shown for the Western United States in several figures. The regional varia-
tions in this total explained variance and regions for large differences between
runoff and precipitation are discussed. It is shown that the independent series
model, in the majority of cases, fits well the stochastic component of monthly
precipitation, while the Markov I Model and the Markov I Log Model fit well the
dependence in stochastic component of monthly river flows. The storage of
water in river basin makes for the difference in the models applied to monthly
precipitation and monthly runoff.

The first serial correlation coefficient (rl) of stochastic component in
monthly precipitation and monthly runoff were computed, and its regional dis-
tribution is shown with ry for runoff being much greater than ry for precipita-
tion. A similar analysis was carried out for the skewness coefficient of monthly
values for both precipitation and runoff. The monthly time series of these two
variables can be clearly divided into deterministic (periodic) and stochastic

component with the latter being the stationary time series.

vii



MATHEMATICAL MODELS FOR TIME SERIES OF MONTHLY PRECIPITATION AND

MONTHLY RUNOFF

By

Larry A. Roesner* and Vujica M. Yevdjevichs *

CHAPTER I

INTRODUCTION

1. Significance of study. Analyses of continuously
recorded hydrologic time series are currently per-
formed, for the most part, by transforming the con-
tinuous series into discrete time Series with time
interval at. By reporting the continuous series as the
average or total cumulative value for the time inter-
val at, the discrete series of length N = T /At are ob-
tained, where T is the period of observation. Daily,
monthly, and annual time intervals are widely used
in hydrology and the time series of precipitation and
runoff are usually published as sequences of values
for these intervals. It is legitimate to ask: What
time series measure At (or time interval, At) - in
which a continuous series is divided to obtain discrete
time series - produced the most statistical informa-
tion? Two intuitive assumptions are that the contin-
uous series of length T contains the maximum of in-
formation, and that for discrete time series, by an
increase of At, or a decrease of N = T/at, reduces
somewhat the information obtainable. The amount of
information contained in a discrete series of given At
value depends on the structure of the time series, or
on their stochastic and deterministic components and
the parameters which describe the properties of these
components,

The smaller At is the larger is N = T/at, and
the longer is the discrete series. The longer the
series is, the more data processing and computation
is necessary, in comparison with at large and N
small. In comparison with annual precipitation and
annual runoff, monthly precipitation and monthly river
flow have series twelve times longer. The series of
monthly values display a cycle like that of a year and
its eventual harmonics (especially the 6-month sub-
harmonic of the yearly cycle). However, these pro-
perties of continuous series of precipitation intensi-
ties and river discharges are masked in discrete
series of annual values,

On the other hand, in comparison with daily
precipitation and daily river flow, monthly precipita-
tion and monthly river flow have discrete series which
are about thirty times shorter. In other words, data
processing and computations are only one thirtieth of
those incurred in using the daily values. Thus, while
the monthly values show the basic structures of pre-
cipitation and runoff series, withboth deterministic
(periodic) and stochastic components, the need for
processing extremely large amounts of data, as would
be necessary for daily values, is avoided. At the
same time, the use of monthly values does not yield

as many details in analysis of the two types of com-
ponents as does the use of daily values or of the con-
tinuous series. The choice of the discrete series of
monthly values is, therefore, a compromise. Since
the monthly values are extensively used in engineering
applications, a systematic analysis of and the search
for mathematical models for time series of monthly
precipitation and monthly river flow is fully justified.

The best and most complete available data of
precipitation and runoff consist of about 30 to 100 years
of records. For annual time series, such periods may
not be sufficient for determining with accuracy the
structure of time series and the probability distribu-
tion parameters,Monthly values have in this case 360~
1200 values, which can be considered as sufficient
for the detection of the properties of both determinis-
tic components and stochastic or non-deterministic
components of time series.

In storage problems of flow regulation, the
annual values are used for the study of long-range
over-year regulation. Due to the fluctuations within
the year, the storage needed to regulate the flow with-
in the year should usually be added in the appropriate
way to the storage necessary to regulate flow from
year to year. The within-the-year regulation is a
more current case than the regulation from year to
year. The significance of time series of monthly
values becomes clearer whenever the problems of
within-the-year flow regulation are studied.

2, Stationarity problems. The statistical analysis
of the time series of monthly precipitation and month-
ly river flow involves a consideration of stationarity
not generally a problem in annual flow sequences.
Each monthly value of a calendar month has its own
expected value, variance, skewness, etc. In order to
analyze the series accurately, the expected value of
each of these parameters must be a constant for all
calendar months. Thus, a transformation of the origi-
nal time series is required to produce the desired
stationarity. Once the series has been made station-
ary, the statistical analysis is performed to establish
the structure of the series and to obtain a description
by the appropriate mathematical models.

This paper presents methods for transforming
the monthly time series to obtain the second order
stationarity and shows the results of applying certain
mathematical statistical models to these series.
Third order stationarity (which involves the third
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statistical moment or the skewness coefficient) is
also briefly discussed and was investigated, but it is
not incorporated into the analysis in this paper.

The process of establishing second order sta-
tionarity involves the use of the monthly means and
the standard deviations of each calendar month. It
requires two constants for each month, one for the
mean and one for the standard deviation, or 24 con-
stants in all. In this paper, a method of harmonic re-
presentation of these values is presented whereby the
number of constants that must be determined can be
substantially reduced, in some cases to as few as 8,
or even fewer.

3. Research data and terminology. This analysis
was made with monthly values from 137 runoff sta-
tions and 219 precipitation stations in the United
States, all west of the Mississippi River.

The term '"'monthly precipitation' means the
cumulative amount of rainfall, in inches, which has
fallen during the calendar month in question. "Month-
ly river flow" or "monthly runoff'" refers to the aver-
age daily value of the river flow in cubic feet per
second (cfs) for the calendar month in question.
less otherwise defined, a one-year observational
record of precipitation is one calendar year, from
January through December. Finally, a one-year ob-
servational record for the runoff stations is one
water year (from October 1 through September 30).

Un-

4. Main objectives of the study. The main ob-
jectives of this study were:

(a) To separate the deterministic (periodic)
component of time series of monthly precipitation
and monthly runoff from the stochastic component.

(b) To use the Fourier series approach in
order to approximate the periodic component by a
main cycle and its harmonics.

(¢) To study the structure of the stochastic
component, and approximate the time dependence by
an appropriate stochastic model.

(d) To condense the information contained in
a time series of monthly values by a mathematical
model, including both components, with the estima-
tion of a minimum of parameters (for the determinis-
tic and stochastic components). As the number of
parameters decreases, the discrepancy between the
observed time series and the mathematical model
increases. The objective ofthe investigation was to
find a compromise between the number of parameters
to be estimated for the model and the accuracy of the
mathematical model in estimating the true population
mathematical model of the given time series.

(e) To condense graphs or tables of time
series of monthly precipitation and monthly runoff
with a mathematical equation that contains most of
the information and properties included in the graphs
or tables and that provides new time series with
approximately the same properties. The new time
series obtained from the mathematical model by the
data generation method (Monte Carlo method) should
have approximately the same properties as those of
the series given by the graph or the table data.

(f) To represent time series of monthly
values by a mathematical model which can, in the
future, be used in studies of flow regulation, water
allocation, water system operations, and similar
areas of study. With a hydrologic process systemized
in the form of a mathematical model, the planning of
engineering and economic super-structures in water
resource development can then utilize the most ad-
vanced mathematical approaches.



CHAPTER 1I

MATHEMATICAL METHODS USED IN THIS INVESTIGATION

1. Stationarity. The monthly time series of pre-
cipitation and runoff are non-stationary. It is obvious
that the expected monthly value of January is not
generally the same as that of July. It is somewhat
more difficult to visualize the variation of the stand-
ard deviation of all January values from its mean
(i. e., the standard deviation of all January values
from the mean January value, etc.). However, ob-
servations and computations show that months with
higher expected values have greater variances, and
hence a greater standard deviation. The higher order
moments about the mean also vary through the year
depending on the calendar month in question. Thus, it
might be expected that each monthly value would be
drawn from a population characteristic of the month
in question, which would result in 12 different popula-
tions - one for each calendar month - being repre-
sented in the monthly time series of precipitation and
runoff. Thus, stationarity, through the third order,
is defined by the following

E[Xt] = u = constant 2.1

E[XtXHL] =f[(t+ L)-t] = chrz +

p? = constant 2.2

E[XX,, L1Xt+ LZ] = gl(t+ L)t (t+ L,)=t] =

= g(Li, L,) = constant 2.3
where Xt is the value of the observed variable at

timet, EJ[-
tion notations, L, ]“1' L

] is the expected value, f and g are func-
, are time lags, u = popula-

tion mean, Pr. = population L-lag serial correlation
coefficient, and ¢? is the population variance of Xt.

For the purposes of this paper, X is the observed
monthly value of the precipitation or runoff, and t

is the number of monthly values since the beginning
of record-keeping (t for the first month of record is
1). The condition of first order stationarity is given
by eq. 2.1; second order stationarity is given by egs.
2.1 and 2. 2; third order stationarity is, in turn, sub-
ject to conditions of eqs. 2.1, 2.2, and 2. 3.

In this paper, it is assumed that the observed
monthly value for each of the 12 months in the yearis
drawn from a different population. In other words,
the values of precipitation (or runoff) observed over
the number of years of record for the month of Janu-
ary are all drawn from the same population, while
the observed values for February to December are
each drawn from different populations, respectively.
It is further assumed that the observed series for
each respective month over the years of record is

stationary of the n-th order. Thus, it is seen that

each month has its own probability distribution andits
own statistical parameters (mean, standard deviation,
skewness coefficient, etc.). The monthly series, Xt’

are, therefore, composed of values from 12 different
populations, which fact accounts for their non-
stationarity.

First order stationarity is obtained by the

transformation of Xt to Ut by:
LG B s withp=1;2; 3,0 00 12 2.4
t t T
where
t=74+ 12n, withn=0,1, 2, 3, .., (N-1).

Here m_ is the monthly mean value of the month 7,

n may be considered as the number of years since the
beginning of record, N is the total number of years of
record, and Ut is not only a sequence of monthly values

with a mean of zero, but the expected value of every
monthly observation in the sequence of Ut is alsozero.

Thus, eq. 2.1 is satisfied and the first order station-
arity has been obtained for the series.

A look at eq. 2.2 shows that, if L. = 0, then
EIth] = £(0) = constant, or var X, = constant, because

Py = 1, and ¢? = population constant parameter, Trans-
forming U, of eq. 2.4 by

where s is the standard deviation of the month 7,
X, has been standardized. The resulting series Zt

becomes now distributed with mean zero and standard
deviation unity for all monthly values. Moreover, it

may be assumed that E[Z.Z ;] =f(L)=0; p; =p;,

because u’zz = 1. Thus, the series Z, as defined by

eq. 2.5 will be referred to as the "standardized
series. "

It would be possible to obtain third order sta-
tionarity by a further transformation. However, its
discussion is beyond the scope of this paper.

2. Periodicity. Since the monthly time series of
Xt has a separate expected value “1" or mean value
-}?‘r =M for each month, experience shows that a plot

* The use of k as the symvol for lags (as denoted in other studies) is replaced here by the symbol L,
leaving the symbol k for the subharmonics of the main cycle.



of the expected values of the time series Xt over a

number of years results in a periodic movement, of
which the fundamental period is 12 months. Because
each periodic movement may be approximated by the
basic cycle and its harmonics, following the Fourier
series analysis, the periodic movement of monthly
time series may also be described mathematically by
harmonics. Fourier analysis suggests that a mathe-
matical representation of monthly means of X, may be

expressed as a continuous function m, by the expres-
sion:

ot +Gvc in (22Xt +4,) 2.6
M= 1z & m, T =l sinlimp-t+dy), :
T=1 k=1

where Ck is the amplitude of the k-th harmonic of

12 months, the cycle of 12 months being the firsthhar-
monics, and dk is the phase. By use of the trigono-

metric identity,

sin(#+ d) = sind cos 8 + cos d sin 6, s
eq. 2.6 can be rewritten as:
mt=1ié-122m1_+ ‘gAk cos ngt-+
7=1 k=1
+ 26 Bk sin er(zk t 2.8

By the same argument, the continuous function of the
standard deviation, Ses is given as:

12 6
= 1 27’1{ t
st_ﬁ ?ST+Z- sAk cos 12 2y
T=1 k=1
6
+ X _B, sin et Tz 2.9
k=1 k 12

Likewise, the solution for the constants .Ak
and B, is given by the following equations [3]:

12
2 27wk
gy s 2.
Ak v E_ m_ cos =5 t 10
=1
12
. .. 27k
Bk = 1 T:ilnT sin 2 t, 2. 11

for k=6, A isgiven as Ak;'Z and B, = 0.

In order to describe the monthly periodic
movement, 12 constants, Ak and Bk’ sAk and
¢By 2are required for the cycle of 12 months (k=1)
and its five subharmonics (k= 2, 3, 4, 5, 6) as can be
seen from eqs. 2.8 and 2.9, The physical considera-
tions of the hydrologic periodicities indicate that
there is definitely one cycle per year, that of 12
months., Very often, another cycle, that of 6 months,
is also clearly detectable from the observed data.

In order to fit the trigonometric functions of the
Fourier series to the shape of these two basic
periodic movements (12 months and 6 months),

subharmonics are necessary, and usually those of 4,
3, 2.4, and 2 months. The number of subharmonics
of the main 12-month cycle depends on the shape of
the periodic movement. If the 12-month periodic
movement of m, and s, can be approximated well by a

simple sine or a cosine function, the 12-month cycle
without any of its subharmonics is sufficient, If the
12-month periodic movement is far from a sine func-
tion, say with sharp peaks and long and flat lows of

my and 84 not only is the 6-month harmonic necessary

but all other harmonics may be needed.

A point of interest may be raised here. The
description of a periodic movement by Fourier series
analysis requires the use of trigonometric functions.
However, the physical aspects of periodic movement
in the form of m_ and s_ may show only one peak and

one low in a 12-month period, or two peaks and two
lows in a 12-month period, at the maximum. Thus,
because of asymmetry of peaks and lows (narrow
peaks, broad lows), the Fourier series analysis
needs many harmonics to approximate this type of

m, - and s, - periodic movements. The correlograms

of time series of monthly values will demonstrate
this point well, and it will also be discussed indetail
later in this paper. The need for the 12-month cycle
and its five subharmonics in the description of the
periodic movement of m, and S, by Fourier series

analysis does not imply that there are 6 cycles in the
physical sense. A distinction, therefore, should be
made between the number of harmonics in Fourier
series analysis of time series of monthly values
(which are necessary to describe the periodic move-
ment of monthly mean values and standard deviation
of monthly values about their mean) and the physical
cycle connected with the astronomical cycle of a year,
which sometimes has a physical 6-month subhar-
monic, which is due to the usual climatic movement
of fall-winter-spring-summer seasons, with two
peaks and two lows. Therefore, the lower harmonics
(those of 12 and 6 - months) are associated with broad
climatological features, while the higher harmonics
are attached to the method of analysis of periodic
movement. Accordingly, the claims that the higher
harmonics (4, 3, 2.4, and 2 months) are associated
with the local features [5] should be subject to care-
ful investigation.

If eq. 2.5 is rewritten using the continuous

descriptions of m_ and s in the form of m, and
5, of egs. 2.8 and 2.9, then
X, ~m
= t t
Yt = 5 2 2.12

Then Yt can be described by as few as 6 parameters
(mt, S Aj, B, sAI’ sBi)’ if only the 12-month
cycle is needed to describe m_ and s, or by as
many as 26 parameters, if all six harmonics, k=1,

., B, of egs. 2.8 and 2.9 are used. By contrast,
eq. 2.5 always requires 24 parameters.

In the general case, it will be found that if
fewer than 6 harmonics are used to describe the
series, the periodic function will not pass exactly
through the calculated parameters ms and s_ because

of the sampling errors within the observed series.
Therefore, the mean of Y, will not be exactly zero

nor will s_ (the standard deviation of Y) be exactly



unity. One further transformation,

Z=Yt'Y=Xt_YSt_mt 2 708
t E S s ’ .
Y y 't

yields the series Z,, which parallels the series of

t’
eq. 2.5, with Zt distributed with mean zero and
standard deviation unity. The series Zt described

by eq. 2.13 is called here the "standardized fitted

series' or simply the 'fitted series’, as different
from the "standardized series” described by eq. 2.5.

3. Serial correlation. Serial correlation analy-
sis has been used very often for the determination of
periodicities. The general equation for the serial
correlation coefficients is:

with LL=0,1, 2,...,m, with m <N.

It is well known that if a periodic time series is re-
presented by

Xt=Csin9t +ZJE 2,15

where C is the amplitude, 6 is the frequency of the
cyclic component, and Zt is a stochastic component,

then the serial correlation coefficients of the cyclic
component are given by

Cz
s e cos 6 L, 2.16
ZO'ZX

2

where g is the variance of Xt' Thus, if the fre-

quency 6 exists, the cycle will persist throughout the
correlogram and will not be dampened. In fact,
whether the cycle at the correlogram is dampened or
not may be used as the criterion for determining
whether periodicity is present in the time series [7].

In the case that only one physical cycle exists
in the time series, the correlogram exhibits the same
period as that of the time series. If more than one
cycle exists, the correlogram is a linear combina-
tion of these periodic terms. Initially, the high fre-
quency harmonic components, necessary to approxi-
mate well the shape of periodic movement, may not
be readily discernible. Sometimes, when the large
periods are removed, the small periods begin to
show themselves, This is especially true in the case
of correlograms with narrow peaks and broad lows,
with 12-month periodic movement. Figure 1 shows a
typical case of the behavior of the correlogram for a
time series composed of narrow peaks and broad lows,
with a basic period of 12-months. By Fourier time
series analysis, the periodic movement, as expressed
in fig. 1, upper graph, is composed of several har-
monics, particularly of periods 12, 6, 4, and 3
months. As successive larger periods are removed
from the time series, the smaller periods become
clearly visible on correlograms. Figure 1 is an
example of a time series of monthly river flows. The
data was taken from the Elk River at Clark, Colorado
(USGS station identification number is 9.378). The
upper curve is the correlogram of the observed time
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Fig. 1 Effects of removing periods fromthe time
series on the correlogram for station 9.378,
Elk River at Clark, Colorado: (1) Correlo-
gram with 12-, 6-, 4-, and 3-month periods
present; (2) Correlogram with 6-, 4-, and
3-month periods present; (3) Correlogram
with 4- and 3-month periods present; (4) Cor-
relogram with 3-month period present; and
(5) Correlogram after all periods have been
removed.

series and the following curves show the correlograms
after removal of the 12, 6, 4, and 3 month periods,
respectively. The correlogram shows all fluctuations
with the same periods as the time series except that
the fluctuations on the correlograms have all been put
into phase. The use of the correlogram in this study
was limited to observation of the dampening effect in
the persistence of periods and was needed for the
verification of existence of periods when they are
shown by variance spectrum analysis in the form of a
sequence of harmonics.

Figure 1, uppermost graph, shows clearly
that there is no dampening effect in the correlogram
for the 12-month cycle. However, it does not show
visibly on the lows a secondary cyclicity. Though
there is no visible six month cycle on the correlo-
gram, the very fact the correlogram has a broad low
and is flattened suggests that the secondary cyclicity
may be present. This shape suggests also that the
broad low is due to the dominant feature of the 12-
month cycle. This cycle is dominant to such anextent
that the 6-month cycle peak is completely attenuated.
In some cases, the 6-month cycle is dominant and the
12-month cycle may be completely absent. Any inter-
mediate position between these two extremes have
been experienced. The sharp peaks and long lows on
the correlogram imply that the shape of the periodic
correlogram of the uppermost graph is far from a
cosine function as should be indicated by eq. 2.16.
Furthermore, the conclusion can be reached that the
description of the periodic movement of X,, for which

fig. 1 — upper graph-— is the representative correlo-



gram, cannot be given by a unique cycle, but by the
12-month cycle and as many of its subharmonics as
the Fourier series approach may require for the
given shape of the periodic movement. Finally, a
distinction should be made between the cycles shown
by the correlogram of monthly values of precipitation
and runoff, (in fig. 1 only the 12-month cycle) and the
number of harmonies necessary to fit the trigonome-
tric functions by Fourier series analysis in order to
describe mathematically the shape of the periodic
movement.

