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ABSTRACT

GENERAL MODEL-BASED DECOMPOSITION FRAMEWORK FOR

POLARIMETRIC SAR IMAGES

Polarimetric synthetic aperture radars emit a signal and measure the magnitude, phase,

and polarization of the return. Polarimetric decompositions are used to extract physically

meaningful attributes of the scatterers. Of these, model-based decompositions intend to

model the measured data with canonical scatter-types. Many advances have been made to

this field of model-based decomposition and this work is surveyed by the first portion of this

dissertation.

A general model-based decomposition framework (GMBDF) is established that can de-

compose polarimetric data with different scatter-types and evaluate how well those scatter-

types model the data by comparing a residual term. The GMBDF solves for all the scatter-

type parameters simultaneously that are within a given decomposition by minimizing the

residual term. A decomposition with a lower residual term contains better scatter-type mod-

els for the given data. An example is worked through that compares two decompositions

with different surface scatter-type models.

As an application of the polarimetric decomposition analysis, a novel terrain classification

algorithm of polSAR images is proposed. In the algorithm, the results of state-of-the-art

polarimetric decompositions are processed for an image. Pixels are then selected to repre-

sent different terrain classes. Distributions of the parameters of these selected pixels are

determined for each class. Each pixel in the image is given a score according to how well

its parameters fit the parameter distributions of each class. Based on this score, the pixel is

either assigned to a predefined terrain class or labeled unclassified.
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CHAPTER 1

INTRODUCTION: POLSAR PRIMER

The primary function of a radar (RAdio Detection And Ranging) is to calculate the

distance to an object. The radar accomplishes this by the following: 1) The radar emits an

electromagnetic signal; 2) the signal interacts with the scene; 3) the scene reradiates the sig-

nal; and 4) the radar measures the magnitude and phase of the reradiated return. The larger

the antenna aperture, the higher the resolution. Synthetic Aperture Radar (SAR) synthe-

sizes a large aperture by placing a radar in motion relative to a scene and utilizes advanced

signal processing to create a high-resolution image of the scene’s measured electromagnetic

reradiation. During the relative motion, the radar emits a series of polarized electromagnetic

pulses. These pulses interact with the scatterers in the scene and are reradiated. A radar

then receives and measures the reradiated signals. For a monostatic SAR system (which is to

say the same radar sends and receives the electromagnetic signals), the emitter and receiver

are the same radar. As the radar and the scene continue in their relative motion, multiple

sets of these signals are emitted, interact with the ground, and the backscatter is measured.

Through mathematical algorithms, a complex image is constructed from the returned sig-

nals (magnitude and phase). A great resource that explains the signal processing details

is Jakowatz’s book [1]. An informative mathematical approach is Cheney’s monograph [2].

For a brief, yet informative, tutorial of SAR and some of its applications, see the article by

Moreira, et al., [3].

Polarimetric Synthetic Aperture Radar (polSAR) measures the magnitude and phase of

the returned signal as well as the return’s polarization state [4, 5, 6]. Signals in two orthog-

onal polarization states are emitted and both polarization states of the return are measured.
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Figure 1.1. Diagram of the Geometry of SAR

The four images are referred to as SXX, SXY, SYX, and SYY, where SXY represents the image

created with the Y -polarized backscatter return of a X-polarized emitted signal. It is com-

mon to use polarization emitters and receivers that are linearly polarized and horizontally

and vertically oriented. For the case where horizontally and vertically polarized signals are

sent and received, the four images are referred to as SHH, SHV, SVH, and SVV, where SHV

represents the image created with the vertical backscatter return of a horizontally emitted

signal. Based on the orientation of the returned signal, information about the scatterers

(such as the geometry of the scatterers) is retrievable.
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1.1. BUILDING BLOCKS FOR POLSAR DECOMPOSITIONS

The four measured returns are commonly placed in a 2 × 2 matrix referred to as the

Sinclair scattering matrix representing the polarized backscatter,

S =






SHH SHV

SVH SVV




 .(1)

These four polarization configurations form a basis for the polarization information of the

returned signal [4] and therefore the complete polarization information of the backscatter is

contained in the Sinclair scatter matrix. For polarimetric SAR systems that are monostatic,

reciprocity is assumed, that is SHV = SVH [4]. Monostatic systems and therefore reciprocity

are assumed throughout the rest of this dissertation.

Two of the main tools to analyze polSAR images are the Pauli feature vector, k, and the

corresponding coherency matrix, T [4]. For the monostatic case, k is a three element vector

k =
1√
2










SHH + SVV

SHH − SVV

2SHV










,(2)

and T is a 3× 3 matrix

〈T 〉 =
〈
k · k∗T

〉
=

1

2<









|SHH+SVV|2 (SHH+SVV)(SHH−SVV)∗ 2(SHH+SVV)S∗
HV

(SHH−SVV)(SHH+SVV)∗ |SHH−SVV|2 2(SHH−SVV)S∗
HV

2SHV(SHH+SVV)∗ 2SHV(SHH−SVV)∗ 4|SHV|2








>.(3)

Both quantities are built from the complex images where 〈·〉 is a spatial ensemble average,

S∗HV is the conjugate of SHV, and k
∗T the conjugate transpose of k. The ensemble-averaged

3



coherency matrix contains valuable second-order statics of the data as well as reduces the

effects of speckle. Speckle is the result of the coherent interference of waves reflected from the

scene. This interference causes variation in pixel intensities across the image and produces a

granular effect which is typically undesirable. Averaging the coherency matrix with nearby

coherency matrices reduces the speckle effect by averaging the constructive and destructive

interference. This dissertation makes use of a 3 × 3 box-filter at the pixel. A larger box-

filter will reduce the speckle further at the cost of losing resolution. The ensemble-averaged

coherency matrix can be created other ways [4, 7, 8]. Polarimetric decompositions utilize

these building blocks to extract physical information from the data.
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CHAPTER 2

MODEL-BASED POLARIMETRIC

DECOMPOSITIONS

In order to better understand and analyze polarimetric images, various methods exist

to decompose the data to extract physical meaning. The vast majority of polarimetric de-

compositions fall into two categories. Eigen-decompositions begin with the eigenvalues and

eigenvectors of the coherency matrix and attempt to construct physically relevant param-

eters, with the seminal paper being Cloude and Pottier’s decomposition [9]. Model-based

decompositions, the strain of decompositions that this dissertation is concerned with, sepa-

rate the power of the measured return into contributions of canonical scatter-types:

〈T 〉 =
n∑

i=1

fi [T ]i ,(4)

where fi is a scalar, and the theoretical coherency matrix [T ]i represents the ith canonical

scatter-type.

The trace of the measured coherency matrix is referred to as the total power, TP , of the

response.

TP = tr {〈T 〉} =
〈
|SHH + SVV|2

〉
+
〈
|SHH − SVV|2

〉
+
〈
4|SHV|2

〉

= T11 + T22 + T33(5)

The convention is to describe the power of a scatter-type with

Pi = fi (tr {Ti}) .(6)

5



As a small side note, the above calculation of the total power of the matrix is almost

universally referred to as the span of the coherency matrix in polarimetric SAR literature.

The span of a set of vectors refers to the space that contains all linear combinations of the

vectors. From [10] the span and the trace are defined as

span {~v1, · · · , ~vn} =

{
n∑

j=1

βj~vj : βj ∈ R

}

,(7)

tr (A) =
m∑

i=1

aii.(8)

According to these definitions, the correct term for the sum of the diagonal elements of a

matrix is the trace and will be used throughout the rest of this dissertation.

2.1. FREEMAN-DURDEN

The Freeman-Durden decomposition [11] popularized model-based decompositions using

canonical scatter models for surface scattering (s), double-bounce scattering (d), and volume

scattering (v). The averaged coherency matrix is decomposed as follows:

〈T 〉 = fs 〈T 〉s + fd 〈T 〉d + fv 〈T 〉v .(9)

2.1.1. Surface scattering. A surface that can be modeled by the small perturbation

model (SPM) [12], also referred to as a Bragg surface [4], satisfies the following:

• 2π|h(x, y)|/λ ≪ 1

• |∇h(x, y)| ≪ 1,

6



where h(x, y) is the surface height in the xy-plane and λ is the wavelength of the emitted

signal [12]. The Sinclair scattering matrix that models the response from such a surface is

Ss =






RH 0

0 RV




 .(10)

The reflection coefficients for horizontally and vertically polarized waves are given by [12]

RH =
µr cosφ−

√

εrµr − sin2 φ

µr cosφ+
√

εrµr − sin2 φ
(11)

RV =
εr cosφ−

√

εrµr − sin2 φ

εr cosφ+
√

εrµr − sin2 φ
.(12)

By assuming µr ≈ 1, which is true for most surfaces, we can simplify the equations to

RH =
cosφ−

√

εr − sin2 φ

cosφ+
√

εr − sin2 φ
(13)

RV =
(εr − 1)

{
sin2 φ− εr(1 + sin2 φ)

}

(

εr cosφ+
√

εr − sin2 φ
)2 ,(14)

where φ is the local incidence angle and εr is the relative dielectric constant [4].

The corresponding Pauli feature vector to the Sinclair scattering matrix that represents

a small perturbation surface is

k =
1√
2










RH +RV

RH −RV

0










.(15)

7



The corresponding coherency matrix is

T s =
1

2










|RH +RV|2 (RH +RV) (RH −RV)
∗ 0

(RH −RV) (RH +RV) |RH −RV|2 0

0 0 0










.(16)

After dividing through by |RH +RV|2 we get the common expression for the surface co-

herency matrix:

T s =










1 β∗ 0

β |β|2 0

0 0 0










where β =
RH −RV

RH +RV

, |β| < 1.(17)

This construction of the β parameter differs slightly from the Freeman-Durden paper [11].

There, elements of the covariance matrix (a unitary transformation of the coherency matrix)

are used and βFD = RH

RV

. The β from the coherency matrix can be expressed in terms of the

Freeman-Durden surface parameter βFD:

β =
RH −RV

RH +RV

=

RH

RV

− 1
RH

RV

+ 1
=

βFD − 1

βFD + 1
.(18)

From Van Zyl [13], the phase difference between RH and RV for natural surfaces is nearly

zero. From this, Freeman and Durden [11] claim that βFD is real. This claim implies that

the β calculated from the coherency matrix also is real.

8



2.1.2. Double-bounce scattering. Double-bounce scattering is modeled by the scat-

tering from a dihedral corner reflector, such as ground-wall backscatter:

Sd =






ej2γHRWHRGH 0

0 ej2γVRWVRGV




 .(19)

The horizontal and vertical reflection coefficients are

RiH =
cosφi −

√

εi − sin2 φi

cosφi +
√

εi − sin2 φi
(20)

RiV =
εi cosφi −

√

εi − sin2 φi

εi cosφi +
√

εi − sin2 φi
,(21)

where i ∈ {G,W}, the ground surface and vertical surface dielectric constants are εG and

εW, and the corresponding incidence angles φG = θ and φW = π
2
− θ.

The scaled corresponding coherency matrix is

T d =










|α|2 α 0

α∗ 1 0

0 0 0










,(22)

where

α =
RWHRGH + ejφRWVRGV

RWHRGH − ejφRWVRGV

, φ = 2γV − 2γH, |α| < 1.(23)

2.1.3. Volume scattering. The volume scattering model in the Freeman-Durden de-

composition is modeled as the contribution of a cloud of randomly oriented dipoles. The

9



Sinclair scattering matrix of a dipole that is horizontally oriented is given by

Sdipole =






a 0

0 b






|a|≫|b|

,(24)

where a and b are the complex scattering coefficients. This scattering matrix can be rotated

about the radar line of sight:

S(θ)dipole = R(θ)Sdipole R(θ)T

=






cos θ sin θ

− sin θ cos θ











a 0

0 b











cos θ − sin θ

sin θ cos θ




(25)

=






a cos2 θ + b sin2 θ (b− a) sin θ cos θ

(b− a) sin θ cos θ a sin2 θ + b cos2 θ




 .

If it is assumed that the thin cylinder scatterers are randomly oriented about the radar

line of sight, the second-order statistics of the resulting coherency matrix T are given by

〈(SHH + SVV) (SHH + SVV)
∗〉 = |a+ b|2

〈(SHH + SVV) (SHH − SVV)
∗〉 =

(
|a|2 + 2Im {a∗b} − |b|2

)
I1

〈(SHH + SVV) (2SHV)
∗〉 =

(
|b|2 + 2Im {ab∗} − |a|2

)
I2

〈(SHH − SVV) (SHH − SVV)
∗〉 = |a− b|2 I3

〈(SHH − SVV) (2SHV)
∗〉 = −1

2

(
|a|2 − 2Re {ab∗}+ |b|2

)
I4

〈(2SHV) (2SHV)
∗〉 = |b− a|2 I5,(26)
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where

I1 =

∫ π

−π

cos 2θ p (θ) dθ

I2 =

∫ π

−π

sin 2θ p (θ) dθ

I3 =

∫ π

−π

cos2 2θ p (θ) dθ(27)

I4 =

∫ π

−π

sin 4θ p (θ) dθ

I5 =

∫ π

−π

sin2 2θ p (θ) dθ.

In matrix form

T v =










|a+b|2 (|a|2+2Im{a∗b}−|b|2)I1 (|b|2+2Im{ab∗}−|a|2)I2

(|a|2+2Im{a∗b}−|b|2)I1 |a−b|2I3 − 1

2(|a|
2−2Re{ab∗}+|b|2)I4

(|b|2+2Im{ab∗}−|a|2)I2 − 1

2(|a|
2−2Re{ab∗}+|b|2)I4 |b−a|2I5










.(28)

If the probability density function of the orientation angle is assumed to be uniform,

p (θ) =
1

2π
, then I1, I2, I4 = 0 I3, I5 =

1

2
.(29)

With these values for Ii and considering the width of the dipoles going to zero we have

T v = lim
b→0










|a+ b|2 0 0

0 |a−b|2

2
0

0 0 |b−a|2

2










=
|a|2
2










2 0 0

0 1 0

0 0 1










.(30)
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Normalizing this volume scattering matrix so that its trace equals one, gives

T v =
1

4










2 0 0

0 1 0

0 0 1










.(31)

2.1.4. Assigning Powers. We can now represent a measured coherency matrix with

contributions of these three models. This decomposition assumes reflection symmetry, which

is to say T13 = T31 = T23 = T32 = 0.

〈T 〉 =










T11 T12 0

T21 T22 0

0 0 T33










= fs










1 β∗ 0

β |β|2 0

0 0 0










+ fd










|α|2 α 0

α∗ 1 0

0 0 0










+
fv
4










2 0 0

0 1 0

0 0 1










(32)

This yields the following equations:

T11 = fs + fd|α|2 +
fv
2

(33)

T22 = fs|β|2 + fd +
fv
4

(34)

T33 =
fv
4

(35)

T12 = fsβ
∗ + fdα.(36)

This model gives four equations with five unknown parameters. Freeman and Durden [11]

choose to set either α or β equal to zero. To make this decision, the contributions of the

surface model and double-bounce model are compared. If 〈|SHH + SVV|2〉 > 〈|SHH − SVV|2〉,

the coherency matrix is dominated by surface model and α is set to zero. Likewise, if
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〈|SHH + SVV|2〉 < 〈|SHH − SVV|2〉, the coherency matrix is dominated by double-bounce scat-

tering and β is set to zero.

For surface-dominant scattering and setting α = 0,

fs = T11 −
fv
2

(37)

β =

(
T12

fs

)∗
(38)

fd = T22 − fs|β|2 −
fv
4
.(39)

For dihedral-dominant scattering and setting β = 0,

fd = T22 −
fv
4

(40)

α =
T12

fd
(41)

fs = T11 − fd|α|2 −
fv
2
.(42)

Therefore, the TP (5) is separated into surface power, Ps, double-bounce power, Pd, and

volume power, Pv. From equation (32), we can set the trace of the coherency matrix equal

to an expression containing our five parameters:

tr {〈T 〉} = fs
(
1 + |β|2

)

︸ ︷︷ ︸

Ps

+ fd
(
1 + |α|2

)

︸ ︷︷ ︸

Pd

+ fv
︸︷︷︸

Pv

(43)

As the first mainstream model-based decomposition, the Freeman-Durden decomposition

is an excellent first step. In practice, there is an issue of overestimating the volume power

that leads to negative surface or dihedral power, which is a physical impossibility.
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The Freeman-Durden model assumes reflection symmetry which is to say that the co-

herency matrix has the following form [4]:

〈T 〉 =










T11 T12 0

T∗12 T22 0

0 0 T33










.(44)

These five values of the measured coherency matrix, the real values T11, T22, T33 and the

real and imaginary parts of the complex value T12 are accounted for in the Freeman-Durden

decomposition. The real and imaginary parts of the complex values T13, and T23 are not

accounted for. (Note that the complex values T21, T31, and T32 are the conjugates of T12, T13

and T23 and therefore do not contain any extra information.) To address situations where

the reflection symmetry assumption does not hold, another canonical scattering model is

needed.

