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Abstract-The use of Principal Component Analysis
(PCA), also known as Singular Value Decomposition
(SVD), is a powerful tool that is frequently applied to the
classification of hyperspectral images in remote sensing.
Unfortunately, the utility of the resulting PCA may
depend on the resolution of the original image, Le., too
coarse-grained of an image may result in inaccurate
major principal components. This work presents an
example of how the major principal component obtained
from the PCA of a low-resolution image may be refined to
obtain a more accurate estimate of the major principal
component. The more accurate estimate is obtained by
recursively performing a PCA on only those pixels that
contribute strongly to the major principal component.

I. INTRODUCTION

Image analyses inherently require the handling of large
volumes of information so that efficient mechanisms are
required for the organization and classification of image data.
One common reduced order representation for images,
especially images that consist of multidimensional data, is
based on the singular value decomposition (SVD). Variously
referred to as eigendecomposition, principal component
analysis (PeA) and Karhunen-Loeve transformation [I], the
SVD has been successfully applied to a variety of imaging
problems including face characterization [2] and recognition
[3], lip-reading [4,5], robot vision [6], video analysis [7), and
remote sensing [8-10]. All of these applications are based on
taking advantage of the fact that a set of highly correlated
images can be approximately represented by a small set of
singular vectors.

In this work, we consider the application of remote
sensing; in particular, the analysis of hyperspectral images
where there is multidimensional data (the spectral reflectance
at various different wavelengths) associated with every pixel
in an image. While PeA is commonly used in the
representation and classification of such images, the singular
vectors resulting from the analysis depend on the resolution
of the original image. In general, the singular vectors
obtained from higher-resolution images are more useful than
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those from lower-resolution images. We illustrate a
technique by which the singular vector associated with the
maximum singular value for a high-resolution hyperspectral
image c~ be approximated from a lower-resolution image.
An overview of PeA for hyperspectral images along with our
proposed technique is presented in the following section.
Section ill presents an example of applying our approach to a
specific hyperspectral image. Finally, the conclusions of this
work are presented in Section IV.

II. APPROACH

Let/; represent an m-dimensional vector that corresponds to
the spectral reflectance at pixel i. A hyperspectral image can
then be represented by the matrix F = [1;, ... ,I.] where n is
the total number of pixels in the image. Let the SVD of F be

F=UEV

where U and V are orthogonal, and I: is a matrix with nonzero
terms appearing only on the main diagonal, and in descending
order. The columns of U, denoted u., are referred to as the
left singular vectors of F; these provide an orthonormal basis
for the spectral reflectance, ordered in terms of importance.
The corresponding singular values, which are nonnegative,
measure how "aligned" the spectral signatures of the pixels
are with the associated left singular vector. Thus, the first left
singular vector can be interpreted as the spectral signature
containing the "most common" information from all of the
pixels in the image. Likewise, the first k left singular vectors
provide a basis for the best k-dimensional representation of
the spectral response for the entire image. Thus the SVD
provides a natural, ordered hierarchy for the compressed
representation of information to within a user-defined level of
accuracy. In addition to the left singular vectors, the
information contained in the vectors comprising V (referred
to as the right singular vectors and denoted v;) also provide
useful information for analyzing hyperspectral images.
Specifically, the components of Vi measure how much each
individual pixel contributes to the spectral signature
represented by u..

Now consider a lower-resolution version of the
hyperspectral image F, denoted by F'. Let the images F and
F' represent the same total area, but with a pixel in F' being
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four times the area of a pixel in F. The lower resolution
image can then be approximately represented by

TABLE 1
SPECTRAL CHARACTERISTICS OF THE MASTER SENSOR

BAND HALFPP HALFPP FWHM CENTER PEAK

indicates woodland. Indeed, the spectral response of the
principal left singular vector is dominated by those pixels that
represent grassland. This can be clearly seen by comparing
Fig. 4, which is a plot of the right singular vector associated
with the maximum singular value, with the classified image
in Fig. I.