4. Variance spectrum. The harmonics necessary

to describe the functions m, and s, were determined

by variance spectrum analysis of the original time
series Xt' A complete description of variance spec-

trum analysis is given by Blackman and Tukey [2] who
derive the variance spectrum (or power spectrum) as
a Fourier transformation of the autocovariance func-
tion. For a time series of equally spaced records,
the equation for the spectral density is given as:

m-1 KL
Vk=C +2 = C, cos— + C__coskm, 2.17
o] T=1 L m m

with o < k €< m, where CL is the covariance of X

with lag L, and m is the number of lags used in cal-
culating CL' If Vk is multiplied by 1, then
m

W, = —. 2,18

For W, plotted versus k, the area under the curveis
equal to the variance of X. The value of Vk or Wk
is called the "estimated value of the spectral density',
or simply, the ''spectral density'. The magnitude

Wk is generally plotted versus the frequency k/2mat.

Neither eq. 2,17 nor eq. 2,18 gives the best
estimate of the smoothed spectrum function [2]. The
best estimate involves the smoothing of values ob-
tained by these equations by one of the two methods
discussed by Blackman and Tukey [2]. The first
method of smoothing is called "hanning', and for eq.
2. 17 the estimates obtained by this method are:

S =0.5 VO+ 0.5V

[s) 1’

S,=0.25V, _,+0.5V,_+0.25V

k k-1 k k+17

and

for 1 < k< m-1,

= +
S_=0.5V__ +0.5V_.
2,19

The second smoothing method is called "hamming',
and the estimates obtained by this method are:

So=0‘54 Vo + 0.46 Vi

5 +0.54V, +0,23V

1 k k+ 1
and
S, =0.46V__ +0.54V_.

=0.23V, _ for 1< k< m-1,

k

2. 20

The most important differences between these two
smoothing methods are:; (1) for the "hanning'" pro-
cedure, the side lobes resulting irom the occurrence
of a main lobe in the spectrum are larger than for the
"hamming'' procedure; and (2) when "hanning', the
heights of the side lobes fall off more rapidly with
increasing distance from the major lobe than when
"hamming".

Blackman and Tukey [2] also give methods for
determining the value of m to be used in eq. 2. 17
which are based on the desired resolution of variance
spectrum and the required accuracy of the estimate
of the spectral density. However, the following pro-
cedure for the use of variance spectrum analysis, has
been extracted from the articles in literature by
E. J. Plate.*

1. The maximum frequency fmax which is to

be investigated should be chosen as well as a folding
frequency fn such that

2, The time interval required between
measurements then becomes

= 1
At = L 2. 21
n

3. Next, a desired frequency resolution B
should be selected, and the greatest time lag Tm

required for the coefficients should be calculated as

1
= == 2.22
Tm B’

4, Since the lag is a multiple of at, the
number of lags, m, required becomes

m = 2 2,23

5. The number, N, of data points taken at
intervals At which is required in order to obtain a
reasonably accurate estimate of the spectral density
should be calculated from the relation

2
k= —g i, 2. 24
m
where T'N is the "effective length of record, "

given approximately

_ 1
T'y= Ty 3 T 2,25
with TN the true length of record. Furthermore, k

is the equivalent number of degrees of freedom for
the chi~square distribution of the deviation of the esti-
mated spectral density value from the true value.
Thus, k can be found for the 35% level of significance
approximately as

k=1+ P8 2. 26
(95% range in db™?

* db = decibel; number of db=

estimated variance )
average variance '’

10 log, , (

* Associate Professor of Civil Engineering, Colorado State University.



6. After step 5 is completed, T,. can be

N
calculated; the number of data points required is

N = TN:'M; and

7. The elementary frequency bandwith is
. I
Zmat ”

For this study, the resolution, B, was chosen
as 0.02 cycles per month, thus setting m at 50. The
ratio, R, of the observed (estimated) variance to the
average variance, on the 95% level, is

2.4

R = 10VE! 2,28

where k is defined by eq. 2. 24.

Af = 22T

Figure 2 shows the power spectrum for the
monthly time series of the Elk River at Clark, Colo-
rado, and demonstrates how the spectrum changes
with the removal of successive periods. For this
case, At was 1 month, m was 50, and N was 360.
This is the same time series that was used as an ex-
ample for fig. 1.

40,000 o
W

30, 000 by
g 20, 000 Sy
Z 10,000 e A Limis..
3 R K AR avecage density]
= phmel hed ]
= [R]] o, 20 o3 .40 B. 50 cycles/month
2
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o ]
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= o,
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5

0. 50 cyeles/month

Fig. 2 Effect of removing periods from the time
series on the variance spectrum for station
9.378, Elk River at Clark, Colorado:

(1) Variance spectrum with 12-, 6-, 4~, and
3-month periods present; (2) Variance spec-
trum with 6-, 4~, and 3-month periods pre-
sent; (3) Variance spectrum with 4- and 3-
month periods present; (4) Variance spectrum
with 3-month period present; and (5) Variance
spectrum with all periods removed.

The upper curve of fig. 2 shows that in the
original spectrum, X had only the 12-, 6-, and 4-
month cycles as significant on the 95% level. How-
ever, the third curve shows that, upon removal of
the 12- and 6-month harmonics, the 3-month har-
monic becomes significant and must also be eliminated
when the periodic component is taken from the time
series.

In addition, this figure illustrates the proce-
dure which is necessary for the determination of the
harmonics present in the series Xt' First, the

spectrum analysis is run on the time series Xt and

the significant periods are used to define m
series

4 The

2.29

is formed and the spectrum analysis of Ut is performed.
Significant periods in Ut are then added to the defini-
tion of m, and the process continues until m, is defined

t
in such a way that Ut is aperiodic.

The same procedure is followed for obtaining
the periods necessary to define s, except that the

spectrum analysis is performed on the series Qt’
where

Q1=(X-m)2. 2. 30

The periods found in Qt are then used to define 84
When a basic cycle and its several subhar-
monics are necessary in Fourier series analysis to
describe mathematically a periodic movement, the
general relationship between C, or d, coefficients of

various harmonics in eq. 2.6, and between Ak or Bk

coefficients of various harmonics, could be used to
decrease the number of parameters in the mathemati~
cal model of the deterministic periodic component.
In many cases studied, the peak variance densities
of various harmonics were proportional either to 1/k
or 1/kP, with n# 1. In log-scales, the peak densi-
ties of harmonics follow the siraight line either ofthe
slope of -1 or of -n. Figure 2 is a good example.
The variance density for the 12-month cycle at the
fig. 1is 51,000, For the 1/k model, the 6-month
harmonic should be 25, 500, the 4-month harmonic
7,000, and the 3-month harmonic 12, 750. Figure 2,
upper graph, shows that the density of the 6-month
harmonicsis close to the above theoretical relation-
ship of 1/k model, while the densities of the othertwo
are below that relationship line. Similarly, the
second and third graphs from the top in fig. 2 show a
close relationship between the densities of the 6-month,
4-month and 3-month harmonics. Asthe variance
densities are related to Ck coefficients, the above

relationship is only valid for them. Experience shows
that d,, Ak, By sAk and _B, have both positive

and negative values, and do not follow a monotonical-
ly decreasing positive function like Ck' More com-

plex mathematical relationships are then needed for
these coefficients.

In order to decrease the number of parameters
in eqgs. 2.8 and 2. 9, the coefficients Ak’ Bk' sAk’
and sBk could be expressed as functions of k, Ai,
Bys By
may prove to be very appropriate when several values
of k are involved (say more than 3). In such cases,
the total number of parameters to be estimated in
describing the deterministic periodic component
would be reduced.

and sBi‘ respectively. This procedure .

5. Mathematical models. After the transforma-
tion of non-stationary time series Xt to the second

order stationary series Zt‘ three models were tested
+ These three
models were: (1) The Independent Series, (2) The

for the description of the time series Z



Markov First Order Linear Model, and (3) The
Markov First Order Log Model. The model to be
used was determined by the shape of the correlogram
of the series Z’t‘

(a) Independent series, If, on a given level
of significance, it can be said that:

E [rL]

=pL=0 b ek

where r

L
tion coefficients of sample Zt’ and the population from

and py, are the L-th order serial correla-

which Z, was drawn, respectively, then the time
series Zt may be considered as a sequence of sto-

chastic variables which are independent among them-
selves. As described previously, Z, is distributed

with mean zero and variance unity.

Upon the determination of the probability
distribution of Zys this distribution may be used to
generate independent sequences of Zt‘ The series
Zt may then be generated in any sample size as:

Kt =m_ + 8 Zt 2, 32
with m_ and s_ the mean monthly values and
monthly standard deviations, respectively, If the
mathematical representations of m, and S of eq.
2.13 are used, Xt is defined as:

Xt=mt+Yst+syStZt' 2,33

Equations 2. 32 and 2. 33 are called here 'Independent
Series A'' and "Independent Series B, ''respectively.

To ascertain whether the Independent
Series is an appropriate model, the correlogram of
Z, is tested for PL = 0 at the given level of signifi-

t
cance ¢. Anderson [1] gives the confidence limits
L(e) as:
-1 + n_\/N-L-2
Lia) = 11 2,34

where N is the number of observed values in the
time series Z,, L is the lag, and n, is the normal

standard deviate from the standard normal distribu-
tion for a two tail test at the significance level o.
Common values of ¢ and the corresponding value of

na are
a = BO0%, i & 1. 28
= 90‘%, = 1.54
= 95%, = 1,96

(o) Markov I Model. When the series Z,

can be fitted by a "first order linear autoregressive
scheme'' (Markov first order linear model), the
correlogram of the population of Zt is represented
by the equation:

Pl =Py 2.35

The autoregressive scheme is given by:

Z 2, 36

TPy Hpg ey

where €y is independent of Zt-i’ Zi gy vees and
other e's. If e, = 50 Ny, where 1}80 is the standard
deviation of € Ty will be a standardized independent

stochastic variable. Furthermore, determining the
distribution of n,, one can use a generating function

to produce €, in eq. 2, 36. Since, var Z.t =1 forall
t, it follows from eq. 2. 36 that:

8, =vi-p21. 2. 37

By combining the expression

2,39
T -1

Revising and simplifying eq. 2. 39, one arrives atthe
"Markov I Model A" given as:

Py S, Py S‘T :

= L s m +m + 5 €.

X, = 3 X-17 5 gy ety 2040
bz T-1

If m, and s, are used in the equation defining Zt’

eq. 2. 36 will appear as

t‘ t 7 -1 t=1 . v
E.t b‘t-l
= =py = + e, 2.41
Y y
One can define the "Markov I Model B" by solving for
X, as
t
p, s p, s
17t 17t
X = X = m, _, +m +
b By MFL Sy b t
+(1"p1)YSt+ Sy'st £y e 2.42

In order to test for the Markov I Model, the series
€4 of eq. 2. 36 was produced as

2.43

where r, was taken as the best estimate of Py The

1
series Et
When €

variable, the model is accepted.

was tested for independence by eq. 2. 34,

is shown to be an independent stochastic

(¢) Markov I Log Model. This model was
exactly the same as the Markov I Model except that,
in the original time series, X, was replaced by lnXt.

If Xt had a value of zero, it was replaced by

In 0.001. Thus, eqgs. 2,40 and 2.42 may be used to



describe the "Markov I Log Model A" and the "Markov
I Log Model B", respectively (with A model for
""'standardized Zt” and with B model for "fitted Zt”

series), keeping in mind that Xt is now In Xt and
that m_, My S, S, Py € Y, and sy were all ob-
tained by performing operations on InXt rather than
Xt.

Once again it must be emphasized that

these models are not exactly correct because they
only account for second order stationarity in X,

Therefore, one cannot simply determine the frequency
distribution of Zt for the independent series or the
frequency distribution of € for the Markov models
because the expected values of the central moments
whose order is greater than two are not constant.

The approach in this study was to use
the simple stochastic models, either the independent

model or the first order Markov linear model. How-
ever, the second order Markov linear model is a
likely and attractive model for the stochastic com-
ponents of monthly values of precipitation and runoff.
Also, the general moving average schemes may be
shown to fit better the time dependence of stochastic
components in some monthly series than do the sim-
ple Markov linear models. By restricting the analy-
ses in this study to simpler models, the intention

was to separate the deterministic (periodic seasonal)
components of time series from their stochastic
components and to assess the general order of magni-
tude and the general type of dependence in time series
of these stochasti¢ components. Through use of the
more complex mathematical models in describing the
dependence in stechastic component time series, a
further improvement in the analysis of time series of
monthly precipitation and monthly runoff may be ob-
tained. On the other hand, this approach would in-
evitably require more parameters to be estimated than
the simple approach used in this paper necessitated.



CHAPTER III

DATA ASSEMBLY AND ANALYSIS OF RESULTS

1. Data assembly for research. The monthly
data used in this study consists of data of 219 preci-
pitation stations and 137 runoff stations in the United
States, These stations are distributed over the states
west of the Mississippi River.

Primarily, precipitation monthly values were
taken from data published by the United States Weather
Bureau, but supplemented by data publications of
various states. The stations were selected in such a
way that their data were homogeneous (no significant
change in station position, elevation, or environment
during the observation period). The length of records
of the precipitation data varied from 30 to 110 years
of continuous observations. The area distribution of
the precipitation stations is given in fig. 3.

Runoff data was taken from the United States
Geological Survey publications, 'Surface Waters of
the United States.'' Again, stations were selected if
their data was homogeneous and consistent. Those
stations which had sufficient upstream diversion to
cause a noticeable effect on the downstream discharge
were rejected. Unfortunately, the rejection of sta-
tions because of diversion made it difficult to obtaina
uniform area distribution of stations over the con-
tinental region studied. As a result, there is a
scarcity of stations in the mid-western states due
mostly to rejections on the basis of diversion and run-
off depletion with time, Of those selected, the runoff
stations varied in catchment area from 3 to 9100
square miles, and had continuous observations from
30 to 97 years. Figure 4 shows the area distribution
of these stations.

Tables 1 and 2 in Appendix 1 and Appendix 2,
are lists of the monthly precipitation and monthly
runoff stations, respectively, which were used inthis
study. The monthly data for stations was stored ona
magnetic tape and all computations were done on the
CDC 3600 digital computer of the National Center for
Atmospheric Research, Boulder, Colorado. For
each station, the name, the coordinates, and the num-
ber of years of continuous record are listed. The last
year of record is 1960 for both precipitation and
runoff.

The precipitation stations are listed by their
U. S. Weather Burcau identification number. The run-
off stations include in their listings the size of the
catchment area and their U. S. Geological Survey
identification number. In the following text, refer-
ence to stations will be made by station identification
number only.

2. Explained variance by seasonal periodic com-
ponents. As described in Chapter II, the first stepin
analyzing the time series of monthly values is to de-
tect the periodic movement inside the series, and to
approximate it by the Fourier series analysis in
specifying the coefficients for the main cycle and its
various subharmonics. For periodic movement, the
mean value for each calendar month shows how the
expected mean changes with 7, where 7 =1, 2, ... 12

10

(January through December for precipitation series
and October through September for runoff series).

The mean monthly values are computed by the expres-
sion

L N-1
m_= = z X 2 3.1
T N t=a 12t+71
where X12t+ , are all monthly values for a given

month 7 (for example, 7 = 3 is the month of March
for precipitation series, and is the month of Decem-
ber for runoif series) and N = number of years.

The variation of monthly values for given r,
around m_, is measured by the standard deviation,

s, or by the expression

) 1N-i

s = [& m )27 3.2
e

S P T.

=0

where X and m_ are defined as above. In
12t+ 71 T

the majority of cases of monthly precipitation and
monthly runoff, experience shows that m_ and 8,

follow a clear periodic movement, with sampling de-
viations of m,_ and S'r about an assumed smooth curve

of periodic movement of B and v of the population

time series. To fit these two periodic movements by
the appropriate mathematical models, the variance
spectrum analysis was used to detect the significant
harmonics, and the simple Fourier series analysis of
the basic cycle and its k-harmonics was used.

For a given monthly time series of precipita-
tion or river flows, the mean monthly values (for each
of 12-months) were computed. Also, the standard
deviations, I of monthly values about the mean

monthly value were obtained. For the significanthar-
monics of the series determined by the variance
spectrum analysis, the k-harmonic values Ak and

By of egs. 2.10 and 2. 11 were computed, and
(Akz + B}:]J’Z represented that portion of the total

variance of the monthly time series which is explained
by the k-th harmonic. In other words, if the summa-
tion of the explained variances is made for all the sig-
nificant harmonics of the time series, the difference
between the variance of the time series of %, and the

total explained variance by these harmonics is the

variance attributed to the stochastic component of the
time series,

The total explained variance of the 12-month
cycle and of all its significant harmonics may, there-
fore, be used to indicate the degree to which precipi-
tation and runoff are influenced by the seasonal cli-
matic variations of the year. Thus, the larger this
explained variance, the more seasonal is the char-
acter of monthly precipitation and monthly runoff.
However, if the explained variance is only a very
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small fraction of the total variance, it may be assumed

that the time series has small seasonal variation.
Listed in table 3, Appendix 3, are the main 12-month
period and those of its subharmonics found to be sig-
nificant on the 95% level by the variance spectrum
analysis of the precipitation stations. Periods are
listed for both the monthly means of the time series
and the standard deviation for each month. The ex-
plained variance of these significant harmonics is
also listed in table 3. Table 4, Appendix 4, gives the
same data for the stations of monthly runoff. Finally,
the significance of each column of these two tables

is given in tables 3 and 4, Appendices 3 and 4, re-
spectively, and the short versions of column des-
criptions are given at the end of each of these tables.

3. Explained variance of the main 12-month cycle
and its significant subharmonics of the monthly preci-
pitation. Some remarks in this section may be sup-
ported by reference to the article by L. W. Horn and
H. A. Bryson [5]. This article presents a technique
for describing the time and area distributions of pre-
cipitation by analysis of the phase angles and ampli-
tudes of the harmonics of the 12-month period.

Figure 5 shows the distribution of the explained
variance of the 12-month period and its significant
subharmonics over that portion of the United States
which is covered by the precipitation station network.
It is obvious that the seasonal effect on the fluctuation
of monthly precipitation varies over the area. The
detailed reasons and explanations for these variations
were not studied in this paper.

It is interesting to note that in the southern-
middle portion of the United States, the monthly pre-
cipitation is almost entirely free of seasonal varia-
tions. Precipitation within a large portion of the
Colorado River Basin and the Great Basin is also
affected very little by seasonal variations. In addi-
tion, a large part of Texas and a large part of Louisi-
ana have a very small explained variance (0 - 10%)
according to the periodic variations of monthly pre-
cipitation. These areas are to be contrasted with the
Olympic Peninsula in Washington and the small area
on the coast of California, north of San Francisco,
where 50 to 60% of the variance of the monthly preci-
pitation series is explained by seasonal variations.
Over the rest of the area studied, the explained vari-
ance varies from 10 to 40%, except on the western
coastal area from Canada to San Francisco, which
has an explained variance of 40 to 50%.

It appears that one may begin at a point in the
middle of Utah and, upon moving in any direction from
that point, notice the increasing effect of seasons on
the variations of monthly precipitation. However,
moving in a south-easterndirection, cne encounters a
dividing line which runs in a north-easterly direction
diagonally cutting through New Mexico, Southern
Kansas, and Northern Missouri. Crossing this line
in the direction of the Gulf of Mexico, one finds a de-
creasing seasonal effect on monthly precipitation.

