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ABSTRACT OF DISSERTATION

BULK AND INTERFACE VIBRATIONAL RAMAN SPECTROSCOPY WITH

COHERENCE MODULATED OPTICAL SUSCEPTIBILITIES

The effect on an ultrashort probe pulse of an impulsively prepared vibrational coher-

ence is described by effective linear and nonlinear optical susceptibility perturbations. Lin-

ear susceptibility perturbations modulate both the amplitude and phase of a probe pulse.

Three spectral interferometry methods are described for measuring this phase modulation,

geared toward spectral resolution, noise suppression, and rapid data acquisition. Third-

order nonlinear interactions perturbations may be used to acquire surface-specific Raman

spectra. While second-order spectroscopy is an established surface-specific technique, odd-

order methods have been passed over because the signal is generated in the bulk media.

We show that through a surface Fresnel modulation, coherence-modulated third harmonic

generation can be used to obtain surface-specific vibrational information. Bulk and interface

contributions to the vibrational signal are separated by scanning the interface through the

focus of the laser beam.

Jesse W. Wilson
Electrical and Computer Engineering Department

Colorado State University
Fort Collins, Colorado 80523

Fall 2010
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CHAPTER I

INTRODUCTION

1.1 Interface vibrational motion and its importance
1.1.1 General interface studies

The study of interface vibrational motion plays an important role in surface chemistry,

lending insight to energy conversion, adsorption, surface catalysis, interface structure and

composition. This prominent role motivated significant development of spectroscopy tech-

niques with surface specificity. A general overview of these methods is found in Brune, et

al [1] and in particular methods of probing surface vibrational modes are reviewed in Esser

and Richter [2].

Characterizing and probing interfaces may benefit research in dye-sensitized solar cell

technology [3]. Resonance Raman scattering has already yielded information about chemical

processes in these systems [4]. Efficiency of these solar cells is reduced by any possible energy

transfer mechanism that does not result in a photo-excited charge being deposited at the

anode. Femtosecond spectroscopy has been shown capable of measuring vibrational energy

transfer at surfaces [5]. The development of a technique that can distinguish near-surface

bulk and surface-specific vibrational motion in tandem with measuring charge transfer in-

teractions could be of great importance.

1.1.2 Vibrational motion at interfaces

Low-frequency vibrational modes at interfaces are important, as they will have an apprecia-

ble population at room temperature (at room temperature, kT/h/c = 193cm−1. We expect

these modes play an important role in interface processes in ordinary devices and biological

processes.

Two types of vibrational modes may be found at clean surface, categorized as either

2



macroscopic or microscopic surface modes [2]. Macroscopic modes are similar to bulk vi-

brations, but modified by the termination of bulk symmetry at the interface. The lack of

restriction on the free side of the interface should lead to a shift toward lower frequency

and higher amplitude [2]. An example of macroscopic modes is the Fuchs-Kliewer surface

phonon-polariton modes [6], which are often picked up by electron scattering experiments.

The second type, true surface modes or microscopic modes, result from the structural pe-

culiarities to be found only at an interface, extending a distance no greater than the crystal

lattice unit cell into the bulk [7] . For example, the Si-O-Si bond angle at the surface of

quartz differs from the bulk angle by more than 10◦, shifting the symmetric stretch mode

by almost 100 cm−1 [8].

At an interface that has been exposed to a chemical environment, bonds of chemisorbed

species may exhibit vibrational modes, revealing the particulars of how the molecule is

chemisorbed. Another example from quartz is the surface silanols, Si-OH, that form on

hydroxylation of the surface [8]. In addition physisorbed species may exhibit shifts in their

vibrational mode frequencies and amplitudes due to the confinement from the nearby inter-

face and possibly charge transfer interactions [9, 10]. A review of Raman scattering from

adsorbed molecules is found in Ref. [11].

1.2 Measuring interfaces

The nature of an interface makes measuring its physical properties difficult. Bulk material

on either side, in virtue of containing far more scattering sites, and leads to a stronger

signal. Traditional interface measurements are done in vacuum with energetic beams of large

particles that do not penetrate appreciably into the bulk, providing a surface specificity of

0.2 nm [1]. Optical methods penetrate materials and can reach buried interfaces, but give

rise to Rayleigh scattering in the bulk, leaving the surface specificity around 0.1 µm [1] for

linear methods, and second-order nonlinear processes can push surface specificity down to

10 nm [1] depending on the symmetry and composition of the interface.
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1.2.1 Overview of non-optical interface probes

Many surface characterization techniques exist [1, 12]. In these, a sample is placed under

ultra high vacuum conditions, bombarded with a probing particle, typically an electron or

a helium atom. An electron of well-defined energy scatters off the surface, and the energy

loss is measured (electron energy loss spectroscopy, or EELS) [13]. The electron energy is

varied, and the resulting energy loss spectrum corresponds to resonances at the surface.

High resolution and low-energy electron variants of this technique grant EELS access to the

same resonant frequencies as optical spectroscopies. Alternatively, larger particles such as

helium atoms may be used, which do not penetrate into dense bulk material at all [7], and

give a more surface-specific measurement.

These highly successful methods do suffer from certain limitations. The ultra-high vac-

uum requirements preclude measurement of liquid surfaces, and make in-situ measurements

of many chemically- or biologically-relevant surfaces impractical. Also, the very property of

electrons and helium atoms that makes them very surface specific (they do not penetrate the

bulk material) makes them unable to probe hidden interfaces, or interfaces between two ma-

terials. Finally, even the high resolution methods are limited to a few wavenumbers , which

can be surpassed by optical techniques. Electron spectroscopies are limited in resolution by

the uniformity of the electron momenta to ∆E = 0.3meV [14],

∆ν̄ [cm−1] =
∆E [eV]

h [eV s]c [cm/s]
= 2.4 cm−1, (1.1)

where h is Planck’s constant and c is the vacuum velocity of light. Commercial frequency-

domain Raman spectrometers, such as the Perkins Elmer RamanMicro 300 can reach 1 cm−1,

while time-resolved phase sensitive methods, such the synthetic aperture method described

later, has been demonstrated to reach 0.89 cm−1, and could be extended to higher resolution

by longer delay scanning.

1.2.2 Linear optical scattering

Optical probes do not share the the ultra-high vacuum restrictions of electron scattering

methods [15]. This opens up a number of opportunities to probe interfaces of materials with
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atmospheres, chemical environments, and buried interfaces. For example, surface infrared

(IR) spectroscopy has probed surface reactions at high pressure [16] and sum frequency

generation spectroscopy was demonstrated on the surface of liquid water, [17]. To probe

buried interfaces that are inaccessible by electron scattering, optical wavelengths that non-

resonant with the bulk media, and are not absorbed, may be used [18]. In addition, the use

of ultrafast pulses enables time-resolved probing of femtosecond vibrational dynamics [19].

Linear optical surface techniques measure subtle changes in reflection due to surface

phenomena [16, 1]. But material below the surface also scatters light, leading to surface-

bulk ambiguity. Various methods aimed at isolating surface reflections from bulk scattering

include reflection difference spectroscopy, reflection anisotropy, ellipsometry, and 45-degree

reflectometry [20, 21].

The most simple optical method of probing an interface consists of illuminating the

interface and collecting the light reflected at the boundary. Since the Fresnel reflection

coefficient depends on the different indices of refraction across the interface, we anticipate

the reflected light to be sensitive to interface properties. Indeed this method has been

successfully applied to IR [16] and Raman scattering [22].

But unlike EELS and HAS these optical measurements are plagued by scattering of light

from the bulk media surrounding the interface. There is frequently more light scattered from

the bulk than the interface; separation of these two signals has become an important chal-

lenge in surface optics. In some cases, when optical anisotropy is different at the surface than

in the bulk, surface ellipsometry maybe used to distinguish the contributions [23]. Also elec-

tronic resonances may be leveraged to obtain surface-specific vibrational spectroscopy with

Raman scattering, in spite of a normally strong bulk contribution to the Raman signal [2].

1.2.3 Second order optical probes

Improved sensitivity, spatial resolution, and surface selectivity are achieved by probing co-

herences with nonlinear optical interactions. Under most conditions, even-order nonlinear

optical interactions will not take place in media with inversion symmetry. Such symmetry

is necessarily broken at an interface, giving rise to an interface-specific nonlinear signal.
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Making use of this effect, surface second-harmonic generation (SHG) and sum frequency

generation (SFG) [24] have probed vibrations on crystal [25] and liquid interfaces [26, 27].

Just as with linear methods, any second-order signal arising from the bulk media confuses

the measurement. Complete suppression of the bulk response only occurs in centrosymmetric

media when higher-order multipole terms in the bulk polarization may be neglected [28, 29].

But these bulk contributions are not always negligible [30], which has led to many studies

aimed at separating bulk and interface contributions in second-order nonlinear surface mea-

surements. Knowledge of the surface and the adjacent bulk media is required to make these

separations [31]. Bulk and surface SHG may respond differently to various combinations of

polarization and sample orientations [32, 33] Second-order surface spectroscopies measured

in reflection mode have less of a bulk contribution than transmission mode [34, 30]. Chem-

ically perturbing the surface suppresses surface modes, leaving bulk modes unaffected [8].

1.2.4 Third order optical measurements

Even though 3rd order processes are not interface-specific (unlike even-order nonlinear in-

teractions), they can still be used for interface measurements. A good review of 3rd order

interactions can be found in Ref. [35].

1.2.4.1 History of THG at interfaces

It was first observed by Tsang that an intense laser beam focused at an interface produced

more third harmonic than when focused in a bulk material [36]. The effect was initially

attributed to a surface-specific third-order susceptibility, χ(3)
surface. The sensitivity of THG to

interfaces led to its successful application as microscopy technique [37]. It has been shown

that the affinity of THG for interfaces is more consistent explained by bulk THG disrupted

by the interface [37, 38]. It is important to note that even though THG is a bulk process,

the presence of an interface still leaves an imprint on the far-field collected third harmonic.

1.2.4.2 Mechanism of interface sensitivity

THG in bulk, for phase matched conditions in a tight focus, produces no net third har-

monic [39]. The harmonic generated on one side of the focus cancels the harmonic generate
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on the other side, due to the Gouy phase shift. But any sort of asymmetry across the interac-

tion region breaks this cancellation, giving rise to a net signal. The most dramatic impact on

this process is from a difference in third-order susceptibility, ∆χ(3) [37]. But there will also

be Fresnel reflections, as with any boundary. In the second section of this dissertation, we

discuss how vibrational perturbation of these Fresnel boundary conditions modulate THG,

making it possible to obtain surface-specific Raman measurements with THG.

1.3 Summary

In surface studies, usually no single method is sufficient to gather all the needed informa-

tion [1]. E.J. Suonien put it [40],

“It is, however, important always to keep in mind that surface characterization

is almost always an inherently more difficult task than the corresponding bulk

characterization. Hence, the use of one method only is seldom enough for a

satisfactory solution.” (p. 15)

This dissertation will focus on time-resolved Raman spectroscopy. The first section will

develop the idea of an effective linear susceptibility perturbation caused by a vibrational

coherence. This lays the groundwork for the second section, where the ideas are extended

to third-order effective susceptibility modulations.
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CHAPTER II

PUMP-INDUCED COHERENCE EFFECTIVE

SUSCEPTIBILITY

Femtosecond impulsive Raman scattering was first demonstrated in 1985, in α-perylene

crystals [41]. The set-up involved crossing a pair of pump pulses to create a transient

grating, measured by time-delayed diffraction of a probe pulse. It was later found that a

vibrational coherence is prepared by a single ultrashort pulse, no grating necessary, and that

this excitation occurs for short enough pulses with no intensity threshold condition [19].

Initial measurements of these prepared coherences involved amplitude and detecting

red-shifting of a probe pulse. The transient index perturbation also led to the possibility

of transient birefringence measurements [42] A phase perturbation of the probe could be

detected directly by heterodyne detection [43], and it was later shown these phase-sensitive

methods provided more sensitivity than amplitude-sensitive methods [44]. Sinusoidal phase

modulations also cause sideband scattering with long, narrow-band probes [45, 46]. Phase

perturbations have also been measured directly with spectral interferometry [47].

This chapter lays the groundwork for theory. We describe just how a pump pulse induces

a vibrational coherence (or wavepacket) in the sample. Then we describe how this coherence

modulates a time-delayed probe pulse through effectively modifying the linear and nonlinear

optical susceptibilities as a function of nuclear coordinate displacement. This susceptibility

perturbation is shown to lead directly to both amplitude and phase modulation of the probe

pulse. This susceptibility perturbation is distinct from a Raman susceptibility, though both

are connected through the Raman differential polarizability ∂α/∂q (See Appendix B).
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2.1 Optically driving the harmonic oscillator

Following the notation in Appendix A, the real-valued electric field of the pump pulse is

decomposed into an imaginary field and its complex conjugate.

Ep = Ẽp + Ẽ∗p (2.1)

where ∗ denotes complex conjugate. The complex field is broken down into a slowly-varying

complex envelope and a carrier with respect to propagation direction z and time:

Ẽp = Ep(x, y, z, t)ei(ω1t−k0,1z). (2.2)

Where the propagation wavenumber is k0,1 = n(ω1)ω1/c. (This is written with the subscript

0,1 to avoid confusion with the the zeroth term of the Taylor expansion for the frequency-

dependent k(ω); see Eq. (A.22) in Appendix A.)

In this first Part, focusing on linear modulations, we will consider only plane wave

propagation in the theoretical treatment of ISRS. Focusing Gaussian beams will be treated

in Section 4.5.2 on page 76. The envelope E is represented by an amplitude and a normalized

envelope Ut,

Ep(x, y, z, t) = E0,3oUt(t− u−1
p z), (2.3)

with the Gaussian temporal envelope advancing at the group velocity, described by

Ut(t− u−1
p z) = exp

−2 ln 2

(
t− u−1

p z

τp

)2
 eiφ(t−u−1

p z) (2.4)

where τp is the pump pulse FWHM (possibly chirped) and φ(t−u−1
p z) is the temporal phase

of the pump pulse, and the group velocity is the derivative of optical frequency with respect

to wavenumber [39, 48]

up =
∂ω

∂k
(2.5)

In order to shorten notation, we will work in the group frame of the pump pulse with

coordinates t′p = t− u−1
p z and ζp = z.
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2.1.1 Semi-classical intuitive picture

2.1.1.1 Classical harmonic oscillator model

Here we examine the classical model of molecular vibrations under the influence of an exter-

nal electric field in order to describe the action of the intense pump pulse. In this section,

we will discuss the nuclear motion in terms of the displacement coordinate R instead of the

reduced mass coordinate,

Q =
R√
MN

, (2.6)

(where M is the reduced mass and N is the number density of oscillators) in order to

elucidate the physics of a harmonic oscillator being driven by a force due to the optical

electric field. In what is usually referred to as the Placzek model, we model the molecular

vibrations as a classical harmonic oscillator,

∂2R

∂t2
+ γ

∂R

∂t
+ Ω2

vR = F (t), (2.7)

where R is the displacement coordinate, γ is the dampening term, Ωv is the resonant fre-

quency, and F (t) is the driving term, composed of the applied force F̄ (t) and the reduced

mass of the oscillator M depends on the electric field of the driving optical pulse and the

Raman differential polarizability:

F (t) =
F̄ (t)

M
=

1

M

(
∂α

∂R

)
0

E2
p . (2.8)

As a consequence of the square dependence in the driving term, impulsive excitation will

depend only on the square of the temporal envelope of an ultrafast pulse. To show this, we

use the previous definition of a pump pulse, Eq. (4.32), but neglect the spatial dependence

and examine interaction only at the plane z = 0:

Ep(t) = 1
2Ep(t)eiω1t + 1

2Ep(t)∗e−iω1t. (2.9)

The square of the field is

Ep(t) Ep(t) = 1
2 |Ep(t)|2 + 1

4 |Ep(t)|2e+i 2ω1t + 1
4 |Ep(t)|2e−i 2ω1t. (2.10)

The square of the pump field thus contains a slowly varying contribution and a component

at the optical second harmonic. Since the second harmonic frequency is much greater than
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the resonant frequency of the oscillator, 2ω1 � Ωv, we neglect these, which results in the

vibrational motion being driven only by the slowly varying envelope of the pulse,

F (t) =
1

2M

(
∂α

∂R

)
0

E2
0,3o|Ut(t)|2. (2.11)

This is similar to the equation coupling an optical field pump pulse to vibrational motion

in Ref. [19]:
∂2Q

∂t2
+ 2γ

∂Q

∂t
+ ω2

0Q = 1
2N

(
∂α

∂Q

)
0

: EE, (2.12)

where Q is the displacement of the vibrational coordinate, E is the pump pulse field, α

is the optical polarizability of the molecules, N is the number density of molecules, ω0 is

the vibrational frequency, and γ is the vibrational damping constant. This result was built

upon the more general theory of stimulated Raman scattering developed in 1965 by Shen

and Bloembergen [49]. This equation describes damped oscillatory motion with a driving

term on the right hand side proportional to the square of the optical field EE and the

Raman differential polarizability (∂α/∂Q)0. Any vibrational mode that causes a change in

optical polarizability α with respect to a change in the mode’s displacement coordinate Q is

said to be Raman active. It follows that larger changes in polarizability lead to a stronger

Raman cross-section.

2.1.1.2 Frequency response of a harmonic oscillator

In order to determine the oscillator’s exact response to a particular pump envelope, we move

to the frequency domain by decomposing the nuclear displacement coordinate R(t) and the

driving force F (t) as Fourier series

R(t) =

∞∑
Ω=−∞

R(Ω)eiΩt (2.13)

F (t) =

∞∑
Ω=−∞

F (Ω)eiΩt (2.14)

where R(Ω) and F (Ω) are the amplitudes of each oscillatory component. We insert these

definitions into the equation for a classical harmonic oscillator, Eq. (2.7) , evaluate the
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partial derivatives, and divide by the
∑
eiΩt term common to both sides, resulting in

R(Ω)
[
−Ω2 + iγΩ + Ω2

v

]
= F (Ω) (2.15)

We treat this as a linear shift invariant system, phrasing R(Ω) in terms of a frequency

response H(Ω), which is the Fourier transform of the impulse response.

R(Ω) = H(Ω) F (Ω) (2.16)

where the frequency response

H(Ω) =
1

Ω2
v + iγΩ− Ω2

(2.17)

In the time domain, the oscillator’s motion R(t) is found by the convolution of the driving

force with the impulse response

R(t) =

∫ +∞

−∞
F (τ)h(t− τ)dτ. (2.18)

In order to find R(t) for a particular driving pulse, we will need to know the impulse response

h(t). We begin by factoring the denominator of H(Ω) as follows:

H(Ω) =
1

(Ω− Ω1)(Ω− Ω2)
(2.19)

where the complex roots are

Ω1,2 = i
γ

2
±
√

Ω2
v −

γ4

4
. (2.20)

The inverse Fourier transform is now written and evaluated by the residue theorem.

h(t) =
1

2π

∫ +∞

−∞

eiΩt

(Ω− Ω1)(Ω− Ω2)
dΩ

=
2πi

2π

{
lim

Ω→Ω1

(Ω− Ω1)

[
eiΩt

(Ω− Ω1)(Ω− Ω2)

]
+ lim

Ω→Ω2

(Ω− Ω2)

[
eiΩt

(Ω− Ω1)(Ω− Ω2)

]}
(2.21)

Evaluating the limits results in

h(t) =
2πi

2π

[
eiΩ1t

Ω1 − Ω2
− eiΩ2t

Ω1 − Ω2

]
. (2.22)
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We can coax this solution to the form of a damped oscillator by rewriting the exponential

term

eiΩ1t = eiΩ1t/2eiΩ1t/2e−iΩ2t/2eiΩ2t/2, (2.23)

and vice-versa for eiΩ2t, while moving the i to the denominator:

h(t) = − 4π

2π · 2i

[
eiΩ1t/2eiΩ1t/2e−iΩ2t/2eiΩ2t/2

Ω1 − Ω2
− eiΩ2t/2eiΩ2t/2e−iΩ1t/2eiΩ1t/2

Ω1 − Ω2

]
. (2.24)

Factoring out the common ei(Ω1+Ω2)t/2/(Ω1 − Ω2) leaves us with the following:

h(t) = −4π

2π
·
[
ei(Ω1+Ω2)t/2

Ω1 − Ω2

]
·
[
ei(Ω1−Ω2)t/2 − e−i(Ω1−Ω2)t/2

2i

]
. (2.25)

The expression in the right-hand brackets looks suspiciously like a sine function, but first

we need to examine the sum and difference of the roots. Recalling Eq. (2.20),

Ω1 + Ω2 = iγ (2.26)

and

Ω1 − Ω2 = 2

√
Ω2
v −

γ2

4
≈ 2Ωv, (2.27)

since for gases, the oscillation rate is far greater than the damping rate. Inserting these into

Eq. (2.25) yields the final expression for the impulse response of the oscillator:

h(t) = −e
−γt/2

Ωv
sin(Ωvt), for t > 0. (2.28)

Note that since this is a causal system, h(t) = 0 for t ≤ 0.

2.1.2 Impulsive Excitation

Before examining the system’s response to an infinitely short pulse of light, let’s rewrite the

driving term F (t) in a more convenient form. The definition of irradiance (commonly called

intensity) is

Ip(t) = 1
2ε0cnE

2
0,3o|Ut(t)|2 = 1

2ε0cnI0,3o|Ut(t)|2, (2.29)

where ε0 is the vacuum permittivity, c is the speed of light in a vacuum, n is the refractive

index of the medium in question, Ut(t) is the previously defined pulse envelope, and I0,3o =

E2
0,3o is the peak intensity. We then rewrite the driving term,

F (t) = κ · I0U(t), (2.30)
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where

κ =
1

M n c ε0

(
∂α

∂R

)
0

(2.31)

Let us also define in the frequency domain,

D(Ω) = I0

∫ +∞

−∞
U(t)e−iΩtdt. (2.32)

Note that the pulse fluence is given by the zero-frequency component of D:

D(Ω)
∣∣∣
Ω=0

= I0

∫ +∞

−∞
U(t)dt =

∫ +∞

−∞
I(t)dt = Φp (2.33)

Returning to Eq. (2.16), the frequency response becomes

R(Ω) = κ ·H(Ω) ·D(Ω) (2.34)

For impulsive excitation,

U(t) = δ(t), (2.35)

so that

D(Ω) = I0

∫ +∞

−∞
δ(t)e−iΩtdt = Φp. (2.36)

Since D is a constant in frequency space, the time-domain convolution to obtain R(t) is

simple,

R(t) = κI0h(t) = R0e
−γt/2 sin(Ωvt). (2.37)

This describes damped oscillations with an initial displacement

R0 =
I0

M n c ε0 Ωv

(
∂α

∂R

)
0

. (2.38)

In terms of the more commonly found reduced mass coordinate Eq. (2.6) and the Raman

differential polarizability, the initial displacement of the oscillator after impulsive pumping

is

Q0 =
I0

M2 N n c ε0 Ωv

(
∂α

∂Q

)
0

, (2.39)

where we have made use of the chain rule to relate the differential polarizabilities,

∂α

∂R
=

(
∂α

∂Q

)(
∂Q

∂R

)
=

1√
MN

(
∂α

∂Q

)
. (2.40)
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2.1.2.1 Gaussian pulse excitation, neglecting group velocity

To consider pumping by a short Gaussian pulse is slightly more complex. Here we assume

a Gaussian pulse envelope as in Eq. (4.34), and disregard group velocity and assume a

transform-limited pulse (φ = 0) to simplify the discussion:

U(t) = e−2at2 , (2.41)

where the full width at half maximum (FWHM) duration τp of the pulse is related to a by

a =
2 ln 2

τ2
p

. (2.42)

As with the impulsive picture, we proceed to find the frequency domain expression for the

driving term,

D(Ω) = I0

∫ +∞

−∞
e−2at2e−iΩtdt = I0

√
π

2a
e−Ω2/8a = I0τp

√
π

4 ln 2
e−(Ωτp)2/(16 ln 2) (2.43)

Recalling that the Ω = 0 component is the pulse fluence, and introducing a new constant

Γ−1 = 16 ln 2, we have a slightly more compact expression:

D(Ω) = Φp · e−Γ(Ωτp)2 . (2.44)

This time we find the driving term, in frequency space, to be a Gaussian with an amplitude

determined by the pulse fluence and a bandwidth inversely proportional to the pulse duration

in time.

Now we continue to find a time-domain expression for the behavior of the oscillator. The

frequency-domain equation, is

R(Ω) = κΦpH(Ω)e−Γ(Ωτp)2 . (2.45)

Evaluating the inverse Fourier transform will reveal what we’re after:

R(t) =
κΦp

2π

∫ +∞

−∞

e−Γ(Ωτp)2eiΩt

(Ω− Ω1)(Ω− Ω2)
dΩ, (2.46)

where Ω1,2 are the same as defined in Eq. (2.20). Using the same technique to find the

impulse response h(t), the integral is evaluated using the residue theorem.

R(t) =
κΦp · 2πi

2π

[
e−Ω1te−Γ(Ω1τp)2

Ω1 − Ω2
− e−Ω2te−Γ(Ω2τp)2

Ω1 − Ω2

]
(2.47)
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In the impulse response analysis, the next step was to manipulate the exponentials in order

to factor out some common terms and draw out a sine term. We shall do the same thing

here, beginning with the exponentials related to the pump pulse. First, we will make the

following approximation, valid for the gas phase where Ω2
v � γ2,

Ω1,2 = i
γ

2
±
√

Ω2
v −

γ2

4
≈ iγ

2
± Ωv. (2.48)

The exponential terms expand as follows,

e−Γ(Ω1,2τp)2 ≈ e−Γ(iγτp/2±Ωvτp)2

= e−Γ[−(γτp/2)2+(Ωvτp)2±iγΩvτ2p ]

= e−Γτ2p (Ω2
v−γ2/4)e∓iΓγΩvτ2p

= e−Γτ2pΩ2
ve∓iΓγΩvτ2p ,

(2.49)

Where in the last step, we re-apply the approximation. Combining this with the results in

equations 2.22-2.25 yields another damped sine

R(t) = −κΦp · e−Γτ2pΩ2
v ·
[
e−γt/2

Ωv

]
·
[
ei(Ωvt−ΓγΩvτ2p) − e−i(Ωvt−ΓγΩvτ2p)

2i

]

= −κΦp · e−Γτ2pΩ2
v ·
[
e−γt/2

Ωv

]
sin
(
Ωvt− ΓγΩvτ

2
p

)
= R′0e

−γt/2 sin
(
Ωvt− φ′0

)
(2.50)

Here the effects of a finite-bandwidth excitation pulse manifest themselves in a reduced

initial amplitude of the oscillations,

R′0 =
Φp

M n c ε0 Ωv

(
∂α

∂R

)
0

e−(Ωvτp)2/16 ln 2 = R0e
−(Ωvτp)2/16 ln 2, (2.51)

and an initial phase, which is approximately zero if the pump duration is much shorter than

the vibrational period τp << 1/Ωv

φ′0 =
γΩvτ

2
p

16 ln 2
≈ 0. (2.52)

As we would expect, as the duration of the pulse approaches zero, these results approach

those we computed for impulsive excitation:

lim
τp→0

R′0 = R0,

lim
τp→0

φ′0 = 0.

(2.53)
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2.1.2.2 Impulse pump-induced effective susceptibility perturbation

We will consider Raman excitation of a nuclear coherence and consider the effect of the

transient effective susceptibility that results.

The optical susceptibility χ relates an induced polarization density P to an incident

optical field E . Considering a single frequency ω1,

Peiω1t = ε0χ
(1)Eeiω1t (2.54)

For a single molecule, the dipole moment µ induced by a field is related by the polarizability

α,

µ = ε0αE (2.55)

This is related to the polarization density by the number density of molecules N :

P = ε0χ
(1)E = ε0NαE, (2.56)

and we make the relationship

χ(1) = Nα, (2.57)

so that vibrational perturbations of the polarizability, ∂α/∂Q are directly proportional to

the susceptibility perturbations ∂χ/∂Q = N(∂α/∂Q, so that the perturbation to the linear

optical susceptibility is

δχ(1) =

(
∂χ(1)

∂Q

)
0

Q

= N

(
∂α

∂Q

)
0

Q0 sin (Ωvτpp)

=
I0

M2 n c ε0 Ωv

(
∂α

∂Q

)2

0

sin (Ωvτpp) .

(2.58)

2.1.2.3 Illustration

As an illustration of the excitation mechanism just described, we use MATLAB to model the

response of the molecular harmonic oscillator to several pump fields. The model operates in

the frequency domain to determine R(Ω) = D(Ω)H(Ω), finding r(t) by the ifft() inverse

Fourier transform function. Our first trial pulses are, of course, the recently studied impulse
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function and a Gaussian pulse. We also investigate the effects of stretching that pulse with

a linear chirp, and also pulse trains of resonant and off-resonant periodicity.

The response of the impulse function I(t) = I0δ(t) is simply r(t) = h(t), by definition.

We construct a transform-limited Gaussian pulse of FWHM duration τp,

E(t) =
√
I0e
− 2 ln 2

τ2p
t2

, (2.59)

which has a Fourier transform E(ω) = F
E(t) . The chirped Gaussian pulse with chirp param-

eter b is constructed by

E(ω)chirp = E(ω)eibω
2
. (2.60)

Fig. 2.1 shows the vibrational frequency response overlapped with the transform-limited

and chirped Gaussian pulses. Note that the transform limited pulse has greater spectral

energy where it overlaps with the vibrational frequency response. The horizontal line shows

the overlap for an impulsive δ(t) function excitation. From a practical standpoint, several

things can be done with a Gaussian pulse to improve pumping. By ensuring the pulse has as

short a temporal duration as possible, its spectral width is enhanced, and will lead to greater

overlap with the vibrational frequency response. Also note that if we choose a molecule with

a small Ωv (that is, a longer vibrational period) then the pump pulse will not need to have

as broad a bandwidth. In addition, we observe that a pulse with a broad bandwidth will

not effectively pump the molecules unless it is compressed to its transform-limited duration.

2.1.3 Quantum coherence

The transient phase perturbation probed by the probe pulses originates from a quantum

coherence prepared between vibrational levels on the electronic ground state through ISRS

excitation by a short pump pulse [50]. The quantum coherence manifests as a macro-

scopic, real-valued polarization density P (3), which arises via a temporal response function

S(3)(t3, t2, t1) and the third power of the field. With standard time-domain quantum me-

chanical perturbation theory, this is written as [51]

P (3)(r, t) = ε0

∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1S(3)(t3, t2, t1)

× E3(r, t− t3)E2(r, t− t3 − t2)E1(r, t− t3 − t2 − t1) (2.61)
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where Ej(r, t) are the interacting fields—all of which are real quantities. There are three

interacting fields under the integral, plus one field emitted by the induced polarization, so

this is a four wave mixing (4WM) experiment, where two waves are associated with the

pump pulse, and the other two are associated with the probe pulse. Our experiments are

arranged in a pump–probe configuration, with the pump preceding the probe by delay τpp.

We will insert into this expression pump and probe fields, similar to the definition for the

pump field above in Eq. (2.1). Here we will neglect the spatial dependence Us, assuming

plane waves. We write the complex pump and probe electric field as

Ej(r, t) = E0,jUt,j(t) e
i(kj ·r−ωjt) (2.62)

decomposed into a complex valued temporal envelope Ut,j(t) and a plane-wave propagation

term. Here, j = {p,pr} denote the pump and probe pulses, respectively.

The pump and probe fields are non-resonant since they are composed of optical fre-

quencies well below the electronic absorption frequencies; with non-resonant ISRS spectral

measurements, only ground electronic state dynamics are considered. We can make use

of the Born–Oppenheimer approximation (BOA) where the electrons are assumed to adia-

batically follow perturbations to nuclear coordinates and instantaneously follow the electric

fields. The latter is equivalent to neglecting dispersion of the electronic response, so that

the response is instantaneous with respect to time variables t1 and t3 and they may be

eliminated from Eq. (2.61) [52]. Application of time-dependent perturbation theory in the

BOA yields an expression for the nonlinear polarization density given by [35]

P (3)(r, t) =
ε0
2
Eo(r, t)

∫ ∞
0

dt2SISRS(t2)× I0,3o |Ut,3o(t+ τpp − t2)|2 + c.c. (2.63)

Since this third-order polarization density is proportional to the probe field Eo, we can define

an effective transient linear susceptibility perturbation

δχ(t) ≡
∫ ∞

0
dt2 SISRS(t)I0,3o|Ut,3o(t+ τpp − t2)|2 (2.64)

such that the real perturbation to the polarization density is

P (3)(r, t) =
ε0
2
δχ(t)Eo(r, t) + c.c. (2.65)
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The quantum vibrational coherence excited by the pump pulse through ISRS thus creates

a time-varying perturbation to the index of refraction. For a weak excitation, we may write

n(t) = n1 + δn(t), where δn(t) = δχ(t)/2n1 and n2
1 − 1 = χ

(1)
0 .

Following Mukamel’s treatment [52], the time domain response for ISRS simplifies to

SISRS(t) ≡ − i
~
〈[α(t), α(0)] ρo〉 . (2.66)

Here ρo is the equilibrium density operator,

α(t) = e+iHgt/~αe−iHgt/~ (2.67)

is the interaction-picture polarizability operator, and Hg is the ground-state Hamiltonian.

