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ABSTRACT 

 

 

EVALUATING MORTALITY DYNAMICS DURING A SPRUCE BEETLE  

EPIDEMIC IN THE SOUTHERN COLORADO ROCKY MOUNTAINS 

 

The onset of a decade-long spruce beetle (Dendroctonus rufipennis) epidemic in Southern 

Colorado has resulted in the death of thousands of acres of forests primarily dominated by 

Engelmann spruce (Picea engelmannii). To evaluate the ecological and economic impacts of this 

massive mortality event, researchers and land managers need the ability to actively track its 

progression, spread, and severity across large spatial extents. This study improves our understanding 

of this under researched spruce beetle epidemic in multiple ways. First, I mapped the progression and 

severity of this epidemic scale spruce beetle infestation using traditional remote sensing methods in 

new, unexplored scenarios. Working in a large (5000 km2), persistently cloud covered study area, I 

successfully fused data from multiple Landsat sensors in a decision tree based modelling framework 

to track the progression and severity of spruce beetle induced mortality throughout peak years of 

infestation (2011-2015). Next, I characterized spruce stand susceptibility to attack in this outbreak 

event and tracked how environmental characteristics of new spruce beetle attacks changed through 

time. I found that sites with new spruce beetle attack had higher canopy densities, were closer to 

disturbance events, and further from stream environments as compared to sites that had never been 

attacked. As the epidemic progressed, sites with new attacks occurred at higher elevations, on less 

steep slopes, were further from disturbances, and had less dense canopies. Findings from this study 

will support implementation of future landscape scale forest monitoring efforts using remote sensing, 

enable more directed on-the-ground management activities following beetle infestation, and highlight 

the dynamic nature of spruce beetle induced mortality across large spatial extents. 
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CHAPTER 1: MAPPING PROGRESSION AND SEVERITY OF A SOUTHERN COLORADO 

SPRUCE BEETLE EPIDEMIC IN A CLOUDY STUDY AREA 

 

1. Introduction  

Timely monitoring of forest health across large spatial extents is a historically complex and 

resource intensive endeavor (Olsen et al., 1999, Wulder et al., 2005). In the wake of a changing 

climate, multi-year drought conditions, and severe insect and disease activity, the complexity of 

monitoring and understanding change across vast expanses of public and privately owned 

forestlands in the western United States has only increased (Dale et al., 2001).  In southern 

Colorado, the onset of a decade-long spruce beetle (Dendroctonus rufipennis) epidemic has 

resulted in mortality across thousands of acres of forests primarily dominated by Engelmann 

spruce (Picea engelmannii) (Andrus et al., 2016).  

The spruce beetle is one of the most damaging agents in mature spruce stands in Colorado. A 

native insect, the spruce beetle primarily attacks Engelmann spruce, but can infest any spruce 

species found within the Colorado subalpine zone (Holsten et al. 1999). Spruce beetles generally 

have a two-year life cycle; however one to three-year life cycles have been recorded (Holsten et 

al., 1999; Jenkins et al., 2014). Adult female spruce beetles bore into a tree and create galleries 

for their eggs in the tree’s phloem tissue. Once the eggs hatch, the larvae overwinter in the 

galleries and eventually tunnel out of the tree, feeding on phloem tissue as they create additional 

galleries. These feeding galleries inhibit the flow of nutrients throughout the tree, weakening and 

eventually killing the tree (CSFS, 2014). Following infestation, the tree’s needles slowly fade 

from green to yellowish-green until entering the gray phase where they ultimately drop. The 

entirety of this process typically takes less than two years (Schmid and Frye, 1977; Jenkins et al., 
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2014). The beetles can be present at both endemic and epidemic population levels (Holsten et al. 

1999). Outbreaks typically begin in areas that have experienced disturbances, often at sites 

affected by blowdown events or where woody debris have accumulated (Schmid & Frye 1977). 

At endemic levels, adult beetles attack downed woody material and debris.  At epidemic levels, 

beetles will attack trees of all sizes; although usually large (>40cm DBH) spruce trees are 

attacked first, trees of any size, including saplings can serve as suitable hosts as outbreak 

progresses (CSFS, 2014). As beetle pressure on hosts increases, the majority of suitable host 

trees within a stand can be killed (Holsten et al. 1999, De Rose & Long, 2007).  

While spruce beetles are native to the Southern Colorado Rocky Mountains, epidemics will 

likely occur more frequently and with greater severity than in the past (Temperli et al., 2015) 

with an increased prevalence of drought and changing climate, and the long term impacts of this 

modified recurrence interval on the environmental benefits offered by spruce/fir forests are 

unknown. Spruce/fir forests offer many ecological services, such as providing habitat for wildlife 

and filtering and improving water quality (Eyre, 1980). They also maintain an important role in 

carbon storage, with more carbon being stored within spruce/fir forests and associated understory 

plant and soil communities than most other types of conifer forests found in the United States 

(Birdsey, 1992). They also provide important habitats for wildlife (Uchytil 1991), offering forage 

opportunities and cover for many species, including ungulates such as moose (Alces alces), mule 

deer (Odocoileus hemionus), elk (Cervus canadensis), Canada lynx (Lynx canadensis) and 

snowshoe hare (Lepus americanus). Lumber created from spruce/fir forests also represents an 

important economic commodity, providing high quality lumber products used in boards and 

plywood (CSFS, 2008). With spruce/fir forest types representing approximately 20% of 

statewide forest cover (CSFS, 2014) and encompassing the largest number of forested acres  
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under public ownership within the state (Benson & Green, 1987), monitoring and management 

of these forests is a top priority for both public and private land managers and owners. 

Resource managers currently rely on annual forest monitoring programs, such as the United 

States Forest Service (USFS) Aerial Detection Survey (ADS), to plan and implement forest 

management projects (Fettig et al., 2007), monitor forest carbon dynamics (Hicke et al., 2013) 

and to help keep the public informed on the status and health of spruce/fir forest resources 

(Lockwood & Lujan, 2016). The USFS has conducted aerial surveys to remotely detect insect 

and disease spread on an annual basis since the 1990s, but the use of aerial surveys to monitor 

United States forests goes back as far 1925 (McConnell et al., 2000). Surveys are completed 

using fixed wing aircraft and canopy mortality or damage is visually interpreted and hand 

sketched on to a map within a GIS, which is subsequently compared to data from previous years 

(Johnson & Ross 2008). Results are then reported annually and provide information such as 

identifying new areas of impact as well as number of acres experiencing pest damage (Johnson 

& Wittwer 2008). While this program has been a successful and important component in 

monitoring forest health in the United States, it is a costly program and measurements of insect-

induced mortality, particularly the spatial extent, are not highly accurate and report on mortality 

intensity at coarse spatial scales (Johnson & Ross 2008). As such, researchers have attempted to 

supplement and expand upon information provided by the USFS ADS program by remotely 

sensing bark beetle induced tree mortality using moderate (30m
2 

) and high resolution (<5m
2  

) 

satellite imagery in combination with modelling (Wulder et al., 2006). 