Looking only to the west part of fig. 5, one
may be tempted to conclude that the effect of seasonal
variations on monthly precipitation may be highly
correlated with the total annual precipitation. Seem-
ingly, the greater the annual precipitation (coastal
areas of Washington and California), the greater is
the explained variance of seasonal variation inmonth-
ly precipitation, and vice versa, the smaller the
annual precipitation (Colorado River Basin and the
Great Basin), the smaller is that explained variance.
However, the south-eastern part of fig. 5 shows the
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opposite trend. If one goes from New Mexico and
north-western Texas, with smaller annual precipita-
tion, to south-eastern Texas and Louisiana, with
greater annual precipitation, the explained variance
decreases which is opposite from what is experienced
in the western part of fig. 5. The physical explana-
tions for these differences, as well as the search for
basic causal factors which affect the degree of sea-
sonal variations in monthly precipitation series, were
outside the scope of this paper.

4. Explained variance of the main 12-month cycle
and its significant harmonics for the monthly runoif.
Because of the uneven distribution of runoff stations,
the areal distribution by isolines of the explained
variance of the 12-month period and its significant
harmonics is made only for the Pacific Northwest
region and for the southeast corner of the area studied.
Figure 6 shows the areal distribution of the explained
variance for these two regions, as well as individual
values of explained variance for stations located
inbetween these two regions,

It should be noted that the explained variance
plotted in fig. 6 is that for the fitting of the 12-month
period and its harmonics to logarithms of monthly
flows. The reason for using the log series is ex-
plained in the section on fitting models to the runoff
series of this chapter.

In the Pacific Northwest, the explained vari-
ance of the 12-month period and its subharmonics,
within the logarithmic flow series, is very high. It
ranges from 50 to 90% of the total variance of the
series of log of monthly runoff. This means that the
stochastic variation in time series ranges only from
50% to as little as 10% of the total variation. Thus,
over most of this area, the fluctuation of river flows
within the year can be predicted with relatively suffi-
cient accuracy. The main contributing factor to the
high percentage explained variance by the periodic
components is undoubtedly the winter accumulation
and the spring runoff of snow melt which account for
much of the runoff in the general area. A second
reason would be the fact that over most of the area,
the explained variance by seasonal fluctuations in
monthly precipitation is the highest of any area
studied, a fact reflected directly in the runoff. The
third reason, which is likely responsible for greater
explained variance of monthly runoff (50-90%) in
comparison with the explained variance in monthly
precipitation (20-50%) by periodic components in the
same region of the northwest, is the annual climatic
cycle of temperature and evaporation. The next
reason is likely to be the smoothing effect of the
water storage in river basins, which is much greater
for the stochastic component of effective precipita=
tion input into the river basin, then for the periodic
component,

The southeast portion of the area studied has
a much lower percentage of explained variance by
seasonal variation of monthly runoff than the Pacific
Northwest. It can be seen in fig, 6 that the values
range from 0 to 50%. Comparing the explained vari-
ance of the runoff with that of precipitation over this
same area, there seems to be little noticeable cor-
relation except over the southern and central portions
of Texas where the explained variance for runoff is
about the same as that for precipitation (this might
indicate the complete lack of snowmelt contribution
to the flow in this region and a limited effect of cli-
matic cycle of temperature and evaporation).

Comparison of figs. 5 and 6 leads to the



Fig. 5 Percent of the total explained variance of the significant seasonal harmonics
of monthly precipitation time series
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conclusion that the seasonal variations, measured by
the explained variance of the periodic components of
time series of monthly values, are much greater inthe
time series of monthly river flow than in the time
series of monthly precipitation. The monthly preci-
pitation contains the seasonal variations which are
induced by the seasonal factors of general atmospheric
circulation. The monthly river flow Qt can be ex-
pressed as

QP -t AW, 2.3

with PJE = monthly precipitation on the river basin,
E, = monthly evaporation from the river basin, and
.{aWt = change in the total water carryover in a river
basin. The last two factors (Et and awt) in eq. 3.3,

must be responsible for an increase in the seasonal
variation of monthly river flows. Since the evapora-
tion has a 12-month cycle (with its subharmonics), it
must be partly responsible for the increased seasonal
variations. By the storage of water in the form of
snow in cold season and release in the warm season
the periodic movement is greatly enhanced. The study
of physical factors affecting the seasonal variation in
monthly runoff, and the relationships of explained
variances of seasonal variation in each variable of
eq. 3.3 are subjects of interest for further research,
It is outside the scope of this paper.

The complexity of the relationship of seasonal
variations of monthly runoff and monthly precipitation
is also clearly illustrated by stating that in the north-
west the seasonal variation for monthly precipitation
decreases from the ocean to the mountains on the
West-East line in fig. 5, while the opposite is true
for the monthly runoff (Fig. 4). The seasonal varia-
tion of monthly precipitation decreases from the
North-West to South-East, while for the monthly run-
off it increases from the South-West to the North-East.

A factor should be stressed, however, in the
above comparison and the interpretations for figs. 5
and 6. Figure 5 shows the properties of monthly pre-
cipitation on points where it was measured. Figure6
shows the properties of monthly runoff of a riverbasin
at the river gaging station. If the centers of river
basins were used for isoline plotting instead of the
gaging station points, a somewhat different picture
would result from that in fig. 5. However, the general
patterns would not be changed drastically. Also, the
logarithms of monthly runoif as used for the study of
seasonal variations may have affected somewhat the
above results.

5. Fitting of mathematical models to the monthly
precipitation series. A tabulated summary of the
fitting of the mathematical models is given in table 3
for the precipitation stations. Testing of the monthly
precipitation series showed that out of 219 stations
tested, 167 stations could be described on the 95%
confidence level by Independent Series Model A, eq.
2, 32, or, in other words, the stochastic component
is an independent time series. Of the 52 stations
which could not be described in this manner, none
could be described by one of the Markov models. The
areal distribution of the stations fitted by Independent
Series Model A is shown in fig. 7. It is interesting to
note that for the most part, those stations which
could not be described by this model occur in groups
or clusters. Four groups stand out and they have
been enclosed by dotted lines. The reasons for this
occurrence have not been inve stigated.
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Figure 8 shows the areal distribution of the
results of fitting Independent Series Model B, eq. 2. 33.
Under this scheme, 149 stations were accepted and
70 stations were rejected on the 85% level. A com-
parison between figs. 7 and 8 show that not all the
stations which could be fitted with model A can be
fitted with model B. The underscore bar under 56
of the stations in fig. 8 indicates that the results of
fitting Independent Series Model B to precipitation
time series produced results opposite to those obtained
by fitting Independent Series Model A,

Of the 56 stations producing opposite results
upon fitting Independent Series Models A and B, 29 of
these stations were found to display aperiodic series,
Zt’ by variance spectrum analysis, but at the same

time the correlogram of Zt showed that the series

could not be considered as independent on the 95%
level of significance. The other 27 stations, it was
found, contained periodicity in the fitted series Zt.

This periodicity was made up of the same periods as
those removed from the series Xt plus subharmonics

of the removed periods, In all these cases, no indica-
tion of these introduced periods in ZJE was observed in

the spectrum analysis of Xt’ even at low significant

level. These stations are listed in table 5, By far
the largest grouping of rejected stations appears in
California; thus, it appears there may be some re-
gional factor which makes curve fitting by harmonics
inappropriate.

In a few of the stations (these stations are not
included in table 5), all harmonics in Xt were not re-

moved. This occurrence was a case where, upon
removal of the significant harmonics in the variance
spectrum, the smaller harmonics become significant
in the spectrum of the series Z,. In some cases, the

remaining harmonic had such a small effect on the
series that it did not influence the independendence of
the correlogram; in other cases, it did. In the cases
where a harmonic remained and Independent Series
Model B was rejected, this harmonic could have been
removed to see if this was the cause of rejection.
Stations in which enough harmonics were not removed
are listed in table 6.

An example of fitting the Independent Models
to the Hachita precipitation station in southwestern
New Mexico (station number 29.3775) is illustrated
in figs. 9 and 10. The period of record for this
station is 51 years. Figure 9 shows the monthly
precipitation record {Xt) from 19_31 through 1960.

The two graphs on the left hand side of fig. 10 show
the correlogram and variance spectrum of Xt' The

variance spectrum shows the 12-month period and
its 6- and 4-month harmonics to be significant on the
95% level. The 12- and 6-month cycles are also
easily discernible from the correlogram. However,
the presence of a 4-month harmonic is not obvious
from an analysis of the correlogram and it should be
explained that it is needed only to apply the Fourier
series analysis to periodic component of series.
Using the same type of curves for the series

(X,t - m )%, the standard deviation was found to con-
T

tain the cycles of 12~ and 6-months. The middle
pair of figures illustrates the correlogram and vari-
ance spectrum of Z,, obtained by standardizing

the series X, according to eq. 2.5. The confidence
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limits on the 95% level are also included. The cor- 4 4 6
relogram and variance spectrum on the far right of -0.158 cos 75 + 0.556 sin 15t + 0. 238 cos iz L=
the figure are for the series Z,JE obtained by fitting
and removing harmonics to X, by eq. 2.13. From - 0.233 sin ?—gt 3.5
fig. 10 it can easily be seen that both Independent and
Series Model A and Independent Series Model B may
be used in the description of X,. However, Independ- s, = 0.787-0.102 cos %t -0.395sin %t -
ent Series Model A requires 24 constants as men-
tioned previously (12 constants for m_ and 12 con- -0.093 cos ;1_?; t-0.299sin %t 3.6

stants for sT}, while for this station Independent

Series Model B requires only 14 constants, or slight-
ly more than one-half those required for Model A,

The constants for Model B are: X = 0.845; the coef-
ficients of harmonic components of m,, A, =-0.238,

B1 = =0,621, AZ = -0, 158, B2 = 0. 5586, .A3 = 0,238,

and B, = 0. 233; the average value of s, = 0.787; the
coefficients of harmonic components of Sps sAl =

;0. 102, gBq1 = 70.395; (A, =-0.093, and gB, =0.299;
Y = 0.007; and s = 1.061. Substituting these values
into eq. 2. 33 for Model B, Xt is given as:

X

t m

¢ + 5 (0,007 + 1,061 Z))

where

27

12

t-0.621 sin 2L ¢ -

m, = 0.845-0, 238 cos 17

t

19

where .’Zt is an independent stochastic variable, with

given characteristics. Although egs. 3.5 and 3.6 may
look long and difficult to handle, it should be noted
that X, 1is completely described mathematically and

it is therefore much easier to work with this equation
than to use Model A, with all 24 constants for m_

and s_- A listing of the constants for those precipita~-

tion stations which may be described by Independent
Series Model B is given in table 3, appendix 3,

6. Fitting of mathematical models to the monthly
runoff series. A tabulated summary of the fitting of
mathematical models to monthly runoff series is
given in table 4, appendix 4. The fitting of only the
12-month period to the monthly runoff series was un-
successful. It was found that, in the majority of
cases, a good fit could not be obtained with fewer
than five or six harmonics. Thus, there was no
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Table 5
MONTHLY PRECIPITATION STATIONS WITH INTRODUCED HARMONICS

Periods Removed

Station Periods in Z

Xt Standard Deviation £
4.0227 (California) 12 12 12, 6, 4, 3, 2.4,
4.0383 12 12 4, 3, o 2
4.0755 12 12 12, 6, 4
4.0780 12 12 4, 3, 2.4, 2
4.3161 12 12 12, 6, 4
4.3191 12 12 12, 6, 4, 3, 2.4
4.4022 12 i2 12, 6, 4, 3, 2.4
4.5215 12 12 12, 6, 4, 3, 2.4
4.6175 12 12 12, 6, 4, 3, 2.4, 2
4.6399 12 12 12, 4, 3
4.7740 12 12 12, 6, 4, 3, 2.4
4, 7851 12 12 12, 6, 4, 3, 2.4, 2
4.8045 12 1.2 12, 6, 4, 3, 2.4
4,.8353 12 12 12, 6, 4, 3, 2.4, 2
4. 8967 12 12 6, 4, 3
4, 9087 12 12 12, 6, 4, 3
4, 9490 12 12 12, 6
4, 9699 12 12 12; 6 4 3, 2.4;.:2
24, 2689 (Montana) 12 12 12, 6
24,5285 12 12 12, 6, 4
32,2188 (North Dakota) 12 12 12, 8
35, 3445 (Oregon) 12 12 12, 6
45.7038 (Washington) 12 12 12, 6, 4

Table 6

MONTHLY PRECIPITATION STATIONS IN WHICH ALL HARMONICS WERE NOT REMOVED

Periods Removed Independent Model

Station - S - Accepted (4), or rejected (R)
t .2y Model A Model B
5.1528 12, 4, 3 12, 6 2.4 A A
5.4834 12 3 12 4, 3 R R
24,0364 12, 6 12 4 A A
24,0770 12, 6 12 4 A R
24, 2604 12, 6 None 4 A A
24,5761 12, 6 12, 6 4 A R
32,6025 12, 6 12 4 A A
34,9629 12, 6 None 4 A A
39,1972 12, 6 12 4 A A
39,4864 12 6 12, 6 4 A R
6 12 4 A R

39,8552 12,

21
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o

advantage in trying to use the Markov I Model B rather
than the Markov I Model A because of the large num-
ber of constants involved,

The difficulty in fitting a harmonic function to
the monthly flow series was due to the great variation
of the flows for periods of peaks and periods of low.

A major factor is the influence of spring runoff due to
snowmelt which causes many rivers to run high for
three or four months out of the year, while for the re-
mainder of the year, the flow is low with only small
variations. Such behavior does not adapt itself to
harmonic analysis unless the sum of all the harmonics
of 12-months is used, in which case the use of the
standardized series is a simpler solution. Therefore,
only the results of fitting the Markov I Model A are
presented here for the monthly flow series. However,
the procedure described in the previous text, inwhich
C,. coefficients may be fitted by simple mathematical
relationship of a small number of parameters (Ck, k

and n) both for m, and 8, may give practical meaning

also to the use of the Markov I Model B for which the
Fourier series coefficients of a large number ofhar-
monics is determined.

The above discussion suggests that better re-
sults might be obtained if the logarithm of the month-
ly runoff values was taken. This procedure serves a
two-fold purpose. First, the range of values couldbe
compressed or reduced, and second, on a log scale,
the variation of the low flows would be magnified with
respect to the high flow variations. The combination
of these two features makes possible the description
of the periodic components of logarithms of the
monthly flows with fewer harmonics than is possible
by use of the monthly flows themselves.

The results of fitting the Markov I Model A
and the Markov I Log Model A were good. It was
found that out of the 137 stations tested, 110 of them
could be described by the Markov I Model A and/or
the Markovl Log Model A. The number of stations
described by each of the two models was 92 and 96
stations, respectively. The number of stations de-
scribed well by both models was 78. The fact that
only 27 stations could not be described by one of the
two models indicates that, in general, the monthly
streamflows are time dependent and this dependence
can be described by a first order Markov Model.
Figure 11 shows the areal distribution of the stations
fitted by the two models.

Results of fitting the 12-month period and its
harmonics to logarithms of monthly flow series
showed that 75 stations of the 137 tested could be de-
scribed by the Markov I Log Model B. It was also
found that 87 of the stations tested gave the same re-
sults for this model as they did for the Markov I Log
Model A. Of those 40 giving different results, 29
were accepted by Model A, but rejected by Model B.
Included in these 29 stations were 7 stations which
still had one significant harmonic in Z‘t' after remov-

ing the 12-month period and some of its harmonics.
These 7 stations are indicated in table 4, appendix 4,
by a check mark beside the station number.

Besides the 7 stations mentioned, there are 8
other stations which produced the same results upon
fitting the Markov I Log Model A and Model B, but
which still contained some periodicity in the fitted
series. These 8 stations (along with the 7 stations
mentioned above) are listed in table 7, and the remain-
ing harmonics should be removed from these seriesin

Table 7

MONTHLY FLOW STATIONS IN WHICH ALL HARMONICS WERE NOT REMOVED

. Periods Removed . Independent Model
Station Periods .
Xt Standard Deviation in Zt Accepted (A), or rejected(R)
Model A Model B
13. 141 12, 6 12, 6 3 R R
13,518 12, 6, 4 6 2, 4 R R
12, 359 12, 6, 4 12, 6 3 R R
12,610 12; 8 12, 6 5.5 R R
12.667 12, 6 12, 6 4 A A
11B. 112 12, 6 12, 6 4 R R
11B. 304 12, 6 12, 6 4 A A
11B. 308 12, 6 12 4 R A
9. 485 12, 6, 4 12 3 R R
9,623 12, 6, 4 12, 6 3 R A
9.624 12, 6, 4, 3 12, 6 2.4 R A
8.517 12, 6, 4 12 3 R A
6B. 155 12, 6 12 12,6, 4, 3, 2.4 A A
6B. 367 12, 4 None 2.9 R A
6A. 684 12, 6, 4 12, 6 3 R A
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order to fit these models better. It should be noted mic runoff series as it was in dealing with the preci-

here that the problem of "introduced' harmonics in pitation series. The only runoff station in which this
the series Zy by the process of removal of periodicity | result was encountered was station 6B.155 (see table
from X, was not experienced in dealing with logarith- 7). Figure 12 shows the result of fitting Markov I Log

Model B and the comparison of the results with those
fitting Markov I Log Model A,
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As an example of fitting the Markov I Log
Models A and B, station 11B.402 located on the Middle
Fork of the American River near Auburn, California,
was chosen. The length of record was 49 years,
Figure 13 shows the sequence of monthly flows from
1931 through 1960.

The pair of graphs on the left hand side of
fig. 14 are the correlogram and variance spectrum of
the logarithm of the monthly river flow sequence, re-
spectively. It is obvious from both figures that the
i{2-month cycle is dominant. A 6-month harmonic is
shown in the variance spectrum but it is not signifi-
cant on the 95% level. However, upon removal of the
12-month cycle it was found that the 6-month har-
monic became significant and consequently also had
to be removed. The same two periods were also
found in the spectrum of the square of the deviations
of the logarithms of the monthly flows deviations,
which squares of the deviations are defined as:
[log (monthly flow) - monthly mean of the log (monthly
flow)]? The correlogram and variance spectrum of
Z, produced by standardizing the logarithmic series

(Model A), are shown in the middle two figures while
the correlogram and variance spectrum of the fitted
series Zt are shown in the right hand pair of figures,

respectively. If is seen that the resulis of the two
methods are nearly identical. However, Z, of the

fitted series can be described with 12 constants while
the standardized series requires 24, The first-order
Markov Model is clearly indicated in the correlograms
of both series of Zt and the effect of this time de-

8000

6000 [~

4000

Discharge, cfs

2000

pendence is observed to be present in the low fre-
quency range of the variance spectra.

Upon removal of the Markov first-order time
dependence from the series Zt’ the series ¢, is

t
produced as given by eq. 2.43. The correlogram

and variance spectrum for €, computed from the

standardized series are shown on the left hand side
of fig. 15 while the same results for € computed

from the fitted series are shown in the right hand pair
of graphs. It can be seen that both the correlogram
and the variance spectrum exhibit the same behavior
in both cases and it can be further observed that €4

is independent on the 95% level, inferred from both
the correlogram and the variance spectrum.

The Markov I Log Model B may be used to
describe the series Xt by using the notation described

in Chapter II, under Markov I Iog Model. The con-
stants are Py =Ty = 0.659, X = 6.307; the harmonic

components of m A, =-1,722, IE;1 = -0,489,

17 15
A, = -0.383, B, = 0.275; Et = 0. 708; the harmonic
components of Sis sAi = -0.019, sBl =0, 164,
SAZ = =0, 245, SBZ = =0,100; Y = =0.002; s _=1,006.