2.2. YAMAGUCHI’S FOUR-COMPONENT DECOMPOSITION

Yamaguchi, et al., introduce a fourth scattering model (helical) to address nonreflection

symmetric conditions [14] by accounting for Im {T23}, and considers alternative volume

scattering models created with different probability density functions from (29).

2.2.1. Helical scattering. The Pauli feature vector and coherency matrix that represent

left-helical scattering is derived from the Jones vector that represents left circularly polarized

waves, ûL, and its associated Sinclair scattering matrix. For more on representing a wave’s

polarization with its Jones vector; see Appendix A.

ûL =
1√
2






1

j




 SL =

1

2






1 j

j −1




(45)
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kP(L) =
1√
2










0

1

j










T L = kP(L) · k∗TP(L) =
1

2










0 0 0

0 1 j

0 −j 1










(46)

Similarly, for right-circular polarization

ûR =
1√
2






1

−j




 SR = ûL · û∗TR =

1

2






1 −j

−j −1




(47)

kP(R) =
1√
2










0

1

−j










T R = kP(R) · k∗TP(R) =
1

2










0 0 0

0 1 −j

0 j 1










.(48)

Therefore, the generalized coherency matrix that represents the helical scattering com-

ponent is

T c =
1

2
fc










0 0 0

0 1 ±j

0 ∓j 1










.(49)

Note that R(θc)T cR(θc)
∗T = T c. Therefore, T c is invariant to rotation about the radar line

of sight.

2.2.2. Alternative Volume Scattering Models. Yamaguchi et al. assert that a ver-

tical structure of trunks and branches is dominant and therefore should not be modeled

with randomly oriented dipoles with a uniform distribution around the line of sight [14].

They propose the following probability distribution function to more accurately represent
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the mostly vertical nature of trees:

p(θ) =







1
2
sin θ, for 0 < θ < π

0, for π < θ < 2π

with

∫ 2π

0

p(θ)dθ = 1 .(50)

Using the integrals from (27) and the newly defined pdf, the volumetric model becomes

T v =
1

30










15 5 0

5 7 0

0 0 8










.(51)

Another pdf is proposed that represents dipoles that are mostly horizontal:

p(θ) =







1
2
cos θ, for 0 < θ < π

2
or 3

2
π < θ < 2π

0, otherwise

.(52)

The associated volumetric model is

T v =
1

30










15 −5 0

−5 7 0

0 0 8










.(53)

The data-driven decision to choose the appropriate volumetric model utilizes the expres-

sion

10 log

(〈|SVV|2〉
〈|SHH|2〉

)

= 10 log

(
t11 + t22 − 2Re {t12}
t11 + t22 + 2Re {t12}

)

.(54)
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For vertically dominated volumetric scattering, 〈|SVV|2〉 ≫ 〈|SHH|2〉. For horizontally

dominated volumetric scattering, 〈|SVV|2〉 ≪ 〈|SHH|2〉. From the volumetric model repre-

senting vertically dominant volumetric scattering,

10 log

(
t11 + t22 − 2Re {t12}
t11 + t22 + 2Re {t12}

)

= 10 log

(
15 + 7− 2(5)

15 + 7 + 2(5)

)

= 10 log

(
3

8

)

≈ −4.26dB,(55)

and the volumetric model representing horizontally dominant volumetric scattering

10 log

(
t11 + t22 − 2Re {t12}
t11 + t22 + 2Re {t12}

)

= 10 log

(
15 + 7− 2(−5)

15 + 7 + 2(−5)

)

= 10 log

(
8

3

)

≈ 4.26dB.(56)

Yamaguchi, et al., set the threshold of ±2dB for the logarithmic expression. This way,

the appropriate volumetric scattering model is chosen based on the measured data.

If 10 log

(
t11 + t22 − 2Re {t12}
t11 + t22 + 2Re {t12}

)

> 2then set T v =
1

30










15 −5 0

−5 7 0

0 0 8










.(57)

If

∣
∣
∣
∣
10 log

(
t11 + t22 − 2Re {t12}
t11 + t22 + 2Re {t12}

)∣
∣
∣
∣
≤ 2then set T v =

1

4










2 0 0

0 1 0

0 0 1










.(58)

If 10 log

(
t11 + t22 − 2Re {t12}
t11 + t22 + 2Re {t12}

)

< −2then set T v =
1

30










15 5 0

5 7 0

0 0 8










.(59)

2.2.3. Assigning Powers. The coherency matrix is divided into contributions of canon-

ical scattering models. Similar to Freeman-Durden, the power of each scatter-type is com-

puted by multiplying the coefficient with the trace of the associated canonical scatter-type
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matrix.

〈T 〉 = fs 〈T 〉s + fd 〈T 〉d + fv 〈T 〉v + fc 〈T 〉c(60)

Ps = fs
(
1 + |β|2

)
Pv = fv(61)

Pd = fd
(
1 + |α|2

)
Pc = fc

The imaginary part of element T23 appears only in the helical scattering model. Therefore,

fc can be solved for first by

Im {T23} = ±fc
2

⇒ fc = 2 |Im {T23}| .(62)

The helical power is set Pc = fctr {Tc} = fc. The T33 element is determined by the volume

and helical scattering models. The next step is to select the appropriate volumetric scattering

model for the measured data from equations (57), (58), and (59).

If (57) or (59) is satisfied, then

T33 =
4

15
fv +

1

2
fc ⇒ fv =

15

4

(

T33 −
1

2
fc

)

.(63)

If (58) is satisfied, then

T33 =
1

4
fv +

1

2
fc ⇒ fv = 4

(

T33 −
1

2
fc

)

.(64)

Now that both Pc and Pv have been calculated, we are left with three equations and four

unknowns. Ps and Pd are calculated in a similar way to Freeman-Durden’s decomposition by

setting α or β equal to zero if the coherency matrix is dominated by double-bounce or surface
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scattering respectively. If 〈|SHH + SVV|2〉 > 〈|SHH − SVV|2〉, the coherency matrix is domi-

nated by surface model and α is set to zero. Likewise, if 〈|SHH + SVV|2〉 < 〈|SHH − SVV|2〉,

the coherency matrix is dominated by double-bounce scattering and β is set to zero. Using

the volumetric scattering model from (57), we get the equations

T11 = fs + fd|α|2 +
fv
2

(65)

T22 = fs|β|2 + fd +
7

30
fv +

fc
2

(66)

T12 = fsβ
∗ + fdα− fv

6
.(67)

For surface-dominant scattering and setting α = 0,

fs = T11 −
fv
2

(68)

β =

(

T12 +
fv
6

fs

)∗
(69)

fd = T22 − fs|β|2 −
7

30
fv −

fc
2
.(70)

For dihedral-dominant scattering and setting β = 0,

fd = T22 −
7

30
fv −

fc
2

(71)

α =
T12 +

fv
6

fd
(72)

fs = T11 − fd|α|2 −
fv
2
.(73)

Using the volumetric scattering model from (58), we get the equations

T11 = fs + fd|α|2 +
fv
2

(74)
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T22 = fs|β|2 + fd +
fv
4

+
fc
2

(75)

T12 = fsβ
∗ + fdα.(76)

For surface-dominant scattering and setting α = 0,

fs = T11 −
fv
2

(77)

β =

(
T12

fs

)∗
(78)

fd = T22 − fs|β|2 −
fv
4

− fc
2
.(79)

For dihedral-dominant scattering and setting β = 0,

fd = T22 −
fv
4

− fc
2

(80)

α =
T12

fd
(81)

fs = T11 − fd|α|2 −
fv
2
.(82)

Using the volumetric scattering model from (59), we get the equations

T11 = fs + fd|α|2 +
fv
2

(83)

T22 = fs|β|2 + fd +
7

30
fv +

fc
2

(84)

T12 = fsβ
∗ + fdα +

fv
6
.(85)

For surface-dominant scattering and setting α = 0,

fs = T11 −
fv
2

(86)
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β =

(

T12 − fv
6

fs

)∗
(87)

fd = T22 − fs|β|2 −
7

30
fv −

fc
2
.(88)

For dihedral-dominant scattering and setting β = 0,

fd = T22 −
7

30
fv −

fc
2

(89)

α =
T12 − fv

6

fd
(90)

fs = T11 − fd|α|2 −
fv
2
.(91)

Therefore, we can calculate the remaining parameters fs, fd, α, β for each of the volume

scattering matrices, and assign the surface and dihedral powers,

Ps = fstr {Ts} = fs
(
1 + |β|2

)
(92)

Pd = fdtr {Td} = fd
(
1 + |α|2

)
.(93)

Similar to the Freeman-Durden decomposition, it is possible to end up with negative

powers by overestimating the powers of scatter-types that are subtracted first, in this case

the helical and the volume scatter-types. Therefore, certain checks were later placed in this

decomposition to insure that nonnegative powers result and that the individual powers sum

to the total power of the coherency matrix [4]:

If Pv + Pc > TP,

setPs, Pd = 0, andPv = TP − Pc.(94)
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If Pv + Pc ≤ TP andPs < 0,

setPs = 0, andPd = TP − Pc − Pv.(95)

If Pv + Pc ≤ TP andPd < 0,

setPd = 0, andPs = TP − Pc − Pv.(96)

This decomposition improves on the Freeman-Durden decomposition by adding the heli-

cal model to account for asymmetrical coherency matrices where Im {T23} 6= 0. Therefore,

six of the nine parameters of the measured coherency matrix are accounted for. The complex

element T13 and the real part of element T23 remain unaccounted. Yamaguchi’s decompo-

sition also insures that all powers are nonnegative and that they sum to the total power,

but it does so at the end of the decomposition without correcting for the overestimation of

powers that caused the issue.

2.3. NONNEGATIVE EIGENVALUE DECOMPOSITION (NNED)

To address the problem of negative powers of both the Freeman-Durden and Yamaguchi

decompositions, van Zyl, et al., propose a decomposition [15] that uses the eigenvalues of the

coherency matrix to avoid negative powers. This decomposition also takes into consideration

a residual term which contains the information in the measured coherency matrix that is not

modeled by the chosen scatter-types:

〈[T ]〉 = a[Tmodel] + [T res].(97)

Each of the matrices in (97) must represent a physically realizable coherency matrix.

This can be done by ensuring that the eigenvalues of each matrix are real and nonnegative.
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To solve for a in (97), rearrange the equation in the form

[T res] = 〈[T ]〉 − a[Tmodel].(98)

This is similar to the subtraction of the volumetric model in the Freeman-Durden decom-

position or the helical and volumetric models in the Yamaguchi decomposition with a = 1.

Unlike those decompositions, van Zyl, et al., calculate the maximum value of a that ensures

nonnegative real eigenvalues for the residual matrix. Assuming reflection symmetry, the

model and the measured coherency matrices will have the form

[T res] =










γ δ 0

δ∗ ζ 0

0 0 κ










− a










γa δa 0

δ∗ ζa 0

0 0 κa










.(99)

The eigenvalues of the residual matrix are

λ1 =
1

2

(

γ − γa + ζ − aζa +

√

(γ − aγa − ζ + aζa)
2 + 4|δ − aδa|2

)

λ2 =
1

2

(

γ − γa + ζ − aζa −
√

(γ − aγa − ζ + aζa)
2 + 4|δ − aδa|2

)

(100)

λ3 = κ− aκa.

From (100), λ1 ≥ λ2, and the maximum value for a is found when the smaller of λ2 or λ3

is zero. Any larger value of a will cause at least one eigenvalue to be negative. To find the

largest value for a, find the minimum of the values that would make either λ2 or λ3 equal

zero.
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To make λ2 = 0, set

(γ − aγa) (ζ − aζa)− |δ − aδa|2 = 0,(101)

which gives the roots

a =
Z ±

√

Z2 − 4 (γaζa − |δa|2) (γζ − |δ|2)
2 (γaζa − |δa|2)

.(102)

For λ3 = 0, a = κ
κa
. Therefore,set

amax = min







Z −
√

Z2 − 4 (γaζa − |δa|2) (γζ − |δ|2)
2 (γaζa − |δa|2)

κ

κa

.

In particular, van Zyl, et al., use this approach to separate the measured coherency ma-

trix into three scatter-types: canopy, odd-bounce, and even-bounce (similar to the Freeman-

Durden decomposition scatter-types: volumetric, surface, and dihedral) with a residual ma-

trix to capture data that is not well represented by those models:

〈T 〉 = a[T canopy] + λodd[T odd] + λeven[T even] + λres[T res].(103)

The first step in the NNED is to subtract the canopy scatter-type from the measured

coherency matrix and find the maximum value for a. The eigenvectors associated with the
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eigenvalues from (100) are

e1 =










2λ1−2(ζ−aζa)

2(δ−aδa)
∗

1

0










e2 =










2λ2−2(ζ−aζa)

2(δ−aδa)
∗

1

0










e3 =










0

0

1










.(104)

The eigenvectors of the surface and dihedral scatter-type models that are associated with

nonzero eigenvalues are as follows:

eβ =










1
β

1

0










eα =










α

1

0










.(105)

If γ−aγa ≥ ζ−aζa, then the matrix 〈T 〉−a[T canopy] is surface dominant. Then associate

the eigenvector e1 with surface scattering and the eigenvector e1 with dihedral scattering.

Use this association to set values for β and α:

1

β
=

2λ1 − 2 (ζ − aζa)

2 (δ − aδa)
∗ λodd = λ1

α =
2λ2 − 2 (ζ − aζa)

2 (δ − aδa)
∗ λeven = λ2.(106)

If γ−aγa < ζ−aζa, then the matrix 〈T 〉−a[T canopy] is dihedral dominant. Then associate

the eigenvector e1 with dihedral scattering and the eigenvector e1 with surface scattering.

Use this association to set values for β and α:

α =
2λ1 − 2 (ζ − aζa)

2 (δ − aδa)
∗ λeven = λ1

1

β
=

2λ2 − 2 (ζ − aζa)

2 (δ − aδa)
∗ λodd = λ2.(107)
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Now powers can be assigned:

Pcanopy = a (tr {Tcanopy})(108)

Podd = λodd

(
1 + |β|2

)
(109)

Peven = λeven

(
1 + |α|2

)
.(110)

The NNED provides a solution to the negative power problem that exists in [11] and

[14]. The NNED also provides a frame work of minimizing a residual matrix for an optimal

decomposition. This method has been extended to include the full decomposition of the

coherency matrix [16], as well as generalizing the volume scattering model [17].

2.4. ROTATION AROUND THE RADAR LINE OF SIGHT

Lee and Ainsworth proposed an orientation angle compensation [18] that Yamaguchi ap-

plied to his four component decomposition [19]. This rotation improves results by correctly

identifying rotated dihedrals (double-bounce objects) as double-bounce instead of misclassi-

fying them as volumetric.

2.4.1. Line of Sight vs. SHH + SVV Axis. Throughout the literature of the following

decompositions that rotate the coherency matrix, the claim is made that the rotation about

the radar line of sight can be mathematically described by rotating the coherency matrix

about the SHH + SVV axis. In order to show that these two rotations are in fact equivalent,

both rotations are analyzed.
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The measured Sinclair scattering matrix can be rotated around the line of sight by matrix

multiplication with

[S(θ)] = [R(θ)] [S] [R(θ)]∗T(111)

[S(θ)] =






cos θ sin θ

− sin θ cos θ











SHH SHV

SVH SVV











cos θ − sin θ

sin θ cos θ




(112)

S11(θ) = SHH cos2 θ + SVH sin θ cos θ + SHV cos θ sin θ + SVV sin2 θ(113)

S12(θ) = −SHH sin θ cos θ + SVH cos2 θ − SHV sin2 θ + SVV sin θ cos θ(114)

S21(θ) = −SHH sin θ cos θ − SVH sin2 θ + SHV cos2 θ + SVV sin θ cos θ(115)

S22(θ) = SHH sin2 θ − SVH sin θ cos θ − SHV cos θ sin θ + SVV cos2 θ(116)

Assuming reciprocity, SHV = SVH, the Pauli feature vector associated with this rotated Sinclair

matrix is

k(θ) =
1√
2










k1

k2

k3










(117)

where

k1 = S11(θ) + S22(θ) = SHH + SVV(118)

k2 = S11(θ)− S22(θ) = SHH
(
cos2 θ − sin2 θ

)
+ 4SHV sin θ cos θ + SVV

(
sin2 θ − cos2 θ

)
(119)

= (SHH − SVV) cos 2θ + 2SHV sin 2θ

k3 = 2S12(θ) = −2SHH sin θ cos θ + 2SHV
(
cos2 θ − sin2 θ

)
+ 2SVV sin θ cos θ(120)
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= − (SHH − SVV) sin 2θ + 2SHV cos 2θ.