Remote sensing has long been shown to be an effective method to detect mortality in 

coniferous forests (Franklin et al., 2003; Meddens et al., 2012), and has expanded the ability of 

researchers and land managers to track the progression, spread, and magnitude of bark beetle 
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induced mortality events. Many studies have attempted to employ moderate resolution satellite 

imagery (30m
2 

), such as Landsat, to map insect induced tree mortality (Macomber & Woodcok 

1994; Meigs et al,. 2011; Meddens et al., 2014). While employing satellite imagery to map the 

presence and absence of canopy mortality is a relatively efficient and cost effective method when 

compared to collecting similar data via aerial survey (Wulder et al., 2005), a presence/absence 

map of mortality does not fully provide resource managers with enough information to 

accurately quantify spread, intensity, or distribution of an infestation.   

Recent research has resulted in improved methodologies for detecting mortality severity at 

the stand and even single tree level (Hart & Veblen, 2015) using remotely sensed imagery. Long 

and Lawrence (2016) focused upon detecting mountain pine beetle (Dendroctonus ponderosae)  

induced tree mortality in Montana and demonstrated that it is possible to accurately detect and 

map the percentage of a pixel with dead canopy present (referred to as “mortality severity”). This 

method integrates ocular estimates of canopy mortality using National Agricultural Imagery 

Program (NAIP) orthoimagery with spatial modelling using Landsat imagery, making the data 

collection and modelling process very cost effective. Mapping percent canopy mortality within a 

Landsat pixel (30 m2
) rather than mapping only presence and absence allows for the improved 

quantification of intensity, spread, and distribution of bark beetles (Long & Lawrence 2016). 

This method offers a promising opportunity for researchers to supplement information provided 

by aerial detection surveys with remotely sensed maps of canopy mortality severity, which may 

offer higher precision in estimating severity of attack. Still, the  use of remote sensing and 

Landsat in quantification of spruce beetle induced mortality comes with its own set of 

complications and caveats, particularly when attempting to examine outbreaks across large study 

areas and at multiple time steps. 
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When working with remotely sensed data, researchers must consider their research objective 

and weigh the advantages and disadvantages of each available remotely sensed data product’s 

spectral, temporal, and spatial resolution (Wulder et al., 2006). Landsat TM, ETM+ and OLI’s 

spatial resolution of 30 m² has been shown to be of sufficient resolution for resource managers to 

explore spatial patterns and trends of bark beetle outbreaks across landscape extents (Meddens & 

Hicke, 2014). Although Landsat’s spectral resolution has been shown in many cases to be 

sufficient for use in predictive detection models of bark beetle attack, changing sensor properties 

through time (TM to ETM+ to OLI within the study period) complicates image selection and 

differencing and can result in spectral mismatches between neighboring image collections. 

Additionally, Landsat’s temporal resolution of 16 days can complicate the implementation of 

gray stage mortality mapping at larger spatial scales because of limited image availability, 

especially in persistently cloudy areas such as Colorado’s subalpine zone.  

Approximately 55% of the earth’s land surface is covered by clouds at any given time (King 

et al., 2013).  With Landsat 8 OLI collections occurring less than two times each month at any 

given location and the Landsat 7 ETM+ scan line corrector failure (Kovalskyy et al., 2013) 

further limiting image availability, in some seasons it is possible that little or no cloud or scan 

line free Landsat imagery is available for a particular study areas of interest (Sano et al., 2007). 

In many scenarios, this can be easily and acceptably rectified by selecting imagery that contain 

clouds only partially obscuring a study area of interest and excluding affected areas with a cloud 

mask. While this process is necessary in some applications, doing so when attempting to conduct 

landscape-scale forest monitoring has the potential to leave some stands unmonitored (Wulder et 

al., 2005), which limits the applicability and transfer of methods from small study areas to larger 
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study regions, completely limiting the ability to monitor the progression of outbreaks in these 

cloud masked areas through time. 

A proposed method to overcome these challenges is to conduct image compositing and 

spectral harmonization of multiple image sets collected throughout a growing season. This 

method is a combined approach that offers an alternative to cloud masking, selecting a single 

sensor collection when multiple are available, or having spectral mismatches between sensor 

types across time. Image compositing and harmonization is a multi-step process that involves 

collecting all available Landsat imagery for a specified time period across multiple sensors and 

employing spectral harmonization by modelling spectral relationships between indices to ensure 

spectral alignment across sensors (Pflugmacher et al., 2011). The tasseled cap transformation is a 

particularly powerful transformation that can be employed in compositing and spectral 

harmonization procedures because of its reported spectral consistency through time and cross-

sensor application (Crist and Kauth, 1986). Once an index of interest, like tasseled cap, is applied 

to available satellite collections, all available pixels are composited by taking the mean or 

median of all overlapping cloud and shadow free observations (Braaten, 2015; Pflugmacher et 

al., 2011).  The resulting product is a spectrally aligned composited image or set of composited 

indices that creates the largest study area extent possible. Since the detection of spruce beetle 

canopy mortality hinges upon identifying gray stage spruce trees, which is relatively spectrally 

static and does not rely on phenology, we believe compositing is a relevant way to increase area 

sampled while concurrently maintaining the spectral information required to detect gray stage 

spruce canopy mortality. 

The long existing and spatially extensive spruce beetle outbreak in Southern Colorado (See 

Appendix 1/2) provides a unique opportunity for us to explore the application of methods to 
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detect bark beetle mortality severity in new, unexplored scenarios. The region selected for this 

study is in an area often flanked by clouds, is spatially expansive, and the study period integrates 

multiple years and Landsat sensor types. The objectives of this study were to describe and 

improve understanding of the spruce beetle outbreak event occurring in southern Colorado 

spruce/fir forests by testing and expanding upon existing remote sensing methods in new 

scenarios. Namely, we sought to test the application of composited imagery to enhance our 

ability to monitor large, cloud covered study areas with remote sensing and to test the 

effectiveness of using composited Landsat indices as predictive data structures in detecting gray 

stage spruce beetle induced outbreak severity at multiple time steps, using random forest 

regression models. Existing methods to detect bark beetle canopy mortality severity at the 

Landsat pixel scale are thought to be untested in these particular scenarios. 

2. Materials and Methods 

2.1 Study Area 

We selected a c. 5000 km
2
 study region (Figure 1) composed principally of Engelmann 

spruce and subalpine fir located within and around the Rio Grande and San Juan National Forests 

in the southern Colorado Rocky Mountains. The study area was restricted to spruce/fir forest 

types using the publicly available LANDFIRE existing vegetation type layer (LANDFIRE, 

2012).  Burned areas were excluded from sampling using Monitoring Trends in Burn Severity 

(Eidenshink et al., 2007) fire history records. Elevations in the study area range between ~1,800 

m and ~4,000 m. While average temperatures and rainfall are quite variable in the study region, 

Elliot & Baker (2004) averaged conditions reported at three nearby weather stations and found 

mean temperatures to be between -5.9 °C and 12.4 °C and a mean annual precipitation of 50.8 

cm. Most of the study region is managed by the USFS for multiple-use objectives, including 
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conservation of public lands, recreational activities, timber and resource extraction, as well as 

cattle grazing. 