In all, 13 constants are required to describe Xt as

given by eq. 2.42 for the Markov I Log Model B.
Tabulated results for the stations tested and the con-
stants required for the Markov I Log Model B are
given in table 4, appendix 4,
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CHAPTER IV
DEPENDENCE IN STOCHASTIC COMPONENTS
OF MONTHLY PRECIPITATION AND MONTHLY RUNOFF

Monthly precipitation series. The dependence

1.
in the stochastic component of monthly precipitation

is measured in this study by ry, the first serial cor-
The areal distribution of the first

precipitation.

relation coefficient.

serial correlation coefficient, T, has been plotted in
fig. 16 for the standardized series Zt of monthly
The minimum value of r t

obtained
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was -0. 06 while the maximum value obtained was
0.20. From a statistical point of view, these correla-
tion coefficients are too small to be considered signi-
ficant on the 95% level. Figure 16 indicates that there
is no orderly distribution of the magnitude of ry

over the area studied. The occurrence of the highs
and lows of r, bears no resemblance to the explained

variance by the seasonal variations.

The frequency distribution of ry has been

plotted in fig. 17 for the stations tested (total of 219)
and the probability curve of ry is shown in fig. 18,

From these two curves, it appears that ry is approxi-

mately normally distributed (although theoretically
the distribution is bounded at + 1.0), with a mean of
0. 053 and the standard deviation s(rl) of 0. 041,

It is interesting to note that the average first
serial correlation coefficient of annual precipitation
for 1141 stations in Western North America [9] and
for the period of observations of 30 years (1931-1960)
is r, = 0.028, which is very close to the average first

1
serial correlation coefficient of monthly precipitation
The

of r, = 0.053 for 219 stations in the same area.

1

fir)

series of the stochastic component Z.t of monthly

precipitation was N > 360 months (but m = 219 sta-
tions). It is shown [9] that s (ri) = 0. 136 for annual

precipitation and s (ri) = 0. 041 for monthly precipita-

tion. Neglecting the influence of the number of sta-
tions (or specifically of the effective number of inde-
pendent stations for annual and monthly precipitation),
and taking only N = 360 and N = 30, the ratio of
variances of first serial correlation coefficients of
annual and monthly precipitation should be 12. The
ratio is 0.136%2/0.041% = 11, or very close to the
theoretical value. It can be concluded that the sto-
chastic components of monthly precipitation series
have a very small time dependence, of the same order
of magnitude as the annual precipitation, or the aver-
age first serial correlation coefficient for a large num-
ber of stations of about 0.05. For many practical
applications, the stochastic component of monthly
precipitation series may be considered as independent
in sequence.

Z, Monthly runoff series. Because of the distri-
bution of the runoff stations, the regional distribution
of r, for the stochastic component of monthly flow

series had to be limited to the two areas: the

-008  -004 -002 o 0.0z 0.04 0.06

First Correlotion Coefficient, r,

Fig. 17 Frequency distribution of the first correlation coefficient of the standardized series
Z, for the precipitation stations tested
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Fig. 18 Probability distribution of the first correlation coefficient of the standardized series
Zt for the precipitation stations tested
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Washington-Oregon-Idaho area and the Missouri-

Eastern Kansas area. The areal distribution of Ty

for these two regions is shown in fig. 19. The fre-
quency distribution of r, is different for the two re-

gions as can be seen in fig. 20, with the Missouri-

Kansas area experiencing smaller values of ry than

the Washington-Idaho-Oregon area. A plot of the co-
efficients r, on normal probability paper, in fig. 21,

shows that both distributions may be approximated by
normal functions. From the probability plots, the mean
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Fig. 19 Areal distribution of the first correlation coefficient of the standardized series Z
for monthly river flows

30

t



Missouri

Figures 19 through 21 show that the time de-
pendence of the stochastic component of the monthly
time series, measured by the first serial correlation
coefficient, r,, is very large and much larger than

in the case of stochastic components of monthly pre-
cipitation. The two values r, = 0.54 and r, = 0. 38

are much greater than ?1 = 0. 05 for monthly precipi-

tation. The average first serial correlation coefficient
of annual flows for very large number of stations have
been given in Hydrology Paper No. 4 [9], as r =

P 0. 175 for the sample of 140 stations from many parts

of the world (with the average length of annual values
per station of 55), and as r, = 0. 197 for the sample

of 446 stations in Western North America (with the
average length of annual values per station of 37).

Fig. 20 Frequency distribution of the first correla- Therefore, these two values give ry = 0.18 - 0. 20

tion coefficient of the standardized series
Zt for the runoff stations in the two areas
indicated

for the Washington-Idaho-Oregon area, Fi’ is 0. 54

and are much smaller than the above values F1 = 0,54
and ?1 = 0. 38 for the stochastic component of

monthly flows. The water carryover in river basin
from month to month is much greater than the water

with a standard deviation of 0. 16, while the mean for carryover from year to year. It is an intuitive
the Missouri-Kansas area, T, is 0. 38 with a standard asSsumption that the smaller time series measure of

deviation of 0.08. The maximum value of ry in both

a hydrologic continuous time series (with time
measures usually used in hydrology, 12-month, 3-

areas is 0.8 and there is no occurrence of r; less month, month, 15 days, 5-days and i1-day, or similar
than zero. units), the greater is the dependence in the stochastic
1.0 T
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component. The ?1 - values increase with a decrease

of the time series measure. The water carryover
from one time unit to the other, because of the water
storage in river basins in various forms, the snow
and ice accumulation and melting included, is rela-
tively greater for the small time units than for the
large time units.

3. Skewness coefficient of stochastic components
of monthly precipitation. The areal distribution of
the skewness coefficient for the standardized series,

Zt’ or of the stochastic component of monthly preci-

pitation, is plotted in fig. 22.

It can be observed that

Cs is greater on the California coast and that its
magnitude decreases as one progresses inland. In
the interior portion of the country, Cs is positive and

varies between 0. 80 and 1. 90. The general analysis

of results in fig. 22 shows that the Z, stochastic

components of monthly precipitation have highly
skewed distributions. This is the case with monthly
precipitation, in general, and with its stochastic
component in particular. It is a known fact that the
positive values of Zt have smaller frequency densi-

ties than the negative values.

| |
| MORTM ohkoTa
| “

300 milas

Fig.

22 Areal distribution of the skewness coefficient of the standardized series Zt

for the precipitation stations tested
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4. Skewness coefficients of the independent sto-
chastic components of monthly river flows. The
areal distribution of the skewness coefficient for the
independent stochastic component, €, of monthly

runoff, as produced by fitting the Markov I Log Model
A to the dependent stochastic component of monthly

flows, is shown in fig. 23. Because of the use of
logarithms of flows instead of their original values,
the skewness coefficients are much smaller for €
than they are for Zt of monthly precipitation.
Finally, the Cs variation of €4 is very high, as

shown in fig. 23, and can also be negative.
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Fig. 23 Areal distribution of the skewness coefficient pf the series €41 produced by fitting
Markov I Log Model A to the runoff stations
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CHAPTER V

CONCLUSIONS

The results and discussion of the analysis of struec-
ture for time series of monthly precipitation and
monthly river flows, as given in previous chapters,
may be summarized in the following conclusions:

(1) The monthly precipitation series is composed
of a deterministic component of periodic movement
and a nearly independent stochastic component.

(2) The periodic component in monthly precipita-
tion series may be described by Fourier series, with
the 12-month cycle and its harmonics.

(3) To avoid too many parameters in Fourier
series approach in describing the periodic component,
the Fourier Ck coefficient of the cycle and its

successive harmonics may be approximated by a de-
creasing function of the order k of harmonics.

(4) The ratio of variance explained by the periodic
component to the total variance of monthly precipita-
tion, varies highly, across a large continental region,
somewhere between 0 and 0. 60.

(8) The average first serial correlation coefficient
for the stochastic component of a large number of sta-
tions (219) of monthly precipitation is very small,
approximately 0. 05. Therefore, this stochastic com-
ponent is very close to being independent.

(6) The time dependence of the stochastic com-
ponent of monthly precipitation series is approximate-
ly the same as the time dependence of the annual pre-
cipitation series. It seems that the same factors
which create a very small time dependence in annual
precipitation series are responsible for the small
time dependence of stochastic component of monthly
precipitation series.

(7) The skewness coefficients of stochastic com-
ponent of monthly precipitation are very high, ranging
from about 0.80 to 3. 50.

(8) The monthly runoff series is composed of a
deterministic component of periodic movement and a
highly time dependent stochastic coraponent. The
time dependence of the stochastic component can be
described in most cases by a Markov first-order
chain.

(9) The periodic component in monthly runoff
series may be Hdescribed by Fourier series, with
12-month cycle and its harmonics. This component
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usually requires more harmonics for its description
than is the case with the same component in monthly
precipitation series,

(10) Because the periodic component in monthly
runoff series requires more harmonics for its des-
cription, the fitting of a decreasing function to Ck

Fourier coefficient (coefficient decreasing with the k
of higher order harmonics) reduces the number of
parameters necessary for the description of this
deterministic component.

(11) The ratio of variance, explained by the
periodic component in monthly runoff series, to the
total variance of monthly runoff varies highly across
a continental region; but, on the average, it is much
greater than the same ratio for the monthly precipita-
tion. The ratio for monthly runoff ranges for two
areas in Western North America between 0 and 0. 90,
while it ranges, for monthly precipitation, between 0
and 0.60. Because of the periodic movements in eva-
poration and in snow and ice storage and melting and
the storage effect in attenuating the stochastic varia-
tions, in river basins, the seasonal periodic varia-
tions are greater in monthly runoff than in monthly
precipitation.

(12) The average first serial correlation coeffi-
cient of the stochastic components for a large number
of stations (137) of monthly runoif is very high, around
0.45-0.48, For the Northwest part of the region, it
is 0. 54 and for the Southeast part of the region it is
0. 38. The water carryover from month to month
makes the time dependence in the stochastic component
of monthly runoff much greater (2 to 2.5 times greater)
than the average first serial correlation coefficient of
annual runoff series. The water carryover in river
basins from month to month is mainly responsible for
a large difference in T, between the stochastic com-

ponents of monthly runoff and monthly precipitation.

(13) Both the correlograms and variance spectra
of monthly precipitation and monthly runoff are useful
and should be used simultaneously. While the correlo-
gram shows the physical cycles detectable in these
series, the variance spectra show the number and
significance of various harmonics to be used in
Fourier series description of periodic component of
time series. Both of these techniques show well the
types of dependence of stochastic components of these
two variables.
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APPENDIX 1
TABLE 1
MONTHLY FPRECIPITATION STATIONS USED FOR THE INVESTIGATIONS