The associated coherency matrix for this Pauli feature vector is

〈T (θ)〉 =
〈
k(θ) · k(θ)∗T

〉
=

1

2<









|k1|2 k1k
∗
2 k1k

∗
3

k2k
∗
1 |k2|2 k2k

∗
3

k3k
∗
1 k3k

∗
2 |k3|2








>,(121)

with

|k1|2 = |SHH + SVV|2(122)

k1k
∗
2 = (SHH + SVV) ((SHH − SVV) cos 2θ + 2SHV sin 2θ)∗(123)

=
(

|SHH|2 − |SVV|2 + 2Im
{
SVVS

∗
HH

})

cos 2θ

k1k
∗
3 = (SHH + SVV) (− (SHH − SVV) sin 2θ + 2SHV cos 2θ)∗(124)

=
(

|SVV|2 − |SHH|2 + 2Im
{
SHHS

∗
VV

})

sin 2θ

|k2|2 = |(SHH − SVV) cos 2θ + 2SHV sin 2θ|2(125)

= |SHH − SVV|2 cos2 2θ

k2k
∗
3 = ((SHH − SVV) cos 2θ + 2SHV sin 2θ) (− (SHH − SVV) sin 2θ + 2SHV cos 2θ)∗(126)

= −1

2
|SHH − SVV|2 sin 4θ

|k3|2 = |− (SHH − SVV) sin 2θ + 2SHV cos 2θ|2(127)

= |SHH − SVV|2 sin 4θ.

A rotation of the coherency matrix around the SHH + SVV axis is described by

〈T (θ)〉 = R(θ) 〈T 〉R(θ)∗T,(128)
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with

R(θ) =










1 0 0

0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ










.(129)

The elements of this rotated coherency matrix about the SHH + SVV axis are

T11(θ) = |SHH + SVV|2 = T11 = |k1|2(130)

T12(θ) = (SHH + SVV) ((SHH − SVV) cos 2θ + 2SHV sin 2θ)∗ = k1k
∗
2(131)

= T12 cos 2θ + T13 sin 2θ

T21(θ) = T12(θ)
∗

T13(θ) = (SHH + SVV) (− (SHH − SVV) sin 2θ + 2SHV cos 2θ)∗ = k1k
∗
3(132)

= −T12 sin 2θ + T13 cos 2θ

T31(θ) = T13(θ)
∗

T22(θ) = |(SHH − SVV) cos 2θ + 2SHV sin 2θ|2 = |k2|2(133)

= T22 cos
2 2θ +Re {T23} sin 4θ + T33 sin

2 2θ

T23(θ) = ((SHH − SVV) cos 2θ + 2SHV sin 2θ) . . .

(− (SHH − SVV) sin 2θ + 2SHV cos 2θ)∗ = k2k
∗
3(134)

= jIm {T23}

T32(θ) = T23(θ)
∗ = −jIm {T23}

T33(θ) = |− (SHH − SVV) sin 2θ + 2SHV cos 2θ|2 = |k3|2(135)

= T22 sin
2 2θ −Re {T23} sin 4θ + T33 cos

2 2θ.
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Therefore, a rotation of the Sinclair scattering matrix about the radar line of sight is equivalent

to a rotation of the coherency matrix about the SHH + SVV axis.

2.4.2. Finding θ. The misclassification of rotated dihedrals as volumetric can be reduced by

rotating the coherency matrix in order to minimize the T33(θ) term. The derivative of T33(θ) with

respect to θ is

T33(θ)
′ = |SHH − SVV|2 2 sin 4θ − 4Re

{

(SHH − SVV) (2SHV)
∗} cos 4θ − 8 |SHV|2 sin 4θ

=
(

2 |SHH − SVV|2 − 8 |SHV|2
)

sin 4θ − 4Re
{

(SHH − SVV) (2SHV)
∗} cos 4θ.(136)

By setting T33(θ)
′ = 0 we find the θ that minimizes the T33(θ) element:

0 =
(

2 |SHH − SVV|2 − 8 |SHV|2
)

sin 4θ − 4Re
{

(SHH − SVV) (2SHV)
∗} cos 4θ.(137)

Solving this equation for 2θ:

tan 4θ =
4Re

{
(SHH − SVV)S

∗
HV

}

|SHH − SVV|2 − 4 |SHV|2
(138)

and

2θ =
1

2
tan−1

(

2Re
{
(SHH − SVV)S

∗
HV

}

|SHH − SVV|2 − 4 |SHV|2

)

=
1

2
tan−1

(
2Im {T23}
T22 − T33

± nπ

)

n = 0, 1,(139)

with θ ∈
[
−π

4 ,
π
4

]
.

After this rotation of the coherency matrix, (134) shows that T23(θ) = jIm {T23}. So the only

contribution to T23(θ) is the imaginary part of T23. This rotation reduces the number of parameters

of the coherency matrix from nine to eight by eliminating the real part of element T23 which was

previously unaccounted for. The only canonical scatterer to contribute to the element T23(θ) is the
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helical scatterer. Therefore, similar to the Yamaguchi decomposition without rotation, the helical

scattering power is defined first with (61) (62). The rest of the powers are assigned as before using

the rotated coherency matrix and (63), (64), (94), (95), and (96).

2.5. G4U

The rotation of the coherency matrix eliminates the real part of the T23 element. Singh,

et al., introduce an additional unitary transformation that eliminates the element altogether in

the General Four-Component Scattering Power Decomposition with Unitary Transformation of

Coherency Matrix (G4U) [20].

After the first real unitary rotation (129) about the radar line of sight, the second complex

unitary transformation (141) is

〈T (ϕ)〉 = U(ϕ) 〈T 〉U(ϕ)∗T,(140)

where U(ϕ) is defined as

U(ϕ) =










1 0 0

0 cos 2ϕ j sin 2ϕ

0 j sin 2ϕ cos 2ϕ










.(141)

After this second unitary transformation, the elements of the twice-rotated matrix are

T11(ϕ) = T11(θ) = T11(142)

T12(ϕ) = T∗21(ϕ) = T12(θ) cos 2ϕ− jT13(θ) sin 2ϕ(143)

T13(ϕ) = T∗31(ϕ) = T13(θ) cos 2ϕ− jT12(θ) sin 2ϕ(144)

T22(ϕ) = T22(θ) cos
2 2ϕ+ Im {T23(θ)} sin 4ϕ+ T33(θ) sin

2 2ϕ(145)

T23(ϕ) = T∗32(ϕ) = Re {T23(θ)} = 0(146)
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T33(ϕ) = T22(θ) sin
2 2ϕ− Im {T23(θ)} sin 4ϕ+ T33(θ) cos

2 2ϕ.(147)

Note that T23(ϕ) = 0. After this second transformation, both the real and imaginary components

of the T23 are eliminated. Therefore, the total number of parameters of the coherency matrix

is reduced to seven. Also, the twice-rotated coherency matrix makes use of both the real and

imaginary parts of the complex element T13. So this decomposition is able to make use of all the

elements of the measured coherency matrix.

The angle ϕ is calculated, similar to θ, by minimizing the T33(θ) element.

2ϕ =
1

2
tan−1

(
2Im {T23(θ)}
T22(θ)− T33(θ)

± nπ

)

n = 0, 1,(148)

with ϕ ∈
[
−π

4 ,
π
4

]
.

Singh also implements another volumetric scattering matrix for volume scattering caused by

oriented dihedrals from Sato’s paper [21]:

T v =
1

15










0 0 0

0 7 0

0 0 8










.(149)

This matrix accounts for the HV component for dihedral structures.

The decision of whether to use a volumetric scattering matrix with oriented dipoles or one with

oriented dihedrals is made with the expression

C1 = 2Re
{
fsβ + fdα

∗}

= T11 (θ)− T22 (θ) +
1

2
fc.(150)
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According to the sign of C1 the volume scattering from theHV component is assigned to surface

scattering (vegetation) or double bounce scattering (oriented dihedral structure).

C1 < 0 : volume scattering by vegetation.(151)

C1 ≥ 0 : volume scattering by dihedral.(152)

The powers are assigned similarly to the Yamaguchi decomposition. A comprehensive flowchart

can be found in Singh’s paper [20]. After the coherency matrix is rotated around the radar line of

sight, the helical power is set Pc = 2|Im {T23} |. Next, the volumetric power is set depending on

the volumetric scattering matrix (from (57)-(59), (149)) that is selected using (54), (150)-(152). A

system of equations is constructed for each of the four volumetric matrices that are used in this

decomposition. Each of the systems contain three equations with four unknowns and has the form

fs + fd|α|2 = S

fs|β|2 + fd = D(153)

fsβ
∗ + fdα = C.

where S,D, and C depend on the volumetric scattering matrix that is used. For the volumetric

scattering matrix using a cosine distribution, (57),

S = T11 (θ)−
1

2
Pv

D = TP − Pv − Pc − S(154)

C = T12 (θ) + T13 (θ) +
1

6
Pc,

with

Pv =
15

8
(2T33 (θ)− Pc) .(155)
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For the volumetric scattering matrix using a uniform distribution (58),

S = T11 (θ)−
1

2
Pv

D = TP − Pv − Pc − S(156)

C = T12 (θ) + T13 (θ) ,

with

Pv = 2 (2T33 (θ)− Pc) .(157)

For the volumetric scattering matrix using a sine distribution (59),

S = T11 (θ)−
1

2
Pv

D = TP − Pv − Pc − S(158)

C = T12 (θ) + T13 (θ)−
1

6
Pc,

with

Pv =
15

8
(2T33 (θ)− Pc) .(159)

For the volumetric scattering matrix caused by oriented dihedral scattering (149),

S = T11 (θ)

D = TP − Pv − Pc − S(160)

C = T12 (θ) + T13 (θ) ,

with

Pv =
15

16
(2T33 (θ)− Pc) .(161)
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Similar to the Freeman-Durden and Yamaguchi decompositions, to solve the system of equations,

a decision is made on whether the coherency matrix is dominated by surface or dihedral scattering.

The decision made by looking at the quantity C0 defined by

C0 = 2T11 + Pc − TP.(162)

If C0 > 0, then the coherency matrix is dominated by surface scattering and α is set to zero.

Therefore,the quantities fs, β, and fd can be obtained as follows:

fs = S

β∗ =
C

S
(163)

fd = D − |C|2
S

.

If C0 ≤ 0, then the coherency matrix is dominated by surface scattering and β is set to zero.

Therefore,the quantities fs, α, and fd can be solved:

fs = S − |C|2
D

α =
C

D
(164)

fd = D.

The remaining surface and dihedral powers, Ps and Pd, are calculated in the same way as Freeman-

Durden and Yamaguchi, Ps = fs
(
1 + |β|2

)
and Pd = fd

(
1 + |α|2

)
.

2.6. FREEMAN II

Freeman extends the Freeman-Durden decomposition to a 2-component decomposition [22] that

divides the measured coherency matrix, that is assumed to be reflection-symmetric, into a canopy
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scattering component and a ground scattering component:

〈T 〉 = fgT g + fcanT can.(165)

The canopy scattering model assumes randomly oriented scatterers with azimuthal symmetry

(a scatterer that exhibits azimuthal symmetry is one that exhibits both reflection symmetry and

rotational symmetry):

Tcan =










1 + ρ 0 0

0 1− ρ 0

0 0 1− ρ










,(166)

with ρ ∈ Re and 0 ≤ ρ ≤ 1. The second scattering mechanism combines the surface and dihedral

scattering mechanisms from the original Freeman-Durden decomposition [11] into one scattering

model to describe the ground:

Tg =










|αg|2 αg 0

α∗g 1 0

0 0 0










,(167)

where |αg| is allowed to take on any positive value. In the case where |α| ≤ 1, this ground matrix

represents the dihedral matrix from before in (22). In the case where |αg| ≥ 1, this ground matrix

represents a direct surface scatterer, and takes the form of the surface scattering matrix in (17). In

this second case, αg is assumed to be real.
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Along with the assumption of reflection symmetry, this parameterization gives the following

equation:

〈T 〉 =










T11 T12 0

T21 T22 0

0 0 T33










= fg










|αg|2 αg 0

α∗
g 1 0

0 0 0










+ fcan










1 + ρ 0 0

0 1− ρ 0

0 0 1− ρ










.(168)

Equation (168) yields the following system of four equations with four unknowns:

T11 = fg|αg|2 + fcan (1 + ρ)(169)

T22 = fg + fcan (1− ρ)(170)

T33 = fcan (1− ρ)(171)

T12 = fgαg.(172)

To solve this system of equations, note that combining (170) and (171) yields:

T22 − T33 = fg.(173)

Then αg can be solved for using (172):

αg =
T12
fg

=
T12

T22 − T33
.(174)

fcan can now be solved by using (169) and (171):

T11 + T33 = fg|αg|2 + fcan (1 + ρ) + fcan (1− ρ) = fg|αg|2 + 2fcan

→ fcan =
T11 + T33 − fg|αg|2

2
.(175)
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Lastly, ρ can be solved for using (171):

ρ =
fcan − T33

fcan
.(176)

Now the powers of the scatter-types can be solved:

Pg = fg
(
1 + |αg|2

)
(177)

Pcan = fcan (3− ρ) .(178)

If the solution to the parameters are not within the constraints fg ≥ 0, fcan ≥ 0, 0 ≤ ρ ≤ 1, then

they are not acceptable. To get around this issue, Freeman averaged over more and more pixels,

by increasing the size of the box-filter, until the negative values were eliminated. It is important to

note that this particular decomposition is specifically designed to measure the polSAR return from

natural terrain containing mostly forested regions. Therefore, it is not ideal to be used to describe

other terrain.

2.7. EXTENDED BRAGG SURFACE MODEL

The surface model used in the Freeman-Durden decomposition, subsequently other model-based

decompositions, is based on the small perturbation model (SPM), which makes some assumptions

that one must consider.

Some of the limitations of the SPM are as follows:

• Small roughness validity range 2πs
λ

≪ 0.3

• Inability to describe depolarization effects,

where s is the surface rms height and λ is the wavelength. This means with 0.3
2π ≈ 0.048 that

s ≪ 0.048λ. So for X-band systems, where λ ≈ 3cm, that the surface rms height must be small,

s≪ 0.15cm. Many natural surface do not fit this limitation.
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The robustness of SPM inside its validity range and its relevant physical background lead to

several investigations to use it as a valuable starting point for an extended model. Hanjsek, et. al.,

extend the Bragg surface model to address these limitations by modeling the surface as a reflection-

symmetric depolarizer by rotating the Bragg coherency matrix [T ] about an angle θ in the plane

perpendicular to the scattering plane [23]

[T (θ)] =










1 0 0

0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ










[T ]










1 0 0

0 cos 2θ − sin 2θ

0 sin 2θ cos 2θ










,(179)

and performing a configurational average over a given distribution P (θ) of θ:

[T ] =

∫ 2π

0
[T (θ)]P (θ)dθ.(180)

Assuming P (θ) to be a uniform distribution about zero with width θ1

P (θ) =







1
2θ1

|θ| ≤ θ1

0 otherwise

with 0 ≤ θ1 ≤
π

2
,(181)

and the coherency matrix becomes

TX−Bragg =










C1 C2sinc(2θ1) 0

C2sinc(2θ1) C3(1 + sinc(4θ1)) 0

0 0 C3(1− sinc(4θ1))










,(182)

with

C1 = |Rs +Rp|2 C2 = (Rs +Rp)(R
∗
s −R∗

p)

C3 =
1

2
|Rs −Rp|2.(183)
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Recall

β =
(Rs +Rp)

∗ (Rs −Rp)

|Rs +Rp|2
.(184)

Then

TX−Bragg =










1 β∗sinc(2θ1) 0

βsinc(2θ1)
|β|2

2 (1 + sinc(4θ1)) 0

0 0 |β|2

2 (1− sinc(4θ1))










,(185)

with |β| ≤ 1.

Equation (185) descibes the coherency matrix of a surface model that loosens the constraints

of the SPM (17) in order to model a slightly rougher surface.