Aerial detection surveys show that spruce/fir forest types in the study region experienced varying 

levels of spruce beetle caused tree mortality over the past decade, which was reported at outbreak 

levels beginning in 2004, later intensifying to epidemic proportions across the landscape between 

2010 and 2015 (See Appendix 1/2). In addition to being an area of ecological interest because of 

the recent and intense nature of spruce beetle induced tree mortality, we selected this study 

region to emulate challenges encountered when researchers use satellite data collections to model 

ecological phenomena at the landscape level: 1) cloud cover obstructing areas of scientific 

Figure 1: The study area located in and around San Juan and Rio Grande National Forests. Spruce fir forests 

were delineated using the LANDFIRE Existing Vegetation Type Layer. 
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interest, and 2) date and sensor mismatches between neighboring satellite collection paths 

causing spectral inconsistency between available imagery. As such, the study area and period 

covered portions of two Landsat WRS-2 path/rows (P/R), including P034, R034 and P035, R034 

across sensor periods (TM/ETM+ to OLI) and was distributed across high elevation spruce/fir 

forests that are often cloud covered. 

2.2 Data Collection 

We randomly distributed 410 sampling locations within the study area to facilitate ocular 

estimation of canopy mortality using high resolution (1 m²) National Agricultural Imagery 

Program (NAIP) imagery for 2011 and 2015. We extracted 30 m² Landsat pixel boundaries at the 

locations where the 410 sampling points were distributed and overlaid a 10x10 sampling grid to 

aid in ocular estimation of 4 categories: percent gray stage canopy mortality, live canopy, other 

live vegetation, and “other” within each of the plots. The sampling strategy was designed so that 

estimations of percent canopy mortality would coincide with the pixel-level spectral values that 

can be extracted from Landsat imagery (Savage & Lawrence 2016, Long & Lawrence 2016). 

While both NAIP and Landsat are not geolocated with perfect precision, their geolocation 

accuracies have been shown to be sufficient to have a minimal effect on sampling accuracy 

(Long & Lawrence 2016). All ocular estimation of canopy mortality using NAIP imagery was 

conducted within Google Earth Engine’s API (Google Earth Engine Team, 2015) using a 

scripted interface that allowed for near instant mosaicking and display of NAIP orthorectified 

quarter quad tiles for all years of interest (See Appendix 3). Ocular estimation was carried out by 

two calibrated image interpreters with multiple years of experience working together to conduct 

image interpretation. We classified tree mortality as “mortality” only if the tree was 

characteristic of spruce beetle induced mortality in the gray stage. Other types of disturbance that 
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were seen in the study area (i.e. windthrow, management activities) were not included in 

estimates of canopy mortality to ensure our estimates were characteristic only of those resulting 

from spruce beetle attack. 

2.3 Remotely Sensed Data 

 To derive predictors of spruce beetle outbreak severity, we obtained all available Landsat 

imagery that overlapped with mortality sampling periods for three sensors (TM, ETM+, and 

OLI) across two primary study periods: 2011 (Jul - Aug) and 2015 (Jul – Aug).  To facilitate 

differencing of imagery to capture pre-, mid- and post-outbreak characteristics in the spatial 

models, we also obtained all available imagery for the same months in 2000 (pre-outbreak) and 

2007 (mid-outbreak). All products were obtained pre-processed to surface reflectance through 

the USGS Earth Resources Observation and Science (EROS) Center Science Processing 

Architecture (ESPA) On Demand Interface (Jenkerson 2013). Imagery was selected without 

consideration for cloud cover, but the study period was restricted to these two peak summer 

months to ensure the high elevation study area was free of snow and ice and deciduous 

vegetation was leaf-on. Landsat imagery has a spatial resolution of 30m
2
 and temporal resolution 

of 16 days, and all imagery was obtained in the Albers equal-area conic projection (Snyder, 

1982). 

The predictive indices of focus in this study were Landsat derived tasseled cap 

transformations (Kauth & Thomas, 1976; Crist & Cicone, 1984) and derivations thereof. The 

tasseled cap transformation uses spectral information from the six reflective Landsat bands to 

concentrate into three interpretable bands directly associated with landscape and vegetative 

characteristics, including brightness (which represents soil and image brightness), greenness 

(which represents vegetative greenness) and wetness (which represents soil and vegetation 



  11 
 

wetness) (Kauth and Tomas, 1976).  We selected tasseled cap transformations as the primary set 

of predictive indices because of their reported spectral consistency through time and their cross-

sensor application (Crist and Kauth, 1986), both of which are important when compositing 

multiple images. In addition, tasseled cap transformations have strong experimental precedence 

as robust predictors of forest disturbances and change in canopy characteristics (Cohen et al., 

2002; Jin, 2005; Masek et al., 2008).   

We processed all imagery using LandsatLinkr (Braaten et al., 2015), an R package, to 

obtain near cloud free tasseled cap brightness, greenness, and wetness (BGW) indices that were 

used as predictors of spruce beetle induced tree mortality for both 2011 and 2015 (Table 1). 

LandsatLinkr applies reflectance based tasseled cap transformations (Crist & Cicone, 1984) to all 

provided image sets, masks all cloud covered pixels within a Landsat scene, and then composites 

cloud-free portions of the imagery using a mean of the pixel values that overlap for all images 

available in the year (Braaten, 2017). Sensor to sensor differences (TM/ETM+ to OLI) are 

normalized by applying an offset of Landsat 8 OLI values scaled to ETM+ space to ensure 

spectral consistency across sensors (Braaten, 2016; Pflugmacher et al., 2011). The resulting 

products are single composites of tasseled cap BGW indices for each year (hereafter referred to 

as compositeTCAP products).  

To generate additional indices for the final spruce/fir mortality models for 2011 and 

2015, we differenced the 2011 and 2015 BGW compositeTCAP with previous years (2015 - 

2011, 2011 - 2007, and 2015/2011 - 2000) BGW compositeTCAP products. This allowed for the 

creation of additional indices that capture changes in TCAP values between pre-, mid-, and post- 

spruce beetle outbreak conditions, a practice commonly employed in land and forest change 

studies (Vorster et al., 2017).  Finally, to capture the potential influence of topography on spruce 
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beetle mortality characteristics, we derived elevation, slope, and aspect from the 1 arc-second 

Shuttle Radar Topography Mission v2.0 digital elevation model product, which was projected to 

Albers equal area conic and snapped in a GIS to spatially align with the Landsat based rasters. 

After all processing was completed, 12 individual predictive data layers were available for both 

2011 and 2015 (Table 1). 

Table 1: A summary of all predictive layers produced for each year (2011 and 2015) using Landsat derived tasseled 

cap transformations. Each predictor was included in the final RF predictive models of % canopy mortality.  

