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ABSTRACT OF DISSERTATION

IMPROVED RESOLUTION AND SPEED IN NONLINEAR MICROSCOPY

Optical microscopy is an important tool for biomedical research. New techniques

for microscopy enable new capabilities for studying biological systems. Moreover, in

optical microscopy, the polarization state of the focal field strongly influences the im-

ages formed due to the impact of focal spot size, adjusting the relative strength and

phase of both transverse and longitudinal field components, and manipulating inter-

action with the sample under study. In particular, coherent nonlinear microscopies,

such as third harmonic generation (THG), and second harmonic generation (SHG),

offer rich possibilities for new control over the imaging process.

In the first part of this dissertation, I demonstrate that control over the spatial

polarization state of the focal field can be used to improve the spatial resolution in

a laser-scanning THG microscopy. First, we show a detailed design of our nonlinear

scanning microscope, then we introduce a non-iterative algorithm for measurement of

spatially inhomogeneous polarization distributions in third-harmonic generation mi-

croscopy. We also, show control of spatial polarization state of the focal field through

imaging of a spatial light modulator to the focus of a microscope objective. Then,we

introduced a novel technique for enhancing resolution in THG microscopy, through

spatial polarization shaping at the focal field.

In the second part of this dissertation, we show an alternative method to laser-

scanning nonlinear microscopy in biological tissue, namely, nonlinear holographic mi-

croscopy. First, we introduce the foundation of nonlinear holographic microscopy by

reviewing linear off-axis holography. We start by introducing digital recording in off-

axis holography, its limitations, and show how through holography we can obtaining
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3-D images from 2-D data. We then explore numerical reconstruction of the object

field from the recorded holograms. Finally, we expand this technique to SHG nonlin-

ear holographic microscopy to construct 3-dimensional images of biological tissues.

Omid Masihzadeh
Electrical and Computer Engineering

Colorado State University
Fort Collins, CO 80523

Spring 2010
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Chapter 1

Introduction

Imaging is a powerful tool in many contemporary scientific research, including biomed-

ical sciences. There have been three major stages of evolution of the imaging devices:

(1) Direct image plane image formation as a 2-D function by directly mapping

each point of an object to a point in the image plane. It started by the invention of

magnifying glass at the end of the 13th century by Salvino Degli Armati. The credit

for the first microscope is usually given to Dutch spectacle maker Joannes and his son

Zacharios Jansen, where through experimenting with several lenses they discovered

that objects appeared greatly enlarged. The father of microscopy, Anthony Leeuwen-

hoek of Holland, was the first to describe bacteria, yeast plants, and the circulation

of blood corpuscles in capillaries.

(2) Holographic imaging, which constitute of recording of amplitude and phase

of the wave field radiated by the object in form of a hologram, and reproduction of

the wave field by reconstruction of holograms. Invention of holography by D. Gabor

[1] was motivated by the desire to improve resolution power of electron microscope

that was limited by the fundamental limitations of the electron optics. The very first

implementation of holography were not demonstrated until 1961 by radio-engineers

E. Leith and J. Upatnieks [2, 3].
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(3) Computational imaging, where images are obtained, stored, and manipulated

digitally. For instance, recording the holographic interferograms with a CCD camera

has lead to significant improvements in speed of hologram processing. Using digital

holograms, 3D microscopy images can be computed numerically from a single image

capture [4, 5, 6, 7]

The conventional wide field optical microscopy, provides sub-micron spatial res-

olution and has had a tremendous impact in biology and medicine. The contrast

mechanism in linear wide field optical microscopy is the transmission or reflectivity

of the sample, or through changes in polarization. Since many cellular structures are

transparent, the variation of the reflectivity and transmission is very small. Phase

contrast and differential interference contrast (DIC) microscopes have been developed

to convert the optical phase and polarization differences into intensity differences and

greatly enhance the image contrast.

Although tremendous progress has been made in conventional optical microscopy,

including confocal [8, 9], it has suffered from a low physical and chemical specificity

[10]. The contemporary research of microelectronics, disease detection, material anal-

ysis, and biochemistry demand the ability to visualize the molecular identity and

dynamics in real time. Many advanced imaging techniques have been invented to

answer these challenges. With the development of fluorescence labels, fluorescence

imaging has gained popularity among cell biologists and biochemists because the sig-

nal is specific to the label and its sensitivity reaches the single molecule level [11].

Despite its success, fluorescence imaging has several limitations [12, 8].

Current research in nonlinear microscopy is aiming to develop alternative methods

that provide endogenous contrast. Various nonlinear signals, such as second harmonic

generation (SHG) [13, 14] , third harmonic generation (THG) [15, 16], and coherent

anti-Stokes spectroscopy CARS [17, 18] have been used for imaging. SHG arises from

the second order nonlinearity of materials with a noncentrosymmetric molecular or-
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ganization. Certain biological materials such as collagen can assemble into large

noncentrosymmetric structures, making them a good target for SHG microscopy

[19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. THG has no restriction on the symmetry

property of the material. THG signals are strong at interfaces and small inhomo-

geneities of the size smaller than the focus. This has enabled the application of THG

in imaging micrometer-sized lipid bodies in hepatocytes [15, 16, 20, 29, 30, 31, 32, 33].

The formation of images of biological specimens with coherent nonlinear scatter-

ing, through nonlinear scanning microscopy, opens unique image formation contrast

due to the nature of nonlinear interactions. The strength of the nonlinear interaction

in the medium, moreover, depends on the strength and polarization of the incident

field. For instance, the polarization state of the focal field strongly influences the fo-

cal spot size [34], and by adjusting the relative strength and phase field components,

one can manipulate the interaction between the field with the sample under study

impacting the resolution [35]. In anisotropic samples, for example, manipulation of

the focal field polarization state distribution can be used to probe the anisotropy of

sub-wavelength particles interacting with the focal field [36].

While nonlinear scanning microscopy is a valuable and powerful tool, it is limited

by low image acquisition rates. For acquiring 3-D images, the implementation of this

technique requires a tightly focused fundamental pulse to be mechanically scanned

across (x, y) and through the sample (z), where images are assembled by serially

collecting a nonlinear signal from each point. This time consuming process, often

fails to capture dynamics of a process under study and presents a significant barrier

for application of nonlinear microscopy to many areas [37, 38, 39, 40, 41, 42, 43].

By contrast, a hologram is capable of storing 3-D optical field information in a 2-D

image, considerably improve image acquisition time.

In this dissertation, we explore nonlinear imaging through both nonlinear scanning
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microscopy and nonlinear holographic microscopy. In nonlinear scanning microcopy

we show an enhanced resolution in THG microscopy through shaping of spatial po-

larization of the fundamental field and manipulation of nonlinear interaction between

the fundamental field and the medium. The lateral spatial resolutions achievable with

nonlinear microscopies and ultra-high 1.2 NA water-immersion objectives are usually

in the 300-500 µm range [44, 45, 46, 47]. In our work, under-filling the back aperture

of our 0.65 NA objective yielded a resolution of 2 µm. Through polarization control,

we were able to enhance this resolution by a factor of 2. A significant advantage of

our technique is that it is generally applicable under any conditions used for THG

microscopy.

Moreover, through nonlinear holographic microscopy, we illustrate fast 3-D imag-

ing of biological tissues, with use of an home-built oscillator. We demonstrate image

acquisition rates as low as 10 ms, currently limited by the opening time of our me-

chanical shutter. Although the shutter is not capable of continuous rapid switching,

this would allow for video-rate microscopy imaging. Faster switching times are possi-

ble through the use of liquid crystal shutters [48] that have speeds of around 50-100

µs (e.g Swift Optical Shutters, Meadowlark Optics, Frederick, Colorado), or using the

electro-optics effect with switching speeds of a few µs [49].

In the first part of this dissertation, I demonstrate that control over the spatial

polarization state of the focal field can be used to improve the spatial resolution in

a laser-scanning THG microscopy. First, we show a detailed design of our nonlinear

scanning microscope, then we introduce a non-iterative algorithm for measurement of

spatially inhomogeneous polarization distributions in third-harmonic generation mi-

croscopy. We also, show control of spatial polarization state of the focal field through

imaging of a spatial light modulator to the focus of a microscope objective. Then,we

introduced a novel technique for enhancing resolution in THG microscopy, through

spatial polarization shaping at the focal field.
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In the second part of this dissertation, we show an alternative method to laser-

scanning nonlinear microscopy in biological tissue, namely, nonlinear holographic mi-

croscopy. First, we introduce the foundation of nonlinear holographic microscopy by

reviewing linear off-axis holography. We start by introducing digital recording in off-

axis holography, its limitations, and show how through holography we can obtaining

3-D images from 2-D data. We then explore numerical reconstruction of the object

field from the recorded holograms. Finally, we expand this technique to SHG nonlin-

ear holographic microscopy to construct 3-dimensional images of biological tissues.

This work is organized as follows. In the first chapter, the fundamentals and

mathematical tools for nonlinear optics is introduced. In this chapter, we first in-

troduce the polarization response of material to an intense fundamental laser field.

We explore the propagation of the laser field inside the medium, and generation of

new field (SHG and THG) through the interaction of the fundamental field with the

material. Then we present a two-dimensional model of SHG and THG, and a more

general qth harmonic generation under focusing conditions, and expand that to a

three-dimensional calculation of nonlinear optical signal generation.

Chapter two will introduce the concept of nonlinear scanning microscopy. We show

how through nonlinear scanning microscopy we achieve a new contrast modality, its

impact on resolution and three-dimensional sectioning capability through scattering

media like biological tissues. In particular we will explore nonlinear microscopy tech-

niques like SHG and THG microscopy, and show some of the results we obtained

experimentally.

In chapter three, we introduced a novel technique for enhancing resolution in THG

microscopy, through spatial polarization shaping at the focal field. The nonlinear na-

ture of third harmonic light results in emission of signal in a close vicinity of the focal

volume, resulting in high lateral resolution [16, 15]. In optical microscopy, the lateral

resolution is determined by the wavelength of light and the numerical aperture. In
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transmission mode, the lateral resolution is determined by both the excitation and

collection objectives. In direct imaging method [16], a slight advantage compared to

laser scanning method [54] in resolution has been reported, since the lateral resolution

is determined by the third-harmonic signal, where in laser scanning, the resolution is

determined by both the fundamental and the third harmonic signal. In both cases,

high numerical aperture objective (NA > 1) are required to achieve high resolution.

These objectives, however, suffer from a very short working distance which is not

desired for imaging of most thick biological sample. Even for thin biological sample

(cell cultures grown in chamber slides), high working distance objectives are some-

times necessary. For example, a NA = 1.4 plan apochromat objective has a working

distance of dw = 0.13 mm where as a NA = 0.75 plan apochromat objective has

a working distance of dw = 1 mm, ideal for imaging of thick specimen. However,

the resolution of the NA = 1.4 objective is about twice as much as the NA = 0.75

objective.

Over the past decay, a variety of techniques has been developed in fluorescent

microscopy to enhance the resolution better than the diffraction limit [55, 56, 57, 58].

Yet, no technique has been developed for coherent nonlinear microscopy techniques.

Here, we illustrate an enhanced resolution by a factor of 2 through quenching of THG

signal by a circularly polarized light. This technique can be used in conjunction with

any numerical aperture objective. For instance, the author in reference [16] uses a

NA = 1.25 collection objective to image rhizoids of Chara plant, by collecting the 400

nm third harmonic signal. Under optimal conditions, this would result in a lateral

resolution of ∆r = 0.61 400
1.25 ∼ 200nm. Under the same conditions, through our novel

THG quenching technique, we would have achieved a resolution of ∆r = 100nm.

This corresponds to an effective numerical aperture of NA = 2.5. Of course, such

numerical aperture objective is not available and in order to reach such resolution, a

shorter wavelength light has to be used.
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In this chapter, we first show a detailed design of our nonlinear scanning mi-

croscope, then we introduce a non-iterative algorithm for measurement of spatially

inhomogeneous polarization distributions in third-harmonic generation microscopy.

We also, show control of spatial polarization state of the focal field through imaging

of a spatial light modulator to the focus of a microscope objective.

Imaging in nonlinear microscopy, like SHG and THG microscopy, has largely been

restricted to time consuming laser-scanning microscopy. The implementation of this

technique requires the focused fundamental beam to be scanned through each vol-

ume element, where images are assembled by serially collecting the excited nonlinear

signal. The refresh rate of image acquisition for nonlinear microscopy, however, fails

to capture dynamics of a process under study and presents a significant barrier for

application of nonlinear microscopy to many areas [42, 43, 37, 41, 40, 38]. The scan-

ning of the fundamental beam is predominantly done with nonresonant galvonometric

scanners, which can provide a frame rate of about 10 Hz. For instance, images of

300 × 300 pixels has been shown to take about 30 second to acquire [15]. For a 50

µm thick sample then (average thickness of histological samples), an average time of

25 min would be required to construct a 3-D image. Faster resonant galvonometers

have been show to achieve video rate scanning speed with the expense of much more

expensive and complicated electronics [59, 60]. In holography, however, 3-D optical

field information can be retrieved by a single 2-D image.

The concept of holography is introduced in chapter four. In this chapter we lay the

foundation of nonlinear holographic microscopy by first introducing linear off-axis

holography. We start by introducing digital recording in off-axis holography, its lim-

itations, and show how through holography we can obtaining 3-D images from 2-D

data. We then explore numerical reconstruction of the object field from the recorded

holograms. Finally, in chapter five we show nonlinear holographic microscopy using

a low average power oscillator. Through this technique, we record and reconstruct
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a 3-D image of a 100 µm thick fixed cardiac muscle, in less than 10 ms. Here, the

hologram was captured by an effective 400×400 pixel EMCCD camera. A 3-D image

of the same sample using laser-scanning microscopy would take about 50 minutes.
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Chapter 2

Nonlinear Optics

2.1 Introduction

Nonlinear optics is the study of the interaction of light with matter, where the re-

sponse of the material depends in a nonlinear fashion on the input field strength. It

wasn’t until the invention of laser [61] when experimental observations of coherent

nonlinear optics were realized [62]. Nonlinear optical processes have become an im-

portant subject in many field of research, including laser design, biomedical sciences,

quantum computing. Our main focus in this thesis is nonlinear optical microscopy.

Although accurate descriptions of nonlinear optics requires a quantum mechan-

ical treatment, the classical model of driven anharmonic oscillator provides a very

good description of nonlinear optics phenomena, due to nonlinear electronic dipole

response. In this picture, the electromagnetic wave induces an oscillating dipole

moment in the media, where dipole displacement is not strictly proportional to the

applied field, which may include frequencies different from those incident. The time

dependent induced dipole moment per unit volume is, usually denoted by P(t) and

called polarization, depends on the strength of the driving field E(t). For a lossless,

dispersion-free medium, the polarization can often be expanded by power series in
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terms of the driving field as [31],

P(t) = ε0[χ
(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . . ] (2.1)

= P(1)(t) + P(2)(t) + P(3)(t) + . . . (2.2)

The first term in Eq. (2.2) represents the linear response of the material to the

field. The constant in front of each field expansion order is called the susceptibil-

ity of the material. For linear response χ(1) (second-rank tensor) is called the linear

susceptibility. The quantities χ(2) (third-rank tensor) and χ(3) (forth-rank tensor)

are called the second- and third order nonlinear susceptibilities. The second term in

Eq. (2.2), P(2)(t) and third term P(3)(t), are called second-order nonlinear polariza-

tion and third-order nonlinear polarization, respectively.

Due to small value of nonlinear susceptibilities (χ(2) ∼ 10−12 m/V and χ(3) ∼ 10−24

m2/V 2) [31], the nonlinear polarizations are insignificant unless the applied field in-

tensities I = 1
2ε0c|E(t)|2 are very large (but still small compared to atomic field

intensity). Depending on the field strength, focusing conditions, and the symmetry

of the material, some of the nonlinear polarizations might be absent. For example,

as we will see later on, second order nonlinearity (and any even order nonlinearity)

is only present in non-centrosymmetric material. Third order nonlinearity is present

in all material, although under tight focusing conditions, or when the incident field

is circularly polarized no far field signal will be observed. In this dissertation, we will

only be concerned with linear, second- and third-order nonlinearity, and higher order

nonlinearities will be neglected.

The aim of this chapter is to introduce the formalism of nonlinear optics that

will apply to nonlinear microscopy. The discussion is limited to so-called parametric

processes, which are processes for which the initial and final quantum- mechanical
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states of the system are equal. These processes include phenomena like second har-

monic generation (SHG) and third harmonic generation (THG). First, we introduce

the main mathematical tools and the general form and properties of linear and non-

linear polarizations and susceptibilities are given. Then, we drive the nonlinear wave

equation and apply that to fields under focusing conditions.

2.2 Polarization Response of Material

As we saw in section 2.1, strong fields inside a medium drive a nonlinear electronic

response inside the medium. The strength of the nonlinearity in the medium depends

on the strength of the field and the optical susceptibility tensor. The susceptibility

tensors can be expressed in terms of its Fourier transform of the time domain response,

by means of the Fourier integral identity. Transformation between time to frequency

domain, and vice versa is done by Fourier transform. The Fourier transform and its

inverse are defined as following,

f(t) =
1

2π

∫ ∞

−∞
dωF (ω)e−iωt (2.3)

F (ω) =

∫ ∞

−∞
dtf(t)eiωt (2.4)

Using the above, we can describe the electric field and polarizability as,











E(ω) = 1
2π

∫∞
−∞ dtE(t)e−iωt

E(t) =
∫∞
−∞ dωE(ω)eiωt

(2.5)

and











P(ω) = 1
2π

∫∞
−∞ dtP(t)e−iωt

P(t) =
∫∞
−∞ dωP(ω)eiωt

(2.6)
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Let us apply these formalism to linear response of the material. The response of

such media to an electric field, in time domain can be written as [31],

P(1)
i (t) = ε0

∫ t

0

dτR(1)
ij (t − τ)Ej(τ) = ε0R

(1)
ij (t) ⊗ E(t1) (2.7)

where R(1)
ij (τ) is linear response function, producing a linear polarization at time

t, invoked by a field at time τ . In frequency domain, we can re-write the convolution

as a product,

P(1)
i (ω) = ε0χ

(1)
ij (ω;ω)Ej(ω) (2.8)

where χ(1)
ij (ω;ω) =

∫∞
−∞ dtR(1)

ij (t)eiωt. In writing the above equations, we have as-

sumed time invariance, locality and causality.