For weak vibrational excitation, we may expand the polarizability operator in the set of

normal vibrational coordinates

α = α0 +
∑
v

α′vqv (2.68)

where qv is the normal mode displacement and α′v ≡ (∂α/∂qv)0. Here, we have truncated the

expansion to first order in the vibrational modes, thereby neglecting hyper-Raman effects

and vibrational modal coupling. Substitution of Eq. (2.68) into (2.66) under the assumption

that the normal vibrational modes are uncorrelated [52] yields

SISRS(t) = − i
~
∑
v

(
α′v
)2 〈[qv(t), qv(0)]ρo〉, (2.69)

where qv(t) = e+iHgt/~qve
−iHgt/~. For each vibrational mode v, we expand the trace operator

in the basis of vibrational states |Uv〉 of the unperturbed ground state Hamiltonian [35]

〈[qv(t), qv(0)] ρo〉 =
∑
a,b

wva〈va|qv|vb〉〈vb|qv|va〉eiΩv,bat − c.c. (2.70)

where wa is the statistical weight, and the vibrational beat frequency is defined by the

difference in eigenenergies Uv for states a and b such that ~Ωv,ba = Uv,b − Uv,a. We will

restrict our attention to quantum coherences prepared between the two lowest levels of the

vibrational mode and write Ωv ≡ Ωv,21 for the vth vibrational mode. With this restriction,

Eq. (2.70) becomes

〈[qv(t), qv(0)] ρo〉 = −2iQv sin Ωvt (2.71)
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with Qv = (wv2 − wv1)|〈v2|qv|v1〉|2. Combining Eqs. (2.64), (2.66) and (2.71) gives an

expression for the time-varying perturbation to the effective linear susceptibility

δχ(t) =
2

~
∑
v

(α′v)
2QvI0,3o

∫ ∞
0

dt2 sin[Ωvt2]× |Ut,3o(t+ τpp − t2)|2 . (2.72)

For ISRS excitation, the pump pulse intensity temporal profile |Ap(t)|2 contains temporal

structure that is of the order or shorter than the vibrational period 2π/Ωv. In this regime,

after the pump pulse, a time-varying sinusoidal susceptibility perturbation persists, which

is determined by the product of the Fourier transform of the pump pulse intensity and the

spectral profile of the vibrational resonance which is evident by considering a Fourier trans-

form of Eq. (2.72). After ISRS excitation by an impulsive pump pulse, the transient index

of refraction perturbation can be then expressed as a superposition of sinusoidal oscillations,

δn(t) =
∑
v

δnv sin Ωvt, (2.73)

where

δnv =
(α′v)

2QvI0,3o

~n1

∫ ∞
0

dt2 |Ut,3o(t+ τpp − t2)|2 sin[Ωvt2]. (2.74)

The end result is similar in form to the classical picture. The initial amplitude of the

vibrational coherence is proportional to the convolution of the pump pulse with the sinusoidal

form of the vibrations.

2.1.3.1 Gaussian pump-induced effective susceptibility perturbation

Now we consider that the pump pulse travel at a group velocity up, and so the vibrational

coherence will inherit this group velocity from the pump. Let’s insert Eq. (4.34) into the

integral in the effective susceptibilities, Eq. (2.72)

∫ ∞
−∞

sin[Ωvt
′] exp

−4 ln 2

(
t+ τpp − u−1

p z − t′
τpu

)2
dt′ (2.75)

Let η = t+ τpp − u−1
p z − t′ and dt′ = dη, then the integral becomes

∫ ∞
−∞

sin[Ωv(ξ − η)] exp

[
−4 ln 2

(
η

τp

)2
]

dη (2.76)
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with ξ = t+ τpp − u−1
p z. Let A = −4 ln 2/τ2

p , then

1

2i

∫ ∞
−∞

(
eiΩvξe−iΩvη − e−iΩvξeiΩvη

)
eAη

2
dη (2.77)

or
1

2i

(
eiΩvξ

∫ ∞
−∞

e−iΩvηeAη
2
dη − e−iΩvξ

∫ ∞
−∞

eiΩvηeAη
2
dη

)
(2.78)

Making use of the identity ∫
e−Ax

2−2Bxdx =

√
π

A
eB

2/A, (2.79)

we obtain
τp

2
√

ln 2
exp

[
−

Ω2
vτ

2
p

16 ln 2

]
sin[Ωv(t+ τpp − u−1

pu z)] (2.80)

Thus, the effective susceptibility perturbation can be written as

δχ(n)(r, t) = |E0|2|Us(x, y, z)|2
σnτp

2
√

ln 2
exp

[
− 1

ln 2

(
Ωvτp

4

)2
]

sin[Ωv(t+ τpp− u−1
p z)] (2.81)

We define the time-independent amplitude of the perturbation as

δχ
(n)
0 = |E0|2

σnτp

2
√

ln 2
exp

[
− 1

ln 2

(
Ωvτp

4

)2
]

(2.82)

so that we can write

δχ(n)(r, t) = δχ
(n)
0 |Us(x, y, z)|2 sin[Ωv(t+ τpp − u−1

p z)]. (2.83)

Note that δχ(n)
0 is a quantity that depends pump characteristics and σn, which may depend

on the frequency of the probe.

The other observation is that the sine form indicates that the initial displacement of the

vibrational coordinate is zero. As the pump wavelength is tuned to an electronic resonance,

this term becomes a cosine, and the vibrational oscillations are kicked not only with an

initial momentum, but also an initial displacement away from equilibrium [53].

2.2 Solve for wavenumber perturbations

We will now compute the effective source terms for a probe pulse given by

Eo(r, t) = Eo(r, t− u−1
o z)ei(ω1t−k1z) (2.84)
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with

Eo(x, y, z, t) = E0,oUs,o(x, y, z)Ut,o(t− u−1
o z) (2.85)

with the spatial profile given by

Us,o(x, y, z) =
1[

1 + i2z
w2

1k1

] exp

− (x2 + y2)

w2
1

[
1 + i2z

w2
1k1

]
 (2.86)

The probe pulse has an amplitude E0,pr and group velocity upr. It is centered at t = 0 and

follows the pump by delay τpp. It will be shown that the perturbation results in a modified

wavenumber, k.

2.2.1 Effective linear susceptibility source term

We start with the results from Appendix A. Equation (A.36) describes probe pulse envelope

propagation in the presence of an additional polarization source term,{
i

2k0,1
∇2
⊥ +

∂

∂z
+

1

u

∂

∂t

}
E(r, t) = −i ω1

2cn1ε0

(
1− i

ω1

∂

∂t

)
pA(r, t), (2.87)

The source term in the spatial domain is given by

µ0
∂2

∂t2
PA(r, t) = µ0ε0

∂2

∂t2
δχ(1)(r, t)Eo(r, t) (2.88)

The relevant “additional” polarization oscillating at ω1 that goes in our wave equation for

the envelope of the probe is proportional to the susceptibility perturbation and the probe

field,

pA(r, t) = ε0δχ
(1)(r, t)Eo(r, t) (2.89)

2.2.2 Influence of source term on propagation

In this section, we insert the vibrational coherence-induced polarization, Eq. (2.89), into the

pulse propagation equation, Eq. (2.87)

This goes into the wave equation{
i

2k1
∇2
⊥ +

∂

∂z
+

1

uo

∂

∂t

}
Eo(r, t) = −i ω1

2cn1

(
1− i

ω1

∂

∂t

)
δχ(1)(r, t)Eo(r, t) (2.90)

where we have neglected dispersion and we are in the lab frame. Note the change of notation

ω1 → ω1, n1 → n1, k0,1 → k1, and vg → uo.
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Recall that the susceptibility perturbation is

δχ(n)(r, t) = δχ
(n)
0 |Us(x, y, z)|2 sin[Ωv(t+ τpp − u−1

p z)] (2.91)

so the time derivative is

∂δχ(n)(r, t)

∂t
= Ωvδχ

(n)
0 |Us(x, y, z)|2 cos[Ωv(t+ τpp − u−1

p z)] (2.92)

We can rewrite the wave equation. We evaluate the temporal derivative of the right hand

side of Eq. (2.90),

∂

∂t
δχ(1)Eo = δχ(1)

(
∂

∂t
Eo

)
+

(
∂

∂t
δχ(1)

)
Eo

= δχ(1) ∂

∂t
Eo + Ωvδχ

(n)
0 |Us(x, y, z)|2 cos[Ωv(t+ τpp − u−1

p z)]Eo.

(2.93)

Inserting this into the right hand side of Eq. (2.90) yields

− i ω1

2cn1

(
1− i

ω1

∂

∂t

)
δχ(1)(r, t)Eo(r, t)

= −i ω1

2cn1

{
δχ(1)(r, t)Eo(r, t)− i

ω1
δχ(1) ∂

∂t
Eo

− i

ω1
Ωvδχ

(n)
0 |Us(x, y, z)|2 cos[Ωv(t+ τpp − u−1

p z)]Eo

}
. (2.94)

Cleaning this up results in

=
1

2cn1

{
−iω1δχ

(1)(r, t)Eo(r, t) + δχ(1) ∂

∂t
Eo

+Ωvδχ
(n)
0 |Us(x, y, z)|2 cos[Ωv(t+ τpp − u−1

p z)]Eo

}
. (2.95)

Now we gather the terms proportional to Eo:

=
1

2cn1
δχ(1) ∂

∂t
Eo − i

ω1

2cn1

×
{
δχ(1)Eo − i

Ωv

ω1
δχ

(n)
0 |Us(x, y, z)|2 cos[Ωv(t+ τpp − u−1

p z)]Eo.

}
(2.96)

2.2.3 Complex wavenumber perturbations

Introducing a complex perturbation to the wavenumber k given by

δk1(r, t) ≡ ω1

2cn1
δχ

(1)
0 |Us(x, y, z)|2

×
(

sin
[
Ωv

(
t+ τpp − u−1

p z
)]
− iΩv

ω1
cos
[
Ωv

(
t+ τpp − u−1

p z
)])

, (2.97)
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the right hand side takes on a more compact form:

=
1

2cn1
δχ(1) ∂

∂t
Eo − iδk1Eo (2.98)

The final result after applying differentiation of the right hand side in Eq. (2.90) and

moving the remaining temporal derivative of the probe envelope to the l.h.s is{
i

2k1
∇2
⊥ +

∂

∂z
+

(
1

uo
+
δχ(1)(r, t)

2cn1

)
∂

∂t

}
Eo(r, t) = −iδk1(r, t)Eo(r, t). (2.99)

We proceed to neglect group velocity distortions described by

δχ(1)(r, t)

2cn1

∂

∂t
Eo(r, t), (2.100)

resulting in {
i

2k1
∇2
⊥ +

∂

∂z
+

1

uo

∂

∂t

}
Eo(r, t) = −iδk1(r, t)Eo(r, t). (2.101)

Moving to the frame traveling with the probe pulse with to = t−u−1
o z and ζ = z and making

the substitutions, we obtain{
i

2k1
∇2
⊥ +

∂

∂ζ

}
Eo(x, y, ζ, tpr) = −i ω1

2cn1
δχ(1)(r, tpr)Eo(x, y, ζ, to) (2.102)

We shall define wavenumber k perturbations as

δk1 =
ω1

2cn1

(
δχ(1) − i

ω1

∂δχ(1)

∂t

)
≡ δk′1 + iδk′′1 (2.103)

with real and imaginary parts of the wavenumber k perturbations,

δk′1 = <{δk1} =
ω1

2cn1
δχ

(1)
0 |Us(x, y, z)|2 sin[Ωv(to + τpp)] (2.104)

and

δk′′1 = ={δk1} = − Ωv

2cn1
δχ

(1)
0 |Us(x, y, z)|2 cos[Ωv(to + τpp)] (2.105)

here the subscript 1 denotes the fundamental probe frequency.

Finally we write the wave equation describing effective linear modulation of a probe

pulse propagating through a coherence.{
i

2k1
∇2
⊥ +

∂

∂ζ

}
Eo(x, y, ζ, tpr) = −iδk1(r, to)Eo(x, y, ζ, tpr) (2.106)

To demonstrate this is a modification to the propagation wavenumber, we will consider

the plane wave case where ∇2
⊥ = 0. The solution to Eq. (2.102) is

Eo = E0,oe
−iδk1ζ = E0,oe

−δk′′1 ζe−iδk
′
1ζ (2.107)
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2.3 Summary of linear propagation perturbation

We began with the wave equation, inserted an additional driving term, the additional po-

larization density pA that is related to the susceptibility perturbations δχ(1) that were set

up in response to a pump pulse. Upon taking the time derivative of pA we found the wave

equation could be coaxed into the form of Eq. (2.102), written in the traveling frame of the

probe pulse, where the susceptibility perturbation δχ(1) has been shown to manifest itself

in terms of a modified propagation wavenumber δk1 in Eq. (2.106)

It can be seen clearly from Eq. (2.107) that the real part of the wavenumber perturbation,

δk′, contributes to a phase shift, whereas the imaginary part, δk′′, contributes to absorption.

If one records either the phase shift or the amplitude modulation of the probe with respect

to τpp, the vibrational modulation will be visible as a sinusoid. The magnitude of the phase

effect is proportional to the central frequency of the probe, while the magnitude of the

amplitude effect is proportional to the vibrational frequency itself. For instance, we predict

the phase shift to be more sensitive for a blue probe than a red probe. Furthermore if one

records both the phase shift and amplitude modulation of the probe with respect to τpp and

compares the two signals, they will exhibit sinusoidal oscillations at the same frequency Ωv,

but with a relative phase shift of π/2.

2.3.1 Amplitude modulation from an energy density perspective

This picture is in accordance with an early account that considered the probe amplitude

modulations from the perspective of energy exchange with the nuclear motion [19]. In sum,

the vibrational energy density after pumping is

U0 = 1
2Ω2

vQ
2
0, (2.108)

where Ωv is the vibrational frequency and Q0 is the initial displacement of the reduced-mass

coordinate. The probe pulse acts as a pump for further excitation with initial amplitude Q1.

The square of the sum vibrational coherence after probe interaction, neglecting damping,

Q2
Σ = Q2

0 +Q2
1 + 2Q0Q1 cos Ωvτpp, (2.109)
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where τpp is the delay between the pump and probe pulses. By substituting QΣ for Q0 in

Eq. (2.108) we find the vibrational energy stored in the medium after probe pulse interaction,

U1 = 1
2Ω2

v

[
Q2

0 +Q2
1 + 2Q0Q1 cos(Ωvτpp)

]
. (2.110)

The change in energy density, found by subtracting Eq. (2.108) from Eq (2.110) and assuming

the probe to be significantly weaker than the pump (Q1 � Q0) is

∆U = U1 − U0 ≈ Ω2
vQ0Q1 cos(Ωvτpp). (2.111)

By conservation of energy, ∆U must be subtracted from the probe pulse. This result is

in agreement with the amplitude modulations predicted by the imaginary part of the k

wavenumber perturbations, δk′′.

2.3.2 Conclusion

Now that we have arrived at a mathematical understanding of the coherence modulation of

an ultrashort probe pulse, and established that phase measurements will be more sensitive

than amplitude measurements we will present a three experiments to measure the phase

shift δk′ in the next chapter.
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CHAPTER III

LINEAR RAMAN MEASUREMENTS

3.1 Introduction

It was shown in the previous chapter that the perturbation to the linear susceptibility

results in a perturbation of the complex wavenumber, δk, that results in amplitude and

phase modulation of a probe pulse that is delayed from the pump pulse by τpp. The phase

modulation samples the vibrational displacement coordinate

δk′1 = <{δk1} =
ω1

2cn1
δχ

(1)
0 |Us(x, y, z)|2 sin[Ωv(to + τpp)] (3.1)

while the amplitude modulation samples the momentum, or time derivative of the displace-

ment

δk′′1 = ={δk1} = − Ωv

2cn1
δχ

(1)
0 |Us(x, y, z)|2 cos[Ωv(to + τpp)] (3.2)

It is clear from the above that the amplitude modulation is weaker than the phase modulation

by a factor of ω/Ωv. For a typical optical wavelength of 800 nm and a vibrational frequency

of 500 cm−1, this ratio is ω/Ωv = 25. Measurement of the phase is achieved by mixing the

probe pulse with a reference pulse in a detector, and has been shown experimentally to be

more sensitive than amplitude measurements [44]. The experiments described here differ in

that we take spectrally resolved measurements of the probe–reference interference.

3.2 Spectral interferometry and phase retrieval
3.2.1 Experimental set-up

An interferometer provides a means of measuring the relative phase difference between a

reference and a probe pulse. So we design an experiment to deliver the pulses in such a

way that the probe is modulated by the pump-induced coherence, and the reference remains

unmodulated, and is combined to interfere with the probe at the detection end.
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An optical pulse is split into three pulses: pump, probe, and reference. The pulses

are split, and only the pump and probe pulses are sent to interact with the sample. The

pump is rejected, either chromatically or by polarization, and the probe is recombined with

the reference in a spectrometer. These pulses are assumed to be transform-limited, or at

least shorter than a vibrational period, so that the pulse samples the vibration, or takes a

snapshot of the molecular motion, hence the need for a prism compressor at the front of

the set-up. The probe pulse is written in the frequency domain as a spectral amplitude and

phase,

Eo(ω) = Ao(ω)eiφo(ω), (3.3)

and the time-delayed reference pulse,

Er(ω) = Ar(ω)eiφr(ω)eiτprω, (3.4)

where τpr is the delay between the probe and the reference. These two pulses incident on a

square-law detector, such as the CCD of a spectrometer, interfere in the frequency domain,

S(ω) = |Er(ω) + Eo(ω)|2 (3.5)

Expanding the measured power spectrum:

S(ω) = (Er + Eo)× (E∗r + E∗o)

= |Er|2 + |Eo|2 + E∗rEo + ErE
∗
o

= A2
r +A2

o +ArAoe
i(φo−φr−τprω) +ArAoe

i(−φo+φr+τprω)

= A2
r +A2

o + 2ArAo cos (τprω + φr − φo)

(3.6)

3.2.2 Phase retrieval algorithm

To retrieve phase information from the recorded interferograms, we employ the technique

described by Takeda et al. [54], which originally described numerical analysis of off-

axis holography. Following the notation in [54], we let a(ω) = A2
r + A2

o, b(ω) = 2ArAo,

and φ(ω) = φr − φo. For a particular spectral interferogram, fringes are observed with a

modulation frequency related to the time delay between the two pulses,

g(ω) = a(ω) + b(ω) cos [τprω + φ(ω)], (3.7)
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Figure 3.1: Sample spectral interferogram showing fringes.
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Figure 3.2: Typical Fourier transform of spectral interferogram.

where τpr is the temporal delay between the two interferometer arms, a(ω) and b(ω) are due

to spectral intensity variations, and φ(ω) is the phase difference between the two arms. The

above can be rewritten

g(ω) = a(ω) + c(ω)eiτprω + c∗(ω)eiτprω, (3.8)

where

c(ω) =
1

2
b(ω)eiφ(ω), (3.9)

and c∗(ω) is its complex conjugate. A typical interferogram is shown in Fig. 3.1. Taking
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the Fourier transform of Eq. (3.8),

G(t) = A(t) + C(t− τpr) + C∗(t+ τpr). (3.10)

Examining the Fourier transform of the signal, we see two peaks at±τpr and a DC component

caused by A(t), as shown in Fig. 3.2. Since we are only after the phase information contained

in C(t− τpr), we multiply G(t) by a super-Gaussian filter,

G′(t) = G(t)× exp

[−(t− τpr)
4

2σ4

]
. (3.11)

to obtain, with an appropriate choice of σ,

G′(t) ≈ C(t− τpr). (3.12)

An inverse Fourier transform of C(t − τpr) yields c(ω) as defined in Eq. (3.9), the phase

of which is the phase difference between the shaped and reference pulses. In practice, this

transform is obtained by circularly shifting this sideband to DC, for example by using the

MATLAB circshift() function. The difference in this result between a zero mask and a

particular phase mask yields the spectral phase imparted by a particular SLM phase mask.

3.2.3 Remarks

Also it is important that the spectrometer data is first interpolated from the spectrometer’s

evenly-spaced wavelength axis to an evenly-spaced frequency axis. Otherwise the Fourier

transform in Fig. 3.2 will not have a linear time axis, and step of shifting the isolated sideband

to DC will introduce distortions in the retrieved phase. Usually we subtract a reference phase

from the result described here. This reference phase is acquired either by blocking the pump

or setting the pump timing such that the pump interacts with the sample after the probe

and reference pair pass through. This second method is preferable because pump-related

heating of the sample will be consistent between the reference phase measurement and the

actual vibrational phase measurement.

3.2.4 Interferometric probe–reference stability

A source of phase noise, limiting measurement sensitivity, is interferometric stability be-

tween the probe and reference pulses. By routing these pulses through different paths, they
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accumulate different random phase from air turbulence and mechanical vibrations in the

optics. Stability may be improved by sending the reference through the sample along with

the probe.

Better yet, a birefringent delay crystal is used to split the probe and the reference [55],

as shown in Fig. 6.3 on page 119. The birefringent pulse splitter is described in more

detail in Chapter 6, but a brief description follows. The group delay for the eigenaxes

of a birefringent crystal differs, depending on the angle of the optic axis with respect to

the propagation direction. An incident pulse, polarized at 45 degrees with respect to the

ordinary and extraordinary axes, will be split into a pulse pair with a group delay difference.

3.2.5 Conclusion

The drawback to the spectral interferometry method is that the reference must precede

the pump, so as not to be modulated by the vibrations. This means that in order to

perform longer delay scans, the final probe–reference separation must be greater than the

maximum pump–probe separation. Since the probe–reference separation τpr determines the

fringe spacing in the spectral interferogram, longer separations require higher spectrometer

resolution. For example, our OceanOptics USB2000 will at most be able to measure a delay

of 4 ps. This limits the vibrational spectral resolution to dν = 1/(cτ) ≈ 8.5 cm−1. The

next section describes a synthetic temporal aperture approach to achieve better spectral

resolution.

3.3 Improved spectral resolution with a synthetic temporal aper-
ture

For pump–probe delays in excess of the probe–reference delay (τpp > τpr), both the probe

and reference pulses arrive at the sample after the pump pulse so that the sampling window

can be arbitrarily long. The phase measured by spectral interferometry in this case is the

difference of the perturbation induced by the vibrations,

∆φ(τpr) = φo − φr = φ(τpp)− φ(τpp + τpr) (3.13)
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Figure 3.3: Spectral interferometry measurement of transient phase for various pump timing
regimes. (a) Probe–reference interference spectrum recorded by the spectrometer. (b) Phase
map retrieved by sideband filtering algorithm. (c) Line-out of the retrieved phase at the
center probe wavelength indicating three pulse timing conditions. From right to left: τpp < 0,
no interaction since pump follows both probe and reference; spectral interferometry where
0 < τpp < τpr and the reference phase is zero; synthetic temporal aperture where τpp > τpr.

(for brevity, we omit the dependence on the probe optical frequency ω). Let us define

the (complex) Raman spectrum as the Fourier transform of the measured transient phase

Φ(Ω) =
∫
φ(τpp)e−iΩτppdτpp. The Fourier transform of the STA probe–reference phase

difference map data gives a spectrum of

Φ′(Ω) =

∫ ∞
−∞

[φ(τpp)− φ(τpp + τpr)] e
−iΩτppdτpp

= 2iΦ(Ω)eiΩτpr/2 sin (Ωτpr/2).

(3.14)
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3.3.1 Spectral attenuation

The modulation of the reference pulse causes an irrecoverable loss of phase information

at the harmonics of the probe–reference separation and the desired Raman spectrum is

modulated as shown by the sine term in Eq. (3.14). This can be understood intuitively by

considering a sinusoidal temporal phase modulation sampled by a pair of pulse separated

by τpr. Oscillation frequencies that are integer multiples m of the probe–reference pulse

separation, τpr = m2π/Ω will lead to zero phase difference between the probe–reference

pair since both probe and reference pulses are always at the same phase of the vibrational

motion. For example, we expect a delay of τpr = 4 ps to produce nodes at every ∼ 8 cm−1.

Even though the STA-SI-ISRS measurement imposes periodic attenuation, the effect

is not entirely detrimental. Consider that the Raman spectrum of each vibrational mode

consists of a band of frequencies, since these modes exhibit damping and dephasing. For a

vibrational mode frequency Ωv damped at a rate Γ, we can find an explicit relationship of

Eq. (3.14) of the form

∣∣Φ′(Ω)
∣∣2 =

∣∣∣∣ A

−Ω2 + Ω2
v + iΓΩ

∣∣∣∣2 sin2

(
Ωτpr

2

)
(3.15)

where A depends on the excitation strength of the ISRS by the pump pulse. Due to the finite

bandwidth of frequencies associated with a specific mode, the STA sinusoidal distortion will

not eliminate every frequency in the band. For small values of Γ (such as in gas-phase

molecules), the decay time becomes large and the narrow range of frequencies becomes

more susceptible to spectral distortion with STA. However, in liquids, typical dephasing

times are of the order of ∼ 3 ps, so that the probe pulse samples a severely attenuated

phase modulation strength compared to the reference pulse. Thus, we expect that if τpr >

Γ−1, the impact will be negligible. A sample numerical simulation is shown in Fig. 3.4

for a variation of the probe–reference delay, τpr, with a fixed vibrational frequency for an

undamped vibrational mode indicated by the solid line for Γ−1 = ∞ (Γτpr � 1). By

contrast, a more typical decay time of Γ−1 = 2 ps (Γτpr > 1) is shown by the dashed line in

Fig. 3.4.

The simulations indicate no spectral lineshape distortions of Raman lines for reasonable
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Figure 3.4: Simulation of information loss in synthetic aperture measurements of a ν̄ =
13 cm−1 mode, varying the probe–reference delay τpr. For a long-lived vibration with Γ−1 =
∞ ps (solid line), the periodic condition τpr = 1/mν causes a loss of spectral information.
For decay times typical of liquids, Γ−1 = 2 ps, the loss is not complete (dashed line).

experimental parameters. More importantly, for typical dephasing times of Γ−1 ∼ 1−−15 ps

and for probe–reference delays of ∼ 3−4 ps, STA-SI-ISRS measurements do not completely

attenuate spectral lines. As indicated by Fig. 3.4, the attenuation is likely to be less than

0.5. It should be emphasized that an undistorted high-resolution spectrum of a particular

mode can always be recorded with a suitable choice of τpr. In the experimental data that

follows, no significant STA spectral distortions are evident.

3.3.2 Experimental set-up

The experimental setup is sketched in Fig. 3.5. Pulses are generated by a multipass Ti:sapphire

amplifier (KMLabs Dragon) producing ∼ 1 mJ, ∼ 30 fs laser pulses centered at 780 nm at

a repetition rate of 1 kHz. In the liquid and solid samples, we use an additional prism

compressor to compensate for material dispersion in the experiment. For gas species, the

amplifier grating compressor was sufficient to yield transform-limited pump pulses in the

sample. Approximately 10% of the energy is split into the probe arm, which is then split

into probe and reference pulses with a delay of τpr by either a Michelson interferometer,

Fig. 3.5(i), or a birefringent delay crystal for exceptional fringe stability [55], Fig. 3.5(ii). A

computer-controlled optical delay arm adjusts the pump–probe delay, τpp, before the pulses

are focused into the samples in either collinear or non-collinear arrangements, as shown in

Figs. 3.5(i,ii). After the sample, the pump light is rejected (either spatially, chromatically,
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Figure 3.5: Synthetic temporal aperture experimental configurations. To measure gas-phase
molecules (i), the probe–reference pair was created with a Michelson interferometer, and the
pulses were coupled in to a hollow-core fiber, filled with the sample. The liquid- and solid-
phase experiments (ii) utilized a thick birefringent crystal to generate the probe–reference
pair, and a non-collinear sample configuration is employed.
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Sample τpr, ps T, ps dt, fs dν̄,
cm−1

config.

(a) SF6 3.8 17.2 10 1.9 (i)
(b) C4H10O 3.6 2.8 5.0 12.0 (ii)
(c) CHCl3 3.6 2.7 2.0 12.3 (ii)
(d) CCl4 3.6 2.7 2.0 12.3 (ii)
(e) BGO12 1.9 37.6 20 0.89 (ii)
(f) LaAlO3 3.5 9.6 50 3.5 (ii)

Table 1: Symthetic temporal aperture experimental parameters. T is the temporal window,
dt is the sampling rate in time, dν is the spectral resolution achieved in the scan. Last column
shows experimental configuration (see Fig. 3.5).

or by polarization).

The flexibility of STA-SI-ISRS allows us to choose a geometry and pump-probe sepa-

ration method to suit the sample under investigation. For measuring dilute gas samples

and depolarized Raman modes, we use orthogonally polarized pump and probe pulses in a

collinear geometry, rejecting the pump light after the sample with a polarizer (Fig. 3.5i).

The collinear geometry allows for long interaction lengths, enhancing the accumulated probe

phase. For liquid- and solid-phase samples with depolarized Raman modes we switch to a

non-collinear geometry, allowing for arbitrary pump–probe polarizations, rejecting the pump

with an aperture (Fig. 3.5ii). However, in this spatial separation method, scattered pump

light can still contaminate the probe interferogram. A third method, using pump and probe

pulses of different center wavelengths and dichroic optics, could provide excellent pump–

probe separation for a clean probe–reference interferogram in a collinear geometry. While

potential group velocity walkoff problems preclude long interaction lengths, this arrangement

is ideal for microscopy applications with tight focusing.

After the pump light is rejected, the probe–reference pair is projected to be co-polarized

before the spectrum is recorded by a spectrometer (OceanOptics USB2000).

We collect interferograms while sweeping the delay τpp, with typical step sizes of dt =

20 fs and duration of T = 10 to 20 ps. Specific measurement conditions for each case are

listed in Table 1.
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Figure 3.6: Synthetic temporal aperture Raman spectra acquired for (a) gas, (b)–(d) liquid,
and (e)–(f) solid phase samples. The blue lines (upward) show spectra obtained with the
Fourier transform of the retrieved probe–reference phase difference. Black lines (downward)
are results obtained with the LP-SVD.
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3.3.3 Results

3.3.3.1 Gas phase SF6

In the gas phase, we examine sulfur hexafluoride (SF6) at 660 Torr held in a 21cm long

glass capillary with an inner diameter of 250µm, as depicted in Fig. 3.5(i). Here, the probe–

reference separation is set to 3.8 ps. The orthogonally-polarized pump and probe pulses

enable rejection of the pump by a crossed polarizer after the sample. Due to incomplete

extinction on the analyzing polarizer, measurements are taken long after time overlap (τpp �

τpr) to avoid spectral interference terms arising from the leaked pump. This approach is

viable in the gas phase since a dilute gas typically has a vibrational mode dephasing times

in excess of 100 ps. A delay scan with 10 fs steps over a range of 17.2 ps gives a Raman

spectral resolution of 1.9 cm−1. The Raman spectra obtained by Fourier transform and LP-

SVD methods are shown in Fig. 3.6(a), with the ν1 Raman active frequency of 773 cm−1,

agreeing favorably with the expected 774.58± 0.03 cm−1[56], clearly visible. Since collinear

propagation of the pump, probe, and reference pulses is permitted, long glass capillaries may

be used to enhance depth of phase modulation of the probe and thus improve spectroscopic

sensitivity.

3.3.3.2 Liquid phase

Liquid phase samples are shown in Figs. 3.6(b)–(d). The spectra were measured in the non-

collinear arrangement shown in Fig. 3.5(ii). This allowed spatial separation of the pump

and probe–reference pair, thereby avoiding the issues associated the pump contamination

in the spectral interferogram. A cuvette with a 5 mm interaction length was placed at

the focus of a f = 150 mm singlet lens, yielding an estimated spot size of 150 µm. The

pulses were recollimated after the sample by a f = 125 mm lens. To avoid filamentation

and boiling of the liquid, the incident pulse energy was severely attenuated to ∼ 300 nJ

in the pump pulse, and ∼ 150 nJ in the probe–reference pulse pair. As mentioned above,

STA-SI-ISRS measurement does not restrict the interaction angle since we are recording the

phase perturbation imposed on the probe–reference pair and not scattering to a new spatial

frequency. As a result, the crossing angle is kept small for a greater interaction length in

40



the sample, leading to greater depth of modulation on the probe. In practice, about 0.5◦ is

just large enough to spatially separate the beams to block the pump from the spectrometer

with an iris. Experiments using dichroic pump separation, with different pump and probe

wavelengths, were frustrated by group velocity walk-off in the long liquid interaction lengths

and precluded the measurement of vibrational oscillations.

In each of the liquid measurements, the probe–reference separation was set to 3.6 ps.

The coherent Raman spectrum of ether (C4H10O) recorded with STA-SI-ISRS is shown in

Fig. 3.6(b). A 2.8 ps scan with 5.0 fs steps yield a Raman spectral resolution of 12.0 cm−1.

Measurements of neat chloroform (CHCl3) shown in Fig. 3.6(c) were measured with a 2.0 fs

step over a 2.7 ps range. The Raman spectrum of neat carbon tetrachloride (CCl4) is shown

in Fig. 3.6(d), with the same step size, probe–reference separation and scan range. Both the

CCl4 and CHCl3 spectra have a spectral resolution of 12.3 cm−1. The spectra agree well

with published results measured using spontaneous Raman scattering [57]. Longer delay

scans would not narrow the liquid vibrational peaks since their width is determined by the

short vibrational dephasing times in the liquid state.