Station Station
Years Code: 0= Years Code: 0=
Se- of Homoge- Se- of Homoge-
quence Station Rec- neous and  quence Station Rec- neous and
No. Ident. Name of Station Latitude Longitude Area ord Consistent No. Ident. Name of Station Latitude Longitude Area ord Consistent
1 2, 1848 Clifton (1908) 33,05 108,28 -0.00 52 0 64 13,2208 Des Moins WE (1878) 41.58 93.62 -0.00 83 0
22,3591 Grand Canyon (1821) 36,05 112,12 -0.00 40 0 City
National Park 65 13,5230 Mason City 3 N (1903)  43.18 93.20 -0.00 38 0
32,5744 Mount Trumball (1931)  36.42 113,33 -0,00 30 0 66 13.6391 Ottumwa (1884) 41,00 82,43 -0.00 68 0
4 2.6320 Payson RS (1927) 34,23 111,33 -0.00 34 0 Years Missing: 1887 to
5  2.6561 Pinal Ranch (1896) 33.35 110.B8 -0.00 65 0 1883 Inclusive, 1908, 1822
6  2.6796 Prescott (1909) 34,55 112,45 -0,00 52 0 67 13,7161 Rockwell City (1888) 42,40 94,62 -0,00 65 0
72,8815 Tueson Univer- (1895) 32,23 110,85 -0.00 &6 o 68 14.1769 Concordia WEB (1886) 38.57 97.67 =-0.00 75 0
sity of Arizona City
8 2,9652 Yuma Citrus (1921) 32,62 114 65 ~-0.00 40 0 6% 14, 1866 Council Grove (1808} 38.67 86,50 -0.00 52 a
Station . 70 14,2459 Ellsworth (1905) 38.73 98,23 -0,00 56 i
93,0234 Arkansas City (1889) 33,62 91,20 -0.00 72 o 71 14.3758 Holton (1913) 39,47 95,73 -0.00 48 0
10 3,0460 Batesville Land (1800) 35,75 91.63 ~0.00 61 0 T2 14.4421 La Cygne (1931) 38.35 94.77 -0.00 30 0
D. No. 1 73 14.5173 Medicine Lodge (1882) 37,27 98.58 -0.00 68 o
11 3.1596 Conway (1BB4) 35.08 92,47 -0.00 77 0 Years Missing: 1807
12 3,2444 Fayettesville (1881) 36,10 94,17 -0.00 70 o 74 14,6374 Phillipsburg  (1882) 38.77 99,32  -0,00 &% 0
Exp. Station 75 14,6427 Plains (1910}  37.27 100.58 -0.00 51 0
13 3.4756 Mena (1911) 34,58 94.25 -0.00 50 o 76 14,6637 Quinter {1931) 38,07 100,23 -0.00 30 ]
14 3.5036 Mountain Home (1817)  36.33 92,38 -0.00 44 o 77  14.7305 Sedan {1885) 37.12 96.17 -0,00 76 i
1 NNW 7B 14,7313 Sedgwick (1817} 37.92 97.43 -0.00 44 0
15 3,5820 Pocahontas (1884) 3627 90.98 ~-0.00 67 o 78 14,8186 Toronto (1887)  37.80 95.95 -0.00 64 o
16 3.6928 Subiaco (1898) 35,30 93.65 -0.00 B3 0 80 16.1411 Calhoun Exp. (1882) 32 52 92,33 -0.00 69 0
17 4,0227 Antioch F. (1880) 38,02 121.77 -0.00 &i 0 Station
Mills 81 16.4700 Jennings (1888 30.23 92.67 =-0.00 &3 o
18 4.0383 Auburn (1900) 38,80 121,07 -0.00 61 o 82 16.6117 Melville (1886) 30.68 91,75 =0,00 74 o
19 4.0755 Big Creek (1916) 37.20 118,25 ~-0.00 45 o Years Missing: 1919
Power House 83 16,6658 New Orleans (1870) 29,95 90,07 =0, 00 8t o
20 4,0790 Big Sur State  (1815) 36.25 121,78 -0.00 48 o WB City
Park B4 16,7344 Plain Dealing (1894) 32,80 93,68 -0,00 67 0
21 4.1700 Chester (1811) 40,30 121,22 -0.00 50 0 85 16,8823 Tallulah Delta (1910) 32,40 91,22 -0,00 43 o
22 4.3161 Fort Bragg (1886) 39.95 123,80 -0.00 61 0 Lah,
Years Missing: 1900, 1801 1902 Years Missing: 1917 to
23 4,3191 Fort Ross (1878) 3B.52 123,25 -0.00 85 1] 1824 Inclusive
24  4,4022 Hollister (1874) 36.85 121.40 -0.00 87 o 86 23.1304 Capringer Mills (1927) 37.80 §3.B0 -0.00 34 0
25  4.5215 Lytle Creek (1906) 34,20 117.45 -0.00 55 o 87 23,1580 Chillicothe 25 (1918) 38.75 93.55 -0,00 43 0
Power House BE 23,2235 Dexter (1924)  36.80 89,97 -0.00 37 0
26 4, 5448 MeCloud (1911} 41,27 122,13 -0.00 50 L] 89 23,2503 Eldon (1891) 38.35 92,58 -0.00 57 0
27 4.6118 Needles (1892) 34.77 114.82 -0.00 &9 1] Years Missing: 1896,
28 4,6175 Newport Beach (1931) 33,60 117,88 -0,00 30 o 1897, 1902 to 1212 Inclusive
Harbor 80 23,2823 Fayette (1885) 39,15 92.68 -0.00 78 a
23 4,6399 Ojal (1805) 34.45 118,25 -0.00 58 0 91 23,3038 Fredericktown (1924) 37,57 90,30 -0.00 36 0
30 4.7740 San Diego WB  (1830) 32,73 117,17 =0.00 114 0 Years Missing: 1930
Apt, 92 23,3783 Hermann (1875) 38,70 91,45 -0.00 86 ]
31 4,7851 San Luis Obispe(1870) 35.30 120,67 -0.00 81 0 93 23,5876 Neosho (1878) 36,87 94,37 -0.00 78 o
Poly Years Missing: 1882 to 1886 Inclusive
32 4.8045 Scotia (1926) 40.48 124.10 -0.00 35 0 4a: 23, T120; ‘SHelbifa (1880) 39.68  92.05 -0.00 67 O
33 4,8353 Sonora (1888) 37.98  120.38 -0.00 73 0 Yf;fgrﬁf::i‘f; 1?22;9
3 408T ;szﬂgslﬁm H3ath 308 TL8;80 ;0.00:30 g 95 23,8712 Werrensburg (1878) 38.77 93,73 -0,00 77 0
i {918 1o 1972 Inclusi
e = to nclusive
g; :' :g;; i::?; hvia GLIZOF 3076 U708 20U & 96 23,8995 Willow Springs (1924) 36,98 91,897 -0.00 37 0
: Hanch (1877) 33.73 117.78 -0.00 84 0 97 24,0364 Augusta (1927) 47.48 112,38 -0,00 34 0
37  4.9105 Twin Lakes (1923) 38.70 120,05 -0.00 38 0 98 24,0432 Ballantine {1920) 45.95 108.13 -0.00 41 0
38 4, 9452 Wasco (1800) 35,60 119,33 -0.00 61 o 99 24.0770 BigSandy  (1924) 48.17 110,12 -0.00 37 0
39 49490 Weaverville RS (1871) 40,73 122,93 -0,00 T1 0 100 24.1044 g:;‘i‘;:” Agri. (1803) 45.67 111,05 -0.00 58 0
Jimes ™ o A Gne el oW ARy
: 1879 _ = = = 2. ¢ -, 2
i [“393; WY L Anv s 103 24,3138 Fortine Inne  (1822) 48.78 114.80 -0.00 38 0
Year Missing: 1821 ’ ’ 104 24,3885 Hamilton (1928) 46.25 114,15 =-0.00 33 0
42 5.1528 Cheesman (1903) 38,22 105.28 -0.00 58 o 105 24,3084 Haugan (1913) 7.38 115,40 =000 48 0
43 5,1564 Cheyenne Wells (1897) 38,82 102.35 -0.00 64 o 106 24,4522 Jordan (1831) 47,32 106,80 -0,00 30 0
44  5.2184 Del Norte (1927) 37.67 106.35 -0,00 34 0 107 24,5285 Lustre 4 NNW (1922) 48.45 105,83 -0.00 39 0
45 5, 2432 Durango (1893 37.28 107.88 =0,00 66 0 108 24,5761 DMoccasin Expt. (1931) 47,05 108.85 -0,00 30 0
46 5.3005 Fort Collins  (1898) 40,58 105,08 -0,00 &3 0 Station
47  5.3038 Fort Morgan (1807} 40.25 103,80 -0.00 54 0 109 247286 Saint Ignatius  (1009) 47.32 114,10 -0.00 52 0
48 5,4413 Julesburg (1912) 41,00 102,25 -0,00 49 o 110 24,8809 West Glacier (1926) 48.50 113.88 -0.00 35 o
4%  5,4834 Las Animas (1867) 38.07 103,22 -0.00 04 o 111 25.0930 Blair (1868) 41,55 B6.13 -0.00 91 o
50  5.5722 Montrose No. 2 (1885) 38.48 107.88 -0,00 70 0 Years Missing: 1894, 1895
Years Missing: 1894 to 112 25,1145 Bridge Port (1888) 41.67 103,10 =-0.00 63 a
1898 Inclusive 113 252020 Crete (1880} 40,62 95.95 =-0,00 81 ]
51  5.7618 Shoshone (1910) 39,57 107.23 -0,00 51 0 114 25,2805 Ewing {1882) 42.25 98.35 =-0,.00 &8 o
52 5,7936 Steamboat {1909) 40,50 106.83 -0.00 51 1) Years Missing: 1922
Springs 115 25.3015 Fort Robinson (1884) 42.67 103,47 -0.00 77 o
Years Missing: 1930 116 25,3185 Genoa (1876) 41,43 97.73 =0.00 85 o
53  5.9295 Yuma (1890) 40,12 102,73 -0.00 71 0 117 25.3630 Hartington (1892) 42,62 7.27 -0.00 6% o
54 10.0010 Aberdeen Expt. (1915) 42.95 112,83 -0.00 48 0 118 25,6970 Purdum (1903) 42,07 100,25 -0.00 358 0
Station 119 25,7040 Ravenna (1878) 41,03 98.92 -0.00 83 0
55 10,0448 Arrowrock Dem{1912) 43,60 115,82 =-0.00 48 4] 120 26. 0046 Adaven (1918} 38,12 115,58 =-0.00 42 Q
56 10,1408 Cambridge {1903) 44.57 116,68 -0.00 58 0 121 26,2573 Elko WE apt. (1870} 40.8% 115.78 -0.00 81 o
57 10.2707 Dubois Expt. (1922} 44,25 112,20 -0.00 38 0 122  26.5168 Ming (1008) 38,38 118,10 -0.00 53 o
Station 123 26,6779 Reno WB Apt. (1871) 38.50 118,78 -0, 00 80 0
58 10.3942 Hailey RS (1909) 43.52 114,32 -0.00 352 o 124 28,1515 Carrizozo (1809) 33,65 105.88 -0.00 52 ]
59 10,5011 Kooskia (1808) 46,15 115.88 -D.00 52 [ 125 29,1813 Cimarron (1904) 36.52 104,92 -0.00 57 0
60 10,6542 Oakley {1894) 42,23 113,88 -0,00 &7 i 126 29.193% Clovis (1812) 34,40 103,20 -0.00 49 0
61 10.8076 Selmon (1923} 45,16 113.88 -0,00 38 0 127 28,2854 Elida (1916) 33,95 103,65 -0.00 45 ]
62 10.8137 sandpount Expt. (1811) 48.28 116.57 =-0.00 50 0 128 29,3265 Fort Bayard (1867) 32.80 108.15 -0,00 90 ]
Station Years Missing: 1876, 1883 to
63 13,0364 Atlantic | NE (1891} 41,42 95,00 -0,00 70 o ' 1885 Inclusive
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TABLE 1 - Continued
Station Station
Years Code: 0= Code: 0=
Se- of Homoge- Se- Homoge-
quence Station Rec- neous and guence Station Ree- pepus and
No. Ident. Name of Station Latitude Longitude Area ord Consistent No. Ident, Name of Station Latitude Longitude Area ord Consistent
129 28,3775 Hachita (1910} 31,62 108,32 =-0,00 35: ] 176 41,3508 George West (1916) 28.35 98.12 =-0,00 45 0
130  29.4736 Lake Avalon (19135) 32,48 104,25 -0,00 46 0 177 41,3734 Greenville 2 5W (1802) 33,12 96.13 ~-0.00 39 0
131 29,6676 Pecos RS (1824) 35.58 105.68 =-0.00 37 0 178 41,4081 Henderson (1908) 3215 94,80 -0,00 52 0
132 29.8535 State Univer- (1852) 32,28 106.75 ~-0.00 100 (] 170 41,4780 Kerrville (1896) 30,03 88,13 -0,00 &5 0
sity 180 41,5018 Lampasas (1895) 31.05 98,18 -0,00 &6 o
Years Missing: 1861 to 181 41,5972 Mission (1921) 26.22 98,32 -0.00 40 0
1865 Inclusive, 1883 to 182 41,5950 Perryton (1907) 36.40 100,82 =000 48 0
1885 Inclusive, 1891 Years Missing: 1918 to
133 29,9897 Zuni FAA AP, (1915) 35,10 108.78 -0.00 48 0 1923 Inclusive
134 32,2188 Dickenson Expt. (1882) 46.88 102,80 -0.00 69 Q 183 41,7208 Post (1917) 33,20 101,37 -0.00 44 0
Station 184 41,7262 Presidio (1831) 28.55 104.40 =-0.00 30 0
135 32,3621 Grand Forks U. (1892) 47.92 97.08 -0.00 &9 0 185 41,7651 Riverside (1904) 30,85 85.40 -0,00 57 o
136 32,4418 Jamestown St. (1893) 46.88 98.68 -0.00 68 0 186 41.8630 Sterling City  (1831) 31,85 100,98 -0.00 30 0
Hospital 187 41,9280 Valley Junction (1903) 30,83 96.63 -0.00 358 0
137 32.5638 Max {1931)  47.82 101,30 -0.00 30 0 188 41,9330 Vega (1931) 35.25 102.43 -0.00 30 9
138 32,6025 Mohall (1894) 48.77 101,52 -0.00 &7 0 188 41,8532 Weatherford (1884) 32,75 97,80 -0,00 &7 0
138 34,3487 Geary (1812} 35.83 88,32 -0.00 49 0 180 42,2101 Dessert (1800) 39.28 112.65 -0.00 61 0
140 34, 445! [dabel (1827) 33.80 94,82 -0.00 34 0 191 42,2986 Fort Duchesne (1B88) 40.28 108,85 -0.00 71 o
141 34, 4766 Kenton (1901) 36.92 102,87 ~-0,00 60 o Years Missing: 1916, 1219
142 34,6926 Pauls Valley (1904) 34,75 97.22 -0.00 57 o 192 42,3896 Hiawatha (1822) 39,48 111,02 -0,00 39 0
143 34,7012 Perry (1831) 36.28  97.28 -0.00 30 0 193 42.4508 Kanab PowerHs(1822) 39,05 112,52 -0.00 39 0
144 34,0445 Webber Falls  (1839) 35.52 95,13 -0,00 62 0 104 42,5148 Loa (1892) 38.40 111,65 -0.00 57 0
145 34,8629 Wichita Mt, {1908) 34,73 98.72 -0.00 45 0 Years Missing: 1510 to
WLR 1821 Inclusive
Years Missing: 1914 to 195 42,5654 Milford WBApt, (1916) 38.43 113,02 -0,00 44 0
1921 Year Missing: 1923
146 35.0197 Antelope 1N (1925) 44,92 120,72 -0.00 3§ ] 196 42,7271 Richmond {1812) 41.90 111,82 -0.00 49 0
147 35,0894 Bend (1811) 44,07 121,32 -0.00 50 0 197 42,8119 Spanish Fork (1911) 40,08 111,60 -0.00 50 o
148 35,1897 Cottage Grove (1917) 43,78 123,07 =-0.00 14 a Power House
15 198 42,8771  Tooele (1887) 40.53 112,30 -0.00 &4 ]
148 35,2135 Danner (1831) 42,93 117.33 -0.00 30 o 198 45,0817 Brooklyn (1931) 46,77 123.52 -0.00 30 0
150 35, 2693 Estachada 2z SE (1809) 45,27 122,32 -0.00 52 i 200 45,1223 Cedar Lake (1803) 47.42 121.95 -0.00 58 0
151 35,3445 Grants Pass  (1888) 42,43 123,32 -D.00 T2 0 201 45,1350 Chelan (1882) 47.83 120,03 -0,00 &9 0
152 35.3827 Heppner (1808) 45,33 119,55 =0,00 55 [i} 202 45.1586 Colfax | NW (1892) 48, 38 117.38 -0.00 g9 o
153 35.4670 Lakeview (1813) 42.18 120,35 -0.00 48 0 203 45.3222 Goldendale {1811) 45.82 120.83 =-0,00 50 0
154 35.5610 Minam 7 NE  (1910) 45,68 117.80 -0.00 51 o 204 45,3546 Hatton § E (1805) 46.77 118,67 -0.00 56 0
155 35,6807 Prospect 2 5W (1508) 42,73 122.52 -0.00 53 0 205 45.4769 Longview (1825) 46.17 122,82 -0.00 36 0
156 35.7250 Hock Creek (1820 44,75 118,08 -0,00 41 0 206 45 5840 Newhalem (1925) 48,88 121,25 -0.00 36 0
157  35.9046 Warm Springs (1831) 43,57 118,20 -0.00 30 0 207 45,7038 Rimrock (1910) 46.65 121.13 -0.00 51 0
Reservoir Teton Dam
158 38.0286 Armour {1898} 43.32 98.35 -0.00 B3 0 208 45.7307 Sedro Wolley (1897) 48,50 122,22 -0.00 G4 0
158 38,1872 Cotton Wood  (1810) 43,97 101,87 -0.00 51 0 1 E
160 38,2797 Eureka (1809) 45.77 99,62 -0.00 52 0 208 45.7584 Shelton {1931) 47.20 123,10 -0.00 30 0
161 38,3832 Highmore I W (1503) 44,52 99.47 -0.00 58 0 210 45.8207 Sunnyside (1885) 48.32 120,00 -0.00 &6 0
162 39,4007 HotSprings (1897) 43.43 103,47 -0.00 57 0 211 45.833%2 Tatoosh (1884) 48,38 124,73 -0.00 77 0
Years Missing: 1901 to Island WB
1907 Inclusive 212 45,9376 Winthrop 1 (1922) 48,47 120.18 -0.00 38 0
163 39,4661 Ladelle 7T NE  (1897) 44,68 98.00 -0.00 G4 0 WSW
164 39,4864 Lemmon (1917) 45.93 102,17 -0.00 44 0 213 48,1175 Buffalo Bill (1913) 44,50 108,18 -0.00 48 0
165 39,5536 Milbank {1830} 43,22 96.63 -0.00 71 0 Dam
166 39,7667 Sioux Falls WB (1891) 43.57 96.73 -0.00 70 0 214 48.2715 Dubois (1907) 43.55 109,62 -0.00 48 a
AP Years Missing: 1919 to
167 39.8552 Vale (1303) 44,62 103.40 -0.00 52 o 1923, Inclusive, 1827
168 39,9442 Wood {1913} 43.50 100,48 -0.00 48 0 215 4B.4065 Green River  (1921) 41,53 109,48 -0,00 40 a
169 41,0120 Albany (1870} 32,73  99.30 -0,00 79 0 216  48.5830 Lusk (1880) 42,77 104.43 -0.00 62 0
Years Missing: 1882 to Years Missing: 1883 to
1881 Inclusive, 1900, 1895 Inclusive, 1300,
1901 1901, 1810, 1811, 1919,
170  41.0498 Balmorhea Exp. (1024) 31.00 103,68 -0.00 37 [ 1920
Station 217 48,7105 Pathfinder (1900) 42,47 106,83 -0.00 8O 0
171 41,0611 Beaumont (1893) 30.08 94,10 -0.00 &8 a Dam
172 41,1138 Brownwood (1889) 31.72 98.98 -0.00 &8 o Years Missing: 1905
Years Missing: 1594, 218  48.8160 Sheridan (1918) 44,85 106,87 -0.00 43 0
1885, 1901, 1902 Field Station
173 41,2019 Corsicana (1886) 32,08 96,47 -0.00 75 0 219 48,9905 Yellowstone (1889) 44,97 110,70 -0.00 72 0
174 41,3183 Flatonia [1908) 29,68 97,10 -0,00 53 0 Park
175 41,3430 Galveston WB  [1872) 29.30 94,83 -0.00 839 0

City
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APPENDIX 2
TABLE 2

MONTHLY RUN OFF STATIONS USED FOR THE INVESTIGA TIONS

39

ST. 1D. STATION JaME LaT. LONG. AREA KO. YRS AECORD
14.003 NORTH FOAK WALLA WALLA RIVER MR MILTON ORE 45.95  11H.28  42.000 30
14.049 STRAWMERRY (REEK A8 SLIDE CREFK NR PR&IRIE CITY OREG 44,33 116.65 T.200 3p
14.059 MIDDLE FORK JOWMN DAY RIVER AT RITTER OREG 44,88 119,13 515,000 31
14.063 NORTH FORA JOHM DAY RIVFR AT MONUMENT OREG 44.82 119.43 252p.000 35
14.064 JOAN D&Y HIVER Al SERVICE CREGK ORFG 44.8p 120.00 50%p-000 31
14.087 JOWN Da¥ RIVER AT MC DONALD FERRY OREG 45.58  120.42 7580.000 55
14.141 LAKE CHEEX wK SI3TERS OREG 44,43 121.73 22.200 45
14.181 KLICKITAT RIVER HR GLENWOOD WASH 46.08 121.27 36p.000 51
14.227 SALMON RIVER NA GOVERWMFNT CAMP QREG 45.27 121.72 B.70n 34
14.244 LITTLE SaNDY RIVER MR BULL RUN OREG 45.42 122.47 22.300 44
14,274 MCKENZIE RIVER N VIDA OREG 44,13 122.47 93p.000 38
14.32¢p S0JTH SANTIAM RIVER AT WATERLOO ORESZ 44,5 122.82 &4p.000 37
14.359 CLACKAMAS RIVER aT BIG ROTTOM OREG 45.p2 121.92 136.000 40
14.363 CLACKAMAS RIVFH WR CAZADERO OREG 45,25  122.27 857.4§04 52
14.382 EaST FOHK LEAIS HIVER WP HEISSON WASH 45.83  122.47 125.000 31
14,39 COWLITZ RIVER AT PACKHOOD WASH 46.62 121.688 287.p000 31
14,419 TouTLe RIVER MR SILVER LAKE WASH 46433 122.73 474.900 31
f4.43R WILSON RIVER Ne TILLAMOOK OREG 45.48 123,72 15%.000 30
14.467 UMPOUA RIVER WP GLKTON OAEG 43.58 123.55 3683.000 55
13.141 TRAPPER CREEK NR OAKLEY 1DAHU 42.47 113.98  32.003 41
13.332 BNISE RIVER NE TWIN SPRINGS IDAHOD 43.67 115.73 83p.000 49
13.518 YaLLEY CREEK AT STANLEY 1D4&HD 44.22 114.93 I7é.009 39
13.549 S0UTH FORK SA_MON HIVER SR KNOX IDAMD 44,65 115.7p 92.000 32
13.581 HURRICANE CREFK HR JOSEPH OREG 45.33 117.30  Fi.000 35
13.593 SELWAY HIVER MR LOWELL IDAHO 46.08 115,52 1919.000 31

. 13.594 LOCHSA RIVER NH LOWELL [DAHO 46.15 115 58 L118(.000 31
13.598 CLEARWATER RIVER AT KAMIAW I[DAHO 46,23 116.02 485g.003 L]
13.6p7 NORTH FORK CLEARWATER RIVER NR AHSAHKA TDAWD 45.52 146,38 244p.809 34
13.6p5 CLEARWATER RIVEW AT SPALDING IDAKD 46,42 116,85 957¢.000 34
iz.001 NASELLE RIVFR NR MASELLE WASH 45,37 123.75 55.300 3t
12.006 NORTH RIVER NR RAYMOND WASH 46.82  123.85 219.p000 33
i7. 040 SATSOP RIVER NR SATSOP WASH 47.00 123.57 29p.000 31
12.047 GUINAULT HIVER AT OUINALULT LAKE WASH 47,47 123.90 264.000 49
12.050 HOK RIVER NR SPRUCE WASH E 47.87  12%.10 2p8.700 34
12.127 CARBON HIVER N4 FAIRFAX WASH 47.03  122.0% 78.%p0 31
12,172 CEDAR RIVER NR LANDSBURG WASH 47.40 121.9% 12%.000 L]
12.198 SOUTH FORK SKYXKOMISH RIVER NR INDEX WASH 47.8p 121.55 355,000 52
i2.261 NORTH FORK STILLAGUAMISH RIVER NAR ARLINGTON HASH 48,27 122.0% 269.7000 32
12,290 CASCADE RIVFH AT MARBLEMOUNT WASH 48.52 121,38 171.000 32
12.297 SaUK RIVER AB WHITECHUCK RIVER NR DARRTNGTUN WASH 48.17 T121.87 152.000 37
12.348 KNOTEWAY RIVER AT NEWGATE RR COLUMBIA 49.02 115.17 7é6g.002 3p
12.353 ROOTENAL RIVER AT LIBEY MONT 45.47  115.55 1p24.000 L1
12.357 BOULDER CREFK NR ILEDNIA IDAHD 48.6p 118,19 53,000 32
12.359 HOYTE RIVER AT EASTPORT TDAHO 49.00 116,18 H7p.on0 31
12.379 SMITH CHREEX MR PURTHILL IDAHD 48.97 116,55 Tg.000 30
12,466 SWaN RIVER NR RIGFORK MONT 48,03 113.98 671.400 38
12.512 PRIEST RIVER NR PRIEST RIVER IDAHO 48,22 116,92 9g2.000 31
12.521 KETTLE RIVER NR FERRY WASH 48,98 118.77 222p.000 32
12.538 CNEUR D ALEKE RIVER NR CATALDD 1DAHO 47.57 116.30 122g.000 40
12.54p ST JOE RIVER AT TALDER TDAHO £7.27 116.48 193p.000 L1
12.541 57T MAHIES RIVER AT LOTUS 1DAHO 47,25 116,63 431,000 40
12.4610 WENATTHEE RIVER AT PLAIN WASH 47.77  120.87 %91.000 50
12. 667 NORTH FORK AHTANUM CREEK NR TAMPICO WASH 46.57 120.92 6B.%00 30

112.001 KERNRIVER 'R KEANVILLE CALIF 35.93 1T6.48 865.f800 48

112.032 NORTH FUHK KAWEAA RIVER AT KAWEAHW CaALIF 36.48 116.92 128.000 49

112.066 MONU CREEX NK VEAMILION VALLEY CALIF 37.37 118,98  92.000 a9

112.112 CHOWCHILLA PIVER AT BUCHANAN DAM STTE CALTF 37.22 II¥. %8 238.000 30
112.120 MERCED KIVER AT HAPPY [SLES BRIDGE WR YOSEMITE CALIF 37.73  119.55 181.000 45

112.137 FALLS CREEK NR HETCH HETCHY CALITF 37.97 11v. 77 45,200 45

112.259 HAT CHEEK NF HAT CREEK CALIF 40.68 121,42 122.000 30

112.304 ML CREEK WR LOS MOLINDS CALIF 40405 [22:02 133.100 32

112.3¢8 THOMES CREEK AT PASKENTA CALIF 39.88 122.55 1B8.p00 dp

112.402 HIDDLE FORK AMERICAN RIVER NR AUSURN TALIF 38.92  121.00 S16.003 49

111.059 HURRIETA CRFEK AT TEMECULA CALIF 33.48  117.15 220.000 L1

111.066 ERROYU TRABUCD NR SAN JUEN CAPTSTRAND CALIF 53.53 117.87 34.900 30

111.083 CaJOW CREEK NR KEENBROOK CALIF 34.27 147.47 49,900 4p

111.153 SANTA ANITA CREEK MR SIERRA MADRE CALIT 3%.20 118,92  1D.%900 "

111.238 ARROYU SECO NR SOLEDAD CaLIF 36.28 121,32 244,000 58

111.393 SALMON RIVER AT SOMESBAR CALTF 41,38 123.47 T4s.g00 37

111.411 SMITH RIVER NR CRESCENT CITY CALIF 41,78 124.05 613.000 Ip
10165 AMERICAN FORK NR AMERTCAN FORK UTAEH 4] .45 111.68 55.000 33
10.275 BIG RUCK CREEX NH VALYERMO CALIF 34,42 147,83 23.000 37
10.278 CONVICT CREFK NR MAMMOTH LAKES CALIF 37.82 1i8.8% I8.700 35
10.387 MARTIN CREEK NR PARADISE VALLEY NEV 41.53 147,43 172.000 39