Making the same assumptions, we can write the first two nonlinear polarizations

as,

P(2)
i (t) = ε0

∫ ∞

0

∫ ∞

0

dτ1dτ2R
(2)
ijk(t − τ1, t − τ2)Ej(τ1)Ek(τ2) (2.9)

and

P(3)
i (t) = ε0

∫ ∞

0

∫ ∞

0

∫ ∞

0

dτ1dτ2dτ3R
(3)
ijkl(t−τ1, t−τ2, t−τ3)Ej(τ1)Ek(τ2)El(τ3) (2.10)

where R(2)
ijk is the second order and R(3)

ijkl is the third order response function. Rewrit-

ing the nonlinear polarizabilities in terms of Fourier transform of the fields and the

response function we get,
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P(2)
i (t) =

ε0
(2π)2

∫ ∞

0

∫ ∞

0

dω1dω2χ
(2)
ijk(ω;ω1, ω2)Ej(ω1)Ek(ω2)e

−i(ω1+ω2)t (2.11)

and

P
(3)
i (t) =

ε0
(2π)3

∫

∞

0

∫

∞

0

∫

∞

0
dω1dω2dω3χ

(3)
ijkl(ω; ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3)e

−i(ω1+ω2+ω3)t

(2.12)

with

χ(2)
ijk(ω;ω1, ω2) =

∫ ∞

−∞

∫ ∞

−∞
dt1dt2R

(2)
ijk(t1, t2)e

i(ω1t1+ω2t2) (2.13)

χ(3)
ijkl(ω;ω1, ω2, ω3) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dt1dt2dt2R

(3)
ijkl(t1, t2, t3)e

i(ω1t1+ω2t2+ω3t3) (2.14)

Equations (2.11) and (2.12) can be transferred to the frequency domain by using

Eq. (2.6). For example for a second-order polarization, we find

P(2)
i (ω) =

ε0
2π

∫ ∞

0

∫ ∞

0

dω1dω2χ
(2)
ijk(ω;ω1, ω2)Ej(ω1)Ek(ω2)δ(ω − ω1 − ω2)

=
ε0
2π

∫ ∞

0

dω1dχ
(2)
ijk(ω;ω1, ω − ω1)Ej(ω1)Ek(ω − ω1) (2.15)

and for the third-order polarization we get,

P
3
i (ω) =

ε0
(2π)2

∫

∞

0

∫

∞

0

∫

∞

0
dω1dω2dω3χ

(3)
ijkl(ω; ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3)δ(ω − ω1 − ω2 − ω3)

(2.16)
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2.2.1 Second Harmonic Generation

Shortly after the invention of the Laser, the second harmonic generation was observed

by Franken and co-workers [62]. In this process, two photons of frequency ν1 are an-

nihilated to create a new photon at twice the frequency 2ν1 = νSHG. The schematic

and Jablonski diagram of SHG is shown in Fig. 2.1 [31, 63].

The strength of field radiated at second harmonic depends on the second order

nonlinear optical susceptibility χ(2) described by Eq. (2.13), and the induced polar-

ization due to the interaction of the field with the material is described by Eq. (2.15).

By substituting a cw electric field E(t) = A1 cos(kωz−ωt) into Eq. (2.15), and setting

ω1 = ω2 = ω we get,

P(2)
2ω =

1

4
ε0χ

(2)A1A1 exp[i(2kωz − 2ωt)] (2.17)

+
1

4
ε0χ

(2)A1A1 exp[−i(2kωz − 2ωt)] (2.18)

=
1

2
ε0χ

(2)A1A1 cos(2kωz − 2ωt) (2.19)

Equation (2.19) is a manifestation of how the fundamental field induces the second

order polarizability which in turn gives rise to a new field with the twice of the

fundamental frequency.

One fundamental aspect of SHG, and any even order nonlinear phenomena, is that

the polarization in centrosymmetric materials, that is material that possess a point

which the medium remains unchanged under the operation x → −x, is exactly zero.

Basically, the inversion operation leaves the inversion-symmetric media unaffected,

but does add minus signs to both polarizability, P(2)
2ω → −P(2)

2ω and the field Eω →

−Eω. This is only possible when χ(even) = 0. Mathematically, consider an electric

field E(t) = Eω cos(ωt) inside a centrosymmetric medium then,
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−P (t) = χ(2)(−E(t))2 (2.20)

−P (t) = χ(2)(E(t))2 (2.21)

which will only hold if χ(2) is zero. Therefore, only a non-centrosymmetric medium

can exhibit nonzero polarization field, for χ(even) material.

Many materials, such as Potassium dihydrogen phosphate (KDP) and β-barium

borate (BBO) exhibit such symmetry and are widely used in nonlinear research. Ma-

terials with inversion symmetry generate no second harmonic in dipole approximation,

a property which turns out to be key idea in SH microscopy of biological specimen,

which contain highly structured tissues. Therefore SHG microscopy probes the or-

ganization of material structure through morphological analyses. We will talk about

SHG microscopy in more detail in later chapter.

It is worth mentioning that SHG can be generated in centro-symmetric material

using low frequency electric field. This process is usually described as a third-order

nonlinear process with the nonlinear polarization described by [31]

P(3) =
3

4
εoχ

(3)E(ω)E(ω)E(0) (2.22)

where E(0) is the low frequency electric field. This process is usually referred as

Electric-Field-Induced-Second-Harmonic-Generation. Even if the inversion symme-

try is broken, the second harmonic signal, under most conditions, is very weak, and

depends on the strength of the incident field.

In the past few decades, SHG has been widely used to the study of interfacial

regions without a center of symmetry, and was later combined with a microscope

for SHG scanning microscopy [64, 65]. Today, SHG scanning microscopes have been
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widely used in material studies for surface monolayer detection [66], and electric

field distribution imaging [67, 68]. Moreover, the explosion of research in nonlinear

microscopy has shown the promise of SHG in tissue imaging. For instance, second

harmonic is an ideal method for probing membranes of living cells [69]. The majority

of the second harmonic microscopy reports have been focused on imaging collagen

fibers in a variety of connective tissues including skin, bone, tendon, blood vessels,

and cornea [70, 26, 71, 72] (and references within).

Figure 2.1: Schematic and Jablonski diagrams of SHG (a) Physical diagram. (b)
Jablonski diagram show two incident photons of frequency ν1 simultaneously gen-
erate a photon with frequency twice the incident frequency. (c) Jablonski diagram
show three incident photons of frequency ν1 simultaneously generate a photon with
frequency three times the incident frequency.

2.2.2 Third Harmonic Generation

When the electric field in the medium is strong enough, the third order nonlinearity

is not negligible anymore and gives rise to third harmonic generation (THG). THG is

a third order nonlinear process due to the third order susceptibility χ(3), that mixes

three photons at the optical frequency ω to generate a photon at three times the
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angular frequency of the incident photon. Figure 2.1 (c) show the Jablonski diagram

for THG.

The induced third order polarization in the material is governed by Eq. (2.14).

For a monochromatic wave we get,

P(3)
i =

Dε0
4

χ(3)
ijklEj(ω)Ek(ω)El(ω) (2.23)

where the degeneracy factor D = 1 to 1 if all three frequencies are the same ( THG ),

D = 3 if two frequencies are the same and D = 6 if all three frequencies are different.

In this dissertation, we will exclusively deal with isotropic medium, which makes

the form of χ(3)
ijkl isotropic. In general, for a given frequency combinations χ(3)

ijkl has

34 = 81 elements. But in isotropic media, there are only 21 nonzero elements, out

of which only 3 of them are independent. That is due to the fact that for isotropic

material, χ(3)
ijkl is invariant to all transformations; rotation, reflection, and inversions.

For example, consider reflection in y − z plane, such that x → −x, y → y, z → z.

Then we have χ(3)
xyzz = χ(3)

xyzz = 0. Here, the first equality is by definition of invariant

reflection, and the second equality is necessarily true, since E != −E. Applying this

reasoning to other elements and planes, shows us that elements with odd number of

indices are zero, hence 60 out of 81 elements are zero, which leaves only 21 elements

having the form χ(3)
aaaa, χ

(3)
aabb, χ

(3)
baab, χ

(3)
abab. Now considering a 90o rotation about the

z-axis, x → y, y → −x, z → z, and realizing invarient under rotation we get, for

example, χ(3)
xxxx → χ(3)

yyyy = χ(3)
xxxx;χ

(3)
xxyy → χ(3)

yyxx = χ(3)
xxyy, and so on. Rotation around

other axis and repeating this procedure leaves only 4 independent elements. Next,

performing an arbitrary rotation by an angle Φ about an arbitrary axis will leave

you with 3 independent elements χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx. Hence, χ(3)
ijkl for an

isotropic medium can be written as,

χ(3)
ijkl = aδijδij + bδijδij + cδijδij (2.24)
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where a = χ(3)
xxyy, b = χ(3)

xyxy, c = χ(3)
xyyx. Therefore, for isotropic media we have,

P(3)
i =

εo

4
[aEi(ω)Ek(ω)Ek(ω) + bEi(ω)Ej(ω)Ej(ω) + cEi(ω)El(ω)El(ω)] (2.25)

utilizing the definition of the dot product, we find a simple expression for third order

polarization,

P(3)
i (3ω) =

εo

4
χ(3)

xxxx[E(ω) · E(ω)]Ei(ω) (2.26)

=
εo

4
χ(3)

xxxxE
2(ω)Ei(ω)

One of the interesting properties of THG is that P(3)
i (3ω) is identically to zero for

circular polarized light. Consider an input fundamental field in a linearly-polarized

basis given by

E =
{

x̂A(ρ, z) + ŷB(ρ, z)eiδ0
}

(2.27)

where A(ρ, z) and B(ρ, z) describe the spatial evolution of the x and y-polarized

components, respectively. An initial phase offset is described by δ0. Note also, that

k1 is the wavenumber of the fundamental field. Inserting this into Eq. (2.26), through

the dot product one easily shows that the THG polarization density is non-existent

for a circularly-polarized light field [73]. Evaluating the dot product in Eq. (2.26), we

find

E(ω) ·E(ω) = A2 + B2ei2δ0 (2.28)

For circular polarization, where A = B, δ0 = π/2, 3π/2, the phase factor ei2δ0 =

−1, which makes the dot product to be identically zero. Plugging this result into
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Eq. (2.26) results in P(3)
i (3ω) = 0.

Generally, due to the small magnitude of the third harmonic nonlinear susceptibil-

ity, THG signal from bulk of sample tend to be very small. For example, χ(3) ∼ 10−14

m2/V 2 for majority of solutions and χ(3) ∼ 10−17 m2/V 2 for gases has been reported

[74]. Also, another interesting property for THG is that under focusing conditions,

due to the Gouy phase shift, in the homogenous material there will be no third har-

monic signal [66, 30], as destructive interference causes signal created before and after

the focus cancel out. However, as Barad and Tsang has shown, if we break the sym-

metry, e.g in the case of interfaces, significant amount of THG will be observed[15, 75].

SHG and THG under focusing conditions will be described in next section.

2.3 The Propagation Equation

In this section we derive the non-linear propagation equation for the slowly varying

envelope of an electric field. There will be three major assumptions made in the

derivation: The first assumption is propagation inside a homogenous medium of non-

interacting particles. The second assumption will be on the focussing condition of the

the beam. We will assume propagation under moderate focusing conditions, i.e the

spot size of the beam is always much larger than the wavelength of the field. Finally,

we will assume that the contribution of the backward propagation field is negligible,

i.e., slow varying approximation will be made [76].

Starting with the Maxwell’s Equations [77]:
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∇ · D(r, t) = ρ (2.29)

∇ ·B(r, t) = 0 (2.30)

∇×E(r, t) = −
∂B(r, t)

∂t
(2.31)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
(2.32)

(2.33)

where D(r, t) is the displacement field, ρ is the charge density, B(r, t) is the magnetic

induction, E(r, t) is the electric field, H(r, t)is the magnetic field, and J(r, t) is the

induced current density. By taking the curl of the Faraday’s law, Eq. (2.31),

∇×∇×E(r, t) = −∇×
∂B(r, t)

∂t
(2.34)

and assuming a nonmagnetic medium, and using Ampere’s Law (Eq. 2.32), the wave

equation becomes,

∇×∇×E(r, t) = −µ0

[

∂J(r, t)

∂t
+

∂2D(r, t)

∂t2

]

(2.35)

Where µ0 is the permeability. Next, by substituting for D(r, t) = εE(r, t)+P(r, t),

with ε0 ≡ 1/c2µ0 the permittivity of free space and P(r, t) the induced polarization,

∇×∇× E(r, t) +
1

c2

∂2E(r, t)

∂t2
= −µ0

[

∂J(r, t)

∂t
+

∂2P(r, t)

∂t2

]

(2.36)

This is the most general form of the wave equation in nonlinear optics. Usually,

we are interested in regions of space that contains no free charges (ρ = 0) and no free

current (J = 0). Then,
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∇×∇× E(r, t) +
1

c2

∂2E(r, t)

∂t2
= −µ0

∂2P(r, t)

∂t2
. (2.37)

Moreover, under certain conditions, we can make further simplifications. For

example, by using the identity from vector calculus, we can write the first term on

the left-hand side of Eq.(2.36) as ∇×∇ × E(r, t) = ∇ [∇ ·E(r, t)] −∇2E(r, t). For

homogeneous, isotropic material ∇ · E(r, t) vanishes identically. So,

∇2E(r, t) −
1

c2

∂2E(r, t)

∂t2
=

1

ε0c2

∂2P(r, t)

∂t2
(2.38)

It is often convenient to split P into its linear and nonlinear parts, as P = P(1) +

P(NL). Here P(1) is the part of the polarization that depends linearly on the electric

field. Then, Eq. (2.38) becomes,

∇2E(r, t) −
1

ε0c2

∂2D(1)(r, t)

∂t2
=

1

ε0c2

∂2P(NL)(r, t)

∂t2
(2.39)

where we have used D(1) = ε0E+P(1). In case of lossless and dispersionless medium,

we can express the relationship between D(1) and E in terms of real and frequency

independent dielectric tensor ε
(1). Moreover, assuming an isotropic medium we can

write ,

D(1)(t) = ε0ε
(1)E(t) (2.40)

where ε(1) = n2 is scalar quantity, which is dimensionless and has a different value

for each material. Hence, for an isotropic, dispersionless material, our wave equation

becomes,

−∇2E(r, t) +
ε(1)

c

∂2E(r, t)

∂t2
= −

1

ε0c2

∂2P(NL)(r, t)

∂t2
(2.41)
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2.3.1 Monochromatic Light

Although in nonlinear optics we are often concerned with interaction of short pulses

with the medium, it is a common practice to consider the bandwidth of a the pulse

to be small (with respect to the carrier frequency). Hence, we can assume our field

to be approximated with superposition of time harmonic plane waves oscillating at a

set of discrete frequencies ωn.

E(r, t) =
∑

n

En(r, t) (2.42)

P(r, t) =
∑

m

Pm(r, t) (2.43)

where the summation is performed over positive frequencies only. If we represent each

frequency component in terms of its complex amplitude as,

En(r, t) = En(r)e−iωnt + c.c, (2.44)

Pm(r, t) = Pm(r)e−iωmt + c.c, (2.45)

By inserting Eq. (2.43) into (2.41), we find,

−
∑

n

∇2En(r)e−iωnt +
ω2

nε
(1)
n

c

∑

n

En(r)e−iωnt = −
1

ε0c2

∑

m

P(NL)
m (r)e−iωmt. (2.46)

Evaluating the above, term by term, we find

∇2En(r) −
ω2

nε
(1)
n

c
En(r) =

ω2
m

ε0c2
P(NL)

m (r)e−i(ωm−ωn)t. (2.47)

For stationary, time-independent solutions, only ωm = ωn survive. Moreover, for
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ωm != ωn there will be no time-averaged power transfer from the incident field to the

induced polarization, and we have,

∇2En(r) −
ω2

nε
(1)
n

c
En(r) =

ω2
m

ε0c2
P(NL)

n (r) (2.48)

Next, we represent the electric field and the polarization in terms of their slowly

varying amplitudes, as

En(r) =
1

2

{

An(r)eiknz + c.c.
}

, (2.49)

Pn(r) =
1

2

{

pn(r)eik
′

nz + c.c
}

. (2.50)

where, An and pn are spatially varying complex quantities. Here the prime on the

polarization wave-vector emphasizes on possible wavevector mismatch between the

field and the induced polarization. Next, we substitute Eq. (2.49,2.50) into Eq. (2.48),

∇2An(r)eiknz −
ω2

nε
(1)
n

c
An(r)eiknz =

ω2
m

ε0c2
p(NL)

n (r)eik
′

nz (2.51)

Separating the laplacian in terms of the transverse and longitudinal part, ∇2 =

∇2
T + ∂2

∂z2 , where ∇2
T = ∂2

∂x2 + ∂2

∂y2 , we can rewrite Eq. (2.51) as,

∇2
TAn(r)e

iknz +
∂2

∂z2
An(z)eiknz −

ω2
nε

(1)
n

c
An(r)eiknz =

ω2
m

ε0c2
p(NL)

n (r)eik
′

nz (2.52)

After evaluating ∂2

∂z2 An(z)eiknz = ∂2An

∂z2 + 2ikn
∂An

∂z − k2
nAn, and using the slow

varying amplitude approximation, stating An(z) varies slow with respect to z,

∣

∣

∣

∣

∂2

∂z2
An(z)

∣

∣

∣

∣

2

<<

∣

∣

∣

∣

kn
∂An(z)

∂z

∣

∣

∣

∣

2

(2.53)
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,

and using the relationship kn = nωn

c with n2 = ε(1)n , and transforming back to

temporal domain we find

2ikn
∂An

∂z
+ ∇2

TAn = −
ω2

n

ε0c2
pne

i∆kz (2.54)

where ∆k = k
′

n − kn. Equation (2.54) describes propagation of each frequency com-

ponent of electromagnetic, under slow varying envelope approximation.

2.3.2 Second Harmonic and Third Harmonic Generation un-

der Focusing Conditions

Now, we will consider the generation of SHG and THG under focusing conditions

of Gaussian beams. Let us consider an intense monochromatic electric field incident

on a material inducing polarization inside the medium described by Eq. (2.2). The

induced polarization, in turn, will create a new field according to Eq. (2.54). For

instance, let us assume that an time-harmonic plane wave incident field,

Eω(r, t) =
1

2

{

A1(r)e
i(kωz−ωt) + c.c

}

(2.55)

induces a third harmonic polarization,

P(3)(r, t) =
1

2

{

p3(r)e
i(3kωz−3ωt) + c.c

}

(2.56)

where, p3(r) is given by Eq. (2.26). Then, Eq. (2.54) describes the propagation of

the third harmonic envelope of the field as,
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2ik3
∂A3

∂z
+ ∇2

T A3 = −
ω2

3

ε0c2
p3e

i∆kz (2.57)

= −
ω2

3

4ε20c2
χ(3)A3

1e
i∆kz

where in Eq. (2.58) the dependence on spatial coordinate is still implied. Here ∆k =

3kω−k3ω is the phase mismatch between the third harmonic and the fundamental field.

The subscripts 1 and 3 in Eq. (2.58) signifies the fundamental and third harmonic

frequency. Also, note that in writing A3
1 we have assumed a linear polarized incident

field.