2.8. ADAPTIVE TWO-COMPONENT DECOMPOSITION

This decomposition extends FreemanII to have an X-Bragg surface model and an improved

volume scattering model. Therefore, it will take on a similar form to (165). If the PDF in (181) is

assumed to have a zero-mean Gaussian distribution [24], [25] with standard deviation, σ2, instead

of a uniform distribution, the ground scattering model becomes

Tg = fg










1 β∗e−2σ2

0

βe−2σ2 |β|2

2

(

1 + e−8σ2
)

0

0 0 |β|2

2

(

1− e−8σ2
)










,(186)

again with |β| ≤ 1.

The improved volume scattering model builds on the volume matrices based on the first order

sine function in Yamaguchi’s decomposition [14]. The nth sine and cosine PDFs are used here with

the corresponding coherency matrices:
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T sin
v =

1

A










Tv11 Tv12 0

Tv12 Tv22 0

0 0 Tv33










T cos
v =

1

A










Tv11 −Tv12 0

−Tv12 Tv22 0

0 0 Tv33










,(187)

with

Tv11 =

√
πΓ
(
n+1
2

)

2Γ
(
n
2 + 1

)(188)

Tv12 = −n
√
πΓ
(
n+1
2

)

4Γ
(
n
2 + 2

)(189)

Tv22 =

(
n2 + 2n+ 4

)√
πΓ
(
n+1
2

)

8Γ
(
n
2 + 3

)(190)

Tv33 =

√
πΓ
(
n+3
2

)

Γ
(
n
2 + 3

)(191)

A =

∫ π

0
sinn θ dθ =

∫ π
2

−π
2

cosn θ dθ =

√
πΓ
(
n+1
2

)

Γ
(
n
2 + 1

)(192)

Γ (a) =

∫ ∞

0
e−tta−1 dt.(193)

The parameter n is solved for first by way of the NNED [15]. The matrix 〈T 〉 − Tv,










T11 − fvTv11 T12 − fvTv12 0

T12 − fvTv12 T22 − fvTv22 0

0 0 T33 − fvTv33










(194)

is minimized while holding to the constraint that its eigenvalues are nonnegative. Once this solved,

it gives the system of equations

T11 − fvTv11 = fg(195)

T12 − fvTv12 = fgβ
∗e−2σ2

(196)
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T22 − fvTv22 =
fg
2
|β|2

(

1 + e−8σ2
)

(197)

T33 − fvTv33 =
fg
2
|β|2

(

1− e−8σ2
)

.(198)

The parameter, fg, is defined by (195). Adding (197) and (198) allows |β|2 to be solved. Subtracting

(198) from (197) then allows σ to be solved. Once sigma is solved, use (196) to solve for β∗.

This decomposition is an example of inserting improved scatter-types into an existing decom-

position. Though the models theoretically handle cases that are more general than the previously

used ones, we still need a way to verify that the newer scatter-types really do a better job of

modeling the backscatter.

2.9. CHEN DECOMPOSITION

Model-based decompositions [14], [19], and [20] continue to improve on the Freeman-Durden

decomposition [11] by continuing to address issues of negative power, reflection symmetry assump-

tion, orientation angle compensation, etc. Even with these improvements, additional issues still

remain to be addressed such as

• scattering model priority,

• overestimation of parameters α and β,

• model adaptability,

• having a way to assess how well the canonical scattering models describe the measured

data.

Model-based decompositions such as [14], [19], and [20] all solve for Pc first, then solve for

Pv, then solve for the rest of the powers. This order of solving for powers leads to overestimations

of Pc and Pv and therefore underestimations of Ps and Pd. The parameters α and β should both

have a magnitude less than 1 for every pixel. With the α and β values from the model-based

decompositions mentioned in the previous chapters, these magnitude values are routinely greater
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than 1, sometimes greater than 105. A surface scattering coherency matrix with |β| > 1 acts like a

dihedral matrix with α̃ = 1
β∗ .

Model adaptability refers to how easily different scattering models can be added into the de-

composition. There is not an easy way to swap out a scattering model for another with the

aforementioned model-based decompositions. The previous model-based decompositions force the

total response to equal the contributions from the scattering models, but does not assess whether

or not the contributions accurately represent the measured data. These issues are addressed in a

general model-based decomposition proposed by Chen, et al. [26]

Model-based decompositions assume that each pixel in a polarimetric SAR image is composed

of contributions of specific scattering models. How do we know that we are using models that

accurately represent what is measured? Chen, et al., propose a general model-based decomposition

[26] that decomposes the coherency matrix into the same four scatter-types as the Yamaguchi

and G4U decompositions [14, 20], and includes a residual coherency matrix that captures all the

contribution that is not modeled with the chosen canonical scatter-types [17, 15]:

T = T s(θodd) + T d(θdbl) + 〈T v〉+ T c + T res,(199)

where Ts(θodd) represents the rotation of the odd-bounce coherency matrix by angle θodd. Similarly,

the double-bounce coherency matrix is rotated by θdbl. The Tres is the residual coherency matrix.

Note that there are two different θ rotations for odd-bounce and double-bounce. This accounts for

the case where the surface scattering and the dihedral scattering take place at different orientations.

The goal of this decomposition is to solve for the unknown parameters by minimizing the

residual matrix. Using the scattering models from the G4U decomposition, with different rotations

about the line of sight for the odd-bounce and double-bounce scattering matrices, (199) becomes
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








T11 T12 T13

T21 T22 T23

T31 T23 T33










= fs










1 β∗ cos 2θodd −β∗ sin 2θodd

β cos 2θodd |β|2 cos2 2θodd −1
2 |β|2 sin 4θodd

−β sin 2θodd −1
2 |β|2 sin 4θodd |β|2 sin2 2θodd










+ · · ·(200)

fd










|α|2 α cos 2θdbl −α sin 2θdbl

α∗ cos 2θdbl cos2 2θdbl −1
2 sin 4θdbl

−α∗ sin 2θdbl −1
2 sin 4θdbl sin2 2θdbl










+ · · ·

fv










a d e

d∗ b f

e∗ f∗ c










+ fc










0 0 0

0 1 ±j

0 ∓j 1










+










Tres11 Tres12 Tres13

Tres21 Tres22 Tres23

Tres31 Tres23 Tres33










.

The values of a through f for the volumetric coherency matrix are set depending on the vol-

umetric model that is used for a particular iteration, from (57)-(59), (149), or other volumetric

models. Here, Chen, et al., introduces another volumetric scattering model which produces the

highest entropy:

T v =
1

3










1 0 0

0 1 0

0 0 1










.(201)

Chen, et al., also make the assumption that β ≈ Re {β} and set Im {β} = 0. Equation (200)

yields nine equations with nine unknown parameters. Solving for the residual terms gives

Tres11 = T11 − fs − fd|α|2 − afv(202)

Tres22 = T22 − fs|β|2 cos2 2θodd − fd cos
2 2θdbl − bfv −

fc
2

(203)

Tres33 = T33 − fs|β|2 sin2 2θodd − fd sin
2 2θdbl − cfv −

fc
2

(204)
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Re {Tres12} = Re {T12} − fsβ cos 2θodd − fdRe {α} cos 2θdbl − fvRe {d}(205)

Re {Tres13} = Re {T13}+ fsβ sin 2θodd + fdRe {α} sin 2θdbl − fvRe {e}(206)

Re {Tres23} = Re {T23}+
fs
2
|β|2 sin 4θodd +

fd
2

sin 4θdbl − fvRe {f}(207)

Im {Tres12} = Im {T12} − fdIm {α} cos 2θdbl − fvIm {d}(208)

Im {Tres13} = Im {T13}+ fdIm {α} sin 2θdbl − fvIm {e}(209)

Im {Tres23} = Im {T23} − fvIm {f} ∓ fc
2
.(210)

The parameters, {fs, fd, fv, fc, θodd, θdbl, α, β}, have the following constraints [26]:

0 ≤ fv, fd, fs ≤ tr {T } 0 ≤ fc ≤ 2|Im (T23) |

−π
4
≤ θdbl, θodd ≤ π

4
|β|, |α| < 1,(211)

where tr {T } is the trace of the coherency matrix and tr {T } = T11 + T22 + T33.

Let T r represent a vector that contains the real and imaginary elements that define T res. For

model inversion, the optimization criterion is to minimize the square of the L2 norm of T r:

T r =
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

||T r||22 =
9∑

i=1

|T r(i)|2.(212)
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Therefore, with β ≈ Re {β}, the objective function that is to be minimized is F =
9∑

i=1
|Tr(i)|2:

F =
(
T11 − fs − fd|α|2 − afv

)2

+

(

T22 − fsβ
2 cos2 2θodd − fd cos

2 2θdbl − bfv −
fc
2

)2

+

(

T33 − fsβ
2 sin2 2θodd − fd sin

2 2θdbl − cfv −
fc
2

)2

+
(

Re {T12} − fsβ cos 2θodd − fdRe {α} cos 2θdbl − fvRe {d}
)2

+
(

Re {T13}+ fsβ sin 2θodd + fdRe {α} sin 2θdbl − fvRe {e}
)2

+

(

Re {T23}+
fs
2
β2 sin 4θodd +

fd
2

sin 4θdbl − fvRe {f}
)2

+
(

Im {T12} − fdIm {α} cos 2θdbl − fvIm {d}
)2

+
(

Im {T13}+ fdIm {α} sin 2θdbl − fvIm {e}
)2

+

(

Im {T23} − fvIm {f} − fc
2

)2

.(213)

The solution provided by the “conventional model-based decomposition” [26] is used as an

initial value for this nonlinear least squares optimization. This minimization is repeated for each

volumetric coherency matrix, 〈T v〉, that is to be considered. Chen sites five such volumetric

coherency matrices in [26] and are found in (57)-(59),(149), and (201), but mentions that others

could be used as well. The set of parameters with the smallest residual is selected, and the four

powers are calculated as in (61).
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CHAPTER 3

IMPLEMENTATION OF EXISTING METHODS

In order to analyze these two methods of modeling the backscatter, I created working algorithms

in MATLAB. The HH, HV, VH, VV channels of the polarimetric SAR image are loaded in to the

script. I implemented and ran the G4U decomposition on the polarimetric data to set initial points.

From this, the averaged coherency matrix values, T11, T22, T33, T12, T13, T23, the volume coherency

matrix values a, b, c, d, e, f from the volume coherency matrices in Chen’s paper, and the parameter

values fs, fd, fv, fc, θ, α, β are recorded for each pixel in image.

3.1. CONVEXITY OF THE OBJECTIVE FUNCTION

Many minimization techniques assume that the objective function is convex. This means that

for every pair of points (x1,x2) within the convex domain, D, set up by the upper and lower

bounds, then [27]

∀t ∈ [0, 1] , ∀x1,x2 ∈ D F (tx1 + (1− t)x2) ≤ tF (x1) + (1− t)F (x2)(214)

The benefits of optimizing a convex function are that there exist many efficient solvers that are

publicly available, and that every local minimum is also a global minimum [27]. If a function is

nonconvex, optimization techniques are generally slower and only find a local minimum.

To show that a function is nonconvex is to show that there exists a counterexample to (214),

which is to show

∃t ∈ [0, 1] x1,x2 ∈ D, D a convex domain

such that F (tx1 + (1− t)x2) > tF (x1) + (1− t)F (x2)(215)
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Define x1 and x2 as follows:
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.(216)

These values for x1 and x2 represent two different points within the bounds from (211). Therefore,

their residual can be formed with the same objective function with the measured coherency values

〈T 〉 =










690.86 734.16 + 97.64i 120.17 + 83.50i

734.16− 97.64i 814.94 141.11 + 80.19i

120.17− 83.50i 141.11− 80.19i 35.11










.(217)

Both sides of the inequality in (214) are plotted in Figure 3.1 for t ∈ [0, 1] with the vertical

axis represented the value of each side of the inequality. Clearly, the blue line that represents

the left side of the inequality (214) is greater that the red line that represents the right side of

(214). Note: The blue line only had to be greater than the red for some t ∈ [0, 1] to be a valid

counterexample. This one counterexample shows that the objective function is not convex across

all x1,x2 ∈ D, t ∈ [0, 1], and therefore the function is nonconvex. An optimization method must
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Figure 3.1. Plot showing that the objective function is nonconvex

be carefully considered to minimize the objective function, and it must be recognized that many

methods may only converge to a local minimum.

3.2. STEEPEST DESCENT

In an effort to try the most straightforward method to optimize the nonconvex objective func-

tion, I implemented the method of steepest descent with a variable step size and two conditions.

The method of steepest descent begins by calculating the value of the objective function at an initial

value x0, then take a step in the direction of the negative gradient, which gives a new value x1.

Repeat this process to iteratively “walk downhill” until a local minimum is reached. The gradient
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has already been computed analytically and can be found in Appendix B.

xn+1 = xn − γn∇F (xn)(218)

There is a variable step size γ that can be adjusted with each iteration. It is important to note

that at each step in the iteration, two conditions must be met. First, the xn+1 that results after

taking a step must be within the domain D of possible values. If a step results in a point outside

the domain, the step was too large. Adjust the step size and try again. Also, if the value of the

objective function evaluated at the new step results in a greater residual than the previous value,

the step was too large and overshot the local minimum. Adjust the step size and try again.

Step 1: Perform the G4U decomposition across an image to serve as the initial values.

Step 2: Correct any results from the G4U decomposition by forcing them within the bounds

in (211).

Step 3: Evaluate the objective function and the gradient at these initial values

Step 4: Begin iteration sequence.

Step 4a: Calculate xn+1 using (218)

Step 4b: Correct any results that stepped outside of the bounds from (211).

Step 4c: Evaluate the objective function at xn+1.

Step 4d: If F (xn+1) ≥ F (xn) then the minimum has been overshot. Reduce the step

size and try again.

Step 4e: Set xn = xn+1 and evaluate using the objective function and the gradient.

Step 4f: Repeat the iterative sequence until a minimum is reached.

Step 5: From the solution, calculate the scatter-type powers with (61)

This method succeeds at finding a local minimum and lowering the average and total residual

across the image. The time for the code to run on an image with 13.8 million pixels is less than

ten minutes. Further coding efforts could very likely reduce the run time further.
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The Chen framework is very useful, not only in decomposing the coherency matrix into meaning-

ful canonical scatter-types, but also providing a means of comparing how well different scatter-types

model the polSAR images by way of comparing the sum of squares of the residual terms. The lim-

itation of the number of unknown parameters to nine forces one to select only a few scatter-types

at a time.

3.3. CONCLUSION OF CURRENT MODEL-BASED DECOMPOSITIONS

Model-based decompositions of polarimetric SAR images attempt to model the image with

physically meaningful canonical scatter-types. Since the Freeman-Durden decomposition [11] there

have been many additions to correct the negative power issues [15, 16, 17, 20, 26, 28, 29, 30,

31, 32], as well as additional scatter-type models [14, 15, 16, 17, 20, 22, 23, 24, 25, 26, 28,

29, 30, 31, 32, 33, 34]. Typically, the new scatter-types are either specific to a particular scene

or a generalization of previous models that were too specific.

Chen’s decomposition framework allows for the comparison between decompositions by com-

paring their residual if the number of unknown parameters is limited to nine.
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CHAPTER 4

GENERAL MODEL-BASED DECOMPOSITION

FRAMEWORK (GMBDF)

The framework of the Chen decomposition [26] allows for the flexibility of interchanging dif-

ferent canonical scatter-types. Decompositions with different sets of canonical scatter-types can be

inserted into the Chen decomposition and their residuals calculated. The set of canonical scatter-

types with the lowest residual is selected as the best model of the backscatter for that pixel. In this

way, model-based decompositions can be compared with each other. The model-based decomposi-

tion with the lower residual is the better model for a given pixel. This framework also allows for

new scatter-type models. This includes new parameterizations of currently used scatter-type and

new models altogether.

4.1. LINEAR INDEPENDENCE OF CANONICAL SCATTER-TYPE MODELS

It should be noted that the coherency matrices of the canonical scatter-types must be linearly

independent in order to get a solution to the minimization of the objective function. The flexibility

of the framework will not support linearly dependent scatter-types. For the coherency matrices of

the scatter-types, 〈T 〉i, to be linearly independent is to say

n∑

i=1

ci 〈T 〉i = 0 =⇒ ci = 0, ∀i ∈ {1, ..., n} .(219)

If the coherency matrices of the canonical scatter-types are linearly dependent, then without

loss of generality, there exists scalars ci, not all zero, such that

〈T 〉1 =
n∑

i=2

ci 〈T 〉i .(220)
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Assume that the canonical scatter-types are not linearly independent and (220) holds for scalars

ci which are not all zero. Let the minimum of the objective function be defined by the coefficients

{f1, ..., fn}. Then the coefficients {0, c2f2, ..., cnfn} would also minimize the objective function.