9.378 ELK RIVER aT CLARK COLO 45,72  1pe.92 ZpE.000 3
9.485 WHITE RIVER NE WATSON UTAH 39.97  1p%.17 402p.000 37
G623 JRIGHT ANGEL CRFEK NR GRAND CANYON ARIT F6.10 112.10 100.003 37
9.624 NORTH FORK VIRGIM RIVER NR SPRINGDALE UTAH 37.22 112.98 J336.900 35
QL5622 GILA RIVER NR GILA NEW MEX 33.07 198.83 187p.100 32
9.764 SALT HIVER NR ROUSEVELT ARIZ 33.62  140.92 431p.000 47
B.0p32 HECHES RIVER NF ROCKLAND TEX 31.63 F4.40 I539.000 57
B.107 BRAZOS RIVEF AT SEYMOUR TEX 33.57 99.27 1449.000 36
B.132 LEON RIVER MR BELTON TEX 31.07 97.45 3543.000 37
B.143 YEGUA CHEEK N® SUMERVILLE TEX 3g.32 96.50 990.000 36
Belad NAVASOTA RIVER WM EASTERLY TEX 31.17 v8,30 9s89.000 38
B.165 SOUTH CONCHU RIVER AT CHRISTOVAL TEX 31.22 100,50 434.900 30
B.166 MIDDLE CONCHD RIVER NR TANKERSLY TEX 31.38  1p0.%2 128p.000 3o
B.212 GUADALUPE RIVER NR SPRING BRANCH TEX 29,87 98,38 1282.000 38
B.217 BLANCO RIVER AT WIMBERLEY TEX 29.98 s8.07 Jsd.po00 32
8.220 PLUM CREEK NH LULING TEX 29.70 97.62 358.000 3
B.517 PECDS RIVER MR PECOS NEW MEX 35.70  109%.68 189.q000 1
F.o006 MERAMEC RIVER NR STEELVILLE MO 38.00 91.37 7B1.009 38
7.012 BIG RIVER aT BYRNESVILLE MO 38.37 90.45 917.370 39
7.015 CaSTOH RIVER AT ZALMA MO 37.15 90.08 #423.000 4
7.023 SOUTH FORK FORKED DEER RIVER AT JACKSON TENN 35.8p BB.82 574,707 31
7.028 WOLF HIVER AT ROSSVILLE TENN 35.05 89.55 Sg3.o00 3¢



TABLE 2

- Continued

5T. 1D. STATION NAME LaT. LONG. AREA NO. YRS RECORD
7.639 ST FRANCIS RIVER NR PATTERSON MO 37.29  90.52 956.000 10
7.067 JAMES HIVER AT GALENA MD 36.8p 53.47 987.000 39
7.072 BUFFALO RIVER WR RUSH ARK 36.12 92.55 1991.000 32
7.091 CURRENT RIVFR MR EMINENCE MO 37.18 91.27 1272.000 39
7.392 CURRENT RIVER AT VAN BUREN MO 3T.00 71.02 1667.000 48
7.098 GREER SPRING AT GREER MO 36.78 91,35 3.000 39
7.108 LITTLE RED RIVER NR HEBER SPRINGS ARX 35,53 92.00 1141.000 33
7.224 LITTLE ARKANSAS HIVER AT VALLEY CENTER KANS 37.83 97.38 1327.000 38
7.22% WALNUT BIVER AT WINFIELD KANS 37.23 97.00 184p.009 19
7.292 NEDSHY RIVER NR PARSANS KANS 37.33 95.10 4817.000 39
7.398 SFRING RIVER MR WACO MO 37.25 94,57 1164.000 38
7.413 PETIT JEAN CHEEK AT DANVILLE ARK 35,07 93.49 741.0090 44
7.520 WASHITA RIVER NR DURWOOD OKLA 34,23 96.97 7202.000 32
7.528 KI&MICHI RIVER NH BELZONI OKLA 34.2p 95.48 1423.000 35
7.533 HOUNTAIN FORK RIVER NR FAGLETOWN OKLA 34.05 S4.62 787,000 31
624155 HLUE CREER NR LEWELLEN NEBR 41.33 102.17 267.000 30
62.367 NISHNABOTNA AIVFR AB HAMBURG [0WA 4063 95.62 280p-000 32
62.377 NOGAKAY RIVER nR BURLINGTON JUNCTION Mu 4,45 95.08 124g.0090 38
62.457 SALIKE RIVER NR HILSON KAMS 38.93 98.53 19p0-000 31
82.4/9 LITTLE BLUE RIVER AT WATERVILLE KANS 39.7p 96.75 X44p.000 32
62.48n 816 BLUE RIVER AT RANDOLPH KANS 39,45 96.72 9100.000 42
62,485 DELAWARE RIVER AT VALLEY FALLS KANS 39.35 9%5.45 922.000 38
62,488 STRANGER CREEK NH TONGANOXIE KANS 39.1p 95.02 4pb.000 31
62.497 GRAND RIVER MR GALLATIN Ha 39.97 93.95 225p.000 39
62.501 THOMPSON RIVER AT TRENTON MO 4g.08 93.65 167g.000 32
B3.5p2 MEDICINE CRFEK MR GALT MO 40.13 93.37 225.000 39
62.5n6 GRAND RIVER NF SUMNER MO 39.63 93.27 &8Bg.ppno 37
az2.511 CHARITOR RIVER NR KEVTESVILLE MO 39.45 92.87 1955.000 32
67.514 LAMINE RIVER 47 CLIFTON CTTY MO 38.75 93.p02 598.000 38
62.524 MERAIS DEY cYGMES RIVER nk JTTAWA KAHS 3B.62 95.25 1260.000 44
52.537 FOMME DE TERRE RIVER AT HERMITAGE M0 37.95 93.32 655.000 19
£2.54% TASCONADE RIVER HR HAZLERREEN MO 37.77 92,45 1250.000 I2
62.550 GASCONADE RIVER MR HWAYNFSVILLE MO 37.87 92.23 16Bg.000 40
62.552 BIG PTHEY RIVER HR BIG PINEY MO 37.87 92.05 56p.-000 39
61.066 GALLATIN RIVER NR GALLATIN GATEWAY MUNT 45.5p0  111.27 B825.p000 35
51.318 YELLOWSTONE RIvER AT YELLOWST LAKE OUTLET YST WAT PARK 24,57 140.38 1010-000 34
£1.324 LAMAR RIVER MR TOWER FALLS RANGER STATION YST NAT PARK 44.93 110.37 d4p.pa0 37
01.582 GRAND AIVER NR WAKPALA SOUTH DAK 45.67  100+63 55104000 37
61.484 WHITE RAIVER NR DACOMA SOUTH DAK 43.73 99.48 102p.000 32
81.722 JAMES RIVER NR SCOTLAND SO0UTH DAK 43,18 97.63 2155.000 3z
61.732 BIG SIOUX RIVER AT AKRON 10WA 42.83 96.57 903g.000 32
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APPENDIX 3
TABLE 3
MAIN 12-MONTH PERIOD, SUB-HARMONICS, AND THE EXPLAINED VARIANCE OF THE
SIGNIFICANT HARMONICS FOR THE MONTHLY PRECIPITATION VARIARLE (Expla.nalions of the columns‘) are given at the
end of the table

Periods used to Periods Explained vari- Total Fit of
define found in Z; ance of periods, % explained stochas- CONSTANTS REQUIRED TOQ DESCRIBE STOCHASTIC MODEL B
S5TD. Fitted Months variance tic model = = =
Station T By series series 12 6 4 3 T A B AJ BI Az Bz . A 3 B3 % E E3 sy Total
21849 12, 6,4 80 &0 -14 16 3 33 R R
12,6 45 33 7%
2,3591 12 tz 12 A A -0.285 0,453 1,257 0.000 0.938 5
NONE S=1,105
2.5744 B B 9 A A 000 0,00 =0.179 0,405 £ OEI 0,000 0,956 3
NONE S=1, 0687
2,6320 6,4 16 3 19 A A 0,00 0, po -0.354 0,B47 0,332 -0.191 1.7}.1 0,000 0,901 T
NONE S=1,623
2,6361 12,6,4 5 13 3 21 A A 0,672 -0,128 0.230 1,064 0. 480 -0, 266 2,0})6 0,006 1.012 14
12,6 68 24 92 0.825 D0.148 =-0.081 0,481 1,759
2, 6796 6,4 17 4 21 A A 0,00 0,00 -0_281 0,924 0. 428 -0,242 1,618 0,00 0, 884 7
NONE 5=1.643
2.8815 12,6, 4 30 B 14§ 23 AR '
NONE
2,8652 NONE o A A 0, 267 Z
NONE 5=0.541
3.0234 12 8 8 A A 0,223 1,152 4. 2152 0,00 0,856 5
NONE 5t= 2.840
3, 0460 NONE 0 A A 4,019 2
NONE 5t= 2, 496
3.1586 12 5 5 R A -0.109 0.81%8 4,093 0.00 0,976 5
NONE 5?.: 2,697
3.2444 12 2 9 A A -1.107 0,082 3,725 0.00 0,054 3
NONE St= 2,600
3.4758 NONE 0 R A 4, 440 2
NONE 5=2 820
3.5036 12 5 5 R A -0.766 0.338 3.8bs 0.00 0.972 5
NONE St= 2. 544
3.5820 NONE 16 o R A 4, 028 2
NONE St= 2.570
3.6928 12 4 4 R A -0.541 0, 438 3.785 o.o00 0,880 5
NONE SL’ 2,432
4,0227 12 12,6, 4, 38 a8 A -
3, 2.4
12 94 94
40383 12 4,3, 45 45 A -
2.4,2
12 98 a8
4. 0755 12 12,6, 4 37 37 ¥ T
12 a3 a3
4,.0780 12 4,3, 44 44 A -
2.4,2
12 96 96
4.1700 12,6 ED 40 1 41 A A 2,145 1,594 0,383 0. 318 2. 539 -0.025 1,153 10
iz a4 a4 1,421 0,862 1.910
4. 35161 12 12,6,4 50 50 A -
12 97 ar
4,3181 12 12,6,4, 41 41 R -
3,2.4
12 a7 a7
4.4022 12 12,6,4, 39 39 A -
3, 2.4
12 95 95
4.5215 12 12,6, 4, 33 33 A -
3,2.4
iz a1 bt A1
4. 5449 12.6 38 1 ki) A A 3,323 2,410 0.565 0,358 3.9%8 -0,014 1_083 10
iz 11 1 96 2.324 1.167 3131
4.6118 NONE o AR
NONE
4 6175 12 12,6, 4, 32 32 Bt
12 3,2.4,2 95 a5
4 6399 12 12, 4,3 30 30 A -
12 92 92
4.7740 12 12,6,4, 31 k3% A -
12 3,2.4 a4 94
4,7851 12 12, 6,4, 36 36 Al
3,2.4,2
12 o8 o8
4,.8045 12 12, 6, 4,
3, 2.4 51 51 A -
12 94 84
4,8353 12 3.8 12, 6,4, 43 43 A -
12 3,2.4,2 98 98
48857 12 6,4, 3 32 32 A -
12 g2 92
4.8035 12,6 ig 2 20 A A 0,273 0.201 0,002 D.121 Q, 327 -0.010 1,048 10
12 13 86 0,260 0,168 0, 447
4,9087 2 12,6,4, 31 31 A -
12 3 a5 1]
4,9105 12,6 43 1 44 A A 2,773 2,730 0,177 0.634 3.674 0,003 1,121 10
12 91 21 1,831 1.353 2,637
4.9452 12,6 34 1 35 R A 0,338 0.477 -0,069 0,081 0, 518 0,002 1.017 10
12 a5 85 0.298 0.330 D.510
4, 9450 12 i2, 6 44 44 A
12 94 94
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TABLE 3 - Continued

Periods used to Periods Explained vari- Total Fit of
define found in Z, ance of periods, %  explained stochasz- CONSTANTS REQUIRED TO DESCRIBE STOCHASTIC MODEL B H
STD. Fitted Months variance tic model = = - j
Station "t %t series series T2 6 4 3 m A B M B Ay B, Ay By X 5 ¥ Sy hotal
4,9699 12 12,6, 4, 37 17 A -
12 3,2.4,2 99 99
5.1294 12 20 20 A A -0.663 -0.138 1,067 =0,013 1,075 10
12,6 711 82 -0,387 -0.138 -0,046 -0.158 0, 856
5,1528 12,4, 3 2.4 30 4 3 37 A A -0.896 -0.241 0328 -0.127 1281 0,003 1,083 14
12,6 71 6 -0.404 -0,.138 0,002 -0,048 Ai-o_ 280 B=0, 093 0,853
5.1564 12 15 34 34 R R 2
12 83 83
5.2184 12 18 18 A A -0,355 -0.291 D 722 0,000 0,903 3
NONE 8 0.758
5.2432 6§ 4 4 B R
NONE
5.3005 12,8 20 5 25 A A -0.836 0,050 -0.040 -0,414 i.241 0,000 0,862 5
NONE 8=1.311
5.3038 12 36 36 AR 4
12 a3 a3
5.4413 12 kX a7 A A -1,267 -0,158 ., 441 0,041 1,093 B8
12 a0 90 -0.686 -0.104 1.022
5.4834 12,3 i Yo | 4,3 27 128 R R
12 82 g2
5.5722 12,4 33 33 4 3 7 R R
NONE
5.7618 NONE 0 R R
NONE
5.7936 12 12 12 A A 0,295 0,430 1,857 0, 00D 0, 940 5
NONE §= 1,078
5.8295 12,6 15 15 37 i ig A A -1,236 -0.132 0,214 -0.032 1,425 0,003 1,013 10
12 893 93 -0.624 -0.090 1.020
10,0010 & 6.9 6.9 5 5 R R
NONE
10,0448 12,6 35 3 38 A A 0,865 0,722 0,311 -0 111 1,557 -0,001 1,008 12
12,8 77 11 88 0,428 0,277 0.t61 -0.101 1,083
10,1408 12,8 31 4 35 A A D0 966 0,645 0,397 -0.038 1.594 -0, 001 1,042 10
12 70 70 0,414 0.211 1.103
10,2707 & 4 4 A A 0,208 -0.083 0. 911 0,000 0,579 3
NONE 570,785
10,3942 12,8 17 3 20 A A 0,548 0,423 0,294 -0.009 1.235 0,006 1,036 12
12,6 58 30 88 0,310 0,208 0, 265 0,038 1,001
10,5011 12,6 7 15 22 A A 0,057 0,489 0.1B6 -0_629 2,022 0,000 0,880 7
NONE 5=1,304
10,6542 12,6 4 4 8 A A -0.128 0,134 0,052 -0.198 0. 855 0,003 1,028 12
12,6 23 33 56 -0.088 -0,008 -0.014 -0,118 0.632
10,8076 12,6 9 6 15 R R
12,6 45 23 G8
10.8137 12,6 10.5 10.5 30 5 35 A A 1.410 0,437 0,494 -0.308 Z, 548 0,002 1,050 10
12 Bz B2 0. 634 -0, 007 1. 461
13,0364 12 33 33 A A -1 664 -0, 882 2,582 -0.001 1.018 8
12 93 a3 -0.816 -0,533 1,645
13,2208 12 28 28 A A -1,541 -0,409 2,626 -0, 007 1.023 8
12 94 a4 -0.784 -0,322 1,659
13,5230 12 2.1 £t 38 A A -1.681 -0.723 2,517 0,010 1,038 8
12 &8 88 -0.798 -0, 387 1. 444
13,6391 12 25 25 A A -1,505 -0,552 2,876 -0, 006 1,041 a
12 82 Bz -0.706 -0.635 1. 756
13,7161 12 33 33 R A -1.832 -0.571 2. 576 0,001 1,025 8
12 87 a7 -0.721 -0.413 1.569
14,1768 12 34 34 A A -1,650 -0,431 2,153 0,012 1,037 k)
12 493 93 -0.912 -0,372 1. 475
14, 1866 12 29 28 A A -1,704 -0,643 2,708 -0,008 1,015 8
i2 04 94 -0, 763 -0, 360 1,850
14, 2458 12 28 28 A A -1.444 -0.374 2. 205 =0,003 1,017 8
12 25 a5 -0, 744 -0, 354 1,537
14,3759 12 30 a0 A A -1,778 -0,843 2,885 -0.0101.027 8
12 82 a9z =0.823 -0.467 1,848
14, 4421 12 22 22 A A -1.814 -0.477 3,265 =0.015 1, 046 8
1z a0 a0 =1.016 -0,7594 2. 247
14,5173 12 23 23 A A -1.378 -0.379 2. 116 -0,012 1,023 8
12 a1 a1 -0, 731 -0.416 1. 661
14,6374 12 k1 36 A A -1.476 -0.385 1. 886 0,006 1,020 8
12 93 93 =0,704 -0, 254 1,323
14, 6427 12 25 25 R A -1.129 -0.350 1. 601 -0.010 1,036 10
12,6 68 14 &2 -0.577 -0.255 0.020 ~-0.280 1,316
14 6637 12 28 28 A A -1.475 -0.175 1.795 0.021 1,038 8
12 31 81 -0,965 -0,293 1,451
14.7305 12,6 z1 ] 23 A A -1.657 -0.440 0,069 -0.573 3.108 0.0031.015 10
iz 87 a7 -0, 814 -0 596 2.141
14,7313 12 25 25 A A -1,527 -0 483 2. 417 -0, 017 1. 018 E:}
i2 a6 ag -0, 887 -0.533 1. 769
14 B1BE 12,6 22 2 24 A A -1.881 -0.389 0,088 -0.553 3. 048 0.0021 017 10
i2 a0 a8 -0.848 -0,304 2,102
16,1411 12 [ g 0,173 0,964 4,216 0,000 0, 969 5
NONE 5{! 2,825
16, 4700 12 12+ i i R R
NONE
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TABLE 3 - Continued

Fericds used to

Periods

Explained vari-

Total

Fit of

deting found in_2Z; ance of periods, ¢ explained stochas- CONSTANTS REQUIRED TQ DESCRIBE STOCHASTIC MODEL B
. m s STD. Fitted Months variance tic model A B N o s =

Station t t series series 12 6 4 3 o, AB 1 1 2 B; Ag By X s, Y Sy Total

16.6117 12 4 4 A A 0,118 0.872 4,850 0.000 0.981 5
NONE $,13,199

16,6658 12 ] 4 4 A A -D,983 -0,050 5.045 0,000 0,976 5
NONE 523247

16,7344 12 3 5 A A =0,036 0,807 4,027 0.000 0.8%73 5
NONE 52,763

16,8923 12 8 8 A A 0417 1.156 4,279 0,000 0,956 5
NONE 5:-2.980

23,1304 12 14 14 A A -1.355 -0.393 3.182 -0.013 1,023 8
12 96 96 -0, 879 -0,708 2.245

23,1580 12 24 24 A A -1,519 -0.660 2.900 -0,018 1.041 10
12,6 73 4 77 -0.648 -0,573 0.063 -0.178 1.870

23,2235 NONE A A 3,986 2
NONE 5=2.652

23,2503 12,6 13 4 17 A A -1,151 -0,448 -0,084 -0.634 3. 269 0.007 1,038 12
12,6 59 11 70 -0.600 -0,421 -0, 093 -0,298 2. 046

23,2823 12,6 20 2 22 A A -1,209 -0,287 -0,031 -0.374 3,063 0.005 1.028 12
12,6 74 6 80 -0.524 -0.343 -0,128 -0.114 1,795

23.3038 12 4 4 A A -0.712 0,189 3, 581 -0.007 1.033 10
12,6 47 8 55 -0.517 0.048 0.122  -0.168 2.332

23,3793 12,6 14 2 16 A A -1,124 -0,176 0,031  -0.485 3,183 0,003 1.048 12
12,6 67 18 H -0,464 -0.248 -0, 036  -0,251 1.933

23,5976 12,6 14 3 17 A A -1,430 -0.196 0.083 -0.652 3,768 0,000 0,912 7
NONE SF2.744

23,7720 12 19 18 A A -1,317 -0.385 3. 064 -0.010 1,018 8
12 94 94 -0, 740 -0.517 1.870

23,8712 12 33 17 17 R R
12,6 64 8 T2

23,8995 12 4 4 A A -0,725 0.081 3.745 0,000 0.978 5
NONE S-2.497

24,0364 12,6 4 23 4 27 A A -0,798 -0,081 0,325 -0,106 1.155 -0,004 1,125 10
12 T4 T4 -0.548 -0,133 0.856

24,0432 12,6, 4,3 22 6 2 34 A A -0,624 -0,030 0,248 ~-0,233 -0,207 -0,168 0.970
NONE AF0.22Bg0. B0 §7:0.936 0.000 0.810 1