Finally, to test the robustness and application of compositeTCAP, which used 16 

individual image collections versus single image date tasseled cap derived indices, we created 

one additional set of TCAP BGW indices for 2015 that used only one image date per scene. The 

two scenes with the lowest cloud cover for the study period were downloaded pre-processed to 

surface reflectance, transformed to TCAP indices using coefficients specifically created for 

Landsat 8 OLI (Baig et al., 2013), and mosaicked the images for analysis and comparison to the 

compositeTCAP product (hereafter, this product is referred to as singleTCAP). 

 

 

 

Predictor(s) Data Sources 

2015 and 2011 TCAP Brightness Composites 

TM/ETM+ (2011), TM, ETM+, OLI (2015) 2015 and 2011 TCAP Greenness Composites 

2015 and 2011 TCAP Wetness Composites 

2015-2011 and 2011-2007 Brightness  
TM-ETM+ (2011 - 2007), TM, ETM+, OLI 

(2015 - 2011) 
2015-2011 and 2011-2007 Greenness  

2015- 2011 and 2011-2007 Wetness  

2015- 2000 and 2011-2000 Brightness  
TM-ETM+ (2011 - 2000), TM, ETM+, OLI 

(2015 - 2000) 
2015-2000 and 2011-2000 Greenness  

2015-2000 and 2011-2000 Wetness  

Elevation, Slope, Aspect Shuttle Radar Topography Mission v2.0 
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2.4 Mapping Spruce Mortality Severity in 2011 and 2015 

We used a combination of the mortality severity data collected at plots in 2011 and 2015 

and extracted associated spectral values from the twelve predictor variables (Table 1) to build 

two random forest models of spruce mortality severity. Random forests are a robust decision tree 

based prediction algorithm that can be used in both classification and regression based problems 

(Breiman, 2001). Random forests are a particularly powerful tool for remote sensing based 

analyses (Pal, 2005) because they are non-parametric and difficult to overfit (Breiman, 2001; 

Liaw & Wiener, 2002). Random forests also facilitate simple evaluation of model performance 

without the use of separate testing data because the model is built with a randomly selected 

subset of the predictors and training data, resulting in “built in” cross validation in each model 

run (Belgiu and Dragut, 2016). 

Both models were tested and built in the R statistical software using the randomForest 

package (Liaw & Wiener, 2002) using ntree= 2000 decision trees and the remainder of 

parameters left at default. We conducted model selection using the rfUtilities package model 

selection function (Evans and Murphy, 2017) to achieve a balance of model parsimony and 

predictive power.  We evaluated the performance of each model using variance explained, root 

mean squared error, and mean absolute error. After selecting the best performing models in 2011 

and 2015, we applied the models using the predict() function within R to generate spatial 

predictions of mortality severity across the entire study area. 

2.5 Effectiveness of Composited TCAP Indices 

To perform an initial test as to whether compositeTCAP BGW were an effective 

substitute for traditional singleTCAP BGW in modelling spruce beetle induced tree mortality, we 

compared them in two ways. First, we compared  the proportion of the total study area size that 
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remained following cloud and cloud shadow masking. This was completed by simply tabulating 

within a GIS the number of pixels remaining following completion of both processing types. 

Table 2: Characteristics of the two predictive layer stacks that were used in the initial comparison of composited 

predictors versus single image date predictors. 

Description # of Collections/Sensors 

Applied 

Response Associated 

Predictors 

2015 Tasseled Cap 

July/August Composite 

(compositeTCAP) 

16 collection dates, 

ETM+ and OLI 
% Mortality 

TCAP Brightness, 

Greenness, Wetness 

2015 Tasseled Cap 

July/August 2 scene 

mosaic (singleTCAP) 

2 collection dates, OLI 

only 
% Mortality 

TCAP Brightness, 

Greenness, Wetness 

Next, we built a simplistic random forest model for each image type and compared evaluation 

metrics. The models used the same number of plots in the same geographic location with the 

same response variable. The only difference in model preparation was the image processing type 

used in predictor variables creation within each model (Table 2). We extracted values of the 

BGW predictors at the 342 plots (out of 410 original plots) that were still present after cloud 

masking in both the singleTCAP and compositeTCAP products and built a random forest model 

for each dataset, with parameters set to default except the number of trees (ntree= 2000). We 

then compared model evaluation metrics including RMSE and MAE to determine if composited 

products were an effective substitute for single date tasseled cap products in this application. 
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3. Results and Discussion 

3.1 Comparison of Composited TCAP Indices with Single Scene TCAP Indices 

The use of multipleTCAP indices, which composited 16 separate sets of tasseled cap 

transformed predictor layers of BGW from all available July and August Landsat imagery from 

2015, increased the spruce/fir area that was unobstructed by clouds and available for a landscape 

scale analysis. The comparative use of the two lowest cloud cover available single image dates 

that were mosaicked and masked for cloud cover in the same area and time period (Table 3) 

reduced the study area size by 16%, as single date cloud free imagery was not available for the 

study region or study period. This is, of course, a snapshot in time and serves only as an example 

of the power that compositing imagery can have to expand a study area in a situation where 

cloud free imagery is simply unavailable. While many studies are forced to select image dates 

that are not optimal for their application or to significantly reduce their study area size because of 

cloud coverage, compositing allowed us to expand the area of analysis to cover nearly all 

(99.5%) spruce/fir forests within the study region, while maintaining the optimal time period of 

interest in the peak summer months.  

Each of the random forest models performed similarly, with singleTCAP slightly 

outperforming compositeTCAP. Since both models used the same set of observations and are 

Table 3: Number of cloud free pixels remaining in each product following the two processing schemes. 

Image Product Cloud Free Pixels 

(% of Total Study Area) 

compositeTCAP 5,416,792 (99.5%) 

singleTCAP 4,544,057 (83.5%) 
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based upon the same scale, we can directly compare the two model’s evaluation metrics. Root 

mean square error (RMSE), a measure of the differences between the observed and predicted 

values of the model, was similar for both at 14.9 (18%) for compositeTCAP and 13.9 (17%) for 

singleTCAP. Mean absolute error (MAE), a measure similar to RMSE except that it does not 

weigh differences in prediction error, was 10.9 (13.4%) and 10.4 (12.8%) for composite and 

single TCAP, respectively. Since these models were built and evaluated only as an initial test of 

image effectiveness using three predictors, predictive maps were not produced. 