In most practical cases, the incident field is a focused laser beam, with a Gaussian

spatial profile given by [31],

A1(r; z) =
A10

B1
exp

{

−
r2

w2
10B1

}

(2.58)

with

B1 = 1 +
2iz

w2
10k1

(2.59)

Here, A10 represent the amplitude of the Gaussian beam at the waist z = 0, with

a waist radius of w10. In the same way, the spatial profile of the THG beam can be

written as,

A3(r; z) =
A30

B1
exp

{

−
r2

w2
30B3

}

(2.60)

with

B3 = 1 +
2iz

w2
30k3

(2.61)
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In general, for any qth harmonic, if present, we can express the spatial variation

of the amplitude of the induced field by a Gaussian beam as,

Aq(r; z) =
Aq0

[

1 + i2z
w2

q0kq

] exp







−
(r2)

w2
q0

[

1 + i2z
w2

q0kq

]







(2.62)

=
Aq0

(1 + iζ)
exp

{

−
(r2)

w2
q0(1 + iζ)

}

Here, ζ = 2z/b is a dimensionless longitudinal coordinate defined in terms of the

confocal parameter, b = 2πw2
q0/λq = kqw2

q0, which is the measure of the longitudinal

extent of the focal region of the gaussian beam. Figure. A.1, illustrate this quantity.

The subscript q illustrate the order of harmonic of the initial gaussian beam.

Figure 2.2: Geometry of a Gaussian beam focused (a) inside a bulk material and (b)
on an interface of two material with different third order susceptibilities.

A description of the evolution of Aq(r; z) in the medium can be found by substi-

tution of Eq. (A.14) in Eq. (2.2) [31]. The details and the solution to Eq. (2.2) are

presented in Appendix A and will be summarized here.

As described in Appendix A, the solution to Eq. (2.2) for a focused Gaussian

beam inside medium with χ(q), is given by,
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Aq0(z) = iq
ω1χ(q)Aq

10

2nqc

∫ z

z0

ei∆kz′

[

1 + i2z
w2

10k1

]q−1dz′ (2.63)

or equivalently,

Aq0(z) = iq
ω1χ(q)Aq

10

2nqc
Jq(∆k; z0; z) (2.64)

where,

Jq(∆k; z0; z) = b

∫ z/b

z0/b

ei∆kbz′

(1 + i2z′)q−1
dz′ (2.65)

is the qth harmonic interaction length and z0 is the position of the entrance of the

medium and ∆k = qkω − kω. Also, z = 0 is the location of the waist of the beam,

c is the speed of light. The solution to Eq. (2.65), in the case of infinite, uniform

nonlinear medium can be calculated analytically through contour integration ( See

Appendix A ) and is given by,

Jq(∆k; z0; z) =











0 for ∆k < 0

πb
(q−2)!

(

∆kb
2

)q−2
e−∆kb/2 for ∆k > 0

(2.66)

Equation (2.66) tells us that the interaction length of the qth harmonic field, de-

pends on the focusing conditions (through b) and phase matching condition ( through

∆k ). Moreover, for any qth harmonic, the interaction length, and therefore far field

intensity, is null when ∆k ≤ 0, which is true for all material that possess normal

dispersion nqω > nω (Note that Eq. (2.66) does not hold for q = 2 (SHG), where

through phase matching will result in a nonzero interaction length ).

Figure 2.3 illustrates the Interaction length for SHG and THG for a specific focus-

ing condition ( NA = 1;λ = 1µm). As expected, for the SHG, maximum interaction

length value is achieved for perfect phase matching ∆k = 0. A more surprising result
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is that the interaction length for THG is only non-zero when ∆k > 0. This phe-

nomena has been explained to be a result of Gouy phase shift that the phase of the

fundamental field experiences under focusing conditions.

Figure 2.3: Interaction length for second and third harmonic versus phase matching.

However, as Barad and Tsang has shown, if we break the symmetry, e.g in the

case of interfaces, significant amount of THG will be observed [15, 75]. Under this

condition shown in Fig. A.1(b), a significant amount of third harmonic field will be

detected at the far field no matter what kind of phase matching conditions we might

have at hand.

Barad et.al took this idea and applied it to microscopy, and showed that THG of

interfaces can be used as a contrast mechanism in nonlinear microscopy [15]. They

also showed that the radiated third harmonic power at an interface is proportional to

the square of the difference between the between the third order susceptibilities, or
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P3 =
n3cε0

2

∫ ∞

0

∫ 2π

0

|A3(r; z)|2 dθdr

∝
δχ2

(1 + 4z2
w

b2 )
(2.67)

where δχ =
∣

∣

∣
χ(3)

2 − χ(3)
1

∣

∣

∣
is the difference between susceptibilities of the two

medium, and zw is the distance between the interface and the beam waist.

2.4 Green’s Function Formulation for Far-Field Non-

linear Signal

In section 2.3.2 we presented a two-dimensional model of qth harmonic generation

under focusing conditions of Gaussian beam onto a sample. In this section we will

introduce a three-dimensional calculation of nonlinear optical signal generation. In

particular, we will investigate the far-field calculation of SHG and THG in an isotropic

sample [78, 79, 80, 81].

Figure (2.4), illustrates a 3-D geometry for focusing and nonlinear radiation [80,

81]. It is assumed that the incident beam Einc
0 (r0, t) = Ainc

0 (r0)ei(ω0t−k0z) illuminating

the sample is linearly polarized along the x-axis, oscillating at frequency ω0, has

a Gaussian spatial profile Ainc
0 (r0), and propagating along the z-axis. Inside the

medium, the fundamental field drives a polarization density oscillating at second

and/or third-harmonic of the incident field given by

P(2)(r0) =
1

2
ε0χ

(2)(r0)A
inc
0 (r0)A

inc
0 (r0) (2.68)

for generation of second harmonic signal, and
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P(3)(r0) =
1

4
ε0χ

(3)
1111(r0)

[

Ainc
0 (r0) · Ainc

0 (r0)
]

Ainc
0 (r0) (2.69)

for third harmonic generation. The nonlinear optical susceptibilities χ(2)(r0) and

χ(3)(r0) are tensors, whose elements are dictated by the material of the object. Here

r0 = x0̂i + y0̂j + z0k̂ is the spatial coordinate in the object space. If we assume

that the nonlinear signal emerging from an object, at some distance r, is a coherent

superposition of nonlinear radiation of induced dipoles inside the sample, we can

calculate the nonlinear radiation Eobj(r) which contains encoded information on 3-D

spatial structure of the object, by using Green’s function formalism [78],

Eobj(x, y, z) = −µ0ω
2
q

∫ ∫ ∫

V

G0(r, r0) · P(q)(r0)dx0dy0dz0 (2.70)

where we assume z + z0, ωq = qω0, kq = ωqn/c. The dyadic Green’s function is given

by

G0(r, r0) =
eikqr

4πr
e−ikq(xx0/r+yy0/r+zz0/r)













(1 − x2/r2) −xy/r2 −xz/r2

−xy/r2 (1 − y2/r2) −yz/r2

−xz/r2 −xy/r2 (1 − z2/r2)













,

(2.71)

where r =
√

x2 + y2 + z2.
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Figure 2.4: Illustration of nonlinear object field generation, and its far-field detection,
with definitions of the parameters of the excitation and detection coordinate systems.
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Chapter 3

Nonlinear Microscopy

The evolution of optical microscopy has always been driven by the desire to improve

the resolution and search for new imaging contrast mechanisms to reveal previously

unobservable features. Although tremendous progress has been made in conventional

optical microscopy, notably confocal [8, 9], it has suffered from a low physical and

chemical specificity [10]. This motivated the development of techniques like two-

photon fluorescence, second harmonic generation (SHG), and third harmonic gen-

eration (THG) microscopy, and coherent anti-Stokes Ramon spectroscopy (CARS)

[11, 22, 82, 16, 15, 83, 84].

The evolution of contemporary nonlinear microscopy started by the pioneering

work of Denk and Webb [11], with their demonstration of two-photon excitation fluo-

rescent microscopy, a subset of multi-photon excitation microscopy. Through focusing

of subpicosecond lasers, they showed that by concentrating the laser field into a small

spot, using a microscope objective, the emitted fluorescent light would originate from

localized focal volume or voxel. The implication of this technique was tremendous,

including deeper tissue penetration and less photodamage [11, 22, 82]. Moreover,

they showed that by scanning the laser across the sample in (x, y, z) dimensions, 3-

dimensional images could be constructed.
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3.1 Nonlinear Laser Scanning Microscopy

The contrast in nonlinear optical microscopy arises from multiphoton interaction of

a laser with a sample. To understand how this is advantageous, consider the differ-

ence between single photon and two-photon excitation (TPE) microscopes. In single

photon fluorescence microscopy, the excitation field promotes an electron to an ex-

cited state by absorbing a photon with a certain probability which depends on the

intensity of the excitation focused beam. After the electron goes through some vi-

brational/rotational relaxation, it returns to the ground state some time later and

releases its energy by emitting a fluorescence photon. Usually, the excitation pro-

cess requires photons in the ultraviolet or blue/green spectral region. In TPE, the

incident field requires two photons with less photon energy, typically in the infrared

spectral range, to promote to the same electronic state. Therefore the probability

of two photon absorption is proportional to square of the excitation intensity. This

process, however, requires intense laser illumination which is achieved by focusing the

beam into a small spot, which limits the induced signal to a small volume. Hence the

name nonlinear laser scanning microscopy. The success of laser scanning two-photon

microscopy has become a laboratory standard and opened doors to many other non-

linear modality like SHG [13, 14], THG [15, 16], CARS [17, 18].

Due to several intrinsic advantages which arise as a result of having nonlinear

intensity dependence, nonlinear microscopy has become an important tool for the

imaging of biological tissues. Most biological tissues strongly scatter light, making

deep optical imaging impossible [85]. In contrast to single photon microscopy, non-

linear techniques enables the use of longer wavelengths, reducing the scattering in the

samples and extends the imaging depth from tens of microns to several hundred of
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microns [86].

The strong dependence of the excitation probability on the excitation intensity

causes signal in nonlinear imaging restricted to the focal volume. For instance, for

focused excitation field, the excitation probability outside the focal volume falls off

with z−2q, where z is the distance from the focal plane and q is the number of photons

absorbed [87], as a consequence provides excellent depth discrimination.

Moreover, this intensity dependence improves the spatial resolution, since the ef-

fective point-spread function is smaller. In conventional linear microscopic techniques

the signal response depends linearly on the input intensity, hence the illuminated sam-

ple volume contributes equally to the incident field, whether it is in or out-of-focus.

The use of a confocal pinhole suppresses the contributions from out-of-focus planes

permitting optical sectioning of the sample and improves the axial resolution [8].

Nonlinear optical microscopy applications, on the other hand, have inherent optical

sectioning capability. Even without the use of a confocal pinhole, these microscopic

techniques provide three-dimensional imaging capability [11].

The efficiency of nonlinear microscopy depends on physical and molecular prop-

erties explained in chapter 2, and on the spatial and temporal distribution of the

excitation light. Most nonlinear processes have a very low transition probabilities,

and strong intensities are needed. To generate sufficient signal, excitation light has to

be concentrated in both space and time, by utilizing high numerical aperture objec-

tive and use of ultra-short pulses receptively. For a given average power, laser pulses

of width τp at repetition rates fR can enhanced the signal by a factor of ( 1
τpfR

)(N−1)

compared to cw illumination, where N is the number of photons involved in the non-

linear process [10].

In this chapter, we will mostly concentrate on the class of, coherent, parametric

nonlinear optical processes. Parametric processes can always be described by a real

susceptibility [31]. This results in the absence of a net energy transfer to the specimen,
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hence lowering the probability of destroying the sample. In a coherent process, phase

and polarization during the nonlinear conversion are conserved. Harmonic generation

and stimulated Raman scattering are examples of parametric, coherent processes.

3.1.1 Resolution

The optical resolution is usually defined through the Rayleigh criterion, which states

that two point sources with equal intensity can be just resolved when the principle

intensity maximum of one coincides with the first minimum of the other [88]. This

is depicted in Fig 3.2. In signal processing, the response of the system to an input

is characterized by its impulse response. In a similar way, image formation in any

optical system is described by a point spread function (PSF ), that is the image of a

point [89]. Using PSF , the image of any object can be characterized by convolving

the object distribution with the PSF . The PSF of an imaging system depends on

whether the imaging is done with coherent or incoherent light. In a coherent imag-

ing, the relative phase between the signal from the entire sample vary in time in a

correlated way [89]. In scanning laser microscopy however, this does not hold, since

there is no phase relation between each imaged point–even with coherent nonlinear

treatments such as SHG or THG. Therefore the imaging is considered as incoherent.

The PSF depends on the wavelength and the numerical aperture NA. Assuming

an aberration-free system (most theoretical models in optical microscopy assume aber-

ration free systems) with a circular aperture (microscope objective have exclusively

circular apertures) and under paraxial approximations, the 3-D complex amplitude

PSF of a lens is given by the Hankel transform, [88, 89],

h(u, v) = 2

∫ 1

0

P (ρ)J0(vρ) exp(iuρ2/2)ρdρ (3.1)

Here, J0 is the zeroth-order Bessel function of the first kind, ρ is the radial coor-
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Figure 3.1: (a) Radial resolution, is the ability of resolving two points sources sepa-
rated by a distance ∆r, located on the axis perpendicular to the optical axis, and (b)
axial resolution, is the ability of resolving two points sources separated by a distance
∆z located on the optical axis

dinate at the pupil P , normalized to the pupil radius a, and u, v are normalized,

dimensionless optical coordinates,

v = r
2π

λ
sin(θ) (3.2)

u = z
8π

λ
sin(θ/2)2 (3.3)

with r =
√

x2 + y2 and z are the radial (in the x, y focal plane) and axial (the

distance between the focal point along the optical axis) coordinate, respectively, and

θ denoted the acceptance cone of light (angle that defines the numerical aperture
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NA = n sin(θ)). Here λ denoted the optical wavelength in the objective.

The IPSF of a scanning microscope is given by intensity point spread function or

intensity impulse function, |h(u, v)|2, and the image intensity of an incoherent object

Ii is,

Ii = |h(u, v)|2 ⊗ Io (3.4)

where Io(u, v) is the intensity transmittance of an object (i.e the intensity of the

fluorescence signal emitted in fluorescence imaging).

Axial IPSF can be calculated by setting r = 0 corresponding to v = 0,

IPSFz(u, 0) = |2
∫ 1

0

exp(iuρ2/2)ρdρ|2 = sinc2(
u

4π
) (3.5)

and the lateral IPSF is given by setting z = 0,

IPSFr(0, v) = |2
∫ 1

0

J0(ρv)ρdρ|2 = |
2J1(v)

v
|2 (3.6)

In the normalized optical coordinate (v, u) the first node in these lateral and axial

distributions is at v0 = 1.22π and u0 = 4π respectively. In the real units the first

nodes are found to be,

r0 =
0.61λ

NA
(3.7)

z0 =
2nλ

NA2
(3.8)

Equation (3.8) describes the optical resolution of a moderate numerical aperture

microscope objective, where paraxial approximation has been assumed.

The enhanced resolution has been shown [86] by considering a general spatial

gaussian distribution on the input beam with a waist size w0,
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I(r) = I0 exp

[

−
(

x

w0

)2
]

. (3.9)

Then it follows that for a N th order process we have,

IN(r) = IN
0 exp

[

−
(

N
x

w0

)2
]

(3.10)

IN(r) = IN
0 exp

[

−
(

x

wN

)2
]

where wN = w0/
√

N is the waist for the N th order process, which has reduced

with a factor of
√

N . Therefor, the effective point spread function is IPSF (r)(N) =

[IPSF (r)(1)]N , and we have an enhanced resolution by a factor of
√

N . For example,

for a second order process (SHG), the interaction area will decrease with a factor of

2 and for a third order process (THG), the interaction area decreases by a factor of

3.

Figure 3.2: Interaction volume: (a) Single-photon excitation, where the emission
probability depends on excitation intensity I(r) . (b) Two-photon excitation, where
the emission probability depends on the square of the excitation intensity I2(r)

For completeness,we should also mention that the resolution of the system also de-

pends on the intensity distribution in the back aperture of the objective P (ρ), the

pupil function. For uniform distribution illumination P (r) = 1. For gaussian distri-
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bution, the pupil function is given by exp(−(r/F )2), where F = Dbeam/DBA is the

fill factor, indicating how much of the input beam area fills the back aperture. Here

Dbeam is the 1/e2 intensity width and DBA the back-aperture diameter. Since the

radial intensity profile of a laser beam is Gaussian, an exact match to an aperture is

impossible. Therefore, certain compromise between resolution, which increases as the

back aperture of the objective is increasingly filled, and throughput, which is maximal

when the back aperture is under-filled [90]. For instance, when the back aperture of

the objective is completely filled, power transmission is 86%. A further reduction of

the beam size, increases the transmitted power while is broadens the focal volume.

3.1.2 Scattering in Living Tissues

In biological tissues, scattering and absorption (mostly due to water) of the funda-

mental light inside the tissue, can limit the deep tissue microscopy [85]. In most

biological samples, in the visible to near infrared regime, the probability of scatter-

ing inside of a tissue is much higher than absorption. The mean free path between

photon scattering events is on the order of 0.1 mm, whereas the mean absorption

length can extend to 10 − 100 mm [12]. The likelihood of scattering depends on re-

fractive index variation ∆n, object size a, and wavelength λ. Scattering of light by a

spherical particle of any size can be modeled by the Mie theory, which reduces to the

simpler Rayleigh theory if the spherical particle is much smaller than the wavelength

[12, 85, 10].

For isolated atoms and molecules, scattering is nearly isotropic and strongly wave-

length dependent and is ∝ λ−4. In nonlinear optical microscopy only non-scattering

photons that reach the focal volume (ballistic photon), contribute to signal. The

ballistic power follows a Lambert-Beer-like exponential decline, which limits optical

imaging depth z,
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Pball = P0e
−µsz (3.11)

where µs is the scattering coefficient, defined as the probability of photon scattering

in a medium per unit path length which has a representative value of 100cm−1 for

biological tissue [85], and P0 is the incident power. A table of scattering and absorp-

tion coefficient for different biological tissue can be found in [85].

Because of the quadratic or cubic dependence of SHG and THG respectively, the

collected signal declines as SSHG ∝ e−2µsz and STHG ∝ e−3µsz [12, 85, 10]. Therefore,

we need to exponentially increase laser power entering the surface (P0 ∝ eµsz) to

maintain the same ballistic intensity at the focus to increase the penetration depth

for imaging.

In many nonlinear microscopy experiments, the excitation occur in the near-

infrared wavelength range (700 − 1500 nm), whereas emission occurs in the visible

spectral range where most detection tools like CCD and photodiodes have been de-

veloped. It follows from the discussion above (scattering ∝ λ−4) one will see that at

near-infrared, light penetrates deeper into scattering tissue. For instance, for THG

microscopy using a laser with λex = 1500 nm, we get an emission at λem = 500 nm.

The calculation above shows that the scattering probability decreases by almost two

orders of magnitude by using the longer excitation wavelength. Moreover, optical

absorption in biological tissue is weak in the near-infrared spectral region.