Therefore, you would have two different solution sets of parameters that achieve the minimum

residual. One solution would have a nonzero power for the scatter-type 〈T 〉1, and another solution

where the power for the same scatter-type is zero. Therefore, the scatter-type models must be

linearly independent in order for the solution set of parameters with a minimum residual to be

unique.

4.2. ADDING MORE PARAMETERS TO THE CHEN DECOMPOSITION

FRAMEWORK

Chen, et al., limit the number of unknown parameters to nine in an effort to avoid having an

underdetermined system of nine equations [26]; see (202)-(210). This system of nine equations

actually has 18 unknowns since the values of the residual matrix are also not known. In addition,

the goal is not to solve a system of equations, but to minimize the objective function comprised

of the square of the L2 norm of the residual values. Minimizing a multivariable function does not

inherently require a limit to the number of parameters. Therefore, in order to better fit the data,

additional parameters are permitted.

With this in mind, one can choose which scatter-types to use in the framework. For instance,

one could try the decomposition composed of a rotated X-Bragg surface model [23] which has

parameters {θodd, θ1, γ}, the rotated dihedral [26] {θdbl, α}, the volume model from Freeman II

[22] with parameter {ρ} and a helical model [14].

〈T 〉 = fsTX−Bragg (θodd) + fdTd (θdbl) + fcanTcan + fcTc(221)
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With real coefficients fs, fd, fcan, fc, real parameters θodd, θ1, θdbl, ρ, and complex parameters

γ, α, the total number of unknown parameters is 12. These scatter-types are linearly independent

and can be used in the GMBDF.

Therefore, the GMBDF accommodates a whole family of new and existing decompositions with

interchangeable scatter-types. These decompositions can be compared with each other with their

residuals.

4.3. ADDITIONAL PARAMETER EXAMPLE: GMBDF WITH COMPLEX β

Model-based decompositions from Freeman-Durden’s to Chen’s have made the assumption that

β ≈ Re {β}. The reasoning from Chen’s paper [26], “For most natural surfaces,Re {εr} ≫ Im {εr}.

Therefore, εr, RH, and RV are approximated as real-valued.” Chen cites Von Hippel’s text [35],

which contains charts of the relative permittivity of many natural substances, as justification for

the statement. Most of the materials’ relative permittivities from these charts have imaginary

components that are relatively small compared to their real components. If εr ≈ Re {εr}, then

RH ≈ Re {RH} and RV ≈ Re {RV}. Then it follows that β ≈ Re {β}. With this reasoning,

Chen continues with the Freeman-Durden approximation that β is considered to be real. This

approximation reduces the number of unknown parameters from ten to nine.

Although the imaginary components of the relative permittivities in [35] are small, for some

materials the ratio of the imaginary component to magnitude increases as the wavelength decreases.

Also, Mead, et al., claim that Im
{
V V HH∗} is not negligible in describing natural surfaces [36].

Im
{
V V HH∗} = −Im

{
fs
2
β

}

(222)

Therefore, according to Mead, et al., the imaginary component of fsβ is not negligible.

What if the scope of the analysis is not constrained to natural surfaces where one can assume

β ≈ Re {β}? The GMBDF allows the surface parameter, β, to be complex. This increases

the number of unknowns from nine to ten, which, as stated above, is permitted. Both Chen’s
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decomposition and the GMBDF with complex β are run on polarimetric SAR image data and the

residual term is analyzed. If the GMBDF with complex β has the lower residual, then it can be

concluded that the surface model which includes the imaginary part of β models the measured

backscatter better than the surface model which assumes that β is real. Allowing for a complex β

parameter, the equations for the residual matrix elements are as follows:

Tres11 = T11 − fs − fd|α|2 − afv(223)

Tres22 = T22 − fs|β|2 cos2 2θodd − fd cos
2 2θdbl − bfv −

fc
2

(224)

Tres33 = T33 − fs|β|2 sin2 2θodd − fd sin
2 2θdbl − cfv −

fc
2

(225)

Re {Tres12} = Re {T12} − fsRe {β} cos 2θodd − fdRe {α} cos 2θdbl − fvRe {d}(226)

Re {Tres13} = Re {T13}+ fsRe {β} sin 2θodd + fdRe {α} sin 2θdbl − fvRe {e}(227)

Re {Tres23} = Re {T23}+
fs
2
|β|2 sin 4θodd +

fd
2

sin 4θdbl − fvRe {f}(228)

Im {Tres12} = Im {T12}+ fsIm {β} cos 2θodd − fdIm {α} cos 2θdbl − fvIm {d}(229)

Im {Tres13} = Im {T13} − fsIm {β} sin 2θodd + fdIm {α} sin 2θdbl − fvIm {e}(230)

Im {Tres23} = Im {T23} − fvIm {f} ∓ fc
2
.(231)

The objection function for the new decomposition becomes

F =
(
T11 − fs − fd|α|2 − afv

)2

+

(

T22 − fs|β|2 cos2 2θodd − fd cos
2 2θdbl − bfv −

fc
2

)2

+

(

T33 − fs|β|2 sin2 2θodd − fd sin
2 2θdbl − cfv −

fc
2

)2

+
(

Re {T12} − fsRe {β} cos 2θodd − fdRe {α} cos 2θdbl − fvRe {d}
)2

+
(

Re {T13}+ fsRe {β} sin 2θodd + fdRe {α} sin 2θdbl − fvRe {e}
)2
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+

(

Re {T23}+
fs
2
|β|2 sin 4θodd +

fd
2

sin 4θdbl − fvRe {f}
)2

+
(

Im {T12}+ fsIm {β} cos 2θodd − fdIm {α} cos 2θdbl − fvIm {d}
)2

+
(

Im {T13} − fsIm {β} sin 2θodd + fdIm {α} sin 2θdbl − fvIm {e}
)2

+

(

Im {T23} − fvIm {f} ∓ fc
2

)2

.(232)

Now we can compare the minimums of the objective functions and see which has the smaller

residual.

4.4. COLOR SCHEME

Before the results of these decompositions are shown, there should be something said about

the color scheme used to display these images. The purpose of the false-color displays is to accu-

rately represent the reflectivity of the scene and characterize the scattering model(s) in the scene.

Typically, each scattering mechanism power is assigned a color channel in the RGB (red, green,

blue) color space. This is fine for 3 or fewer scattering models since the RGB color space has

three channels, but for four or more, care needs to be taken to clearly define the color scheme.

The color scheme used here will represent surface power, Ps, with red, the volumetric power, Pv,

with green, the double-bounce or dihedral power, Pd with blue, and the helical power will be split

across the red and blue channels evenly. Describing contributions of more than three scattering

mechanisms will inevitably lead to ambiguity. For instance, a magenta colored pixel could represent

equal parts Ps and Pd, it could represent Pc alone, or it could be a combination of the three. The

minimum and maximum radar cross sections (minRCS and maxRCS) of the display are set and

represent black and white pixels respectively. Scatter-type powers that are less than the minRCS

are set to the minRCS and powers greater than the maxRCS are set to the maxRCS. This gives

control over the dynamic range of the image to be displayed. For this dissertation, these values are

RCSmin = −57dB and RCSmax = −9dB, each pixel can then be described by their combination
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of scatter-type powers. The RGB color space is then converted to the HSV (hue, saturation, value)

color space. The V of the HSV color space represents the value or the brightness of the pixel. This

channel is then set to equal the trace of the coherency matrix, which represents the total power of

the response for that pixel. The HSV color space is then converted back to RGB and is ready to

be displayed. Special thanks to Derek West and Robert Riley at Sandia National Laboratories for

this approach and permission to use their code.

4.5. DECOMPOSITION RESULTS

A comparison of three decomposition results is in 4.1. With an optical image of the scene

for reference, the results from the Freeman-Durden, Yamaguchi, G4U, Chen, and GMBDF with

complex beta decompositions can be analyzed. The color of the three polarimetric decompositions

represent the scattering mechanisms present: Red for surface scattering, blue for dihedral, green for

volumetric, and magenta for helical. The brightness of the pixel is set by the trace of the coherency

matrix for that pixel. The dynamic range of the brightness of the polarimetric decomposition

displays is set to [−57dB,−9dB]. Thus a pixel with a trace of the coherency matrix less than

−57dB will appear black. Likewise, pixels with a trace of the coherency matrix larger than −9dB

will have full value (or brightness). These polarimetric results are on images that are 1500 pixels

by 2000 pixels. Note that the optical image was taken at a different time and therefore is only a

reference to permanent objects (the optical image does not contain the same number of cars, etc.).

The polarimetric data that the images represent was collected and formed by Sandia National

Laboratories FARAD fully polarimetric airborne SAR X-Band (9.6 GHz) system. These images

have a 6-inch spatial resolution.

4.5.1. Some general observations regarding 4.1. The radar used to form these images

was on a plane flying along the bottom of the image. The radar is a self-illuminating imaging

system, which is why there are shadows in the direction away from the radar. Horizontal streaks

represent moving objects; the one around row 1300 from column 900 to column 1200 is a car driving
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along the road. The structure of the playgrounds under the two canopies in the middle of the image

are visible, which is due to the signal penetrating the canopies and scattering off the structures.

Similarly, the structures underneath the covered picnic tables along the curved path in the middle

of the image are visible. In all the images, the volumetric scatter-type does a good job of modeling

the vegetation in the image. The roads and parking lots have a low return, but noticeably a surface

return. The dirt around the track in the upper right and the warning track around the baseball

field in the upper left have an evident surface response. The main double-bounce scattering occurs

on the playground structures, the roof of the building, and the three light poles along the center of

the road (around pixels (row 1150, column 500), (row 1200, column 1100), and (row 1200, column

1750)). The main helical scatterer is the roof of the building. The return from the cement walk

paths is extremely low and noticeably lower than the asphalt of the road and parking lots.

The Freeman-Durden decomposition is colored with the most green due to overestimating the

volume scattering component. The white on the roof in the Freeman-Durden decomposition shows

that all three scatter-type powers are greater than −9dB. As the decompositions become more

intricate, the volume scatter-type on the roof is reduced and is displayed by the white on the roof

changing to magenta (white minus green equals magenta). The G4U decomposition colors the trees

with more red than the other decompositions, which is due to how it reduces the volume scattering

power by rotating the coherency matrix. The GMBDF with complex β has the most scatter-type

contrast and has the lowest residual across the image. The Chen decomposition did the best along

the roads, the sand volleyball court, and the track. The areas where the two decompositions had

approximately the same residual corresponds well with the shadow regions. The GMBDF with

complex β did very well especially in the area of the roof, the dirt areas around the track and the

warning track of the baseball field.

Fig. 4.2 compares the residuals of the GMBDF with complex β and Chen decompositions. The

yellow pixels are locations where the GMBDF with complex β has a lower residual, 59% of the
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image. The blue pixels are locations where the Chen decomposition has a lower residual, 30% of

the image. The green pixels are locations where they had equal residuals, 11% of the image.
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Figure 4.1. Decomposition results
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Residual Comparison
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Figure 4.2. Comparison of residuals from the Chen and Imaginary Beta
decompositions
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CHAPTER 5

APPLICATIONS

An important application to the outputs of polarimetric decompositions is the ability to classify

the terrain in meaningful categories. In this chapter, I introduce a novel semi-supervised terrain

classification framework for polarimetric SAR imagery [37]. The training consists of selecting small

regions of homogeneous terrain for each terrain category of interest from a training image. Proba-

bilistic models are generated from these homogeneous regions: in the test image each pixel in the

image (or stack of images) is labeled with one of the training categories. This classification ap-

proach uses eight parameters from two well-known polarimetric decompositions which describe the

physical nature of the scatterers within each pixel. The probabilistic modeling, which occurs during

training, fits probability density functions (pdfs) to each of the eight parameters for each region.

The eight parameters of every pixel in the test images are each compared with the corresponding

pdf, and assigned a p-value. The eight p-values for each pixel are fused together to give each pixel

a probability value for fitting each terrain region. This probability determines the terrain region

label it is assigned to. If the probability is below a set threshold (which corresponds directly to the

desired probability of detection), the pixel is labeled unclassified.

5.1. EIGEN-BASED DECOMPOSITIONS

The H/A/ᾱ decomposition is an eigenvalue-based decomposition [9] which uses the eigenvalues

and eigenvectors of the coherency matrix T to compute polarimetric parameters that represent the

physical nature of the scatterers. Namely the scatter-type entropy H, the scatter-type A, and the

weighted average of the scattering mechanisms ᾱ. In order to calculate these values, the eigenvalues

of the coherency matrix are used to create pseudoprobabilities:

pk =
λk

λ1 + λ2 + λ3
for k = 1, 2, 3(233)
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The entropy, H, is defined as

H =
3∑

k=1

−pk log3 pk(234)

This entropy parameter represents the scatter-type entropy. If the scatterer exhibits the proper-

ties of one scatter-type, then λ1 ≈ 1 and λ2, λ3 ≈ 0 and H ≈ 0. If the scatterer exhibits the

superposition of three different orthogonal scatter-types, then λ1, λ2, λ3 ≈ 1
3 and H ≈ 1.

The anisotropy, A, is defined with the second and third eigenvalues as

A =
λ2 − λ3
λ2 + λ3

.(235)

The anisotropy can tell us about the type of symmetry. A scatterer which exhibits both reflection

and rotation symmetry (this combination of symmetries is also referred to as azimuthal symmetry)

will have λ2 ≈ λ3 which gives A ≈ 0. A scatterer that does not have reflection or rotation symmetry

will have λ3 ≈ 0 which gives A ≈ 1.

The eigenvectors can be parameterized by

ek =










cosαk

sinαk cosβke
iδk

sinαk sinβke
iγk










with k = 1, 2, 3(236)

and ᾱ can be defined as the weighted average

ᾱ =

3∑

k=1

αkpk with 0 ≤ ᾱ ≤ π

4
(237)

The value for ᾱ represents a smooth change of scattering mechanism. Values close to zero, ᾱ ≈ 0,

represent surface scattering. For ᾱ ≈ π/4, dipole scatterers are represented. For ᾱ ≈ π/2, dihedral

scatterers are represented.
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5.2. TERRAIN CLASSIFICATION

The two decompositions, G4U and H/A/ᾱ , are run on the set of complex-valued images. From

the results of these decompositions, each pixel has the following eight parameters associated with

it: Ps, Pd, Pv, Pc, H,A, ᾱ values along with total power TP . At this point, the SLIC superpixel

segmentation algorithm [38] is used as a method to quickly and easily select homogeneous (or

nearly homogeneous) pixels of interest for training. Each parameter of the selected pixels are fit to

parametric probability density functions using method of moments parameter estimation. For this

approach, Gamma distributions are fit to the parameters Ps, Pd, Pv, Pc, and TP . Beta distributions

are fit to the parameters H,A, and ᾱ (normalized). From the entire image, each pixel’s parameters

are given p-values that correspond to how well a parameter fits the distribution of that parameter

for the given class. The process of selecting pixels to represent a class, fitting distributions to each of

the eight parameters, and assigning p-values to every pixel’s parameters based on the distributions

is repeated for each class that is desired. Therefore, every pixel parameter is assigned N p-values,

where N represents the number of classes.

The following probabilistic fusion framework [39] is used to combine a pixel’s eight p-value

scores (for each class) into one value that represents the probability that the pixel belongs to the

distributions of the selected pixels and therefore belongs to the class the selected pixels represent.

Let Fi be the pdf of the ith polarimetric parameter, and let Pi (x) be the probability that the ith

parameter of a pixel, x, fits the distribution. As long as Fi is continuous (or well approximated by

a continuous function), then the random variable Pi of the selected pixels has a distribution that

is uniform on [0, 1]. The Pi of pixels that do not belong to the distribution will not be uniform.