 This initial test gave us confidence in the use of compositeTCAP products in the more 

expansive and refined modelling techniques employed in the final models of spruce mortality, 

which used an expanded set of predictors and training dataset. While the compositeTCAP 

products performed similarly, albeit slightly worse than singleTCAP indices in this test, we were 

satisfied by the increase in study area size (16%) produced through compositing and the 

relatively minor reduction in model performance. Expanded analyses that look at many sets of 

imagery in different regions and with different applications would be required to conclude that 

composited imagery is appropriate to use in additional modelling scenarios. It is important to 

note that gray stage spruce trees are likely spectrally stagnant within a summer season, so if 

composited imagery was to be used in an evaluation that depended upon phenological variation 

of vegetation throughout a growing season, we would suggest that additional testing be 

conducted to ensure composited imagery or indices are relevant in those applications.  
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3.2 Final Models of Spruce/Fir Mortality Severity in 2011/2015 

In 2011, TCAP brightness and the differenced (2011-2000) TCAP wetness were the two most 

important predictors, followed by differenced indices for wetness and brightness, and finally 

TCAP greenness and wetness. The inclusion of topographic indices provided no additional 

 

 
Figure 2: Top predictors and relative importance for 2011 and 2015 models  
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predictive power to the model in 2011. In 2015, the differenced outbreak (2015 -2000) TCAP 

wetness and TCAP brightness were also the top two predictors, followed closely by TCAP 

greenness, wetness, and the 2015-2011 differenced wetness. Interestingly, site elevation was 

found to increase predictive power of the model for 2015.  

 

  

 

Visual inspection of the 2011 spatial prediction of spruce mortality shows the main 

epicenter and highest severity outbreaks were located in the northeast corner of the study area, 

between San Luis Peak and Wolf Creek Pass (Figure 4). Other low severity outbreaks were 

detected across fairly small spatial extents, but the vast majority of the study region appeared to 

have been unaffected or affected at low levels of severity (10 – 20% dead) in 2011. Between the 

2011 and 2015 study periods, spruce beetle activity in and around the San Juan and Rio Grande 

National Forests became more severe, with a much wider spatial distribution of outbreak events.  

 

 

Figure 3: Plots of predicted and observed values for the final 2011 and 2015 models of spruce mortality. 
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Figure 4: Final predictions of percent gray stage canopy mortality in and around Rio Grande and San Juan National Forests 

in 2011 and 2015. 



  20 
 

Spruce beetle attack seemed to expand northward from the epicenter seen in 2011, with areas 

along the northern border of the Rio Grande National Forest being attacked very severely (50-

70% dead). The outbreak occurring near Wolf Creek Pass increased in severity, and an additional 

high severity mortality pocket appeared in the southeast portion of the study area. Overall, by 

2015, very little of the study region had been left unaffected by spruce beetle attack. These maps 

are consistent with the broad patterns of new attacks conveyed through the USFS Aerial 

Detection Survey (Appendix 1/2). This lends credence to the concept that maps produced through 

similar modelling techniques as those in this study could be combined with ADS data to provide 

an enhanced product that more clearly and precisely conveys information on the severity and 

distribution of insect and disease activity than current ADS products can facilitate. 

This study has shown that multiyear, cross Landsat sensor monitoring of spruce beetle 

attack is an effective way to monitor a large, persistently cloudy study area. While many studies 

have focused upon a single year of monitoring, we have displayed the progression and severity 

of attack across a five year period is possible using multi-sensor tasseled cap composites. We 

further show that the methods employed in the modelling framework are applicable and effective 

across spatially expansive (5000 km
2) study regions, a larger size than explored in previous 

literature using similar methods (Long and Lawrence, 2016). In addition, the results show that 

the use of composited tasseled cap indices is effective in detecting subtle, slow moving and 

potentially less severe disturbances. While similar predictive structures have been used in studies 

exploring deforestation (Muller et. al 2016), bark beetle induced disturbances are often 

considered more difficult to detect than more severe and fast moving disturbances (Meigs et al., 

2011), such as fire or forest harvest, when using moderate resolution imagery like Landsat.  
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Final results suggest that composited tasseled cap indices and their derivatives are 

effective predictors of gray stage spruce mortality when applied within a regression tree based 

modeling framework. The variable selection procedure highlighted the important role that 

differencing indices from different stages of an outbreak can play in detecting changes in 

vegetation through time, a finding that is consistent with similar studies (Vorster et al., 2017). 

While the models both seemed to slightly overpredict low levels of mortality and underpredict 

more severe levels of mortality (Figure 3), we believe the RMSE is within an acceptable range 

for the models to be valuable tools to be applied in forest management and planning and a 

significant improvement over products that display only presence/absence of canopy mortality.  

4. Additional Considerations 

The study period included only the height of the spruce beetle epidemic (2011 – 2015) 

occurring in the region. To understand the full history and progression of spruce beetle activity 

within this epidemic, additional sampling from previous years would be required, although this 

comes with an additional caveat. This method is successful because we have a wide range of 

mortality severity occurring across the landscape. Modelling mortality severity at the beginning 

of the outbreak could be less successful because a randomly distributed dataset would contain 

mostly absence values, which may be better suited for a classification modelling approach. 

The next consideration is image processing and index selection. The approach employed 

in LandsatLinkr to spectrally harmonize tasseled cap transformations through time is based upon 

approaches that have been published (Pflugmacher et al., 2011), but the tool itself has not been 

reported in scientific literature. At the time of writing, a publication outlining and testing the tool 

is being drafted by its authors. Next, we chose to apply only tasseled cap transformations and 

topographic predictors within the models because we were concerned that other indices may not 
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provide the spectral consistency required to facilitate compositing and differencing of indices 

through time. While both models performed reasonably well, inclusion of additional spectral 

information (i.e. Landsat bands, SAVI, NDVI) does have potential to improve model 

performance and predictive power.  

Finally, while we took care to exclude disturbances that were not caused by spruce beetle 

in sampling and initial pre-processing steps (such as excluding areas affected by fire and by 

restricting the study area to the spruce/fir vegetation class) we are almost certainly capturing 

disturbances in the final maps that are not induced by spruce beetle. While forest canopies in the 

area were observed to be almost entirely green in scans of pre-outbreak imagery, other insects, 

tree diseases, and disturbances are present in the area, which may be classified by the model as 

gray stage spruce mortality. Because of the massive extent of the ongoing outbreak, we believe it 

is reasonable to assume that the vast majority of predicted mortality was the result of spruce 

beetle attack. 

5. Conclusions 

This study displayed an effective methodology for detecting gray stage spruce mortality 

in a large, cloudy, multiple Landsat scene study region. We have shown that 1) multi-image date 

and multi-sensor tasseled cap composites are a powerful tool when working in a cloudy study 

area and serve as an effective predictor of gray stage spruce mortality severity across time and in 

large study regions; 2) differencing images from multiple time steps is important when 

attempting to detect long, slow moving disturbances like spruce beetle outbreaks, and 3) data 

produced through models like those in this study can serve as a potential supplement to existing 

forest management and monitoring programs, such as the USFS Aerial Detection Survey. 