24,0770 12,6 4 27 6 13 AR
12 82 B2

24.1044 12,6, 4 18 16 7 26 A R
NONE

24,2604 12,6 4 15 5 20 A A -0,591 -0,064° 0.263 -0.103 1132 0,000 0.897 7
NONE 570.926

24,2680 12 20 12,6 40 40 A -
12 89 89

24,3138 6 6.5 7 7 A A 0.327 -0.132 1,460 0.000 0,966 5
NONL 550,871

24,3885 6,4 7.5 7 5 12 A A 0,250 ~-0,165 -0,205 0,155 0.995 0.000 0,936 7
NONE §,70.796

24,3984 12,6 750 30 3 33 R R
12 85 85

24,4522 12,6 27 4 EF) A A -0.7t1 -0.104 0,285 -0.058 0. 858 -0.011 1.124 10
12 84 84 -0, 497 -0,127 0. 667

24,5285 12 12,6,4 36 36 s -
12 94 94

24,5761 12,6 4 36 7 43 AR
12,6 74 8 82

24,7286 12,6, 4 t3 8 26 A A -0 464 -0.013 0,214 -0.298 -0.180 0.230 1,293 -0.001 1,022 14
12,6 69 15 84 -0.192 -0.121 0,068 -0.083 0,761

24,8809 12,6 9.2 9.2 5 8 17 R R
12 86 86

25,0930 12 34 34 A A -1,617 -0,483 2,333 0.002 1,022 8
12 92 92 -0.755 -0,378 1.527

25.1145 12,6 37 4 44 R R
12 87 a7

25,2020 12 37 37 A A -1.776 -0.528 2. 347 0,007 1.024 8
12 94 04 -0, 789 -0,393 1,536

25.2805 12 40 40 R R
12 96 96

25.3015 12,6 5 30 3 33 A A -1.10t 0,008 0.240 -0,284 1,435 0.032 1,080 12
12,6 73 15 90 -0.6D6 -0,102 0.128 -0,247 1,034

25.3185 12,6 38 2 41 A A -1,713 -0,406 0,310 -0.160 2,151 0,01t 1.028 10
12 93 93 -0, 775 -0, 398 1.372

25.3630 12 35 35 A A -1,570 -0,290 2.209 0.001 1,023 8
12 88 88 -0.684 -0,347 1,380

25.6870 12 37 37 A A -1,387 -0.163 1,785 0.011 1,023 8
12 o1 81 -0.605 -0, 141 1,179

25.7040 12,6 43 1 44 A A -1.645 -0,349 0,291  -0.087 1,974 0.003 1,020 10
12 93 03 -0, 700 -0, 241 1.242

26,0046 NONE i A A 1,024 2z
NONE [ 81,033

26.2573 12 750 Ti00 10 10 R R 2
12,6 76 12 88

26,5168 NONE 0 A A 0,304
NONE 0 51- 046G

26,6779 12,6 17 2 19 AR
12,6 78 13 91

20,1515 12,6 733 733 16 7 23 R R
NONE 0
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Periods used to

Periods

Explained vari-

Total

Fit of

define found in Z{ ance of periods, % explained stochas- CONSTANTS REQUIRED TO DESCRIBE STOCHASTIC MODEL B
) 5 g STD. Fitted Manths variance tic model B A B je - e

Station t t series series 12 B 4 3 T A B 1 1 4 2 Ay By x St ¥ y Tt

29,1813 12,3 28 1 29 A A -0.898 -0,438 A;-U.ZZ& B;-O.\'IE 1.294 0,000 0,838 7
NONE 0 S=1.323

29,1939 12 5.4 24 24 R A -1,080 -0,731 1. 436 0,000 0,870 3
NONE 0 81852

29,2834 12 27 27 A A -0D.839 -0,720 1.230 0.000 0,853 3
NONE [1} St= 1,498

29,3285 12,6, 4 733 Ti3 22 16 3 41 R R
12,6 B1 25 &6

28,3775 12.6,4 18 13 4 35 A A -0,238 -0.621 -0.158 0,356 0,238 -0.233 0,845 0. 007 1,061 14
12,6 33 32 X -0, 102 -0.395 -0,093 0,299 0. 787

29. 4736 12 14 14 A A -0.509 -0, 512 0, 966 0.000 0,028 5
NONE [#] 5,51. 364

29,6676 12,6, 4 28 8 2 38 A A -0.703 -0.617 -0.189 0,477 0. 242 =0.082 1,310 -0, 001 1,045 14
12,6 T3 i1 84 -0.295 -0.246 -0.150 -0, 004 0,888

29,8535 12,6 750 20 g 28 A A -0,22t -0.507 -0.129 0,333 7. 695 0,000 0,847 T
NONE 0 520870

25,9887 12,6,4,3 733 48 9 11 3 2 25 R R £
12,6 30 2% 73

32.2188 12 12,6 36 36 AR
12 ag 88

32,3621 12,8 37 Z ig A A -1.258 -D.515 0.283 0,061 i.652 0,005 1,01% 10
12 a3 9c -0. 668 -0, 387 1,080

32,4481 12,6 EL) 3 41 A A -1,286 -0.343 0,367 0.029 1.578 -0, 002 1,021 10
12 90 a0 -0.661 ~-0.236 1. 043

32,3638 12,8 43 T 30 A A -1.315 -0.340 0,509 0,145 1, 206 -0, 026 1,121 10
i2 a9z 9z =0, 620 -0, 257 0, 368

32,6025 12,6 4 35 3 38 A A -1.143 -0,383 0,360 0,067 1,320 =0.008 1,061 10
12 81 A1 -0.657 -0, 265 0,238

34,3487 12,8 16 4 20 A A -1.199 -0,244 0,063 -0,602 2, 366 0,015 1,054 12
12,6 60 14 T4 -0.654 =-0.351 0,119 -0.338 1. 769

34,4451 12,6 6.8 6.8 [:} 4 10 A A -0,310 0. B69 0,276 -0.714 3,830 0,000 0.3952 7
NONE o St- 2.763

34,4766 12 25 25 R A -1.026 -0,345 1,390 0,000 O, B68 3
NONE o St'— 1,545

34,6926 12,6 i1 5 16 A A -L.215 -0,118 0,115 -0,828 2. 957 0,000 0,914 T
NONE 0 5,=2.579

34,7012 12 17 17 A A -1,405 -0, 18t 2,653 0,000 0,911 3
NONE ] St= 2. 427

34.9445 12,6 4 4 13 R A -1,103 0,083 0,178 -0,700 3,582 0. 0o0 0,936 7
NONE 0 St= 2,653

34,8629 126 4 15 3 20 A A =1_200 -0,194 0,089 -0,6692 2, 466 0. 000 0,896 7
NONE a SL- 2,208

35.0197 12,6 13 8 21 A A 0,382 0,247 0,233 -0, 224 1. 036 0,000 0,889 7
NONE a S‘= 0,855

35,0894 12,6 11 8 18 A A 0411 0,223 0.384 -0, 041 1011 0. 000 0,898 7
NONE [1} St! 0, 883

35,1887 12,6 4% 2 51 A A 2. Bag 1,408 0,546 -0, 458 3,762 0,003 1.071 10
12 84 84 1,282 0, 344 2,057

35,2135 12,6 12 E:} 20 A A 0,202 0,319 0,192 -0, 229 0. 919 0,000 0,892 7
NONE 0 SL- 0. 753

35,2693 12,6 44 3 47 A A 3102 1,316 0,583 -0,730 4,704 0,003 1,051 10
12 85 83 1,348 0, 335 2,405

35,3445 12 12, 6 43 43 A -
12 a1 91

35.3827 1%, 8 10 7 17 A A 0,225 0,287 0,135 -0,274 1,081 0,000 0, 508 7
NONE 0 50803

35,4670 12,6 18 4 22 R R
NONE 0

35.5610 12,6 7100 24 4 28 R R
12,6 53 17 70

35,6907 12,6 42 3 45 A A 2525 1,248 0,647 -0, 389 3,318 0,002 1,064 10
1.2 81 B1 1,256 0. 311 2. 016

35,7250 12,6 21 27 A A 0,820 0,521 0,428 -0,120 1. 691 0,000 0.849 7
NONE 0 Slz 1237

35,9046 12, 6,4 T 5 17 A A 0,120 0,216 0,197 -0.041 -0.148 0,133 0,683 0,000 0. %10 @
NONE a SL— 0, 642

39,0296 12,6 40 1 41 A A -1.442 =-0.329 0,191 -0.09% i,832 0,005 1,023 10
12 97 47 -0.612 -0, 322 1,146

39,1872 12,6 4 34 4 38 A A -1 112 -0,044 0, 286 -0, 211 f.260 0,003 1.057 10
12 92 9z -0, 384 -0.118 0, 944

38,2797 12,8 45 2 47 A A -1,289 -0,387 0,321 0,034 1,402 0,006 1,037 10
12 43 93 -0.555 =-0.241 0,307

39,3832 12,8 38 F4 40 A A -1.240 0,215 0,266 -0,137 1,445 0,001 1,041 10
12 892 92 -0,620 -0.174 0,994

38,4007 12,8 35 3 iz RR
12 40 oo

30,4661 12,6 40 1 41 R A -1,551 -0,455 0,288 -0.08% 1,857 0,006 1.036 10
12 58 a8 -0, 680 -0, 365 1. 235

30,4864 12,8 4 33 4 a7 AR
12,6 69 7 76

38,5538 12 12 12 34 34 R R
12 84 84

39,7667 12 39 39 A A -1.624 -0,387 2,125 0,010 1,023 g
12 34 44 -0.708 -0,281 1,340
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TABLE 3 - Continued

Periods used to

Periods

Explained vari-

Total

Fit of

define _“found 1r Z+ ance of periods, % explained stochas- CONSTANTS REQUIRED TO DESCRIBE STOCHASTIC MODEL B
; - " STD. Fitted Months variance tic model = = —

Station t t series series 12 6 4 32 [ A B Ay B, Ay B, Ay B, X EN ¥ = Teotal

39,8552 12,6 4 30 4 EX] AR
12 a1 a1

34,9442 (2 6,7 34 34 A R
12 a5 85

41 0120 12 50 30 a 9 R R
NONE o

41,0498 12 14 14 A A -0.418 =-0,532 1,064 0,000 0,828 5
NONE 0 51,282

41,0611 NONE 7100, 35 [i] R R
NONE 1]

41, 1138 12,6 a0 4 41 10 R A -0 618 0,014 -0,003 ~-0.724 2. 221 0,000 0,544 7
NONE 0 §-2.047

41,2018 6 6 B A A 0,164 -0.771 3,038 0,000 0971 5
NONE [i] St= 2,340

41,3183 NONE 40 30 ] A A 3,001 2
NONE 0 5.;:2.652

41, 3430 12 36 36 4 4 R R
12 ag 86

41,3508 NONE Q A A 2.228 2
NONE a .':it= 2.235

41,3734 12,6 4 4 i1 A A -0.557 0.463 0.236 -0,754 3.353 0.000 0.958 7
NONE Q .‘Stf 2,668

41,4081 12 4 4 A A 0177 0.714 3,723 0,000 O, 878 3
NONE o ST.. 2. 548

41,4780 12 458 50 4 4 A R
NONE 0

41,5018 6,4 7 2 g R R
4 12 12

41,5972 12,4 3 3 10 A A 0,368 -0,448 -0, 182 -0.561 1,641 0,000 0,951 7
NONE o S;=1.889

41,6950 12 T 30 30 A A -t 234 -0.383 1,702 -0.005 1,038 10
12,6 T4 4 78 b =0.611 =0,267 0,124 =-0.103 1. 248

41,7206 12 36 14 14 A A -0,822 -0,468 1. 584 0,000 0,928 5
NONE a St= 1.803

41,7262 12 16 18 R R
12,6 65 z 67

41,7651 12 2 2 A A -0.026 0.604 3,667 0,000 0,588 5
NONE ] St= 2,724

41, 8630 12 8 8 R A -0.670 =-D.320 1. 625 0,000 0,958 3
NONE 0 SL= 1.821

41,9280 6 a0 50 L] 5 A A 0.225 -0.774 2 871 0,002 1,018 &
[ 78 T8 0,191 -0.578 2,338

41,8330 12 23 23 R A -1,025 -0,454 1. 580 0,000 0,878 3
NONE 0 51,664

41,9532 12,6, 4 [ [ 3 13 A A -0,.758 0,274 0,118 -0,7B3 '0.014 0.528 2 629 0.000 D, 924 k]
NONE 1] St= 2,310

42 2101 6 3 3 A A -0.085 -0.125 0.613 0,000 0,252 5
NONE o 5=0.573

42, 2556 NONE 3.3 0 R R
NONE o

42,3896 6 33 33 3 3 R A -0. 161 0,146 1. 088 0,000 0,986 3
NONE 0 5-0.934

42.4508 B 6 B A A -0,185 0. 284 1.053 0,000 0,870 3
NONE o St= 1. 001

42,5148 12,6 40 40 14 5 18 R A -0 20¢ -0 267 -0,087 0,173 0.822 -0.002 1,041 10
12 77 77 =0.111 -0,190 0.520

42,5654 6,2.4 6.5 1 & 7 A A -0, 082 0,001 .45:0. 122 B5= 0. 156 0, 666 0,000 0,974 7
NONE 0 5,=0, 581

42,7271 12,6 12 B 18 A A D 234 D, 481 -0, 044 -0, 377 1,589 0,000 0,800 T
NONE o 51' 1,070

42,8118 12,6 b = 16 AR
NONE [1}

42 8771 12,6 i0 7 17 A A 0,124 0,422 -0,145 -0, 344 i, 363 0,002 1,014 12
12,86 18 64 82 -0,070 0,081 -0.058 -0.205 0. 880

45,0017 12,6 55 2 57 A A 5173 1,939 0,810 =-0,481 6. 401 0.002 1. 061 10
i2 94 84 2,011 0,520 3,062

45,1223 12,6 43 4 49 A 4 5,474 2,056 1,038 =1.413 B. 663 0.001 1,037 10
12 81 81 1,824 0. 419 4, 047

45,1350 12,6 & 17 B 23 R R
NONE 0

45,1586 12,6 45 45 25 ] kL] R R
NONE 4]

45,3222 12,6 3.8 40 4 44 A A 1.185 0.385 0,422 -0,031 1,396 0,000 1,084 10
12 88 a8 0. 588 0,123 0, 546

45,3546 12,6 33 17 & 23 A A 0 368 0,143 0,186 =-0.141 0,758 0,000 0.878 7
NONE 4] Si= 0, 676

45, 4760 12,6 45 3 48 A A 2,542 0,872 0.557 -0,4135 3,623 0.002 1. 074 10
12 BZ 82 1.013 0, 167 1, 860

45,5840 12,8 33 z 35 A A 5,006 1,123 0,795 -0.635 6,322 0.012 1, 061 10
12 94 94 2,042 0. 365 3.014

45,7038 12 12,6,4 38 38 A -
12 80 a0

45,7507 12,6 37 4 a1 R R

% Explained variance of 2.4 mo. period

45
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Periods used to Periods Explained vari- Total Fit of
define found in Zi ance of perieds, & explained stochas- CONSTANTS REQUIRED TO DESCRIBE STOCHASTIC MODEL B
STD. Fitted Months variance tic model = — o
Station Tt B Series Series 12 4 3 % A B 1y Bt Az Bz AE BS % Bt * 53' ool
12 81 81
45.7584 12,6 57 2 59 A A 4324 1,653 1,005 -0,186 5.357 06.010 1,086 10
12 ] 3e] 1,864 J. 543 2637
45, 5207 12,6, 4 3.8 12 5 35 18 A A 0 252 0.048 0,151 -0,071 -0.063 0.064 0,536 0,002 1,018 14
6, 4 38 Z1 58 D.078 -0.074 =0,080 0,017 0. 462
45.8332 12,6 7100 7100 54 3 a7 R
12 a9 89
45,9376 12,8 18 10 28 A A 0.635 0,153 0.472 =-0.001 1.133 0,000 0,844 7
NONE o Sl= 1,063
48. 1175 12,8 21 4 25 AR
12 k] ]
48,2715 12 18 18 AR
12 a8 &8
48,4065 12,6 6 £ 10 A A -0.230 -0.023-0.055 -0.171 0.727 0,000 0,947 T
NONE L] St= 0. 648
48, 5830 12,6, 4 33 ] 2 43 A A -0,285 0,045 0.312 -0.360 -0.122 o, 220 1,282 0,001 1,031 12
12 at 81 -0.522 -0.044 0,811
48, 7015 12,6, 4 I8 & Z 26 A A -0.481 -0,080 -0,0068 -0,270 -0,00% 3.163 0,829 =0.001 1,011 12
12 87 a7 -0.358 -0.173 0, 609
48.8160 12,6 6.3 24 g 33 R A -0.836 0,081 0,155 -0,483 1,308 0,000 0.B818 7
NONE a St'- L, 204
48, 9805 12 20-13  20-13 3 3 R R
12,6 16 42 38
Lolitma Explagation
1 Station identification number
2 Periods or harmonics (in months), as obtained from the variance spectrum of Xt and used in the
mathematical model for m‘r
3 Periods or harmonics (in months) obtained from the spectrum of (Xt - mf] # and used in the
mathematical model for 5.
4 Periods (in months) found in Z,, when the variance spectrum was computed for the standardized
series and fitted standardized éeries, respectively.
5-8 Variance of Xt explained by the indicated harmonic
L} Total explained variance of XT' by the harmonics of m_, and of 5. by the harmonics fitted.
10 Results of model fitting of the Stochaste Model A (independent series) and model B (Markov [ Model),
respectively; A means the model was accepted on the 85 per cent level, R means the model was
rejected on the 95 per cent level,
11 -12 For monthly precipitation which are well fitted by Model B, the parameters required to describe
the model are given
21 Total number of constants required to define the Stochastic Model B
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APPENDIX 4

TAELE 4

MAIN 12-MONTH PERIOD, SUB-HARMONICS, AND THE EXPLAINED VARIANCE OF THE
SIGNIFICANT HARMONICS OF THE MONTHLY RUNOFF VARIABLE

(Explanations of the columns are given at the
end of the table)

Periods used

47

Feriods Explained Total Fit of
to found in variance of explain- Markov I
define €L, periods, % ed vari= CONSTANTS REQUIRED TO DESCRIBE MARKOV I LOG MODEL E

Sta- STD. Fitied Months ance N B N B = = =

tion my %y series series iz [ 4 T Log Model 1 1 2 2 As BJ % Bt ¥ sy Py Total

14,003 12,6 &7 11 78 A A -1.506 0,107 -0.300 0,533 3.222 0. 003 0,538 11
12 83 83 -0, 186 -0,008 0. 592 1,018

14.048 12,6, 4 [i¥3 18 1 az A A -0,054 -1.191 -0.63% 0.157 0.156 0,107 1.878 0, 000 0,607 11
NONE 5=1. 086 0,410

14.059 12,6 58 11 78 A R
NONE

14, 063 12,6 70 7 77 A R
12, 6 37 a6 a3

14 064 12,6 &8 ) 77 A A -1,579 -0,388 -0,310 0,512 6,698 0, 000 0,769 8
NONE 5.=1,400 0. 481

14,067 12,6 69 8 77 A R k
i2 2 2

14,141 12,6, 4 i3 B  § 42 R R
NONE

14,181 12,6, 4 14 17 1 3z A A =0,283 -0.435 ~-0.268 0.176 0.074 -p, 005 6.575 =0, 001 0,685 17
12,6, 4 31 56 ) 85 -0, 0530 0,028 =-0.078 -0,013 -0, 028 -D, 008 0. 330 1, 006

14,227 12,6 27 20 47 A A -0,282 -0,243 -0,284 0,136 3,661 0. 000 0.6569 13
12,6 20 TZ a9z 0,010 0,058 -0.113 -0,004 0. 351 1.008