With ultrashort lasers, it is very easy to create intensities required to induce

nonlinearities like SHG and THG inside the tissues. Even with a modest focusing

conditions, intensities up to 100GW/cm2 are achievable. Moreover, due to the short

interaction lengths J inside of the cells (J ≈ 1 − 6 um, depending on the focusing

conditions), no phase matching is required [91], as J is less than the coherence length.

For instance, we have observed significant amount of SHG in human cardiac muscle
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tissue (The Microscope Store, LLC) using a home-built Yb:KGW laser oscillator

operating around the wavelength 1026 nm, obtaining a 70 MHz train of pulses capable

of delivering 14 nJ of pulse energy. We use only 4 nJ of this energy to focus into 35 µm

1/e2 radius , corresponding to 300 MW/cm2 into the sample, which is well below a

typical damage threshold of biological samples which, varies between tissue types, but

has a typical value of ∼ 200 GW/cm2 [92, 93, 94, 95]. Under this focusing condition

we were able to take continuous SHG images for hours without observing any visual

damage on the sample. Figure 3.3 shows the white light (a) and SHG (b) signal from

these tissues. One can easily see how the nonlinearity in the sample generate a new

contrast.

Figure 3.3: Contrast mechanism: imaging of human cardiac muscle using (a) White
light microscopy. (b) SHG microscopy

3.1.3 Signal detection

The detection of the signal in nonlinear microscopy can be done with either a CCD

camera, photomultiplier tube (PMT), or a photodiode, depending on the wavelength

and the signal energy. Imaging detectors, like CCD cameras, are the easiest and most

common detection tool to use when no scanning on the sample is done (wide field

illumination). In scanning nonlinear microscopy though, imaging detectors are not
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necessary.

Large area PMT’s are the most common detectors in nonlinear microscopy. They

enable efficient detection of single photons. Another alternative to PMT’s are avalanche

photodiodes, which possess higher quantum efficiencies than PMTs. They possess,

however, very small active area [96].

Figure. 3.4 shows a typical nonlinear microscope setup. A laser beam from a mode-

locked laser gets scanned by a galvonometric scanner and focused by a high numerical

objective onto a sample which can be moved in x, y, z directions with a translational

stage. The nonlinear signal from the sample then gets filtered by a combination of

dichroic optics and/or bandpass filtering centered around the emission wavelength.

The signal then gets collected by a detector.

Figure 3.4: Typical microscope setup: The laser beam is scanned radially across
the sample (x, y) with a galvonometric scanner and axially suing translation stage. A
microscope objective focuses the beam on the sample and the emitted light is recorded
by a detector.
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3.2 Second Harmonic Microscopy

Second harmonic generation as a contrast mechanism in microscopy was first proposed

around 30 years ago [97, 98], and applied to biological samples in the 1980s [13, 14].

As explained in chapter 2, SHG describes the upconversion of an incident electromag-

netic wave, with a frequency ν, into a frequency 2ν, and is originated through the

second order susceptibility of the material. In biological samples, SHG requires spec-

imen with noncentrosymmetric structure. Just like with TPE, the second harmonic

signal produced in the sample dependents on the square of the incident field [22, 23],

which gives rise to its inherent optical sectioning. Since SHG is a coherent process,

the phase of the emitted signal with respect to the excited field is conserved. Hence,

it is predominantly radiated in the forward or backward direction, depending on the

size and shape of the specimen [99, 100, 101, 102], rather than isotropically.

Although TPE and SHG are both two photon processes, there are some dissimi-

larities between the two. For instance, the contrast in SHG microscopy from tissues

is produced purely from endogenous species, and no labeling is required. Moreover,

the SHG signal arises from induced polarizability rather than absorption which can

lead to photobleaching and phototoxicity.

The main advantage with SHG is, due to its contrast mechanism which is physi-

cal structure of the tissues. Biological materials that assemble into ordered noncen-

trosymmetric structures [13, 25] are known to allow SHG. Currently, SHG microscopy

has been applied to biological tissues like collagen, mitotic spindles, actomyosin com-

plexes, and microtubules (see the review by Campagnola and Loew [24]). For example,

information about the molecular structure of proteins can be easily extracted from

SHG imaging. SHG signals have well-defined polarizations, and thus SHG polar-

ization anisotropy can be used to determine the absolute orientation and degree of

organization of proteins in tissues [24, 25, 26, 27, 28].

The polarization dependence of SHG for collagen and myosin has been studied
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Figure 3.5: SHG scanning microscopy of starch. (a) 2-D images of a single starch
granule (b) 3-D.

extensively [19, 20, 21]. Briefly, for a well aligned molecules such as fibril collagen

and muscle myosin, one can approximate the susceptibility tensor to be cylindrically

and C∞ symmetric [20]. This reduces the number of independent susceptibilities

elements of χ(2) tensor to four elements [31, 13, 71, 20, 14]. The induced second order

polarization by a focused linearly polarized laser with frequency ω in the ith direction,

can be written as,

P (2)
i (2ω)i =

1

2
ε0
∑

j,k

χ(2)
ijkEj(ω)Ek(ω) (3.12)

For a z propagating y-polarized field, and assuming the filament is y-aligned, this

polarization and be decomposed into two components, P (2)
y (2ω) = 1

2ε0χyyyE2
y(ω) +

χyxxE2
x(ω) and P (2)

x (2ω) = χyxxEy(ω)Ex(ω), where Ex(ω) and Ey(ω) are the field

projections in the x and y directions. This induced polarization produces SHG which

can be written as,

Iy(φ) =
1

2
ε0ISHG[

χyyy

χyxx
cos(φ)2 + sinφ2]2 (3.13)

Ix(φ) =
1

2
ε0ISHG[sin(2φ)]2 (3.14)
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where φ is the angle of polarization with respect to the tendon, ISHG is the total

intensity measured with a polarizer in the y-direction. Equation (3.14) shows the

polarization dependence of SHG signal in biological tissues like collagen and mus-

cles. For instance, experimentally, the orientation of the muscle fibrils and molecular

symmetries can be determined by a polarizer/halfwaveplate combination [28, 20].

Figure 3.6 show the second harmonic signal collected of human cardiac muscle mea-

sured in our lab, using a low NA condenser. The theoretical data, Eq. (3.14), has

also been included for comparison purposes. As it has been reported [103], some

characteristics of the curve (e.g the absolute minimum) are affected by the age of

the sample and the origin of the sample. Our data here is taken from a fixed tissue

purchased from Microscope Store, LLC. The discrepancies between the theoretical

data and experimental data, possibly is due to the age of the sample.

Figure 3.6: Experiment (Blue) and theoretical (Red) data of SHG of a human cardiac
muscle versus polarization angle. The discrepancy is believed to be due to the age of
the sample.
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3.3 Third Harmonic Generation Microscopy

Third harmonic generation as a nonlinear optical microscopic contrast was introduced

by Barad et.al [15]. Soon after that, the first THG microscopy in living biological

specimens was demonstrated [16]. It was shown that THG imaging is especially suited

for 3-dimensional imaging of transparent specimens. During the past decade, THG

has been used to study variety of biological specimens, ranging from muscle fibers

[20] to live Zebrafish embryos [29].

Contrast mechanism in THG microscopy is different than SHG microscopy. Unlike

SHG, THG is present in all material no matter what symmetry it might possess.

Moreover, as explained in chapter 2, under focusing conditions, e.g in microscopy,

there is no or little THG generated in a homogenous material. Significant THG is

only generated when the symmetry along the optical axis is broken which occurs when

the incident beam is focused on an inhomogeneity or a material interface. This is the

fundamental contrast mechanism in THG microscopy. The generation of TH under

focusing conditions has been described in [30, 31, 15, 32, 33].

There are, however, some similarities between SHG and THG. As a nonlinear

coherent process, depending on the shape of the material, the THG is forward and

backward directed. Like SHG, the third harmonic is generated in the focal region

giving rise to excellent sectioning capability.

Figure 3.7 show THG images of different biological sample taken using a 37 MHz

train of 80 fs pulses with a center wavelength of 1550 nm Er:fiber oscillator.

As in nonlinear scanning microscopy one can construct 3-D images using SHG or

THG, a forth dimension can be added by combining the two modalities (or more)

to look at structural aspect. Figure. 3.8 show multimodal (SHG,THG, white light)

images of a human cornea and cell culture .
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Figure 3.7: THG from Biological samples: (a) Cell culture. (b) Zoomed in. (c) Onion.
(d) Cornea.
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Figure 3.8: Multi-modal imaging (White light, SHG, and THG): (a) Cornea. (b) Cell
culture
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Chapter 4

Resolution Enhancement in Third

Harmonic Microscopy through

Polarization Switching

4.1 Introduction

In optical microscopy, the polarization state of the focal field strongly influences

the images formed due to the impact of focal spot size [34], adjusting the relative

strength and phase of both transverse and longitudinal field components, and manip-

ulation of the interaction with the sample under study [35]. For instance,compared

to spatially-uniform polarization states, more compact focal spots are possible with

radially-polarized fields [34].

Full three-dimensional control over the polarization state of focal fields has been

demonstrated through mode-conversion and phase control with spatial light modu-

lators [104, 105, 106, 107, 108]. In anisotropic samples, precise manipulation of the

focal field polarization state distribution can be used to probe the anisotropy of sub-

wavelength particles interacting with the focal field [36].
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Due to the complexity of nonlinear optical tensors, coherent nonlinear micro-

scopies (CNM), including third harmonic generation (THG) [15, 16, 32], second har-

monic generation (SHG) [64], and coherent anti-Stokes Raman scattering (CARS)

[18] offer rich possibilities for new control over the imaging process. Recent numeri-

cal investigations on the implications of the focal field polarization THG microscopy

have been undertaken [109, 110], while other work has explored the selectivity of

specific focal field polarization components to elements of the SHG tensor in SHG

microscopy [79, 111, 99, 112], and high resolution sensitivity to chemical interfaces

has been demonstrated by focal field control in CARS microscopy [113].

In chapter 2 we explored some of the properties of SHG and THG. We saw that,

while SHG radiation is only emitted for media lacking inversion symmetry, THG is

a more universal process that occurs in all media regardless of symmetry. Further-

more, we saw that THG scattering is suppressed for a circularly-polarized field in

an isotropic medium [30]. In this chapter, we exploit the sensitivity of THG scat-

tering to the field polarization to enhance the spatial resolution in a THG nonlinear

microscope.

4.1.1 Setup

We demonstrate enhanced THG microscopy resolution by imaging a controlled, spatially-

inhomogeneous polarization state distribution, created with a spatial light modulator

(SLM), to the focal plane of a microscope objective. The SLM (Boulder Nonlinear

Systems, Lafayette, CO) has 1×12288 pixels with a 1.6 µm pixel pitch. The SLM only

perturbs p-polarized light so that we can create arbitrary elliptical polarizations by

mixing with an s polarization component whose phase is not perturbed by application

of voltage to the SLM pixels. The linear arrangement of pixels allows us to control

the spatial polarization in one dimension, leading to an intrinsic comparison between

standard and enhanced resolutions in a single image by comparing the orthogonal

50



direction exhibiting a spatially uniform polarization state.

Our experimental setup is shown in Fig. 4.9. A 37-MHz train of ultrashort pulses

with a center wavelength of 1550 nm is obtained from an Er:fiber laser system (Pre-

cision Photonics; Boulder, CO). The pulses with an average power of 120 mW, pass

through 480 mm of BK7 to temporally compress the pulses at the focus of the mi-

croscope. We characterized our pulses with SHG frequency resolved optical gating

(FROG) measurement, which measured a 84 fs pulses at the focus of the microscope

(see Fig. 4.1).

Figure 4.1: FROG traces of pulse a) before the compressor (BK7), b) before the
microscope objective, c) after the microscope objective.

The pre-chirped pulses are loosely focused on the reflective SLM with a f1 = 1000

mm lens. The beam is recollimated after reflection from the SLM with a second lens

f2 = 500 mm, placed one focal length before an xy-scanning galvanometer (Nutfield

Technology QS-10) that is imaged to the pupil plane of a Zeiss A-Plan 40× 0.65-

NA objective with a 1 : 1 telescope. The scanning galvanometers where driven by

x − y servo drivers, which where controlled by the analog-to-digital converter (Na-

tional Instruments Corporation USB-6251). The focusing lens f1 was chosen to use

a maximum amount of SLM pixel for shaping the beam, while the collimating lens,
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f2 was chosen to achieve a desired beam radius at the back aperture of the focusing

objective.

The forward-directed THG signal is collected with a photo-multiplier tube (PMT)

after passing through a 10 nm wide optical bandpass filter centered at 520 nm (Thor-

labs FB520 − 10). The signal is boosted with a low-noise current pre-amplifier (SRS

SR570) and recorded with the same analog-to-digital converter that controls the

galvos.

A THG image of a 100 nm diameter polystyrene bead (Microspheres-Nanospheres),

with a spatially-uniformly (linearly) polarized beam, is shown in Fig. 4.17(a). The

image shows a FWHM microscope resolution of 2 µm. The limited resolution of the

microscope system is due to the under-filled back aperture of the objective.

4.1.2 Laser-scanning microscope design

There are three main parts to the design and characterization of our laser-scanning

microscope, which will be outlined below: alignment of the microscope, SLM calibra-

tion and magnification characterization.

The most critical part of the design of laser-scanning microscope is the alignment

of the focusing objective. In our laser scanning microscope setup, the microscope

objective is tilted with use of a mirror holder and translated with a x− y translation

stage. The alignment steps of the objective is listed below:

• Align the beam using an alignment card. One should use the same alignment

card throughout the whole alignment procedure.

• Make sure that the beam is centered at back aperture of the objective. Using

the translation stage and mirror holder’s knob maximize the throughput of the
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beam power.

• Take the objective off and align the beam to a set target (alignment card), then

screw the objective in place and using the translation stage ONLY, translate

the objective until your beam hits the target.

• Place a pinhole in front of the objective (before the pupil plane), and maximize

the amount of light going through the pin hole. Then using the mirror knobs

ONLY make sure the back-reflected beam off the objective lens goes through

the pin hole.

• Repeat this procedure until satisfied.

• Be very patient, as the alignment of the objective is the most important, while

most tedious part of the scanning microscope alignment. You might need to

repeat this procedure everyday as the temperature fluctuation in the lab will

steer the mirrors and misalign your system.

Figure 4.2 show a THG image of a 12 µm pitch TEM gold mesh grid before and

after a good alignment procedure.

The manipulation of the spatial polarization of the beam requires locating the

exact position of the beam on the SLM, finding the polarization axis of the SLM, and

mapping of the applied voltage to phase.

The location of the beam on the SLM was found by writing and sweeping a sinu-

soidal phase grating on the SLM, while collecting the zeroth order diffraction with a

photo-diode. As the phase grating is being swept across the SLM, depending on the

diffracted energy, we can extract the pixels occupied by the beam. Figure 4.3 shows

the beam (1/e2) occupies about 550 pixels, corresponding to 340 um.

The polarization axis of the SLM was found by writing a sinusoidal phase grating

across the shaper and collecting the zeroth order diffraction, while changing half wave-

plate angle L1 before the SLM. Since, the SLM only shapes the p-polarized light, no
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Figure 4.2: THG images of a mesh grid (12 µm pitch), before and after objective
alignment procedure mentioned in the text.

change in the diffraction pattern would be noticed when the wave-plate angle corre-

spond to a s-polarized axis of the SLM, and maximum attenuation would be recorded

by the photo-diode, when the half wave plate angle corresponds to the p-polarized

axis of the SLM. Maximum and minimum half wave plate angles of 198o and 152o

were recorded. Moreover, the corresponding SLM polarization axis at the pupil plane

of the objective was found by maximizing the signal throughput of a polarizer P2

before the objective microscope. Maximum and minimum polarizer angles of 24o and

112o were recorded.

The mapping between the applied voltage on the SLM and corresponding phase

shift induced by the SLM was calibrated using spectral interferometry [114, 115]. In

this method, the beam goes through a calcite crystal which separates and introduces

a time delay between the two polarizations. As the beam is incident on the SLM,

we apply uniform voltages across the SLM which adds a constant phase to the p-

polarized component of the beam. Using spectral interferometry [115] the spectral

phase, corresponding to the applied phase to the SLM is, retrieved. Figure 4.4 (b)
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Figure 4.3: Beam profile of the beam on the SLM (Blue), Gaussian fit (Red). The
green step corresponds to the π/2 phase jump written on the SLM for enhanced
resolution experiment (see text).

illustrates the mapping between the applied voltage and its corresponding voltage.

Figure 4.4: SLM characteristics: a) Calibration through spectral interferometry (see
text).b) To ensure the bead under study does not affect the polarization at the focus,
we apply a constant voltage across the SLM, while monitoring the THG signal. We
repeat this procedure on a cover slip. Both nano-bead and the cover glass behave the
same and have the same response to the polarization at the focus.

The total demagnification at the focus was measured by displacing the beam on

the SLM by rotating a 6.35-mm thick window SW placed in the beam incident on the

SLM. For each window rotation, a beam profile similar to Fig. 4.3, and a THG image

of a bead, similar to Fig. 4.17(a) was acquired. Figure 4.5(a) show the translation of
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the beam profile on the SLM, and 4.5(b) shows the bead centroids (marked with ∗)

of the THG signal resulting from the translation. The transformation of the beam

from the SLM to the focus includes both a demagnification M and a rotation ρ,

since the x̂ axis in a scanned image does not align with the pixel axis of the SLM,

which was due to the translation axis of the galvanometer. The demagnification,

defined as the ratio between the net beam displacement on the image plane and the

SLM, is measured to be |M | = 130, in good agreement with a theoretical estimate

of |M | = f2/fobj = 500/4. The focal length of the objective is calculated by Lt/Mo,

where Lt = 160 is the tube length of a specific objective (Zeiss in our case) and

Mo = 40X is the indicated microscope objective magnification. From the direction

of motion in Fig. 4.5(b), the rotation angle is measured to be ρ = −16◦.

Figure 4.5: Demagnification. a) Beam displacement on the SLM, and b) beam move-
ment at the focus of the objective.

4.2 Proposed Method for Resolution Enhancement

The process of enhanced spatial resolution is pictured schematically in Fig. 4.6. In

this approach, the polarization state of the focal field is linearly-polarized at the beam

center and is switched to circularly-polarized at some radius rs. As described in more

detail below, we create the desired focal field spatial distribution of the polarization

by imaging an abrupt π/2 phase jump at the two edges of the focal field, created by
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Figure 4.6: Principle of spatial resolution enhancement. The superposition of a
spatially-uniform phase in the s polarization and a π/2-rad phase jump on the p
polarization switches the polarization state from linear in the center to circular at
some radius rs. This suppresses the THG signal at the edges, giving rise to enhanced
resolution.

a spatial light modulator, switching the spatial polarization at some radius rs from

circular to linear and back to circular again. The limited back aperture of the mi-

croscope objective filters out high spatial frequencies of the incident field and thus

smoothes the abrupt phase discontinuity. The actual spatial distribution of the po-

larization state is probed through a THG polarization tomography [116].