Finally, we created a spatially extensive map of an ongoing outbreak event that supports a better 
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understanding of outbreak progression, spread, and intensity for this particular spruce beetle 

epidemic. 
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CHAPTER 2: A RESEARCH NOTE CHARACTERIZING STAND SUSCEPTIBILITY AND 

PROGRESSION OF SPRUCE BEETLE INFESTATION DURING A SOUTHERN 

COLORADO EPIDEMIC 

 

1.  Introduction 

 Forest managers have long attempted to characterize how spruce beetle (Dendroctonus 

rufipennis) outbreaks progress across a landscape and why some stands are more susceptible 

than others to attack. These characterizations have ranged from simplistic evaluations that rate 

site susceptibility characteristics (Schmid and Frye, 1976) to complex, multi-scale evaluations of 

susceptibility and outbreak progression that integrate field measurements and remote sensing 

(Simard, et al., 2012). While similar conclusions have been made in many studies with regard to 

environmental site characteristics that can drive spruce beetle attack, outbreaks are dynamic 

across space and time (Raffa et al., 2008) and very few studies have been conducted to explore 

how environmental conditions of spruce beetle attack change as an outbreak progresses. 

 A spruce beetle outbreak that began in the Southern Colorado Rocky Mountains in 2004 

and progressed to epidemic proportions between 2011 and 2015 (See Appendix 1/2) offers a 

unique opportunity to further explore how spruce stand characteristics, topography, and other 

environmental covariates may have influenced susceptibility to spruce beetle attack in this 

particular epidemic. There are many examples of past research that have conducted expansive 

reviews of spruce beetle ecology and the general characteristics that influence stand level spruce 

beetle susceptibility (Schmid and Frye, 1977; Reynolds et al., 1994; Jenkins et al., 2014). While 

there is variability in the characteristics used to describe susceptibility and progression of an 

outbreak, studies have reported that climatic conditions, particularly drought, topographic 
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conditions, such as elevation and slope, and stand characteristics, such as size of tree, amongst 

others, can describe an outbreak’s progression and the susceptibility of trees to spruce beetle 

attack. Here, we have collected a sampling of publicly available datasets that are similar to noted 

sources of susceptibility and that have been used to describe outbreak progression (Table 4) to 

explore their application in describing this particular epidemic, which is active at the time of 

writing.  

 The impetus for this research is twofold: 1) to create a general understanding of site 

characteristics that have influenced progression and susceptibility to spruce beetle attack in this 

particular Southern Colorado epidemic, and 2) to highlight the vast amount of information that 

can be extracted from free, public datasets regarding forest health and site characteristics that can 

be applied in future, more expansive studies of dynamics of spruce beetle attack. Our research 

questions are as follows: 

1. Can publicly available datasets be used to effectively determine significant differences 

between sites that are attacked versus those that have never been attacked, thereby 

characterizing site susceptibility to spruce beetle? 

2. Are there distinguishable and significant differences between sites that were attacked 

early in the epidemic (2009 -2011) versus sites that were attacked later in the epidemic 

(2012- 2015)? 

2. Methods 

2.1 Study Area 

Our study area covers a c. 5000 km
2
 region composed principally of Engelmann spruce 

(Picea engelmannii) and subalpine fir (Abies lasiocarpa) located within and around the Rio 

Grande and San Juan National Forests in the Southern Colorado Rocky Mountains. Elevations 
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range between 1,800 m to ~4,000 m. Average temperatures and rainfall are quite variable in the 

study region because of its large size and intense topographic diversity, but Elliot & Baker 

(2004) averaged conditions reported at three nearby weather stations and found mean 

temperatures to be between -5.9 °C and 12.4 °C, with a mean annual average of 3.2 °C, and a 

mean annual precipitation of 50.83 cm. The majority of the study region is managed by the 

USFS for multiple-use objectives, including conservation of public lands, recreational activities, 

timber and resource extraction, and cattle grazing. 

2.2 Forest Monitoring and Outbreak Detection 

  We used an existing dataset that monitored 356 forested plots designated as spruce/fir 

forest type (Landfire, 2012) using high resolution (1 m
2
) National Agricultural Imagery Program 

orthorectified quarter quad tiles from 2009, 2011, and 2015. Plots were 30 m2
 in size and 

distributed randomly across the study area within a GIS using a minimum distance of 600 m 

between plots. Two trained and calibrated interpreters ocularly observed the plots and looked for 

signs of gray stage canopy mortality characteristic of spruce beetle, noting absence (<5% 

mortality) and presence (>5% mortality) of spruce beetle attack at each of the sites in each year 

of sampling.  

Some outbreaks started within the study area prior to monitoring efforts (See Appendix 

1/2), so 2009 sampling data were used as a baseline to determine which sites had never 

experienced spruce beetle attack to avoid characterizing sites as new outbreaks that may have 

died years before. Plots that showed signs of previous spruce beetle attack in 2009 imagery were 

removed, resulting in 268 plots that had never experienced mortality. These 268 plots were then 

“revisited” using imagery from 2011 and 2015 to track presence of new spruce beetle attack 

through time. In 2011 and 2015, 86 and 84 sites experienced new spruce beetle attack, 
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respectively, while 98 of the sites never saw signs of spruce beetle attack in our sampling. To 

explore two primary research questions, these observations were distributed into two datasets: 1) 

categorized by sites that experienced new spruce beetle attacks versus sites that never 

experienced attack and 2) categorized by sites that experienced new attack 2009 - 2011 versus 

sites that experienced new attacks 2012 - 2015. Environmental covariates described as potential 

factors associated with stand susceptibility to spruce beetle (See Table 4) were then extracted at 

these sites in preparation for statistical analyses. 

 2.3 Environmental Covariates 

We obtained 10 datasets from publicly available data sources that can be used to describe 

site characteristics and susceptibility of sites to spruce beetle attack (Table 4). Datasets that were 

obtained “analysis ready” were simply clipped and extracted within a GIS to match the spatial 

extent of our study area. For datasets that were described with distance (i.e. distance to stream), 

we calculated distance within a GIS using the geodesic method. 

Some data required more extensive processing or preparation. Topographic data were 

derived using a GIS using the Shuttle Radar Topography Mission Digital Elevation Model v2.0 

product (NASA JPL, 2013). Our “distance to disturbance” dataset was obtained from a 

reconstruction of disturbances in the area using LandTrendr (Kennedy et al., 2010), which can 

currently be derived using publicly available Landsat data but will also be available soon as a 

distributed product. In an attempt to characterize true disturbance events occurring before our 

observed outbreaks, we used a filtered LandTrendr product that had a minimum patch size for 

disturbances of 11 pixels and was run with LandTrendr defaults using the tasseled cap wetness 

index for segmentation and no cover model (See Kennedy et al., 2010 for a full description of 

the LandTrendr algorithm).   
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The use of some environmental covariates that relied on the USFS Field Sampled 

Vegetation (FSVeg) spatial database (See Table 4) required a reduction of the overall sample size 

in all categorical tests because our study region expanded beyond the boundaries of the national 

forest datasets and some sites were characterized as being dominated by non-forest (but were 

verified to be forested at the plot scale). Following completion of data preparation, we extracted 

values for all of our environmental variables at our plot locations in preparation for our statistical 

analyses. 
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Environmental Attribute Description and Source Data Type  Hypothesized Relationship 