14,241 12,6 55 14 68 A A -0,902 0.48% -0.341 0. 384 4,582 0, 003 0.348 13
i2, 6 43 18 B1 g, 110 9,107 -0.010 0,028 0,524 i. 031

14,278 12,6 51 3 36 A& R
12,6 49 44 93

14,320 12,6 B3 8 73 A A =1,285 0.606 -0.414 0,287 7.386 qd.008 0,422 13
12, 6 k] 37 76 0,107 0.170 =-0,075 0,182 0.592 1,034

14,359 12,6, 4,3 33 10 1 50 A R
12, 6 39 52 91

14,363 12,6 53 ] B2 A A -0,660 0.180 -0.238 0.161 7.69 0. 003 0.506 13
12, 6 40 45 85 -0.035 0.108 -0.113 0,038 0.383 1.012

14.382 12,6 67 T T4 A A -1,135 0,737 -0.333 0, 297 6,092 0,083 0,343 13
12,6 44 i3 77 0,136 0.156 -0,410 0,175 0,538 1. 046

14,390 12,6 23 27 50 A A -0,319 -0,338 -0,488 0,158 T.178 -0, 001 0.528 13
12, 6 54 16 70 0,069 0,161 -0.0839 0,033 0. 456 1,026

14,419 12,6 57 i 68 R A -0,772 0.335 -0.341 0,137 T.331 0, 005 0,482 13
12,6 54 26 80 0,066 0,150 -0,087 0,072 0,415 1. 025

14,438 126 75 4 79 A A -1.142 1,021 -0.272 0,243 6.477 0. 000 0,325 13
NONE 5=1,252 0, 457

14 467 12,6 72 3 75 A R
12, 6 45 46 91

13,141 12,6, 4 3 348 16 z 57 R R
12 89 a9

13,332 12,6, 4 64 19 1 84 R A -0.477 -0.901 -0.393 0,303 0,091 0.047 6.604 0, 000 0.674 15
12,6 46 27 73 -0, 036 -0,088 -0,070 -0, 023 0, 338 1,013

13,518 12,6,4 - 2,4 32 23 2z 71 R R
12,6 71 23 94

13,549 12,6, 4 58 25 3 a6 A R
12,6, 4 36 27 11 74

13,581 12,6, 4 62 18 1 81 A A 0,281 -1,052 -0.575 0,128 0,080 0.135 3 813 0.000 0.660 11
NONE 5[—'0.966 0,427

13.593 12,6, 4 a8 23 1 82 A A -D.656 -0.996 -0,55!¢ 0.498 0,096 0.084 7. 540 0. 000 0.700 15
12,6 37 22 59 -0.002 0,102 -0.077 0.0i4 0, 456 1,019

13.594 12,6,4 58 23 1 80 A A -0,709 -0,918 -0.543 0,503 0.098 0, 08¢ 7.295 0, 000 0.706 135
12, 6 48 25 T4 0,004 0,130 -0,096 0,008 Q. 477 1.013

13,588 12,6, 4 58 22 1 a0 A A -0.878 -0.939 -0.508 0,492 0.085 0.084 B8, 384 0. 000 0.685 15
12, 6 44 30 T4 -0, 000 0.113 -0.083 -0, 018 0, 457 1,011

13,602 12,6, 4 54 19 0.3 73 A A -D,732 -0,659 -0.369 0,457 0,079 -0.013 8 182 0. 000 0,730 15
12,6 58 33 92 =0, 047 0,158 =0.123 -0,005 0, 464 1,001

13,605 12,6 58 18 76 A A =D, BDB -0,756 -0.427 0, 456 9,084 -0, 002 0,708 13
12,8 63 27 a0 -0.025 0,170 -0.111 -0,014 0, 480 1,011

12,001 12,6 T2 3 75 A A -0,8926 1,025 -0.207 0,205 5,526 0, 000 0.300 ¢
NONE 5=1,148 0,483

12,006 12,6 76 4 a0 A A -1,139 1, 0B8 =-0D,257 0.274 6. 25.1 0,014 0,344 13
12, 6 48 40 88 0,104 0,141 0,022 0,160 0. 522 1,045

12,040 12,6 17 3 a0 A A -0.908 0.852 -0,.199 0,145 T.144 0,08 0. 287 13
12,6 42 34 76 0.035 0,143 -0.011 0. 133 0,413 1,047

12,047 12,6, 4 z.1 34 15 2 55 R R
12, 6 66 2 68

12.050 12,6 2.1 z1 18 39 A A -0.203 0,213 -0,2689 0.044 7.502 0,002 0.338 13
12,6 68 Z 0 -0, 006 0.148 -0,021 0. 018 0,332 1,033

12,127 12,6 T 24 31 R A -0.114 -0,157 =0.342 0,067 5. 823 0,000 0,476 11
iz ki T2 0,018 0,207 0, 383 1. 065

12,172 12,6, 4 6 -3 40 it o 3t RE R
12,5 50 35 85

12,198 12,6 18 3z 50 A R
12, 6 G2 11 73

12,281 12,6 40 17 57 R R
12, 6 65 o LE]

12,290 12,6 35 18 53 A A 0,087 -0.503 -0,356 0,102 6,743 0,002 0,525 1t
12 81 81 =0.005 0,171 0,395 1,023

12,297 12,6 13 30 45 A R
12 79 74

12.348 12,6, 4 1 15 F4 BB A R
NONE

12,353 12,6, 4 70 14 1 85 A A 0,181 -1,030 -0.423 0,200 0.089 0.115 B8.961 Q. 000 0,658 11
NONE st= 0,882 0,374



TABLE 4 - Continued

Periods used Feriods Explained Total Fit of
to found in variance of explain- Markov I
define < €7 periods, % ed vari- CONSTANTS REQUIRED TO DESCRIEE MARKOV I LOG MODEL B
- TD. Fitted Months ance - —
51':1 T t  series series 12 & i 7 Log Model “1 By 4 B, Ay By X o5, ¥ s Py Total

12,357 12,6, 4 42 28 1 71 A A -0.508 -0.770 -0.597 0,781 0.166 0.042 3.8897 -0, 001 0.656 15
12,6 57 17 T4 0.054 0,198 -0, 112 0,002 0, H66 1,017

12,339 12,6,4 3 LE] 24 1 8 R
12,6 54 13 57

12,379 12,6, 4 AT 32 2 71 A A -D.549% -1,002 -0,814 0,679 0.116 0.205 4,370 0, 000 0.633 15
12,6 67 2 69 0.164 0.189 -0,014 0.036 0,671 1,027

12. 466 12,6, 4 3.5 26 12 0.3 38 R R
NONE

12.512 12,6,4 47 4 49 23 0.5 iz R R
12,6 T & a0

12,521 12,6, 4,3 56 23 1 .2 80 A A -D.314 -1.414 -0,664 0.646 0.160 0.089 0,326 0, 000 0,738 13
NONE Az <0062 B=0.00 5-1.364 0, 441

12,538 12,6, 4 56 12 1 69 A A -1,084 -0.411 -0,255 0.487 0,077 -0.146 7,250 0, 000 0.660 15
12, 6 57 27 94 0,104 0,244 -0.166 -0, 011 0,559 1. 000

12,540 12,6, 4 54 17 1 72 A A -0.801 -0.744 -0,380 0.4%1 0,111 -0.088 7.183 0, 000 0,689 13
12,8 59 32 91 -0,089 0.191 -0.154 0,001 0, 507 1,004

12.541 12,8 60 8 68 A AT -1,316 -0,227 -0.132 0,481 5.366 0. 000 0.679 11
12 80 50 -0. 157 0,260 0,643 1. 038

12,610 12,8 i 45 23 68 A R
12,8 50 10 7

12.667 12,8 4 56 14 70 A A -D.365 -0.810 -0,362 0,349 3.726 0. 004 0.761 13
12,6 32 59 a1 -0, 082 0,062 -0,102 -0, 096 0, 480 1,014

11B. 001 12,6 3.2 673,236 7 43 R R
12,6 2,6 25 58 81

11B.032 12,6 B4 4 B3 E R
12,6 56 28 85

118, 066 12,6, 4 12,6 12,6 54 5 0 58 R R
NONE

11B. 112 12,6 6 4 62 5 67 R R
12,6 a9 4 a3

11E, 120 12,6 G8 8 76 A A -1,0209 -1,628 -0,632 0,220 4,667 0, poo 0,668 11
12 92 52 0.312 0.194 0, 769 1.003

118, 157 12,6, 4 49 11 0.6 61 A A -2,420 -1,455 -1,352 -0,045 -0.209 -0.123 3,280 0,024 0,461 15
12,6 82 12 94 1.356 0.548 0,278 0.472 1,386 1,174

118,259 12,6, 4,3 .2 7.1, 12 8 1 22 R R

3.2

NONE

118,304 12,6 4 53 2 35 A A -0,740 -0.097 -0, 141 0,056 3,401 0,014 0,709 13
12,6 51 42 83 -0,128 0,110 -0, 133 -0, 077 0, 455 1,023

118,308 12,8 4 BE G G4 A R
12 36 BE

118,402 12,8 70 5 75 A& A -1,722 -D.488 -0,383 0,275 6, 307 -0, 002 0,659 13
12,6 28 68 96 -0, 048 0,164 -0, 245 -0, 100 0.708 1. 006

114,058 12 2.2 41 41 R R
12 91 91

114, 065 12 18 8 R A -2,11% 0,318 -3,702 -0, 001 0,581 8
12 a7 a7 -1,328 -0,133 3,039 1,010

114,083 12 2.1- 2.1- 36 3 R R

i3 2.3

12 ar 87

114,153 12 43 48 A R
NONE

114,238 12,6, 4 6 53 3 1 57 R A -3.262 O0.62! -0.843 0.057 -0,343 0,075 2,951 0. 000 0,658 15
12,8 71 23 94 1,266 0.063 0,703 -0,140 1,803 1,038

114,393 12, 6 65 7 72 A A -1,342 -0,096 -0.414 0.154 6,881 -0, 001 0,678 13
12,6 44 52 96 -0,0t2 0,176 -0, 189 -0, 025 0,581 1.002

114 411 12,6 73 4 77 A A -1,385 0,71t -0,352 0,106 7.538 0,013 0,482 13
12,6 46 EL:] 85 0,058 0,222 -0,t27 0,167 0, 589 1,031

10,165 12,6, 4 66 18 2 86 A A -D.030 -1,078 -0,456 0.313 0,158 0.076 3,454 -0, 001 0.674 13
12 B2 a2 0,002 -0, 187 0,317 1, 057

10,275 12 27 27 A A -0.666 -0,287 2,189 0, 001 0,828 8
12 85 85 -0D.148 -0, 101 0,831 1. D05

10,278 12,6, 4 56 15 1 Te A A D220 -0,819 -0,406 -0,156 0,007 0,131 2. 862 0, 0og 0.79% 15
12,6 58 10 78 0,041 -0,076 -0, 023 -0, 024 0,408 1,005

10,387 12,6, 4 61 13 1 75 A A -0,998 -0.617 -0,119 0.521 0,105 0,038 2,753 -0, 001 0,650 13
12 26 -0, 285 -0, 0985 0. 488 1,002

9.378 12,6, 4 87 21 2 40 A A -0.194 -1.389 -0.677 0.375 0,150 0.152 4,923 0, 000 0,645 15
12, 6 32 1 33 -0, 007 -0.084 -0.000 -0, 01§ 0.378 1, 027

9.485 12,6, 4 3 45 13 4 62 R R
12 a9 89

9.623 12,6, 4 3 31 14 i3 31 A R
12,6 63 24 a7

B.624 12,6, 4 2.4 38 14 3 54 A R

3

12, 6 68 21 38

9.662 12,6,3 11 11 3 25 A A -0.339 0,047 0,345 0,012 -0,000 -0,191 4, 483 0,000 0,654 11
NONE 520,727 0. 862

9.764 12,6,3 21 9 4 34 A A -0.8608 -0,139 0,405 0.053 0,011 -0,266 6,130 0,000 0.688 11
NONE F.it-'G. B3 0,541

8.032 12,6 47 2 49 A A -1.574 -0.138 -0,350 D.022 6,790 0,000 0.671 11
12 30 80 0,273 0,253 t.130 . 006

8.107 12 Z:1 10 10 R A 0,143 -1.382 3,811 0, 028 0. 281 11
12,6 44 27 71 0.797 0.428 0,684 0,203 2,675 1,050

8.132 12 9 5 R A& -0,995 -0,869 4,678 0.002 0.716 9
12 a7 a7 0,536 0,328 2,638 1,024

8,143 12,6 2.4 22 2 24 R A -2.860 -0.103 -0.663 0,294 2,770 -9, 002
12 7 87 1,473 0,491 3,248 1,017 0,467 11
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TABLE 4 - Continued

Periods used

Feriods Explained Total Fit of
to found in variance of explain- Markov I
define . €1, periods, % ed vari- CONSTANTS REQUIRED TO DESCRIBE MARKOV I LOG MODIT, 14
Sta- sTD.  Titted Months ance
on ™ s, series series 12 3 4 3 5 Log Model 4, B, A, B, A, B, X 5 ¥ s Total

8.144 12 26 2 A R
NONE

&, 165 NONE A A Z, 561
NONE 5-1.210

8. 166 NONE A R
NONE

8,212 NONE A A 4.772 0,043 0,764 0
12,6 65 a T4 0,343 -0.420 -0.124 -0, 162 1. 386 1,051

8.217 12 7 A A -0,402 -0, 249 3.885 0, 000 a.760 7
NONE 5=1.249 0.964

8,220 NONE R R )
12 78 78

B.517 12,6, 4 3 T 8 3 62 A R
12 75 73

7.006 12 25 25 A A -0.592 -D.182 5,940 0, 000 0,500 7
NONE St=0..BT5 0, BE4

7.012 12 2.8 z.a 3t 31 A A -0.808 -0.122 6.229 0, 000 0.532 7
NONE 571,035 0. 830

7.015 12 ) 3.6 45 45 R A -1,108 0,132 5.572 -0, 019 0.401 9
6 71 71 -0, 176 0.049 0. 846 1.022

7.023 12 TI00  jian 45 45 R R
12,6 15 53 58

T7.028 12 3 43 R A -0.711 o0.271 §.150 0. 000 0,209 7
NONE St=0‘820 0,755

7.039 12 3.6 43 43 A A -1.344 0,130 6. 182 -0, 016 0,024 11
12,6 48 29 77 0,180 -0,028 -0, 145 0,031 1, 060 1,025

T.067 12 21 21 R A -0,882 -0,224 6.271 0, 000 0,880 7
NONE 3=1,114 0. 887

7.072 12 50 50 A R k
12,6 67 9 76

7.001 12 3T 3.7 26 26 R R
12,6 56 28 83

7.092 12 7100 7:00 27 27 R R
12,6 [:1:] 11 74

7.098 12 18 18 E R
12, 6 2z 54 76

7.108 12,6 41 3 44 A A -2,375 0,213 -0,689 0,078 6. 138 0. 004 0416 11
12 2 82 1,202 0,428 1. 683 1. 154

7.224 12 11 H R R
12 ' a1

7.229 12 10 10 R R
NONE

7.202 12 12 12 A A -0.512 -1,063 5.342 0, 027 0,860 11
12,6 73 7 80 0,448 0,706 0.104 -0.245 2141 L.025

7,286 12 12 12 A A -0,501 -0.406 5. 856 0, 000 0.632 7
NONE 81,318 0.938

7.413 12 38 38 A A -1,694 0,088 5. 605 -0, 007 0.467 8
12 86 86 0. 566 0,047 1, 455 1. 030

7.520 12,6 17 5 22 A A -0, 417 -D.624 -0,293 0,275 6. 631 0. boo 0.559 9
NONE §,:1.275 0,882

7.528 12,6 31 3 34 A A -2.0i7 0,105 -0,503 0. 434 6, 081 -0, 006 0D.357 11
12 83 83 1,150 0,001 1. 540 1,075

7.533 126 4 34 3 3T R R
12 a0 g0

6B.155 12,6 12,6, 47 4 St A A -0.677 0.480 -0.115 0,227 4.016 -0, 584 -0, 150 11

4.3,
2,4

12 89 89 0,382 -0,309 0. 467 4,370

6B. 367 12 3 18 18 A R
12 2 2

6B. 37T 12,4 17 2 19 R R
NONE !

6B, 457 12 26 26 A R
12 89 84

6B, 479 12 2t 24 A R
12 86 86

6E, 480 12 2 22 A R
12 80 80

6D.485 12 2+ 2+ 14 14 R R
12,6 GE 18 i1

§B.488 12 L7 17 A A -0,800 -1 161 3. 648 0,000 0,582 8
12 79 74 0.735 0,389 2. 049 1,027

§B. 4067 12 18 18 4 R
12 76 76

6B, 501 12 19 18 R R
NONE

6B.502 12 1§ 16 R R
12,6 65 12 77

6B.506 12 17 17 A R
1z 76 76

6B. 511 12 2z 22 A A -0.821 -0.738 5.970 0,003 0.604 11
12,8 59 16 75 0,111 D,218 -0, 101 -0.077 1,422 1,011

6B.514 12 16 16 A A& -1,058 -0.300 4,063 -0, 001 0.544 8§
12 a3 93 0,570 0.028 1,702 1. 011

6B. 524 12 14 14 A R
12,6 70 g 78

6B.537 12 21 21 A A -1,034 -0.270 5, 489 -0. 003 0.512 9
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TABLE 4 - Continued

Periods used Feriods Explained Total Fit of
t? found in variance of explain- Markov I
define €7, periods, % ed vari- CONSTANTS REQUIRED TO DESCRIEE MARKOV 1 LOG MODEL B
&a. m s STD. Fitted Months ance
g t  series series 12 3 4 3 LA Log Model 4 B, A, B, Ay B, = ‘Et ke s, Py Total
12 85 a5 0,501 0,046 1,418 1,018
6B.549 12 28 28 A& R
NONE
68,550 12 27 27 A A -0.832 -0,205 6. 636 9,000 0,551 T
NONE SLHI, 159 0,852
6B.552 12 24 24 A A -0.647 -0.104 3.884 0.000 0.368 7
NONE 5-0.948 0. 873
6A.066 12,8, 61 19 5 1 B& 4 A& 0,139 -0,833 -0,457 0.109 0,098 0,232 6. 262 0. 000 0,730 15
4,3
i2 T8 78 0.035 -0.100 A;O,DGI BE'U.C@ 0,268 i.018
6A, 318 12,6, 73 8 1 0.2 BT A A 0.548 -0.887 -0,287 -0.184 -0,106 0,109 6,718 0,000 0,803 13
4,3 NONE A;0.08 ]}q(l(?.l St= 0.882 0. 358
BA. 321 12,6, 4 68 z0 4 8z A R
12,6, 3 42 15 26 83
6A, 582 12,6, 4 3.8 3,6 28 ] 3 z 42 R R
3
12,8 37 34 T
6A.G6B4 12,6, 4 3 41 3 2 48 A R
12,6 38 16 T4
6A. 722 12,4,3 2.8 31 i 1 33 R R
12,86, 4 30 14 10 T4
BA.732 12,6,4 33 4 3 2 4 A A -0,423 -1,036 0,268 0,300 -0.312 -0, 053 5,848 0,000 0.653 13
3
NONE ;'\;QBZ E’.:i-D.B{T $t= 1,343 0, 748
Column Explanation
1-3 Same a5 Table 3, except that Xt iz equal to logarithms of monthly flows
4 Same as Table 3 except that the series LN is resulting from removal of Markev first order dependence
5-8 Same as Table 3
a Same as Table 3
10 Results of fitting Markov [ Log Models, and Models A and B respectively, A means model is accepted
on 85 per cent level and R means model is rejected on 95 per cent level
11-20 Same as Table 3 except consiants are for Markov I Log Model B
21 First correlation coefficient, £, us ed as best estimates of P1 for Markov Model
22 Number of constants used to fit Model B
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