4.2.1 Spatial Polarization Shaping

We denote the spatial distribution of the field at the focus as,

E(xf , yf) = Ex0(xf , yf) {x̂ + R(xf , yf) exp[iδ(xf , yf)]ŷ} (4.1)

where (xf , yf) are the spatial coordinates of the focal field, and R(xf , yf) = Ey0(xf ,yf )
Ex0(xf ,yf )

and δ(xf , yf) = δx(xf , yf) − δy(xf , yf) are the relative amplitude and phase, respec-

tively, between the polarization components. A half wave plate inserted into the beam

incident on the SLM is rotated to provide equal amplitude between s and p polarized

light at the SLM. Application of a spatially varying phase along the y direction at

the SLM images to a one-dimensional spatially-varying phase δ(x, y) → δ(y) at the

microscope focus. Together, R(x, y) and δ(x, y) dictate the spatial variation of the

polarization state of the focal field spatial distribution.
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Figure 4.7: Simulation of spatial filtering caused by low numerical aperture of the
collecting lens. a) Beam profile and the applied π/2 phase jump on the SLM. b)
Spatial filtering of the spatial frequency. The numerical aperture of the collecting
lens, filters high spatial frequency content due to the abrupt phase jump and c)
smoothes the abrupt phase discontinuity.
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THG Medium

Phase Shifter
Input Beam

Figure 4.8: The SLM shapes an spatially uniform linear polarized beam so that
the edges of the beam are circularly polarized while the center of the beam is kept
linear. The THG signal from the medium is suppressed at regions of the beam that
is circularly polarized, while significant THG signal is observed at the center of the
beam where the polarization is kept linear.

The THG polarization density for an isotropic medium is given by P(3) = 1
4ε0χ

(3)
1111(E·

E)E. The polarization density is thus zero for a circularly-polarized field and reduces

the spatial region of THG scattering as sketched in Fig. 4.8. To enhance resolution,

a top-hat π/2 rad phase jump profile was applied to the p polarization at the SLM,

switching the spatial polarization at some radius rs as shown in Fig. 4.6. The cor-

responding applied voltage that would give a linear polarized light (maximum THG

signal), versus circular polarized light (minimum THG signal) was extracted from

data shown in Fig. 4.4. Furthermore, by adjusting the ration between the p and

s-polarized light, using half wave plate L2, fully quenched THG signal was obtained.

Also, the value of rs was extracted from the beam profile shown in Fig. 4.3.

The resulting nano-bead image is shown in Fig. 4.17(b). The image shows a res-

olution of 1µm corresponding an enhancement of ∼2× in the SLM axis direction

(vertical) as compared to the unshaped image.
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Figure 4.9: Experimental setup: The laser beam driven from the 1550 nm fiber os-
cillator is collimated and expanded, and compressed by double passing two blocks of
BK7 material. The elliptical polarized beam is then polarized (P1) and its polariza-
tion is rotated by its a half waveplate (L2). The beam is focused on the SLM and
re-collimated with f1 and f2 resp. A scanning galvanometer is imaged on the back
aperture of the objective by a 1 : 1 imaging telescope. Polarizer P2 is used for the
polarization tomography experiment, and a window plate SW scans the beam across
the SLM for demagnification characterization.

An essential test of the nanobead probe is that it exhibits an isotropic response

so that the polarization state can be unambiguously probed. Even with multiple

ultrasonicated dilution steps, many regions of microsphere sample deposition do not

exhibit isotropic optical properties. We found that a mixture of 0.1 mg of polystyrene

bead mixture (a single droplet) to 1 cup of water gives a good probability of finding

an isolated nanobead. It is a good practice to make a few samples at a time, since the

preparation of the sample requires the dilution dry out. To prepare our samples, we

made a dilution according to above. The dilution then was put on a ultrasonic device.

A droplet of the dilution was laid on a glass slide and was immediately covered by a

cover slip. The glass slide was put on a hot plate for fast evaporation of the water.

The faster the water evaporate, the less chance of cluster build up. Too much heat,

however, will deform the sample.
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To verify that the response is isotropic, the direction of a spatially homogeneous,

linearly polarized focal field is scanned through a full 2π angle with rotation of a

half wave plate inserted at the back aperture of the objective. An isotropic response

requires the THG scattering strength to be independent of the direction of the linearly

polarized field. Further validation of the isotropic response is obtained by testing

THG scattering suppression with a circularly polarized field. In tests with a circularly

polarized field, THG scattering collected from the nanobeads are reduced by a factor

of 100-to-500. These results are presented in Fig.4.10.

Figure 4.10: Isotropic response: The THG signal from an isotropic bead with linearly
polarized focal field: THG signal is a) suppressed with a circularly polarized field. c)
independent of the direction of the linearly polarized field.

4.3 THG Polarization Tomography of the Funda-

mental Field

In section 4.2 we exploited the polarization dependence of THG to enhance the spatial

resolution in scanning THG microscopy, by applying a circular polarized light at the

edges of the laser beam while having linear polarization in the middle of the beam
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[35]. In this section, we demonstrate spatial control and measurement of spatially

inhomogeneous polarization state focal fields for THG microscopy at the focus of an

objective. By locally probing the polarization state of the focal field through THG

emission in a laser–scanning THG microscope, we map out the polarization state that

generates THG radiation at the focal field. We demonstrate spatial modulation of

the polarization state in the focal plane.

To characterize the spatial polarization distribution of the focal field, we probed

the local polarization state in the focal field by profiling the THG scattering from

the focal field with the polystyrene nanobead (Corpuscular, Plain C-PS-0.10), with

a diameter d = 100 nm much less than the wavelength, d << λ. The small diam-

eter of the nanobead samples only a small spatially localized region of the focused

fundamental beam. A polarizer in the pupil plane, which can be set to an angle of

η with respect to a reference direction x̂, permits selection of a specific polarization

projection component direction in the focal plane provided that the microscope objec-

tive NA< 0.7. Recording THG images under various linear polarization projections

of the incident field, the inhomogeneous focal polarization state distribution can be

determined noniteratively through THG microscopy polarization tomography [116].

Before we develop the phase retrieval algorithm using THG signal, it would be

instructive to illustrate the method of phase retrieval using intensity measurement of

the fundamental electric field. This is shown in Fig. 4.11. Figure 4.11(a) illustrates

how the spatial features of an arbitrary polarized electrical field can be represented as

a vectorial sum of its x-polarized component and y-polarized component, along with

the phase difference between the two fields. Bearing this in mind, we ask ourself, how

can we retrieve the full spatial features of an electrical field, provided information

about its intensity is know. In another words, provided we can record the intensity

profile of an electric field, for example using an square law detector, how can we re-
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construct the electric field (since the phase information will be lost upon recording of

the intensity). Figure 4.11(b) illustrates a possible solution. In order to reconstruct

the field three pieces of information is needed, namely Ex(x, y), Ey(x, y), and the

phase difference δ(x, y) between the two. The first two quantities,Ex and Ey can be

retrieved by recording the intensity of the field while inserting an polarizer before the

detector at angles η = 0o and η = 90o respectively. In order to find the last piece of

information δ(x, y), we record the intensity profile while dialing the polarizer angle

at η != 0o, 90o, say η = 45o. Using these three measurement, one can calculate the

absolute value of the phase |δ(x, y)|, and therefore the complete spatial polarization

of the field (there will, however, be a sign ambiguity on the phase).

In next section we will use a similar method to retrieve the spatial phase of a fun-

damental electric field at the focus of an objective, by collecting the far-field THG

signal from a polystyrene microsphere.

4.3.1 Spatial Polarization Phase Retrieval

To probe the spatial polarization state profile of the focused fundamental field, we

prepare a sample of a polystyrene beads whose diameters are small compared to the

diameter of the focal spot, and place it in the laser-scanning THG microscope shown

in Fig. 4.9. The diameter of the microsphere is sufficiently small to sample only a

small spatially-localized region of the focused fundamental beam. In this limit, the

third harmonic polarization density is evaluated at the center of the nanosphere lo-

cated at xf , yf , and is given by P(3)(xf , yf) = 1
4ε0χ

(3)E2(xf , yf)E(xf , yf). Here the

x, y, z vector components of the focal field are E = (Ex, Ey, Ez) so that the factor

E2 = E · E = E2
x + E2

y + E2
z . The vector focal field is related to the incident field

through the the Richards–Wolf integral [117].

The far-field THG intensity signal generated by the microsphere is filtered by

63



Figure 4.11: Spatial electric field retrieval. a) An electric field can be decomposed
in terms of its x and y-polarization, while the phase difference between the two are
needed to completely characterized the field. b) There intensity measurement with a
polarizer at angles η = 0o and η = 90o and η != 0o, 90o, say η = 45o are needed to
fully recover the spatial features of an electric field.

a bandpass chromatic filter, and collected by a photo-multiplier tube (PMT). Fig-

ure 4.12 show the third order power dependence of the signal, with slope of ≈ 2.8.

The integrated signal S at the detector is given by,

S =

∫ Θmax

Θmin

∫ 2π

0

|ETHG(xf , yf)δ(xf , yf)|2 dΩ (4.2)

proportional to a sum over the third-harmonic polarization density vector compo-

nents. Here, Θ is the acceptance angle of the focusing objective, Ω is the solid angle.

The far field THG signal generated by an object O(r) can be represented by

Dyadic Green’s function integral [78, 81] given by,

ETHG = −µ0ω
2
3

exp [ik3R]

R

∫

V

O(r) exp

(

−ik3R · r
R

)

M · P(3)dr3 (4.3)
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Figure 4.12: Third order power dependence of the signal. the slope is measured to
be 2.8

where in spherical coordinate (unit vectors ordered [R̂, Θ̂, Φ̂]), M is given by,

M =













0 0 0

cosΘ cosΦ cosΘ sinΦ − sinΘ

− sin Φ cosΦ 0













(4.4)

For a small nanobead, however, the object can be considered as a delta function

O(r) = δ(r). Substituting this into Eq. 4.3, we find,

ETHG ≈ −µ0ω
2
3

exp [ik3R]

R













0

cosΘ cosΦP (3)
x − sinΘP (3)

z + cosΘ sinΦP (3)
y

cosΦP (3)
y − sin ΦP (3)

x













(4.5)

To find the the integrated signal at the detector, we evaluate Eq. (4.2), for Θmin = 0

and Θmax = π/2, and we find,
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S = π2
[

3|P (3)
x |2 + 3|P (3)

y |2 + 3|P (3)
z |2
]

/4 (4.6)

∝ |E2|2
[

3|Ex|2 + 3|Ey|2 + 2|Ez|2
]

/4 (4.7)

where E2 = E·E = E2
x+E2

y +E2
z . In Eq. (4.8), P (3)

x , P (3)
y , P (3)

z is the induced polar-

ization at the focus, by Ex, Ey, Ez respectively. In general, linearly polarized light, say

Einc
x incident on the focusing optics, induces a third order polarization density in the

focal volume in all polarization directions (P (3)
x , P (3)

y , P (3)
z ), due to scrambling of the

incident polarization state. However, for low numerical aperture (moderate focusing

conditions) this scrambling is negligible. Figures 4.13 and 4.14 illustrate this point.

In Fig.4.13 maximum values of three components of the field going in the vicinity of

the focus, for a low and high numerical apertures and a x-polarized incident field, are

shown. As illustrated, for both high and low numerical apertures (figure. 4.13(a) and

(b)), an x-polarized incident field will have all three x, y, and z-polarization compo-

nent present at the focus. However, for a low numerical aperture the magnitudes of

the y and z-polarized field are considerably lower. Figure 4.14 shows the ratio of the

maximum values of the focal field amplitudes |Ezmax|
|Exmax| , and |Eymax|

|Exmax| for a low, moderate,

and high numerical aperture. It can be seen that for a moderate NA = 0.6 value,

the z-polarized component of the field is almost an order of magnitude less than the

x-polarized component and the y-polarized component of the field is 2 orders of mag-

nitude smaller than the x-polarized component. This concludes that in Eq. (4.8), the

integrated THG signal for an incident x-polarized field can be approximated as,

S = π2
[

3|P (3)
x |2|2

]

/4

∝ |Ex|6 (4.8)
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Figure 4.13: Maximum values of three components of the field going in the vicinity
of the focus, for a) low and b) high numerical apertures.

Figure 4.14: Ratio of the maximum values of the focal field amplitudes a) |Ezmax|
|Exmax| ,

and b) |Eymax|
|Exmax| for a low, moderate, and high numerical aperture.

4.3.2 Theory

Let us assume that the spatially varying complex amplitude Ainc(xinc, yinc) of the

electric field Einc(xinc, yinc, z, t) = 1
2/
{

Ainc(xinc, yinc)ei(kz−ωt) + c.c
}

incident at the

objective can be written as,
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Ainc(xinc, yinc) =
{

x̂Ainc
x (xinc, yinc)e

iδx(xinc,yinc) + ŷAinc
y (xinc, yinc)e

iδy(xinc,yinc)
}

(4.9)

where δx(xinc, yinc) and δy(xinc, yinc) are the spatially varying phase of x̂ and ŷ-

polarization components, and Ainc
x (xinc, yinc) and Ainc

y (xinc, yinc) are the spatially

varying amplitudes of the x̂ and ŷ-polarization components. Defining δ(xinc, yinc) =

δy(xinc, yinc) − δx(xinc, yinc) the relative phase, and r(xinc, yinc) =
Ainc

y (xinc,yinc)

Ainc
x (xinc,yinc)

simpli-

fies Eq. (4.9) to,

Ainc(xinc, yinc) =
{

x̂ + ŷr(xinc, yinc)e
iδ(xinc ,yinc)

}

Ainc
x (xinc, yinc)e

iδx(xinc,yinc) (4.10)

After the field enters the polarizer located right before the objective, the projection

of the field along η̂̂η̂η with respect to x̂ is denoted by Ainc
η̂ = η̂̂η̂η{η̂̂η̂η ·Ainc} = η̂̂η̂ηAinc

η . Then,

A
inc
η̂ (x, y) = η̂̂η̂η

{

Ainc
x (xinc, yinc) cos(η) + r(xinc, yinc)A

inc
x (xinc, yinc) sin(η)eiδ(xinc,yinc)

}

eiδx(xinc,yinc)

(4.11)

In general the vector focal field is related to the incident field through the the

Richards–Wolf integral [117]. However, as show in section. 4.3.1, for a low to moder-

ate NA (NA≤ 0.7), the polarization of the fundamental focal field is approximately

identical to the paraxial input polarization. With this assumption, we can make the

transformation of Ainc
x (xinc, yinc)

Obj←→ Af
x(xf , yf) and Ainc

y (xinc, yinc)
Obj←→ Af

y(xf , yf).

Then, the field at the focus of the objective can be written as Af
η = ηηηAf

η , with

Af
η(xf , yf) =

{

Af
x(xf , yf) cos(η) + rf (xf , yf)A

f
x(xf , yf) sin(η)eiδ(xf ,yf )

}

eiδx(xf ,yf )

(4.12)
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where Af
x(xf , yf) and Af

y(xf , yf) are the spatially varying amplitude functions of the x̂

and ŷ-polarization components, δ(xf , yf) = δy(xf , yf)−δx(xf , yf) is the relative phase,

and rf(xf , yf) = Af
y(xf ,yf )

Af
x(xf ,yf )

is the relative amplitude at the focus of the objective.

As the focus field is being scanned across a small nano-bead whose diameter

d is much less than the wavelength, d << λ, the local third harmonic polarization

density P(3)(η, xf , yf) generated at each xf , yf point can be written as P(3)(η, xf , yf) =

1
4ε0χ

(3)
1111

[

Af
η(xf , yf) · Af

η(xf , yf)
]

Af
η(xf , yf). The integrated far field third harmonic

field can be found through Eq. 4.2 to be proportional to,

S(η; xf , yf) ∝
∣

∣Af
η(xf , yf)

∣

∣

6
(4.13)

Equation 4.13 tells us, the recorded THG signal by the PMT, emitted from each

local xf , yf point at the focal spot, for each polarization angle η, is the sixth power

of the absolute value of the complex ampliude Af
η(xf , yf).

Bearing in mind that the goal here, is to retrieve the fundamental field at the

focus,

Af(xf , yf) =
{

x̂Af
x(xf , yf) + ŷrf(xf , yf)A

f
x(xf , yf)e

iδ(xf ,yf )
}

eiδx(xf ,yf ) (4.14)

there are three independent unknown functions to be found, namely, Af
x(xf , yf),

rf(xf , yf), and δ(xf , yf). However, through Eq. (4.13) and Eq. (4.12), and three

independent polarization measurements η = 0o, 90o and an arbitrary third angle

η != 0, 90o we can noniteratively find these quantities.

When the polarization angel η = 0o, the collected third harmonic signal with the

PMT will be, S(0, xf , yf) =
{

Af
x(xf , yf)

}6
. Taking the sixth root of the collected THG
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signal S(0, xf , yf), then, will give us Af
x(xf , yf), which is the x̂-polarized component

of the focal field. In the same manner, the collection of the THG signal for η = 90o,

S(90, xf , yf) will reveal the ŷ-polarized component of the focal field, and the relative

amplitude rf(xf , yf) can be found to be,

r(xf , yf) ≡ |Af
x(xf , yf)|/|Af

y(xf , yf)| = 6

√

SY (xf , yf)/SX(xf , yf) (4.15)

In order to find the relative phase δ(xf , yf), we have to compute the recorded

THG signal Eq. (4.13). After some algebra, and using Mathematica we find,

S(η) = |Af
x(xf , yf)|6

{

1

2

[

(cos(η) sin(η)r)3
]

cos(3δ) (4.16)

+
3

2

[

cos(η)2 sin(η)4r4 + cos(η)4 sin(η)2r2
]

cos(2δ)

+
1

2

[

(3 cos(η) sin(η)r)3 + 3 cos(η)5 sin(η)r + 3 sin(η)5 cos(η)r5
]

cos(δ)

+ cos(η)6 + r6 sin(η) + 9
[

cos(η)4 sin(η)2r4 + cos(η)2 sin(η)4r4
]

}

Solving for δ(xf , yf), we find three solutions,

cos(δ) =























(−1+2a2−r2+(−1+r2) cos(2η)) csc(2η)
2r

(−1+r2) cot(2η)−(1+(1+i
√

3)a2+r2) csc(2η)
2r

(−1+i(i+
√

3)a2−r2+(−1+r2) cos(2η)) csc(2η)
2r

(4.17)

where a(xf , yf) ≡ 6
√

Sη(xf , yf)/SX(xf , yf). Out of the tree solutions found in Eq. 4.17,

only one is found to be real, that is,

cos(δ) =
−1 + 2a2 − r2 + (−1 + r2) cos 2η

2r
csc 2η (4.18)

Thus, the polarization state is determined non-iteratively via three scanned THG
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Figure 4.15: (a) Spatially uniform phase across the p-polarized field component of the
laser beam. Dashed black lines correspond to the phase written on the SLM while the
red lines are the retrieved phase. The green line represent the measured line-out of
the third harmonic image of the bead and the black dotted line represents the line-out
of the beam on the SLM, demagnified by the demagnification factor. (b) Retrieved
vs. applied phase and corresponding signal to noise ratio (S/N), *.

images, measured with different orientations of the analyzing polarizer in the pupil

plane. We validated numerically, that Eq. (4.18) gives a correct answer.