3.3.3.3 Solid phase optical phonons

Finally, we demonstrated STA-SI-ISRS of optical phonons in solid-phase samples. These

data were gathered with the same focusing conditions and pulse energies as were used in

the liquid-phase measurements. The first data shown in Fig. 3.6(e) is for 0.5 mm thick

Bi4Ge3O12 (BGO12). For BGO12, we performed a scan with a probe–reference separation

of 1.9 ps, a step size of 20 fs over a duration of 37.6 ps. The Fourier-limited Raman spectral

resolution is 0.89 cm−1. To demonstrate our ability to characterize heavily damped low-

frequency modes, we measure the 1 THz mode in lanthanum aluminate (LaAlO3) with a

50 fs step size over a 9.6 ps temporal window, with a 3.5 ps probe-reference separation. The

coherent Raman spectrum shown in Fig. 3.6(f) demonstrates that SI-ISRS readily measures

this low-frequency, ∼ 30 cm−1 mode.
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3.3.4 Conclusion

We have demonstrated a sensitive technique for time-domain coherent Raman vibrational

measurements. This technique employs spectral interferometry for direct sensitive phase

measurements of the transient index of refraction perturbations induced through ISRS by

a pump pulse. This technique has been demonstrated to be suitable for solids, liquids,

and gases and can be constructed with either a collinear or non-collinear geometry. Our

ability to measure both polarized and depolarized modes could be extended by carefully

selecting pump and probe polarization states to characterize the tensorial nature of the

Raman differential polarizability [58]. Extension of the pump–probe delay enables a regime

of synthetic temporal aperture and permits spectral resolution to be extended beyond the

spectral resolution limits imposed by the spectrometer.

Moreover, since we are recording the phase difference with a probe-reference pair, and

no additional spectral components are generated, phase matching considerations are relaxed

and are dominated by group-velocity mismatch, which may be important when the probe–

reference pair is at a different central wavelength than the pump pulse. When combined

with selective ISRS pumping through temporal pulse shaping [59, 60, 61, 62], this technique

could yield highly selective coherent femtosecond Raman spectroscopy. The relaxed phase

matching conditions will make STA-SI-ISRS technique readily adaptable to coherent Raman

microscopy.

3.4 Rapid acquisition with chirped spectral holography
3.4.1 Introduction

Scanning an optical delay line can be time-consuming. If we desired to obtain spatially-

resolved Raman spectra in a scanning microscope, the drop in frame rate from having to scan

a pump–probe delay at every pixel would be unacceptable. This chapter describes a set-up

that can perform time-resolved phase-sensitive Raman spectroscopy in a single measurement.

(We are careful to avoid the term ‘single shot’, as the method here does average more than

a single shot from the laser. With a 1 kHz pulse train from the amplifier and a minimum 3

ms spectrometer integration, we record a minimum of 3 pulses per measurement.)
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Techniques for high spectral resolution coherent Raman spectroscopy have recently been

developed for short pump – long probe [63, 64] and for single-pulse geometries with pulse

shaping [65, 66, 67]. Adaptation of coherent Raman techniques to microscopy [68] of-

fer simultaneous measurement of a range of vibrational resonances [69]. Unfortunately,

low-frequency modes (< 200 cm−1) are challenging with these techniques. Time-domain

spectroscopy [50, 70, 71] where a probe pulse is scanned over a long pump-probe delay

window easily resolves low-frequency modes, but this technique is time consuming and not

favorable for scanning imaging applications.

Here, we demonstrate a method of rapid acquisition of low-frequency vibrational modes

in a non-scanning, chirped spectral holography (CSH) technique.

3.4.2 Other non-scanning methods

Multiplex CARS methods [66, 67] have been developed to rapidly acquire spectra, but

are poorly suited to measuring low-frequency modes due to their reliance on measuring a

frequency-shifted anti-Stokes field.

3.4.3 Spectral holography for phase encoding

In CSH a three-pulse sequence, consisting of an intense ultrafast pump pulse and two weak,

chirped probe/reference pulses, interacts with a sample in the following order. First the

reference passes through the sample unperturbed. Then the pump pulse produces quantum

beating between vibrational levels through impulsive stimulated Raman scattering (ISRS)

[50] which gives rise to a time-varying perturbation in the index of refraction δn(t) [72].

Finally the probe experiences a phase modulation proportional to the vibrational motion.

The probe–reference pair is separated in time by τpr and straddles the pump pulse such that

the reference pulse arrives before the pump while the probe pulse arrives at a time τ after

the pump pulse.

If the spectral phase of the probe and reference pulses is known, the phase perturbation

δφ(t) = k0,1Lδn(t) acquired by the probe pulse with propagation through the sample length

L may be extracted by use of a spectral holography algorithm [73], which is an exact analogy

to the spatial off-axis holography of Leith [74]. Here, k0,1 = ω1/c and ω1 is the probe central
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frequency. The restriction is that the reference pulse spectrum must not be narrower than

that of the probe pulse. This implies a temporal resolution set by the inverse bandwidth of

the reference spectrum, and a temporal window set by the pulse chirp. It is also possible

to retrieve the phase by mapping the spectral phase to time [70, 75, 76, 77], but with lower

temporal resolution.

3.4.4 Implementation with chirped pulses

CSH makes use of probe and reference pulses that are identically chirped from a transform-

limited temporal duration τ0 to a duration with τc � τ0. We write the chirped pulses

as Ẽc(t) = Ec(t)e
iω1t, where Ec(t) = Ac(t)e

iφc(t) is the complex pulse envelope. In the

experiments, the material dispersion in the probe arm is primarily quadratic, so the large

chirp yields an instantaneous frequency sweep Ωinst(t) = dφc(t)/dt that is a nearly linear

function of time t during the pulse envelope. The probe and reference pulses are separated by

a delay τpr > τc to prevent aliasing (i.e. temporal overlap of high and low frequencies). We

may write the complex envelope of the modulated probe pulse as Eo(t) = Ec(t)e
iδφ(t). The

cycle-averaged signal of probe and reference as recorded by a spectrometer causes interference

fringes in the spectral domain, in a process referred to as spectral interferometry (SI).

3.4.5 Holographic phase retrieval algorithm

If the acquired phase modulation is small, δφ � 2π (as we expect for sensitive detection

applications), there are no significant changes in the probe spectrum [78] and we can apply

the CSH algorithm to the spectral interferogram ŜCSH(Ω) = |Êc(Ω)eiΩτpr +Êprb(Ω)|2, where

Ω = ω − ω1. Expanding the interferogram yields

SCSH(Ω) = Sc(Ω) + Sprb(Ω) +K(Ω) +K∗(Ω), (3.16)

where Sc(Ω) = |Êc(Ω)|2, Sprb(Ω) = |Êo(Ω)|2, and

K(Ω) = Ê∗c (Ω)Êprb(Ω)eiΩτpr (3.17)

are the spectra of the chirped reference pulse, the probe pulse, and the CSH sideband,

respectively.
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An inverse Fourier transform of Eq. (3.16) will produce three time-domain terms. The

inverse transforms F−1{Sc(Ω)} and F−1{Sprb(Ω)} appear centered at zero time, whereas

the holographic sideband terms F−1{K(Ω)} are centered at ±τpr, so that K(Ω) may be

isolated. Characterization of the chirped pulse spectral phase ϕ(Ω) = ∠Êc(Ω) then allows

us to extract the complex temporal envelope of the probe field by taking the inverse Fourier

transform of the ratio Eo(t−τpr) = F−1{K(Ω)/Ê∗c (Ω)}. Finally, the phase response response

to the ISRS excitation by the pump pulse is given by

δφ(t) = ∠Eo(t)− φc(t). (3.18)

The temporal evolution δφ(t) is thus encoded in a single spectral interferogram of

Eq. (3.16), and can be retrieved for small phase modulations provided that the reference

pulse chirp and (complex) envelope are well-characterized.

3.4.6 Experimental results

We demonstrate the technique experimentally by measuring Raman spectra in Bi4Ge3O12

(BGO12). The experimental arrangement is related to that previously described for our

synthetic temporal aperture SI-ISRS experiment [47]. A Ti:sapphire amplifier (KMLabs

Dragon) generating 30 fs transform limited pulses at 1 kHz serves as the pump source. A

surface reflection from a glass wedge splits off part of the beam, which is further split into

probe and reference pulses by propagation in a thick birefringent medium (12˜mm KDP

crystal) to yield a probe–reference separation τpr ≈ 3 ps with high relative stability [55].

The probe and reference pulses are chirped to τc ≈ 2.1 ps by propagation through 240 mm of

BK7 glass and other material dispersion in the probe arm. The probe and reference pulses

are overlapped with the pump pulse and focused by a f = 35 mm lens in the 0.5 mm thick

BGO12 crystal with a non-collinear angle of about 0.5◦, chosen to maximize interaction

length while allowing spatial discrimination of the pump before the probe and reference

pulses are focused into a spectrometer (OceanOptics USB2000).

Although a single interferogram is sufficient to extract the phase modulation δφ(t), we

show in Fig. 3.7(a) multiple redundant spectra SCSH(Ω) acquired as a function of pump–

probe delay τpp in order to illustrate a few features at various time delays. It will be shown
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Figure 3.7: (a) Recorded interferograms for a pump delay scan. Black line shows the slope of
the phase features used to estimate probe φc. (b) DC-filtered reference spectrum, equivalent
to |Ec(ω)|2. Delays used for pump XPM (Fig. 3.8) and Raman measurements (Fig. 3.9) are
marked with a diamond and triangle, respectively. τ is referenced at 780 nm.

in the next section how this redundancy may be leveraged to improve the SNR of phase-

sensitive Raman measurements. The strong modulations due to pump-induced cross-phase

modulation (XPM) are clearly visible, and for delays |τpp| > 3 ps, both probe and reference

trail the pump pulse and the modulated reference invalidates the CSH approach. In between,

where 0 < τpp < τpr, the vibrational signature is present which we can extract by CSH. We

observed weaker phase modulations at shorter wavelengths, possibly due to a spatial chirp

on the probe pulse causing the pump–probe overlap area to be a function of wavelength.

The slope of the XPM features in Fig. 3.7(a) confirms the probe–reference pair GDD

is primarily quadratic, gives an independent measure of the quadratic spectral chirp of the

probe and reference pulses, which we estimate from the data to be ϕ2 = 13000 fs2/rad.

We extract the reference pulse spectrum |Êc(Ω)| by applying a low-pass filter to the SI

fringes, obviating the need for a separate spectral measurement, as shown in Fig. 3.7(b).

The reference field Êc(Ω) can thus be obtained from measured data directly. Processing the

spectrogram at delay τpp = 0 retrieves the phase shift induced due to cross-phase modulation

(XPM), proportional to the pump pulse intensity profile. This is shown in Fig. 3.8, along

with a comparison to the phase retrieved by standard sideband processing that uses a linear
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Figure 3.9: Raman spectra obtained from the holographically-retrieved phase measured at
delay τ = 1.62 ps by Fourier transformation (gray line) and LP-SVD (black).

frequency-to-time mapping[70].

Based on Fig. 3.7(a), we choose a delay τpp = 1.62 ps to extract the single-measurement

Raman spectrum. The resulting phase δφ(t) in the time domain is shown in the inset

to Fig. 3.9. We obtain the Raman vibrational spectrum shown in Fig. 3.9 (gray line) by

a Fourier transformation, Iv(Ωv) = F{δφ(t)}. The resolution of the vibrational peaks is

limited by the chirp and the optical bandwidth of the probe pulses, which in this case limit

the temporal window to around 2 ps. We obtained a higher resolution Raman spectrum

using a linear prediction singular value decomposition (LP-SVD) [79, 80] (See Appendix C),

since we know ab initio the exponentially-decaying sinusoidal functional form of the phase

modulation for each Raman mode. The LP-SVD results are shown by the black line in

Fig. 3.9. The LP-SVD allows a relatively narrow time window (τc) to extract low-frequency

vibrations. The Raman vibrational peaks measured with the CSH are in excellent agreement

with those we have measured by other techniques on the same crystal [47, 81].
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Figure 3.10: Numerical simulation of chirped spectral holography response under various
pulse duration conditions. We simulate the response of a fixed vibrational mode Ωv and
vary the transform-limited probe pulse duration τ0. Each curve shows results for a chirped
probe duration τc.

3.4.7 Raman frequency sampling limitations

While the lowest resolvable Raman frequency is determined by the temporal duration τc of

the chirped probe and reference pulses, the high frequency limit depends on the transform-

limited duration τ0. This can be understood intuitively by considering the temporal window

must sample at least a full oscillation of low-frequency modes, while the transform-limited

probe duration should be shorter than half an oscillation of the high-frequency modes.

Figure 3.10 shows the normalized sensitivity to a Raman mode with periodicity τvib =

1/Ωv for various probe chirped durations τc and various transform-limited durations. The

measurement response was observed to be independent of the probe–reference separation

τpr provided the pulses were adequately separated in time. Each curve shows, for a fixed

chirped duration τc, how sensitive the measurement is to a particular vibrational mode as

the transform-limited duration is varied from 0 to 1.2× the vibrational period. With all

four values of τc, the best response is given for the shortest transform-limited duration, and

the response drops to zero as the τ0 becomes comparable to τvib. It is also evident that

to acquire longer delay scans with more heavily chirped pulse durations, we require more

bandwidth, corresponding to shorter τ0. From the figure, we expect an upper frequency

limit of ∼ 440 cm−1 for the measurement conditions described here.
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3.4.8 Conclusion

In conclusion, we have demonstrated time-domain measurements of coherent Raman vi-

brational oscillations with chirped spectral holography. CSH recovers the temporal phase

due to vibrational quantum beating excited with ISRS and accumulated by a probe pule

from a single spectral interferogram when interfered with a reference pulse. Since the tem-

poral evolution of the index perturbation of the sample is recovered, CSH is well suited

for measurement of low frequency vibrational modes as in optical Kerr effect (OKE) spec-

troscopy [43], although OKE is time-consuming since a delay scan is required. Furthermore,

a transient birefringence is not required since CSH makes use of spectral holography and

directly measures temporal phase acquired by the probe pulse. Since the ISRS excitation oc-

curs with a single pulse, the only phase matching consideration is the relative group velocity

of the pump and probe pulses, affording the use of both collinear non-collinear geometries

with negligible experimental restrictions. Although the temporal window over which CSH

captures temporal phase is limited by the probe-reference pulse chirp, application of a trun-

cated LP-SVD modal spectral analysis retrieves high spectral resolution Raman spectra.

CSH is a non-scanning method and allows for rapid acquisition of Raman spectra suitable

for femtosecond Raman microscopy [68] and coherent control experiments [82, 83].

3.5 Noise suppression with a chirped-probe Fourier transform
method

3.5.1 Introduction

Here, we extend this approach to a highly sensitive interferometric Raman spectroscopy

using broad bandwidth probe pulses. The technique attains high Raman spectral sensitiv-

ity by isolating Raman spectral lines from the majority of the measurement noise. In the

experiment, a broad bandwidth pump pulse with a fast temporal structure excites coherent

vibrations, inducing a time-varying perturbation of the optical index of refraction δnv(t) of

the sample. Recording the spectrum of a pair of probe and reference pulses separated by a

relative time delay τpr results in interference fringes in the (optical) frequency domain [84],

referred to as spectral interferometry (SI). The SI fringes shift by an amount proportional to
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the index perturbation for a pair of transform-limited pulses. In STA-SI-ISRS, the transient

phase is retrieved from the SI fringes via a standard holography algorithm [54], and a Fourier

transform along the pump–probe delay axis τpp yields the Raman spectrum [47]. In the com-

plementary approach that we present below, a two-dimensional Fourier transformation of

the SI fringes over τpp yields peaks corresponding to Raman modes separated from the prin-

cipal noise components. The vibrational spectrum measured is inherently one-dimensional,

but the multiple redundant measurements offer an approach for improved sensitivity. We

stress that our technique is not a multi-dimensional spectroscopy; see [85, 86, 87, 88] and

references therein.

3.5.2 Theory

A pulse with central frequency ω1 acquires phase φ = ω1nL/c on propagating through a

medium of length L, where c is the speed of light. The refractive index perturbation of

Eq. (2.72) leads to a phase modulation of the probe pulse according to

δφ(t) =
∑
v

φv sin Ωvt (3.19)

with φv = (ω1L/c)δnv.

A short, transform-limited probe pulse with a duration τ0 � 2π/Ωv can be used to probe

the phase modulation at a specific pump–probe delay τpp. In the experiment, we measure

the phase modulation of the probe pulse Eo by beating it, in the spectral domain, with an

unmodulated reference pulse Er using a technique known as spectral interferometry (SI).

The probe pulse Eo(t) acquires an additional temporal phase ϕ(t) = δφ(t+ τpp) ≈ δφ(τpp)

due to the induced vibrational motion, which for short probe pulses will be approximately

constant across the duration of the pulse. The probe is delayed with respect to the otherwise

identical reference, so that we write the probe field as Eo(t) = Er(t + τpr)e
−iδφ(τpp). The

(fixed) probe–reference delay τpr, which is chosen independently of τpp, causes spectral

fringes with periodicity 2π/τpr that are recorded with a spectrometer The spectral domain

fields Êj(ω) = F{Ej(t)} are related to the time domain fields by the Fourier transform

denoted by F. The complex spectrum at delay τpp takes the form

ÊSI(ω)τpp = F {Eo(t) + Er(t)} = Êr(ω)
[
1 + eiωτpr+δφ(τpp)

]
. (3.20)
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The spectral domain fields Êj(ω) = F{Ej(t)} are related to the time domain fields by the

Fourier transform denoted by F. By acquiring a multitude of spectra while the pump–probe

delay is scanned, the spectrometer measures the set of spectra

ISI(ω, τpp) = 2Ir(ω) {1 + cos [ωτpr + δφ(τpp)]} (3.21)

so that the spectral fringes move as a function of pump–probe delay. Here, Ir ∝ |Êr(ω)|2

is the spectrum of the probe pulse. Since the Raman phase δφ(τpp) appears in Eq. (3.21)

independently of the optical frequency ω, the two-variable distribution ISI(ω, τpp) contains

multiple redundant measurements of δφ(τpp), and a pump–probe delay scan at a single, fixed

ω is in principle sufficient to measure the Raman spectrum Iv(Ω) = |F {δφ(τpp)} |2[47].

A two-dimensional Fourier transform over the variables ω, τpp, transforming to conjugate

delay t′ and vibrational frequency Ω, respectively, will produce Raman vibrational sidebands

at frequencies Ω = ±Ωv that appear on top of the SI delay sidebands, due to the spectral

fringes, at delay time t′ = ±τpr in the 2D spectrum,

Iv(t
′,Ω) =

∫ ∞
−∞

dω

∫ T

0
dτpp e

−iωt′e−iΩτppISI(ω, τpp). (3.22)

Under these conditions, the Raman information is difficult to isolate from the noise present

in the SI sideband.

The Raman spectral sidebands can be separated from the SI delay sideband by chirping

the probe–reference pulse pair. A spectral chirp ϕ(ω) = 1
2ϕ2(ω − ω1)2 causes a sweep of

the instantaneous frequency of the pulse pair. For a large chirp the reference pulse becomes

Er(t) = Ac(t)e
iφc(t), where Ac(t) is the temporal magnitude and φc(t) is the temporal phase

of the chirped reference and unperturbed probe pulses. The instantaneous frequency differ-

ence is ωinst(t)−ω1 = dφc(t)/dt ≈ t/ϕ2, which results in a linear sweep of the temporal phase

across the probe spectrum [89]. Over a pump–probe delay scan the same phase modulation

appears at spectral component ω′ at delay τpp +(ω′−ω1)ϕ2. The 2D set of measured spectra

ISI(ω, τpp) includes a cross term of the form F {Ac(t) exp [i(φc(t) + φv sin Ωv[t− τpp])]} eiωτpr .

Expanding the sinusoidal phase for small φv as a sum of Bessel functions results in a number

of terms of the form

I ′(t′,Ω) = 2TJ0(φv)J1(φv)e
i 1
2
ϕ2Ω2

ve−
i
2

(Ω±Ωv)T sinc
[

1
2 (Ω± Ωv)T

]
R
(
t′ ∓ ϕ2Ωv

)
, (3.23)
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Figure 3.11: Experimental configuration for 2DFFT measurements: (a) ISRS excitation
with transform-limited pump pulses and (b) selective excitation via temporal beating in the
pump pulse.

where R(t) = F−1 {|U0(ω)U0(ω − Ωv)|} is a time-domain convolution of the original and

Raman-shifted probe spectrum, U0(ω) = F{Er(t)} and T is the total scan length of pump–

probe delay τpp. For a damped sinusoidal vibration with decay rate Γv, this calculation

could be repeated for each frequency component of the temporal phase oscillation, which will

broaden the sideband given above. When T � Γ−1
v , the sinc function negligibly perturbs the

true spectral lineshape of the Raman vibrational resonance, and the true Raman lineshape

can be measured. For each vibrational mode of the transient phase δφ(τpp), these terms

appear as sidebands at slope ϕ2, determined by the chirp of the probe pulses, in a (relatively)

background-free area of the 2D spectrum Iv(t
′,Ω). An example of the full 2D spectrum is

shown in the inset in Fig. 3.12. The vibrational spectrum is obtained by integrating with

respect to t′, selecting a diagonal boundary over a small range about t′ = Ωϕ2.

3.5.3 Experiment

We measured 2D Fourier transform femtosecond Raman spectra in a number of molecu-

lar solvents and in a Bi4Ge3O12 (BGO12) crystal. The measurements were performed in

the pump –probe configuration sketched in Fig. 3.11(a), employing ∼ 22 fs pump pulses

from a Ti:sapphire oscillator, centered at 800 nm. A portion of the 3 nJ oscillator pulse
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Figure 3.12: 2D-FFT vibrational spectrum measured for BGO12. The chirped probe mea-
surement (black line) measures vibrational obscured in a 1D transform (gray). The inset
shows the 2D-FFT of the entire data set with the enlarged area marked.

energy was frequency-doubled in a 100 µm KDP crystal by second-harmonic generation

(SHG). Propagating the SHG pulse through a thick birefringent medium generated a pair

of orthogonally-polarized, time-delayed probe and reference pulses with exceptional phase

stability [55], which resulted in interference fringes on a spectrometer after an analyzing po-

larizer. The unconverted energy at the fundamental wavelength was separated by a dichroic

optic and sent through a delay line to adjust τpp before recombining with the probe and

reference pulses. A prism compressor pre-compensated for the dispersion of a Zeiss Epiplan

50× 0.50 NA long working distance objective, (GDD measured to be ∼ 800 fs2/rad) and the

other optics in the setup. samples were placed at the focal plane of the objective. The probe

and reference pulses were recollimated with a 35 mm focal length spherical lens, passed

through a BG-39 color glass filter to reject the pump light, and made co-polarized by a

polarizer at 45◦ before being focused into the spectrometer. Near time-zero where the pump

pulse overlaps with the probe or reference pulses, cross-phase modulation (XPM) gives rise

to spurious phase signatures that must be omitted from the analysis. The SI data were

acquired in a synthetic aperture regime [47] where both probe and reference pulses follow

the pump. Measuring a 10 ps range in 10 fs steps resulted in a spectral resolution of the

Raman spectra of ∼ 2 cm−1.

Transformed data for ISRS excitation of phonon oscillations in BGO12 are shown in

Fig. 3.12, where the inset shows the full transform including the SI sidebands arising from
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Figure 3.13: 2D-FFT vibrational spectra of liquid phase (a) chloroform, (b) carbon tetra-
chloride, (c) diethyl ether, and (d) acetone. Circles denote published Raman frequencies [57].

the τpr = 2.3 ps probe–reference delay. The enlarged section is indicated by the frame. From

the slope of the peaks in (t′,Ω)-space, we estimate a probe pulse chirp of ϕ2 = −5300 fs2/rad.

Unlike the chirped spectral holography experiment, the probe–reference chirp arises because

the compressor is adjusted to pre-compensate the pump path dispersion for transform-

limited pump pulses at the sample, and the disparate dispersions accumulated by the pump

and probe pulses.

Summing the transform over a 100 fs wide diagonal band reveals the vibrational spectrum

Iv(Ω) as indicated by the black line. For comparison, the gray line indicates the Raman

spectrum obtained by directly transforming the interferogram delay scan along only the τpp

(conjugate Ω) dimension. Only the line near 90 cm−1 appears since the remaining lines are

weaker than the noise of the temporal sideband, illustrating the improvement in sensitivity

afforded by isolating the sideband from the 2D transform noise. The increased sensitivity

allowed us to measure the Raman modes of a number of liquid phase samples, as shown in

Fig. 3.13. Vibrational frequencies as high as 790 cm−1, limited principally by the optical

bandwidth of the pump pulse, were measured in acetone, carbon tetrachloride, chloroform,

and diethyl ether. In each solvent, we found excellent agreement between the measured and

previously published mode frequencies [57].
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3.5.4 Selective ISRS pumping with pulse trains

A pulse train with a regular, periodic spacing may be used to selectively excite vibrational

modes via ISRS. Two methods of producing such pulse trains are discussed here. The

first, application of sinusoidal spectral phase, is shown only in the theoretical discussion to

demonstrate how a pulse train can selectively excite vibrations. The second, by mixing two

time-delayed chirped pulses, is shown in experiment to selectively excite modes in BGO12.

As a theoretical example, a pulse train is readily producible by use of a pulse shaper to

apply a sinusoidal spectral phase mask. The phase modulation is applied to produce the

following pump field in the frequency domain as such:

E(ω)sin = E(ω)EiA sin( 2π
τ<

ω), (3.24)

where A is the amplitude of the phase modulation and τ is period. This modulation produces

a pulse train in the time domain, where the peaks are spaced by τ . If the pulse duration

τp is not short enough, the peaks will be poorly resolved, so it may be convenient to use

even multiples of the resonant frequency of the vibrations to produce clean pulse trains for

excitation. Fig. 3.14 shows the spectral overlap of these pulse trains with the vibrational

frequency response. Here we show two cases, one where τ is an even multiple of the Ωv (on-

resonance), another where τ is a fractional multiple of Ωv (off-resonance), and we also include

the transform-limited pulse (flat phase) for comparison. Note that for the on-resonance case,

|D(Ω)| is nearly as large as the transform-limited pulse in proximity to Ωv. On the other

hand, the off-resonance |D(Ω)|, while having large amplitudes at other frequencies, is rather

small near Ωv, effectively suppressing the excitation of vibrations. The effect is better

illustrated in the time domain. Fig. 3.15 demonstrates the molecular displacement that

results from a pulse train spaced at twice the resonant period. Each pulse in the train is

timed just right to reinforce the movement of the vibrations. Compare this with Fig. 3.16,

where the overall effect is vibrational suppression: the individual pulses are timed to work

against the vibrations.

Another method of producing resonant pulse trains for selective ISRS excitation, which

does not involve a pulse shaper, is described below. In either case , the selective nature of
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Figure 3.15: Time-domain illustration of on-resonance pulse train pumping.
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Figure 3.16: Time-domain illustration of off-resonance pulse train pumping. Vibrations are
still excited, but with significantly less amplitude than the resonant case.

the excitation from a resonant pulse train still applies.

3.5.5 Selective ISRS experiment

To verify that the sidebands appearing in the 2D Fourier transform of the interferograms are

due to ISRS, we selectively excite each of the observed Raman modes in BGO12 by making

use of temporal beating from two strongly-chirped pump pulses [61] with the experimental

setup of Fig. 3.11(b). The combination of two pump pulses with large chirp ϕp separated

by τp gives rise to a beat frequency Ωbeat = τp/ϕp. Since ISRS is effectively driven by

the intensity profile of the driving pulse [61, 60], the chirped pump pulse pair serves as an

effective ISRS source term with a Raman excitation spectral resolution that is inversely pro-

portional to the chirped pulse duration [61]. For selective excitation, we replaced the prism

compressor in the pump arm by a double-passed a BK7 rod. A Michelson interferometer,

comprising a polarizing beam splitter cube, two quarter-wave plates, and an output polar-

izer, resulted in a co-polarized chirped pump pulse pair with an adjustable relative delay.
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SHG FROG measurements [90] of the pump pulses showed that the ∼ 22fs transform lim-

ited pulses were stretched to about 1 ps. Due to the large time–bandwidth product arising

from a spectral phase that is anticipated to be primarily quadratic, we fitted a fourth-order

polynomial spectral phase to the measured FROG traces in lieu of a standard FROG recon-

struction [91]. From this technique, we estimate the pump pulse GDD to be approximately

8000 fs2/rad. The temporal residue of the FROG trace, which corresponds to the pulse au-

tocorrelation [90], exhibited periodic intensity modulations with the same periodicity as the

pump pulse beating 2π/Ωbeat, so that the ISRS pump excitation frequency Ωbeat could be

determined by a Fourier transformation of the temporal residue. A pump pulse measurement

exciting the 90 cm−1 mode is shown in Fig. 3.17. The tuning rate of the pump resonance

beat frequency with Michelson arm displacement was measured to be κp = 4.5 cm−1/µm,

from which we can estimate a pump pulse chirp of ϕp = 1/πcκp = 7800 fs2/rad, in good

agreement with the FROG trace fit.

The reduced pump pulse peak intensity required tighter focusing, which was achieved

with a Zeiss Achroplan 63 × 0.80 NA objective. Delay scans with a probe–reference sep-

aration of τpr = 1.1 ps were recorded for a 14 ps pump–probe delay range in 7 fs steps.

Results for Raman spectra obtained with a 2D transform of the scanned SI data for 25
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Figure 3.18: Selectively excited Raman signals measured for varying pump beating fre-
quency in BGO12. Measurements for frequencies > 150 cm−1 have been scaled 10×.

scans with a pump excitation frequency ranging from over Ωbeat/2π = 30−−400 cm−1 are

shown in Fig. 3.18. The traces for Ωbeat/2π > 150 cm−1 have been magnified 10× to better

show the weaker modes. From the data, the selective excitation is clearly evident, as modes

with frequencies Ωv/2π ≈ 90, 210, and 360 cm−1, equivalent to the ISRS spectrum shown in

Fig. 3.12, are sequentially excited. In processing the data, care is taken to exclude XPM due

to pump–probe temporal overlap from the 2D FFT. Since the XPM signature has the same

frequency as a vibrational mode, it could falsely contribute to the vibrational measurement;

tuning the pump beat frequency off vibrational resonances and observing the signal going to

zero confirms that the data in Fig. 3.18 are purely due to ISRS-excited vibrational modes.

3.5.6 Summary

In summary, we have demonstrated an easy-to-implement, sensitive interferometric Ra-

man spectroscopy by performing a two-dimensional Fourier transform of interference fringes

measured in a pump–probe geometry. By stretching the probe and reference pulses with

quadratic spectral phase, we isolate the vibrational signature from noise. We have demon-

strated its utility in BGO12, measuring modes at 90, 210, and 360 cm−1, and in several

molecular liquids. Selective excitation of these modes was achieved by beating two stretched,

time-delayed pump pulses in resonance with the selected mode. The improved sensitivity

over analogous measurements with transform-limited pulses allows for unamplified oscillator

pulses to be used, paving the way for vibrational specificity in microspectroscopy.
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3.6 Fresnel modulation at a boundary

The index modulation at a material interface will modulate Fresnel transmission and re-

flection coefficients. We describe theory and refer to other work in this section. We will

show in the second part of this dissertation how Fresnel modulation affects THG, making

this chapter a segue-way to Part II. We will also briefly discuss here interface-specificity of

Fresnel.

It has been shown that coherent phonon oscillations at the surface modulate the Fres-

nel transmission of a probe pulse in a manner distinguishable from bulk modulations by

observing a phase shift in time-resolved signal [92]. In spite of the abundant techniques

examining modulations of reflections, little has been done to examine the complementary

effect of modulation of transmission at a boundary.

3.6.1 Fresnel coefficients of reflection and transmission

The perturbation to the optical susceptibility perturbs the Fresnel reflection and transmis-

sion coefficients. Noting that the optical (linear) susceptibility is given by

χ(1) = χ
(1)
0 + δχ

(1)
0 |Us(x, y, z)|2 sin[Ωv(t+ τ − u−1

p z)] ≡ χ(1)
0 + δχ (3.25)

The Fresnel reflection and transmission coefficients are derived for plane wave and come

about from matching boundary conditions (and thus no temporal derivatives appear as is

the case for source term). Note that n2 = ε = ε0
[
1 + χ(1)

]
, and recalling the Fresnel

coefficient for s

rs =
ni cos θi − nt cos θt
ni cos θi + nt cos θt

=
ni cos θi −

√
n2
t − n2

i sin2 θi

ni cos θi +
√
n2
t − n2

i sin2 θi

(3.26)

ts =
2nt cos θi

ni cos θi + nt cos θt
=

2ni cos θi

ni cos θi +
√
n2
t − n2

i sin2 θi

(3.27)

and p polarizations

rp =
−nt cos θi + ni cos θt
nt cos θi + ni cos θt

=

−nt cos θi + ni

√
1− n2

i

n2
t

sin2 θi

nt cos θi + ni

√
1− n2

i

n2
t

sin2 θi

(3.28)
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tp =
2nt cos θi

nt cos θi + ni cos θt
=

2ni cos θi

nt cos θi + ni

√
1− n2

i

n2
t

sin2 θi

(3.29)

respectively and where θi is the incident angle and θt is the transmitted angle.