Elevation Elevation in meters, SRTM DEM v2 Continuous 

Sites unattacked are at lower elevations, 

sites attacked in 2015 were lower in 

elevation than 2011 

Slope Slope in degrees, derived from SRTM DEM v2 Continuous 

Sites with steeper slopes more 

susceptible because of wind and water 

stress, less steep slopes attacked in 2015 

as outbreaks progress 

Aspect Aspect, derived from SRTM DEM v2 Continuous 
Drier sites on south slopes more 

susceptible, attacked earlier in outbreak 

Compound Topographic 

Index 

Describes soil wetness, derived from SRTM 

DEM v2 
Continuous 

Drier sites more susceptible to attack, 

attacked earlier in outbreak 

Percent Canopy Cover 
Percent of plot that is canopy covered, recorded 

using NAIP Imagery 
Continuous 

Dense canopies more susceptible as 

greater host stock, lower densities 

attacked through time 

Tree Size Class 

Dominant size class of stand compacted into 3 

categories, extracted from the USFS FSVeg 

Database 

Categorical 

Larger tree sizes more susceptible to 

attack, tree size class reduces through 

time 

Dominant Tree Species 
Dominant tree species of stand, extracted from 

the USFS FSVeg Database 
Categorical 

Stands with spruce dominant most 

susceptible, unexpected to change 

through time at this stage of the outbreak 

Vegetation Layering 
Vertical structure of the stand, extracted from 

the USFS FSVeg Database 
Categorical 

Stands with less canopy diversity more 

susceptible,  unexpected to change 

through time at this stage of the outbreak 

Distance to Streams 
Distance to nearest stream, extracted from USGS 

Hydrography Dataset 
Continuous 

Stands closer to streams less susceptible 

because of water availability, sites closer 

to streams attacked as outbreak 

progresses 

Distance to Nearest Pre-

Outbreak Disturbance 

Distance to nearest pre-outbreak disturbance 

event, extracted from a LandTrendr Disturbance 

History 

Continuous 

Stands closer to disturbance more 

susceptible, less important as outbreaks 

take hold 

Table 4: A summary of the environmental attributes extracted at every sample site. 
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2.4 Statistical Analyses 

We selected one of two statistical test types depending on the variable of interest 

(categorical versus continuous). For continuous variables, we used two-tailed Wilcoxon Rank 

Sum Tests. The Wilcoxon Rank Sum Test was selected because it is a non-parametric test that 

works well with relatively small sample sizes, and because the test has been used in similar 

applications of outbreak characterization (Klutsch et al., 2009). For our limited number of 

categorical variables, we used the Chi Squared test of independence, which tests independence of 

categories (i.e. outbreak vs. no outbreak) based upon proportions of observations (Zibran, 2007). 

Results are reported at the 95% confidence level. 

3. Results 

3.1 Susceptibility of Sites to Spruce Beetle Attack 

 We found that some tested environmental characteristics were significantly different in 

sites that experienced new spruce beetle attack during our study period when compared to those  

Table 5: A comparison of sites that never experienced infestation versus those that saw an infestation for the first 

time between 2009 and 2015. 

Variable No Spruce 

Beetle Activity 
n=98 

New Spruce Beetle 

Attack 
n= 170 

P 

Elevation (m) 3279 3303 0.431 

Slope (%) 18 20 0.066 

Aspect  (Degrees) 186 192 0.671 

Compound Topographic Index .69 .72 0.220 

Distance to Pre Outbreak Disturbance (m)  73 35 **0.024 

Distance to Streams (m) 172 227 **0.031 

Canopy Cover (%) 40 52 **<0.001 

Tree Size Class (S, M, L, VL)^ - - 0.577 

Dominant Tree Species (Spruce, Fir, 

Other)^ 

- - 0.109 

Canopy Layering (Single, Multiple)^ - - 0.226 

Summary of datasets by mean. **Statistically significant at α= 0.95. Continuous variables were 

tested with a Wilcoxon rank sum test and categorical with a Chi squared test of independence. 

^Categorical variables had a reduced sample size: No activity; n = 52 New Outbreaks; n = 100. 
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that had never been attacked by the beetle (Table 5). Sites attacked by spruce beetle had 

significantly higher levels of percent canopy cover than sites that had never been attacked 

(Wilcoxon rank sum test, p=<.001). Attacked sites were also seen to be significantly closer to 

previous disturbance events than sites that had never been attacked (p=.024) and were farther 

away from streams (p=.031). No significant differences were present in topographic (elevation, 

slope, aspect, CTI) or stand characteristics (size, dominant species, canopy layering) of sites that 

had been attacked versus unattacked. 

3.2 Distinguishing Site Characteristics as an Outbreak Progresses 

As the Southern Colorado spruce beetle epidemic progressed across the landscape and 

through time, some site characteristics of outbreaks changed significantly between 2011 and 

2015 plot sampling. Sites attacked in 2015 were significantly higher in elevation than sites  

 

 

 

Table 6: A comparison of sites that experienced infestation between 2009 and 2011 versus those that saw an 

infestation for the first time between 2012 and 2015. 
 

Variable 2011 
n= 86 

2015 
n= 84 

P  

Elevation (m) 3263 3345 **0.008  

Slope (%) 20 16 **0.007  

Aspect (Degrees) 198 187 0.417  

Compound Topographic Index .73 .78 0.3001  

Distance to Pre Outbreak Disturbance (m) 25 47 **0.021  

Distance to Streams (m) 212 242 0.777  

Canopy Cover (%) 55 49 **0.025  

Tree Size Class (S, M, L, VL)^ - - 0.7592  

Dominant Tree Species (Spruce, Fir, Other)^ - - 0.975  

Canopy Layering (Single, Multiple)^ - - 0.641  

Summary of datasets by mean. **Statistically significant at  α= 0.95. Continuous variables 

were tested with a Wilcoxon rank sum test and categorical with a Chi squared test.  

^Categorical variables had a reduced sample size: 2011; n = 56 , 2015; n = 46. 
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attacked in 2011 (Wilcoxon rank sum test, p=<.008), and were located on significantly steeper 

slopes (p=<.007). Additionally, spruce beetles attacked sites with significantly lower canopy 

densities (p=<.025) that were farther away from disturbance events in 2015 (p= .021) than in 

2011.  

4. Discussion 

4.1 Susceptibility of Sites to Spruce Beetle Attack 

Our results agree with the long-held explanation that previously occurring disturbance 

events drive new spruce beetle attacks to occur in nearby spruce stands (Jenkins et al., 2014). 

This further reinforces that active management of disturbed areas may be a particularly important 

step in preventing endemic spruce beetle populations from expanding to epidemics (Fettig et al., 

2007). Our finding of dense canopies being more susceptible to attack than stands with more 

open canopies is intuitive, as a greater host stock is likely available, and has been reported as a 

characteristic of susceptibility for decades (Schmid and Frye, 1976). Similarly, spruce beetle 

attacked sites being further from stream environments is a logical outcome. With our study area 

being in a state of drought during nearly our entire study period, we hypothesized that weak, 

drought stressed trees further away from the moist environments that creeks, rivers, and streams 

create would be more likely to be attacked.  