Let Yi = − log (Pi). The log of a uniform distribution is the standard exponential. Yi will

be very large for pixels with at least one characteristic that has low probability of fitting the

distribution of the selected pixels.
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Let

Sf =
N∑

i=1

Yi(238)

where N represents the number of characteristics to combine. For the example in this dissertation,

N = 8. The sum of N independent standard exponentials is represented by a gamma distribution

with r = N and λ = 1. Therefore, if the Yi values are independent, the sum is represented

with a gamma distribution with the theoretical parameters stated above. If the Yi values are not

independent, as with the parameters used in this approach, their sum is still gamma distributed,

but the parameters need to be computed with the correlation taken into account. Let ρ̂ij be the

estimated correlation between Yi and Yj . Then

C =
N∑

i=1

∑

j 6=i

ρ̂ij(239)

is the correlation correction factor that can be used to account for correlations between the param-

eters. Accounting for correlation, the distribution of Sf is gamma distributed with parameters:

r̂ =
N2

N + C
λ̂ =

N

N + C
(240)

A threshold S∗
f can be selected so that the probability that a gamma random variable with the above

parameters in (240) is less than S∗
f , matches the desired probability of detection. A pixel is labeled

with a category if the pixel’s Sf parameter is less than or equal to the category’s S∗
f threshold;

otherwise, the pixel remains unclassified. If a pixel is labeled with two or more categories, the pixel

is labeled with the category that yields the lowest
Sf

S∗

f
ratio. This classification scheme is illustrated

with the flow chart in Figure 5.3.
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5.3. EXPERIMENTAL RESULTS

The data for this example were collected along the Rio Grande River in Albuquerque, New

Mexico, with the Sandia National Laboratories fully-polarimetric X-band development radar.

The histograms shown in figure 5.1 are of the eight parameters of the hand-selected pixels for

the category of vegetation shadow. Overlaid on the histograms are the estimated distributions

computed using the method of moments parameter estimation from the hand-selected pixels. The

eight parameters of each pixel in the image are compared to these distributions and are each given a

p-value representing the probability that the pixel’s parameters fit the corresponding distributions

of the category’s hand-selected pixels.

The three images shown in figure 5.2 are the G4U -colored PolSAR image 5.2(a), the hand-

selected pixels representing the categories are represented in image 5.2(b), and the classification

result in image 5.2(c). The G4U is a false-color PolSAR image with the color representing each

pixel’s scattering mechanism contributions represented by the percentage of Ps blue, Pd red, Pv

green, Pc yellow, and the power of the return represented by pixel brightness. Image 5.2(b) il-

lustrates the hand-selected pixels that generate the categories. The number of pixels selected per

category has an order of magnitude of 102 compared to the number of pixels in the image 4.5×106.

The different colors represent different categories. The legend for the colors of the categories is

shown in table 5.3. Image 5.2(c) is the resulting pixel-by-pixel classified image.
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category. The red plot represents the distribution that is fit to the data
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Figure 5.2. Classification results
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Figure 5.3. Flow chart illustrating the proposed classification method
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CHAPTER 6

CONCLUSION

With all the model-based decompositions that have come out in the last two decades since

the Freeman-Durden decomposition [11], there is a growing need to be able to evaluate how well

the different scatter-types model the polarimetric data. The GMBDF provides this framework

to evaluate and compare these various decompositions and their scatter-types by comparing their

residual terms. The GMBDF extends the Chen decomposition [26] by allowing more than nine

unknown parameters within the scatter-types. The scatter-types must be linearly independent to

achieve a reasonable result. Attention must be paid to the convexity of the objective function.

Minimizing the residual must be done with a method that is valid for nonconvex functions (unless

the scatter-types are specifically chosen to create a convex objective function). In this dissertation,

the method of steepest descent is used to find a local minimum of the objective function. The values

of the parameters at this local minimum are used to calculate scatter-type powers. These scatter-

type powers are displayed in a false-color image that assigns a specific color to each scatter-type

power.

The worked out example in this dissertation demonstrates how the GMBDF can evaluate and

compare the Chen decomposition with a similar decomposition with a surface model that includes

the imaginary part of the surface parameter β. This example shows that for a majority of the

pixels in the image that was used, using the decomposition with the complex β term reduced the

residual term lower than the Chen decomposition and therefore better modeled the data.

An application of polarimetric decompositions is to use the results to classify terrain. A novel

terrain classification scheme is presented to show the power of decomposed polarimetric data to

classify natural terrain in physically meaningful categories.
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APPENDIX A

A DESCRIPTION OF A WAVE’S POLARIZATION

FROM MAXWELL’S EQUATIONS

Using notation similar to [4], electromagnetic waves are described in time and space by the

famous Maxwell equations.

~∇× ~E (~r, t) = −∂
~B (~r, t)

∂t
(241)

~∇× ~H (~r, t) = ~J (~r, t) +
∂ ~D (~r, t)

∂t
(242)

~∇ · ~D (~r, t) = ρ (~r, t)(243)

~∇ · ~B (~r, t) = 0(244)

~E (~r, t) is the electric field.

~H (~r, t) is the magnetic field.

~D (~r, t) is the electric induction.

~B (~r, t) is the magnetic induction.

~J (~r, t) is the total current density.

ρ (~r, t) is the volume density of free charges.

Assuming that the wave is propagating through a linear medium that is free of saturation,

hysteresis, or any source term, then

~J (~r, t) = σ~E (~r, t)(245)

~D (~r, t) = ε~E (~r, t)(246)

~B (~r, t) = µ ~H (~r, t)(247)

ρ (~r, t) = 0(248)
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where σ, ε and µ are the conductivity, permittivity and the permeability of the medium.

Taking the curl of both sides of (241), the vector identity ~∇×
(

~∇× ~E
)

= ~∇
(

~∇ · ~E
)

−∇2 ~E,

and substituting in equations (245) - (248) we have

~∇×
(

~∇× ~E (~r, t)
)

= ~∇×
(

−∂
~B (~r, t)

∂t

)

(249)

~∇
(

~∇ · ~E (~r, t)
)

−∇2 ~E (~r, t) = −
∂
(

~∇× ~B (~r, t)
)

∂t
(250)

0−∇2 ~E (~r, t) = −
∂
(

~∇× µ ~H (~r, t)
)

∂t
(251)

∇2 ~E (~r, t) = µ
∂
(

~∇× ~H (~r, t)
)

∂t
(252)

∇2 ~E (~r, t) = µ
∂
(

~J (~r, t) + ∂ ~D(~r,t)
∂t

)

∂t
(253)

∇2 ~E (~r, t) = µ

∂

(

σ~E (~r, t) +
∂(ε~E(~r,t))

∂t

)

∂t
(254)

∇2 ~E (~r, t) = µ




∂
(

σ~E (~r, t)
)

∂t
+
∂2
(

ε~E (~r, t)
)

∂t2



(255)

∇2 ~E (~r, t) = µσ
∂ ~E (~r, t)

∂t
+ µε

∂2 ~E (~r, t)

∂t2
(256)

Continuing the reasoning from [4], a simplification can be made by considering the complex ex-

pression ~E (~r) of the monochromatic time-space electric field ~E (~r, t), defined as

~E (~r, t) = Re
{

~E (~r) ejωt
}

(257)

With (257), (256) can be written as

∇2 ~E (~r) + k2 ~E (~r) = 0(258)
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where

k = ω

√

µε

(

1 + j
Im {ε}
Re {ε}

)

(259)

Let the electric field be defined on a 3-dimensional Cartesian space (x̂, ŷ, ẑ) so that the direction of

propagation is in the positive ẑ direction.

Therefore,

~E (~r) = ~E0e
−jẑ·~r with ~E (~r) · ẑ = 0(260)

where ~E0 is the constant complex amplitude of the monochromatic plane wave. The parameter

k is complex and can be separated into its real and imaginary parts with k = β − jα. (As a

side note, k is defined this way to remain consistent with other literature that uses the expression

∇2 ~E (~r) = γ2 ~E (~r) instead of (258), with γ2 = −k2. Therefore, defining the complex components

of k like this aligns with complex components of γ with γ = α+ jβ)

The electric field can now be expressed as

~E (z) = ~E0e
−αze−jβz(261)

Inserting the expression from (261) into (257) we have

~E (~z, t) = Re
{

~E (z) ejωt
}

(262)

~E (~z, t) = Re
{(

~E0e
−αze−jβz

)

ejωt
}

(263)

~E (~z, t) =










Re
{
E0xe

jδxe−αze−jβzejωt
}

Re
{
E0ye

jδxe−αze−jβzejωt
}

0










(264)
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~E (~z, t) =










E0xe
−αz cos (ωt− βz + δx)

E0ye
−αz cos (ωt− βz + δy)

0










(265)

where E0x and δx represent the magnitude and phase of the electric field in the x̂ direction.

The attenuation term e−αz is common to all elements of the electric field and, therefore, does

not describe the wave’s polarization, which is what we are interested in. Therefore, the medium

can be assumed to be loss free, α = 0, and

~E (~z, t) =










E0x cos (ωt− βz + δx)

E0y cos (ωt− βz + δy)

0










.(266)

The Jones vector E is used to describe a wave’s polarization and is defined as

E = ~E (z) |z=0 = ~E (0) =






E0xe
jδx

E0ye
jδy




 .(267)

For a given Jones vector, there exists an orthogonal Jones vector that forms a polarization

basis that can be used to represent the polarization of an arbitrary wave. The benefit of this

structure is that one only needs to collect measurements in one polarization basis to have all the

information to represent the response in any polarization basis. For instance, if a measurement

is made using horizontally and vertically polarization, a simple mathematical transformation can

give the response as if it has been collect with a different basis, say left-circular and right-circular.

The electric field of a general propagating electromagnetic wave carves out an ellipse in the

plane that is perpendicular to the direction of propagation (see Figure (A.1). Therefore,the Jones

vector description of a wave’s polarization also defines the wave’s polarization ellipse.
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We can also define an ellipse with the ellipse’s amplitude, orientation, and ellipticity. From the

diagram of ellipse parameters (Fig A.1), A represents the amplitude of the ellipse

A =
√

E2
0x + E2

0y(268)

φ ∈
[
−π

2 ,
π
2

]
represents the orientation of the ellipse and is the angle between the major axis of the

ellipse and ŝ. φ can be found with the equation

tan 2φ = 2
E0xE0y

E2
0x − E2

0y

cos (δy − δx) .(269)

The ellipticity, τ ∈
[
−π

4 ,
π
4

]
, can be found with

sin 2τ = 2
E0xE0y

E2
0x + E2

0y

sin (δy − δx) .(270)

Now, a Jones vector can be defined by these parameters as follows:

E = Ae+jα






cosφ cos τ − j sinφ sin τ

sinφ cos τ + j cosφ sin τ




 ,(271)

where α is the absolute phase term. The three ellipse parameters do not need α to be defined, they

only need E0x, E0y, and the phase difference δy − δx.

The φ and τ parameters can be separated

E = Ae+jα






cosφ − sinφ

sinφ cosφ











cos τ

j sin τ




(272)

= Ae+jα






cosφ − sinφ

sinφ cosφ











cos τ j sin τ

j sin τ cos τ











1

0




(273)

= A






cosφ − sinφ

sinφ cosφ











cos τ j sin τ

j sin τ cos τ











Ae+jα 0

0 Ae−jα











1

0




(274)
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The 2×2 matrices in (274) form a group of special unitary matrices. To show that, a connection

to the unitary Pauli matrices is shown. The Pauli matrices are defined as

σ0 =






1 0

0 1




 σ1 =






1 0

0 −1




 σ2 =






0 1

1 0




 σ3 =






0 −j

j 0




(275)

These matrices have the qualities σ−1
i = σ

∗T
i and |det (σi)| = 1 and represent the quaternion group

with the following multiplicative table:

~⊗ σ0 σ1 σ2 σ3

σ0 σ0 σ1 σ2 σ3

σ1 σ1 σ0 jσ3 −jσ2

σ2 σ2 −jσ3 σ0 jσ1

σ3 σ3 jσ2 −jσ1 σ0

These matrices therefore have the following commutative properties: σiσj = −σjσi and σiσi =

σ0.

The group of special unitary matrices, SU(2), is defined as

e+jψσp = σ0 cosψ + jσp sinψ(276)

Now, the three 2× 2 matrices from (274) correspond with the three special unitary groups:

U2φ (φ) =






cosφ − sinφ

sinφ cosφ




 = σ0 cosφ− jσ3 sinφ = e−jφσ3(277)

U2τ (τ) =






cos τ j sin τ

j sin τ cos τ




 = σ0 cos τ + jσ2 sin τ = e+jτσ2(278)

U2α (α) =






Ae+jα 0

0 Ae−jα




 = σ0 cosα+ jσ1 sinα = e+jασ1 .(279)
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The inverse of each of these matrices is its conjugate transpose, U−1
2 = U∗T

2 , and each has a

determinant of 1. From this, we can rewrite (274) as

E = A






cosφ − sinφ

sinφ cosφ











cos τ j sin τ

j sin τ cos τ











Ae+jα 0

0 Ae−jα











1

0






= AU2φ (φ)U2τ (τ)U2α (α) x̂(280)

= AU2 (φ, τ, α) x̂

= Ae−jφσ3e+jτσ2e+jασ1 x̂(281)

with

x̂ = ûH =






1

0




(282)

where ûH is the unit Jones vector that represents a horizontally polarized state.

Two complex vectors are orthogonal if their Hermitian scalar product is 0. Therefore, the

orthogonal Jones vectors E1 and E2 exhibit the property

〈E1 |E2〉 = E
T
1 ·E∗

2 = 0(283)

Consider the general Jones vector, E from (281) that takes the horizontal Jones vector, x̂, and

transforms it by three rotations defined by φ, τ , and α. To find the Jones vector, E⊥, that is

orthogonal to E, simply perform the same unitary transformations to the vertical Jones vector ŷ.

E⊥ = AU2 (φ, τ, α) ŷ

= A






cosφ − sinφ

sinφ cosφ











cos τ j sin τ

j sin τ cos τ











e+jα 0

0 e−jα




 ŷ(284)
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This equation can be rearranged to be a transformation of the horizontal Jones vector x̂:

E⊥ = AU2 (φ, τ, α) ŷ

= A






cosφ − sinφ

sinφ cosφ











cos τ j sin τ

j sin τ cos τ











e+jα 0

0 e−jα




 ŷ

= A






cosφ cos τ − j sinφ sin τ j cosφ sin τ − sinφ cos τ

sinφ cos τ + j cosφ sin τ j sinφ sin τ + cosφ cos τ











e+jα 0

0 e−jα




 ŷ

= A






(cosφ cos τ − j sinφ sin τ) e+jα (j cosφ sin τ − sinφ cos τ) e−jα

(sinφ cos τ + j cosφ sin τ) e+jα (j sinφ sin τ + cosφ cos τ) e−jα




 ŷ

= A






(j cosφ sin τ − sinφ cos τ) e−jα

(j sinφ sin τ + cosφ cos τ) e−jα






= A






(j cosφ sin τ − sinφ cos τ) e−jα − (cosφ cos τ − j sinφ sin τ) e+jα

(j sinφ sin τ + cosφ cos τ) e−jα − (sinφ cos τ + j cosφ sin τ) e+jα




 x̂

= A






j cosφ sin τ − sinφ cos τ − cosφ cos τ + j sinφ sin τ

j sinφ sin τ + cosφ cos τ − sinφ cos τ − j cosφ sin τ











e−jα 0

0 e+jα




 x̂

= A






− sinφ − cosφ

cosφ − sinφ











cos τ −j sin τ

−j sin τ cos τ











e−jα 0

0 e+jα




 x̂

= A






cos
(
φ+ π

2

)
− sin

(
φ+ π

2

)

sin
(
φ+ π

2

)
cos
(
φ+ π

2

)











cos (−τ) j sin (−τ)

j sin (−τ) cos (−τ)











e+j(−α) 0

0 e−j(−α)




 x̂

= AU2φ

(

φ+
π

2

)

U2τ (−τ)U2α (−α) x̂

= AU2

(

φ+
π

2
,−τ,−α

)

x̂(285)
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Two unit Jones vectors u and u⊥ form an elliptical polarization basis if they result from the

transformation of the Cartesian (x̂, ŷ) basis with

u = U2 (φ, τ, α) x̂ and u⊥ = U2 (φ, τ, α) ŷ

or similarly(286)

u = U2 (φ, τ, α) x̂ and u⊥ = U2

(

φ+
π

2
,−τ,−α

)

x̂

We now have a framework to transform the polarization of a return, say collected at horizontal

and vertical polarization states, to any desired polarization basis.

Any general return can be interpreted in the general orthogonal Jones vector basis (û, û⊥).