3.6.2 At the entrance face of a sample

The change in the the reflection or transmission coefficient is given approximately by

δR ≈ ∂R

∂n
δn

Let’s compute the derivatives of the Fresnel coefficient for s

∂Rs
∂nt

= − nt(1 +Rs)

n2
t − n2

i sin2 θi + ni cos θi

√
n2
t − n2

i sin2 θi

(3.30)

So that the perturbed reflection coefficient, as a function of the index perturbation, becomes

Rs(δnt) = Rs −

 nt(1 +Rs)

n2
t − n2

i sin2 θi + ni cos θi

√
n2
t − n2

i sin2 θi

 δnt (3.31)

and for transmission,

∂Ts
∂nt

= − ntTs

n2
t − n2

i sin2 θi + ni cos θi

√
n2
t − n2

i sin2 θi

(3.32)

So that the perturbed transmission coefficient becomes

Ts(δnt) = Ts −

 ntTs

n2
t − n2

i sin2 θi + ni cos θi

√
n2
t − n2

i sin2 θi

 δnt (3.33)

and p polarizations

∂Rp
∂nt

=
n3
i sin2 θi − n2

t cos θi

√
n2
t − n2

i sin2 θi

nin3
t − n3

int sin2 θi + n3
t cos θi

√
n2
t − n2

i sin2 θi

×

n3
i sin2 θi + n2

t cos θi

√
n2
t − n2

i sin2 θi

n3
i sin2 θi − n2

t cos θi

√
n2
t − n2

i sin2 θi

−Rp
 (3.34)

∂Tp
∂nt

= −
n3
i sin2 θi + n2

t cos θi

√
n2
t − n2

i sin2 θi

nin3
t − n3

int sin2 θi + n3
t cos θi

√
n2
t − n2

i sin2 θi

Tp (3.35)

respectively.
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3.6.3 Normal incidence

The Fresnel equations are greatly simplified by assuming normal incidence. At normal

incidence, the unperturbed reflection coefficient is

R0 =
ni − nt
ni + nt

, (3.36)

and the unperturbed transmission coefficient is

T0 =
2nt

ni + nt
, (3.37)

where the incident refractive index is ni and the index on the transmitted side of the bound-

ary is nt.

3.6.3.1 Entrance face

At the entrance face of an air/crystal interface, We express the perturbation to the normal

incidence as a first-order Taylor series expansion. For reflection, R(t) = R0 +(dR/dnt)δn(t).

The variation of the reflection with a perturbation is

∂R

∂nc
= − 1

na + nc

(
1 +

na − nc
na + nc

)
= − 2na

(na + nc)2
(3.38)

At the entrance face, we take the crystal index as nt = nc and the surrounding medium (air)

as ni = na, and the index perturbation is

δn =
δχ

(1)
0

2nc
|Us(x, y, z)|2 sin[Ωv(t+ τ − u−1

p z)] (3.39)

so we write the full expression

R(t) = R0 + δR(t), (3.40)

where

δR(t) =
∂R

∂nt
δn(t)

= −
(

na
nc(na + nc)2

)
δχ

(1)
0 |Us(x, y, z)|2 sin

[
Ωv

(
t+ τ − u−1

pu z
)] (3.41)

Similarly, the variation of the transmission coefficient with the perturbation is

∂T

∂nc
=

2

na + nc
− 2nc

(na + nc)2
=

2na
(na + nc)2

= − ∂R
∂nc

, (3.42)
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which is expected, since

(T + δT ) = 1− (R+ δR)⇒ δT = −δR (3.43)

Therefore the transmission coefficient is

T (t) = T0 + δT (t) (3.44)

where

δT (t) =
∂T

∂nt
δn(t) = −δR(t)

=

(
na

nc(na + nc)2

)
δχ

(1)
0 |Us(x, y, z)|2 sin

[
Ωv

(
t+ τ − u−1

pu z
)]

= δT δ̃χ
(1)
,

(3.45)

where

δT =
na

nc(na + nc)2
. (3.46)

The resulting perturbation the transmission coefficient through the entrance face is simply

the first-order susceptibility perturbation multiplied by a coefficient that depends on the

refractive indices at either side of the interface.

3.6.3.2 Exit face

At the exit face of a crystal, we study light propagating from the crystal interior to air. The

method is similar to the entrance face, taking derivatives wrt nc except this time ni = nc

and nt = na.

The variation of reflection with the perturbation is

∂R

∂nc
=

2na
(na + nc)2

(3.47)

and the time-dependent perturbation of the reflection coefficient is

δR(t) =

(
na

nc(na + nc)2

)
δχ

(1)
0 |Us(x, y, z)|2 sin

[
Ωv

(
t+ τ − u−1

pu z
)]
. (3.48)

The variation of transmission with the perturbation is

∂T

∂nc
= − 2na

(na + nc)2
(3.49)
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and the time-dependent perturbation of the transmission coefficient is

δ̃T = −
(

na
nc(na + nc)2

)
δχ

(1)
0 |Us(x, y, z)|2 sin

[
Ωv

(
t+ τ − u−1

pu z
)]

= −δT δ̃χ
(1)
.

(3.50)

The result for exit face transmission is the same as for the entrance face except for a minus

sign. The sign flip manifests itself as a π phase delay shift between bulk modulation and

exit-face interface modulation [92].

3.6.4 Perturbations at the exit face

Upon exiting a crystal it, the incident index is perturbed analogously to the transmitted

above so that ni = ni0 + ∆n. Let’s compute the derivatives of the Fresnel coefficient for s

∂Rs
∂ni

=
ni sin2 θi − cos θi

√
n2
t − n2

i sin2 θi

n2
t − n2

i sin2 θi + ni cos θi

√
n2
t − n2

i sin2 θi

×

−ni sin2 θi − cos θi

√
n2
t − n2

i sin2 θi

ni sin2 θi − cos θi

√
n2
t − n2

i sin2 θi

−Rs
 (3.51)

and

∂Ts
∂ni

=
2 cos θi

ni cos θi +
√
n2
t − n2

i sin2 θi

1−

1

2
− ni sin2 θi

2 cos θi

√
n2
t − n2

i sin2 θi

Ts
 (3.52)

and p polarizations

∂Rp
∂ni

=
n2
t − 2n2

i sin2 θi

nin2
t − n3

i sin2 θi + n2
t cos θi

√
n2
t − n2

i sin2 θi

(1−Rp) (3.53)

∂Tp
∂ni

=
2nt cos θi

n2
t cos θi + ni

√
n2
t − n2

i sin2 θi

1−

 n2
t − 2n2

i sin2 θi

2nt cos θi

√
n2
t − n2

i sin2 θi

Tp
 (3.54)

respectively.

3.6.5 Discussion

Linear optical surface techniques measure subtle changes in reflection due to surface phe-

nomena [16, 1]. But material below the surface also scatters light, leading to surface-bulk
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ambiguity. Various methods aimed at isolating surface reflections from bulk scattering in-

clude reflection difference spectroscopy, reflection anisotropy, ellipsometry, and 45-degree

reflectometry [20, 21]. It has been shown that coherent phonon oscillations at the surface

modulate the Fresnel transmission of a probe pulse in a manner distinguishable from bulk

modulations by observing a phase shift in time-resolved signal [92]. In spite of the abun-

dant techniques examining modulations of reflections, little has been done to examine the

complementary effect of modulation of transmission at a boundary.

Fresnel transmission modulation at the exit face of a sample shows a distinct phase shift

from bulk modulation. We will show how this contributes to modulation of third harmonic

in the next part of this dissertation.
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PART II

Effective third-order modulation



CHAPTER IV

COHERENCE-MODULATED THG FOR VIBRATIONAL

RAMAN SPECTROSCOPY

4.1 Introduction

We probe vibrational coherences (VC), prepared via non-resonant impulsive stimulated Ra-

man scattering (ISRS) [19], both at and near a crystal–air interface. We introduce a method

called coherence-modulated third harmonic generation (CM-THG) where the influence of vi-

brations on probe pulse propagation and TH generation are observed. The measurements are

performed with noncentrosymmetric crystals with a nonzero even-order nonlinear response

in bulk, making surface-specific even-order measurements difficult to obtain.

Three distinct 6-wave mixing pathways contribute to the CM-THG signal: coherent

second hyper-Raman scattering (CSHRS), cascaded amplitude modulations in the bulk,

and Fresnel boundary modulations at the interface.

It is shown here that heterodyning with the unmodulated TH signal enables measure-

ment of this weak phenomenon. This method provides complementary information to that

obtained by second-order spectroscopies.

Unlike even-order surface spectroscopies, surface specificity in this work is made possible

by the Fresnel modulated term, and occurs regardless of bulk symmetry. In addition, we can

simultaneously acquire both surface and bulk information and separate the two. CM-THG

may be applicable to circumstances where second-order processes may not be appropriate,

such as when selection rules prevent measurement by a second-order processes, or when

examining anisotropic media, where a strong second-order bulk signal would overwhelm the

surface signal.

In contrast to even-order interactions, odd-order nonlinear interactions occur regardless
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of media symmetry. For a tightly focused laser beam in a uniform medium, the third har-

monic (TH) generated on opposite sides of the focal plane interfere destructively and cancel

due to the Gouy phase shift. At an interface, the discontinuity in the third-order suscepti-

bility χ(3) breaks the symmetry about the focal plane, partially preventing the destructive

interference and giving rise to an interface-sensitive TH signal [36]. Though the harmonic

is generated in the bulk, the overall signal can be interface-sensitive [38].

The CM-THG experiment is depicted in Fig. 4.1. An ultrafast pulse is split into time-

delayed pump and probe pair. The pump sets up a vibrational coherence in the sample, and

the probe generates third harmonic, which is modulated by the coherence. Interface scans,

sometimes referred to as z-scans [38] are central to the ability to separate bulk and interface

contributions. This method involves translating the interface across the focal plane, and

recording a pump–probe delay scan at each point. This is not to be confused with the

z-scan method of measuring nonlinear optical coefficients [93].

Figure 4.1: Basic coherence-modulated third harmonic generation experiment.
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The remainder of this chapter will describe a theoretical model, while the following

chapter will present experimental results. The model will be constructed in such a way as

to show the distinct interface scan behavior of each of the signal contributions, CSHRS,

cascade, and Fresnel modulations.

4.2 THG at an interface

We begin by looking at phase-matched THG of a focused CW Gaussian beam across an

interface, without a vibrational coherence. This section will show the interface scan produces

a maximum THG intensity when the interface is coincident with the focal plane of the beam.

The interface scan profile has a Lorentzian shape with a FWHM equal to the confocal

parameter, b = 2zR.

4.2.1 Third harmonic generation and propagation equations

We consider a fundamental beam incident on the nonlinear medium beginning at z0, with a

waist located at zw, written in the spatial frequency domain

Êo(kx, ky, z, to) = E0,o(to)
w2

10

4π

{
−(k2

x + k2
y)

[
w2

10

4
− i zw

2k1

]}
, (4.1)

where E0,o is the slowly varying temporal envelope of the probe field, presumed to be a

transform-limited Gaussian here:

E0,o(to) = E0,oe
−at2o . (4.2)

We start with the equation for propagation of an ultrafast pulse in the spatial frequency

domain, Eq. (A.37), and substitute the third harmonic driving term for the additional

polarization pA → pTHG The third harmonic polarization behind ordinary third harmonic

generation is given by

pTHG(r, t) =
1

4
ε0χ

(3)
0 E3

1(r, t)e−i∆kz, (4.3)

where the phase mismatch between the fundamental and third harmonic is represented by

∆k = 3k1 − k3. Neglecting group velocity mismatch between the fundamental and third

harmonic, we write the equation describing evolution of the third harmonic, in the traveling
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frame of the third harmonic pulse, as

∂

∂ζ
Ê3o(ζ, kx, ky, t3o) = i

ω3w
2
10

24cn3
χ(3)

E3
0,o(t3o)

(4π)3A2
1(ζ)

exp

{
−(k2

x + k2
y)
w2

10A1(ζ)

12

}
e−i∆kζ

− i
k2
x + k2

y

2k3
Ê3o, (4.4)

where we have defined

A1(ζ) = 1 + i
2(ζ − zw)

w2
10k1

(4.5)

We introduce a trial solution for Ê3o in the form of a Gaussian beam with a propagation-

dependent amplitude and phase E0,o,3(ζ, t)

Ê3o = E0,3p(ζ)
w2

30

4π
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
, (4.6)

where A3(ζ) is similarly defined to A1(ζ) as in Eq. (4.136). We compute the derivative of

Eq. (4.137), insert it into Eq. (4.135), and combine terms to arrive at an expression for the

third harmonic amplitude and phase evolution, E0,o,3, as a function of propagation

∂

∂ζ
E0,3p(ζ, t3o) = i

πω3w
2
10

6cn3w2
30

χ
(3)
0

E3
0,o(t3o)

(4π)3A2
1(ζ)

e−i∆kζ . (4.7)

This result should be roughly equivalent to Eq.(2.10.10) in Ref.[39]. Here we have assumed

that the fundamental and TH spot sizes are fixed, w2
10 = 3w2

30, the beams are confocal

(zw is the same for both fundamental an TH), and we may neglect spatially non-Gaussian

features [94]
1

3k1
− 1

k3
=
k3 − 3k1

3k1k3
≈ 0. (4.8)

To find the TH generated, we must integrate Eq. (4.138)

E0,3p(ζ, t3o) = i
πω3w

2
10

6cn3w2
30(4π)3

χ
(3)
0

∫
E3

0,o(t3o)

A2
1(ζ ′)

e−i∆kζ
′
dζ ′. (4.9)

Here we have neglected group velocity mismatch, and will deal with it only briefly at

the end of this chapter.

Eq. (4.140) is also expressed in terms of a J-integral,

E0,3p(ζ, t3o) = i
K

n
χ

(3)
0 E3

0,o(t3o), (4.10)
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where the constant coefficients have been grouped into K/n and

J3(∆k, z0, z) =

∫
e−i∆kζ

′

A2
1(ζ ′)

dζ ′ =

∫ z

z0

ei∆kz
′
dz′

(1 + 2iz′/b)2
, (4.11)

expressed in terms of the confocal parameter b = 2zR.

4.3 Solution for Phase-matched interface scan

For the phase-matched CW case, the J-integral reduces to:

J(∆k, z0, z) =

∫ z

z0

1

(1 + 2iz′/b)2
dz. (4.12)

For perfect phase matching in a homogeneous medium, that is ∆k = 0, the result is J3 = 0,

and no net third harmonic is generated for the bounds
∫∞
−∞.

When an interface is placed at zi, with material A on the left and B on the right, the

integral must be performed separately for each material. Neglecting Fresnel reflection losses

at the interface, the total far-field third harmonic is the sum of that which is generated on

either side of the interface:

E3(z =∞) =
K

nA
χ

(3)
A E3

1J3(0,−∞, zi) +
K

nB
χ

(3)
B E3

1J3(0, zi,+∞)

For completeness we should consider Fresnel losses at the interface. But we’ll include that

later in the treatment of coherence-modulated THG.

This may be solved analytically for ∆k = 0:

J(0,−∞, z) = i
b2

4iz + 2b

and

J(0, z,∞) = −i b2

4iz + 2b

The z-scan field profile is

E3 =
i2πqω

c
E3

1

(
χ

(3)
A

nA
− χ

(3)
B

nB

)
ib2

2(2iz + b)

And the intensity is

|E3|2 = K2

(
χ

(3)
A

nA
− χ

(3)
B

nB

)2
b4

4(4z2 + b2)
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which is a Lorentizan with a peak value at z = 0 of

I3(z = 0) = (χ
(3)
1 − χ

(3)
2 )2 b

2

4
,

and a full width at half-maximum equal to the confocal parameter b = 2zR. For a plot of

this profile on the sapphire/air interface, see Fig. 4.13.

4.4 Effective susceptibility perturbations for THG

For third harmonic generation, we need to have an equation that describes THG, coupled to

the probe propagation — all perturbed by the pump pulse. We assume that the pump pulse

is a focusing Gaussian as before. Also, we will neglect depletion of the probe (fundamental)

beam. First, let us calculate the transient perturbation to the THG relevant susceptibility.

4.4.1 Wave equation for THG

Starting with the wave equation, modified to include a source term for the third harmonic

generation,

{
i

2k3
∇2
⊥ +

∂

∂z
+

1

vg3

∂

∂t

}
ETH(r, t)

= −i ω3

2cn3ε0

(
1− i

ω3

∂

∂t

)[
pTHG(r, t) + pA(r, t)

]
, (4.13)

we recognize that the additional polarization driving the electric field will be combination

of two factors: the third harmonic of the fundamental and possible additional polarization

accounting for modulation by a coherence.

4.4.2 Effective THG source term

We begin with the wave equation for a pulse generated by THG, as derived in Appendix. A:

{
i

2k3
∇2
⊥ +

∂

∂z
+

1

uth

∂

∂t

}
Eth(r, t) = −i ω3

2cn3ε0

(
1− i

ω3

∂

∂t

)[
pth(r, t) + pA(r, t)

]
, (4.14)

The source term in the spatial domain is given by for THG in an isotropic system with linear

polarization
1

4
µ0ε0

∂2

∂t2
δχ(3)(r, t)E3

o (r, t) (4.15)
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with

δχ(3)(r, t) = δχ
(3)
0 |Us(x, y, z)|2 sin[Ωv(t+ τ − u−1

p z)] (4.16)

Thus the additional polarizations we insert into the wave equation for the envelope of the

probe third harmonic are

pth(r, t) =
1

4
ε0

[
χ

(3)
0 + δχ(3)(r, t)

]
E3

o(r, t)e−i∆kz (4.17)

and

pA(r, t) = ε0δχ
(1)(r, t)Eth(r, t). (4.18)

Thus there are two sources of modulation imposed on the third harmonic field: modulation

of the third-order susceptibility governing THG and modulation of the first-order suscepti-

bility which modulates the already-generated third harmonic. Inserting these into the wave

equation results in

{
i

2k3
∇2
⊥ +

∂

∂z
+

1

uth

∂

∂t

}
Eth(r, t)

= −i ω3

2cn3

(
1− i

ω3

∂

∂t

){
1

4

[
χ

(3)
0 + δχ(3)(r, t)

]
E3

o(r, t)e−i∆kz + δχ(1)(r, t)Eth(r, t)

}
.

(4.19)

4.4.3 Working out the source term time derivative

At this point, we make a simplification typical of third harmonic generation discussions. We

know that χ(3)
0 � χ

(1)
0 , and certainly the perturbations δχ(3) < χ

(3)
0 , so that any χ(3) term

divided by the optical frequency of the third harmonic ω3 is exceedingly small, and may be

neglected:
1

ω3

∂

∂t

[
χ

(3)
0 + δχ(3)(r, t)

]
≈ 0. (4.20)

With this approximation, the right hand side becomes

− i ω3

2cn3

{
1

4

[
χ

(3)
0 + δχ(3)(r, t)

]
E3

o(r, t)e−i∆kz + δχ(1)(r, t)Eth(r, t)

− i

ω3

∂

∂t

[
δχ(1)(r, t)Eth(r, t)

]}
. (4.21)
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As in the previous section, we apply temporal differentiation to the right hand side using

the equation

∂

∂t
δχ(n)(r, t) = Ωvδχ

(n)
0 |Us(x, y, z)|2 cos[Ωv(t+ τ − u−1

p z)], (4.22)

We expand the derivative involving the effective linear perturbation of the third harmonic

via the chain rule,

− i

ω3

∂

∂t

[
δχ(1)(r, t)Eth(r, t)

]
= − i

ω3

[(
∂

∂t
δχ(1)

)
Eth + δχ(1)

(
∂

∂t
Eth

)]
, (4.23)

and plug in the result to the right hand side, gathering the terms proportional to Eth,

− i ω3

2cn3

{
1

4

[
χ

(3)
0 + δχ(3)(r, t)

]
E3

o(r, t)e−i∆kz+[
δχ(1) − i

ω3

(
∂

∂t
δχ(1)

)]
Eth −

i

ω3
δχ(1)

(
∂

∂t
Eth

)}
. (4.24)

Let us make the following definitions (and note how they differ from the previous section by

using ω3 instead of ω1)

δk3 =
ω3

2nc3

(
δχ(1) − i

ω3

∂

∂t
δχ(1)

)
= δχ

(1)
0 |Us(x, y, z)|2

{
sin[Ωv(t+ τ − u−1

p z)]− iΩv

ω3
cos[Ωv(t+ τ − u−1

p z)]

}
(4.25)

so that the right hand side becomes

−i ω3

2cn3

{
1

4

[
χ

(3)
0 + δχ(3)

]
E3

oe
−i∆kz − i

ω3
δχ(1) ∂

∂t
Eth

}
− iδk3Eth. (4.26)

Now it comes time to insert this back into Eq. (4.19):{
i

2k3
∇2
⊥ +

∂

∂z
+

(
1

uth
+
δχ(1)(r, t)

2cn3

)
∂

∂t

}
Eth(r, t)

= −i ω3

8cn3

[
χ

(3)
0 + δχ(3)(r, t)

]
E3

o(r, t)e−i∆kz − iδk3Eth(r, t). (4.27)

Again we neglect group velocity distortions to arrive at{
i

2k3
∇2
⊥ +

∂

∂z
+

1

uth

∂

∂t

}
Eth(r, t)

= −i ω3

8cn3

[
χ

(3)
0 + δχ(3)(r, t)

]
E3

o(r, t)e−i∆kz − iδk3(r, t)Eth(r, t). (4.28)
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4.4.4 Summary

The resulting equation for THG is similar to that for the fundamental, but with an extra

driving term. The Eq. 4.28 is repeated here, but is not written in the rest frame of the

pulse, as was the case for the fundamental:{
i

2k3
∇2
⊥ +

∂

∂z
+

1

uth

∂

∂t

}
Eth(r, t)

= −i ω3

8cn3

[
χ

(3)
0 + δχ(3)(r, t)

]
E3

o(r, t)e−i∆kz − iδk3(r, t)Eth(r, t).

The wave number perturbation δk3 are defined similarly to the fundamental δk1, as

they are both manifestations of the effective linear susceptibility perturbations δχ(1). The

effective third-order susceptibility perturbation δχ(3) does not result in modification of the

wave number, but does modify the conversion rate of the fundamental to third harmonic.

Three effective pathways may lead to vibrational modulation of the harmonic generated

by a probe pulse. The probe itself may be modulated by the perturbation to the nonlinear

optical susceptibility, δχ(n). The term δχ(2) term describes hyper-Raman scattering [25],

while δχ(3) describes second hyper-Raman scattering [95], and so on. Also, once generated,

the harmonic will propagate along with the probe fundamental in through the vibrational

coherence, albeit at a different group velocity. In this case, the propagating harmonic

experiences modulation by the effective linear susceptibility perturbation δχ(1). This effect

is combined with the fundamental modulations via δχ(1), to form the cascaded modulation

term, which manifests itself as a time-varying phase mismatch.

4.5 Considering pump longitudinal intensity variation

Here we add in the spatial dependence of the pump to show that the z-dependent nature

of the vibrational modulation plays a critical role in the behavior of THG as the interface

is translated through the focus. As a first approximation, we had attempted to neglect all

spatial variation of the pump (See Appendix D). But neglecting these variations did not

match the interface scan behavior we observe in the experiment.

This is the outline of the approach. We start by examining the effects of the pump

z-dependence on the probe fundamental, and discover a new behavior in the amplitude and
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phase modulation. This leads to a new form for the probe as it propagates in the medium.

Then we revisit the differential equation governing third harmonic generation, and use the

new solution for the fundamental probe as a trial solution for the third harmonic field.

Carrying through this trial solution yields the result we’re after. Then we break apart the

integral across the material boundary, as in the previous chapter, and observe the three

effects: CsHRS, cascaded amplitude modulation, and Fresnel boundary modulation. We

finish by plotting the magnitude of these effects with respect to the focal spot displacement

form the material–air interface.

4.5.1 Spatial variation of the vibrational coherence

The vibrational coherence prepared by ISRS is directly proportional to the pump pulse

intensity:

|Us(x, y, z)|2 =
1

1 +
(
z−zw
zR

)2 e

− 2(x2+y2)

w2
0

[
1+

(
z−zw
zR

)2]
= Φ(x, y, z) (4.29)

We transform this to the spatial frequency domain,

Φ̂(kx, ky; z) =
1

4π2

∫ ∞
−∞

dx

∫ ∞
−∞

dyΦ(x, y, z)e−i(kxx+kyy)

=
w2

0

8π
e
−(k2x+k2y)

w2
0
8

[
1+
(
z−zw
zR

)]
.

(4.30)

Since we will be hard-pressed to find analytic solutions accounting for transverse variations,

that is kx and ky, we make the approximation

Φ(x, y, z) ≈ Φ(z) =
1

1 +
(
z−zw
zR

)2 . (4.31)

4.5.2 Probe fundamental propagation

We consider Gaussian probe pulses. We can break apart the envelope into time- and space-

dependent envelopes Ut and Us

Ep(x, y, z, t) = E0,3oUs(x, y, z)Ut(t− u−1
p z) (4.32)

where the Gaussian spatial profile is described by

Us(x, y, z) =
1[

1 + i2z
w2

0k0,1

] exp

− (x2 + y2)

w2
0

[
1 + i2z

w2
0k0,1

]
 (4.33)
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and the Gaussian temporal envelope is described by

Ut(t− u−1
p z) = exp

−2 ln 2

(
t− u−1

p z

τp

)2
 eiφ(t−u−1

p z) (4.34)

where τp is the pump pulse FWHM (possibly chirped) and φ(t−u−1
p z) is the temporal phase

of the pump pulse.

Now we observe how the spatial dependence of the coherence, Φ(z), modifies the probe

fundamental as it propagates through the medium. We have the equation for propagation,{
− 1

2ik1
∇2
⊥ +

∂

∂ζ

}
Eo(x, y, ζ, to) = −iδk1(r, tpr)Epr(x, y, ζ, tpr) (4.35)

The wavenumber k modulation term, in the spatial frequency domain is approximated

δk1(r, tpr) = −iw
2
0

8π
δk1(tpr)Φ(ζ) = −iw

2
0

8π

δk1(tpr)[
1 +

(
ζ−zw
zR

)2
] (4.36)

We transform the equation to the spatial frequency domain by use of the following relation-

ships:

Epr(x, y, ζ, tpr)⇔ Êpr(kx, ky, ζ, tpr), (4.37)

and

− 1

2ik1
∇2
⊥Epr(x, y, ζ, tpr)⇔

k2
x + k2

y

2ik1
Êpr(kx, ky, ζ, tpr). (4.38)

so that the differential equation in the spatial frequency domain governing propagation of

the probe pulse is given by

∂

∂ζ
Êpr(kx, ky, ζ, tpr) =

−i
δk1(tpr)[

1 +
(
ζ−zw
zR

)2
] +

k2
x + k2

y

2ik1

 Êpr(kx, ky, ζ, tpr) (4.39)

The solution for the probe field is then

Êpr(ζ) = Êpr(ζ0) exp


∫ ζ

ζ0

−i δk1(tpr)[
1 +

(
ζ′−zw
zR

)2
] +

k2
x + k2

y

2ik1

dζ ′

 (4.40)

or, performing the straightforward part of the integral and pulling δk1(tpr), since it does

not depend on the integration variable ζ ′

Êpr(ζ) = Êpr(ζ0) exp

−iδk10(tpr)

∫ ζ

ζ0

dζ ′

1 +
(
ζ′−zw)
zR

)2

e−i k2x+k2y2k1
(ζ−ζ0)

. (4.41)
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The remaining integral we shall define as

Γ(ζ, ζ0) ≡
∫ ζ

ζ0

Φ(ζ ′)dζ ′

=

∫ ζ

ζ0

dζ ′

1 +
(
ζ′−zw
zR

)2 = zR

[
tan−1

(
ζ − zw
zR

)
− tan−1

(
ζ0 − zw
zR

)]
. (4.42)

This integral depends on the pump, Φ(z), characteristics, not the probe. The solution for

the probe fundamental can be written

Êpr(ζ) = Êpr(ζ0)e−iδk1(tpr)Γ(ζ,ζ0)e
−i

k2x+k
2
y

2k1
(ζ−ζ0)

. (4.43)

This equation still depends on the input beam Êpr(ζ0). So we assume a Gaussian input

beam focusing to a waist at zw,

Êpr(ζ0) = E10
w2

10

4π
e
−(k2x+k2y)

[
w2
10
4

+i
(ζ0−zw)

2k1

]
, (4.44)

and insert this form of the initial probe into the solution, Eq. (4.43) to obtain

Êpr(ζ) = E10
w2

10

4π
e−(k2x+k2y)

w2
10
4
A1(ζ)e−iδk1(tpr)Γ(ζ,ζ0), (4.45)

where to shorten the notation we have defined

A1(ζ) = 1 + i
2(ζ − zw)

w2
10k1

= 1 + i
ζ − zw
zR

. (4.46)

We transform back to the spatial domain via

Epr(x, y, ζ, tpr) =

∫∫ ∞
−∞

Êpr(kx, ky, ζ, tpr)e
i(kxx+kyy)dkxdky (4.47)

so the solution for the probe is finally

Epr(x, y, ζ, tpr) =
E10

A1(ζ)
exp

{
− (x2 + y2)

w2
10A1(ζ)

}
e−iδk1(tpr)Γ(ζ,ζ0) (4.48)

Expanding the Γ integral,

Eo(x, y, ζ, to) =
E10

A1(ζ)
exp

{
− (x2 + y2)

w2
10A1(ζ)

}
× exp

{
−iδk1(to)zR

[
tan−1

(
ζ − zw
zR

)
− tan−1

(
ζ0 − zw
zR

)]}
(4.49)
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4.5.2.1 Explanation and example

The solution we arrived at in Eq. (4.49) describes a Gaussian probe pulse envelope multiplied

by a modulation term,

exp

{
−iδk1(tpr)zR

[
tan−1

(
ζ − zw
zR

)
− tan−1

(
ζ0 − zw
zR

)]}
. (4.50)

The probe acquires, through δk1 both amplitude and phase modulation as it propagates

through the coherence. If it were in a plane-pumped coherence with no spatial variations,

the modulation depth would simply be proportional to propagation distance ζ − ζ0. But

in this case, the modulation depth at each point of propagation follows the longitudinal

intensity profile of the pump, Φ. Hence the accumulated modulation depth follows the

integral Γ =
∫ ζ
ζ0

Φdζ ′.

To illustrate let us consider the case zw = 0 and zR = 1, in a tight focus so that we may

approach the limit ζ0 → −∞ [39]. The modulation term reduces to

exp

{
−iδk1(tpr)

[
tan−1

(
ζ − zw
zR

)
+
π

2

]}
. (4.51)

A plot is shown in Fig. 4.2 to illustrate both the pump longitudinal intensity Φ and the

depth of modulation the probe pulse accumulates with propagation.

Practically, the majority of the modulation accumulates within about 10 zR. Considering

the typical Rayleigh range of a focused beam using an 50x 0.5 NA objective is about 3µm,

we are justified in using the tight focus limit of ζ0 → −∞ for samples of thickness greater

than 30µm. Most of our samples will be at in the range of 0.1 to 0.5 mm.

4.5.3 THG differential equation

4.5.3.1 Spatial domain

The differential equation governing third harmonic generation and propagation, in the group

frame of the third harmonic pulse, is

{
−i 1

2ik3
∇2
⊥ +

∂

∂ζ

}
Eth(r, t) = −i ω3

8cn3

[
χ

(3)
0 + δχ(3)(ζ, t)

]
E3

pr(r, t)e
−i∆kζ

− iδk3(ζ, t)Eth(r, t) (4.52)
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Figure 4.2: Pump longitudinal intensity dependence and probe modulation accumulation.

where the modulation of the third harmonic generation is proportional to the vibrational

coherence,

δχ(3)(ζ, t) ≈ δχ(3)
0 Φ(ζ) sin[Ωv(t+ τ)], (4.53)

the phase mismatch is

∆k = 3k1 − k3. (4.54)

The coherence also modulates the propagating third harmonic similarly to the fundamental,

δk3(ζ, tpr) =
ω3

2cn3
δχ

(1)
3 (ζ, tpr) = δk′3(ζ, tpr) + iδk′′3(ζ, tpr), (4.55)

where the real and imaginary parts are

δk′3(ζ, tpr) =
ω3

2cn3
δχ

(1)
30 Φ(ζ) sin[Ωv(tpr + τ)] (4.56)

and

δk′′3(ζ, tpr) = −Ωv

ω3

ω3

2cn3
δχ

(1)
30 Φ(ζ) cos[Ωv(tpr + τ)]. (4.57)

The undepleted fundamental which drives the third harmonic generation is given by

E3
pr(x, y, ζ, tpr) =

E3
10

A3
1(ζ)

exp

{
−3

(x2 + y2)

w2
10A1(ζ)

}
e−i3δk1(tpr)Γ(ζ) (4.58)
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4.5.3.2 Spatial frequency domain

We begin by transforming the differential equation into the spatial frequency domain. The

probe fundamental transforms according to

E3
pr(x, y, ζ, tpr)⇔

w2
10

12π

E3
10

A2
1(ζ)

e−(k2x+k2y)w2
10A1(ζ)/12 (4.59)

so that the driving term in the spatial frequency domain is

i
ω3w

2
10

96πcn3

[
χ

(3)
0 + δχ(3)(t)Φ(ζ)

] E3
10

A2
1(ζ)

e−i3δk1(tpr)Γ(ζ)e−(k2x+k2y)w2
10A1(ζ)/12 (4.60)

So the full differential equation in the spatial frequency domain is

∂

∂ζ
Êth =

{
−

(k2
x + k2

y)

2ik3
− iδk3(t)Φ(ζ)

}
Êth

− i ω3w
2
10

96πcn3

[
χ

(3)
0 + δχ

(3)
0 sin[Ωv(t+ τ)]Φ(ζ)

]
× E3

10

A2
1(ζ)

e−i3δk1(tpr)Γ(ζ)e−(k2x+k2y)w2
10A1(ζ)/12e−i∆kζ (4.61)

The first term describes propagation of the third harmonic, and is composed of a Gaus-

sian propagation term plus a complex wavenumber k perturbation, which modulates the

third harmonic in the same way the probe fundamental is modulated. This linear modula-

tion of the third harmonic will be grouped with the linear modulation of the fundamental

to form the cascaded modulation portion of the CM-THG signal.

The second term in Eq. 4.61 describes third harmonic generation driven by the modu-

lated fundamental. It consists of a nonlinear susceptibility plus a vibrational perturbation

multiplied by the modulated fundamental. Since the perturbations are weak, the product

will be decomposed into an unmodulated third harmonic, one modulated by δχ(3), and one

modulated by the probe fundamental modulations δχ(1).