4.3.3 Analysis of experimental results

Figure 4.15 shows phases retrieved for uniform phase shifts of the p-polarization, i.e.,

uniform polarization states E(xf , yf) across the beam. Three representative phase

retrievals, with δSLM = 0.42π, 0.68π, 0.92π, are shown in Fig. 4.15(a), where we have

also plotted S(xf , yf), the retrieved bead image cross-section (thin line), compared

to the demagnified beam profile measured on the SLM (black dots). The retrieved

phases are shown in Fig. 4.15(b) over δSLM = 0.4π–0.9π. We estimate the error in

the retrieved phase to be ±π/30 for the relative phases of less than 0.8π. The error

increases as the phase approaches more linear polarized beam. We attribute the

loss of fidelity to the lower signal levels, and thus decreased signal to noise (S/N)

ratio, in the source image, also shown in Fig. 4.15(b). For the data in Fig. 4.15, the

polarization projection angle η was taken orthogonal to the linear polarization at δSLM,

resulting in lower intensity THG images. We emphasize that linear polarizations yield
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Figure 4.16: (a) Ramp and quadratic phase: Applied (dashed) and retrieved (thick)
phase, along with a line-out of the third harmonic image of the bead (thin). The
line-outs are taken parallel to the imaged SLM axis.

phase retrievals with the same fidelity as that for circular polarization by measuring

projections at suitable angles η, more parallel to the major axis of the polarization

ellipse. For polarization states up to δSLM ≤ 0.8π, the retrieved phase is in excellent

agreement with the phase imposed by the SLM, and a linear regression fit yields a

correlation parameter of R2 = 0.96, confirming a good agreement between the applied

and retrieved phase.

Spatially-varying polarization states are shown in Fig. 4.16. Since the linear SLM

shapes only along one axis, we show a line-out parallel to the SLM axis transformed

to the focus. To compare the retrieved and programmed relative phases, we numeri-

cally propagate the pixelated phase and beam profile on the SLM through the optical

system. Diffraction from the pixelated SLM phase and spatial frequency filtering

from the finite NA of the optics in the system is accounted for by the numerical

propagation. The reference phase obtained with this approach is shown as this solid

thin lines in Fig. 4.16. In Fig. 4.16(a), we show two polarization states that vary

linearly with the x coordinate. The slopes are dδ/dx = {+60,−40}mrad/µm. Over

the spatial extent of the beam, our algorithm accurately retrieves both the absolute

value of δ, as well as its slope. Figure 4.16(b) shows results for two polarization

states with a quadratic spatial dependence, where d2δ/dx2 = {+25,−46}mrad/µm2.

In Fig. 4.16(b), we find that the curvature of the quadratic phase applied to the p-
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polarization is accurately retrieved.

The applied and retrieved phase profiles for enhanced resolution experiment are

shown in Fig. 4.18(a,b), respectively. At edges of the beam, the phase difference

is measured to be δ = π/2, while at the center of the beam the relative phase is

0.9π. Measurements of the spatial mode of the p and s components independently

at the focal plane of the microscope yield images indistinguishable from that shown

in Fig. 4.17(a). Thus, the relative field strength across the focal plane is maintained

at unity, i.e., R(x, y) ≈ 1, and the δ = π/2 phase difference measured at the focal

spot edges corresponds to circularly polarized light whereas the relative phase of 0.9π

at the beam center reveals the beam is nearly linear, but still retains a slight ellipticity.
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Figure 4.17: Scanning THG microscopy images of 100 nm diameter polystyrene beads,
with (a) a uniform linear polarization state and (b) a π/2 phase jump on the p
polarization component.

To validate that the enhanced spatial resolution beam shown in Fig. 4.18(b) orig-

inates from the spatially inhomogeneous polarization state distribution, we recon-

structed the enhanced spatial resolution focal plane THG scattering by combining

the measured focal spot with a spatially uniform linear polarization and the phase
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difference obtained from the THG tomography algorithm. The calculated THG scat-

tering signal spatial distribution using |P(3)(x, y)|2 is shown in Fig. 4.18(c), and shows

excellent agreement with the resolution enhancement image shown in Fig. 4.17(b).

This result validates the principle of operation of THG scattering suppression in the

wings of the spatial mode of a microscope focal spot through a spatially-varying

distribution of polarization states.
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Figure 4.18: (a) Phase applied to the SLM p polarization, relative to the beam
intensity distribution. (b) Retrieved phase using tomographic phase retrieval. (c)
Reconstructed THG image distribution (see text).

In Fig. 4.17(b), a spatial resolution enhancement of a factor of 2 is attained. We

show in Fig. 4.19(a) scan of the transverse THG resolution enhancement as width of

the “top-hat” phase profile applied at the SLM is varied over the size of the beam.

The reduction in the transverse resolution is plotted as a function of the fractional

radius of the polarization switch radius, rs/w, where w describes the spatial FWHM

of the beam incident on the reflective SLM.

Since the resolution enhancement is achieved by suppressing the THG scatter-

ing via circular polarization, one expects that the total collected THG energy will

decrease as the switch radius rs decreases. The spatially integrated PMT signal is

plotted in Fig. 4.19(b) to show the change in collected energy. As expected, as rs → 0,
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the collected THG energy also vanishes.
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Figure 4.19: Enhanced resolution is shown as a function of polarization switched
radius rs/w. Also, corresponding decrease in the collected THG energy signal is
shown.

Although the THG from circular polarized light is not completely suppressed in

anisotropic material, the ratio between the circular to linear polarized light could be

quit small for some material. For instance, for a cubic symmetry Si crystal with (100)

orientation, the ratio THGlin

THGcirc
= 1

4 |σ|
2, where for λ ≈ 1 µm sigma has a value of 0.2

has been demonstrated [118]. This gives a ratio of THGlin

THGcirc
= 100.

4.4 Summary

In summary, we have demonstrated a method for improved transverse spatial resolu-

tion in THG microscopy. This new approach capitalizes on the polarization depen-

dence of THG scattering. In particular, THG scattering is identically suppressed in

isotropic media for an incident circularly-polarized field. The technique is demon-

strated by imaging an spatially-inhomogeneous polarization state distribution pro-

duced by a reflective SLM into the focal plane of a scanning THG microscope. A

transverse spatial resolution of up to 2 times enhancement is demonstrated. We

are investigating the theoretical limitations of polarization switched THG resolution

enhancement. Improved spatial resolution of this technique may prove valuable in mi-

croscopy of nano-scale objects. Many anisotropic structures provide sufficient contrast
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between THG scattering with linear and circularly polarized to apply this technique.

Moreover, deterministic control of the focal field polarization state distribution may

provide a route to probing the anisotropic nonlinear response of nano-scale objects.

Use of a 2D SLM will enable resolution enhancement over the full extent of the beam.

Moreover, we introduced a new technique based on coherent third harmonic gener-

ation microscopy, to characterize the spatially-varying polarization state distribution

at the focal field in a nonlinear scanning laser microscope. We developed and demon-

strated a non-iterative, in-situ phase retrieval algorithm, and measured polarization

projection of THG images of a polystyrene bead. Spatially inhomogeneous polariza-

tion states were constructed by imaging an SLM to the focal plane of the microscope

objective. We determined the spatially-varying polarization states by locally probing

the field through THG generated by an isotropic microsphere with a diameter much

smaller than the focal field. The tomography technique can be used to probe the

focal field polarization state for a wide range of microscopy setups, and is applicable

for obtaining polarization states and anisotropic responses from many types of linear

and nonlinear optical microscopy.
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Chapter 5

Holography

5.1 Introduction

In this chapter, I will discuss an alternative to time consuming laser-scanning mi-

croscopy method for 3-D nonlinear imaging, called nonlinear holography [119]. As

described in chapter 3, to date, imaging in nonlinear microscopy, like SHG and THG

microscopy, has largely been restricted to laser-scanning microscopy due to the rel-

atively high peak intensity required for signal generation. While nonlinear scanning

microscopy is a valuable and powerful tool, it is inherently limited by low image

acquisition rates. The standard implementation of this technique requires a tightly

focused fundamental pulse to be mechanically scanned through each volume element

in a 3-D volume (voxel), where images are assembled by serially collecting a nonlinear

signal from each voxel. The refresh rate of image acquisition for nonlinear microscopy

often fails to capture dynamics of a process under study and presents a significant

barrier for application of nonlinear microscopy to many areas [42, 43, 37, 41, 40, 38].

By contrast, a hologram is capable of storing 3-D optical field information in a

2-D image. Holography was first suggested by Gabor [1] though his work on electron

microscopy. He suggested a two step process of recording of the interference pattern
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of the scattered wave from an object, called the object wave, and a known reference

wave on a photographic film, followed by reconstruction of the object field (phase and

amplitude) by re-illuminating the recording interference pattern by an optical replica

of the reference wave. The recorded interference pattern, the hologram, he showed

would contain information about the 2-D object field.

Figure 5.1: Gabor’s in-line configuration for holographic recording a) The interfer-
ence pattern between the incident reference plane wave is recorded by a recording
medium. Image reconstruction b), is accomplished by illuminating the hologram by
the reconstruction beam, identical to the incident reference beam used for creating
the hologram. The image of the object will appear where the object was located
during the recording process. A conjugate image (twin-image) will also appear on
the other side (the conjugate plane) of the recorded hologram, in line with the real
image object.

In the experimental setup suggested by Gabor, shown in Fig. 5.1, both the object

wave and the reference wave would be propagated along the optical axis and recorded

on a recording medium normal to the optical axis. This so called in-line, or on-axis

setup, suffered from unwanted component, namely twin image, which obscured both

phase and the amplitude of the reconstructed images. It wasn’t until 1960’s when

E. N. Leith and J. Upatnieks [3, 2] made an improvement to Gabor’s technique by

introducing an off-axis holography that overcame the twin image problem. In the

developed off-axis reference technique, the source of illumination for both object and
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reference is highly coherent cw laser. Moreover, reference wave was incident at an

angle with respect to the object wave. As a result, when the hologram was illumi-

nated with the original reference beam, the reconstructed images (twin images) were

separated from each other. The angle between the reference and the object wave

determined the degree of this separation, and the coherence of the beams ensured

good interference patter. Figure 5.3 illustrates this technique.

This early work predated digital cameras and required acquisition by photographic

film. Recording the holographic interferograms with a CCD camera has opened a vast

field of digital holography, leading to significant improvements in speed of hologram

processing. Using digital holograms, 3D microscopy images can be computed numer-

ically from a single image capture [4, 5, 6, 7]. In these techniques, a digital hologram

is recorded by interference with a known reference wave, which allows the complex

electric field to be determined at the CCD camera. The complex field can be numer-

ically back-propagated to the sample region to obtain 3D image information [89].

Figure 5.2: In off-axis nonlinear holography the sample is illuminated by a funda-
mental short pulse. The residual fundamental beam will be filtered by a bandpass
chromatic filter, while the second harmonic emerging from the sample will interfere
with a second harmonic reference beam. The interference pattern will be recorded by
a EMCCD camera.
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The principle of nonlinear holography introduced in this thesis is similar to its

developed linear counterpart [4, 5, 6, 7]. In nonlinear holography, however, the inter-

ference pattern is formed by the nonlinear signal from the sample and a SHG reference

wave, derived from the same laser source, illustrated in Fig. 5.2. In this chapter I will

discuss the fundamental principles of linear holography which will later on be applied

to label-free nonlinear holography of biological specimens.

Figure 5.3: Off-axis holography setup: recording a) the interference patter of the
object beam and a reference beam incident on the photographic plate with a an
angle θ with respect to the object beam. In reconstruction b) of the object beam,
the hologram is illuminated with the same reference beam. In off-axis holography,
however, the phase conjugated object image is separated from the real image with an
angle θ.

5.2 Digital Recording in Off-Axis Holography

In off axis holography a monochromatic reference wave Eref(x, y) and the wave from

the object Eobj(x, y) forms an interference pattern recorded by a CCD. The resulting

hologram is electronically recorded and stored. The object is in general a three

dimensional body, located at an average distance zobj from the CCD. The recorded

interference intensity IH(x, y) can be described as,
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IH(x, y) = 1
2ncε0 |Eref(x, y) + Eobj(x, y)|2

= 1
2ncε0

[

Eref(x, y) ·E∗
ref(x, y) + Eobj(x, y) · E∗

obj(x, y)

+ E∗
ref(x, y) · Eobj(x, y) + Eref(x, y) · E∗

obj(x, y)
]

. (5.1)

The first two terms are the intensities of the reference and the object waves,

and the last two terms are the real and the virtual images, respectively [89]. Here,

(x, y) are the transverse coordinates in the plane where the hologram is recorded. The

linear polarization of the reference beam selects co-polarized object beam components

to form interference. Off-axis holography enables complete extraction of the complex

field of the object beam, provided that the spatial carrier frequency of the interference

fringes is sufficiently high. In digital holography, a two-dimensional Fourier transform

of the hologram IH is used to separate the real and virtual images from the static

terms in the transformed space (kx, ky). The angle of interference between the object

and reference waves is chosen to provide a sufficiently high carrier spatial frequency

to prevent aliasing of these three terms.

Figure 5.4: In frequency domain, the real and virtual images will be separated from
the DC term (intensity of the reference and the object waves in the frequency domain),
provided that the spatial carrier frequency of the interference pattern (which depends
on the angle between the incident reference beam with respect to the object wave) is
sufficiently high with respect to the bandwidth (B) of the object wave
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5.2.1 Obtaining 3-D Images from 2-D Data

The simplest form of a hologram is a hologram of a single point-source, which produces

a series of concentric rings, identical to Fresnel zone plate lens (FZP) [120]. For

instance, if we assume our reference field is a plane wave with amplitude a, the the

recorded hologram of a point source at a distance z0 from the recording medium can

be calculated to be [89],

I ∝
∣

∣

∣

∣

a +
ik0

2πz0
exp

[

ik0

2πz0
(x2 + y2)

]∣

∣

∣

∣

2

= a2 +

(

k0

2πz0

)2

+
k0

πz0
sin(

k0

2z0
(x2 + y2)) (5.2)

As any object can be considered to be composed of many point sources, it follows

that the hologram of an object can be understood as the superposition of many FZP.

Moreover, quality of the images form by a hologram depends on the property of the

hologram constructed. For instance, the resolution of Gabor’s hologram, depends on

the wavelength and the coherence of the illuminating light, along with the NA = D
f

of the recording hologram, where D = 2rN is the diameter, and f ≈ DδrN

λ is the focal

length of the FZP. Here, rN is the radius of the outermost zone of the FZP with

width δrN . (The resolution of the recording media also effect the resolution, and will

be discussed in section 5.2.3).

Three-dimensional imaging capability of a hologram can be considered by investi-

gating the phase of the recorded Fresnel zone in Eq. (5.2). The spatial rate of change

of the phase of Eq. (5.2), in x-direction, is the local fringe frequency flocal = x
λz0

.

The further away the point source lies from the recording medium, for a given λ and

a fixed point on the hologram, the higher the local frequency will be. Therefore,

the depth information is encoded within the phase, or the local fringe frequency of

the FZP. Furthermore, if we consider two points sources along the optical axis, the
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recorded hologram will be the superposition of two FZP’s with different focal length,

and local fringe frequency, and once again the depth information is encoded in phase

of the recorded FZP. Figure 5.5 showss the hologram and the reconstruction of two

point sources, located at z1 and z2 from the recording medium. Figure 5.5(a) show

the recorded hologram, and Fig. 5.5(b) the reconstruction of the point sources using

the numerical reconstruction algorithm explained in next section.

Figure 5.5: Off-axis hologram a) of two point sources separated in the direction of the
optical axis and laterally. The hologram of the two point sources are the superposition
of two Fresnel zones with focal lengths f1 and f2. In the reconstruction, b) the two
points sources will appear at an average distance z1 = f1 and z2 = f2.

5.2.2 Numerical Reconstruction of the Object Field

In digital holography, numerical reconstruction of the field requires isolation of the

complex object field, followed by back propagation through the object space to re-

cover the three dimensional object distribution. The object field recorded at the

CCD is obtained by filtering the real image sideband of the numerically 2D Fourier

transformed digital hologram. An inverse 2D transform of this sideband yields the

quantity E∗
ref(x, y) · Eobj(x, y). The object field is obtained by multiplying by the

conjugate of plane wave reference field, whose intensity is independently measured

for each acquired hologram. Once the object field Eobj(x, y) has been retrieved, it will
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be propagated a distance zobj to retrieve the phase and the intensity of the object.

The numerical propagation of the object field from CCD plane through the object

plane can be performed based on Rayleigh-Sommerfeld diffraction formula, which is

computationally very expensive. There are, however, many efficient numerical meth-

ods available[121, 122, 4]. We use a angular spectrum method to yield the field at a

propagation distance z [89].

In angular spectrum method one assumes that the field can be written in terms

of superposition of many monochromatic plane waves with spatial frequencies kx and

ky. Then each plane way will be propagated through transfer function of propagation

through free space exp [ikzz], where k2
z = 1− k2

x − k2
y =
(

2π
λ

)2
. After the propagation

is done, the field will be recovered by superposition of all plane ways.

Numerical propagation using angular spectrum method, start by decomposing the

object field by its angular spectrum,

A(kx, ky, z = 0) =

∫ ∞

−∞

∫ ∞

−∞
Eobj(x, y, z = 0) exp [−i(kxx + kyy)]dxdy (5.3)

where A(kx, ky, z = 0) is the angular spectrum of the object field at the recording

medium where the hologram has been recorded (hologram plane), and kx = 2πfx and

ky = 2πfy are the spatial frequencies. Each plane wave, thereafter, will be propagated

through space using the free space propagation transfer function,

H(kx, ky) = exp [ikzz] (5.4)

= exp
[

i
√

k2 − k2
x − k2

yz
]

= exp



i

√

(

2π

λ

)2

− k2
x − k2

yz





(5.5)
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The reconstructed image at distance z can be found by,

E(x, y, z) =

∫

∞

−∞

∫

∞

−∞

Aobj(kx, ky, z = 0) exp



i

√

(

2π

λ

)2

− k2
x − k2

yz



 exp [i(kxx + kyy)] dkxdky

(5.6)

5.2.3 Resolution in Digital Holographic Microscopy

In off-axis digital holography the resolution of the reconstructed image depends on

the how well the interference pattern between the reference wave and the object field

is spatially resolved. The maximum spatial frequencies kx (considering one dimension

only) to be resolved is determined by the wavelength, and the maximum angle θmax

between the reference and object field and is given by [89],

kx =
2sin( θmax

2 )

λ
. (5.7)

Moreover, Shannon’s sampling criterion requires each interference fringe to be sam-

pled by at least two CCD pixel to resolve the fringe spatial frequency, that is kx = 1
2∆x ,

where ∆x is the pixel pitch. Therefore, the maximum spatial frequency recorded by

the CCD is limited by the pixel pitch ∆x, and therefore limiting the radial resolution

rx = 0.61 λ
sin(θ) ≈ 1

kx
≈ 2∆x. For instance for a CCD camera with ∆x = 16 µm,

the smallest object that can be resolved is about 32 µm, well above the Rayleigh

resolution.