We had hypothesized that sites with higher elevations, steeper slopes, and south facing 

aspects would have been more susceptible to spruce beetle attack than sites that were not, all of 

which must be rejected. We believe that this may be explained by our large study area size and 

the fact that multiple, distinct outbreak events and epicenters are occurring simultaneously within 

our study area at different topographic positions. Additionally, there was little or no value in 

using topographic predictors in detection of mortality in the research presented in the first 

chapter of this thesis, further supporting that attack was not constrained by topographic 
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characteristics. Finally, our findings that showed no differences in tree size class, canopy 

layering, or dominant species type can likely be explained by two factors. First, while the scale 

of this epidemic is massive, there are likely still many suitable host tree species of all sizes 

remaining on the landscape and limited dispersal distances may drive beetles to attack trees of 

any suitable size in epidemic conditions. Next, our categorical data, which is subjectively 

categorized by the USFS, may not be of an adequate scale to appropriately detect differences 

between unattacked and attacked sites. 

4.2 Distinguishing Site Characteristics as an Outbreak Progresses 

 We were surprised to see that new sites attacked by spruce beetle in 2015 were 

significantly higher in elevation than in 2011. While this initially had us perplexed, as bark 

beetle outbreaks are often characterized as starting at higher elevations and moving lower 

through time (Johnson, 1967; Hebertson & Jenkins, 2008), reports from the 2015 Aerial 

Detection Survey agree with our results that spruce beetle activity did move to higher elevations 

in 2015 (Lockwood & Johnson, 2016), a phenomenon that may be driven by climatic differences 

between our sampling years. Steeper slopes being attacked between 2009 and 2011 versus 2012 

to 2015 agrees with our hypothesized outcome. Since disturbances are more likely to occur, 

particularly windthrow, on steeper slopes than less steep slopes (Ulanova, 2009), steep slopes 

seem particularly susceptible to initial attack early in the outbreak event. As the outbreak 

progresses, the beetles may disperse away from these disturbances to areas that still have 

sufficient host tree stocks. Our findings of distance to pre-outbreak disturbance increasing and 

significantly lower canopy covers being attacked as the epidemic progressed are both intuitive. 

As an outbreak continues, available host stocks with dense canopies around an outbreak 
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epicenter also likely decrease, and as populations of beetles rise, dispersal distance away from an 

original disturbance event that may have triggered the original outbreak will also likely increase.  

4.3 Caveats 

First, no ground sampled field data was included in these analyses. While care was taken 

in sampling to ensure mortality observed was characteristic of spruce beetle attack, this study 

could be more robust with field verification of mortality events. Next, our stand characteristics 

(size class, canopy layering, and dominant species) were categorical and broadly characterized. 

If resources are available, we certainly suggest that future research integrates stand 

characteristics measured at the plot level (DBH, stand density, etc), even though some studies 

report landscape scale metrics being the most important when characterizing spruce stand 

susceptibility to beetle attack (Simard, et al., 2012). Next, we did not explicitly check for 

characteristics of spatial autocorrelation, but instead insured there was a 600 m buffer between 

our plots, a distance greater than those used in studies with similar environmental covariates that 

found no issue with spatial autocorrelation (Klutsch et al., 2009, Simard, et al., 2012). Finally, 

we tested only a limited set of variables. Many additional environmental covariates could be 

explored and may have greater explanatory power than the variables we tested. The obvious gap 

in this analysis is related to the lack of climatic data, which likely has a great impact on spruce 

susceptibility to outbreak. Unfortunately, our study design and short study period prevented 

exploration in this area. 

5. Conclusions 

We successfully described stand level susceptibility characteristics to spruce beetle outbreak 

and outbreak progression through time using public datasets for the ongoing Southern Colorado 

epidemic. Sites attacked by spruce beetle were closer to disturbances in areas of dense canopy 

cover and were further from streams when compared to sites that were uninfested. As the 
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epidemic progressed, spruce beetle infested sites moved up in elevation, were on less steep 

slopes, further from disturbances, and had less dense canopies than those sites attacked earlier in 

the outbreak. The results display the power and application of the use of public datasets in 

creating a better understanding of spruce beetle movement and stand susceptibility throughout an 

ongoing outbreak event, and highlight the dynamic nature of spruce beetle induced mortality at 

large spatial scales and through time. 
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APPENDICES 

 

 

 

Appendix 1: Aerial detection survey polygons for 2004 – 2015 showing spruce beetle activity 

within our study area. Visual comparison of ADS data with our modelled results show very 

similar extents and areas of activity. 
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Appendix 2: Spruce beetle activity recorded in the USFS Aerial Detection Program, 2004 – 2015 within the study region. 
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Appendix 3: Abbreviated code to use Google Earth Engine for National Agricultural Imagery 

Program Plot Sampling 

Google Earth Engine Code to conduct NAIP Sampling 

// Load 2015 NAIP quarter quads 

var naip2015 = ee.ImageCollection('USDA/NAIP/DOQQ') 

  .filterBounds(ee.Geometry.Rectangle(-108.9679, 38.1557, -106.0236, 37.1029)) //This is your 

study area extent 

  .filterDate('2015-01-01', '2015-12-31'); //This is where you select the year of NAIP imagery you 

would like to use. You can add as many years as you want by copying and pasting this and the 

following sections and changing the dates. 

 

// Spatially mosaic the images in the collection and display. 

var mosaic = naip2015.mosaic(); 

Map.setCenter(-107.4847, 37.5576, 9); //Set map center 

Map.addLayer(mosaic, {}, 'NAIP Mosaic 2015'); 

Map.addLayer(mosaic, {bands: 'N,B,G'}, 'NAIP Mosaic 2015 False'); //Add false color image. You 

can change the image "stretch" in the layers tab. 

 

 

// Load a FeatureCollection from a Fusion Table. 

var fromFT = ee.FeatureCollection('ft:1NoIp3TXzzTy9mf3CHPsa9Zu-

wHN4SvndrNrC7c2V'); //Once you have your plots generated, you'll need to upload your outline 

shapefile/points into a a KML, then a fusion table. This can be done through Google Drive. 

 

// Print and display the FeatureCollection. 

print(fromFT); 

Map.addLayer(fromFT, {}, 'From Fusion Table'); //This adds your points/polygons to the map. You 

can set transparency via the layers tab.  

 

// Make a drop down menu to zoom to plot locations 

var places = { 

1 :[-107.643703,37.656711  ], 

2 :[-107.842758,37.74372  ] //Add all of your plot center coordinates here. This just creates a drop 

down menu that allows you to zoom directly into a plot. I have truncated it here, but this would 

usually have a few hundred plot coordinates. 

  

var select = ui.Select({ 

  items: Object.keys(places), 

  onChange: function(key) { 

    Map.setCenter(places[key][0], places[key][1],25); 

  } 

}); 

 

// Set a place holder. 

select.setPlaceholder('Choose a location...');  

 

print(select); 

 