4.5.3.3 Solutions for THG of Gaussian form

We assume the probe-generated harmonic to be Gaussian [94], and so we seek a form of the

solution similar to the result arrived at for the probe fundamental. Our trial solution is

Êth(kx, ky; ζ) = E30(ζ)
w2

30

4π
e−(k2x+k2y)w2

30A3(ζ)/4e−iδk3(tpr)Γ3(ζ), (4.62)
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with a propagation-dependent envelope E30(ζ) which we will solve for, and

A3(ζ) = 1 + 2i
ζ − zw3

w2
30k3

= 1 + i
ζ − zw3

zR,3
(4.63)

Assuming no input third harmonic field, we have the boundary condition at the input plane

ζin:

E30(ζin) = 0. (4.64)

We will insert this trial solution into the differential equation for TH generation and

propagation in the presence of a coherence, Eq. 4.61. First, we take the partial derivative

of our trial solution with respect to ζ. Keep in mind Γ =
∫

Φ, so the differentiation undoes

this integral:

∂Êth

∂ζ
= −i

{
δk3(tpr)Φ3(ζ) +

k2
x + k2

y

2k3

}
Êth +

w2
30

4π
e−(k2x+k2y)w2

30A3(ζ)/4e−iδk3(tpr)Γ(ζ)∂E30(ζ)

∂ζ
.

(4.65)

We insert this directly into Eq. 4.61 Cancelling the terms common to both sides, gathering

exponentials and constants on the right side to isolate the partial derivative

∂E30(ζ)

∂ζ
= −i

(
w10

w30

)2 ω3

24cn3

E3
10

A2
1(ζ)

[
χ

(3)
0 + δχ

(3)
0 (tpr)Φ(ζ)

]
e−i[3δk1(tpr)−δk3(tpr)]Γ(ζ)

e−(k2x+k2y)[w2
10A1(ζ)/12−w2

30A3(ζ)/4]e−i∆kζ (4.66)

This describes the propagation-dependent evolution of the third harmonic amplitude and

phase, E30(ζ), in the presence of a vibrational coherence. This is inserted into the trial

solution Eq. 4.62 to describe the third harmonic in the spatial frequency domain. But when

we do so, the presence of the extra spatial frequency components in E30(ζ),

e
−(k2x+k2y)

{
w2
10A1(ζ)

12
−w

2
30A3(ζ)

4

}
= e
−(k2x+k2y)

{[
w2
10
12

+i
(ζ−zw1)

6k1

]
−
[
w2
30
4

+i
(ζ−zw1)

2k3

]}
, (4.67)

will cause the full solution in Eq. 4.62 to deviate from a Gaussian beam. These deviations

are small, and can be neglected to simplify our analysis [94].

Recalling the definitions of A1(ζ) and A3(ζ),

w2
10A1(ζ)

12
− w2

30A3(ζ)

4
=

[
w2

10

12
+ i

(ζ − zw1)

6k1

]
−
[
w2

30

4
+ i

(ζ − zw1)

2k3

]
(4.68)
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the exponent that depends on spatial frequency is

e
−(k2x+k2y)

{[
w2
10
12

+i
(ζ−zw1)

6k1

]
−
[
w2
30
4

+i
(ζ−zw1)

2k3

]}
. (4.69)

If we can eliminate the spatial frequency dependence, we will describe the propagation of a

Gaussian beam. We do this if the following condition is met:[
w2

10

12
+ i

(ζ − zw1)

6k1

]
=

[
w2

30

4
+ i

(ζ − zw1)

2k3

]
(4.70)

or, equivalently

w2
10 = 3w2

30 (4.71)

and
1

3k1
− 1

k3
=
k3 − 3k1

3k1k3
≈ 0 (4.72)

reducing the differential equation to

∂E30(ζ)

∂ζ
= −i

(
w10

w30

)2 ω3

24cn3

E3
10

A2
1(ζ)

[
χ

(3)
0 + δχ

(3)
0 (tpr)Φ(ζ)

]
× e−i[3δk1(tpr)−δk3(tpr)]Γ(ζ)e−i∆kζ (4.73)

We will also collapse the following terms into a perturbation to the phase mismatch,

∆δk(tpr) = 3δk1(tpr)− δk3(tpr) = ∆δk′(tpr) + i∆δk′′(tpr) (4.74)

and define the constant

C = i

(
w10

w30

)2 ω3

24cn3
E3

10 (4.75)

and gather the terms in [· · · ]

χ
(3)
0 + δχ(3)(tpr) = χ

(3)
0

(
1 +

δχ(3)(tpr)

χ
(3)
0

)
(4.76)

so that the differential equation is finally

∂E30(ζ)

∂ζ
= −i

(
w10

w30

)2 ω3

24cn3

E3
10

A2
1(ζ)

χ
(3)
0

[
1 +

δχ
(3)
0 (tpr)Φ(ζ)

χ
(3)
0

]

× e∆δk′′(tpr)Γ(ζ)e−i[∆kζ+∆δk′(tpr)Γ(ζ)] (4.77)
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4.5.4 Integration with Fresnel boundary modulation

4.5.4.1 Break up integral across the boundary

We consider that the probe fundamental, upon crossing the interface, will be multiplied

according to a Fresnel transmission coefficient. This Fresnel transmission coefficient is sen-

sitive to the index of refraction on both sides of the interface. As we derived earlier, there is

an effective first-order susceptibility δχ(1)(t) which modulates the index of refraction in the

presence of a vibrational coherence. Thus we expect the Fresnel transmission coefficient to

be modulated.

The transmission coefficient T is the initial coefficient plus a small perturbation, so its

cube is approximated

T 3
1 (δn) = [T0,1 + δT1(tpr)]

3 ≈ T 3
0,1 + 3T 2

0,1δT1(to) (4.78)

Also the third harmonic transmission perturbation multiplied by small terms is neglected,

T3(δn) = T0,3 + δT3(to) (4.79)

so that

T3(δn)δχ(3) ≈ T0,3δχ
(3) (4.80)

and

T3(δn)(3δk′′1 − δk′′3) ≈ T0,3(3δk′′1 − δk′′3) (4.81)

We are interested in the far-field TH light generated by focusing on a material interface.

So we integrate, breaking up the integral across this boundary

E30(z) = T3

∫ zL

−∞

[
∂E30(z)

∂z

]
dz +

∫ ∞
zL

[
∂E30(z)

∂z

]
dz. (4.82)

We consider that the probe fundamental, upon crossing the interface, will be multiplied

according to a Fresnel transmission coefficient. This Fresnel transmission coefficient is sen-

sitive to the index of refraction on both sides of the interface. As we derived earlier, there is

an effective first-order susceptibility δχ(1)(t) which modulates the index of refraction in the

presence of a vibrational coherence. Thus we expect the Fresnel transmission coefficient to

be modulated.
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The field transmission coefficient T is the initial coefficient plus a small perturbation, so

its cube is approximated

T 3
1 (∆n) = [T0,1 + ∆t1(tpr)]

3 ≈ T 3
0,1 + 3T 2

0,1∆T1(to) (4.83)

Also the third harmonic transmission perturbation multiplied by small terms is neglected,

So we rewrite the integral solution. All terms generated in the crystal are multiplied by

the transmission of the third harmonic, while terms generated outside will have the source

E1 multiplied by the fundamental transmission coefficient. Note E1 is inside an integral,

and the z-dependent coherence causes ∆T3 to depend on z. Defining the new coordinates

u = ζ/zR and uw = zw/zR for convenience, we rewrite the integral solution,

E30 = T0,3CzRδχ(3)(t)

∫ zL

−∞

Φ(u)

A2
1(u)

ei∆kzRudu

+ [T0,3 + ∆T3] CzRχ(3)
cr

∫ zL

−∞

e−∆δk′′Γ(u)ei[∆kzRu+∆δk′Γ(u)]

A2
1(u)

du

+ CzRχ(3)
air

∫ ∞
zL

ei∆kzRu

A2
1(u)

[
T 3

0,1 + 3T 2
0,1∆t1(t)

]
du (4.84)

The first integral captures the modified third harmonic generation (CSHRS), the second

captures modulation of the third harmonic and the fundamental by the coherence (cascaded

modulation), and the third captures THG in air after the interaface. This final term will

later be shown to capture vibrational modulations of the Fresnel boundary conditions at the

interface.

All terms generated in the crystal are multiplied by the transmission of the third har-

monic, while terms generated outside will have the source E1 multiplied by the fundamental

transmission coefficient. Note E1 is inside an integral, and the z-dependent coherence causes

δT3 to depend on z. We rewrite the integral solution, re-inserting the air susceptibility χ(3)
air ,

recalling that ∆χ(3) = χ
(3)
cr − χ(3)

air

E30 = T0,3CzRδχ(3)(t)

∫ zL

−∞

Φ(u)

A2
1(u)

e−i∆kzRudu

+ [T0,3 + δT3(t)] CzRχ(3)
cr

∫ zL

−∞

e∆δk′′Γ(u)e−i[∆kzRu+∆δk′Γ(u)]

A2
1(u)

du

+ CzRχ(3)
air

∫ ∞
zL

e−i∆kzRu

A2
1(u)

[
T 3

0,1 + 3T 2
0,1δT1(t)

]
du (4.85)
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the first integral captures the modified third harmonic generation (CSHRS), the second

captures modulation of the third harmonic and the fundamental by the coherence (cascaded

modulation), and the third captures THG in air after the interaface. This final term captures

vibrational modulations of the Fresnel boundary conditions at the interface.

4.5.4.2 Manipulations and Simplifications

Turning our attention to the last integral in Eq. (4.85), we find the transmission coefficient

modulation is dependent on the interface position relative to the focus

δT1(t, zL) = Φ(zL)δT1(t) =
1

1 +
(
zL−zw
zR

)2 δT1(t) (4.86)

The same should hold for δT3. So we expand the last integral of Eq. (4.85),

CzRχ(3)
air

∫ ∞
zL

e−i∆kzRu

A2
1(u)

[
T 3

0,1 + 3T 2
0,1δT1(t)Φ(u)

]
du

= CzRχ(3)
airT

3
0,1

∫ ∞
zL

e−i∆kzRu

A2
1(u)

du+ 3CzRχ(3)
airT

2
0,1δT1(t)Φ(zL)

∫ ∞
zL

1

A2
1(u)

e−i∆kzRudu (4.87)

The middle integral of Eq. (4.85) describes cascaded modulations, and can be approxi-

mated in a tight focusing condition. Since ∆kzR � 1 and ∆δk′ � 1, their presence in the

exponential argument leads to a slowly oscillating term that hardly changes in the integral

across the short confocal parameter, and they may be neglected:∫ zL

−∞

e∆δk′′Γ(u)e−i[∆kzRu+∆δk′Γ(u)]

A2
1(u)

du ≈
∫ zL

−∞

e∆δk′′Γ(u)

A2
1(u)

du (4.88)

The argument in the numerator is small, so the integral describing cascaded modulations

breaks apart into

(T0,3 + δT3) CzRχ(3)
cr

{∫ zL

−∞

1

A2
1(u)

du+ ∆δk′′
∫ zL

−∞

Γ(u)

A2
1(u)

du

}
(4.89)

The product of the δT3∆δk′′ is exceedingly small, so we are left with

(T0,3 + δT3) CzRχ(3)
cr

∫ zL

−∞

1

A2
1(u)

du+ T0,3CzRχ(3)
cr ∆δk′′(t)

∫ zL

−∞

Γ(u)

A2
1(u)

du (4.90)
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and the total E3, from Eq. (4.85) is, with a few rearrangements and applying the approxi-

mation ∆kzR � 1

E30 = T0,3CzRδχ(3)(t)

∫ zL

−∞

Φ(u)

A2
1(u)

du

+ T0,3CzRχ(3)
cr ∆δk′′(t)

∫ zL

−∞

Γ(u)

A2
1(u)

du

+ 3T 2
0,1δT1(t)CzRχ(3)

air Φ(zL)

∫ ∞
zL

1

A2
1(u)

du

+ [T0,3 + δT3(t)Φ(zL)] CzRχ(3)
cr

∫ zL

−∞

1

A2
1(u)

du

+ T 3
0,1CzRχ(3)

air

∫ ∞
zL

1

A2
1(u)

du (4.91)

It will now be shown that the three terms containing integrals of 1/A2
1(u) may be condensed

together in two steps, leveraging the fact that this integral over the range [−∞,∞] is zero.

There are two Fresnel modulation terms which are coherence-dependent:

3T 2
0,1δT1(t)CzRχ(3)

air Φ(zL)

∫ ∞
zL

1

A2
1(u)

du+ δT3(t)CzRχ(3)
cr Φ(zL)

∫ zL

−∞

1

A2
1(u)

du (4.92)

Defining ∆χ
(3)
B such that

δT3(t)χ(3)
cr Φ(zL) = ∆χ

(3)
B (t, zL) + 3T 2

0,1δT1(t)χ
(3)
air Φ(zL) (4.93)

or explicitly

∆χ
(3)
B (t, zL) =

[
δT3(t)χ(3)

cr − 3T 2
0,1δT1(t)χ

(3)
air

]
Φ(zL) (4.94)

we write those two terms instead as

3T 2
0,1δT1(t)CzRχ(3)

air Φ(zL)

∫ ∞
−∞

1

A2
1(u)

du+ ∆χ
(3)
B (t, zL)CzR

∫ zL

−∞

1

A2
1(u)

du

= ∆χ
(3)
B (t, zL)CzR

∫ zL

−∞

1

A2
1(u)

du (4.95)
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reducing the expression for the total third harmonic field to

E30 = T0,3CzRδχ(3)(t)

∫ zL

−∞

Φ(u)

A2
1(u)

du

+ T0,3CzRχ(3)
cr ∆δk′′(t)

∫ zL

−∞

Γ(u)

A2
1(u)

du

+ CzR∆χ
(3)
B (t, zL)

∫ zL

−∞

1

A2
1(u)

du

+ T0,3CzRχ(3)
cr

∫ zL

−∞

1

A2
1(u)

du

+ T 3
0,1CzRχ(3)

air

∫ ∞
zL

1

A2
1(u)

du (4.96)

In the second step, we will define ∆χ
(3)
A , which does not vary with the coherence, such that

T0,3χ
(3)
cr = ∆χ

(3)
A + T 3

0,1χ
(3)
air (4.97)

and the last two integrals combine

(
∆χ

(3)
A + T 3

0,1χ
(3)
air

)
CzRχ(3)

cr

∫ zL

−∞

1

A2
1(u)

du+ T 3
0,1CzRχ(3)

air

∫ ∞
zL

1

A2
1(u)

du

= ∆χ
(3)
A CzR

∫ zL

−∞

1

A2
1(u)

du (4.98)

and so the total third harmonic field is

E30 = T0,3CzRδχ(3)(t)

∫ zL

−∞

Φ(u)

A2
1(u)

du

+ T0,3CzRχ(3)
cr ∆δk′′(t)

∫ zL

−∞

Γ(u)

A2
1(u)

du

+ CzR∆χ
(3)
B (t, zL)

∫ zL

−∞

1

A2
1(u)

du

+ ∆χ
(3)
A CzR

∫ zL

−∞

1

A2
1(u)

du (4.99)

We shall number these integrals as functions of the interface position zL

I1 =

∫ zL

−∞

Φ(u)

A2
1(u)

e−i∆kzRudu, (4.100)

I2 =

∫ zL

−∞

[∆δk′′ − i∆δk′] Γ(u)

A2
1(u)

e−i∆kzRudu, (4.101)

and

I3 =

∫ ∞
zL

1

A2
1(u)

e−i∆kzRudu (4.102)
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As a consequence of combining integrals, we now have∫ zL

−∞

1

A2
1(u)

= −I3 (4.103)

Now we write the integral solution in a more compact form, using these earlier definitions,

noting the sign flip on the I3 terms,

E30 = CzR
{
T0,3δχ

(3)(t)I1(zL) + T0,3χ
(3)
cr ∆δk′′(t)I2(zL)−∆χ

(3)
B (t, zL)I3 −∆χ

(3)
A I3

}
(4.104)

In this equation, the first term reflects coherent second hyper-Raman modulation. The

second term reflects cascaded amplitude modulation. The third term captures the Fresnel

boundary modulation. The last term does not depend on the coherence, and expresses

unperturbed THG across the interface, modified to account for Fresnel transmission at the

interface.

4.5.4.3 Detected Signals, Including Fresnel

Now the detected square magnitude, neglecting products of small perturbation terms is

S3 = |CzR|2 ∆χ
(3)
A

{
2∆χ

(3)
A |I3|2 − 2T0,3δχ

(3)(t)< [I1I∗3 ]

−2T0,3χ
(3)
cr ∆δk′′(t)< [I2I∗3 ] + 2∆χ

(3)
B (t, zL)< [I3I∗3 ]

}
. (4.105)

As before, the first term will be filtered out by lock-in detection, so we have

S3 = |CzR|2 ∆χ
(3)
A

{
−2T0,3δχ

(3)(t)< [I1I∗3 ]

−2T0,3χ
(3)
cr ∆δk′′(t)< [I2I∗3 ] + 2∆χ

(3)
B (t, zL)< [I3I∗3 ]

}
= Scshrs + Scasc + Sfrnl. (4.106)

4.5.4.4 Coherent second hyper-Raman term

The CSHRS term differs has a factor T0,3 to account for TH transmission at the exit face of

the CSHRS signal generated in the bulk, and a a Fresnel-modified susceptibility difference

∆χ
(3)
A ,

Scshrs = −2T0,3

(
w10

w30

)4( ω3

24cn3

)2

E6
10z

2
R∆χ

(3)
A δχ(3)(t)< |I1I∗3 | . (4.107)
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Considering that δχ(3) = δχ
(3)
0 sin(Ωvτ), and using a computer algebra system (MAXIMA)

to solve the integrals, the full expression for the CSHRS signal is

Scshrs = 2T0,3

(
w10

w30

)4( ω3

24cn3

)2

E6
10z

2
R∆χ

(3)
A δχ

(3)
0

×
(
2x3

L + 2xL
)

tan−1(xL) + πx3
L + 2x2

L + πxL + 4

8x4
L + 16x2

L + 8
sin(Ωvτ) (4.108)

The second hyper-Raman term is a sine proportional to

Scshrs(tpr;xL) = 2T0,3δχ
(3)(tpr)

(
2x3

L + 2xL
)

tan−1(xL) + πx3
L + 2x2

L + πxL + 4

8x4
L + 16x2

L + 8
(4.109)

a potentially more aesthetically pleasing form:

Scshrs(tpr;xL) = 2T0,3δχ
(3)(tpr)

{
xL tan−1(xL)

4
(
x2
L + 1

) +
x2
L + 2

4
(
x2
L + 1

)2 +
πxL

8
(
x2
L + 1

)} (4.110)

the function with respect to interface position xL is shown in Fig. 4.3. It is asymmetric

about the focus, showing a stronger contribution when the interface is placed beyond the

focus, xL > 0. To clarify, that is when the focus is inside the crystal.

4.5.4.5 Cascade term

The cascaded modulation term undergoes similar modification from Eq. (4.111), (and we

have also dropped the imaginary part of the phase mismatch perturbation),

Scasc = −2T0,3

(
w10

w30

)4( ω3

24cn3

)2

E6
10z

2
R∆χ

(3)
A χ(3)

cr ∆δk′′(t)< |I2I∗3 | (4.111)

We expand the time-dependent perturbation according to its definition from Eq. (4.74), and

the wavenumber k perturbation definitions for the fundamental and third harmonic found

in Eq. (4.57)

∆δk′′(t) = ={3δk3(t)− δk1(t)} = 3δk′′3(t)− δk′′1(t)

=

{
−3

Ωv

ω3

ω3

2cn3
δχ

(1)
30 +

Ωv

ω1

ω1

2cn1
δχ

(1)
10

}
cos[Ωv(tpr + τ)].

= −Ωv

c

{
3
δχ

(1)
30

n3
− δχ

(1)
10

n1

}
cos(ΩV t) (4.112)

Using this result and recalling the real part of the cascade integrals, and the following. From

a quantum definition, the strength of the first-order perturbation is

δχ
(1)
0 =

2

~
(
α′Q

)2
U. (4.113)
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where

Qv = (wv2 − wv1) |〈v2|qv|v1〉|2 (4.114)

describes the transition moment strength and statistical weights of the two lower levels. We

do not expect the differential polarizability to vary with wavelength, so we have

Scasc = −2T0,3

(
w10

w30

)4( ω3

24cn3

)2

E6
10z

2
R∆χ

(3)
A χ(3)

cr

Ωv

c

{
3

n3
− 1

n1

}
δχ

(1)
0

× zR
2 tan−1(xL) + π

2x2
L + 2

cos(ΩV t) (4.115)

The cascaded amplitude modulation term is a cosine,

Scasc = −2T0,3χ
(3)
cr ∆δk′′(tpr)

2 tan−1(xL) + π

2
(
x2
L + 2

) (4.116)

and is shown in Fig. 4.3. The arctangent in the numerator gives this contribution a slight

asymmetry, and its contribution is strongest when the focus is just inside the crystal, closer

to the interface than the peak of the CSHRS term.

4.5.4.6 Fresnel term

We now examine the new term, which describes the effect of the Fresnel modulations

Sfrnl = 2

(
w10

w30

)4( ω3

24cn3

)2

E6
10z

2
R∆χ

(3)
A

×
[
δT3(t)χ(3)

cr − 3T 2
0,1δT1(t)χ

(3)
air

]
Φ(zL)<{I3I∗3} (4.117)

Noting that typically the crystal’s nonlinear response is several orders of magnitude greater

than air,

χ(3)
cr ∼ 102 × χ(3)

air ,

this reduces to

Sfrnl = 2

(
w10

w30

)4( ω3

24cn3

)2

E6
10z

2
R∆χ

(3)
A δT3(t)χ(3)

cr Φ(zL)<{I3I∗3} (4.118)

Inserting the definition of the Fresnel perturbation from Eq. 3.50,

Sfrnl = −2

(
w10

w30

)4( ω3

24cn3

)2

E6
10z

2
R∆χ

(3)
A

(
na

nc(na + nc)2

)
× δχ(1)

0 |Us(x, y, z)|2 sin
[
Ωv

(
t+ τ − u−1

pu z
)]
χ(3)

cr Φ(zL)<{I3I∗3} . (4.119)
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The overall signal is proportional to Sfrnl ∝ − sin(Ωvt), and has opposite sign of the CSHRS

term.

The interface-dependent functional form, in the transformed coordinates x,

Φ(xL)<{I3I∗3} (4.120)

The product is
1

1 + x2
L

(∫ ∞
xL

1

(1 + ix)2 dx

)(∫ ∞
xL

1

(1 + ix)2 dx

)∗
(4.121)

and the real part is

Φ(xL)<{I3I∗3} =
1

x4
L + 2x2

L + 1
(4.122)

This function is symmetric about the focus.

Fresnel modulation is

Sfrnl =
[
δT3χ

(3)
cr − 3T 2

0,1δT1χ
(3)
air Φ(zL)

] 1

x4
L + 2x2

L + 1
(4.123)

It can be argued that the overall sign of this expression is negative, since δT3 ≈ δT1

3T 2
0,1χ

(3)
air > χ(3)

cr (4.124)

Note this appears inverse from the CSHRS term. It has opposite sign and has a peak when

the focal plane is coincident with the interface.

4.5.5 Sum of detected terms

All the individual terms, normalized, are shown in Fig. 4.3 for comparison of their interface

scan shape and peak position. The Fresnel term has been inverted to aid visual comparison

with the other terms.

For now we ignore the imaginary part of the cascaded modulations. When we add up

these terms with their sine and cosine parts, we can observe the amplitude and phase of the

resulting sum of sinusoids. The signal is

S = Scshrs sin(Ωt) + Scasc cos(Ωt) + Sfrnl cos(Ωt) = gsin sin(Ωt) + gcos cos(Ωt) (4.125)

where gsin = Scshrs + Sfrnl and gcos = Scasc. The sum of sinusoids can be expressed as a

single sinusoid A sin(Ωt+ φ) with amplitude

A = g2
sin + g2

cos (4.126)
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Figure 4.3: Interface translation dependence of the three CM-THG terms, coherent second
hyper-Raman, cascaded amplitude modulation, and Fresnel boundary modulation. Curves
normalized for visual comparison.

and phase

φ = tan−1

(
gsin

gcos

)
(4.127)

We don’t have simple analytic expressions, so a plot will have to do. The combined amplitude

is shown in Fig. 4.4. The dip in the middle reflects the fact that the strongest contributors are

sine terms with opposite signs, and cancel each other out near the middle. The asymmetry

is caused by the asymmetry in the cascaded amplitude modulation cosine term. The phase

is shown in Fig. 4.5. It has an arctangent-like behavior, the π phase shift reflecting the shift

between two sines of opposite sign. The transition in the middle is smoothed over by the

presence of the cascaded amplitude modulation cosine term.

4.5.6 Relative strength of various terms

Here we investigate how changing relative strength of the various terms affects the appear-

ance of a z-scan.
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Figure 4.4: Combined amplitude of the detected CM-THG signal. Note the dip in the
middle and asymmetry.
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Figure 4.5: Combined phase of the detected CM-THG signal.
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Figure 4.6: Amplitude for varying CSHRS contribution.
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Figure 4.7: Phase for varying CSHRS contribution.
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Figure 4.8: Amplitude for varying Fresnel modulation contribution.
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Figure 4.9: Phase for varying Fresnel modulation contribution.
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Figure 4.10: Amplitude for varying cascade contribution.
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Figure 4.11: Phase for varying cascade contribution.
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4.6 Note on group velocity mismatch

Recent investigations have shown group velocity mismatch (GVM) to be an important effect

in third harmonic generation by tightly focused ultrafast pulses [94, 38]. Much work remains

to be done in order to understand the effect that GVM has on CM-THG measurements.

For now, a simplified analysis will show that GVM will cause an apparent narrowing of

the interface scan profile, with no appreciable deviation from the Lorentzian lineshape.

From this we anticipate the interface scan profiles of the CSHRS, cascade, and Fresnel

modulation contributions will be preserved, and the general behavior of an interface scan

will be preserved.

The group velocities for each of our samples are tabulated here, and may make a differ-

ence in terms of signal to noise ratio. BGO12 Sellmeier was reported in Ref [96].

Table 2: Phase and group velocity mismatch values for THG in selected materials. Funda-
mental wavelength is 800 nm.

Sample nfnd nth ng,fnd ng,th ∆k, 1/µm ∆u, nm/ps
Quartz (o) 1.5383 1.5916 1.5543 1.722 -1.2466 0.55558
Fused silica 1.4533 1.4997 1.4671 1.6147 -1.0857 0.48864
BGO12 2.0712 2.6071 2.1565 4.5126 -12.5167 7.769
Sapphire (o) 1.7601 1.833 1.7816 2.0137 -1.7073 0.76875
BaF2 1.4705 1.511 1.4802 1.6097 -0.94864 0.42925

4.6.1 Group velocity mismatch and vibrational sampling

The vibrational coherence will travel in the sample with the group velocity of the pump

pulse [19]. In experiments that involve probing the coherence with a different color of light

than was used to pump the coherence, this can lead to smearing of the sampled vibrations,

or an attenuation of the sampled vibrational signal [45]. As the probe propagates in the

coherence, it samples a different time delay at the front end of the sample, sin(Ωvτpp) than

at the back end, sin[Ωv(τpp +∆u−1L)]. In CM-THG, each of the three modulation pathways

will be affected by group velocity walkoff differently:

• CSHRS: Perturbation of δχ(3) involved in generating third harmonic will proceed at

the group velocity of the fundamental.
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• Cascaded Amplitude: Cascaded amplitude modulations involving probe funda-

mental modulation cascading to third harmonic generation will see no group walkoff

effects. However, cascaded amplitude modulations where already-generated third har-

monic experiences an amplitude modulation via δk′′ may experience group walkoff

sampling effects.

• Fresnel: Group velocity mismatch will not smear out sampling of the Fresnel per-

turbations by the third harmonic generated in the bulk. But if GV mismatch is

appreciable, this may introduce an additional phase delay between the CSHRS and

Fresnel contributions, so that they might not be perfectly π shifted.

4.6.2 Modeling THG group velocity mismatch

In order to simulate the effects of GVM in an interface scan, we use a model that is based

on inserting the GVM directly into the J phase matching integral [38]

Assuming undepleted fundamental. The equation governing generation and propagation

of the third harmonic of a probe pulse is, in the traveling frame of the third harmonic pulse

is
∂

∂ζ
E3o(ζ, t3) = −i ω3

2cn3
χ(3)E3

o(ζ, t3 + ∆u−1ζ)e−i∆k (4.128)

where the phase mismatch is

∆k = 3k1 − k3, (4.129)

and the group velocity mismatch is defined˜[48]

∆u−1 = ∆u−1
3,1 =

1

u3
− 1

u1
=

1

c

(
n3 − n1 − λ3

∂n3

∂λ3
− λ1

∂n1

∂λ1

)
. (4.130)

The group velocity walkoff length is defined

L′w = (|∆u−1|∆ω1)−1 (4.131)

where ∆ω1 is the spectral FWHM of the fundamental. For transform-limited pulses,

Lw =
τ1

∆u−1
(4.132)

If z < Lw, THG should behave similarly to the CW case. When z > Lw, the solutions

are more complicated.
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We consider a fundamental beam incident on the nonlinear medium beginning at z0,

with a waist located at zw, written in the spatial frequency domain

Êo(kx, ky, z, to) = E0,o(to)
w2

10

4π

{
−(k2

x + k2
y)

[
w2

10

4
− i zw

2k1

]}
, (4.133)

where E0,o is the slowly varying temporal envelope of the probe field, presumed to be a

transform-limited Gaussian here:

E0,o(to) = E0,oe
−at2o . (4.134)

The equation governing TH generation and propagation now has the transverse Lapla-

cian, and works out to be, in the traveling frame of the third harmonic pulse

∂

∂ζ
Ê3o(ζ, kx, ky, t3o)

= i
ω3w

2
10

24cn3
χ(3)

E3
0,o(t3o + ∆u−1ζ)

(4π)3A2
1(ζ)

exp

{
−(k2

x + k2
y)
w2

10A1(ζ)

12

}
e−i∆kζ

− i
k2
x + k2

y

2k3
Ê3o, (4.135)

where we have defined

A1(ζ) = 1 + i
2(ζ − zw)

w2
10k1

(4.136)

We introduce a trial solution for Ê3o in the form of a Gaussian,

Ê3o = E0,3p(ζ)
w2

30

4π
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
, (4.137)

where A3(ζ) is similarly defined to A1(ζ) as in Eq. (4.136). We compute the derivative of

Eq. (4.137), insert it into Eq. (4.135), and combine terms to arrive at an expression for the

third harmonic field’s complex deviation from the usual Gaussian, E0,,3p, as a function of

propagation

∂

∂ζ
E0,3p(ζ, t3o) = i

πω3w
2
10

6cn3w2
30

χ
(3)
0

E3
0,o(t3o + ∆u−1ζ)

(4π)3A2
1(ζ)

e−i∆kζ . (4.138)

This result should be roughly equivalent to Eq.(2.10.10) in Ref.[39]. Here we have assumed

that the fundamental and TH spot sizes are fixed, w2
10 = 3w2

30, the beams are confocal (zw

is the same for both fundamental an TH), and the following ratio is negligible,

1

3k1
− 1

k3
=
k3 − 3k1

3k1k3
≈ 0. (4.139)
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To find the TH generated, we must integrate Eq. (4.138)

E0,3p(ζ, t3o) = i
πω3w

2
10

6cn3w2
30(4π)3

χ
(3)
0

∫
E3

0,o(t3o + ∆u−1ζ ′)

A2
1(ζ ′)

e−i∆kζ
′
dζ ′. (4.140)

This equation is in agreement with the starting point for the calculations found in

Eq. (2a) of Ref. [38], and will form the basis of our model. However, we will deviate slightly

from their approach by integrating from −∞ to +∞, including THG in air, not just across

the solid material in the focus of the beam. We assume GVM ∆u−1 and phase mismatch

∆k to be negligible in air. At this point, we will also drop the constants in front of the

integral, in order to simplify matters. The total far-field third harmonic across a crystal/air

boundary is the result of the two integrals, proportional to

E0,3p(ζ, t3o) ∝ χ(3)
0,xtl

∫
E3

0,o(t3o + ∆u−1ζ ′)

A2
1(ζ ′)

e−i∆kζ
′
dζ ′ + χ

(3)
0,air

∫
E3

0,o(t3o)

A2
1(ζ ′)

e−i∆kζ
′
dζ ′,

(4.141)

where the third-order susceptibilities of air and the crystal are χ(3)
0,air and χ

(3)
0,air, respectively.

4.6.3 Numerical simulations

Using MATLAB, we set up a pulse with a Gaussian temporal profile, a FWHM of 40 fs,

a time axis of 27 samples and spacing of 1 fs. We use sapphire as a material, in order to

compare our results to Ref. [38]. The third-order susceptibility of sapphire is taken to be

χ
(3)
0,xtl = 2.2× 10−14 esu and that for air is χ(3)

0,air = 1.2× 10−17 esu [39]. We assume a focal

spot of w0 = 4.4 µm, similar to what was found in the CM-THG measurements.

The integrals for third harmonic generation in the crystal and air, Eq. (4.141), are

solved in MATLAB using the adaptive Gauss-Kronrod (GK) quadrature function quadgk()

which is appropriate for infinite-bounded integrals [97]. In order to ensure convergence in a

reasonable amount of time, relative and absolute tolerances are set to 1× 10−3.