One way to get around this problem is to magnify the holographic image by

using a high NA microscope objective.This is the main goal of digital holographic mi-

croscopy. By inserting an objective microscope between the object and the hologram

one achieves a reduction of the spatial frequency component kx, ky by the magnifica-

tion factor. This idea is illustrated in Fig. 5.6. In holographic microscopy, the object

wave is collected by a high NA objective and imaged at a distance zobj from the
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CCD. After the recording of the hologram with CCD and isolating the object wave

described in section 5.2, it will be propagated a distance zobj to the image plane, to

retrieve the magnified object intensity and phase. The original size of the object sam-

ple can be achieve by normalizing the image coordinates by the magnification factor.

The magnification of the imaging system in the holographic setup can be modified

to match the sampling capacity of the CCD camera, to reach the diffraction limited

resolution.

Figure 5.6: By inserting an objective microscope between the object and the hologram
one achieves a reduction of the spatial frequency component kx, ky by the magnifica-
tion factor. (Only kx is shown here)

5.3 Summary

In summary, we saw 3-D images of an object can be achieved by recording a two-

dimensional interference pattern between a reference wave and object wave. In bi-

ological nonlinear imaging where the traditional method has largely been restricted

to low image acquisition rates by using laser-scanning microscopy, nonlinear holo-

graphic microscopy could potentially be used to brake the barrier for faster imaging

acquisition to map out the fast dynamics of the living tissues.
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Chapter 6

Label-Free Second Harmonic

Generation Holographic

Microscopy of Biological Specimens

6.1 Introduction

The formation of images of biological specimens with coherent nonlinear scattering

opens unique image formation contrast due to the nature of nonlinear interactions.

This has motivated extensive investigation of both second harmonic generation (SHG)

and third harmonic generation (THG) optical microscopy [123, 86, 96]. Work on

SHG and THG microscopy has been largely restricted to laser-scanning microscopy

due to the relatively high peak intensity required for signal generation. However

laser scanning of three dimensional (3D) images takes considerable time to form a 3D

image because each voxel must be acquired serially. To address this issue, harmonic

holography using small nanoparticles for labeling and to provide a strong SHG signal

was recently introduced to form high-speed images [119]. We here demonstrate label

free 3D SHG holographic microscopy of biological specimens using a femtosecond
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oscillator.

SHG microscopy was first introduced less than a decade after the first demonstra-

tion of the laser [124, 64]. Three dimensional images were formed shortly after by

scanning the focal spot of a a continuous-wave laser to form 3D images [98]. This early

work had extremely slow image acquisition speeds. With the advent of femtosecond

laser pulses, acquisition time of laser-scanning SHG images has reduced sufficiently to

enable wide-spread use in biological imaging. This technique has proved to be a pow-

erful tool for imaging intrinsic subcellular signals from endogenous proteins such as

microtubule, myosin and collagen in living tissues [125, 24, 28]. Since SHG microscopy

forms images for structures comprising ordered non-centrosymmetric molecules or tis-

sues, it provides a novel optical image contrast mechanism [126, 127, 128] that have

found use in in-vivo biological studies.

In SHG microscopy, the measured signal is proportional to the square of the illumi-

nation intensity. As a consequence, the signal is localized to a small volume near the

focus. This confers a significant advantage, automatically providing nonlinear optical

sectioning and the ability to form high quality images in scattering media [22, 23].

Other nonlinear microscopies inherit these advantages while also offering rich possi-

bilities for additional contrast mechanisms in biological imaging. THG microscopy

[15, 16, 32] forms images at interfaces, and chemically-specific coherent nonlinear mi-

croscopy is obtained through use of coherent anti-Stokes Raman scattering [18, 84].

The advantages of the intensity-dependent response in nonlinear microscopy re-

quire high intensities to obtain images with a suitable signal-to-noise ratio. Specimen

damage limits the usable intensity [86]. The damage mechanisms can be broadly di-

vided into thermal loading, where the accumulation of the laser’s average power causes

detrimental heating, and damage caused by high peak intensities. The incident av-

erage power can be reduced while maintaining high peak intensities by reducing the

laser pulse duration, or by reducing the laser pulse repetition frequency. However,
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peak-intensity damage places an upper limit on the attainable harmonic signal. This

is of particular importance in in vivo or ex vivo biological samples.

While nonlinear scanning microscopy is a valuable and powerful tool, it is inher-

ently limited by low image acquisition rates. The standard implementation of this

technique requires a tightly focused fundamental pulse to be mechanically scanned

through each volume element in a 3D volume, where images are assembled by serially

collecting a nonlinear signal from each voxel. The refresh rate of image acquisition

for nonlinear microscopy often fails to capture dynamics of a process under study and

presents a significant barrier for application of nonlinear microscopy to many areas

[37, 38, 39, 40, 41, 42, 43].

By contrast, a hologram is capable of storing 3D optical field information in a

2D image, and we here combine this technique with the nonlinear SHG contrast

mechanism. We make use of off-axis holography introduced by Leith and Upatniek

[3, 2], which led to the first 3D imaging image recording. These techniques was

reviewed in chapter 5.

Second harmonic generation holography was recently introduced to acquire 3D

SHG microscopy images without use of time-consuming laser scanning [50]. This

experiment used a 1 mJ, 10 Hz repetition rate femtosecond laser amplifier to im-

age the distribution of 100 nm diameter nanoparticle clusters made of the non-

centrosymmetric BaTiO3 crystal [50]. A subsequent experiment employed a Ti:sapphire

oscillator and recorded SHG holograms from mammalian (HeLa) labeled with BaTiO3

nanoparticles [119].

In this chapter, second-order nonlinear holographic microscopy for three-dimensional

imaging, using harmonic generation of endogenous tissue features without nanocrys-

tal labeling, is demonstrated. In these experiments, we report on 3D SHG holography

imaging in muscle tissues without extrinsic labels using a Yb:KGW oscillator. The

average power and peak intensity are sufficiently low to avoid damage to the biological
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specimens. In addition, the 1027-nm center wavelength of the Yb:KGW laser pulses

operates in a biological window where the combination of scattering and absorption

are exceptionally low [85].

Figure 6.1: (a) Experimental arrangement; see text for details. (b) Second-harmonic
spectra measured for the reference beam (blue line) and samples human muscle
(green), starch granules (red), and corn seed (cyan). (c) Interference Fresnel rings
observed without a sample at the image plane, at time overlap between reference and
independently frequency-doubled object pulses.

6.2 Theory

In chapter 5, we described the formation of linear holograms and reconstruction of

the object field. Here, I will repeat some of these results.

In our experiments, off-axis digital holograms are formed by recording, using a digital

CCD camera, the interference between SHG radiation generated by ordered structure

in a specimen and an off-axis reference wave. To describe the recorded hologram, we

will consider the electric field of the incident beam illuminating the sample, which

takes the form E0(r0, t) = E0(r0)ei(ω0t−k0z0), where E0(r0) describes the spatial distri-

bution of the field strength and ω0 is the incident field optical radial frequency. The
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fundamental field drives a polarization density oscillating at the second harmonic of

the incident field given by

P(2)(r0) =
1

2
ε0χ

(2)(r0) : E0(r0)E0(r0). (6.1)

The nonlinear optical susceptibility χ(2)(r0) is a tensor, whose elements are dictated

by the material of the object. Here, r0 = x0î + y0ĵ + z0k̂ is the spatial coordinate in

the object space.

The second harmonic radiation emerging from the object, ESHG(x, y, t; z) = Eobj(x, y; z)ei(ω2t−k2z),

contains information encoding the 3D spatial structure of the specimen, and can be

described by a Green’s function formalism [78].

Eobj(x
′, y′; z) = −µ0ω

2
2

∫ ∫ ∫

V

G0(r, r0) · P(2)(r0)dx0dy0dz0 (6.2)

where we assume z + z0, ω2 = 2ω0, k2 = ω2n/c. The dyadic Green’s function is given

by

G0(r, r0) =
eik2r′

4πr′
e−ik2(x′x0/r′+y′y0/r′+z′z0/r′)













(1 − x′2/r′2) −x′y′/r′2 −x′z′/r′2

−x′y′/r′2 (1 − y′2/r′2) −y′z′/r′2

−x′z′/r′2 −x′y′/r′2 (1 − z′2/r′2)













,

(6.3)

where r′ =
√

x′2 + y′2 + z′2.

The radiated SHG field is collected by a microscope objective and a hologram is

formed by interference with an independently frequency-doubled reference, Eref(x, y)ei2ω0t.

The hologram is recorded with a lateral magnification Ml, and its intensity pattern
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is given by

IH(x, y) = 1
2ncε0 |Eref(x, y) + Eobj(x, y)|2

= 1
2ncε0

[

Eref(x, y) ·E∗
ref(x, y) + Eobj(x, y) · E∗

obj(x, y)

+ E∗
ref(x, y) · Eobj(x, y) + Eref(x, y) · E∗

obj(x, y)
]

. (6.4)

The first two terms are the intensities of the reference and the object waves, and the

last two terms are the real and the virtual images, respectively [89]. Here, (x, y) are

the transverse coordinates in the plane where the magnified hologram is recorded. The

linear polarization of the reference beam selects co-polarized object beam components

to form interference.

Off-axis holography enables complete extraction of the complex field of the ob-

ject beam, provided that the spatial carrier frequency of the interference fringes is

sufficiently high. In digital holography, a two-dimensional Fourier transform of the

hologram IH is used to separate the real and virtual images from the static terms

in the transformed space (kx, ky). The angle of interference between the object and

reference waves is chosen to provide a sufficiently high carrier spatial frequency to

prevent aliasing of these three terms.

Numerical reconstruction of the field requires isolation of the complex object field,

followed by back propagation through the object space to recover the three dimen-

sional object distribution. The object field recorded at the CCD is obtained by

filtering the real image sideband of the numerically 2D Fourier transformed digital

hologram. An inverse 2D transform of this sideband yields the quantity E∗
ref(x, y) ·

Eobj(x, y). The object field is obtained by multiplying by the conjugate of plane wave

reference field, whose intensity is independently measured for each acquired hologram.

Once the object field Eobj(x, y) has been retrieved, wee use angular spectrum method

to yield the field at a propagation distance to yield the field at a propagation distance
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z [89].

Figure 6.2: A cluster of starch granules (scale is the same for all figures): (a) White
light; (b) second-harmonic from the sample; (c) measured hologram; (d) reconstruc-
tion at image plane.

6.3 Experimental Setup

The ultrashort laser pulses are derived from a home-built Yb:KGW laser oscillator.

Briefly, a 20 W diode array at 975 nm (Apollo) is free-space imaged and focused

into a 2 mm long, 5%-at doped Yb:KGW crystal (NovaPhase). The standing-wave

cavity has one 105 µm (1/e2) waist overlapping the pump focus inside the crystal,

and a second 100 µm on a 4% modulation depth SESAM (BATOP). The SESAM

and an intracavity compressor lead to stable modelocked pulses with 4.5 nm optical

bandwidth centered at 1027 nm. We obtain a 70-MHz train of pulses capable of

delivering 14 nJ of pulse energy.

The holographic microscopy setup is based on a modified Mach–Zehnder inter-

ferometer as shown in Fig. 6.1(a). A half wave plate (Tower Optical) followed by
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polarizing beamsplitter cube (PB), controls the balance between the beam energies

in the reference and the object arms. In the reference arm, the fundamental beam is

focused into a 0.1 mm thick KDP crystal (C, EKSPLA) with a f1 = 50 mm lens to

generate the SHG reference beam. This reference is collected and collimated with a

f2 = 125 mm lens, to fill the back aperture of the focusing objective (f3) of the spatial

filter (SF, Newport model 910A). The reference beam is spatially filtered with 15 µm

pinhole and recollimated with a f4 = 100 mm lens. This results in a ∼20 mm diameter

reference beam with high spatial phase purity. In the object arm, the beam is focused

into the sample with a Meiji S-Plan 4× 0.1 NA objective. The 1/e2 focal spot radius

is measured to be 35 µm, in good agreement with calculated value of 32 µm. The

SHG signal from the sample is collected with a Zeiss Epiplan 50× 0.5 NA objective.

Both focusing and collection objectives are mounted in tip-tilt mounts (Thorlabs) on

x, y, z translation stages (OptoSigma) to allow for precise alignment. The specimens

are held in a custom microscope slide holder on an x′, y′, z′ stage. The sample and

reference SHG beams are combined with a non-polarizing beam splitter (BS, Thor-

labs). The combined signal is first filtered by a 10 nm bandpass filter centered at 510

nm (Thorlabs, FB510-10) and a colored glass bandpass filter (FGS900). To record

the holograms, we use an Andor Newton electron-multiplying charge-coupled device

(EMCCD) camera, thermo-electrically cooled to −65◦C, that has 1600×400 pixels

with a 16µm pixel pitch. The high sensitivity of the electron-multiplying gain, along

with its low noise cooled CCD, allows us to record low intensity SHG holograms with

high signal-to-noise and short integration times. When processing the holograms

presented below, we crop a relevant 400×400 pixel area.

The normalized spectrum of the second harmonic reference beam and SHG signals

from samples under study are shown in Fig. 6.1(b). The spectra are centered around

513 nm, with an optical bandwidth of ≈2.3 nm. Without a sample in the microscope,

we confirmed that the microscope glass slide interfaces did not yield any measurable

94



second-harmonic signal.
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Figure 6.3: Peak intensities, in local regions around starch grains marked A, B and
C in Fig. 6.2, with varying reconstruction distance dH . The peaks correspond to the
axial plane where each grain is focused. Comparison between two object planes dS

allows us to estimate the microscope axial magnification.

Due to the short coherence length of the pulses used to form the hologram (1c ≈

250 µm), the object and reference beams must be temporally overlapped. This is

accomplished with a delay arm in the reference arm. In order to co-locate the pulses

in time, the object fundamental beam is independently frequency-doubled before the

microscope in a 4 mm KDP crystal (Ct), and combined with the reference without

a sample. The interference fringes between the object and reference beams are ob-

served as the length of the reference arm is changed by the translation stage. Time

overlap is optimized by maximizing the depth of modulation of the interference pat-

tern. Figure 6.1(c) shows the Fresnel interference pattern for an on-axis hologram

setup. The holographic data shown for the rest of this paper are taken in an off-axis

configuration.

We measured the lateral magnification of our microscope by illuminating a 12.5-

µm pitch wire calibration mesh at the object plane with the SHG generated before
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microscope. We estimate a lateral magnification of |Ml| ≈ 67. The resolution of our

microscope is determined by two factors: the lateral magnification along with the

pixel size of the CCD camera, and the collection objective’s numerical aperture. We

measured the resolution to be 0.85µm, by collecting the SHG images from a 80 nm

gold nano-bead.

6.4 Results

Figure 6.4: Image and reconstruction of corn seed at two different image and recon-
struction planes.

In Fig. 6.2, we show holographic reconstructions of a cluster of potato starch. Fig-

ure 6.2(a) shows a linear microscopy image of the starch illuminated with white light,

while Fig. 6.2(b) shows the SHG generated purely in the sample collected near the

image plane. The SHG signal is concentrated near three starch granules, labeled A, B

and C for comparison with Fig. 6.3, where the intensity of the incident fundamental

beam is greatest. The hologram, recorded at distance dH = 25 cm from the image

plane, is shown in Fig. 6.2(c). The hologram was reconstructed using the analysis
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described in the theory section and is shown in Fig. 6.2(d).

Translating the starch cluster shown in Fig. 6.2 allows us to characterize the axial

magnification of the microscope. In Fig. 6.3, we show the maximum reconstructed

intensity, in a restricted region around the granules labeled A, B and C, for different

reconstruction distances dH . The local peak intensities reconstructed from the holo-

gram in Fig. 6.2(c) are shown with a solid blue line. From the data, we see that the

granules come into focus at distances dH = 190, 198, 180 mm for A, B, C. Next, we

translate the sample by dS = 10 µm and record a new hologram. The reconstruction

peak intensities are shown by the red dashed line, and the reconstruction distances for

the granule foci are observed to shift by ∆dH ≈ 47 mm. We attribute the decrease in

the peak intensity for the dS = 10 µm data to a reduced light collection angle of the

collection objective when the sample is translated. The change in the width may be

due to different lateral magnification when the sample is reconstructed at a different

image plane.The large width and characteristic structure of peak C as compared to

A and B arises because the interference rings from granules A and B enter into the

region around C. The axial magnification is calculated by Ma = ∆dH/dS ≈ 4700, in

good agreement with the theoretical value of Ma = M2
l ≈ 4500.

The validity of our reconstruction algorithm was investigated by comparing sec-

ond harmonic images to holographic images back propagated to the same SHG image

acquisition plane, using a prepared corn seed slide (The Microscope Store, LLC).

Figure 6.4 shows second harmonic images taken at two different camera positions

Z1 = 14 cm and Z2 = 6 cm from the image plane, corresponding to 17 µm displace-

ment in sample space. A hologram was also recorded, numerically reconstructed, and

propagated to the plane at which the two reference SHG images were acquired. It

can be seen that different features come into focus for different camera positions,

corresponding to different slices within the sample. We have marked them for read-

ability. The small discrepancies between the images and reconstructions may be due
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to potential phase variations across the reference beam, which we assume to be a

plane wave. These variations can be compensated for with many existing algorithms

[129, 130, 131].

Figure 6.5: Reconstruction of hologram showing several separate human muscle fibrils.
The animation shows the assembly of reconstruction planes into the three-dimensional
depiction of the sample.

Biological tissues such as collagen, myosin, and muscle fibrils exhibit a strong sec-

ond harmonic signal due to their highly organized molecular structures [24, 28, 27,

14, 13, 132, 26]. This allows us to record second harmonic holographic microscope

images without the need for additional labels. The incident pulse energy was adjusted

to 4 nJ, corresponding to a peak intensity of around 300 MW/cm2. With a 500 ms

integration time, a strong second harmonic signal was observed on the EMCCD cam-

era. The signal was clearly visible at substantially shorter exposure times (50 ms),

but the images suffered from lower signal-to-noise and slow readout artifacts from the

camera. The deterioration of the signal-to-noise could be partly mitigated by further

lowering the temperature of the camera (down to −100◦ with water cooling). A 3D

reconstruction of the muscle sample is shown in Fig. 6.5. The animation shows the

series of reconstruction planes, showing the intensity source data from which the iso-

surface is calculated. In particular, we see two closely-spaced fibrils at reconstruction

distances dS = 25, 35 µm. These results demonstrate the utility of this laser source
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and microscopy setup to biologically relevant samples.

Figure 6.6: Polarization dependence of the muscle tissue.