E(û,û⊥) = Euû+ Eu⊥û⊥(287)

We know that any unit Jones vector is some U2 (φ, τ, α) transformation of the horizontal unit

Jones vector x̂. Therefore, the transformation from the general Jones vector basis (û, û⊥) into the

Cartesian basis (x̂, ŷ) is as follows:

E(û,û⊥) = Euû+ Eu⊥û⊥ = Eu U2 (φ, τ, α) x̂
︸ ︷︷ ︸

û

+Eu⊥ U2 (φ, τ, α)
︸ ︷︷ ︸

û⊥

ŷ

= EuU2 (φ, τ, α)
︸ ︷︷ ︸

Ex

x̂+ Eu⊥U2 (φ, τ, α)
︸ ︷︷ ︸

Ey

ŷ

= Exx̂+ Eyŷ = E(x̂,ŷ)(288)

From (288) we see that

EuU2 (φ, τ, α) = Ex

Eu⊥U2 (φ, τ, α) = Ey(289)
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Which can be written as






Eu

Eu⊥




U2 (φ, τ, α) =






Ex

Ey




(290)

and






Eu

Eu⊥




 = U2 (φ, τ, α)

−1






Ex

Ey




(291)

U2 (φ, τ, α)
−1 = (U2φ (φ)U2τ (τ)U2α (α))

−1

= U2α (α)
−1 U2τ (τ)

−1 U2φ (φ)
−1

=






e+jα 0

0 e−jα






−1 




cos τ j sin τ

j sin τ cos τ






−1 




cosφ − sinφ

sinφ cosφ






−1

=






e−jα 0

0 e+jα











cos τ −j sin τ

−j sin τ cos τ











cosφ sinφ

− sinφ cosφ






=






e+j(−α) 0

0 e−j(−α)











cos (−τ) j sin (−τ)

j sin (−τ) cos (−τ)











cos (−φ) − sin (−φ)

sin (−φ) cos (−φ)






=






cos (−φ) − sin (−φ)

sin (−φ) cos (−φ)











cos (−τ) j sin (−τ)

j sin (−τ) cos (−τ)











e+j(−α) 0

0 e−j(−α)






= U2φ (−φ)U2τ (−τ)U2α (−α)

= U2 (−φ,−τ,−α)(292)
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Therefore, to change a Jones vector’s polarization basis from (x̂, ŷ) to a general basis (û, û⊥) defined

by elliptical parameters φ, τ, and α is as follows:






Eu

Eu⊥




 = U2 (−φ,−τ,−α)






Ex

Ey




 .(293)
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Figure A.1. Polarization Ellipse
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APPENDIX B

PARTIAL DERIVATIVES

The following are the first and second partial derivatives of Chen’s objective function as well as

the proposed objective function that includes Im {β}, in order to analyze the Hessian. The values of

the coherency matrix, T11, T12, T13, T22, T23, T33, are determined by the data, and the values for the

volumetric scattering matrix, a, b, c, d, e, f , are set according to the scattering models in (57)-(59),

(149), and (201). The Chen partial derivatives will be in black and the additions due to Im {β}

will be in blue. Also, note that the Hessian is symmetric, which is to say ∂2F
∂A∂B

= ∂2F
∂B∂A

. So there

is only a need to solve for the upper triangular portion of the Hessian. The notation ∂2F
∂fs∂[]

refers

to the family of second partial derivatives where the first partial derivative is with respect to fs.

B.1. PARTIAL DERIVATIVES OF ∂F
∂FS

The first partial derivative of the objective function with respect to fs is

∂F

∂fs
= −2

(
T11 − fs − fd|α|2 − a fv

)
. . .

− 2|β|2 cos2 (2θodd)
(

T22 − fs|β|2 cos2 (2θodd)− fd cos
2 (2θdbl)− b fv −

fc
2

)

. . .

− 2|β|2 sin2 (2θodd)
(

T33 − fs|β|2 sin2 (2θodd)− fd sin
2 (2θdbl)− c fv −

fc
2

)

. . .

− 2Re {β} cos (2θodd)
(

Re {T12} − fsRe {β} cos (2θodd)− . . .

fdRe {α} cos (2θdbl)−Re {d} fv
)

. . .

+ 2Re {β} sin (2θodd)
(

Re {T13}+ fsRe {β} sin (2θodd) . . .

+fdRe {α} sin (2θdbl)−Re {e} fv
)

. . .

+ |β|2 sin (4θodd)
(

Re {T23}+
fs
2
|β|2 sin (4θodd) +

fd
2

sin (4θdbl)−Re {f} fv
)

. . .

+2Im {β} cos (2θodd)
(

Im {T12}+ fsIm {β} cos (2θodd)− . . .
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fdIm {α} cos (2θdbl)− Im {d} fv
)

. . .

−2Im {β} sin (2θodd)
(

Im {T13} − fsIm {β} sin (2θodd)+ . . .

fdIm {α} sin (2θdbl)− Im {e} fv).(294)

The second partial derivatives of the form ∂2F
∂fs∂[]

that form the first row of the Hessian are as follows:

∂2F

∂f2s
=

1

4

(

|β|4
(
7 + cos (8θodd)

)
+ 8

(
1 + |β|2

)
)

(295)

∂2F

∂fs∂fd
= 2|α|2 + |β|2

4

(

4 + 3 cos
(
4 (θdbl − θodd)

)
+ cos

(
4 (θdbl + θodd)

)
)

. . .

+ 2 cos
(
2 (θdbl − θodd)

)(
−Im {α} Im {β}+Re {α}Re {β}

)
(296)

∂2F

∂fs∂fv
= 2

(

a+ Im {β}
(

− cos (2θodd) Im {d}+ Im {e} sin (2θodd)
)

. . .

+ Re {β}
(

cos (2θodd)Re {d} −Re {e} sin (2θodd)
))

. . .

+ |β|2
(

b+ c+ (b− c) cos (4θodd)−Re {f} sin (4θodd)
)

(297)

∂2F

∂fs∂fc
= |β|2(298)

∂2F

∂fs∂θodd
= 4Im {β}

(

fv cos (2θodd) Im {e} − cos (2θodd) Im {T13} . . .
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−fdIm {α} sin
(
2 (θdbl − θodd)

)
+ fvIm {d} sin (2θodd)− Im {T12} sin (2θodd)

)

. . .

+ 4Re {β}
(

− fv cos (2θodd)Re {e}+ cos (2θodd)Re {T13} . . .

+ fdRe {α} sin
(
2 (θdbl − θodd)

)
− fvRe {d} sin (2θodd) +Re {T12} sin (2θodd)

)

. . .

− |β|2
(

4fv cos (4θodd)Re {f} − 4 cos (4θodd)Re {T23} . . .

− 3fd sin
(
4 (θdbl − θodd)

)
+ 4bfv sin (4θodd)− 4cfv sin (4θodd) . . .

− 4T22 sin (4θodd) + 4T33 sin (4θodd) + 2fs|β|2 sin (8θodd) + fd sin
(
4 (θdbl + θodd)

)
)

(299)

∂2F

∂fs∂θdbl
= −fd

(

4 (−Im {α} Im {β}+Re {α}Re {β}) sin
(

2 (θdbl − θodd)
)

. . .

+ |β|2
(

3 sin
(

4 (θdbl − θodd)
)

+ sin
(

4 (θdbl + θodd)
)))

(300)

∂2F

∂fs∂Re {α} = 2fd

(

2Re {α}+Re {β} cos
(

2 (θdbl − θodd)
))

(301)

∂2F

∂fs∂Im {α} = 4Im {α} fd−2Im {β} fd cos
(

2 (θdbl − θodd)
)

(302)

∂2F

∂fs∂Re {β} = 2Re {β} fc + 2Re {β} fd + 4Re {β} fs + 7 (Im {β})2Re {β} fs . . .

+ 7 (Re {β})3 fs + 2bRe {β} fv + 2cRe {β} fv − 2Re {β}T22 . . .

− 2Re {β}T33 +
3

2
Re {β} fd cos

(

4 (θdbl − θodd)
)

. . .
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+ 2Re {α} fd cos
(

2 (θdbl − θodd)
)

+ 2bRe {β} fv cos (4θodd) . . .

− 2cRe {β} fv cos (4θodd)+ (Im {β})2Re {β} fs cos (8θodd) . . .

+ (Re {β})3 fs cos (8θodd) +
1

2
Re {β} fd cos

(

4 (θdbl − θodd)
)

. . .

+ 2fv cos (2θodd)Re {d} − 2 cos (2θodd)Re {T12} . . .

− 2fvRe {e} sin (2θodd) + 2Re {T13} sin (2θodd) . . .

− 2Re {β} fvRe {f} sin (4θodd) + 2Re {β}Re {T23} sin (4θodd)(303)

∂2F

∂fs∂Im {β} = 2Im {β} fc + 2Im {β} fd + 4Im {β} fs + 7 (Im {β})3 fs . . .

+ 7Im {β} (Re {β})2 fs + 2bIm {β} fv + 2cIm {β} fv . . .

− 2Im {β}T22 − 2Im {β}T33 +
3

2
Im {β} fd cos

(

4 (θdbl − θodd)
)

. . .

− 2Im {α} fd cos
(

2 (θdbl − θodd)
)

+ 2bIm {β} fv cos (4θodd) . . .

− 2cIm {β} fv cos (4θodd)− 2Im {β}T22 cos (4θodd) . . .

+ 2Im {β}T33 cos (4θodd) + (Im {β})3 fs cos (8θodd) . . .

+ Im {β} (Re {β})2 fs cos (8θodd) +
1

2
Im {β} fd cos

(

4 (θdbl − θodd)
)

. . .

− 2fv cos (2θodd) Im {d}+ 2 cos (θodd) Im {T12}+ 2fvIm {e} sin (2θodd) . . .

− 2Im {T13} sin (2θodd)− 2Im {β} fvRe {f} sin (θodd) . . .

+ 2Im {β}Re {T23} sin (4θodd)(304)
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B.2. PARTIAL DERIVATIVES OF ∂F
∂FD

The first partial derivative of the objective function with respect to fd is

∂F

∂fd
= −2|α|2

(
T11 − fs − fd|α|2 − a fv

)
. . .

− 2 cos2 (2θdbl)

(

T22 − fs|β|2 cos2 (2θodd)− fd cos
2 (2θdbl)− b fv −

fc
2

)

. . .

− 2 sin2 (2θdbl)

(

T33 − fs|β|2 sin2 (2θodd)− fd sin
2 (2θdbl)− c fv −

fc
2

)

. . .

− 2Re {α} cos (2θdbl)
(

Re {T12} − fsRe {β} cos (2θodd) . . .

−fdRe {α} cos (2θdbl)− fvRe {d}
)

. . .

+ 2Re {α} sin (2θdbl)
(

Re {T13}+ fsRe {β} sin (2θodd) . . .

+fdRe {α} sin (2θdbl)− fvRe {e}
)

. . .

+ sin (4θdbl)

(

Re {T23}+
fs
2
|β|2 sin (θodd) +

fd
2

sin (4θdbl)− fvRe {f}
)

. . .

− 2Im {α} cos (2θdbl)
(

Im {T12}+fsIm {β} cos (2θodd) . . .

−fdIm {α} cos (θdbl)− fvIm {d}
)

. . .

+ 2Im {α} sin (2θdbl)
(

Im {T13}−fsIm {β} sin (2θodd) . . .

+fdIm {α} sin (θdbl)− fvIm {e}
)

.

(305)

The second partial derivatives of the form ∂2F
∂fd∂[]

that form the second row of the Hessian are

as follows:

∂2F

∂f2d
=

1

4

(
7 + 8|α|4 + cos (8θdbl) + 8|α|2

)
(306)
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∂2F

∂fd∂fv
= b+ c+ 2a|α|2 + b cos (4θdbl)− c cos (4θdbl) + 2 cos (2θdbl)Re {α}Re {d} . . .

− 2Re {α}Re {e} sin (2θdbl) + 2Im {α}
(

cos (2θdbl) Im {d} − Im {e} sin (2θdbl)
)

. . .

−Re {f} sin (θdbl)(307)

∂2F

∂fd∂fc
= 1(308)

∂2F

∂fd∂θodd
= fs

(

4 (Re {α}Re {β}−Im {α} Im {β}) sin
(

2 (θdbl − θodd)
)

. . .

+ |β|2
(

3 sin (4θdbl − 4θodd)− sin (4θdbl + 4θodd)
))

(309)

∂2F

∂fd∂θdbl
= −4fv cos (4θdbl)Re {f}+ 4 cos (4θdbl)Re {T23} . . .

− 4bfv sin (4θdbl) + 4cfv sin (4θdbl) + 4T22 sin (4θdbl) . . .

− 4T33 sin (4θdbl)− 2fd sin (8θdbl)− 3fs|β|2 sin (4θdbl − 4θodd) . . .

+ 4Im {α}
(

cos (2θdbl) Im {T13} − fv cos (2θdbl) Im {e} − fvIm {d} sin (2θdbl) . . .

+ Im {T12} sin (2θdbl) + fsIm {β} sin (2θdbl − 2θodd)

)

. . .

− 4Re {α}
(

fv cos (2θdbl) Im {e} − cos (2θdbl)Re {T13}+ fvRe {d} sin (2θdbl) . . .

− Re {T12} sin (2θdbl) + fsRe {β} sin (2θdbl − 2θdbl)

)

. . .

− fs|β|2 sin (4θdbl + 4θodd)(310)
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∂2F

∂fd∂Re {α} = 4Re {α} |α|2fd + 4Re {α}
(
|α|2fd + fs + a fv − T11

)
+ 2Re {α} fd . . .

+ 2 cos (2θdbl)

(

Re {α} fd cos (2θdbl) . . .

+ Re {β} fs cos (2θodd) + fvRe {d} −Re {T12}
)

. . .

+ 2 sin (2θdbl)

(

Re {T13} − fvRe {e}+Re {α} fd sin (2θdbl) . . .

+ Re {β} fs sin (2θodd))(311)

∂2F

∂fd∂Im {α} = 4Im {α} |α|2fd + 4Im {α}
(
|α|2fd + fs + a fv − T11

)
+ 2Im {α} fd . . .

+ 2 cos (2θdbl)

(

Im {α} fd cos (2θdbl) . . .

−Im {β} fs cos (θodd) + fvIm {f} − Im {T12}
)

. . .

+ 2 sin

(

2θdbl

)

(Im {T13} − fvIm {e} . . .

+ Im {α} fd sin (2θdbl)−Im {β} fs sin (2θodd)
)

(312)

∂2F

∂fd∂Re {β} = 2Re {α} fs cos (2θdbl) cos (2θodd) + 4Re {β} fs cos2 (2θdbl) cos2 (2θodd) . . .

+ 2Re {α} fs sin (2θdbl) sin (2θodd) + 4Re {β} fs sin2 (2θdbl) sin2 (2θodd) . . .

+Re {β} fs sin (4θdbl) sin (4θodd)(313)
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∂2F

∂fd∂Im {β} = −2Im {α} fs cos (2θdbl) cos (2θodd) + 4Im {β} fs cos2 (2θdbl) cos2 (2θodd) . . .

− 2Im {α} fs sin (2θdbl) sin (2θodd) + 4Im {β} fs sin2 (2θdbl) sin2 (2θodd) . . .

+ Im {β} fs sin (4θdbl) sin (4θodd)(314)

B.3. PARTIAL DERIVATIVES OF ∂F
∂FV

The first partial derivative of the objective function with respect to fv is

∂F

∂fv
= −2a

(
T11 − fs − fd|α|2 − a fv

)
. . .

− 2b

(

T22 − fs|β|2 cos2 (2θodd)− fd cos
2 (2θdbl)− b fv −

fc
2

)

. . .

− 2c

(

T33 − fs|β|2 sin2 (2θodd)− fd sin
2 (2θdbl)− c fv −

fc
2

)

. . .

− 2Re {d}
(

Re {T12} − fsRe {β} cos (2θodd)− fdRe {α} cos (2θdbl)− fvRe {d}
)

. . .

− 2Re {e}
(

Re {T13}+ fsRe {β} sin (2θodd) + fdRe {α} sin (2θdbl)− fvRe {e}
)

. . .

− 2Re {f}
(

Re {T23}+
fs
2
|β|2 sin (θodd) +

fd
2

sin (4θdbl)− fvRe {f}
)

. . .

− 2Im {d}
(

Im {T12}+fsIm {β} cos (2θodd)− fdIm {α} cos (θdbl)− fvIm {d}
)

. . .

− 2Im {e}
(

Im {T13}−fsIm {β} sin (2θodd) + fdIm {α} sin (θdbl)− fvIm {e}
)

− 2Im {f}
(

Im {T23} − Im {f} fv −
fc
2

)

.

(315)
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The second partial derivatives of the form ∂2F
∂fv∂[]

that form the third row of the Hessian are as

follows:

∂2F

∂fv∂fv
= 2

(
a2 + b2 + c2 + |d|2 + |e|2 + |f |2

)
(316)

∂2F

∂fv∂fc
= b+ c+ Im {f}(317)

∂2F

∂fv∂θodd
= −4fs

(

−Im {β} (cos (2θodd) Im {e}+ Im {d} sin (2θodd)) . . .