4.6.4 Interface scan for a thin piece of sapphire

we show the total integrated THG, as would be collected by a PMT, while scanning a thin

330 µm sample of sapphire through the focus, using the w1 = 4.4 µm spot size found in

Stoker[38], which translates to a Rayleigh range of zR = πw2
1n(λ1)/λ1 = 134 µm, where

λ1 = 800 nm. To calculate accurately the THG that collected in the far field, we must break
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Figure 4.12: Simulated z-scan of a 330 µm sapphire sample, to be compared with Stoker
Figs. 1 and 4. Note we reproduce the asymmetry not accounted for by Stoker when THG
in air is considered in the model.

the integration apart into three regions: air before the sample, the sample, and air after the

sample. We assume phase mismatch in air to be negligible, so that the integration, modified

from Eq. (4.140), becomes:

E0,3p(ζ, t3o) = i
πω3w

2
10

6cn3w2
30(4π)3

{
χ

(3)
0,air

∫ 0

−∞

E3
0,o(t3o + ∆u−1ζ)

A2
1(ζ)

dζ

+χ
(3)
0,mat

∫ L

0

E3
0,o(t3o + ∆u−1ζ)

A2
1(ζ)

e−i∆kζdζ

+χ
(3)
0,air

∫ ∞
0

E3
0,o(t3o + ∆u−1ζ)

A2
1(ζ)

dζ

}
(4.142)

Integrated pulse intensity for each position of the scan is taken to be

I3(ζ) =

∣∣∣∣∫ ∞
−∞

E0,3p(ζ, t3o) dt

∣∣∣∣2 (4.143)

The results for area shown in Fig. 4.12. The z-scan profile is the superposition of two

Lorentzians, one centered at each face. Adding in the THG in air leads to a distinct asym-

metric profile.
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Figure 4.13: Simulated THG z-scan of a thick sapphire sample across the face away from
the focusing objective. Scans are shown for the CW case (no mismatch), and the pulse case
with group and phase match taken into account. A CW case with narrowed Rayleigh range
is also shown for comparison.

4.6.5 Back interface scan profile

Now we examine an interface scan across the back face of a crystal, similar to the CM-THG

experiments described later. Instead of three material integrals and two boundaries, we solve

the two integrals in Eq. 4.141. The resulting interface scan profile is shown in Fig. 4.13.

The simulation reveals the peak intensity of the third harmonic, when the interface lines up

with the focal plane, to be 2.5× 10−5 times less intense than the phase-matched CW case.

The shape remains a Lorentzian, with a reduction in FWHM by 64.5%. For comparison,

the interface scan profile, neglecting mismatch, with a Rayleigh range narrowed by 64.5% is

shown.

4.6.6 Discussion

Even though THG in air is three orders of magnitude weaker than in sapphire, including the

air THG makes a noticeable difference in the shape of the z-scan for a thin material. In fact,

this asymmetric profile has been observed in experiment but had been left unaccounted for

by theory in previous treatments [38]. The authors speculated that the intensity variation

across the peaks was due to different amounts of group velocity dispersion (GVD) on the
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pulses at the front and back faces. The model shown here does not account for GVD in

propagating through the bulk material.

In the interface scan at the back face, within a Rayleigh range zR of the interface, the

general Lorentzian shape predicted by the CW model is preserved when accounting for group

velocity mismatch, except for a narrowing of the profile, leading to an apparent reduction

in the Rayleigh range. Since this is the case, we anticipate the interface scan behavior for

the three contributions of the CM-THG signal will also follow closely the CW case laid out

in the theory above. However, there will be slight variations as the interface is translated

more than zR away from the focal plane. Clearly more investigation into finding analytic

expressions for THG interface scans with group velocity- and phase-mismatch will need to

be conducted. It might be possible to adapt the expressions in Ref. [94] to an interface scan

scenario.

4.7 Summary

This is the summary, and walk-through of the theoretical model.

Separation of the contributions to the CM-THG signal requires a model of evolution of

the far-field TH as a function of the crystal interface position with respect to the focal plane

of the pump and probe fields. We start with the differential equation describing propagation

of the probe pulse in the presence of a perturbed linear susceptibility.

4.7.1 Assumptions made

The following list summarizes the assumptions we have made

1. Both fundamental and third harmonic propagate in tightly focused Gaussian spatial

modes, sharing the same focal plane.

2. Pulses have a transform-limited Gaussian temporal envelope.

The following effects have been neglected.

1. Variations in the focus due to differing indices of refraction across the interface are

negligible.
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2. Transverse spatial variations in the pump.

3. Phase and group velocity mismatch. To some degree we may justify this knowing that

CARS microscopy has demonstrated the broad spectrum of k wavevectors in a tight

focus lead to relaxed phase matching conditions [98, 99].

4. Dispersion and pulse broadening.

4.7.2 Fundamental solutions

The solution for linear propagation of a probe pulse exhibits amplitude and phase modulation

of the probe due to the coherence via perturbations of the complex index of refraction.

This solution for the modulated probe fundamental is included as the source term in

the equation describing generation and propagation of TH in the presence of a perturbed

nonlinear susceptibility. In the tight focusing limit, integration is performed with infinite

bounds along the propagation direction to find the far-field TH [39]. We treat this integral

as a sum: ∫ ∞
−∞

f(z)dz = T

∫ zL

−∞
fcrystal(z)dz +

∫ ∞
zL

fair(z)dz. (4.144)

In other words, we integrate over −∞ < z < zL in the crystal bulk and over zL < z < ∞

in air, where zL is the interface position. The first integral is multiplied by the perturbed

Fresnel transmission coefficient T to account for transmission modulation of bulk-generated

third harmonic at the interface.

4.7.3 Total collected far-field signal

We find the far-field TH intensity is a superposition of four components: the unperturbed

third harmonic E3,0; a coherent second hyper-Raman scattering term E3,cshrs; cascaded am-

plitude modulations E3,casc; and a Fresnel boundary-modulated term E3,frnl. The detected

intensity is

≈ |E3,0|2 + E∗3,0E3,cshrs(τ) + E∗3,0E3,casc(τ) + E∗3,0E3,frnl(τ) + c.c.,

where |E3,0|2 is the unperturbed contribution rejected by a lock-in amplifier, and the re-

maining contributions are the weak VC-modulated TH signal heterodyned with the strong
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unmodulated TH, resulting in vibrational signal enhancement. Each of these terms depends

on the position of the interface relative to the focal plane ξ and the pump–probe delay τ .

We express interface position as ξ = (zL − z0)/zR, where zL − z0 is the distance from the

focal plane to the interface referenced to an arbitrary offset, and zR = πw2
0/λ is the Rayleigh

range of the focused pulses.

4.7.4 Coherent second hyper-Raman component

The heterodyned CSHRS signal contribution is

Scshrs(ξ, τ) = E3,0(ξ)∗E3,cshrs(ξ, τ) + c.c. = Kcshrs gcshrs(ξ) sin (Ωτ) , (4.145)

following the sinusoidal form of E3,cshrs ∝ δχ(3) ∝ sin(Ωτ). The coefficient Kcshrs indicates

the strength of the contribution and g(ξ) describes the dependence on translation of the

interface.

4.7.5 Cascaded component

The second contribution is due to cascaded effects from perturbation of the linear suscep-

tibility. The probe energy is modulated by the imaginary part of the index perturbations

∝ cos(Ωτ). The modulated probe then generates TH reflecting this prior amplitude modu-

lation. The functional form is:

Scasc(ξ, τ) = E∗3,0(ξ)E3,casc(ξ, τ) + c.c. = Kcasc gcasc(ξ) cos (Ωτ) . (4.146)

4.7.6 Fresnel boundary modulation component

The final term is due to modulation of the Fresnel transmission coefficient at the exit face

of the crystal:

Sfrnl(ξ, τ) = E∗3,0(ξ)E3,frnl(ξ, τ) + c.c. = −Kfrnl gfrnl(ξ) sin (Ωτ) , (4.147)

4.7.7 Translation dependence

The translation dependence of these three terms is found by integration of the third harmonic

generated in the focal volume, the details of which will be published separately. The resulting
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Figure 4.14: Normalized plots of translation dependence of CM-THG contributions. a)
Coherent second hyper-Raman, showing a peak when the focus is inside the bulk. b) Cas-
caded amplitude modulation, exhibiting a peak with the focus in the bulk, but closer to the
interface. c) Fresnel modulation, showing a peak when the focus is on the interface. Shaded
area shows positions where focus is in the bulk.

translation dependence of each contribution is:

gcshrs(ξ) =

{
ξ
[
tan−1(ξ) + π/2

]
4 (ξ2 + 1)

+
ξ2 + 2

4 (ξ2 + 1)2

}
, (4.148)

gcasc(ξ) =
tan−1(ξ) + π/2

ξ2 + 1
, (4.149)

gfrnl(ξ) =
1

ξ2 + 1
. (4.150)

Each of these is shown in Fig. 4.14. The CSHRS and cascaded contributions have peaks in

the bulk, whereas the Fresnel contribution has its peak when the focus is on the interface.
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When combined, these three effects are distinguishable by a shift in the CM-THG vi-

brational signal with respect to τ .

S(ξ, τ) = [Kcshrs gcshrs(ξ)−Kfrnl gfrnl(ξ)] sin(Ωτ)

+Kcasc gcasc(ξ) cos(Ωτ)

= A(ξ) sin [Ωτ + φ(ξ)] ,

(4.151)

where A(ξ) is the coherently combined amplitude and the delay shift is

φ(ξ) = tan−1

{
Kcshrs gcshrs(ξ)−Kfrnl gfrnl(ξ)

Kcasc gcasc(ξ)

}
. (4.152)

Competition between the cascade and the two other contributions in Eq. (4.151) provides

a smooth π delay shift transition as the focus is scanned from within the bulk to the interface,

as will be shown in Figs. 5.5 and 5.6(b). If we were to neglect CSHRS, we would observe a

π/2 phase shift between surface Fresnel modulations and cascaded amplitude modulations,

consistent with previous findings [92].

4.7.8 Conclusion

Capitalizing on the translation dependence and phase shift, we separate the contributions

from the CM-THG signal by recording coherent THG vibrational spectra as a function of

zL and fitting the data to the model.
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CHAPTER V

CM-THG EXPERIMENTS

Here we present experimental results to confirm the theory presented in the previous section.

We observe coherent vibrational modulation of third harmonic generation (CM-THG), and

perform an interface scan to confirm the presence of the three sources of CM-THG modula-

tion: coherent second hyper-Raman (CSHRS), cascaded amplitude modulation, and Fresnel

boundary modulation.

Here, we report the first observation of CSHRS – with only to our knowledge one prior

report of incoherent second hyper-Raman scattering [100]. Despite common use of hyper-

Raman spectroscopy [101], weak interaction makes second hyper-Raman measurements elu-

sive [95]. Even though selection rules for second hyper-Raman interactions have been pro-

posed [102], to our knowledge they have never been experimentally verified. As shown in

the previous section, heterodyning with the unmodulated TH signal enables measurement

of this weak phenomenon.

We probe vibrational coherences (VC), prepared via non-resonant impulsive stimulated

Raman scattering (ISRS) [19], both at and near a crystal–air interface. We introduce a

method called coherence-modulated third harmonic generation (CM-THG) where the in-

fluence of vibrations on probe pulse propagation and TH generation are observed. The

measurements are performed with noncentrosymmetric crystals with a nonzero even-order

nonlinear response in bulk, making surface-specific even-order measurements difficult to

obtain.

5.1 Experimental setup

The setup is shown in Fig. 5.1. The experiment uses pulses from a Ti:sapphire oscillator

(KMLabs, Boulder, CO), with 60 nm bandwidth centered at 780 nm. A SF-10 prism pair,

with 56 cm tip-to-tip separation compensates for the GDD imparted to the pulses by the
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Figure 5.1: CM-THG experimental setup.
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Figure 5.2: CM-THG interface scan experiment. As the crystal is translated through the
focus, the CM-THG contributions vary. The CSHRS signal has its peak with the focus in
the bulk, as shown. Placing the interface on the focus leads to a peak Fresnel boundary
modulation contribution.
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optics in the set-up, ensuring short pulses at the sample. A Michelson interferometer using a

ThorLabs polarizing cube beamsplitter splits each incident pulse into orthogonally polarized

pump and probe pulses. As shown in Fig. 5.2, an objective (Zeiss Epiplan 0.5 NA, 50x long

working distance) focuses the pulses onto the back interface of a 100 µm thick, solid crystal

sample. Third harmonic in the focal volume, and collected with a 30 mm UV-grade fused

silica lens. A calcite polarizer (ThorLabs, 5mm aperture, 20mm thick) is used to reject the

pump light after the sample, passing the probe light. Then a dielectric mirror optimized for

high reflection at 266 nm (CVI Melles Griot) directs the third harmonic toward an optical

interference filter (260BP10, Omega Optical). The filtered probe third harmonic is then

measured with a Hamamatsu R928 side-on photomultiplier tube.

We minimize noise by cascading two lock-in detectors. The first operates on the laser

oscillator’s repetition rate at ∼ 90 MHz, the output of which is fed into the second lock-in

operating on the pump chop frequency at 2 kHz. Any modulations on the probe pulse due to

the pump-induced coherence will occur at the pump chop frequency. Finally A pump–probe

delay scan over τ yields a time-resolved trace of the VC.

5.2 Delay scan results

Delay scans for Bi4Ge3O12 (BGO12), BaF2 and LiTaO3 (supplied by MTI Corporation,

Richmond, CA) are shown in Fig.5.3. We obtain Raman spectra both by windowed fast-

Fourier transform (FFT) and linear prediction (LPSVD)[103], as described in Appendix C.

In BGO12 we see the expected 92, 203, and 363 cm−1 A1 lattice vibrations [104]. BaF2

exhibits a single peak, the T2g 240 cm−1 mode [105]. LiTaO3 exhibits several peaks; the

strongest likely corresponding to the A1 354 cm−1 and/or E 345 cm−1 modes [106]

5.2.1 Boiling in liquids

It was found that exposing a liquid such as CCl4 to the oscillator pulses resulted in enough

heating at the focal spot to cause bubbles to form. In our initial delay scans, we thought

we had observed a periodic vibrational signal, but the periodicity was simply related to

the bubble formation. When the focus is translated to the liquid/glass interface, this phe-

nomenon leads quickly to surface damage on the glass, probably due to lensing from the
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Figure 5.3: CM-THG delay scan results for BGO12, BaF2, and LiTaO3 (left column).
Raman spectra (right column) from windowed FFT (green patch) and LPSVD (black line).
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bubble, heating and melting of the glass, or surface enhancement of the field due to the

formation of a liquid/gas interface. The result is a bright white flash followed by disruption

of the beam, evident in an irregular spatial pattern of the fundamental after the sample.

One solution is to use a flow cell. Alternatively, blocking and unblocking the beam

periodically allows for the liquid to cool between shots. The periodic attenuation from the

lighthouse is enough to make this work.

5.3 Confirm third-order behavior

We confirm the 2nd order behavior of ISRS pumping and 3rd order behavior of TH probing

by varying the pump and probe power respectively, while recording the signal strength (area

under the curve) of the 92 cm−1 mode. A log-log plot (Fig. 5.4) of the signal strength, with

respect to pump and probe power respectively, yields linear fit slopes of 0.83 ± 0.10 and

3.39± 0.33, for a 95% confidence interval.

5.4 Interface scan, model fit

To examine the translation dependence of the signal contributions, we perform BGO12

interface scans at probe delays long enough to ensure isolation of the long lived 92 cm−1

mode. The interface scan is performed with a ThorLabs piezo controller, using the device’s

internal offset voltage to position the stage. An external control voltage fed into the piezo

controller caused fluctuations in the position large enough to cause significant distortions
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Figure 5.5: Probe fundamental amplitude modulations (a) vs. probe-generated third har-
monic modulations (b) through an interface scan. CM-THG consistently exhibits better
SNR. Light blue lines connect peaks to highlight phase shift across interface scan.

in the measurement. A better set-up would be to use a feedback-stabilized piezo stage and

controller.We simultaneously observe modulations of the probe fundamental intensity and

the third harmonic intensity for 11 different interface translation positions, as shown in

Fig. 5.5. The delay scans in the figure are scaled and offset by the interface position for

visual comparison of signal to noise ratio (SNR) and phase shift across the interface.

To compare the amount of noise in the fundamental and TH scans, we fit each delay

scan to a sine function Y = A sin(Ωτ + φ) using MATLAB’s fminunc() function. Then

we calculate the root mean square error (RMSE) of the fit. Defining SNR = A/RMSE, we

find the average SNR for the CM-THG signals is 7.1, while the average for the fundamental

amplitude modulations is 1.3. This improvement is due to heterodyne detection of the

CM-THG contributions with the unperturbed TH.

Then we repeated the interface scan, this time recording only the TH signal and acquir-

ing delay scans for 37 different interface positions. The results of fitting a sine amplitude

and phase to these data are shown in the blue crosses in Fig. 5.6(a), and the blue circles

in Fig. 5.6(b), respectively. The predicted π shift in the phase φ(ξ) observed in Fig. 5.5 is

confirmed in Fig. 5.6(b). We extract the separable contributions, CSHRS, cascaded modu-

lation, and Fresnel modulation, through parameter fitting of Kcshrs, Kcasc, Kfrnl, z0, and zR
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to expressions for the interface-dependent amplitude and phase,

S(ξ, τ) = [Kcshrs gcshrs(ξ)−Kfrnl gfrnl(ξ)] sin(Ωτ)

+Kcasc gcasc(ξ) cos(Ωτ)

= A(ξ) sin [Ωτ + φ(ξ)] ,

(5.1)

where A(ξ) is the coherently combined amplitude and the delay shift is

φ(ξ) = tan−1

{
Kcshrs gcshrs(ξ)−Kfrnl gfrnl(ξ)

Kcasc gcasc(ξ)

}
. (5.2)

The fit utilized fminunc(), repeated with 100 random initial guesses to avoid local min-

ima. The fit shows the same general functional form and a π phase shift as the interface

is translated through the focus. The relative strengths of the CSHRS, cascade, and Fres-

nel contributions are 1.5, 0.12, and 1.1, respectively. This confirms the observation of a

strong CSHRS signal and an interface-specific Fresnel-modulated THG signal. Focusing

characteristics. The numerical aperture and spot size are related by

NA = n sin θ =
2λ

πD

where theta is the cone half-angle, Rayleigh range to spot size relation is

zR =
πw2

0

λ
.

The Rayleigh range of 3.25 µm obtained is in good agreement with the 2.8 µm expected from

a 0.5 NA objective underfilled by approximately 60%. Disagreement between the model and

the data at the edges of Fig. 5.6 may stem from assuming a perfect Gaussian focus, not

correcting the focus for a change in index of refraction across the interface, and neglecting

TH absorption in the crystal.

Interface scans with two other objectives have been attempted, but were not successful.

The NewFocus asphere 0.55 NA, most likely due to chromatic aberration. We also tried a

Meiji 20x 0.4 NA S-plan; it is uncertain why this objective did not reveal such a translation

dependence.
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Figure 5.6: Analysis of CM-THG interface scan: (a) Measured amplitude of Raman signal
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correspond to focal plane in the bulk, while region on left is focal plane in air.
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CHAPTER VI

RAPID BIREFRINGENT DELAY SCANNER

6.1 Signal to noise problems

In a typical pump–probe experiment, an oscillator pulse having 1˜nJ energy and a duration

of 50˜fs is split into a pump and probe pulse in a Michelson interferometer. The pump–

probe delay is τ . The pump excites a vibrational coherence with amplitude proportional to

the intensity of the pump Ip. The third harmonic intensity, which would be detected by a

square-law detector is ITH ∝ |χ(3)E3
o |.

The chopping/lock-in amplifier technique can eliminate much of the white noise, but

any low-frequency fluctuations that are slower than the lock-in amplifier’s time constant

still get through. To work around this, we implemented a rapid-scanning alternative. The

measurements are taken at such a scan rate that an entire delay scan completes faster than

these slow drifts. We introduce a method based on the angle-dependent birefringent delay

imparted by a crystal [55]

6.2 Signal averaging

It is commonly reported that signal to noise improves with
√
n averages. But this does not

take into account the spectral character of the noise. Consider a case where we measure

a steady illumination of a PMT with a stable light source, neglecting shot noise. Suppose

the only source of noise is from PMT gain drifts by 10% over the course of a few minutes.

If we were to acquire n = 1000 samples over the course of a few hours, we might expect

the gain drifts to average out to some degree, and we would obtain a better estimate of the

illumination intensity than with a single measurement. But suppose we acquire n = 1000

samples over the course of 1 second, at a 1 kHz sampling rate. In this case, the averaged result

could easily over- or under-estimate the illumination intensity by 10%, and the acquisition

and averaging of many samples has gained us nothing.
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Figure 6.1: Comparison of scan averaging vs. point averaging for increasingly increasingly
red noise.

Laser noise and gain drift in the PMT will show up as low-frequency modulations, and

will pass through the lock-in’s filter, so it seems this is a poor choice. If the fluctuations

are slow enough that a few cycles will go through in a delay scan, then the noise may be

averaged out by repeating delay scans.

Simulations to show this makes a difference. Whether anything is gained by rapid scan

averaging depends on the nature of the noise. If it is 1/f , that is pink noise, the character-

istics of the averaged scans seem about the same. But for 1/fn and n > 1 (e.g. red noise),

averaging scans seems to produced better results.
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6.3 Set-up and operation principles

The rapid birefringent delay scanner operates on the angle-dependent pulse splitting from a

thick birefringent crystal [55]. Figure 6.3 shows the set-up for a single pass through the crys-

tal. We mount the birefringent crystal on a motor shaft, with the optic axis perpendicular to

the axis of rotation. A pulse incident at 45◦ to the eigenaxes of the crystal, the ordinary and

extraordinary axes, will be projected onto the eigenaxes, and the pulse propagating along

the extraordinary axis experiences a varying group delay as a function of crystal angle, τ(θ).

Care must be taken to safely block the surface reflection from the crystal (the sweeping

surface reflections have earned the device the nickname lighthouse).

In practice, we double-pass the rotating delay crystal, as shown in Fig. 6.3. This has

the effect of doubling the attainable delay range and compensating for spatial walkoff of

the two pulses in the crystal [55]. Since the delay imparted by the crystal can only be

positive, a second crystal, with its optic and of rotation axes orthogonal to those of the

delay crystal, is placed to pre-compensate the delay. This allows the scanner to sweep a

range of delays encompassing time-overlap between the two pulses. We use an uncoated 5

mm thick calcite displacer (Lambda Research Optics, Inc.) for the delay crystal, mounted on

a feedback-stabilized brushless DC motor (Faulhaber, supplied by Micro Motion Solutions).
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Figure 6.3: Birefringent delay scanner set-up with a double-passed delay crystal and a delay
pre-compensation crystal.

We place a 1/2 waveplate before the scanner to control the balance of pump and probe

power. For CM-THG measurements, since the signal is proportional to the cube of the

probe power and only the square of the pump power, the best signal is obtained with a more

intense probe than pump. The output of the pick-off mirror after the scanner is directed

through a 1/4 waveplate and a 1/2 waveplate, then focused on to the sample with a Meji

20x 0.4 NA objective, and collected as described in the CM-THG section.

In order to produce short enough pulses to excite the high frequency mode in CdWO4,

we had to re-build the prism compressor using fused silica prisms (instead of SF10). The less

dispersive glass resulted in less residual third order dispersion, allowing us to more effectively

compress the pulses at the focus [107]. However, the less dispersive nature of fused silica

required us to increase the prism tip-to-tip separation to 215 cm. The compressor is folded

to decrease the amount of space it occupies on the table.

We also abandoned the 266 nm bandpass filter (260BP10, Omega Optical), which is

only rated for 12% throughput, in favor of spatially separating the fundamental and third

harmonic with a pair of Pellin-Broca prisms (ThorLabs) and an iris to block the fundamental.

Furthermore, we replaced the calcite polarizer (Thorlabs), which only transmits around 50%

of the third harmonic, with a β-BBO Wollaston polarizer with anti-reflection coatings and

transmission of 99% (DayOptics, China). These modifications significantly improved the
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Figure 6.4: Improved CM-THG set-up with birefringent delay scanner.

throughput of third harmonic to the PMT. The final set-up is shown in Fig. 6.3.

6.4 Interferometric delay axis calibration

To be sure of the delay axis calibration, we use two methods. Spectral interferometry while

the motor is spinning is not an option, since the delay changes so rapidly on the timescale

of the spectrometer integration (3 ms) that the interference fringes blur out. Instead of a

delay precompensation crystal, we use a polarizing Michelson interferometer to pre-set the

delay to τpre before the birefringent delay scanner. The output of the Michelson is sampled

with a 10% beamsplitter, which directs the pulses through a polarizer and a spectrometer.

From the spectral interference fringes, we can measure the pre-compensation delay. Then

we measure a cross-correlation after the birefringent scanner. The position of time-overlap

corresponds to the crystal angle which compensates for the pre-set delay from the Michelson,

121



Figure 6.5: Interferometric calibration of birefringent delay scanner. Polynomial fit agrees
well with measured data.

that is

τ(θ) = τpre.

We scan one arm of the Michelson through a range of delays to produce the curve shown

in Fig. 6.4. The mean of the interferometric delays is subtracted to condition the data, and

a 3rd-order polynomial is fit to this curve, and used to map the recorded traces from an

function of crystal angle to a function of linear pump–probe delay,

f(θ)→ f(τpp)

The calibration curve is actually written in terms of interpolated samples instead of angle.

Once acquired, the traces are interpolated to 4096 samples, so that 8192 samples correspond

to a full 360◦ of crystal rotation. The curves shown here are plotted with respect to crystal

rotation angle in degrees, not the interpolated sample axis.

The other method will be described after the initial results are presented. It involves

acquiring a Raman spectrum, and adapting the delay calibration curve to fit these Raman

lines to known reference frequencies.
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Figure 6.6: Fresnel transmission profiles across rotation angle of birefringent delay crystal.

6.5 Fresnel transmission profile background

Since the pump and probe are orthogonally polarized, incident on the rotating delay crystal,

they will each exhibit angle-dependent attenuation that follows the angle-dependent Fresnel

reflection from the crystal faces. For the s-polarized probe, the Fresnel transmission peaks

at normal incidence, while the Fresnel transmission of the p-polarized pump peaks at the

Brewster angle. Figure 6.6 shows the typical Fresnel profiles. Due to the thickness of the

crystal there is some roll-off at the edges of the recorded traces, where the crystal is edge-on.

The probe signal has a strong Fresnel background that must be subtracted properly

in order to isolate the weak vibrational perturbations. The background can be recorded

with the pump blocked, or the time delay set such that the delay trace measures only pre-

time-zero, and not the vibrations. But the noise in this signal will add to the noise in

the signal of interest. Efforts to subtract using a polynomial fit required constant tuning

of the polynomial fit order, depending on the sample. We use a spline fit instead, using

MATLAB’s spline fitting toolbox, and a smoothing parameter on the order of 10−7. The

smoothing parameter is chosen to be small enough to avoid fitting to the low-frequency

vibrations, yet large enough to accurately fit the Fresnel profile.

The pump profile will result in a multiplication of the vibrational excitation that should

be divided out of the resulting time-resolved scan. If this is not properly done, damping

estimates, and algorithms such as LPSVD will not be reliable. In these preliminary exper-

iments, we skip this step, as the signal-to-noise ratio and temporal window will suffice for
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FFT (instead of LPSVD) analysis, and we are not for the moment interested in measuring

decay constants accurately.

For shorter pulses, this background profile may also be affected by the GDD in the

varying length of propagation through the crystal.

6.6 Data acquisition

An NI-DAQmx PCI card DAQ (Data AcQuisition device) is used to capture delay scans from

the scanner. A custom program written in C# polls the DAQ for 12000 samples at a 120

kHz sampling rate. The current pre-amplifier, which amplifies the signal from the PMT to

the DAQ is set to low-pass filter with a 12 dB slope and cut-off at 100 kHz. With the motor

running at 14.771 Hz, or 886.26 RPM (revolutions per minute), 180◦ of crystal rotation covers

approximately 4000 samples. Using the synchronization signal from the motor controller,

the DAQ buffer is partitioned into individual 180◦ scans. We also tried synchronizing to a

photodiode placed in such a way as to catch a pass from the surface reflection of the crystal,

but found the signal from the motor controller to be much more reliable. The two halves

of the 360◦ crystal rotation (labeled front and back face scans) are kept separate until the

final stages of signal averaging, in case there are any deviations between the two of delay

calibration or Fresnel transmission profiles. The actual number of samples per scan may

vary, depending on motor velocity drift, so all the scans are interpolated to 4096 samples to

correct for this drift.

The software records 2000 scans at a time (1000 front and 1000 back face scans), and

saves the entire data set in a format that can be read by MATLAB. Averaging and delay

linearization are performed in MATLAB after a full data set has been acquired.

It is also important to choose a motor spin direction such that the pump–probe overlap

follows the vibrational coherence measurements on the scans. In other words, the scans are

to be run backwards. This is to keep ringing and other impulse response artifacts from the

PMT and detection electronics from overlapping the vibrational measurements. Otherwise

such artifacts are easily mistaken for vibrational modes. This is an important procedure for

any rapid scan method which measures small perturbations in a pump–probe configuration.
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6.7 Data processing

Once the sets of scans are acquired, a series of MATLAB scripts are employed for analysis.

The first loads up each of the scans, interpolates to 4096 points per scan, and averages

all the scans together. Optionally, a cross-correlation alignment procedure may be used to

keep timing jitter from washing out high-frequency signal components. In practice, we have

found this necessary to maintain pump–probe autocorrelation fringes at time-zero, but it

did not significantly affect the retrieved Raman spectrum. In addition, the cross-correlation

alignment procedure is time-consuming, so we did not implement it for the following analysis.

6.8 Cadmium tungstate reference frequency calibration

Higher frequencies will be more distorted by delay calibration inaccuracies, especially at the

extreme ends of the scans. So we select CdWO4 as a calibration crystal, which has a strong

Raman line at 912 cm−1 [108]. A third-harmonic autocorrelation (THGAC) trace [109] using

THG from CdWO4, is acquired with a sampling oscilloscope. The delay axis of the THGAC

is calibrated by using an FFT to find the fringe spacing, which corresponds to one optical

cycle, or 2.67 fs at our center wavelength of 800 nm. The result in Fig. 6.7 is shown to have

a FWHM of about 30 fs, which overestimates the actual duration of the pulses, assuming

either a Gaussian or a hyperbolic secant-squared intensity profile. The reciprocal of a pulse

duration of 30 fs is (30 fs× c)−1 = 1111 cm−1, thus demonstrating we have sufficiently short

pulses to excite the target mode in CdWO4.

An adaptive calibration algorithm that starts with a polynomial fit to the interferomet-

ric calibration, and adjusts these coefficients based on a specified criteria. We measure a

Raman spectrum of the CdWO4 sample with a conventional Raman spectrometer (Central

Instrumentation Facility, Colorado State University), and find the peak to be at 896.7 cm−1.

Then we acquire and average 8000 scans with CMTHG using the birefringent delay scanner,

and run the adaptive calibration algorithm with the criteria of maximizing the peak found

between 895 − −900 cm−1. When the corrected polynomial delay calibration is applied to

the data, a the relevant peak is located at 895.2 cm−1. Considering the temporal window of

delay scans limits the spectral resolution in this case to ∆ν = 4.8 cm−1, this is in excellent
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Figure 6.7: THG autocorrelation on interface of CdWO4 confirms a pulse duration of less
than 30 fs.

agreement with the conventional Raman measurements.

6.9 Results and discussion

The resulting FFT Raman spectra for 8000 averaged scans for CdWO4, BGO12, BaF2, and

liquid CCl4 are shown in Fig. 6.8.

The liquid CCl4 was measured in a UV fused silica cuvette, focusing at the interface

between the glass and the liquid. Unlike previous attempts, the of the pulses, indicating

the periodic attenuation of the beam sample did not heat to the point of boiling under the

influence from the birefringent delay scanner may have allowed heat to dissipate away from

the focal volume at a high enough rate to allow us to make the measurements. We also

attempted acetone, but found that sample heating and thermal lensing prevented us from

making a measurement.
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Figure 6.8: Birefringent delay scanner CM-THG measurement results for crystal samples
CdWO4, BGO12, BaF2, and liquid CCl4.
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CHAPTER VII

FUTURE WORK

One outstanding question in this work is that of the surface specificity of the modulations of

the Fresnel transmission coefficient. Considering the case of reflection from a scattering point

of view, the incident light is gradually replaced by light radiated from oscillating dipoles in

the medium, the 1/e extinction length being [110]

L =
λ

2π|n− 1| (7.1)

So that for the third harmonic λ = 266 nm and BGO, where n = 2.6, the 1/e extinction

length is L = 26 nm. Considering that the lattice length is a = 1.06 nm [111], about 24

unit cell lengths are covered by L, bulk vibrational modes will still contribute to the signal.

But even methods that don’t completely extinguish the bulk vibrational contribution have

proved to be useful. For instance, sum frequency studies on the quartz surface, which has

a significant contribution to bulk second-order signal (quartz is non-centrosymmetric) has

revealed the angle of the Si-O-Si bond at the surface [8].

In spite of the increase in signal-to-noise ratio afforded by the lighthouse method, the

CM-THG method will require even more sensitivity before it can be used to measure surface

modes such as those on the surface of α-quartz in Ref. [8].

Simultaneous monitoring of fundamental, SH, and TH modulations could reveal infor-

mation on systems that are not accessible by other means. Considering the fundamental,

hyper- and second hyper-Raman interactions have different selection rules and different

cross-sections. Simultaneously measuring these three Raman signals might provide addi-

tional information. This could be done with a single apparatus, and appropriate dichroic

optics on the detection end.