To ensure the origin of the signal is indeed from the muscle tissue, we insert a half

wave plate in the object arm, before the condenser. At the image plane, we record

the second harmonic signal, while rotating the polarization of the field incident on the

sample by increments of 10◦. The result is shown in Fig. 6.6. As can be seen in, the

intensity of the fibrils changes versus the polarization angle [14, 13, 103]. Moreover,

depending on the orientation of the fibrils with respect to the polarization angle, dif-

ferent part of the sample, corresponding to different tissues, will be pronounced.

6.5 Summary

In conclusion, second harmonic holographic microscopy has been performed with bi-

ological samples for the first time with an ultrashort Yb:KGW laser oscillator. The

holograms were recorded with a CCD camera and numerically reconstructed with a
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numerical Fresnel propagation kernel. Importantly, these images required pulse ener-

gies below 5 nJ, and using SHG obviates the need for external contrast markers. We

observed no tissue damage or loss of image contrast, even after continued exposures.

We used the microscope to image various samples including corn seeds, potato starch,

and human muscle fibrils, including characterizations of the lateral and axial mag-

nifications and resolutions. The resolution could be increased by the use of a more

powerful collection objective, a higher-resolution camera, or by employing a more so-

phisticated reconstruction algorithm that includes aberration compensation. Higher

speed 3D SHG image acquisition is possible by making use a a stronger reference

wave to reduce CCD integration times.

Figure 6.7: Dog stomache: Holographic a) reconstruction at the image plane, and b)
around the focus. Also, the c) SHG image taken at focus is show. Rabbit tendon
(c,d,e)
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Figure 6.8: Corn seed: Holographic a) reconstruction at the image plane, and b)
around the focus. Also, the c) SHG image taken at focus is show. Rabbit lymph
(c,d,e).
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Chapter 7

Conclusion

In conclusion, we have demonstrated a method for improved transverse spatial resolu-

tion in THG microscopy. This approach capitalizes on the polarization dependence of

THG emission. In particular, THG emission is identically quenched in isotropic media

for an incident circularly-polarized field. For non-isotropic media, THG emission is

generally weak and strong THG suppression is maintained. This result was achieved

by imaging a SLM into the plane of the sample, and applying a spatially-tailored π
2

phase difference between the two orthogonal polarization components. A transverse

spatial resolution of up to 2 times is demonstrated. Future work in this technique

would be investigating the theoretical limitations of polarization switched THG res-

olution enhancement, since deterministic control of the focal field polarization state

distribution may provide a route to probing the anisotropic nonlinear response of

nano-scale objects. Moreover, we would apply this technique to imaging of biological

tissues. Moreover, we would further expand this technique to imaging of biological

tissues.

We have also introduced a new technique based on coherent third harmonic gener-

ation microscopy, to characterize the spatially-varying polarization state distribution

at the focal field in a nonlinear scanning laser microscope. We demonstrated a non-
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iterative, in-situ phase retrieval algorithm, and measured polarization projection of

THG images of a polystyrene bead. We determined the spatially-varying polarization

states by locally probing the field through THG generated by an isotropic microsphere

with a diameter much smaller than the focal field diameter. The tomography tech-

nique can be used to probe the focal field polarization state for a wide range of

microscopy setups, and is applicable for obtaining polarization states and anisotropic

responses from many types of linear and nonlinear optical microscopy.

Moreover, we showed 3-dimensional imaging through nonlinear SHG holographic

microscopy. We obtained 3-dimensional images of an object by recording a 2-dimensional

interference pattern between a second harmonic reference wave and second harmonic

object wave of variety of biological specimen. In biological nonlinear imaging where

the traditional method has largely been restricted to low image acquisition rates by

using laser-scanning microscopy, nonlinear holographic microscopy could potentially

be used to brake the barrier for faster imaging acquisition to map out the fast dynam-

ics of the living tissues. In future, we would expand this method to THG holographic

microscopy. Furthermore, by exploring the polarization dependence of the second

harmonic signal from biological tissues, we would expand this method to revealing

inner structures of biological samples. Moreover, we would pursue this method to

enhance the speed in which the holograms are recorded by eliminating the readout

artifacts observed, for example by introducing a fast mechanical shutter in front of

the camera, and reconstructed, through using fast, inexpensive graphics cards. Fur-

thermore, nonlinear holographic microscopy could be applied to capture the dynamics

of living tissues.
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Appendix A

Derivation of qth Harmonics

Generation under Focusing

Conditions

In this appendix, I will drive the qth harmonic generation, for a monochromatic wave

under focusing conditions. First, we will transfer the wave equation from the spatial

domain to the spatial frequency domain, reducing the problem to an inhomogenous

linear ODE for each spatial frequency. Moreover, we will assume an un-depleted

pump approximation.

A.1 The setup

We will start our derivation with the wave equation driven by a nonlinear polarization

density. For the qth harmonic, we end up with a differential equation describing the

slowly-varying amplitude of given by

2ikz,q
∂Aq(x, y, z)

∂z
+ ∇2

TAq(x, y, z) = −
(qω1

c

)2

χ(q)Aq
1(x, y, z)ei∆kz (A.1)

104



where a solution of the form of E(x, y, z, t) = Aq(x, y, z)ei(kzz−ωt) has been substituted

into the wave equation and the amplitude is assumed to be slowly varying with respect

to λ along the z direction. Here, subscript 1 indicates the fundamental complex

amplitude, while the superscript indicates the raised to the qth power.

Note that in the paraxial approximation, kz ≈ k, which we will adopt in the

remainder of this document. Also note that Aq(x, y, z) is a complex spatial envelope

and that we are considering a monochromatic frequency.

Let us define a convention for Fourier transforms.

Aq(x, y, z) =

∫∫ ∞,∞

−∞−∞
Âq(kx, ky, z)ei(kxx+kyy)dkxdky (A.2)

Âq(kx, ky, z) =
1

4π2

∫∫ ∞,∞

−∞−∞
Aq(x, y, z)e−i(kxx+kyy)dxdy (A.3)

Now, let’s transform Eq. (A.1) into the spatial frequency domain. Taking the 2D

Fourier transform yields:

(

2ikq
∂

∂z
+ ∇2

T

)
∫∫ ∞∞

−∞−∞
Âq(kx, ky, z)ei(kxx+kyy)dkxdky = (A.4)

−
(qω1

c

)2

χ(q)

∫∫ ∞∞

−∞−∞
Âq

1(kx, ky, z)ei(kxx+kyy)ei∆kzdkxdky

Here, Âq
1(kx, ky, z) represents the spatial frequency distribution of the fundamental

spatial field raised to the qth power

Now, we can write

∇2
T ei(kxx+kyy) = (k2

x + k2
y)e

i(kxx+kyy) (A.5)
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so that Eq. (A.4) simplifies to a linear ODE for each spatial frequency given by

[

2ikq
∂

∂z
+ (k2

x + k2
y)

]

Âq(kx, ky; z) = −
(qω1

c

)2

χ(q)Âq
1(kx, ky, z)ei∆kz (A.6)

In the undepleted pump approximation, the spatial frequency distribution for the

driving term on the RHS of the equation above may be directly calculated.

A.1.1 The homogenous solution to Eq. (A.6)

The linear propagation of a field will be given by the homogeneous solution to Eq.

(A.6). Let’s calculate the situation for a Gaussian distribution. The homogeneous

equation is written as

∂Âq(kx, ky; z)

∂z
= −i

(k2
x + k2

y)

2kq
Âq(kx, ky; z) (A.7)

The solution to this equation may be written as

Âq(kx, ky; z) = Âq(kx, ky; 0)e
−i

(k2
x+k2

y)

2kq
z

(A.8)

For a Gaussian beam with a waist wq0 and amplitude Aq0 at z = 0, we have a

spatial frequency distribution of

Âq(kx, ky; 0) =
1

4π2

∫∫ ∞∞

−∞−∞
Aq0e

−x2+y2

w2
q0 e−i(kxx+kyy)dxdy (A.9)

Making use of the identity

∫

e−Ax2−2Bxdx =

√

π

A
eB2/A, (A.10)

the spatial frequency distribution of the Gaussian at the waist is given by

106



Âq(kx, ky; 0) =
1

4π2
Aq0

(√

πw2
q0e

(ikx)2w2
q0/4
)(√

πw2
q0e

(iky)2w2
q0/4
)

= Aq0

w2
q0

4π
e−(k2

x+k2
y)

w2
q0
4 (A.11)

Now, the Gaussian may be written as

Âq(kx, ky; z) = Aq0

w2
q0

4π
e
−(k2

x+k2
y)

»

w2
q0
4 + iz

2kq

–

(A.12)

Transforming this back to the spatial domain gives

Aq(x, y; z) =

∫∫ ∞∞

−∞−∞
Aq0

w2
q0

4π
e
−(k2

x+k2
y)

w2
q0
4

»

1+ i2z

w2
q0kq

–

ei(kxx+kyy)dkxdky (A.13)

This gives a solution of

Aq(x, y; z) =
Aq0

[

1 + i2z
w2

q0kq

] exp







−
(x2 + y2)

w2
q0

[

1 + i2z
w2

q0kq

]







(A.14)

=
Aq0

(1 + iζ)
exp

{

−
(x2 + y2)

w2
q0(1 + iζ)

}

For simplicity, we will use the following substitution

Bq = 1 +
2iz

w2
q0kq

(A.15)

Leading to

Aq(x, y; z) =
Aq0

Bq
exp

{

−
(x2 + y2)

w2
q0Bq

}

(A.16)
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Before we move on with the rest of the derivation, some explanation of the

above expression is in due. As expected, the homogenous solution to the propa-

gation equation, for a Gaussian distribution is also Gaussian. Here, ζ = 2z/b is

a dimensionless longitudinal coordinate defined in terms of the confocal parameter,

b = 2πw2
q0/λq = kqw2

q0, which is the measure of the longitudinal extent of the focal

region of the gaussian beam. Figure. A.1, illustrate this quantity. The subscript q

illustrate the order of harmonic of the initial gaussian beam. For example, if the

homogenous wave equation was to be solved for the fundamental beam, q = 1, and

Eq. A.14 can be written as,

A1(x, y; z) =
A10

[

1 + i2z
w2

10k1

] exp







−
(x2 + y2)

w2
10

[

1 + i2z
w2

10k1

]







(A.17)

=
A10

B1
exp

{

−
(x2 + y2)

w2
10B1

}

(A.18)

A.1.2 The driving term in the spatial frequency space.

Given the solution of a Gaussian for the paraxial wave equation presented in the

previous section, we can readily compute the source term for an undepleted pump for

qth harmonic generation. In the spatial domain, the driving term is given by

−
(qω1

c

)2
χ(q)Aq

1(x, y, z) = −
(qω1

c

)2
χ(q) A

q
10

Bq
1

exp

{

−q
(x2 + y2)

w2
10B1

}

(A.19)

Transforming this to spatial frequency space gives

1

4π2

(

−
(qω1

c

)2
χ(q) A

q
10

Bq
1

)
∫∫ ∞∞

−∞−∞
exp

{

−q
(x2 + y2)

w2
10B1

}

ei(kxx+kyy)dxdy (A.20)

This simplifies to
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−q2ω2
1χ

(q)Aq
10

4π2 · c2Bq
1

(

π

q
w2

10B1

)

exp

{

−(k2
x + k2

y)
w2

10B1

4q

}

(A.21)

and is written compactly as

−qω2
1χ

(q)Aq
10w

2
10

4πc2Bq−1
1

e−(k2
x+k2

y)
w2

10B1
4q (A.22)

A.1.3 Inhomogeneous spatial frequency domain equation

Taking the Fourier space expression for the un-depleted term of a focused Gaussian

and inserting it into Eq. (A.6), we obtain

[

2ikq
∂

∂z
− (k2

x + k2
y)

]

Âq(kx, ky; z) =
−qω2

1χ
(q)Aq

10w
2
10

4πc2Bq−1
1

e−(k2
x+k2

y)
w2

10B1
4q ei∆kz (A.23)

Finally, we have the equation that we wish to solve

∂Âq

∂z
= −i

(k2
x + k2

y)

2kq
Âq + i

ω1χ(q)Aq
10w

2
10

8πnqcB
q−1
1

e−(k2
x+k2

y)
w2

10B1
4q ei∆kz (A.24)

Where we have made use of

1

kq
=

c

nqwq
=

c

nqqw1

A.2 Solutions in the spatial frequency domain

Let us assume that the we have no injected control qth harmonic field and that the

solution of the field takes the form of a Gaussian given in Eq. (A.12).

Âq(kx, ky; z) = Aq0(z)
w2

q0

4π
e−(k2

x+k2
y)

w2
q0Aq

4 (A.25)

109



Figure A.1: Geometry of a Gaussian beam focused (a) inside a bulk material and (b)
on an interface of two material with different third order susceptibilities.

Taking the partial with respect to z gives

∂Âq(kx, ky; z)

∂z
=

−i(k2
x + k2

y)

2kq
Âq(kx, ky; z) +

w2
q0

4π
e−(k2

x+k2
y)

w2
q0Bq

4
∂Aq0(z)

∂z
(A.26)

Inserting this into Eq. (A.24) gives,

w2
q0

4π
e−(k2

x+k2
y)

w2
q0Bq

4
∂Aq0(z)

∂z
= i

ω1χ(q)Aq
10w

2
10

8πnqcB
q−1
1

e−(k2
x+k2

y)
w2

10B1
4q ei∆kz (A.27)

Rearranging

∂Aq0(z)

∂z
= i

(

w10

wq0

)2 ω1χ(q)Aq
10

2nqcB
q−1
1

e
−(k2

x+k2
y)

»

w2
10
4q

+ iz
2qk1

–

−
»

w2
q0
4

+ iz
2kq

–ff

ei∆kz (A.28)

From which we have a solution

Aq0(z) = i

(

w10

wq0

)2 ω1χ(q)Aq
10

2nqc

∫ z

z0

e
−(k2

x+k2
y)

»

w2
10
4q

+ iz′

2qk1

–

−
»

w2
q0
4

+ iz′

2kq

–ff

ei∆kz′

Bq−1
1

dz′ (A.29)

For small ∆k, we can make the assumptions,
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[

w2
10

4q
+

iz′

2qk1

]

=

[

w2
q0

4
+

iz′

2kq

]

(A.30)

Or, equivalently

w2
10 = qw2

q0 (A.31)

qk1 = kq (A.32)

Which gives us,

Aq0(z) = iq
ω1χ(q)Aq

10

2nqc

∫ z

z0

ei∆kz′

[

1 + i2z
w2

10k1

]q−1dz′ (A.33)

or equivalently,

Aq0(z) = iq
ω1χ(q)Aq

10

2nqc
Jq(∆k; z0; z) (A.34)

where,

Jq(∆k; z0; z) = b

∫ z/b

z0/b

ei∆kbz′

(1 + i2z′)q−1
dz′ (A.35)

is the qth harmonic interaction length and z0 is the position of the entrance of the

medium,and z = 0 represents the waist of the beam.

A.2.1 Limiting case of infinite uniform nonlinear media

When we consider the qth harmonic power in the case of an infinite, uniform nonlinear

medium, the integral can be solved analytically through contour integration.

J = b

∫ ∞

−∞

ei∆kbz′

(1 + 2iz′)q−1
dz′ (A.36)
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To evaluate the integral, we first find the poles of the integrant to be z
′

0 = i
2 .

Moreover, with a negative mismatch (∆k < 0), the contour encloses the lower-half

plane (LHP). Since the pole will always be located on the positive imaginary axis,

namely upper half plane (UHP), for any qth order power, the value of this integral

will be 0.

With a positive mismatch, the contour will enclose the UHP and the pole of

order m = q − 1.The circular portion of the integration goes to zero by virtue of the

exponential taking on an infinite negative argument, thus the integration over the

real line portion will just be 2πi times the residue.

The residue of an mth order pole is given by

Res =
1

(m − 1)!

∂m−1

∂zm−1

[

(z − z
′

0)
mf(z)

]∣

∣

∣

z=−i
2

=
1

(m − 1)!

∂m−1

∂zm−1

[

(z −
i

2
)m ei∆kbz′

(1 + 2iz′)m

]∣

∣

∣

∣

z=−i
2

=
1

(m − 1)!
(−

i

2
)m ∂m−1

∂zm−1
ei∆kbz′

∣

∣

∣

z=−i
2

=
1

(q − 2)!
(−

i

2
)q−1 ∂q−2

∂zq−2
ei∆kbz′

∣

∣

∣

z=−i
2

=
1

(q − 2)!
(−

i

2
)q−1(∆kb)q−2e−∆kb/2

(A.37)

Then,

J = b

∫ ∞

−∞

ei∆kbz′

(1 + 2iz′)q−1
dz′

= 2πi
b

(q − 2)!
(−

i

2
)q−1(∆kb)q−2e−∆kb/2

= 2π
1

(q − 2)!

b

2

(

∆kb

2

)q−2

e−∆kb/2

(A.38)

Thus, for ∆k > 0,

J =
πb

(q − 2)!

(

∆kb

2

)q−2

e−∆kb/2 (A.39)
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Compactly written,

Jq(∆k; z0; z) =











0 for ∆k < 0

πb
(q−2)!

(

∆kb
2

)q−2
e−∆kb/2 for ∆k > 0

(A.40)

A.2.2 Limiting case of non-uniform nonlinear media

If we consider the susceptibility to not be uniform across the sample, we can no longer

remove it from the integral as was done in the previous section. For example, consider

the case of two semi-infinite homogeneous samples brought in contact with identical

refractive indices but differing uniform susceptibilities χ(3)
1 and χ(3)

2 at an interface

located zw(which maps onto zr = zw

b in our normalized coordinates) beyond the beam

waist (cf A.1).

J =

∫ zr

−∞

χ1ei∆kbz′

(1 + 2iz′)2
dz′ +

∫ ∞

zr

χ2ei∆kbz′

(1 + 2iz′)2
dz′ (A.41)

If we bring in a variable δχ = χ1−χ2 and use the the assumption that ∆kb << 1,

we can write

J =

∫ ∞

−∞

χ1

(1 + 2iz′)2
dz′ −

∫ ∞

zr

δχ

(1 + 2iz′)2
dz′ (A.42)

The first integral can be done using a quick substitution, and is equal to 0. On

a special note, this would be the same result as if we had chosen ∆k to be 0. The

second integral will also be done using a substitution and is shown below.
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J ≈ −
∫ ∞

zr

δχ

(1 + 2iz′)2
dz′

≈ −
∫ y2

y1

−iδχ

2y2
dz′

≈ lim
g→∞

−iδχ

2(1 + 2iz)

∣

∣

∣

∣

g

zr

≈ lim
g→∞

−iδχ

2

(

1

1 + 2ig
−

1

1 + 2izr

)

≈ lim
g→∞

δχ

(

zr

g − 1
1
g − 4zr + 2i(1 + zr

g )

)

≈ −δχ

(

1

−4zr + 2i

)

(A.43)

Thus, the collected third harmonic intensity I3 = 1
2ε0cn3E3E∗

3 ∝ |J |2, and the

collected power with a CCD for example will be,

P3 ∝
δχ2

(1 + 4z2
w

b2 )
(A.44)

Which states that the THG is proportional to the square of the difference between

the between the third order susceptibilities.
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