F'=FG
where G is an n by n/4 matrix whose ith column is a vector

containing all zeros except for the four entries in the 4(i-0+ I
to the 4(i-1)+4 location which contain 1/4. In other words,
each pixel/;' in the lower-resolution image is the average of
four neighboring pixels in the higher-resolution image.
Clearly, the SVD of F' will be different from that of F, which
is arguably more useful because it represents more
information. The question considered here is: Can one
estimate the SVD of F when only F'is available?

To estimate the most significant spectral signature in F,
i.e., the vector UJ, we use the following approach: First we
calculate the SVD of the complete low-resolution image F'.
We then examine the resulting maximum left singular v'J and
identify those elements, i.e., pixels, that have the largest
value. We then construct a new matrix consisting of only
these pixels and then compute its SVD. This process is then
repeated until the resulting maximum left singular vector has
converged or until a minimum number of pixels has been
selected. Intuitively, one can expect this procedure to
converge to a reasonable approximation of UJ if those pixels
that have a large component in v'J come from areas in the
image that are relatively homogeneous and have a strong
contribution to VJ. The following section presents an example
of such a case.

m. RESULTS

The hyperspectral image used in this study was produced
by the MODIS/ASTER (MASTER) sensor during flight #99
005-06 on June 3, 1999 over Albuquerque and Sevilleta, NM
[II). The sensor produces a 50-band image covering the
spectrum from 0.4-13 micrometers. The spectral
characteristics of the sensor are given in Table 1. This
investigation focused on classification of the groundcover in
an area near Ballenger Ranch, south of Edgewood, NM. This
area was manually classified using aerial photographs and
ground surveys into two main groups, i.e., either dominated
by woodland or dominated by grasses. These categories were
further subcategorized as either heavy or light woodland
(classes I and 2 respectively) or pinon-juniper savanna,
shrub, or grassland (classes 3, 4, and 5 respectively). This
classification is shown in Fig. I with statistics presented in
Table 2.

A principal component analysis was performed on a 20
meter resolution version of the MASTER image that was
registered to correspond to the classified image in Fig. I. The
first two most significant spectral signatures, i.e., the left
singular vectors associated with the two largest singular
values, are shown in Fig. 2. A scatter plot of the pixels from
the MASTER image projected on to these first two principal
components is given in Fig. 3. From this scatter plot, it is
clear that the value of the projection onto the first principal
component is a good indicator of the type of groundcover,
i.e., a large value indicates grassland whereas a small value
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Figure 2 The two most significant spectral signatures, i.e., the singular
vectors associated with the two largest singular values, for the 2Q-meter
resolution MASTER image.
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Figure I Classification of groundcover near Ballenger Ranch (south of
Edgewood. NM). Darker shades of gray represent heavier groundcover. Scatter Plot of SVI vs, SV2

TABLE 2
CLASSIFICATION HISTOGRAM

Classes 3, 4 and 5
(Savanna, Shrubs, and Grassland)

Class
I Heavy Woodland

2 Light Woodland
Total Woodland (I & 2)

Area (number pixels) %
20.152 31.6%
10,876 17.1%'
31,028 48.7%

3 Pinon-Juniper Savanna
4 Shrubs
5 Grasses
Total Grassland (3, 4, & 5)

21,651
4,220
6,866

32,737

34.0%
6.6%

10.8%
51.3%

Classes 1and 2
(Heavy and Light Woodland)