Charge transfer interactions can lead to a measurable change in the Raman cross-

section [112]. It is reasonable to assume the hyper- and second hyper-Raman cross sections
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are also affected by charge transfer events. In addition, adsorbed molecules show a shift

in intensities of Raman bands [10]. In addition to vibrational modulation, the background

second harmonic can measure electric field strengths at the surface through field-induced

second harmonic generation [35].

In conclusion, the methods presented in this dissertation have the potential to make new

measurements of vibrational and electronic dynamics at chemically interesting interfaces.
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APPENDIX A

WAVE EQUATIONS

In order to maintain consistency, wave equations for ultrafast pulse propagation are derived

here from first principles. More information may be found in any standard textbook on

ultrafast and nonlinear optics [39, 48].

A.1 Wave equations for pump and probe

Describe a probe pulse propagating in the presence of a time-varying susceptibility pertur-

bation.

In this section, we derive the equation describing pulse propagation in optical media to

ensure that we are using consistent notation and definitions.

We begin with the wave equation for homogeneous, non-magnetic media with no free

charges or sources:

−∇2E(z, t) + µ0ε0
∂2

∂t2
E(r, t) + µ0

∂2

∂t2
PL(r, t) = −µ0

∂2

∂t2
PA(r, t), (A.1)

where the real field is given by

E(r, t) =
1

2
Ẽ(r, t) +

1

2
Ẽ∗(r, t), (A.2)

the real linear polarization is given by

PL(r, t) =
1

2
P̃L(r, t) +

1

2
P̃L∗(r, t), (A.3)

and the real additional polarization (either linear, nonlinear, or both) is given by

PA(r, t) =
1

2
P̃A(r, t) +

1

2
P̃A∗(r, t). (A.4)
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Note that the tilde indicates a complex quantity. Upon substitution of the above defini-

tions into the wave equation (A.1), we obtain

−∇2Ẽ(r, t) + µ0ε0
∂2

∂t2
Ẽ(r, t) + µ0

∂2

∂t2
P̃L(r, t) = −µ0

∂2

∂t2
P̃A(r, t)

+ {Similar equation for c.c.} (A.5)

The two equations above contain identical information (as required by the real field and

polarizations). We are really after the real field, but it is easier to manipulate things with

complex notation. We need only to remember to take the real part of Ẽ(r, t) in the end.

We can write the complex time-domain field and polarizations in term of their inverse

Fourier transforms

Ẽ(r, t) =

∫
dωẼ(r, ω)eiωt,

P̃L(r, t) =

∫
dωP

L
(r, ω)eiωt,

P̃A(r, t) =

∫
dωP

A
(r, ω)eiωt.

(A.6)

Substituting the inverse Fourier transforms for the fields and polarizations into (A.5), yields

∫
dω

{
−∇2Ẽ(r, ω)eiωt + µ0ε0

∂2

∂t2
Ẽ(r, ω)eiωt + µ0

∂2

∂t2
P
L

(r, ω)eiωt
}

=

∫
dω

{
−µ0

∂2

∂t2
P
A

(r, ω)eiωt
}
. (A.7)

Evaluating the temporal derivatives and dropping the
∫

dω and eiωt terms that are common

to each term gives us

−∇2Ẽ(r, ω)− ω2µ0ε0Ẽ(r, ω)− ω2µ0P
L

(r, ω) = ω2µ0P
A

(r, ω), (A.8)

which can be rewritten as

∇2Ẽ(r, ω) +
ω2

c2
Ẽ(r, ω) + ω2µ0P

L
(r, ω) = −ω2µ0P

A
(r, ω). (A.9)

First, consider the linear polarization term. In the time domain, this term is written as

P̃L(r, t) = ε0

∫ ∞
−∞

dτχ(1)(t− τ)Ẽ(z, τ), (A.10)
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thus the linear polarization (oscillating at the input optical frequency) becomes

P
L

(r, ω) = ε0

∫
dte−iωtP̃L(r, t) = ε0

∫
dte−iωt

∫ ∞
−∞

dτχ(1)(t− τ)Ẽ(τ). (A.11)

Making the substitution η = t− τ, t = τ + η, dt = dη, we obtain

P
L

(r, ω) = ε0

∫ ∞
−∞

dηe−iωηχ(1)(η)

∫ ∞
−∞

dτe−iωτ Ẽ(τ) = ε0χ
(1)(ω)Ẽ(r, ω). (A.12)

Plugging (A.12) into (A.9), we arrive at

∇2Ẽ(r, ω) +
ω2

c2

[
1 + χ(1)(ω)

]
Ẽ(r, ω) = −ω2µ0P

A
(r, ω). (A.13)

Note that n2(ω) ≡ 1 + χ(1)(ω) and k2(ω) ≡ ω2n2(ω)
c2

. Thus, (A.13) can be written as

∇2Ẽ(r, ω) + k2(ω)Ẽ(r, ω) = −ω2µ0P
A

(r, ω). (A.14)

A.2 Slowly Varying Envelope in the Time and Frequency Do-
main

So far, we have made no assumptions in the derivations beyond those that allowed us to arrive

at the typical wave equation that is used in optics, i.e., (A.1). Now we will begin making

assumptions. We will assume that the complex electric field contains a complex temporal

envelope that varies slowly with respect to t and z. We consider a field propagating in the

forward direction only. Thus we write:

Ẽ(r, t) = E(r, t)ei(ω1t−k0z), (A.15)

where E(r, t) is a slowly-varying complex envelope with respect to z and t and the temporal

and spatial phase that is rapidly varying are only considered at the central frequency of

the pulse (ω1). Furthermore, based on our definition above, we are only considering plane

waves.

Note this section closely parallels the derivation in Ch. 13 of Ref [39], except Boyd

defines the argument of the exponent i(k0z − ω1t) instead of i(ω1t− k0z). Both approaches

describe fields propagating in the forward direction, and are equally valid.
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In the frequency domain, we have:

Ẽ(r, ω) =

∫
eiωtẼ(r, t)dt =

∫
ei(ω−ω1)tE(r, t)e−ik0zdt. (A.16)

Defining Ω = ω − ω1, we obtain

Ẽ(r, ω) = e−ik0zE(r, ω). (A.17)

Substituting this into (A.14), we obtain

∇2
[
e−ik0zE(r, ω)

]
+ k2(ω)e−ik0zE(r, ω) = −ω2µ0P

A
(r, ω), (A.18)

which can be rewritten as

eik0z∇2
[
e−ik0zE(r, ω)

]
+ k2(ω)E(r, ω) = −ω2µ0e

ik0zP
A

(r, ω). (A.19)

Next, consider the spatial Laplacian broken down into transverse, ⊥, and longitudinal, z,

components:

∇2
[
e−ik0zE(r, ω)

]
= ∇2

⊥

[
e−ik0zE(r, ω)

]
+

∂2

∂z2

[
e−ik0zE(r, ω)

]
= ∇2

⊥

[
e−ik0zE(r, ω)

]
+

∂

∂z

[
∂

∂z
E(r, ω)e−ik0z − ik0E(r, ω)e−ik0z

]
=

{
∇2
⊥E(r, ω) +

∂2

∂z2
E(r, ω)− 2ik0

∂

∂z
E(r, ω) + (ik0)2E(r, ω)

}
e−ik0z

=

{
∇2
⊥E(r, ω) +

∂2

∂z2
E(r, ω)− 2ik0

∂

∂z
E(r, ω)− k2

0E(r, ω)

}
e−ik0z. (A.20)

Upon substitution into (A.21), we obtain

∇2
⊥E(r, ω) +

∂2

∂z2
E(r, ω)− 2ik0

∂

∂z
E(r, ω) +

[
k2(ω)− k2

0

]
E(r, ω)

= −ω2µ0e
ik0zP

A
(r, ω). (A.21)

To proceed further, we make a Taylor expansion of k(ω) about ω1 written as

k(ω) = k0 + k1Ω +D, (A.22)

where

D =

∞∑
j=2

kj
j!

Ωj , (A.23)
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and

kj =
djk(ω)

dωj
|ω1 . (A.24)

Squaring k(ω) yields

k2(ω) = k2
0 + 2k0k1Ω + 2k0D + 2k1DΩ + (k1Ω)2 +D2. (A.25)

We can write the difference k2(ω)− k2
0 as approximately

k2(ω)− k2
0 ≈ 2k0k1Ω + 2k0D + 2k1DΩ + (k1Ω)2 , (A.26)

where we have neglected D2 because it is very small (if the Taylor expansion is valid). Now

the wave equation becomes(
∇2
⊥ +

∂2

∂z2
− 2ik0

∂

∂z
+ 2k0k1Ω + 2k0D + 2k1DΩ + (k1Ω)2

)
E(r, ω)

= −ω2µ0e
ik0zP

A
(r, ω). (A.27)

If we multiply (A.27) by eiΩt and integrate with respect to Ω, we obtain the time-domain

envelope equation:{
∇2
⊥ +

∂2

∂z2
− 2ik0

∂

∂z
+ 2k0k1

(
−i ∂
∂t

)
+ 2k0D̃ + 2k1D̃

(
−i ∂
∂t

)
+ k2

1

(
−i ∂
∂t

)2
}
E(r, t)eiω1t

= −
(
−i ∂
∂t

)2

µ0e
ik0zP̃A(r, t), (A.28)

where we have used the Fourier transform relations
(
−i ∂∂t

)
↔ ω and D̃ =

∑∞
j=2

kj
j!

(
−i ∂∂t

)j
.

Rewriting (A.28) gives{
∇2
⊥ +

∂2

∂z2
− 2ik0

(
∂

∂z
+ k1

∂

∂t

)
+ 2k0D̃ − 2ik1D̃

∂

∂t
− k2

1

∂2

∂t2

}
E(r, t)

= µ0e
ik0ze−iω1t∂

2P̃A(r, t)

∂t2
. (A.29)

We will consider a polarization induced in the medium (either non-time-stationary or

nonlinear) that oscillates at the central optical frequency of the pulse and propagates with

the same phase velocity:

P̃A(r, t) = pA(r, t)ei(ω1t−k0z). (A.30)
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Taking the first derivative with respect to time of this polarization source term yields

∂P̃A(r, t)

∂t
= e−ik0z

[
∂pA(r, t)

∂t
eiω1t + (iω1)pA(r, t)eiω1t

]
(A.31)

and the second temporal derivative of the polarization density is

∂2P̃A(r, t)

∂t2
= −ω2

1e
i(ω1t−k0z)

[
1− i

ω1

∂

∂t

]2

pA(r, t). (A.32)

Thus pA(r, t) is the slowly-varying portion of the rapidly oscillating polarization in the

medium. Inserting the resultant temporal derivative back into (A.29) yields

{
∇2
⊥ +

∂2

∂z2
− 2ik0

(
∂

∂z
+ k1

∂

∂t

)
+ 2k0D̃ − 2ik1D̃

∂

∂t
− k2

1

∂2

∂t2

}
E(r, t)

= −ω2
1µ0

(
1− i

ω1

∂

∂t

)2

pA(r, t). (A.33)

Next, we move to the group rest frame of the pulse with the transformation τ = t − u−1z

and ζ = z. This is followed by making the slowly varying envelope approximation (SVEA),

where we neglect ∂2

∂ζ2
. Then we also neglect dispersion,

k1

k0
=
u−1

nω1
c

≡ ng
nω1

→≈ 1

ω1
(A.34)

And divide both sides by the common
(

1− i
ω1

∂
∂τ

)
and the −2ik0 term. We will neglect

spatio-temporal coupling indicated on the transverse Laplacian ∇2
⊥. Furthermore, we will

neglect higher order dispersion D̃, leading to{
i

2k0
∇2
⊥ +

∂

∂ζ

}
E(x, y, ζ, τ) = −iµ0cω1

2n0

(
1− i

ω1

∂

∂τ

)
pA(x, y, ζ, τ). (A.35)

Reversing the coordinate transform back to the lab frame, τ = t− u−1z and ζ = z.

∴ ∂
∂ζ → ∂

∂z + k1
∂
∂t and ∂

∂t → ∂
∂τ

and substituting the group velocity u = 1/k1, the wave equation becomes{
i

2k0
∇2
⊥ +

∂

∂z
+

1

u

∂

∂t

}
E(r, t) = −i ω1

2cn0ε0

(
1− i

ω1

∂

∂t

)
pA(r, t). (A.36)

This will be the starting point for our calculations. This equation describes the prop-

agation of an ultrafast pulse envelope E(r, t) in the presence of an additional polarization
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pA(r, t). This equation is versatile, and may be used to describe the propagation of a probe

pulse in the presence of a nuclear coherence by making E the fundamental pulse and pA

reflect the time-varying polarization from the coherent oscillations. Or this equation may

describe third harmonic generation by choosing a pA ∝ χ(3)E3
fundamental that acts as a source

term to drive the third harmonic.q

A.2.1 Wave Equation in Spatial Frequency Domain

Using the spatial Fourier transform relation in Eq. (E.2) we can also express Eq. (A.36) in

terms of spatial frequencies:{
(k2
x + k2

y) +
∂

∂ζ
+ iD̃

}
Ê(kx, ky; ζ, τ) = −iµ0cω1

2n0

(
1− i

ω1

∂

∂τ

)
p̂A(kx, ky; ζ, τ). (A.37)
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APPENDIX B

RELATING SUSCEPTIBILITIES

In other Raman scattering experiments, it is conventional to refer to the Raman susceptibility

tensor which is a complex value describing phase and amplitude modulations. To clarify, this

is not the same as the Raman effective susceptibility perturbations described in Ch. 2. Here,

we relate the effective susceptibility perturbations to other notation found in the literature.

Both of these are connected to the Raman differential polarizability ∂α/∂q.

The complex Raman susceptibility found in Ref. [49], and commonly found in CARS

experiments is quite distinct from the effective first-order susceptibility perturbation defined.

The Raman susceptibility χR is a complex value that describes the phase shift and gain (or

loss) of a Stokes field propagating along with a laser field in a stimulated Raman scattering

experiment. The Raman susceptibility is described in terms of a third-order Raman tensor

in the frequency domain is related to the differential polarizability [39],

χR(ωS) =
(N/6m)(∂α/∂q)2

0

ω2
v − (ωL − ωS)2 + 2i(ωL − ωS)γ

. (B.1)

This formulation differs from ours in a number of ways. Equation (B.1) relates the Stokes

and laser fields in a stimulated Raman scattering experiment, where the Stokes field will

experience gain when ωv ≈ ωL − ωs. The Stokes polarization is [39]

P (ωs) = 6χR(ωs)|AL|2ASeiksz, (B.2)

whereas our susceptibility perturbation relates an additional polarization at an arbitrary

frequency to a vibrational coherence. The full expression for this perturbation is

δχ(t) = − i
~

(
∂α

∂q

)2

0

∫ ∞
0

dt2〈[qv(t), qv(0)]ρ0〉 × |Epu(t+ τ − t2)|2 (B.3)

And it depends explicitly on the convolution of the vibrational response with the pump

field. These two pictures of the Raman susceptibility share in common the real differential
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polarizability,

α′ =

(
∂α

∂q

)
0

(B.4)

In contrast the effective susceptibility perturbation is a real value for non-resonant pump–

probe methods. It is a simplification of a 4-wave mixing process, in which 2 fields are from

the pump, and the other two are from the probe. But even though δχ is real, it still leads

to both phase modulation and amplitude modulation effects through an effective complex

perturbation to the wavenumber δk, as shown in Ch. 2.

In an off-resonant ISRS pump–probe experiment, the effective linear polarization, pro-

portional to the probe field is

P (t) = Epr(t+ τ)

∫ ∞
−∞

S(t) |Epu(t)|2 dt (B.5)

Other treatments express the signal field as proportional to this polarization, for a particular

optical frequency

Es(t;ω) = χR(ω)P (t) (B.6)

Inserting the expression for P (t) gives

Es(t;ω) = χR(ω)Epr(t+ τ)

∫ ∞
−∞

S(t) |Epu(t)|2 dt (B.7)

It is possible to have a third-order additional polarization that is complex. This is the

case when the probe wavelength is near an electronic resonance. In this case, the vibrational

motion, through a complex polarization, modulates the amplitude of the probe pulse directly,

not just through the wavenumber k perturbations [53].
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APPENDIX C

LP-SVD FOR SPECTRAL ESTIMATION

C.1 Introduction

The Fourier transform decomposes a signal into a sum of sines and cosines. This is the bread

and butter of signal analysis. But there are two shortcomings. First, an FFT does not take

into account the fact that we expect only damped sinusoids in the time-resolved Raman

quantum beats. Second, the spectral resolution of an FFT is limited by the temporal

window. Linear prediction methods have improved spectral resolution and better noise

rejection than FFT.

We are interested in observing molecular vibrations through time-resolved spectroscopic

measurements. The traces produced are proportional directly to the molecular motion,

modeled by a sum of exponentially damped sinusoids,

q(t) =

K∑
k=1

cke
−ibktcos(ωkt+ φk). (C.1)

For any given data set q(t), we wish to extract the model parameters ck, bk, ωk, and φk.

The measured signal, with n samples on intervals of ∆t is

xn = x(n∆t) =
K∑
k=1

cke
−ibkn∆tcos(ωkn∆t+ φk) + w(n), (C.2)

where w(n) is added white noise. The most obvious method for obtaining frequency informa-

tion is to perform a fft on the measured data. However, there are techniques for extracting

the above model parameters that are better with noisy data and short sampling windows.

The focus of this paper is on the use of Linear Prediction-Singular Value Decomposition

(LP-SVD), developed by Kumaresan and Tufts˜[80] and extended by Barkhuijsen, et al to

NMR signal processing˜[79]. We will closely follow their discussion, filling in a few details

as we go.
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C.2 Linear Prediction
C.2.1 Forward Linear Prediction

The fundamental principle behind linear prediction (LP) or autoregression (AR) is modeling

each data point as a linear superposition of the previous M data points:

xn = a1xn−1 + a2xn−2 + · · ·+ aMxn−M , (C.3)

where am(m = 1, . . . ,M) are referred to as the LP coefficients or predictor coefficients.

Equation˜C.3 is set up for forward prediction, that is, modeling each successive sample in

terms of the previous samples. Backward prediction will be discussed later in this section.

Now we search for values of am that accurately model the signal data. Suppose we have

acquired N samples, and that M < n. From this we can generate n −M equations based

on Eq. C.3 and solve for am.

xN = a1xN−1 + a2xN−2 + · · ·+ aMxN−M

xN−1 = a1xN−2 + a2xN−3 + · · ·+ aMxN−M−1

...

xM+1 = a1xM + a2xM−1 + · · ·+ aMx1

(C.4)

This is, of course, a set of linear equations which can be written in matrix form

xN−1 xN−2 · · · xN−M

xN−2 · · · xN−M−1

...
. . .

...

xM xM−1 · · · x1





a1

a2

...

aM


=



xN

xN−1

...

xM+1


(C.5)

Xa = h, (C.6)

Where X is a Hankel matrix constructed from the data, a is the vector of LP coefficients,

and h is a truncated vector of the last M data points. We solve for a which minimizes the

prediction error. A least squares solution using singular value decomposition (SVD) works

well. The SVD of X is

X = UΛV∗, (C.7)
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Figure C.1: Forward linear prediction. Simulated noisy signal (line with dot markers),
original sinusoid without noise (solid thick line), and LP predicted line (solid thin line)

where λi = Λii are the singular values of X, and ∗ denotes the conjugate transpose. It can

be shown that for a signal comprised of K frequency components, only 2K singular values

need to be retained. The rest are noise terms, and are truncated, and we construct

Λ†ij =


1
λi

if i = j ≤ 2K,

0 otherwise.
(C.8)

If we don’t know K a priori, we can instead truncate λi values below a threshold.

The least-squares fit for a is then

a = VΛ†U∗x. (C.9)

A reconstructed signal is given by

y = Xa. (C.10)

Simulated results for a noisy signal are shown in Fig.˜C.1.

Barkhuijsen, et al claim it can be shown that for a signal consisting of a single sinusoidal

term [79],

xn = e−bn∆t cos (ωn∆t+ φ) , (C.11)
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an algebraic solution exists for the first two linear prediction coefficients:

a1 = 2e−b∆t cos (ω∆t) (C.12)

a2 = −e−2b∆t. (C.13)

Working backwards from this, we can solve for b and ω in terms of a1 and a2:

e(−b±iω)∆t =

(
a1 ±

√
a2

2 + 4a2

)
/2. (C.14)

Equation˜C.14 is clearly the solution for the complex roots of the polynomial:

z2 − a1z − a2 = 0 (C.15)

and also

z2
(
1− a1z

−1 − a2z
−2
)

= 0. (C.16)

Tufts and Kumaresan relate this to the poles of the transfer function of the so-called

prediction-error filter H(z):

H(z) = 1 +
K∑
k=1

akz
−k (C.17)

Working on figure, pole plot for complex roots of error function H(z). Show that back-

ward prediction throws useful data outside unit circle.

C.2.2 Backward Linear Prediction

If instead the linear prediction is performed in a backward manner, the noisy poles are found

inside the unit circle and poles corresponding to actual frequency components are outside.

The equation for backward LP is

x2 x3 · · · xM+2

x3 · · · xM+3

...
. . .

...

xN−M+1 xN−M+2 · · · xN





a1

a2

...

aM


=



x1

x2

...

xN−M


(C.18)

Simulation of backward prediction is shown in Fig.˜C.2.
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Figure C.2: Backward linear prediction. Simulated noisy signal (line with dot markers),
original sinusoid without noise (solid thick line), and LP predicted line (solid thin line)

The roots of the error function H(z) for both forward and backward cases are shown in

Fig.˜C.3. The solution to the backwards LP model produces roots of the form

sk = e(bk±iωk)∆t, (C.19)

where the damping coefficient bk and frequency ωk can be found by taking the real and

imaginary parts of the log, respectively. The difference between forward and backward LP

is illustrated in Fig.˜C.3.

C.3 Amplitude and Phase

Amplitude and phase information is extracted by another least-squares fit. First we examine

the case of a single frequency component. Using the previously obtained damping coefficient

b1 and frequency ω1, we write

xn = x(n∆t) = c1e
−b1n∆t cos(ω1n∆t+ φ1) (C.20)
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Figure C.3: Zeros of prediction error function H(z) for (a) forward LP and (b) backward
LP. In (b), the zeros that lie outside the unit circle are labeled with a solid blue circle.)

which becomes, with a trigonometric expansion

xn = [c1 cosφ1]
[
e−b1n∆t cos(ω1n∆t)

]
+ [c1 sinφ1]

[
e−b1n∆t sin(ω1n∆t)

]
. (C.21)

For a single sinusoidal component, we can generate a set of N equations,

e−b1∆t cos(ω1∆t) e−b1∆t sin(ω1∆t)

e−b12∆t cos(ω12∆t) e−b12∆t sin(ω12∆t)

...
...

e−b1N∆t cos(ω1N∆t) e−b1N∆t sin(ω1N∆t)


c1 cosφ1

c1 sinφ1

 =



x1

x2

...

xN


, (C.22)

which we use to solve for c1 and φ1 using another least squares procedure. This is readily

extensible to an arbitrary number K of frequency components.
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APPENDIX D

CMTHG PLANE-WAVE PUMP MODEL

In this appendix, we carry out the CM-THG model with the simplification of a plane pump.

Since the translation dependence of the individual terms does not follow from this model,

but does when we incorporate pump longitudinal intensity variations, we conclude this pump

intensity profile is important to the CM-THG interface scan behavior.

In an attempt to simplify matters, we first examine the case where we do not consider

spatial variation of the pump. It will be shown this is not sufficient to explain the interface

scan behavior, and a more detailed model must be constructed.

Perhaps something clever can be done, but the basic problem is that we will have a

product of Gaussians in the spatial domain, which may be hard to solve. Neglecting the

focusing of the pump, however, simplifies the problem.

We want to verify through this theory a few things observed in the lab. Measurements

made under tight focusing conditions show a π phase shift in the measured Raman modu-

lation as the material’s face is translated through the focus.

D.1 Effective linear propagation with a Gaussian pulse

We have an equation of the form (Eq. 2.102):{
i

2k1
∇2
⊥ +

∂

∂ζ

}
Eo(x, y, ζ, to) = −iδk1(to)Eo(x, y, ζ, to) (D.1)

Let’s transform to the spatial frequency domain on x and y. We define the transformation

Ê(kx, ky, ζ, t) =
1

2π

∫ ∞
−∞

dx

∫ ∞
−∞

dyE(x, y, ζ, t)e−ikxxe−ikyy. (D.2)

and the reverse transform

E(x, y, ζ, t) =
1

2π

∫ ∞
−∞

dkx

∫ ∞
−∞

dkyÊ(kx, ky, ζ, t)e
+ikxxe+ikyy (D.3)
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The transverse Laplacian transforms according to,

∇2
⊥E(x, y, ζ, t)⇐⇒

(
k2
x + k2

y

)
Ê(kx, ky, ζ, t), (D.4)

for an input Gaussian beam , so that Eq. (D.1) can be written as

∂

∂ζ
Êo(kx, ky, ζ, to) = −i

[
δk1(to) +

k2
x + k2

y

2k1

]
Êo(kx, ky, ζ, to) (D.5)

This has a solution of the form

Êo(kx, ky, ζ, to) = Êo(kx, ky, ζ = 0, to) exp

{
−i
[
δk1(to) +

k2
x + k2

y

2k1

]
ζ

}
(D.6)

where ζ = 0 is the input to the medium. We have an input beam with a waist at zw given

by

Êo(kx, ky, ζ = 0, to) = E10
w2

10

4π
exp

{
−(k2

x + k2
y)

[
w2

10

4
− i zw

2k1

]}
(D.7)

Inserting this equation into the solution, we obtain

Êo(kx, ky, ζ, to) = E10
w2

10

4π
exp

{
−(k2

x + k2
y)

[
w2

10

4
− i zw

2k1

]}
× exp

{
−i
[
δk1(to) +

k2
x + k2

y

2k1

]
ζ

}
(D.8)

which simplifies to

Êo(kx, ky, ζ, to) = E10
w2

10

4π
exp

{
−(k2

x + k2
y)

[
w2

10

4
+
i(ζ − zw)

2k1

]}
e−iδk1(to)ζ , (D.9)

and by defining

A1(ζ) = 1 +
i2(ζ − zw)

w2
10k1

, (D.10)

we write

Êo(kx, ky, ζ, to) = E10
w2

10

4π
exp

{
−(k2

x + k2
y)
w2

10

4
A1(ζ)

}
e−iδk1(to)ζ , (D.11)

We can transform this into the spatial domain

Eo(x, y, ζ, to) =
1

2π

∫∫ ∞∞
−∞−∞

E10
w2

10

4π
e−(k2x+k2y)

w2
10
4
A1(ζ)e−iδk1(to)ζei(kxx+kyy)dkxdky (D.12)
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Pulling out the terms invariant to kx and ky,

Eo(x, y, ζ, to) = E10
w2

10

4π
e−iδk1(to)ζ

× 1

2π

∫∫ ∞∞
−∞−∞

exp

{
−(k2

x + k2
y)
w2

10

4
A1(ζ)

}
ei(kxx+kyy)dkxdky (D.13)

In general the inverse Fourier transformation

w2

2π

∫ ∞
−∞

dkx

∫ ∞
−∞

dky exp

{
−(k2

x + k2
y)
w2

4

}
ei(kxx+kyy) = exp

{
−(x2 + y2)

w2

}
(D.14)

So the solution is given by

Epr(x, y, ζ, to) =
E10

4πA1(ζ)
exp

{
− (x2 + y2)

w2
10A1(ζ)

}
e−iδk1(to)ζ (D.15)

In summary, we started with the linear propagation equation for a probe pulse, including

a time-dependent perturbation to the wavenumber k. We transformed this equation to the

spatial frequency domain and found a solution, dependent on the form of the space- and

time-dependent probe incident on the medium. Making this initial condition for the probe

to be a focusing Gaussian beam, and performing the appropriate simplifications, we arrive

at a solution, which turns out to be a focusing Gaussian beam multiplied by a complex

modulation term exp {−iδk1(tprζ}. The real and imaginary parts of the wavenumber k

perturbation contribute to phase and amplitude modulation of the probe pulse, respectively.

We would like to insert A1, so first we evaluate its reciprocal.

1

A1(ζ)
=

1

1 + i2(ζ−zw)
w2

10k1

=
w2

10k1

w2
10k1 + i2(ζ − zw)

=
w2

10k1[w2
10k1 − i2(ζ − zw)]

(w2
10k1)2 − 4(ζ − zw)2

=
(w2

10k1)2 − i2w2
10k1(ζ − zw)

(w2
10k1)2 − 4(ζ − zw)2

(D.16)

. . . and so on. Proceed to give a solution for E1 in terms of a magnitude and phase.
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D.2 Third harmonic generation and propagation equations

The equation for the TH generation and propagation, assuming no GVM, is given in the

frequency domain as

∂

∂ζ
Êth(kx, ky, ζ, tpr) = i

ω3

8cn3

(
χ

(3)
0 + δχ(3)(tpr)

)
Ê3

o(kx, ky, ζ, to)e−i∆kζ

− i
{
δk3(tpr) +

k2
x + k2

y

2k3

}
Êth(kx, ky, ζ, to) (D.17)

The rhs consists of a source term ∝ Ê3
pr plus a propagation term ∝ Êth. The driving term

time-dependence is

δχ(3)(tpr) = δχ
(3)
0 sin[Ωv(tpr + τ)] (D.18)

For the source term, we need to return to the spatial domain and take the cube of the

fundamental.

E3
pr(x, y, ζ, to) =

E3
10

(4π)3A3
1(ζ)

exp

{
−3(x2 + y2)

w2
10A1(ζ)

}
e−i3δk1(to)ζ (D.19)

Given the solution of a Gaussian for the paraxial wave equation presented in the previous

section, we can readily compute the source term for an undepleted pump for 3rd harmonic

generation. In the spatial domain, the driving term is given by

i
ω3

8cn3

(
χ

(3)
0 + δχ(3)(tpr)

) E3
10

(4π)3A3
1(ζ)

exp

{
−3

(x2 + y2)

w2
10A1(ζ)

}
e−i3δk1(to)ζ (D.20)

Transforming this driving term to spatial frequency domain, pulling out x- and y-invariant

factors,

i
ω3

8cn3

(
χ

(3)
0 + δχ(3)(tpr)

) E3
10

(4π)3A3
1(ζ)

e−i3δk1(to)ζ

× 1

2π

∫ ∞
−∞

dx

∫ ∞
−∞

dy exp

{
−3

(x2 + y2)

w2
10A1(ζ)

}
ei(kxx+kyy) (D.21)

The double integral evaluates according to the Fourier relationship

1

2π

∫ ∞
−∞

dx

∫ ∞
−∞

dy exp

{
−(x2 + y2)

w2

}
ei(kxx+kyy) = w2 exp

{
−
(
k2
x + k2

y

) w2

4

}
(D.22)

So that

i
ω3

8cn3

(
χ

(3)
0 + δχ(3)(tpr)

) E3
10

(4π)3A3
1(ζ)

e−i3δk1(to)ζ

×
(
w2

10A1(ζ)

3

)
exp

{
−(k2

x + k2
y)
w2

10A1(ζ)

12

}
(D.23)
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and the source term is finally

i
ω3w

2
10

24cn3

(
χ

(3)
0 + δχ(3)(tpr)

) E3
10

(4π)3A2
1(ζ)

e−i3δk1(to)ζ exp

{
−(k2

x + k2
y)
w2

10A1(ζ)

12

}
(D.24)

D.3 Full solution

Finally, we have the equation that we wish to solve

∂Êth

∂ζ
= i

ω3w
2
10

24cn3

(
χ

(3)
0 + δχ(3)(tpr)

) E3
10

(4π)3A2
1(ζ)

× e−i3δk1(to)ζ exp

{
−(k2

x + k2
y)
w2

10A1(ζ)

12

}
e−i∆kζ

− i
{
δk3(tpr) +

k2
x + k2

y

2k3

}
Êth (D.25)

Let us rewrite the equation by defining

Γ = i

{
δk3(tpr) +

k2
x + k2

y

2k3

}
(D.26)

and

f(ζ) = i
ω3w

2
10

24cn3

(
χ

(3)
0 + δχ(3)(tpr)

) E3
10

(4π)3A2
1(ζ)

e−i3δk1(to)ζ

× exp

{
−(k2

x + k2
y)
w2

10A1(ζ)

12

}
e−i∆kζ (D.27)

Now the differential equation becomes

dÊth(ζ)

dζ
+ ΓÊth(ζ) = f(ζ), (D.28)

which has the solution

Êth(ζ, t) = eΓζ

∫ ζ

0
f(ζ ′)eΓζ′dζ ′ + C′e−Γζ . (D.29)

Which lets us arrive at a general solution

Êth(kx, ky; ζ) = e
−i
[
δk3(tpr)+

k2x+k
2
y

2k3

]
ζ
∫ ζ

0
f(ζ ′)e

i

[
δk3(tth)+

k2x+k
2
y

2k3

]
ζ′

dζ ′

+ Êth(kx, ky; ζ = 0)e
−i
[
δk3(tth)+

k2x+k
2
y

2k3

]
ζ

(D.30)
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D.4 Gaussian Solutions with zero input TH

Let us assume that the we have no injected control 3rd harmonic field and that the solution

of the field takes the form of a Gaussian

Êth(kx, ky; ζ) = E30(ζ)
w2

30

4π
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
e−iδk3(to)ζ (D.31)

where

A3 = 1 +
2i(ζ − ζw3)

w2
30k3

(D.32)

and E30 is function of ζ, w30 is the focusing waist of the third harmonic beam, and ζw3 is

the position of the focus. Note here that E30(ζ)e−iδk3(tpr)ζ describes the complex deviation

from the unperturbed Gaussian that would be generate in absence of a coherence.