+Re {β} (cos (2θodd)Re {e}+Re {d} sin (2θodd)) . . .

+ |β|2 (cos (4θodd)Re {f}+ (b− c) sin (4θodd))

)

(318)

∂2F

∂fv∂θdbl
= −4fd

(

cos (4θdbl)Re {f}+ Im {α} (cos (2θdbl) Im {e}+ Im {d} sin (2θdbl)) . . .

+ Re {α} (cos (2θdbl)Re {e}+Re {d} sin (2θdbl) + (b− c) sin (4θdbl))

)

(319)

∂2F

∂fv∂Re {α} = 2fd

(

2aRe {α}+ cos (2θdbl)Re {d} −Re {e} sin (2θdbl)
)

(320)

∂2F

∂fv∂Im {α} = 2fd

(

2aIm {α}+ cos (2θdbl) Im {d} − Im {e} sin (2θdbl)
)

(321)
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∂2F

∂fv∂Re {β} = 2fs

(

cos (2θodd)Re {d} −Re {e} sin (2θodd) . . .

+ Re {β}
(
b+ c+ (b− c) cos (4θodd)−Re {f} sin (4θodd)

)
)

(322)

∂2F

∂fv∂Im {β} = 2fs

(

− cos (2θodd) Im {d}+ Im {e} sin (2θodd) . . .

+ Im {β}
(
b+ c+ (b− c) cos (4θodd)−Re {f} sin (4θodd)

)
)

(323)

B.4. PARTIAL DERIVATIVES OF ∂F
∂FC

The first partial derivative of the objective function with respect to fc is

∂F

∂fc
=

3

2
fc + fd + fv (b+ cIm {f}) + fs|β|2 − T22 − T33 − Im {T23} .(324)

The second partial derivatives of the form ∂2F
∂fc∂[]

that form the fourth row of the Hessian are as

follows:

∂2F

∂f2c
=

3

2
(325)

∂2F

∂fc∂θodd
= 0(326)

∂2F

∂fc∂θdbl
= 0(327)
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∂2F

∂fc∂Re {α} = 0(328)

∂2F

∂fc∂Im {α} = 0(329)

∂2F

∂fc∂Re {β} = 2fsRe {β}(330)

∂2F

∂fc∂Im {β} = 2fsIm {β}(331)

B.5. PARTIAL DERIVATIVES OF ∂F
∂θODD

The first partial derivative of the objective function with respect to θodd is

∂F

∂θodd
= 4fs|β|2 sin (4θodd)

(

T22 − fs|β|2 cos2 (2θodd)− fd cos
2 (2θdbl)− b fv −

fc
2

)

. . .

− 4fs|β|2 sin (4θodd)
(

T33 − fs|β|2 sin2 (2θodd)− fd sin
2 (2θdbl)− c fv −

fc
2

)

. . .

+ 4fsRe {β} sin (2θodd)
(

Re {T12} − fs {β} cos (2θodd) . . .

−fdRe {α} cos (2θdbl)−Re {d} fv
)

. . .

+ 4fsRe {β} cos (2θodd)
(

Re {T13}+ fs {β} sin (2θodd) . . .

+fdRe {α} sin (2θdbl)−Re {e} fv
)

. . .

+ fs|β|2 cos (4θodd)
(

Re {T23}+
fs
2
|β|2 sin (4θodd) +

fd
2

sin (4θdbl)−Re {f} fv
)

. . .
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−4fsIm {β} sin (2θodd)
(

Im {T12}+ fsIm {β} cos (2θodd) . . .

−fdIm {α} cos (2θdbl)− Im {d} fv
)

. . .

−4fsIm {β} cos (2θodd)
(

Im {T13} − fsIm {β} sin (2θodd) . . .

+fdIm {α} sin (2θdbl)− Im {e} fv
)

.(332)

The second partial derivatives of the form ∂2F
∂θodd∂[]

that form the fifth row of the Hessian are as

follows:

∂2F

∂θ2odd
= −4fs

[

2fs|β|4 cos (8θodd)− 2

(

fd cos (2θdbl − 2θodd) Im {α} Im {β} . . .

+Im {β}
(

fv cos (2θodd) Im {d} − cos (2θodd) Im {T12} . . .

+(Im {T13} − fvIm {e}) sin (2θodd)
)

. . .

−Re {β}
(

fd cos (2θdbl − 2θodd)Re {α}+ fv cos (2θodd)Re {d} . . .

− cos (2θodd)Re {T12} − fvRe {e} sin (2θodd) +Re {T13} sin (2θodd)
))

. . .

+ |β|2
(

3fd cos (4θdbl − 4θodd) + 4 (b− c) fv cos (4θodd) + 4 (T33 − T22) cos (4θodd) . . .

+ f + d cos (4θdbl + 4θodd)− 4fvRe {f} sin (4θodd) + 4Re {T23} sin (4θodd)
)]

(333)

∂2F

∂θodd∂θdbl
= −4fdfs

(

|β|2
(

− 3 cos (4θdbl − 4θodd) + cos (4θdbl + 4θodd)
)

. . .

+ 2 cos (2θdbl − 2θodd)
(

Im {α} Im {β} −Re {α}Re {β}
))

(334)
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∂2F

∂θodd∂Re {α} = 4Re {β} fdfs sin (2θdbl − 2θodd)(335)

∂2F

∂θodd∂Im {α} = −4Im {β} fdfs sin (2θdbl − 2θodd)(336)

∂2F

∂θodd∂Re {β} = −2fs

[

2fv cos (2θodd)Re {e}+ 4Re {β} fv cos (4θodd)Re {f} . . .

− 2 cos (2θodd)Re {T13} − 4Re {β} cos (4θodd)Re {T23} . . .

− 3Re {β} fd sin (4θdbl − 4θodd)− 2Re {α} fd sin (2θdbl − 2θodd) . . .

+ 2fvRe {d} sin (2θodd)− 2Re {T12} sin (2θodd) + 4 (b− c)Re {β} fv sin (4θodd) . . .

+ 4 (T33 − T22)Re {β} sin (4θodd) + 2 (Im {β})2Re {β} fs sin (8θodd) . . .

+ 2 (Re {β})3 fs sin (8θodd) +Re {β} fd sin (4θdbl + 4θodd)

]

(337)

∂2F

∂θodd∂Im {β} = −2fs

[

− 2fv cos (2θodd) Im {e}+ 4Im {β} fv cos (4θodd)Re {f} . . .

+ 2 cos (2θodd) Im {T13} − 4Im {β} cos (4θodd)Re {T23} . . .

− 3Im {β} fd sin (4θdbl − 4θodd) + 2Im {α} fd sin (2θdbl − 2θodd) . . .

− 2fvIm {d} sin (2θodd) + 2Im {T12} sin (2θodd) + 4 (b− c) Im {β} fv sin (4θodd) . . .

+ 4 (T33 − T22) Im {β} sin (4θodd) + 2 (Im {β})3 fs sin (8θodd) . . .

+ 2Im {β} (Re {β})2 fs sin (8θodd) + Im {β} fd sin (4θdbl + 4θodd)

]

(338)

99



B.6. PARTIAL DERIVATIVES OF ∂F
∂θDBL

The first partial derivative of the objective function with respect to θdbl is

∂F

∂θdbl
= 4fd sin (4θdbl)

(

T22 − fs|β|2 cos2 (2θodd)− fd cos
2 (2θdbl)− b fv −

fc
2

)

. . .

− 4fd sin (4θdbl)
(

T33 − fs|β|2 sin2 (2θodd)− fd sin
2 (2θdbl)− c fv −

fc
2

)

. . .

+ 4fdRe {α} sin (2θdbl)
(

Re {T12} − fs {β} cos (2θodd) . . .

qquad −fdRe {α} cos (2θdbl)−Re {d} fv
)

. . .

+ 4fdRe {α} cos (2θdbl)
(

Re {T13}+ fs {β} sin (2θodd) . . .

+fdRe {α} sin (2θdbl)−Re {e} fv
)

. . .

+ fd cos (4θdbl)
(

Re {T23}+
fs
2
|β|2 sin (4θodd) +

fd
2

sin (4θdbl)−Re {f} fv
)

. . .

+ 4fdIm {α} sin (2θdbl)
(

Im {T12}+ fsIm {β} cos (2θodd) . . .

−fdIm {α} cos (2θdbl)− Im {d} fv
)

. . .

+ 4fdIm {α} cos (2θdbl)
(

Im {T13}−fsIm {β} sin (2θodd) . . .

+fdIm {α} sin (2θdbl)− Im {e} fv
)

.

(339)

The second partial derivatives of the form ∂2F
∂θdbl∂[]

that form the sixth row of the Hessian are as

follows:

∂2F

∂θ2dbl
= −4fd

[

fs|β|2
(

3 cos (4θdbl − 4θodd) + cos (4θdbl + 4θodd)
)

. . .
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+ 2

(

2 (b− c) fv cos (4θdbl) + 2 (T33 − T22) cos (4θdbl) + fd cos (8θdbl) . . .

− Im {α}
(

fs cos (2θdbl − 2θodd) Im {β} − fv cos (2θdbl) Im {d} . . .

+ cos (2θdbl) Im {T12}+ fvIm {e} sin (2θdbl)− Im {T13} sin (2θdbl)
)

. . .

+Re {α}
(

fs cos (2θdbl − 2θodd)Re {β}+ fv cos (2θdbl)Re {d} . . .

− cos (2θdbl)Re {T12} − fvRe {e} sin (2θdbl) +Re {T13} sin (2θdbl)
)

. . .

− fvRe {f} sin (4θdbl) + 2Re {T23} sin (4θdbl)
)]

(340)

∂2F

∂θdbl∂Re {α} = −4fd

(

fv cos (2θdbl)Re {e} − cos (2θdbl)Re {T13}+ fvRe {d} sin (2θdbl) . . .

− Re {T12} sin (2θdbl) +Re {β} fs sin (2θdbl − 2θodd)

)

(341)

∂2F

∂θdbl∂Im {α} = −4fd

(

fv cos (2θdbl) Im {e} − cos (2θdbl) Im {T13}+ fvIm {d} sin (2θdbl) . . .

− Im {T12} sin (2θdbl)− Im {β} fs sin (2θdbl − 2θodd)

)

(342)

∂2F

∂θdbl∂Re {β} = −2fsfd

(

3Re {β} sin (4θdbl − 4θodd) + 2Re {α} sin (2θdbl − 2θodd) . . .

+ Re {β} sin (4θdbl + 4θodd)

)

(343)
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∂2F

∂θdbl∂Im {β} = −2fsfd

(

3Im {β} sin (4θdbl − 4θodd)− 2Im {α} sin (2θdbl − 2θodd) . . .

+ Im {β} sin (4θdbl + 4θodd)

)

(344)

B.7. PARTIAL DERIVATIVES OF ∂F
∂RE{α}

The first partial derivative of the objective function with respect to Re {α} is

∂F

Re {α} = −4fdRe {α}
(

T11 − fs − fd|α|2 − a fv

)

. . .

+ 2fd cos (2θdbl)
(

Re {T12} − fs {β} cos (2θodd)− fdRe {α} cos (2θdbl)−Re {d} fv
)

. . .

+ 2fd sin (2θdbl)
(

Re {T13}+ fs {β} sin (2θodd) + fdRe {α} sin (2θdbl)−Re {e} fv
)

.

(345)

The second partial derivatives of the form ∂2F
∂Re{α}∂[] that form the seventh row of the Hessian

are as follows:

∂2F

∂Re {α}2
= 8 (Re {α})2 f2d − fd

(
−|α|2fd − fs − a fv + T11

)
+ 2f2d(346)

∂2F

∂Re {α} ∂Im {α} = 8Im {α}Re {α} f2d(347)

∂2F

∂Re {α} ∂Re {β} = 2fsfd cos (2θdbl − 2θodd)(348)
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∂2F

∂Re {α} ∂Im {β} = 0(349)

B.8. PARTIAL DERIVATIVES OF ∂F
∂IM{α}

The first partial derivative of the objective function with respect to Im {α} is

∂F

Im {α} = −4fdIm {α}
(

T11 − fs − fd|α|2 − a fv

)

. . .

− 2fd cos (2θdbl)
(

Re {T12} − fs {β} cos (2θodd)− fdRe {α} cos (2θdbl)−Re {d} fv
)

. . .

+ 2fd sin (2θdbl)
(

Re {T13}+ fs {β} sin (2θodd) + fdRe {α} sin (2θdbl)−Re {e} fv
)

.

(350)

The second partial derivatives of the form ∂2F
∂Im{α}∂[] that form the eighth row of the Hessian

are as follows:

∂2F

∂Im {α}2
= 2fd

(

fd + 6 (Im {α})2 fd + 2 (Re {α})2 fd + 2fs + 2a fv − 2T11

)

(351)

∂2F

∂Im {α} ∂Re {β} = 0(352)

∂2F

∂Im {α} ∂Im {β} = −2fdfs cos (2θdbl − 2θodd)(353)
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B.9. PARTIAL DERIVATIVES OF ∂F
∂RE{β}

The first partial derivative of the objective function with respect to Re {β} is

∂F

Re {β} = −4fs cos
2 (2θodd)Re {β}

(

T22 − fs|β|2 cos2 (2θodd)− fd cos
2 (2θdbl)− b fv −

fc
2

)

. . .

− 4fs sin
2 (2θodd)Re {β}

(

T33 − fs|β|2 sin2 (2θodd)− fd sin
2 (2θdbl)− c fv −

fc
2

)

. . .

− 2fs cos (2θodd)
(

Re {T12} − fs {β} cos (2θodd)− fdRe {α} cos (2θdbl)−Re {d} fv
)

. . .

+ 2fs sin (2θodd)
(

Re {T13}+ fs {β} sin (2θodd) + fdRe {α} sin (2θdbl)−Re {e} fv
)

. . .

+ 2fs sin (4θodd)Re {β}
(

Re {T23}+
fs
2
|β|2 sin (4θodd) +

fd
2

sin (4θdbl)−Re {f} fv
)

.

(354)

The second partial derivatives of the form ∂2F
∂Re{β}∂[] that form the ninth row of the Hessian are

as follows:

∂2F

∂Re {β}2
=
fs
2

(

4fc + 4fd + 4fs + 7 (Re {β})2 + 21 (Im {β})2 fs + (b+ c) fv . . .

− (T22 + T33) cos (4θodd) + (Im {β})2 fs cos (8θodd) + 3 (Re {β})2 fs cos (8θodd) . . .

+ fd cos (4θdbl + 4θodd)− 4fvRe {f} sin (4θodd) + 4Re {T23} sin (4θodd)
)

(355)

∂2F

∂Re {β} ∂Im {β} = Im {β}Re {β} f2s (7 + cos (8θodd))(356)

B.10. PARTIAL DERIVATIVES OF ∂F
∂IM{β}

The first partial derivative of the objective function with respect to Im {β} is

∂F

Im {β} = −4fs cos
2 (2θodd) Im {β}

(

T22 − fs|β|2 cos2 (2θodd)− fd cos
2 (2θdbl)− b fv −

fc
2

)

. . .
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− 4fs sin
2 (2θodd) Im {β}

(

T33 − fs|β|2 sin2 (2θodd)− fd sin
2 (2θdbl)− c fv −

fc
2

)

. . .

+ 2fs sin (4θodd) Im {β}
(

Re {T23}+
fs
2
|β|2 sin (4θodd) +

fd
2

sin (4θdbl)− fvRe {f}
)

. . .

+ 2fs cos (2θodd)
(

Im {T12}+ fsIm {β} cos (2θodd)− fdIm {α} cos (2θdbl)− fvIm {d}
)

. . .

+ 2fs cos (2θodd)
(

Im {T12}+ fsIm {β} cos (2θodd)− fdIm {α} cos (2θdbl)− fvIm {d}
)

.

(357)

The second partial of the form ∂2F

∂(Re{β})2
and completes the tenth (and last, phew!) row of the

Hessian is as follows:

∂2F

∂Im {β}2
=
fs
2

(

4fc + 4fd + 4fs + 7 (Re {β})2 + 21 (Im {β})2 fs + (b+ c) fv . . .

− (T22 + T33) cos (4θodd) + 3 (Im {β})2 fs cos (8θodd) + (Re {β})2 fs cos (8θodd) . . .

+ fd cos (4θdbl + 4θodd)− 4fvRe {f} sin (4θodd) + 4Re {T23} sin (4θodd)
)

(358)
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