Unfortunately, if this same procedure is performed on a
MASTER image of lower resolution, the maximum spectral
signature may not be as significantly dominated by the pixels
primarily associated with grassland, and thus will not be as
useful for classification. To illustrate this point, a principal
component analysis was performed on an 80-meter resolution
MASTER image. The first three left singular vectors
associated with the three largest singular values are plotted in
Fig. 5. Note that the spectral characteristics of the first
principal component differ significantly from those of the 20
meter case (see Fig. 2). In particular, there are now peaks at
bands 17,26, and 34 that were not previously present and the
sharp drop between bands 41 and 42 is no longer apparent.
While there are still many predominantly grassland pixels that
contribute to this first singular vector (see Fig. 6), there is
also a significant contribution by pixels that are a mixture of
woodland and grassland. Thus to recover the spectral
signature of a predominantly grassland groundcover, one
must use a linear combination of all three of the most
significant left singular vectors. This is particularly

Figure 3 A scatter plot showing the projection of the 2D-meter MASTER
image onto the first two principal components.

noticeable by observing the strong negative peaks at bands
17,26, and 34 of left singular vector three in Fig. 5. The fact
that left singular vector 3 plays a much larger role in
determining the spectral signature of grassland in the low
resolution PCA can be verified by comparing the right
singular vectors for both the 20-meter case and the 80-meter
case, shown in Figs. 7 and 8, respectively.

Clearly, the principal components of the low-resolution
image are affected by having a much larger number of pixels
that consist of mixed ground cover. To see if the maximum
principal component obtained from the higher resolution PCA
could be obtained by only using the lower resolution image,
the procedure outlined in the previous section was performed.
In particular, the pixels that had the largest contribution to the
first principal component were extracted from the image.
This corresponds to the top 10% of the brightest pixels in Fig.
6. A new PCA was performed on only these pixels. This
recursive application of the PCA to selected regions of the
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Figure 4 The right singular vector associated with the maximum singular
value for the 2o-meter resolution MASTER image. The light regions
indicate a strong contribution to the maximum left singular vector and by
comparison to Fig. I clearly correspond to regions associated with
grassland groundcover.
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Figure 5 The three most significant spectral signatures, i.e.• the singular
vectors associated with the three largest singular values, for the SO-meter
resolution MASTER image

image resulted in an increased contribution by pixels that
were dominated by grassland. The resulting maximum left
singular vector is shown in Fig. 9 and is very similar in
spectral characteristics to the corresponding singular vector in
the 2o-meter case shown in Fig. 2. It is clearly superior to the
maximum singular vector obtained from the initial PeA
performed on the entire 80-meter image (shown in Fig. 5).

Figure 6 The right singular vector associated with the maximum singular
value for the 8O-meterresolution MASTER image. There is clearly a much
larger contribution from areas that are not dominated by grassland as
compared to the 2o-meter case in Fig. 4.

IV. CONCLUSIONS

This. work has presented an example of a case where the
left singular vector associated with the maximum singular
value. obtained by performing a principal component analysis
on a low resolution hyperspectral image. can be refined to
approach the value obtained if one had a much higher
resolution image. This is useful because the singular vector
associated with a higher resolution image more accurately
reflects the spectral characteristics of the most dominant
feature in the image and is thus more useful for classification.
The more accurate estimate of the maximum singular vector
is obtained by recursively performing a PeA on selected
portions of the low-resolution image. It has not been shown
that this procedure always results in a more accurate estimate.
Also, it may be possible to extend this procedure to obtain
estimates of all significant singular vectors. in addition to the
one associated with the maximum singular value. Both of
these points are the subjects of our current work.
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Figure 7 The right singular vector associated with the third largest singular
value for the 20-meter resolution MASTER image. Note that there is very
little contribution of the associated left singular vector.
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Figure 8 The right singular vector associated wilh the third largest singular
value for the SO-meter resolution MASTER image. Note that there is
significantly more contribution of the associated left singular vector than
with that of the 20-meter image shown in Fig. 7.
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Figure 9 The left singular vector associated with lhe largest singular value
for the 80 meter resolution MASTER image after recursively performing a
PeA on the 10% of the pixels that had the highest contribution to this
principal component. Note that the spectral characteristics of this
maximum left singular vector are very similar to that of the higher
resolution image given in Fig. 2.