Now there are three factors that are functions of ζ, whose derivatives we lay out in

preparation of finding the derivative of the entire expression by the product rule

∂

∂ζ
Êth =

w2
30

4π

{
∂E30(ζ)

∂ζ
exp

[
−(k2

x + k2
y)
w2

30A3(ζ)

4

]
e−iδk3(to)ζ

+E30(ζ)
∂ exp

[
−(k2

x + k2
y)
w2

30A3(ζ)
4

]
∂ζ

e−iδk3(to)ζ

+E30(ζ) exp

[
−(k2

x + k2
y)
w2

30A3(ζ)

4

]
∂e−iδk3(to)ζ

∂ζ

}
(D.33)

The first cannot be reduced a priori:

∂E30(ζ)

∂ζ
. (D.34)

The second is an exponential with a function of ζ in the argument:

∂

∂ζ
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
=

{
−(k2

x + k2
y)
w2

30

4

}
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
∂A3(ζ)

∂ζ
(D.35)

and the derivative of A3(ζ) is
∂A3

∂ζ
=

2i

w2
30k3

(D.36)

so that

∂

∂ζ
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
= −i

k2
x + k2

y

2k3
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
. (D.37)
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And the third factor’s derivative is

∂

∂ζ
e−iδk3(to)ζ = −iδk3(to)e−iδk3(to)ζ (D.38)

The derivative of the two exponentials together is

∂

∂ζ
exp

[
−(k2

x + k2
y)
w2

30A3(ζ)

4
− iδk3(to)ζ

]
= −i

[
k2
x + k2

y

2k3
+ δk3(to)

]
exp

[
−(k2

x + k2
y)
w2

30A3(ζ)

4

]
e−iδk3(to)ζ (D.39)

Finally the full derivative is

∂

∂ζ
Êth =

∂E30(ζ)

∂ζ

w2
30

4π
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
e−iδk3(to)ζ

− iE30(ζ)
w2

30

4π

[
k2
x + k2

y

2k3
+ δk3(to)

]
exp

[
−(k2

x + k2
y)
w2

30A3(ζ)

4

]
e−iδk3(to)ζ (D.40)

Which condenses to

∂

∂ζ
Êth =

w2
30

4π

{
∂E30(ζ)

∂ζ
− iE30(ζ)

[
k2
x + k2

y

2k3
+ δk3(to)

]}

× exp

[
−(k2

x + k2
y)
w2

30A3(ζ)

4

]
e−iδk3(to)ζ (D.41)

Or alternative putting the derivative in terms of Êth,

∂Êth(kx, ky; ζ)

∂ζ
= −i

{
δk3(t) +

k2
x + k2

y

2k3

}
Êth

+
w2

30

4π
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
e−iδk3(to)ζ ∂E30(ζ)

∂ζ
(D.42)

Substituting this into the lhs Eq. (D.44) gives

− i
{
δk3(t) +

k2
x + k2

y

2k3

}
Êth +

w2
30

4π
exp

{
−(k2

x + k2
y)
w2

30A3

4

}
e−iδk3(to)ζ ∂E30(ζ)

∂ζ

= i
ω3w

2
10

24cn3

(
χ

(3)
0 + δχ(3)(t)

) E3
10

(4π)3A2
1(ζ)

e−i3δk1(to)ζ exp

{
−(k2

x + k2
y)
w2

10A1

12

}
e−i∆kζ

− i
{
δk3(t) +

k2
x + k2

y

2k3

}
Ê3 (D.43)
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which simplifies, after two Êth terms cancel,

w2
30

4π
exp

{
−(k2

x + k2
y)
w2

30A3

4

}
e−iδk3(to)ζ ∂E30(ζ)

∂ζ

= i
ω3w

2
10

24cn3

(
χ

(3)
0 + δχ(3)(tpr)

) E3
10

(4π)3A2
1(ζ)

e−i3δk1(to)ζ exp

{
−(k2

x + k2
y)
w2

10A1

12

}
e−i∆kζ

(D.44)

Rearranging to isolate the derivative of E30,

∂E30(ζ)

∂ζ
= i

πω3w
2
10

6cn3w2
30

[
χ

(3)
0 + δχ(3)(tpr)

] E3
10

(4π)3A2
1(ζ)

e−i[3δk1(to)−δk3(to)]ζe−i∆kζ

exp

[
−
(
k2
x + k2

y

)(w2
10A1(ζ)

12
− w2

30A3(ζ)

4

)]
. (D.45)

Next we insert the definitions of A1(ζ) and A3(ζ):

∂E30(ζ)

∂ζ
= i

πω3w
2
10

6cn3w2
30

[
χ

(3)
0 + δχ(3)(tpr)

] E3
10

(4π)3A2
1(ζ)

e−i[3δk1(to)−δk3(to)]ζe−i∆kζ

× exp

[
−
(
k2
x + k2

y

)(w2
10

12
+ i

ζ − zw
6k1

− w2
30

4
− iζ − ζw3

2k3

)]
. (D.46)

D.5 Four critical approximations

To recover a solution similar to that given in Boyd, we must assume that[
w2

10

12
+ i

ζ − zw
6k1

]
=

[
w2

30

4
+ i

ζ − ζw3

2k3

]
(D.47)

Or, equivalently that the spot size of the beams is fixed by the relationship,

w2
10 = 3w2

30, (D.48)

the foci are located at the same point,

zw = ζw3, (D.49)

and the ratio
1

3k1
− 1

k3
=
k3 − 3k1

3k1k3
≈ 0. (D.50)

Since ∆k/k is small, this is entirely reasonable. Note this is not equivalent to neglecting

phase mismatch. This reduces the equation to

∂E30(ζ)

∂ζ
= i

πω3w
2
10

6cn3w2
30

[
χ

(3)
0 + δχ(3)(tpr)

] E3
10

(4π)3A2
1(ζ)

e−i[3δk1(to)−δk3(to)]ζe−i∆kζ . (D.51)
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At this point, we examine the exponential argument, breaking it apart into real and imagi-

nary components,

−i[3δk1(to)− δk3(to)]ζ =
[
−i3δk′1(tpr) + 3δk′′1(tpr) + iδk′3(tpr)− δk′′3(tpr)

]
ζ

=
[
3δk′′1(tpr)− δk′′3(tpr)

]
ζ − i

[
3δk′1(tpr)− δk′3(tpr)

]
ζ

(D.52)

So the exponent at the end is

e[3δk
′′
1 (tpr)−δk′′3 (tpr)]ζe−i[3δk

′
1(tpr)−δk′3(tpr)]ζe−i∆kζ . (D.53)

We may be able to make a simplification if we can demonstrate

3δk′1(tpr)− δk′3(tpr)� ∆k (D.54)

It seems that this is effectively a perturbation to the phase mismatch. To prove the inequality

more rigorously, we start with

δk′1(tpr) ∝
ω1

2cn1
δχ

(1)
0 (ω1) |Us|2 (D.55)

and

δk′3(tpr) ∝
ω3

2cn3
δχ

(1)
0 (ω3) |Us|2 (D.56)

Remember we have not clearly defined δχ(1)
0 , but it may depend on the probe frequency. so

that the difference

3δk′1(tpr)− δk′3(tpr) =
ω3 |Us|2

2c

(
δχ

(1)
0 (ω3)

n3
− δχ

(1)
0 (ω1)

n1

)
(D.57)

It’s not immediately obvious this is less than the phase mismatch term. Regardless, if we

can make this approximation, the phase modulation due to the real part of the wavenumber

k perturbations to the fundamental and the third harmonic is negligible, and the equation

for E30(ζ) becomes

∂E30(ζ)

∂ζ
= i

πω3w
2
10

6cn3w2
30

[
χ

(3)
0 + δχ(3)(tpr)

] E3
10

(4π)3A2
1(ζ)

e[3δk
′′
1 (tpr)−δk′′3 (tpr)]ζe−i∆kζ (D.58)

If we grant that the attenuation exponential term is small, we approximate

e[3δk′′1 (tpr)−δk′′3 (tpr)]ζ ≈ 1 + [3δk′′1(tpr)− δk′′3(tpr)]ζ, (D.59)
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and the product[
χ

(3)
0 + δχ(3)(tpr)

] {
1 + [3δk′′1(tpr)− δk′′3(tpr)]ζ

}
≈ χ(3)

0 + δχ(3)(tpr) + χ
(3)
0 [3δk′′1(tpr)− δk′′3(tpr)]ζ. (D.60)

The equation for E30(ζ) is

∂E30(ζ)

∂ζ
= i

πω3w
2
10

6cn3w2
30

{
χ

(3)
0 + δχ(3)(tpr) + χ

(3)
0 [3δk′′1(tpr)− δk′′3(tpr)]ζ

}
× E3

10

(4π)3A2
1(ζ)

e−i∆kζ (D.61)

factoring out χ(3)
0 ,

∂E30(ζ)

∂ζ
= i

πω3w
2
10

6cn3w2
30

χ
(3)
0

{
1 + δχ(3)(tpr)/χ

(3)
0 + [3δk′′1(tpr)− δk′′3(tpr)]ζ

}
× E3

10

(4π)3A2
1(ζ)

e−i∆kζ (D.62)

We will integrate both sides to reveal the solution

E30(ζ) = i
πω3w

2
10

6cn3w2
30

χ
(3)
0

E3
10

(4π)3

{[
1 + δχ(3)(tpr)/χ

(3)
0

] ∫ ζ

0

e−i∆kζ
′

A2
1(ζ ′)

dζ ′

+[3δk′′1(tpr)− δk′′3(tpr))

∫ ζ

0

e−i∆kζ
′

A2
1(ζ ′)

ζ ′dζ ′

}
(D.63)

These two integrals describe the effects of to distinct phenomena. The first corresponds

to the coherent second hyper-Raman process expressed in δχ(3)(tpr). The second describes

attenuation effects on the probe fundamental δk′′1(tpr) and the third harmonic δk′′3(tpr).

Note that if we were considering group velocity walkoff, we would not be able to pull

the time-dependent terms outside of the ζ-dependent integration. Also E10 would not be

independent of ζ, and would be found inside the integrals as well.

D.6 Tight focusing

Tight focusing turns out to be easier to solve. In a tight focus, we make the assumption

that ∆kζ � 1 so that we have the integrals

E30(ζ) = i
πω3w

2
10

6cn3w2
30

χ
(3)
0

E3
10

(4π)3

{[
1 + δχ(3)(tpr)/χ

(3)
0

] ∫ ζ

0

1

A2
1(ζ ′)

dζ ′

+[3δk′′1(tpr)− δk′′3(tpr)]

∫ ζ

0

ζ ′

A2
1(ζ ′)

dζ ′
}

(D.64)
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We’ll examine the integrals separately. The first is∫ ζ

0

1

A2
1(ζ ′)

dζ ′ =

∫ ζ

0

1[
1 + i2(ζ′−zw)

w2
10k1

]2 dζ ′

=

∫ ζ

0

1

(C +Dζ ′)2
dζ ′

(D.65)

where for convenience we have defined the complex constants

C = 1− i 2zw
w2

10k1
(D.66)

and

D = i
2

w2
10k1

. (D.67)

such that

A1(ζ) = C +Dζ. (D.68)

There are no real values of ζ ′ which can force the denominator to zero, so the integral is

straightforward:∫ ζ

0

1

(C +Dζ ′)2
dζ ′ =

1

D(C +Dζ ′)

∣∣∣∣ζ
0

=
1

D(C +Dζ)
− 1

DC
=

1

D

[
1

C +Dζ
− 1

C

]
(D.69)

Recognizing that A1(ζ = 0) = C, and plugging in definitions, the integral evaluates as

follows ∫ ζ

0

1

A2
1(ζ ′)

dζ ′ = −iw
2
10k1

2

[
1

A1(ζ)
− 1

A1(0)

]
(D.70)

The other integral is more complicated. Using MAXIMA, we find∫ ζ

0

ζ ′

(C +Dζ ′)2
dζ ′ =

ln(C +Dζ ′)

D2
+

C

CD2 +D3ζ ′

∣∣∣∣ζ
0

=
1

D2

[
ln(C +Dζ ′) +

C

C +Dζ ′

]ζ
0

=
1

D2

[
ln(C +Dζ) +

C

C +Dζ
− ln(C)− 1

] (D.71)

Re-inserting the definitions of D and C,∫ ζ

0

ζ ′

A2
1(ζ ′)

dζ ′ = −
(
w2

10k1

)2
4

{
ln [A1(ζ)] +

A1(0)

A1(ζ)
− ln [A1(0)]− 1

}
(D.72)
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Inserting these results into the expression for E3(ζ),

E30(ζ) = i
πω3w

2
10

6cn3w2
30

χ
(3)
0

E3
10

(4π)3

{[
1 + δχ(3)(tpr)/χ

(3)
0

](
−iw

2
10k1

2

)[
1

A1(ζ)
− 1

A1(0)

]

+[3δk′′1(tpr)− δk′′3(tpr)]

[
−
(
w2

10k1

)2
4

]{
ln [A1(ζ)] +

A1(0)

A1(ζ)
− ln [A1(0)]− 1

}}
(D.73)

Factoring out a few constants,

E30(ζ) = i
πω3w

2
10

6cn3w2
30

χ
(3)
0

E3
10

(4π)3

(
−iw

2
10k1

2

){[
1 + δχ(3)(tpr)/χ

(3)
0

] [ 1

A1(ζ)
− 1

A1(0)

]

+[3δk′′1(tpr)− δk′′3(tpr)]

(
−iw

2
10k1

2

)[
ln [A1(ζ)] +

A1(0)

A1(ζ)
− ln [A1(0)]− 1

]}
(D.74)

To clear things up, we separate E30(ζ) into a function of ζ plus a constant

E30(ζ) = i
πω3w

2
10

6cn3w2
30

χ
(3)
0

E3
10

(4π)3

(
−iw

2
10k1

2

){[
1 + δχ(3)(tpr)/χ

(3)
0

] 1

A1(ζ)

+[3δk′′1(tpr)− δk′′3(tpr)]

(
−iw

2
10k1

2

)[
ln [A1(ζ)] +

A1(0)

A1(ζ)

]}
+Q (D.75)

where

Q = i
πω3w

2
10

6cn3w2
30

χ
(3)
0

E3
10

(4π)3

(
−iw

2
10k1

2

){
−
[
1 + δχ(3)(tpr)/χ

(3)
0

] 1

A1(0)

+[3δk′′1(tpr)− δk′′3(tpr)]

(
−iw

2
10k1

2

)[
ln [A1(0)] + 1

]}
. (D.76)

The final solution for the third harmonic field, repeated here for convenience is

Êth(kx, ky; ζ) = E30(ζ)
w2

30

4π
exp

{
−(k2

x + k2
y)
w2

30A3(ζ)

4

}
e−iδk3(to)ζ (D.77)

D.7 Detected signal

The mod-squared detected signal, such as would be recorded by a PMT, is written

Eth = EthE
∗
th ∝

[
E30e

−iδk3ζ
] [
E30e

−iδk3ζ
]∗

= E30E
∗
30. (D.78)

Note how the complex conjugation removes the effect of the modulation by −iδk3 in the full

trial solution. Thus, we only need to consider E30(ζ) instead of Eth(ζ) when calculating the

detected signal.
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D.8 Translating focus about the back interface

Here we attempt to relate the model to experimental measurements where we have observed

that translating the focus around the back interface leads to a π phase shift in the measured

modulations.

At the back interface, there is a sharp discontinuity in the optical properties in addition

to a sudden change in the forward propagating fundamental and third harmonic due to

modulation of the Fresnel transmission coefficients. So if we desire to recover the field

incident on a detector placed some distance away from the interface, the integral breaks

apart. Let’s consider the total third harmonic generated by a focusing Gaussian beam

originating in the sample, focusing at zw, and exiting through an interface to air at ζi.

Material response is designated by an ‘m’ subscript, air response is designated by an ‘a’

subscript.

E30 = i
πω3w

2
10

6cn3w2
30

E3
10

(4π)3

{
T3(δn)χ

(3)
0,m

∫ ζi

−∞

1

A2
1(ζ ′)

dζ ′ + T3(δn)δχ(3)(tpr)

∫ ζi

−∞

1

A2
1(ζ ′)

dζ ′

+T3(δn)χ
(3)
0,m[3δk′′1(tpr)− δk′′3(tpr)]

∫ ζi

−∞

ζ ′

A2
1(ζ ′)

dζ ′

+T 3
1 (δn)χ

(3)
0,a

∫ ∞
ζi

1

A2
1(ζ ′)

dζ ′
}

(D.79)

where T1 is the fundamental modulated transmission coefficient, and T3 is the modulated

transmission coefficient at the third harmonic. The transmission coefficient t is the initial

coefficient plus a small perturbation, so its cube is approximated

T 3
1 (δn) = [T0,1 + δT1(tpr)]

3 ≈ T0,1 + 3δT1(to) (D.80)

Also the third harmonic transmission perturbation multiplied by small terms is neglected,

T3(δn) = T0,3 + δT3(to) (D.81)

so that

T3(δn)δχ(3) ≈ T0,3δχ
(3) (D.82)

and

T3(δn)(3δk′′1 − δk′′3) ≈ T0,3(3δk′′1 − δk′′3) (D.83)
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If we were considering group velocity mismatch, T 3
1 would have a dependence on ζ and so

would remain inside the integral. The dependence would have to account for the fact that

the TH pulse arrival time at the back interface is slowed down by its group velocity and the

sample thickness.

We should be careful that ζw and ζi are sufficiently far from ζ = 0, as it was assumed in

arriving at this solution that E30(ζ = 0) = 0. To shorten up the notation, we define

V (z1, z2) =

∫ z2

z1

1

A2
1(ζ ′)

dζ ′, (D.84)

W (z1, z2) =

∫ z2

z1

ζ ′

A2
1(ζ ′)

dζ ′, (D.85)

and

Z = i
πω3w

2
10

6cn3w2
30

E3
10

(4π)3
, (D.86)

and then we have

E30 = Z
[
(T0,3 + δT3)χ

(3)
0,mV (−∞, ζi) + T0,3δχ

(3)(t)V (−∞, ζi)

+T0,3χ
(3)
0,m(3δk′′1 − δk′′3)W (−∞, ζi) + T0,1χ

(3)
0,aV (ζi,∞) + 3∆t1χ

(3)
0,aV (ζi,∞)

]
(D.87)

When we examine the square magnitude of this expression, we will see the square of each

term plus cross-terms. We will neglect squares and cross-terms containing small quantities

multiplied by small quantities, namely δχ(3), (3δk′′1−δk′′3), and δT . We group terms according

to whether they are time-varying (and small) or not.

E30 = Z
{[
T0,3χ

(3)
0,mV (−∞, ζi) + T0,1χ

(3)
0,aV (ζi,∞)

]
+
[
δT3χ

(3)
0,mV (−∞, ζi)

+T0,3δχ
(3)V (−∞, ζi) + T0,3χ

(3)
0,m(3δk′′1 − δk′′3)W (−∞, ζi) + 3δTχ

(3)
0,aV (ζi,∞)

]}
(D.88)

All the time-varying terms in the second set of square brackets are relatively weak, so that
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the square magnitude is approximately

|E30|2 = Z2

{∣∣∣χ(3)
0,mV (−∞, ζi) + T0χ

(3)
0,aV (ζi,∞)

∣∣∣2
+
[
T0,3χ

(3)
0,mV (−∞, ζi) + T0,1χ

(3)
0,aV (ζi,∞)

]
×
[
δT3χ

(3)
0,mV

∗(−∞, ζi)

+T0,3δχ
(3)V ∗(−∞, ζi) + T0,3χ

(3)
0,m(3δk′′1 − δk′′3)W ∗(−∞, ζi) + 3δT1χ

(3)
0,aV

∗(ζi,∞)
]

+c.c.} (D.89)

where c.c. is the complex conjugate of the second term in the curly braces. We would

like to compare the relative strengths of the CsHRS term, δχ(3), the cascaded amplitude

modulations, (3δk′′1 − δk′′3), and the effects of the modulated transmission coefficient of

the fundamental and third harmonic ∆T1, δT3. On top of this we may have to consider

modulated transmission of the third harmonic as well, but it shall be left out for the moment.

The terms proportional to the CsHRS response are

δχ(3)
{
V ∗(−∞, ζi)

[
T0,3χ

(3)
0,mV (−∞, ζi) + T0,1χ

(3)
0,aV (ζi,∞)

]
+V (−∞, ζi)

[
T0,3χ

(3)
0,mV

∗(−∞, ζi) + T0,1χ
(3)
0,aV

∗(ζi,∞)
]}

(D.90)

As any quantity plus its conjugate is the twice the real part, we find the CsHRS response is

proportional to

δχ(3) ×<
{
V ∗(−∞, ζi)

[
T0,3χ

(3)
0,mV (−∞, ζi) + T0,1χ

(3)
0,aV (ζi,∞)

]}
(D.91)

Likewise the cascaded amplitude modulations work out to

χ
(3)
0,m(3δk′′1 − δk′′3)×<

{
W ∗(−∞, ζi)

[
T0,3χ

(3)
0,mV (−∞, ζi) + T0,1χ

(3)
0,aV (ζi,∞)

]}
(D.92)

The effect of transmission modulation of the fundamental is proportional to

3δTχ
(3)
0,a ×<

{
V ∗(ζi,∞)

[
T0,3χ

(3)
0,mV (−∞, ζi) + T0,1χ

(3)
0,aV (ζi,∞)

]}
(D.93)

and finally the effect of the modulation of the third harmonic transmission is proportional

to

δT3χ
(3)
0,m ×<

{
V ∗(−∞, ζi)

[
T0,3χ

(3)
0,mV (−∞, ζi) + T0,1χ

(3)
0,aV (ζi,∞)

]}
(D.94)
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We review the general behavior of each of these terms, discerning the sinusoidal dependence

δχ(3) ∝ sin(Ωvτ) (D.95)

(3δk′′1 − δk′′3) ∝ cos(Ωvτ) (D.96)

δT ∝ sin(Ωvτ) (D.97)

We now turn our attention to the integrals in V andW , using the shorthand in the previous

section expanding A1 in terms of C and D

V (−∞, ζi) =

∫ ζi

−∞

1

A2
1(ζ ′)

dζ ′,=

∫ ζi

−∞

1

(C +Dζ ′)2
dζ ′

=
1

D(C +Dζ ′)

∣∣∣∣ζi
−∞

=
1

D(C +Dζi)
= −iw

2
10k1

2

1

A1(ζi)
(D.98)

V (ζi,∞) =

∫ ∞
ζi

1

A2
1(ζ ′)

dζ ′ =
1

D(C +Dζ ′)

∣∣∣∣∞
ζi

= − 1

D(C +Dζi)
= i

w2
10k1

2

1

A1(ζi)
(D.99)

W (−∞, ζi) =

∫ ζi

−∞

ζ ′

A2
1(ζ ′)

dζ ′ =

∫ ζi

−∞

ζ ′

(C +Dζ ′)2
dζ ′

=
1

D2

[
ln(C +Dζ ′) +

C

C +Dζ ′

]ζi
−∞

=
1

D2

{
lnA1(ζi) +

C

A1(ζi)
− lim
ζ′→−∞

[
lnA1(ζ ′) +

C

A1(ζ ′)

]}
(D.100)

The limit presents us with a problem rooted in the presence of a ζ ′ in the numerator of

the integrand. This ζ ′ comes from the attenuation of the pulse caused by perturbations

in χ(1). This is linear attenuation, and accumulates linearly as a function of propagation

distance. We have not accounted for finite sample thickness and Gaussian focusing pump

beams, which would cause this attenuation to fade off outside the Rayleigh range. In light
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of this, we would rather integrate from 0 to ζi, where we define ζ = 0 to be the beginning

of the interaction region. Then the integral becomes

W (−∞, ζi) ≈
1

D2

[
lnA1(ζi) +

C

A1(ζi)
− lnA1(0)− C

A1(0)

]
(D.101)

The quantity common to each of the three effects then becomes

[
T0,3χ

(3)
0,mV (−∞, ζi) + T0,1χ

(3)
0,aV (ζi,∞)

]
= T0,3χ

(3)
0,m

∫ ζi

−∞

1

A2
1(ζ ′)

dζ ′ + T0,1χ
(3)
0,a

∫ ∞
ζi

1

A2
1(ζ ′)

dζ ′

= −i w
2
10k1

2A1(ζi)

[
T0,3χ

(3)
0,m − T0,1χ

(3)
0,a

]
, (D.102)

thus making it clear that the unperturbed THG depends on a difference between the suscep-

tibilities and the transmission coefficients. Note that we expect the quantity in brackets to

be positive, given that the transmission coefficient is less than 1 and the material response

is equal to or less than the response of air.

The CsHRS term is proportional to (be careful to double-check the sign!)(
w2

10k1

2

)2
1

|A1(ζi)|2
[
T0,3χ

(3)
0,m − T0,1χ

(3)
0,a

]
δχ(3) (D.103)

The third harmonic transmission-modulated term is like it,(
w2

10k1

2

)2
1

|A1(ζi)|2
[
T0,3χ

(3)
0,m − T0,1χ

(3)
0,a

]
δT0,3χ

(3)
0,m (D.104)

And the fundamental transmission-modulated term is opposite

−
(
w2

10k1

2

)2
1

|A1(ζi)|2
[
T0,3χ

(3)
0,m − T0,1χ

(3)
0,a

]
3δT0,1χ

(3)
0,a (D.105)

D.9 Conclusion

These terms are identical in the way they depend on the placement of the boundary ζi. In

order to account for the fact that these terms each have a unique dependence on the interface

placement, we will need to account for axial intensity variations of the pump in a Gaussian

focus. It will be shown in the next chapter this is sufficient to describe the experimental

results, without introducing the added complexity of the transverse variations in the pump

pulse.
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APPENDIX E

NOTATION AND COORDINATE SYSTEMS

E.1 Abbreviations

The following is a list of commonly used abbreviations and their expansions:

CW Continuous Wave (not pulsed)

FWHM Full Width at Half Maximum

THG Third Harmonic Generation.

VC Vibrational Coherence

E.2 Symbols

Symbols and their units.

∗ Complex conjugate

∆k Phase mismatch in THG.

ε0 ≈ 8.854× 10−12F/m Vacuum electric permittivity.

τp Resonant pulse train chirped pump pulse separation.

τpp Pump–probe pulse time delay [ps].

τpr Probe–reference pulse time delay [ps].

τp Pump pulse FWHM duration.

χ(3) Third order nonlinear optical susceptibility.

Ωv Vibrational frequency.

ω1 Fundamental optical frequency
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ω3 Third harmonic optical frequency.

b Confocal parameter of a Gaussian beam.

A Gaussian focusing denominator term.

E Real-valued electric field

Ẽ Complex electric field.

E(r, t) Complex pulse envelope.

Eo,1 Probe fundamental electric field, drives harmonic generation.

Eo,3 Probe third harmonic field

Ep Pump electric field.

k0, k1, k2, . . . Taylor expansion coefficients of propagation wavenumber

k0,1 Propagation wavenumber of the fundamental.

k0,3 Propagation wavenumber of the third harmonic.

kx, ky Transverse spatial frequencies [m−1]

T Fresnel field transmission coefficient.

t Time [s]

up Pump pulse group velocity.

Ut Complex temporal pulse envelope.

Us Complex spatial pulse envelope.

x, y Spatial transverse coordinates [m].

z Longitudinal coordinate.

zR Rayleigh range of a Gaussian beam.
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E.3 Notation

Some of the expressions in these notes are long and cover several lines. In an effort to

improve readability and keep things compact, we drop explicit time- and space-dependence

from functions. To remind the reader that the vibrational perturbations are still functions

of pump–probe delay and interface placement, we will write all such terms with a lowercase

delta prefix and a tilde over the symbol, e.g. δχ(3)(τ, z) ≡ δ̃χ(3)
.

While vibrational perturbations are prefixed with a lowercase δ, the uppercase ∆ is

reserved for phase mismatch, ∆k.

Also, in order to prevent confusion of time t and Fresnel field transmission coefficient,

we will denote the Fresnel field transmission coefficient with a capital T , even though in the

standard notation it is a lowercase t and the power transmission coefficient is T = t2.

Some complex quantities may be broken down into real and imaginary parts,

δ̃∆k = δ̃∆k
′
+ iδ̃∆k

′′
,

where the real part is denoted by a single quote (′) and the imaginary part a double quote

(′′).

Terms related to the fundamental or third harmonic are designated with subscripts 1

and 3, respectively. Pump and probe pulses are marked with subscripts p and o (note the

probe subscript is o not 0). For example, third harmonic field generated by the probe pulse

is Eo,3. The FWHM duration of the pump pulse is τp. In cases where a reference pulse is

involved, it is denoted by a r subscript.

E.4 Fourier transforms and domains

Functions that have been transformed into the spatial frequency domain via Fourier trans-

form are denoted with a hat,

E(x, y, z)→ Ê(kx, ky, z).
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The convention for spatial Fourier transform, relating the coordinates x and y to the spatial

frequencies kx and ky respectively are the inverse Fourier transform,

E(x, y, z) =

∫∫ ∞,∞
−∞−∞

Ê(kx, ky, z)e
i(kxx+kyy) dkx dky, (E.1)

and the Fourier transform,

Ê(kx, ky, z) =
1

4π2

∫∫ ∞,∞
−∞−∞

E(x, y, z)e−i(kxx+kyy) dx dy. (E.2)

The spatial frequencies may be thought of as indication of direction, or angle of propa-

gation.

Assuming Gaussian beams, the transverse Laplacian transforms in the spatial frequency

domain to

∇2
⊥ → (k2

x + k2
y)

E.5 Coordinate frames

Coordinate transforms are common in this document to make equations more compact and

to facilitate integration. We begin with fields as a function of (x, y, z, t), in the laboratory

frame, and referenced with t = 0 at the center (peak) of the probe pulse. That is, the pump

pulse has a peak at t = −τ , where τ is the pump–probe delay.

The first transformation in Section 2.2 is to the traveling group frame of the probe

(x, y, z, t) → (x, y, ζ, to). The transformations are to = t − u−1
o z and ζ = z, where uo is

the group velocity of the probe pulse. The reason for a new variable in the direction of

propagation, z → ζ is that the derivatives will transform,

∂

∂z
+

1

uo

∂

∂t
=

∂

∂ζ
, (E.3)

thus reducing the PDE to having a derivative of ζ instead of both z and t.

When focusing Gaussian beams are considered, including the axial intensity variating of

the pump, we transform the coordinate along the propagation axis to ξ, which is normalized

by the Rayleigh length, (x, y, ζ, to) → (x, y, u, tpr). The normalized coordinate is u = ζ/zR

where zR is the Rayleigh length.
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Finally, when we perform the integrals for focusing Gaussian beams, we make one further

transformation of the axial coordinate to one that is both normalized by the Rayleigh length

and referenced to the focal plane, that is the position of the waist uw: (x, y, u, tpr) →

(x, y, x, to). In the process, the interface position is now uL.

Afterward, in the section in detected signals, we shift to zL instead of xL. I think zL is the

displacement of the interface from the focal plane, in regular, non-normalized coordinates.

E.6 Miller indices, and optical properties of a crystal

Miller indices are used to describe directions, e.g. [abc], and planes, e.g. (abc) in a crystal.

The following is a brief relation of the Miller index notation to the optic axis of a uniaxial

crystal. For more detail, see Refs. [113, 114].

E.6.1 Optic axis

For instance, the optical axis of a uniaxial crystal is specified by [001]. When specifying

a direction, the last coordinate c corresponds to the axis of highest symmetry. The optic

axis is the direction of propagation such that any incident polarization sees the same index.

That is, a beam propagating along the optic axis will experience no birefringent effects.

This is usually along the axis of highest symmetry. If the crystal is symmetric upon rotation

about this axis, there is no reason for the optic properties to vary. A crystal with hexagonal

structure often has a fourth, redundant coordinate specified, so that the optic axis is denoted

by [0001]

If we were to specify the surface of a crystal cut so that it is normal to the optic axis,

the face would be (001). A face cut at (100) or (010) would be cut along, or parallel to the

optic axis, while a face cut at (011) would have a surface normal at 45◦ to the optic axis.

It is also common to see a curly brace notation to specify crystal faces. These specify

the entire family of planes that are, by the symmetry of the crystal lattice, equivalent. For a

centrosymmetric, cubic crystal, the three planes (001), (010), (100) are equivalent, and can

be represented by 001.
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E.6.2 Raman selection rules

A full listing of selection rules for Raman-active vibrational modes is found in Ref. [115], and

selection rules for hyper- and second hyper-Raman interactions may be found in Ref. [102].

The x, y, z coordinates in these articles are related to the Miller indices by [x, y, z]. For

example, the Raman tensor for the A mode of a cubic class T crystal is [115]
a 0 0

0 a 0

0 0 a

 (E.4)

which may be excited with pump light polarized along any axis x, y, or z, and probed along

any axis x, y, or z without the same measured intensity of the Raman interaction. To be

specific, if we have a crystal cut to the (001) face, we may pump with light propagating

along the [001] direction with pump polarization along [010], and the probe, propagating in

the same direction may be polarized either [010] or [100]. The depth of modulation imparted

to the probe will be the same in either polarization.

However, the F (z) mode in the same symmetry class crystal has the Raman tensor [115]


0 b 0

b 0 0

0 0 0

 (E.5)

Thus a pump incident on the (001) face with polarization [010] will not excite the F (z)

mode. The polarization must be rotated 45◦ so that it is polarized along [110], to excite the

mode, and the probe must also be polarized similarly. With plane-wave pulses, it would be

impossible to excite the F (z) mode with pulses incident normal to the (100) or (010) faces.
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